Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(10.9899047920475420421886097926 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.37799891 \pm 5.7 \cdot 10^{-7} \) | \(a_{3}= -1.76401178 \pm 4.7 \cdot 10^{-7} \) |
\(a_{4}= +0.89888100 \pm 6.7 \cdot 10^{-7} \) | \(a_{5}= +0.56444728 \pm 4.9 \cdot 10^{-7} \) | \(a_{6}= -2.43080631 \pm 5.8 \cdot 10^{-7} \) |
\(a_{7}= +1.09281904 \pm 4.9 \cdot 10^{-7} \) | \(a_{8}= -0.13934188 \pm 5.6 \cdot 10^{-7} \) | \(a_{9}= +2.11173757 \pm 5.3 \cdot 10^{-7} \) |
\(a_{10}= +0.77780773 \pm 6.0 \cdot 10^{-7} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= -1.58563667 \pm 6.2 \cdot 10^{-7} \) |
\(a_{13}= -0.16360491 \pm 3.9 \cdot 10^{-7} \) | \(a_{14}= +1.50590345 \pm 4.1 \cdot 10^{-7} \) | \(a_{15}= -0.99569165 \pm 3.7 \cdot 10^{-7} \) |
\(a_{16}= -1.09089395 \pm 4.9 \cdot 10^{-7} \) | \(a_{17}= -1.15982407 \pm 4.8 \cdot 10^{-7} \) | \(a_{18}= +2.90997207 \pm 5.4 \cdot 10^{-7} \) |
\(a_{19}= -1.18160512 \pm 3.5 \cdot 10^{-7} \) | \(a_{20}= +0.50737093 \pm 6.5 \cdot 10^{-7} \) | \(a_{21}= -1.92774566 \pm 3.8 \cdot 10^{-7} \) |
\(a_{22}= -0.41548230 \pm 5.8 \cdot 10^{-7} \) | \(a_{23}= +0.91885496 \pm 4.6 \cdot 10^{-7} \) | \(a_{24}= +0.24580071 \pm 6.6 \cdot 10^{-7} \) |
\(a_{25}= -0.68139927 \pm 4.0 \cdot 10^{-7} \) | \(a_{26}= -0.22544738 \pm 3.0 \cdot 10^{-7} \) | \(a_{27}= -1.96111817 \pm 4.5 \cdot 10^{-7} \) |
\(a_{28}= +0.98231427 \pm 4.9 \cdot 10^{-7} \) | \(a_{29}= -1.56124203 \pm 4.5 \cdot 10^{-7} \) | \(a_{30}= -1.37206201 \pm 3.4 \cdot 10^{-7} \) |
\(a_{31}= +0.87680398 \pm 4.8 \cdot 10^{-7} \) | \(a_{32}= -1.36390880 \pm 4.1 \cdot 10^{-7} \) | \(a_{33}= +0.53186956 \pm 4.8 \cdot 10^{-7} \) |
\(a_{34}= -1.59823630 \pm 5.8 \cdot 10^{-7} \) | \(a_{35}= +0.61683873 \pm 4.7 \cdot 10^{-7} \) | \(a_{36}= +1.89820077 \pm 5.6 \cdot 10^{-7} \) |
\(a_{37}= +0.24178608 \pm 4.9 \cdot 10^{-7} \) | \(a_{38}= -1.62825057 \pm 4.8 \cdot 10^{-7} \) | \(a_{39}= +0.28860098 \pm 2.8 \cdot 10^{-7} \) |
\(a_{40}= -0.07865114 \pm 4.6 \cdot 10^{-7} \) | \(a_{41}= +0.45191683 \pm 3.2 \cdot 10^{-7} \) | \(a_{42}= -2.65643142 \pm 4.2 \cdot 10^{-7} \) |
\(a_{43}= -1.95279426 \pm 4.6 \cdot 10^{-7} \) | \(a_{44}= -0.27102282 \pm 6.8 \cdot 10^{-7} \) | \(a_{45}= +1.19196452 \pm 5.2 \cdot 10^{-7} \) |
\(a_{46}= +1.26618114 \pm 6.6 \cdot 10^{-7} \) | \(a_{47}= -0.70127837 \pm 3.9 \cdot 10^{-7} \) | \(a_{48}= +1.92434978 \pm 5.1 \cdot 10^{-7} \) |
\(a_{49}= +0.19425346 \pm 4.3 \cdot 10^{-7} \) | \(a_{50}= -0.93896745 \pm 6.2 \cdot 10^{-7} \) | \(a_{51}= +2.04594332 \pm 4.8 \cdot 10^{-7} \) |
\(a_{52}= -0.14706134 \pm 4.1 \cdot 10^{-7} \) | \(a_{53}= +0.09587727 \pm 3.7 \cdot 10^{-7} \) | \(a_{54}= -2.70241871 \pm 3.9 \cdot 10^{-7} \) |
\(a_{55}= -0.17018726 \pm 5.0 \cdot 10^{-7} \) | \(a_{56}= -0.15227546 \pm 3.3 \cdot 10^{-7} \) | \(a_{57}= +2.08436536 \pm 3.1 \cdot 10^{-7} \) |
\(a_{58}= -2.15138982 \pm 4.4 \cdot 10^{-7} \) | \(a_{59}= -1.18938312 \pm 5.5 \cdot 10^{-7} \) | \(a_{60}= -0.89500830 \pm 3.0 \cdot 10^{-7} \) |
\(a_{61}= +1.04025861 \pm 4.0 \cdot 10^{-7} \) | \(a_{62}= +1.20823493 \pm 4.4 \cdot 10^{-7} \) | \(a_{63}= +2.30774703 \pm 3.7 \cdot 10^{-7} \) |
\(a_{64}= -0.78857089 \pm 5.2 \cdot 10^{-7} \) | \(a_{65}= -0.09234634 \pm 3.2 \cdot 10^{-7} \) | \(a_{66}= +0.73291568 \pm 1.0 \cdot 10^{-6} \) |
\(a_{67}= -0.57720811 \pm 5.6 \cdot 10^{-7} \) | \(a_{68}= -1.04254381 \pm 7.4 \cdot 10^{-7} \) | \(a_{69}= -1.62087098 \pm 5.4 \cdot 10^{-7} \) |
\(a_{70}= +0.85000310 \pm 4.2 \cdot 10^{-7} \) | \(a_{71}= -0.58945104 \pm 3.6 \cdot 10^{-7} \) | \(a_{72}= -0.29425347 \pm 5.4 \cdot 10^{-7} \) |
\(a_{73}= +1.90537982 \pm 4.6 \cdot 10^{-7} \) | \(a_{74}= +0.33318096 \pm 4.5 \cdot 10^{-7} \) | \(a_{75}= +1.20199634 \pm 2.9 \cdot 10^{-7} \) |
\(a_{76}= -1.06212239 \pm 4.8 \cdot 10^{-7} \) | \(a_{77}= -0.32949734 \pm 5.0 \cdot 10^{-7} \) | \(a_{78}= +0.39769184 \pm 3.7 \cdot 10^{-7} \) |
\(a_{79}= +0.19216268 \pm 3.8 \cdot 10^{-7} \) | \(a_{80}= -0.61575212 \pm 3.0 \cdot 10^{-7} \) | \(a_{81}= +1.34769799 \pm 5.1 \cdot 10^{-7} \) |
\(a_{82}= +0.62274091 \pm 3.2 \cdot 10^{-7} \) | \(a_{83}= -1.49819829 \pm 4.6 \cdot 10^{-7} \) | \(a_{84}= -1.73281394 \pm 3.9 \cdot 10^{-7} \) |
\(a_{85}= -0.65465954 \pm 3.8 \cdot 10^{-7} \) | \(a_{86}= -2.69094836 \pm 5.3 \cdot 10^{-7} \) | \(a_{87}= +2.75404934 \pm 3.3 \cdot 10^{-7} \) |
\(a_{88}= +0.04201316 \pm 5.7 \cdot 10^{-7} \) | \(a_{89}= +0.58926532 \pm 4.8 \cdot 10^{-7} \) | \(a_{90}= +1.64252581 \pm 6.2 \cdot 10^{-7} \) |
\(a_{91}= -0.17879056 \pm 4.5 \cdot 10^{-7} \) | \(a_{92}= +0.82594127 \pm 7.5 \cdot 10^{-7} \) | \(a_{93}= -1.54669255 \pm 4.8 \cdot 10^{-7} \) |
\(a_{94}= -0.96636083 \pm 3.9 \cdot 10^{-7} \) | \(a_{95}= -0.66695379 \pm 4.1 \cdot 10^{-7} \) | \(a_{96}= +2.40595119 \pm 4.2 \cdot 10^{-7} \) |
\(a_{97}= -0.57811293 \pm 4.2 \cdot 10^{-7} \) | \(a_{98}= +0.26768105 \pm 4.8 \cdot 10^{-7} \) | \(a_{99}= -0.63671283 \pm 5.4 \cdot 10^{-7} \) |
\(a_{100}= -0.61249686 \pm 6.8 \cdot 10^{-7} \) | \(a_{101}= +0.48831989 \pm 3.6 \cdot 10^{-7} \) | \(a_{102}= +2.81930767 \pm 6.8 \cdot 10^{-7} \) |
\(a_{103}= -0.19376448 \pm 5.2 \cdot 10^{-7} \) | \(a_{104}= +0.02279701 \pm 2.2 \cdot 10^{-7} \) | \(a_{105}= -1.08811079 \pm 3.4 \cdot 10^{-7} \) |
\(a_{106}= +0.13211878 \pm 4.7 \cdot 10^{-7} \) | \(a_{107}= +0.48925821 \pm 5.4 \cdot 10^{-7} \) | \(a_{108}= -1.76281186 \pm 3.4 \cdot 10^{-7} \) |
\(a_{109}= +0.21462132 \pm 3.4 \cdot 10^{-7} \) | \(a_{110}= -0.23451786 \pm 1.0 \cdot 10^{-6} \) | \(a_{111}= -0.42651350 \pm 2.7 \cdot 10^{-7} \) |
\(a_{112}= -1.19214968 \pm 4.2 \cdot 10^{-7} \) | \(a_{113}= -0.19552989 \pm 5.9 \cdot 10^{-7} \) | \(a_{114}= +2.87225319 \pm 3.6 \cdot 10^{-7} \) |
\(a_{115}= +0.51864518 \pm 3.4 \cdot 10^{-7} \) | \(a_{116}= -1.40337079 \pm 5.9 \cdot 10^{-7} \) | \(a_{117}= -0.34549063 \pm 3.7 \cdot 10^{-7} \) |
\(a_{118}= -1.63896865 \pm 6.7 \cdot 10^{-7} \) | \(a_{119}= -1.26747783 \pm 4.4 \cdot 10^{-7} \) | \(a_{120}= +0.13874154 \pm 3.4 \cdot 10^{-7} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +1.43347523 \pm 5.6 \cdot 10^{-7} \) | \(a_{123}= -0.79718662 \pm 4.0 \cdot 10^{-7} \) |
\(a_{124}= +0.78814244 \pm 4.4 \cdot 10^{-7} \) | \(a_{125}= -0.94906124 \pm 4.5 \cdot 10^{-7} \) | \(a_{126}= +3.18007289 \pm 3.3 \cdot 10^{-7} \) |
\(a_{127}= -0.90795321 \pm 4.8 \cdot 10^{-7} \) | \(a_{128}= +0.27725897 \pm 5.0 \cdot 10^{-7} \) | \(a_{129}= +3.44475208 \pm 4.7 \cdot 10^{-7} \) |
\(a_{130}= -0.12725316 \pm 2.6 \cdot 10^{-7} \) | \(a_{131}= +0.59814862 \pm 5.4 \cdot 10^{-7} \) | \(a_{132}= +0.47808744 \pm 1.1 \cdot 10^{-6} \) |
\(a_{133}= -1.29128058 \pm 3.1 \cdot 10^{-7} \) | \(a_{134}= -0.79539215 \pm 6.5 \cdot 10^{-7} \) | \(a_{135}= -1.10694781 \pm 4.1 \cdot 10^{-7} \) |
\(a_{136}= +0.16161206 \pm 6.7 \cdot 10^{-7} \) | \(a_{137}= +0.20554852 \pm 4.6 \cdot 10^{-7} \) | \(a_{138}= -2.23355845 \pm 7.9 \cdot 10^{-7} \) |
\(a_{139}= -1.41182825 \pm 3.7 \cdot 10^{-7} \) | \(a_{140}= +0.55446461 \pm 4.9 \cdot 10^{-7} \) | \(a_{141}= +1.23706331 \pm 5.3 \cdot 10^{-7} \) |
\(a_{142}= -0.81226289 \pm 2.9 \cdot 10^{-7} \) | \(a_{143}= +0.04932874 \pm 4.0 \cdot 10^{-7} \) | \(a_{144}= -2.30368174 \pm 3.9 \cdot 10^{-7} \) |
\(a_{145}= -0.88123881 \pm 4.2 \cdot 10^{-7} \) | \(a_{146}= +2.62561132 \pm 5.1 \cdot 10^{-7} \) | \(a_{147}= -0.34266538 \pm 4.6 \cdot 10^{-7} \) |
\(a_{148}= +0.21733691 \pm 5.9 \cdot 10^{-7} \) | \(a_{149}= +0.91586314 \pm 3.6 \cdot 10^{-7} \) | \(a_{150}= +1.65634965 \pm 4.5 \cdot 10^{-7} \) |
\(a_{151}= +0.17899886 \pm 6.3 \cdot 10^{-7} \) | \(a_{152}= +0.16464707 \pm 3.6 \cdot 10^{-7} \) | \(a_{153}= -2.44924406 \pm 4.8 \cdot 10^{-7} \) |
\(a_{154}= -0.45404697 \pm 1.0 \cdot 10^{-6} \) | \(a_{155}= +0.49490962 \pm 4.5 \cdot 10^{-7} \) | \(a_{156}= +0.25941794 \pm 3.3 \cdot 10^{-7} \) |
\(a_{157}= +0.95053439 \pm 4.2 \cdot 10^{-7} \) | \(a_{158}= +0.26479997 \pm 3.8 \cdot 10^{-7} \) | \(a_{159}= -0.16912864 \pm 3.2 \cdot 10^{-7} \) |
\(a_{160}= -0.76985461 \pm 4.0 \cdot 10^{-7} \) | \(a_{161}= +1.00414220 \pm 3.6 \cdot 10^{-7} \) | \(a_{162}= +1.85712637 \pm 6.2 \cdot 10^{-7} \) |
\(a_{163}= +0.01125609 \pm 4.6 \cdot 10^{-7} \) | \(a_{164}= +0.40621945 \pm 2.8 \cdot 10^{-7} \) | \(a_{165}= +0.30021233 \pm 9.8 \cdot 10^{-7} \) |
\(a_{166}= -2.06451561 \pm 4.0 \cdot 10^{-7} \) | \(a_{167}= -0.23560513 \pm 6.1 \cdot 10^{-7} \) | \(a_{168}= +0.26861570 \pm 3.0 \cdot 10^{-7} \) |
\(a_{169}= -0.97323343 \pm 3.9 \cdot 10^{-7} \) | \(a_{170}= -0.90212013 \pm 4.0 \cdot 10^{-7} \) | \(a_{171}= -2.49523993 \pm 3.4 \cdot 10^{-7} \) |
\(a_{172}= -1.75532965 \pm 6.3 \cdot 10^{-7} \) | \(a_{173}= +1.35953813 \pm 4.7 \cdot 10^{-7} \) | \(a_{174}= +3.79507699 \pm 4.5 \cdot 10^{-7} \) |
\(a_{175}= -0.74464610 \pm 2.7 \cdot 10^{-7} \) | \(a_{176}= +0.32891690 \pm 5.1 \cdot 10^{-7} \) | \(a_{177}= +2.09808584 \pm 5.0 \cdot 10^{-7} \) |
\(a_{178}= +0.81200697 \pm 6.9 \cdot 10^{-7} \) | \(a_{179}= -1.18830259 \pm 5.3 \cdot 10^{-7} \) | \(a_{180}= +1.07143426 \pm 6.2 \cdot 10^{-7} \) |
\(a_{181}= +1.59987893 \pm 4.3 \cdot 10^{-7} \) | \(a_{182}= -0.24637319 \pm 3.4 \cdot 10^{-7} \) | \(a_{183}= -1.83502844 \pm 2.3 \cdot 10^{-7} \) |
\(a_{184}= -0.12803497 \pm 7.2 \cdot 10^{-7} \) | \(a_{185}= +0.13647550 \pm 4.8 \cdot 10^{-7} \) | \(a_{186}= -2.13134065 \pm 4.4 \cdot 10^{-7} \) |
\(a_{187}= +0.34970011 \pm 5.0 \cdot 10^{-7} \) | \(a_{188}= -0.63036580 \pm 4.5 \cdot 10^{-7} \) | \(a_{189}= -2.14314728 \pm 3.8 \cdot 10^{-7} \) |
\(a_{190}= -0.91906160 \pm 5.9 \cdot 10^{-7} \) | \(a_{191}= +0.81789630 \pm 4.8 \cdot 10^{-7} \) | \(a_{192}= +1.39104834 \pm 4.1 \cdot 10^{-7} \) |
\(a_{193}= -0.53408964 \pm 4.8 \cdot 10^{-7} \) | \(a_{194}= -0.79663899 \pm 6.3 \cdot 10^{-7} \) | \(a_{195}= +0.16290004 \pm 2.5 \cdot 10^{-7} \) |
\(a_{196}= +0.17461074 \pm 5.3 \cdot 10^{-7} \) | \(a_{197}= +0.75841443 \pm 3.5 \cdot 10^{-7} \) | \(a_{198}= -0.87738959 \pm 1.1 \cdot 10^{-6} \) |
\(a_{199}= +0.87810415 \pm 5.3 \cdot 10^{-7} \) | \(a_{200}= +0.09494745 \pm 5.6 \cdot 10^{-7} \) | \(a_{201}= +1.01820192 \pm 3.2 \cdot 10^{-7} \) |
\(a_{202}= +0.67290427 \pm 5.4 \cdot 10^{-7} \) | \(a_{203}= -1.70615502 \pm 4.7 \cdot 10^{-7} \) | \(a_{204}= +1.83905957 \pm 8.1 \cdot 10^{-7} \) |
\(a_{205}= +0.25508323 \pm 2.7 \cdot 10^{-7} \) | \(a_{206}= -0.26700725 \pm 4.1 \cdot 10^{-7} \) | \(a_{207}= +1.94038055 \pm 4.3 \cdot 10^{-7} \) |
\(a_{208}= +0.17847560 \pm 3.7 \cdot 10^{-7} \) | \(a_{209}= +0.35626735 \pm 3.6 \cdot 10^{-7} \) | \(a_{210}= -1.49941548 \pm 3.3 \cdot 10^{-7} \) |
\(a_{211}= -0.08458394 \pm 5.4 \cdot 10^{-7} \) | \(a_{212}= +0.08618226 \pm 4.7 \cdot 10^{-7} \) | \(a_{213}= +1.03979858 \pm 4.3 \cdot 10^{-7} \) |
\(a_{214}= +0.67419728 \pm 8.0 \cdot 10^{-7} \) | \(a_{215}= -1.10224940 \pm 4.5 \cdot 10^{-7} \) | \(a_{216}= +0.27326589 \pm 4.7 \cdot 10^{-7} \) |
\(a_{217}= +0.95818808 \pm 5.7 \cdot 10^{-7} \) | \(a_{218}= +0.29574795 \pm 3.8 \cdot 10^{-7} \) | \(a_{219}= -3.36111246 \pm 3.0 \cdot 10^{-7} \) |
\(a_{220}= -0.15297809 \pm 1.1 \cdot 10^{-6} \) | \(a_{221}= +0.18975291 \pm 3.7 \cdot 10^{-7} \) | \(a_{222}= -0.58773513 \pm 3.5 \cdot 10^{-7} \) |
\(a_{223}= +1.16592189 \pm 5.0 \cdot 10^{-7} \) | \(a_{224}= -1.49050551 \pm 4.0 \cdot 10^{-7} \) | \(a_{225}= -1.43893644 \pm 3.5 \cdot 10^{-7} \) |
\(a_{226}= -0.26943998 \pm 6.4 \cdot 10^{-7} \) | \(a_{227}= +0.59235850 \pm 3.9 \cdot 10^{-7} \) | \(a_{228}= +1.87359641 \pm 3.5 \cdot 10^{-7} \) |
\(a_{229}= -1.48737806 \pm 4.0 \cdot 10^{-7} \) | \(a_{230}= +0.71469250 \pm 3.6 \cdot 10^{-7} \) | \(a_{231}= +0.58123719 \pm 9.8 \cdot 10^{-7} \) |
\(a_{232}= +0.21754639 \pm 4.5 \cdot 10^{-7} \) | \(a_{233}= +0.47922006 \pm 5.7 \cdot 10^{-7} \) | \(a_{234}= -0.47608571 \pm 2.7 \cdot 10^{-7} \) |
\(a_{235}= -0.39583467 \pm 3.1 \cdot 10^{-7} \) | \(a_{236}= -1.06911389 \pm 8.0 \cdot 10^{-7} \) | \(a_{237}= -0.33897724 \pm 3.5 \cdot 10^{-7} \) |
\(a_{238}= -1.74658306 \pm 3.0 \cdot 10^{-7} \) | \(a_{239}= +0.92811575 \pm 4.4 \cdot 10^{-7} \) | \(a_{240}= +1.08619399 \pm 2.4 \cdot 10^{-7} \) |
\(a_{241}= +0.27461864 \pm 6.8 \cdot 10^{-7} \) | \(a_{242}= +0.12527263 \pm 5.8 \cdot 10^{-7} \) | \(a_{243}= -0.41623697 \pm 3.4 \cdot 10^{-7} \) |
\(a_{244}= +0.93506870 \pm 5.9 \cdot 10^{-7} \) | \(a_{245}= +0.10964583 \pm 4.4 \cdot 10^{-7} \) | \(a_{246}= -1.09852229 \pm 4.0 \cdot 10^{-7} \) |
\(a_{247}= +0.19331639 \pm 1.8 \cdot 10^{-7} \) | \(a_{248}= -0.12217551 \pm 3.4 \cdot 10^{-7} \) | \(a_{249}= +2.64283944 \pm 6.1 \cdot 10^{-7} \) |
\(a_{250}= -1.30780536 \pm 4.0 \cdot 10^{-7} \) | \(a_{251}= -1.03576722 \pm 5.5 \cdot 10^{-7} \) | \(a_{252}= +2.07438995 \pm 4.1 \cdot 10^{-7} \) |
\(a_{253}= -0.27704520 \pm 4.7 \cdot 10^{-7} \) | \(a_{254}= -1.25115853 \pm 5.4 \cdot 10^{-7} \) | \(a_{255}= +1.15482714 \pm 3.0 \cdot 10^{-7} \) |
\(a_{256}= +1.17063345 \pm 5.8 \cdot 10^{-7} \) | \(a_{257}= -0.08921171 \pm 4.0 \cdot 10^{-7} \) | \(a_{258}= +4.74686462 \pm 5.8 \cdot 10^{-7} \) |
\(a_{259}= +0.26422843 \pm 4.9 \cdot 10^{-7} \) | \(a_{260}= -0.08300837 \pm 3.4 \cdot 10^{-7} \) | \(a_{261}= -3.29693346 \pm 3.6 \cdot 10^{-7} \) |
\(a_{262}= +0.82424815 \pm 5.8 \cdot 10^{-7} \) | \(a_{263}= -1.44512226 \pm 6.3 \cdot 10^{-7} \) | \(a_{264}= -0.07411170 \pm 1.0 \cdot 10^{-6} \) |
\(a_{265}= +0.05411767 \pm 4.4 \cdot 10^{-7} \) | \(a_{266}= -1.77938323 \pm 3.9 \cdot 10^{-7} \) | \(a_{267}= -1.03947097 \pm 4.8 \cdot 10^{-7} \) |
\(a_{268}= -0.51884141 \pm 7.7 \cdot 10^{-7} \) | \(a_{269}= -0.51055004 \pm 4.4 \cdot 10^{-7} \) | \(a_{270}= -1.52537288 \pm 3.2 \cdot 10^{-7} \) |
\(a_{271}= -0.06905651 \pm 4.7 \cdot 10^{-7} \) | \(a_{272}= +1.26524506 \pm 5.8 \cdot 10^{-7} \) | \(a_{273}= +0.31538865 \pm 3.3 \cdot 10^{-7} \) |
\(a_{274}= +0.28324563 \pm 4.4 \cdot 10^{-7} \) | \(a_{275}= +0.20544961 \pm 4.1 \cdot 10^{-7} \) | \(a_{276}= -1.45697012 \pm 9.1 \cdot 10^{-7} \) |
\(a_{277}= -0.42655025 \pm 6.8 \cdot 10^{-7} \) | \(a_{278}= -1.94549778 \pm 4.8 \cdot 10^{-7} \) | \(a_{279}= +1.85157990 \pm 4.8 \cdot 10^{-7} \) |
\(a_{280}= -0.08595147 \pm 3.5 \cdot 10^{-7} \) | \(a_{281}= +0.13347699 \pm 5.6 \cdot 10^{-7} \) | \(a_{282}= +1.70467189 \pm 5.6 \cdot 10^{-7} \) |
\(a_{283}= +1.73012950 \pm 4.1 \cdot 10^{-7} \) | \(a_{284}= -0.52984634 \pm 3.5 \cdot 10^{-7} \) | \(a_{285}= +1.17651435 \pm 2.6 \cdot 10^{-7} \) |
\(a_{286}= +0.06797494 \pm 9.8 \cdot 10^{-7} \) | \(a_{287}= +0.49386332 \pm 3.2 \cdot 10^{-7} \) | \(a_{288}= -2.88021745 \pm 4.0 \cdot 10^{-7} \) |
\(a_{289}= +0.34519187 \pm 3.0 \cdot 10^{-7} \) | \(a_{290}= -1.21434613 \pm 4.0 \cdot 10^{-7} \) | \(a_{291}= +1.01979803 \pm 2.9 \cdot 10^{-7} \) |
\(a_{292}= +1.71270972 \pm 5.8 \cdot 10^{-7} \) | \(a_{293}= +0.03395195 \pm 4.8 \cdot 10^{-7} \) | \(a_{294}= -0.47219253 \pm 5.3 \cdot 10^{-7} \) |
\(a_{295}= -0.67134407 \pm 6.0 \cdot 10^{-7} \) | \(a_{296}= -0.03369093 \pm 3.5 \cdot 10^{-7} \) | \(a_{297}= +0.59129938 \pm 4.6 \cdot 10^{-7} \) |
\(a_{298}= +1.26205841 \pm 3.5 \cdot 10^{-7} \) | \(a_{299}= -0.15032918 \pm 2.8 \cdot 10^{-7} \) | \(a_{300}= +1.08045167 \pm 5.4 \cdot 10^{-7} \) |
\(a_{301}= -2.13405075 \pm 4.9 \cdot 10^{-7} \) | \(a_{302}= +0.24666023 \pm 7.6 \cdot 10^{-7} \) | \(a_{303}= -0.86140203 \pm 4.3 \cdot 10^{-7} \) |
\(a_{304}= +1.28900588 \pm 3.0 \cdot 10^{-7} \) | \(a_{305}= +0.58717114 \pm 5.4 \cdot 10^{-7} \) | \(a_{306}= -3.37505564 \pm 4.7 \cdot 10^{-7} \) |
\(a_{307}= +0.50475239 \pm 5.5 \cdot 10^{-7} \) | \(a_{308}= -0.29617890 \pm 1.1 \cdot 10^{-6} \) | \(a_{309}= +0.34180283 \pm 5.2 \cdot 10^{-7} \) |
\(a_{310}= +0.68198492 \pm 4.4 \cdot 10^{-7} \) | \(a_{311}= -0.35735288 \pm 5.7 \cdot 10^{-7} \) | \(a_{312}= -0.04021420 \pm 2.4 \cdot 10^{-7} \) |
\(a_{313}= -0.94097580 \pm 4.6 \cdot 10^{-7} \) | \(a_{314}= +1.30983536 \pm 4.3 \cdot 10^{-7} \) | \(a_{315}= +1.30260153 \pm 3.4 \cdot 10^{-7} \) |
\(a_{316}= +0.17273139 \pm 4.4 \cdot 10^{-7} \) | \(a_{317}= -0.51718998 \pm 5.4 \cdot 10^{-7} \) | \(a_{318}= -0.23305908 \pm 3.5 \cdot 10^{-7} \) |
\(a_{319}= +0.47073218 \pm 4.6 \cdot 10^{-7} \) | \(a_{320}= -0.44510669 \pm 6.1 \cdot 10^{-7} \) | \(a_{321}= -0.86305725 \pm 5.5 \cdot 10^{-7} \) |
\(a_{322}= +1.38370686 \pm 4.0 \cdot 10^{-7} \) | \(a_{323}= +1.37045406 \pm 2.8 \cdot 10^{-7} \) | \(a_{324}= +1.21142012 \pm 7.1 \cdot 10^{-7} \) |
\(a_{325}= +0.11148026 \pm 1.9 \cdot 10^{-7} \) | \(a_{326}= +0.01551088 \pm 6.2 \cdot 10^{-7} \) | \(a_{327}= -0.37859454 \pm 3.6 \cdot 10^{-7} \) |
\(a_{328}= -0.06297094 \pm 2.3 \cdot 10^{-7} \) | \(a_{329}= -0.76637036 \pm 2.9 \cdot 10^{-7} \) | \(a_{330}= +0.41369226 \pm 1.5 \cdot 10^{-6} \) |
\(a_{331}= -1.42758298 \pm 3.6 \cdot 10^{-7} \) | \(a_{332}= -1.34670197 \pm 4.6 \cdot 10^{-7} \) | \(a_{333}= +0.51058875 \pm 4.7 \cdot 10^{-7} \) |
\(a_{334}= -0.32466361 \pm 6.2 \cdot 10^{-7} \) | \(a_{335}= -0.32580355 \pm 6.1 \cdot 10^{-7} \) | \(a_{336}= +2.10296608 \pm 3.3 \cdot 10^{-7} \) |
\(a_{337}= -0.81520515 \pm 4.9 \cdot 10^{-7} \) | \(a_{338}= -1.34111461 \pm 5.2 \cdot 10^{-7} \) | \(a_{339}= +0.34491703 \pm 5.0 \cdot 10^{-7} \) |
\(a_{340}= -0.58846102 \pm 4.7 \cdot 10^{-7} \) | \(a_{341}= -0.26436635 \pm 4.9 \cdot 10^{-7} \) | \(a_{342}= -3.43843791 \pm 4.4 \cdot 10^{-7} \) |
\(a_{343}= -0.88053517 \pm 4.2 \cdot 10^{-7} \) | \(a_{344}= +0.27210602 \pm 5.7 \cdot 10^{-7} \) | \(a_{345}= -0.91489621 \pm 3.6 \cdot 10^{-7} \) |
\(a_{346}= +1.87344206 \pm 6.0 \cdot 10^{-7} \) | \(a_{347}= -1.55557264 \pm 4.1 \cdot 10^{-7} \) | \(a_{348}= +2.47556262 \pm 5.4 \cdot 10^{-7} \) |
\(a_{349}= -0.02189629 \pm 4.8 \cdot 10^{-7} \) | \(a_{350}= -1.02612151 \pm 3.3 \cdot 10^{-7} \) | \(a_{351}= +0.32084855 \pm 2.1 \cdot 10^{-7} \) |
\(a_{352}= +0.41123398 \pm 4.2 \cdot 10^{-7} \) | \(a_{353}= +0.48260132 \pm 5.1 \cdot 10^{-7} \) | \(a_{354}= +2.89116001 \pm 6.0 \cdot 10^{-7} \) |
\(a_{355}= -0.33271403 \pm 3.5 \cdot 10^{-7} \) | \(a_{356}= +0.52967940 \pm 8.6 \cdot 10^{-7} \) | \(a_{357}= +2.23584582 \pm 3.0 \cdot 10^{-7} \) |
\(a_{358}= -1.63747968 \pm 7.7 \cdot 10^{-7} \) | \(a_{359}= -0.18517949 \pm 4.9 \cdot 10^{-7} \) | \(a_{360}= -0.16609057 \pm 5.2 \cdot 10^{-7} \) |
\(a_{361}= +0.39619067 \pm 4.1 \cdot 10^{-7} \) | \(a_{362}= +2.20463142 \pm 2.7 \cdot 10^{-7} \) | \(a_{363}= -0.16036471 \pm 4.8 \cdot 10^{-7} \) |
\(a_{364}= -0.16071143 \pm 4.4 \cdot 10^{-7} \) | \(a_{365}= +1.07548645 \pm 5.8 \cdot 10^{-7} \) | \(a_{366}= -2.52866720 \pm 2.2 \cdot 10^{-7} \) |
\(a_{367}= +0.07049628 \pm 5.0 \cdot 10^{-7} \) | \(a_{368}= -1.00237332 \pm 6.0 \cdot 10^{-7} \) | \(a_{369}= +0.95432976 \pm 4.4 \cdot 10^{-7} \) |
\(a_{370}= +0.18806308 \pm 6.0 \cdot 10^{-7} \) | \(a_{371}= +0.10477651 \pm 4.2 \cdot 10^{-7} \) | \(a_{372}= -1.39029254 \pm 3.5 \cdot 10^{-7} \) |
\(a_{373}= +1.65247739 \pm 3.3 \cdot 10^{-7} \) | \(a_{374}= +0.48188638 \pm 1.0 \cdot 10^{-6} \) | \(a_{375}= +1.67415521 \pm 4.2 \cdot 10^{-7} \) |
\(a_{376}= +0.09771744 \pm 4.7 \cdot 10^{-7} \) | \(a_{377}= +0.25542686 \pm 4.0 \cdot 10^{-7} \) | \(a_{378}= -2.95325462 \pm 2.8 \cdot 10^{-7} \) |
\(a_{379}= +0.68396202 \pm 4.3 \cdot 10^{-7} \) | \(a_{380}= -0.59951209 \pm 6.0 \cdot 10^{-7} \) | \(a_{381}= +1.60164016 \pm 3.7 \cdot 10^{-7} \) |
\(a_{382}= +1.12706021 \pm 4.1 \cdot 10^{-7} \) | \(a_{383}= -0.94395436 \pm 5.1 \cdot 10^{-7} \) | \(a_{384}= -0.48908810 \pm 3.5 \cdot 10^{-7} \) |
\(a_{385}= -0.18598388 \pm 1.0 \cdot 10^{-6} \) | \(a_{386}= -0.73597494 \pm 6.4 \cdot 10^{-7} \) | \(a_{387}= -4.12378900 \pm 4.7 \cdot 10^{-7} \) |
\(a_{388}= -0.51965473 \pm 6.7 \cdot 10^{-7} \) | \(a_{389}= -1.38337643 \pm 4.7 \cdot 10^{-7} \) | \(a_{390}= +0.22447608 \pm 3.1 \cdot 10^{-7} \) |
\(a_{391}= -1.06571010 \pm 5.0 \cdot 10^{-7} \) | \(a_{392}= -0.02706764 \pm 5.3 \cdot 10^{-7} \) | \(a_{393}= -1.05514121 \pm 6.4 \cdot 10^{-7} \) |
\(a_{394}= +1.04509426 \pm 5.2 \cdot 10^{-7} \) | \(a_{395}= +0.10846570 \pm 3.3 \cdot 10^{-7} \) | \(a_{396}= -0.57232907 \pm 1.2 \cdot 10^{-6} \) |
\(a_{397}= +1.35008898 \pm 6.0 \cdot 10^{-7} \) | \(a_{398}= +1.21002657 \pm 5.8 \cdot 10^{-7} \) | \(a_{399}= +2.27783415 \pm 2.8 \cdot 10^{-7} \) |
\(a_{400}= +0.74333434 \pm 3.9 \cdot 10^{-7} \) | \(a_{401}= +0.26671910 \pm 4.0 \cdot 10^{-7} \) | \(a_{402}= +1.40308113 \pm 4.6 \cdot 10^{-7} \) |
\(a_{403}= -0.14344943 \pm 3.2 \cdot 10^{-7} \) | \(a_{404}= +0.43894147 \pm 6.0 \cdot 10^{-7} \) | \(a_{405}= +0.76070446 \pm 4.7 \cdot 10^{-7} \) |
\(a_{406}= -2.35107976 \pm 2.9 \cdot 10^{-7} \) | \(a_{407}= -0.07290125 \pm 5.0 \cdot 10^{-7} \) | \(a_{408}= -0.28508558 \pm 8.3 \cdot 10^{-7} \) |
\(a_{409}= -1.55292425 \pm 5.1 \cdot 10^{-7} \) | \(a_{410}= +0.35150441 \pm 2.7 \cdot 10^{-7} \) | \(a_{411}= -0.36259001 \pm 4.6 \cdot 10^{-7} \) |
\(a_{412}= -0.17417121 \pm 5.4 \cdot 10^{-7} \) | \(a_{413}= -1.29978052 \pm 4.7 \cdot 10^{-7} \) | \(a_{414}= +2.67384228 \pm 4.9 \cdot 10^{-7} \) |
\(a_{415}= -0.84565395 \pm 3.9 \cdot 10^{-7} \) | \(a_{416}= +0.22314217 \pm 2.8 \cdot 10^{-7} \) | \(a_{417}= +2.49048166 \pm 3.5 \cdot 10^{-7} \) |
\(a_{418}= +0.49093602 \pm 9.4 \cdot 10^{-7} \) | \(a_{419}= -0.94067376 \pm 4.6 \cdot 10^{-7} \) | \(a_{420}= -0.97808211 \pm 3.2 \cdot 10^{-7} \) |
\(a_{421}= -1.39331779 \pm 3.4 \cdot 10^{-7} \) | \(a_{422}= -0.11655658 \pm 5.7 \cdot 10^{-7} \) | \(a_{423}= -1.48091588 \pm 6.1 \cdot 10^{-7} \) |
\(a_{424}= -0.01335972 \pm 4.0 \cdot 10^{-7} \) | \(a_{425}= +0.79030327 \pm 3.7 \cdot 10^{-7} \) | \(a_{426}= +1.43284131 \pm 3.9 \cdot 10^{-7} \) |
\(a_{427}= +1.13681442 \pm 3.4 \cdot 10^{-7} \) | \(a_{428}= +0.43978491 \pm 8.8 \cdot 10^{-7} \) | \(a_{429}= -0.08701647 \pm 8.7 \cdot 10^{-7} \) |
\(a_{430}= -1.51889848 \pm 4.9 \cdot 10^{-7} \) | \(a_{431}= +0.65199960 \pm 6.1 \cdot 10^{-7} \) | \(a_{432}= +2.13937195 \pm 3.2 \cdot 10^{-7} \) |
\(a_{433}= +1.56313411 \pm 5.7 \cdot 10^{-7} \) | \(a_{434}= +1.32038214 \pm 4.7 \cdot 10^{-7} \) | \(a_{435}= +1.55451565 \pm 2.7 \cdot 10^{-7} \) |
\(a_{436}= +0.19291903 \pm 3.6 \cdot 10^{-7} \) | \(a_{437}= -1.08572373 \pm 3.6 \cdot 10^{-7} \) | \(a_{438}= -4.63160931 \pm 2.2 \cdot 10^{-7} \) |
\(a_{439}= +0.66644447 \pm 5.9 \cdot 10^{-7} \) | \(a_{440}= +0.02371421 \pm 1.0 \cdot 10^{-6} \) | \(a_{441}= +0.41021232 \pm 4.3 \cdot 10^{-7} \) |
\(a_{442}= +0.26147930 \pm 2.3 \cdot 10^{-7} \) | \(a_{443}= -1.87694663 \pm 6.2 \cdot 10^{-7} \) | \(a_{444}= -0.38338488 \pm 3.3 \cdot 10^{-7} \) |
\(a_{445}= +0.33260921 \pm 3.2 \cdot 10^{-7} \) | \(a_{446}= +1.60663910 \pm 5.2 \cdot 10^{-7} \) | \(a_{447}= -1.61559337 \pm 1.8 \cdot 10^{-7} \) |
\(a_{448}= -0.86176528 \pm 4.5 \cdot 10^{-7} \) | \(a_{449}= -0.06668804 \pm 3.6 \cdot 10^{-7} \) | \(a_{450}= -1.98285285 \pm 5.5 \cdot 10^{-7} \) |
\(a_{451}= -0.13625805 \pm 3.3 \cdot 10^{-7} \) | \(a_{452}= -0.17575810 \pm 8.9 \cdot 10^{-7} \) | \(a_{453}= -0.31575610 \pm 6.1 \cdot 10^{-7} \) |
\(a_{454}= +0.81626937 \pm 6.2 \cdot 10^{-7} \) | \(a_{455}= -0.10091784 \pm 3.8 \cdot 10^{-7} \) | \(a_{456}= -0.29043938 \pm 3.6 \cdot 10^{-7} \) |
\(a_{457}= -0.00685240 \pm 4.0 \cdot 10^{-7} \) | \(a_{458}= -2.04960534 \pm 5.8 \cdot 10^{-7} \) | \(a_{459}= +2.27455206 \pm 4.0 \cdot 10^{-7} \) |
\(a_{460}= +0.46620030 \pm 3.6 \cdot 10^{-7} \) | \(a_{461}= -0.02745843 \pm 3.1 \cdot 10^{-7} \) | \(a_{462}= +0.80094421 \pm 1.5 \cdot 10^{-6} \) |
\(a_{463}= +0.55093864 \pm 3.8 \cdot 10^{-7} \) | \(a_{464}= +1.70314949 \pm 4.8 \cdot 10^{-7} \) | \(a_{465}= -0.87302640 \pm 4.1 \cdot 10^{-7} \) |
\(a_{466}= +0.66036472 \pm 4.4 \cdot 10^{-7} \) | \(a_{467}= +1.25520074 \pm 5.0 \cdot 10^{-7} \) | \(a_{468}= -0.31055496 \pm 3.9 \cdot 10^{-7} \) |
\(a_{469}= -0.63078402 \pm 5.3 \cdot 10^{-7} \) | \(a_{470}= -0.54545974 \pm 2.4 \cdot 10^{-7} \) | \(a_{471}= -1.67675387 \pm 3.8 \cdot 10^{-7} \) |
\(a_{472}= +0.16573088 \pm 6.7 \cdot 10^{-7} \) | \(a_{473}= +0.58878962 \pm 4.8 \cdot 10^{-7} \) | \(a_{474}= -0.46711027 \pm 4.2 \cdot 10^{-7} \) |
\(a_{475}= +0.80514487 \pm 3.6 \cdot 10^{-7} \) | \(a_{476}= -1.13931173 \pm 4.5 \cdot 10^{-7} \) | \(a_{477}= +0.20246764 \pm 3.4 \cdot 10^{-7} \) |
\(a_{478}= +1.27894249 \pm 5.9 \cdot 10^{-7} \) | \(a_{479}= -1.09625547 \pm 6.1 \cdot 10^{-7} \) | \(a_{480}= +1.35803260 \pm 3.3 \cdot 10^{-7} \) |
\(a_{481}= -0.03955739 \pm 4.9 \cdot 10^{-7} \) | \(a_{482}= +0.37842418 \pm 6.5 \cdot 10^{-7} \) | \(a_{483}= -1.77131867 \pm 3.4 \cdot 10^{-7} \) |
\(a_{484}= +0.08171645 \pm 6.8 \cdot 10^{-7} \) | \(a_{485}= -0.32631427 \pm 5.3 \cdot 10^{-7} \) | \(a_{486}= -0.57357409 \pm 4.8 \cdot 10^{-7} \) |
\(a_{487}= -0.14796650 \pm 2.7 \cdot 10^{-7} \) | \(a_{488}= -0.14495159 \pm 4.1 \cdot 10^{-7} \) | \(a_{489}= -0.01985588 \pm 4.2 \cdot 10^{-7} \) |
\(a_{490}= +0.15109184 \pm 4.6 \cdot 10^{-7} \) | \(a_{491}= +1.07683181 \pm 6.1 \cdot 10^{-7} \) | \(a_{492}= -0.71657590 \pm 2.8 \cdot 10^{-7} \) |
\(a_{493}= +1.81076609 \pm 4.4 \cdot 10^{-7} \) | \(a_{494}= +0.26638978 \pm 2.2 \cdot 10^{-7} \) | \(a_{495}= -0.35939083 \pm 1.0 \cdot 10^{-6} \) |
\(a_{496}= -0.95650016 \pm 4.0 \cdot 10^{-7} \) | \(a_{497}= -0.64416332 \pm 4.1 \cdot 10^{-7} \) | \(a_{498}= +3.64182987 \pm 5.7 \cdot 10^{-7} \) |
\(a_{499}= -1.19048552 \pm 5.4 \cdot 10^{-7} \) | \(a_{500}= -0.85309311 \pm 4.8 \cdot 10^{-7} \) | \(a_{501}= +0.41561022 \pm 4.8 \cdot 10^{-7} \) |
\(a_{502}= -1.42728609 \pm 5.7 \cdot 10^{-7} \) | \(a_{503}= -1.72967145 \pm 6.2 \cdot 10^{-7} \) | \(a_{504}= -0.32156580 \pm 2.1 \cdot 10^{-7} \) |
\(a_{505}= +0.27563083 \pm 2.5 \cdot 10^{-7} \) | \(a_{506}= -0.38176798 \pm 1.0 \cdot 10^{-6} \) | \(a_{507}= +1.71679525 \pm 4.3 \cdot 10^{-7} \) |
\(a_{508}= -0.81614189 \pm 6.2 \cdot 10^{-7} \) | \(a_{509}= -0.48300964 \pm 5.0 \cdot 10^{-7} \) | \(a_{510}= +1.59135054 \pm 2.7 \cdot 10^{-7} \) |
\(a_{511}= +2.08223535 \pm 5.1 \cdot 10^{-7} \) | \(a_{512}= +1.33587265 \pm 5.5 \cdot 10^{-7} \) | \(a_{513}= +2.31726728 \pm 3.1 \cdot 10^{-7} \) |
\(a_{514}= -0.12293364 \pm 5.3 \cdot 10^{-7} \) | \(a_{515}= -0.10936984 \pm 4.6 \cdot 10^{-7} \) | \(a_{516}= +3.09642219 \pm 6.5 \cdot 10^{-7} \) |
\(a_{517}= +0.21144338 \pm 4.0 \cdot 10^{-7} \) | \(a_{518}= +0.36410649 \pm 3.5 \cdot 10^{-7} \) | \(a_{519}= -2.39824128 \pm 5.0 \cdot 10^{-7} \) |
\(a_{520}= +0.01286771 \pm 1.7 \cdot 10^{-7} \) | \(a_{521}= +1.26214085 \pm 5.7 \cdot 10^{-7} \) | \(a_{522}= -4.54317071 \pm 3.3 \cdot 10^{-7} \) |
\(a_{523}= -0.91711602 \pm 3.8 \cdot 10^{-7} \) | \(a_{524}= +0.53766443 \pm 7.1 \cdot 10^{-7} \) | \(a_{525}= +1.31356449 \pm 2.0 \cdot 10^{-7} \) |
\(a_{526}= -1.99137690 \pm 6.4 \cdot 10^{-7} \) | \(a_{527}= -1.01693836 \pm 3.8 \cdot 10^{-7} \) | \(a_{528}= -0.58021329 \pm 9.8 \cdot 10^{-7} \) |
\(a_{529}= -0.15570556 \pm 4.7 \cdot 10^{-7} \) | \(a_{530}= +0.07457408 \pm 5.9 \cdot 10^{-7} \) | \(a_{531}= -2.51166503 \pm 6.0 \cdot 10^{-7} \) |
\(a_{532}= -1.16070757 \pm 3.4 \cdot 10^{-7} \) | \(a_{533}= -0.07393581 \pm 2.6 \cdot 10^{-7} \) | \(a_{534}= -1.43238986 \pm 8.2 \cdot 10^{-7} \) |
\(a_{535}= +0.27616046 \pm 6.1 \cdot 10^{-7} \) | \(a_{536}= +0.08042926 \pm 5.0 \cdot 10^{-7} \) | \(a_{537}= +2.09617977 \pm 3.9 \cdot 10^{-7} \) |
\(a_{538}= -0.70353739 \pm 7.1 \cdot 10^{-7} \) | \(a_{539}= -0.05856962 \pm 4.4 \cdot 10^{-7} \) | \(a_{540}= -0.99501435 \pm 2.7 \cdot 10^{-7} \) |
\(a_{541}= +0.71668506 \pm 3.6 \cdot 10^{-7} \) | \(a_{542}= -0.09515979 \pm 4.0 \cdot 10^{-7} \) | \(a_{543}= -2.82220529 \pm 4.4 \cdot 10^{-7} \) |
\(a_{544}= +1.58189425 \pm 3.6 \cdot 10^{-7} \) | \(a_{545}= +0.12114242 \pm 3.5 \cdot 10^{-7} \) | \(a_{546}= +0.43460521 \pm 4.4 \cdot 10^{-7} \) |
\(a_{547}= +0.09800058 \pm 4.4 \cdot 10^{-7} \) | \(a_{548}= +0.18476366 \pm 4.9 \cdot 10^{-7} \) | \(a_{549}= +2.19675319 \pm 3.7 \cdot 10^{-7} \) |
\(a_{550}= +0.28310934 \pm 9.9 \cdot 10^{-7} \) | \(a_{551}= +1.84477158 \pm 2.8 \cdot 10^{-7} \) | \(a_{552}= +0.22585520 \pm 9.3 \cdot 10^{-7} \) |
\(a_{553}= +0.20999904 \pm 4.6 \cdot 10^{-7} \) | \(a_{554}= -0.58778578 \pm 7.0 \cdot 10^{-7} \) | \(a_{555}= -0.24074438 \pm 2.1 \cdot 10^{-7} \) |
\(a_{556}= -1.26906558 \pm 5.1 \cdot 10^{-7} \) | \(a_{557}= -1.29522824 \pm 4.1 \cdot 10^{-7} \) | \(a_{558}= +2.55147509 \pm 4.3 \cdot 10^{-7} \) |
\(a_{559}= +0.31948672 \pm 2.9 \cdot 10^{-7} \) | \(a_{560}= -0.67290564 \pm 3.1 \cdot 10^{-7} \) | \(a_{561}= -0.61687512 \pm 9.7 \cdot 10^{-7} \) |
\(a_{562}= +0.18393115 \pm 6.9 \cdot 10^{-7} \) | \(a_{563}= +0.58841267 \pm 5.0 \cdot 10^{-7} \) | \(a_{564}= +1.11197270 \pm 5.3 \cdot 10^{-7} \) |
\(a_{565}= -0.11036631 \pm 4.6 \cdot 10^{-7} \) | \(a_{566}= +2.38411657 \pm 4.3 \cdot 10^{-7} \) | \(a_{567}= +1.47279003 \pm 4.0 \cdot 10^{-7} \) |
\(a_{568}= +0.08213521 \pm 3.6 \cdot 10^{-7} \) | \(a_{569}= +0.58314154 \pm 4.7 \cdot 10^{-7} \) | \(a_{570}= +1.62123549 \pm 2.4 \cdot 10^{-7} \) |
\(a_{571}= -1.58815446 \pm 4.5 \cdot 10^{-7} \) | \(a_{572}= +0.04434066 \pm 1.0 \cdot 10^{-6} \) | \(a_{573}= -1.44277870 \pm 5.1 \cdot 10^{-7} \) |
\(a_{574}= +0.68054312 \pm 3.5 \cdot 10^{-7} \) | \(a_{575}= -0.62610710 \pm 3.6 \cdot 10^{-7} \) | \(a_{576}= -1.66525477 \pm 5.9 \cdot 10^{-7} \) |
\(a_{577}= -0.62263909 \pm 4.1 \cdot 10^{-7} \) | \(a_{578}= +0.47567402 \pm 4.5 \cdot 10^{-7} \) | \(a_{579}= +0.94214042 \pm 3.7 \cdot 10^{-7} \) |
\(a_{580}= -0.79212882 \pm 5.1 \cdot 10^{-7} \) | \(a_{581}= -1.63725962 \pm 4.1 \cdot 10^{-7} \) | \(a_{582}= +1.40528057 \pm 4.3 \cdot 10^{-7} \) |
\(a_{583}= -0.02890809 \pm 3.8 \cdot 10^{-7} \) | \(a_{584}= -0.26549920 \pm 4.3 \cdot 10^{-7} \) | \(a_{585}= -0.19501124 \pm 3.0 \cdot 10^{-7} \) |
\(a_{586}= +0.04678575 \pm 5.6 \cdot 10^{-7} \) | \(a_{587}= +1.51372861 \pm 4.1 \cdot 10^{-7} \) | \(a_{588}= -0.30801540 \pm 5.5 \cdot 10^{-7} \) |
\(a_{589}= -1.03603607 \pm 4.1 \cdot 10^{-7} \) | \(a_{590}= -0.92511139 \pm 8.2 \cdot 10^{-7} \) | \(a_{591}= -1.33785199 \pm 4.4 \cdot 10^{-7} \) |
\(a_{592}= -0.26376297 \pm 4.5 \cdot 10^{-7} \) | \(a_{593}= +0.25329772 \pm 5.8 \cdot 10^{-7} \) | \(a_{594}= +0.81480990 \pm 1.0 \cdot 10^{-6} \) |
\(a_{595}= -0.71542441 \pm 3.8 \cdot 10^{-7} \) | \(a_{596}= +0.82325197 \pm 4.5 \cdot 10^{-7} \) | \(a_{597}= -1.54898607 \pm 4.8 \cdot 10^{-7} \) |
\(a_{598}= -0.20715345 \pm 3.5 \cdot 10^{-7} \) | \(a_{599}= +0.07941372 \pm 5.0 \cdot 10^{-7} \) | \(a_{600}= -0.16748843 \pm 5.4 \cdot 10^{-7} \) |
\(a_{601}= +1.42127601 \pm 4.5 \cdot 10^{-7} \) | \(a_{602}= -2.94071961 \pm 3.6 \cdot 10^{-7} \) | \(a_{603}= -1.21891206 \pm 5.3 \cdot 10^{-7} \) |
\(a_{604}= +0.16089867 \pm 9.4 \cdot 10^{-7} \) | \(a_{605}= +0.05131339 \pm 5.0 \cdot 10^{-7} \) | \(a_{606}= -1.18701106 \pm 6.6 \cdot 10^{-7} \) |
\(a_{607}= +1.41797847 \pm 4.9 \cdot 10^{-7} \) | \(a_{608}= +1.61160162 \pm 3.6 \cdot 10^{-7} \) | \(a_{609}= +3.00967756 \pm 3.0 \cdot 10^{-7} \) |
\(a_{610}= +0.80912119 \pm 8.4 \cdot 10^{-7} \) | \(a_{611}= +0.11473258 \pm 2.7 \cdot 10^{-7} \) | \(a_{612}= -2.20157894 \pm 5.4 \cdot 10^{-7} \) |
\(a_{613}= -0.05208503 \pm 4.0 \cdot 10^{-7} \) | \(a_{614}= +0.69554824 \pm 6.1 \cdot 10^{-7} \) | \(a_{615}= -0.44996982 \pm 3.5 \cdot 10^{-7} \) |
\(a_{616}= +0.04591278 \pm 1.0 \cdot 10^{-6} \) | \(a_{617}= +0.20118073 \pm 5.4 \cdot 10^{-7} \) | \(a_{618}= +0.47100393 \pm 5.2 \cdot 10^{-7} \) |
\(a_{619}= +1.04178889 \pm 4.0 \cdot 10^{-7} \) | \(a_{620}= +0.44486485 \pm 4.6 \cdot 10^{-7} \) | \(a_{621}= -1.80198317 \pm 4.3 \cdot 10^{-7} \) |
\(a_{622}= -0.49243188 \pm 6.4 \cdot 10^{-7} \) | \(a_{623}= +0.64396036 \pm 3.7 \cdot 10^{-7} \) | \(a_{624}= -0.31483307 \pm 2.4 \cdot 10^{-7} \) |
\(a_{625}= +0.14570424 \pm 3.6 \cdot 10^{-7} \) | \(a_{626}= -1.29666362 \pm 6.0 \cdot 10^{-7} \) | \(a_{627}= -0.62845980 \pm 8.4 \cdot 10^{-7} \) |
\(a_{628}= +0.85441730 \pm 4.5 \cdot 10^{-7} \) | \(a_{629}= -0.28042932 \pm 4.8 \cdot 10^{-7} \) | \(a_{630}= +1.79498348 \pm 3.8 \cdot 10^{-7} \) |
\(a_{631}= -0.19473846 \pm 5.2 \cdot 10^{-7} \) | \(a_{632}= -0.02677631 \pm 4.0 \cdot 10^{-7} \) | \(a_{633}= +0.14920707 \pm 5.4 \cdot 10^{-7} \) |
\(a_{634}= -0.71268722 \pm 8.0 \cdot 10^{-7} \) | \(a_{635}= -0.51249172 \pm 5.2 \cdot 10^{-7} \) | \(a_{636}= -0.15202652 \pm 3.3 \cdot 10^{-7} \) |
\(a_{637}= -0.03178082 \pm 2.5 \cdot 10^{-7} \) | \(a_{638}= +0.64866844 \pm 1.0 \cdot 10^{-6} \) | \(a_{639}= -1.24476591 \pm 4.3 \cdot 10^{-7} \) |
\(a_{640}= +0.15649807 \pm 6.0 \cdot 10^{-7} \) | \(a_{641}= -1.53292958 \pm 5.5 \cdot 10^{-7} \) | \(a_{642}= -1.18929195 \pm 7.4 \cdot 10^{-7} \) |
\(a_{643}= +1.02929277 \pm 4.4 \cdot 10^{-7} \) | \(a_{644}= +0.90260434 \pm 4.0 \cdot 10^{-7} \) | \(a_{645}= +1.94438093 \pm 3.7 \cdot 10^{-7} \) |
\(a_{646}= +1.88848420 \pm 3.7 \cdot 10^{-7} \) | \(a_{647}= +0.85097330 \pm 5.8 \cdot 10^{-7} \) | \(a_{648}= -0.18779077 \pm 6.6 \cdot 10^{-7} \) |
\(a_{649}= +0.35861250 \pm 5.6 \cdot 10^{-7} \) | \(a_{650}= +0.15361968 \pm 1.8 \cdot 10^{-7} \) | \(a_{651}= -1.69025507 \pm 4.8 \cdot 10^{-7} \) |
\(a_{652}= +0.01011789 \pm 6.3 \cdot 10^{-7} \) | \(a_{653}= -0.44302488 \pm 4.2 \cdot 10^{-7} \) | \(a_{654}= -0.52170287 \pm 3.9 \cdot 10^{-7} \) |
\(a_{655}= +0.33762336 \pm 4.2 \cdot 10^{-7} \) | \(a_{656}= -0.49299334 \pm 2.6 \cdot 10^{-7} \) | \(a_{657}= +4.02366216 \pm 4.1 \cdot 10^{-7} \) |
\(a_{658}= -1.05605752 \pm 2.5 \cdot 10^{-7} \) | \(a_{659}= -0.00783275 \pm 4.7 \cdot 10^{-7} \) | \(a_{660}= +0.26985516 \pm 1.6 \cdot 10^{-6} \) |
\(a_{661}= +1.10774906 \pm 5.5 \cdot 10^{-7} \) | \(a_{662}= -1.96720780 \pm 4.3 \cdot 10^{-7} \) | \(a_{663}= -0.33472636 \pm 1.9 \cdot 10^{-7} \) |
\(a_{664}= +0.20876176 \pm 5.0 \cdot 10^{-7} \) | \(a_{665}= -0.72885981 \pm 3.1 \cdot 10^{-7} \) | \(a_{666}= +0.70359074 \pm 4.3 \cdot 10^{-7} \) |
\(a_{667}= -1.43455499 \pm 4.2 \cdot 10^{-7} \) | \(a_{668}= -0.21178097 \pm 8.1 \cdot 10^{-7} \) | \(a_{669}= -2.05669995 \pm 5.4 \cdot 10^{-7} \) |
\(a_{670}= -0.44895693 \pm 8.5 \cdot 10^{-7} \) | \(a_{671}= -0.31364977 \pm 4.1 \cdot 10^{-7} \) | \(a_{672}= +2.62926927 \pm 3.9 \cdot 10^{-7} \) |
\(a_{673}= +1.61614176 \pm 3.6 \cdot 10^{-7} \) | \(a_{674}= -1.12335181 \pm 3.7 \cdot 10^{-7} \) | \(a_{675}= +1.33630449 \pm 2.0 \cdot 10^{-7} \) |
\(a_{676}= -0.87482104 \pm 5.8 \cdot 10^{-7} \) | \(a_{677}= +0.22705477 \pm 5.4 \cdot 10^{-7} \) | \(a_{678}= +0.47529529 \pm 7.7 \cdot 10^{-7} \) |
\(a_{679}= -0.63177282 \pm 3.4 \cdot 10^{-7} \) | \(a_{680}= +0.09122149 \pm 3.5 \cdot 10^{-7} \) | \(a_{681}= -1.04492738 \pm 4.2 \cdot 10^{-7} \) |
\(a_{682}= -0.36429654 \pm 1.0 \cdot 10^{-6} \) | \(a_{683}= +1.01531701 \pm 4.0 \cdot 10^{-7} \) | \(a_{684}= -2.24292376 \pm 4.2 \cdot 10^{-7} \) |
\(a_{685}= +0.11602130 \pm 4.7 \cdot 10^{-7} \) | \(a_{686}= -1.21337650 \pm 4.5 \cdot 10^{-7} \) | \(a_{687}= +2.62375242 \pm 2.6 \cdot 10^{-7} \) |
\(a_{688}= +2.13029144 \pm 4.5 \cdot 10^{-7} \) | \(a_{689}= -0.01568599 \pm 2.5 \cdot 10^{-7} \) | \(a_{690}= -1.26072598 \pm 3.4 \cdot 10^{-7} \) |
\(a_{691}= +0.14410374 \pm 5.0 \cdot 10^{-7} \) | \(a_{692}= +1.22206299 \pm 6.4 \cdot 10^{-7} \) | \(a_{693}= -0.69581191 \pm 1.0 \cdot 10^{-6} \) |
\(a_{694}= -2.14357740 \pm 5.0 \cdot 10^{-7} \) | \(a_{695}= -0.79690261 \pm 4.1 \cdot 10^{-7} \) | \(a_{696}= -0.38375440 \pm 5.1 \cdot 10^{-7} \) |
\(a_{697}= -0.52414402 \pm 2.8 \cdot 10^{-7} \) | \(a_{698}= -0.03017307 \pm 4.8 \cdot 10^{-7} \) | \(a_{699}= -0.84534983 \pm 6.2 \cdot 10^{-7} \) |
\(a_{700}= -0.66934823 \pm 3.5 \cdot 10^{-7} \) | \(a_{701}= -0.36025518 \pm 5.9 \cdot 10^{-7} \) | \(a_{702}= +0.44212896 \pm 1.9 \cdot 10^{-7} \) |
\(a_{703}= -0.28569567 \pm 2.9 \cdot 10^{-7} \) | \(a_{704}= +0.23776307 \pm 5.3 \cdot 10^{-7} \) | \(a_{705}= +0.69825702 \pm 4.4 \cdot 10^{-7} \) |
\(a_{706}= +0.66502409 \pm 4.3 \cdot 10^{-7} \) | \(a_{707}= +0.53364527 \pm 3.1 \cdot 10^{-7} \) | \(a_{708}= +1.88592950 \pm 6.8 \cdot 10^{-7} \) |
\(a_{709}= -1.61311477 \pm 4.1 \cdot 10^{-7} \) | \(a_{710}= -0.45847958 \pm 2.2 \cdot 10^{-7} \) | \(a_{711}= +0.40579716 \pm 2.1 \cdot 10^{-7} \) |
\(a_{712}= -0.08210934 \pm 7.8 \cdot 10^{-7} \) | \(a_{713}= +0.80565569 \pm 4.5 \cdot 10^{-7} \) | \(a_{714}= +3.08099310 \pm 3.1 \cdot 10^{-7} \) |
\(a_{715}= +0.02784347 \pm 8.9 \cdot 10^{-7} \) | \(a_{716}= -1.06814262 \pm 8.3 \cdot 10^{-7} \) | \(a_{717}= -1.63720712 \pm 3.5 \cdot 10^{-7} \) |
\(a_{718}= -0.25517713 \pm 6.0 \cdot 10^{-7} \) | \(a_{719}= -0.69445515 \pm 5.4 \cdot 10^{-7} \) | \(a_{720}= -1.30030689 \pm 2.8 \cdot 10^{-7} \) |
\(a_{721}= -0.21174952 \pm 5.6 \cdot 10^{-7} \) | \(a_{722}= +0.54595031 \pm 4.1 \cdot 10^{-7} \) | \(a_{723}= -0.48443051 \pm 6.9 \cdot 10^{-7} \) |
\(a_{724}= +1.43810077 \pm 3.6 \cdot 10^{-7} \) | \(a_{725}= +1.06382918 \pm 3.3 \cdot 10^{-7} \) | \(a_{726}= -0.22098239 \pm 1.0 \cdot 10^{-6} \) |
\(a_{727}= -1.35324068 \pm 5.4 \cdot 10^{-7} \) | \(a_{728}= +0.02491301 \pm 2.2 \cdot 10^{-7} \) | \(a_{729}= -0.61345108 \pm 4.2 \cdot 10^{-7} \) |
\(a_{730}= +1.48201916 \pm 7.6 \cdot 10^{-7} \) | \(a_{731}= +2.26489778 \pm 4.4 \cdot 10^{-7} \) | \(a_{732}= -1.64947220 \pm 1.9 \cdot 10^{-7} \) |
\(a_{733}= +0.35874910 \pm 6.5 \cdot 10^{-7} \) | \(a_{734}= +0.09714380 \pm 5.3 \cdot 10^{-7} \) | \(a_{735}= -0.19341654 \pm 3.9 \cdot 10^{-7} \) |
\(a_{736}= -1.25323437 \pm 4.3 \cdot 10^{-7} \) | \(a_{737}= +0.17403479 \pm 5.8 \cdot 10^{-7} \) | \(a_{738}= +1.31506537 \pm 3.9 \cdot 10^{-7} \) |
\(a_{739}= +0.35635630 \pm 6.0 \cdot 10^{-7} \) | \(a_{740}= +0.12267523 \pm 6.8 \cdot 10^{-7} \) | \(a_{741}= -0.34101240 \pm 2.0 \cdot 10^{-7} \) |
\(a_{742}= +0.14438192 \pm 3.9 \cdot 10^{-7} \) | \(a_{743}= -0.39390564 \pm 4.4 \cdot 10^{-7} \) | \(a_{744}= +0.21551904 \pm 4.2 \cdot 10^{-7} \) |
\(a_{745}= +0.51695645 \pm 3.9 \cdot 10^{-7} \) | \(a_{746}= +2.27711204 \pm 2.6 \cdot 10^{-7} \) | \(a_{747}= -3.16380162 \pm 6.9 \cdot 10^{-7} \) |
\(a_{748}= +0.31433879 \pm 1.1 \cdot 10^{-6} \) | \(a_{749}= +0.53467069 \pm 3.5 \cdot 10^{-7} \) | \(a_{750}= +2.30698406 \pm 4.2 \cdot 10^{-7} \) |
\(a_{751}= -0.24217677 \pm 5.2 \cdot 10^{-7} \) | \(a_{752}= +0.76502033 \pm 4.0 \cdot 10^{-7} \) | \(a_{753}= +1.82710557 \pm 5.5 \cdot 10^{-7} \) |
\(a_{754}= +0.35197793 \pm 2.3 \cdot 10^{-7} \) | \(a_{755}= +0.10103542 \pm 5.4 \cdot 10^{-7} \) | \(a_{756}= -1.92643436 \pm 3.1 \cdot 10^{-7} \) |
\(a_{757}= -1.22630920 \pm 4.3 \cdot 10^{-7} \) | \(a_{758}= +0.94249892 \pm 4.9 \cdot 10^{-7} \) | \(a_{759}= +0.48871099 \pm 9.4 \cdot 10^{-7} \) |
\(a_{760}= +0.09293459 \pm 3.9 \cdot 10^{-7} \) | \(a_{761}= +0.30888555 \pm 5.0 \cdot 10^{-7} \) | \(a_{762}= +2.20705839 \pm 4.3 \cdot 10^{-7} \) |
\(a_{763}= +0.23454227 \pm 4.1 \cdot 10^{-7} \) | \(a_{764}= +0.73519144 \pm 4.3 \cdot 10^{-7} \) | \(a_{765}= -1.38246914 \pm 4.1 \cdot 10^{-7} \) |
\(a_{766}= -1.30076807 \pm 7.3 \cdot 10^{-7} \) | \(a_{767}= +0.19458891 \pm 3.4 \cdot 10^{-7} \) | \(a_{768}= -2.06501120 \pm 5.7 \cdot 10^{-7} \) |
\(a_{769}= +0.62175449 \pm 4.2 \cdot 10^{-7} \) | \(a_{770}= -0.25628558 \pm 1.5 \cdot 10^{-6} \) | \(a_{771}= +0.15737051 \pm 2.6 \cdot 10^{-7} \) |
\(a_{772}= -0.48008303 \pm 7.4 \cdot 10^{-7} \) | \(a_{773}= -1.80415337 \pm 5.0 \cdot 10^{-7} \) | \(a_{774}= -5.68257675 \pm 4.9 \cdot 10^{-7} \) |
\(a_{775}= -0.59745359 \pm 2.3 \cdot 10^{-7} \) | \(a_{776}= +0.08055534 \pm 5.3 \cdot 10^{-7} \) | \(a_{777}= -0.46610207 \pm 3.0 \cdot 10^{-7} \) |
\(a_{778}= -1.90629122 \pm 3.0 \cdot 10^{-7} \) | \(a_{779}= -0.53398725 \pm 2.6 \cdot 10^{-7} \) | \(a_{780}= +0.14642775 \pm 2.7 \cdot 10^{-7} \) |
\(a_{781}= +0.17772618 \pm 3.7 \cdot 10^{-7} \) | \(a_{782}= -1.46854736 \pm 8.2 \cdot 10^{-7} \) | \(a_{783}= +3.06178012 \pm 2.9 \cdot 10^{-7} \) |
\(a_{784}= -0.21190992 \pm 3.8 \cdot 10^{-7} \) | \(a_{785}= +0.53652655 \pm 4.3 \cdot 10^{-7} \) | \(a_{786}= -1.45398344 \pm 7.6 \cdot 10^{-7} \) |
\(a_{787}= -1.76949342 \pm 6.4 \cdot 10^{-7} \) | \(a_{788}= +0.68172432 \pm 5.9 \cdot 10^{-7} \) | \(a_{789}= +2.54921270 \pm 5.6 \cdot 10^{-7} \) |
\(a_{790}= +0.14946562 \pm 2.3 \cdot 10^{-7} \) | \(a_{791}= -0.21367879 \pm 5.8 \cdot 10^{-7} \) | \(a_{792}= +0.08872076 \pm 1.1 \cdot 10^{-6} \) |
\(a_{793}= -0.17019141 \pm 2.3 \cdot 10^{-7} \) | \(a_{794}= +1.86042114 \pm 6.2 \cdot 10^{-7} \) | \(a_{795}= -0.09546420 \pm 2.8 \cdot 10^{-7} \) |
\(a_{796}= +0.78931114 \pm 5.8 \cdot 10^{-7} \) | \(a_{797}= -1.59812976 \pm 4.3 \cdot 10^{-7} \) | \(a_{798}= +3.13885298 \pm 3.2 \cdot 10^{-7} \) |
\(a_{799}= +0.81335953 \pm 3.9 \cdot 10^{-7} \) | \(a_{800}= +0.92936646 \pm 3.4 \cdot 10^{-7} \) | \(a_{801}= +1.24437372 \pm 3.9 \cdot 10^{-7} \) |
\(a_{802}= +0.36753863 \pm 5.3 \cdot 10^{-7} \) | \(a_{803}= -0.57449363 \pm 4.7 \cdot 10^{-7} \) | \(a_{804}= +0.91524235 \pm 4.8 \cdot 10^{-7} \) |
\(a_{805}= +0.56678533 \pm 3.4 \cdot 10^{-7} \) | \(a_{806}= -0.19767316 \pm 3.0 \cdot 10^{-7} \) | \(a_{807}= +0.90061628 \pm 4.3 \cdot 10^{-7} \) |
\(a_{808}= -0.06804341 \pm 5.7 \cdot 10^{-7} \) | \(a_{809}= -0.65611272 \pm 6.0 \cdot 10^{-7} \) | \(a_{810}= +1.04824992 \pm 5.8 \cdot 10^{-7} \) |
\(a_{811}= +1.21205546 \pm 4.7 \cdot 10^{-7} \) | \(a_{812}= -1.53363033 \pm 4.7 \cdot 10^{-7} \) | \(a_{813}= +0.12181649 \pm 6.5 \cdot 10^{-7} \) |
\(a_{814}= -0.10045784 \pm 1.0 \cdot 10^{-6} \) | \(a_{815}= +0.00635347 \pm 5.6 \cdot 10^{-7} \) | \(a_{816}= -2.23190719 \pm 6.5 \cdot 10^{-7} \) |
\(a_{817}= +2.30743170 \pm 3.1 \cdot 10^{-7} \) | \(a_{818}= -2.13992792 \pm 7.2 \cdot 10^{-7} \) | \(a_{819}= -0.37755873 \pm 4.0 \cdot 10^{-7} \) |
\(a_{820}= +0.22928947 \pm 2.5 \cdot 10^{-7} \) | \(a_{821}= -0.62045156 \pm 6.4 \cdot 10^{-7} \) | \(a_{822}= -0.49964863 \pm 4.3 \cdot 10^{-7} \) |
\(a_{823}= -0.77660347 \pm 4.3 \cdot 10^{-7} \) | \(a_{824}= +0.02699951 \pm 4.1 \cdot 10^{-7} \) | \(a_{825}= -0.36241553 \pm 8.9 \cdot 10^{-7} \) |
\(a_{826}= -1.79109615 \pm 3.5 \cdot 10^{-7} \) | \(a_{827}= +1.54385486 \pm 5.1 \cdot 10^{-7} \) | \(a_{828}= +1.74417120 \pm 5.0 \cdot 10^{-7} \) |
\(a_{829}= +1.82624538 \pm 3.6 \cdot 10^{-7} \) | \(a_{830}= -1.16531022 \pm 2.8 \cdot 10^{-7} \) | \(a_{831}= +0.75243967 \pm 6.4 \cdot 10^{-7} \) |
\(a_{832}= +0.12901407 \pm 4.0 \cdot 10^{-7} \) | \(a_{833}= -0.22529983 \pm 4.0 \cdot 10^{-7} \) | \(a_{834}= +3.43188102 \pm 4.6 \cdot 10^{-7} \) |
\(a_{835}= -0.13298667 \pm 4.9 \cdot 10^{-7} \) | \(a_{836}= +0.32024195 \pm 1.0 \cdot 10^{-6} \) | \(a_{837}= -1.71951622 \pm 5.5 \cdot 10^{-7} \) |
\(a_{838}= -1.29624742 \pm 4.7 \cdot 10^{-7} \) | \(a_{839}= -1.42358554 \pm 5.0 \cdot 10^{-7} \) | \(a_{840}= +0.15161940 \pm 2.5 \cdot 10^{-7} \) |
\(a_{841}= +1.43747668 \pm 3.2 \cdot 10^{-7} \) | \(a_{842}= -1.91999039 \pm 3.9 \cdot 10^{-7} \) | \(a_{843}= -0.23545498 \pm 4.3 \cdot 10^{-7} \) |
\(a_{844}= -0.07603090 \pm 6.1 \cdot 10^{-7} \) | \(a_{845}= -0.54933896 \pm 4.1 \cdot 10^{-7} \) | \(a_{846}= -2.04070047 \pm 5.0 \cdot 10^{-7} \) |
\(a_{847}= +0.09934719 \pm 5.0 \cdot 10^{-7} \) | \(a_{848}= -0.10459194 \pm 2.8 \cdot 10^{-7} \) | \(a_{849}= -3.05196883 \pm 4.6 \cdot 10^{-7} \) |
\(a_{850}= +1.08903705 \pm 5.9 \cdot 10^{-7} \) | \(a_{851}= +0.22216634 \pm 2.6 \cdot 10^{-7} \) | \(a_{852}= +0.93465519 \pm 3.9 \cdot 10^{-7} \) |
\(a_{853}= +1.59221785 \pm 6.0 \cdot 10^{-7} \) | \(a_{854}= +1.56652903 \pm 3.6 \cdot 10^{-7} \) | \(a_{855}= -1.40843139 \pm 4.0 \cdot 10^{-7} \) |
\(a_{856}= -0.06817416 \pm 7.6 \cdot 10^{-7} \) | \(a_{857}= +1.81435303 \pm 4.7 \cdot 10^{-7} \) | \(a_{858}= -0.11990860 \pm 1.4 \cdot 10^{-6} \) |
\(a_{859}= -1.24937453 \pm 5.3 \cdot 10^{-7} \) | \(a_{860}= -0.99079104 \pm 5.3 \cdot 10^{-7} \) | \(a_{861}= -0.87118072 \pm 3.3 \cdot 10^{-7} \) |
\(a_{862}= +0.89845473 \pm 6.9 \cdot 10^{-7} \) | \(a_{863}= -1.14019451 \pm 4.6 \cdot 10^{-7} \) | \(a_{864}= +2.67478633 \pm 3.6 \cdot 10^{-7} \) |
\(a_{865}= +0.76738760 \pm 5.3 \cdot 10^{-7} \) | \(a_{866}= +2.15399711 \pm 7.1 \cdot 10^{-7} \) | \(a_{867}= -0.60892252 \pm 3.1 \cdot 10^{-7} \) |
\(a_{868}= +0.86129706 \pm 5.2 \cdot 10^{-7} \) | \(a_{869}= -0.05793923 \pm 3.9 \cdot 10^{-7} \) | \(a_{870}= +2.14212087 \pm 2.0 \cdot 10^{-7} \) |
\(a_{871}= +0.09443408 \pm 5.2 \cdot 10^{-7} \) | \(a_{872}= -0.02990574 \pm 2.7 \cdot 10^{-7} \) | \(a_{873}= -1.22082280 \pm 3.7 \cdot 10^{-7} \) |
\(a_{874}= -1.49612612 \pm 5.0 \cdot 10^{-7} \) | \(a_{875}= -1.03715219 \pm 4.6 \cdot 10^{-7} \) | \(a_{876}= -3.02124012 \pm 2.4 \cdot 10^{-7} \) |
\(a_{877}= -0.31506092 \pm 5.0 \cdot 10^{-7} \) | \(a_{878}= +0.91835975 \pm 7.6 \cdot 10^{-7} \) | \(a_{879}= -0.05989164 \pm 4.5 \cdot 10^{-7} \) |
\(a_{880}= +0.18565625 \pm 1.0 \cdot 10^{-6} \) | \(a_{881}= +0.95840637 \pm 5.7 \cdot 10^{-7} \) | \(a_{882}= +0.56527213 \pm 4.5 \cdot 10^{-7} \) |
\(a_{883}= -0.26576507 \pm 5.7 \cdot 10^{-7} \) | \(a_{884}= +0.17056528 \pm 4.0 \cdot 10^{-7} \) | \(a_{885}= +1.18425884 \pm 3.8 \cdot 10^{-7} \) |
\(a_{886}= -2.58643042 \pm 7.8 \cdot 10^{-7} \) | \(a_{887}= -0.62066597 \pm 4.1 \cdot 10^{-7} \) | \(a_{888}= +0.05943119 \pm 2.7 \cdot 10^{-7} \) |
\(a_{889}= -0.99222856 \pm 4.3 \cdot 10^{-7} \) | \(a_{890}= +0.45833512 \pm 4.0 \cdot 10^{-7} \) | \(a_{891}= -0.40634623 \pm 5.2 \cdot 10^{-7} \) |
\(a_{892}= +1.04802503 \pm 6.1 \cdot 10^{-7} \) | \(a_{893}= +0.82863412 \pm 2.4 \cdot 10^{-7} \) | \(a_{894}= -2.22628590 \pm 2.1 \cdot 10^{-7} \) |
\(a_{895}= -0.67073416 \pm 6.7 \cdot 10^{-7} \) | \(a_{896}= +0.30299389 \pm 3.9 \cdot 10^{-7} \) | \(a_{897}= +0.26518244 \pm 3.0 \cdot 10^{-7} \) |
\(a_{898}= -0.09189604 \pm 4.2 \cdot 10^{-7} \) | \(a_{899}= -1.36890323 \pm 4.5 \cdot 10^{-7} \) | \(a_{900}= -1.29343262 \pm 5.9 \cdot 10^{-7} \) |
\(a_{901}= -0.11120077 \pm 3.3 \cdot 10^{-7} \) | \(a_{902}= -0.18776345 \pm 9.1 \cdot 10^{-7} \) | \(a_{903}= +3.76449067 \pm 3.8 \cdot 10^{-7} \) |
\(a_{904}= +0.02724550 \pm 7.7 \cdot 10^{-7} \) | \(a_{905}= +0.90304731 \pm 3.6 \cdot 10^{-7} \) | \(a_{906}= -0.43511156 \pm 8.7 \cdot 10^{-7} \) |
\(a_{907}= +1.31158968 \pm 5.9 \cdot 10^{-7} \) | \(a_{908}= +0.53245980 \pm 7.3 \cdot 10^{-7} \) | \(a_{909}= +1.03120345 \pm 3.2 \cdot 10^{-7} \) |
\(a_{910}= -0.13906468 \pm 3.1 \cdot 10^{-7} \) | \(a_{911}= +0.02579597 \pm 4.1 \cdot 10^{-7} \) | \(a_{912}= -2.27382156 \pm 3.2 \cdot 10^{-7} \) |
\(a_{913}= +0.45172378 \pm 4.7 \cdot 10^{-7} \) | \(a_{914}= -0.00944260 \pm 5.7 \cdot 10^{-7} \) | \(a_{915}= -1.03577681 \pm 1.9 \cdot 10^{-7} \) |
\(a_{916}= -1.33697587 \pm 6.2 \cdot 10^{-7} \) | \(a_{917}= +0.65366820 \pm 4.3 \cdot 10^{-7} \) | \(a_{918}= +3.13433026 \pm 3.7 \cdot 10^{-7} \) |
\(a_{919}= +1.37646802 \pm 4.4 \cdot 10^{-7} \) | \(a_{920}= -0.07226899 \pm 2.7 \cdot 10^{-7} \) | \(a_{921}= -0.89038916 \pm 4.8 \cdot 10^{-7} \) |
\(a_{922}= -0.03783769 \pm 4.7 \cdot 10^{-7} \) | \(a_{923}= +0.09643708 \pm 1.9 \cdot 10^{-7} \) | \(a_{924}= +0.52246306 \pm 1.6 \cdot 10^{-6} \) |
\(a_{925}= -0.16475286 \pm 3.9 \cdot 10^{-7} \) | \(a_{926}= +0.75919284 \pm 4.4 \cdot 10^{-7} \) | \(a_{927}= -0.40917974 \pm 6.3 \cdot 10^{-7} \) |
\(a_{928}= +2.12939174 \pm 3.2 \cdot 10^{-7} \) | \(a_{929}= -1.46085223 \pm 4.7 \cdot 10^{-7} \) | \(a_{930}= -1.20302943 \pm 3.6 \cdot 10^{-7} \) |
\(a_{931}= -0.22953088 \pm 2.7 \cdot 10^{-7} \) | \(a_{932}= +0.43076181 \pm 5.2 \cdot 10^{-7} \) | \(a_{933}= +0.63037469 \pm 2.7 \cdot 10^{-7} \) |
\(a_{934}= +1.72966525 \pm 5.6 \cdot 10^{-7} \) | \(a_{935}= +0.19738728 \pm 9.9 \cdot 10^{-7} \) | \(a_{936}= +0.04814131 \pm 1.8 \cdot 10^{-7} \) |
\(a_{937}= -1.29683399 \pm 4.5 \cdot 10^{-7} \) | \(a_{938}= -0.86921969 \pm 4.5 \cdot 10^{-7} \) | \(a_{939}= +1.65989239 \pm 4.8 \cdot 10^{-7} \) |
\(a_{940}= -0.35580826 \pm 2.5 \cdot 10^{-7} \) | \(a_{941}= -1.45724113 \pm 4.7 \cdot 10^{-7} \) | \(a_{942}= -2.31056500 \pm 3.9 \cdot 10^{-7} \) |
\(a_{943}= +0.41524603 \pm 3.1 \cdot 10^{-7} \) | \(a_{944}= +1.29749085 \pm 5.0 \cdot 10^{-7} \) | \(a_{945}= -1.20969365 \pm 3.8 \cdot 10^{-7} \) |
\(a_{946}= +0.81135146 \pm 1.0 \cdot 10^{-6} \) | \(a_{947}= -0.45876901 \pm 6.0 \cdot 10^{-7} \) | \(a_{948}= -0.30470020 \pm 4.8 \cdot 10^{-7} \) |
\(a_{949}= -0.31172949 \pm 3.1 \cdot 10^{-7} \) | \(a_{950}= +1.10948875 \pm 5.3 \cdot 10^{-7} \) | \(a_{951}= +0.91232921 \pm 5.5 \cdot 10^{-7} \) |
\(a_{952}= +0.17661274 \pm 3.2 \cdot 10^{-7} \) | \(a_{953}= +0.97284184 \pm 4.4 \cdot 10^{-7} \) | \(a_{954}= +0.27900019 \pm 4.3 \cdot 10^{-7} \) |
\(a_{955}= +0.46165934 \pm 4.2 \cdot 10^{-7} \) | \(a_{956}= +0.83426561 \pm 6.5 \cdot 10^{-7} \) | \(a_{957}= -0.83037712 \pm 9.4 \cdot 10^{-7} \) |
\(a_{958}= -1.51063885 \pm 6.5 \cdot 10^{-7} \) | \(a_{959}= +0.22462733 \pm 4.5 \cdot 10^{-7} \) | \(a_{960}= +0.78517345 \pm 3.8 \cdot 10^{-7} \) |
\(a_{961}= -0.23121478 \pm 6.0 \cdot 10^{-7} \) | \(a_{962}= -0.05451004 \pm 2.6 \cdot 10^{-7} \) | \(a_{963}= +1.03318494 \pm 6.2 \cdot 10^{-7} \) |
\(a_{964}= +0.24684947 \pm 8.0 \cdot 10^{-7} \) | \(a_{965}= -0.30146544 \pm 5.6 \cdot 10^{-7} \) | \(a_{966}= -2.44087520 \pm 4.2 \cdot 10^{-7} \) |
\(a_{967}= -0.76527501 \pm 5.5 \cdot 10^{-7} \) | \(a_{968}= -0.01266744 \pm 5.7 \cdot 10^{-7} \) | \(a_{969}= -2.41749711 \pm 2.9 \cdot 10^{-7} \) |
\(a_{970}= -0.44966071 \pm 8.2 \cdot 10^{-7} \) | \(a_{971}= -0.05319944 \pm 6.0 \cdot 10^{-7} \) | \(a_{972}= -0.37414750 \pm 5.5 \cdot 10^{-7} \) |
\(a_{973}= -1.54287279 \pm 4.2 \cdot 10^{-7} \) | \(a_{974}= -0.20389768 \pm 3.7 \cdot 10^{-7} \) | \(a_{975}= -0.19665250 \pm 1.4 \cdot 10^{-7} \) |
\(a_{976}= -1.13481182 \pm 2.6 \cdot 10^{-7} \) | \(a_{977}= +0.65064484 \pm 4.4 \cdot 10^{-7} \) | \(a_{978}= -0.02736138 \pm 4.9 \cdot 10^{-7} \) |
\(a_{979}= -0.17767018 \pm 4.9 \cdot 10^{-7} \) | \(a_{980}= +0.09855856 \pm 4.8 \cdot 10^{-7} \) | \(a_{981}= +0.45322391 \pm 3.5 \cdot 10^{-7} \) |
\(a_{982}= +1.48387306 \pm 6.1 \cdot 10^{-7} \) | \(a_{983}= -1.33356838 \pm 4.3 \cdot 10^{-7} \) | \(a_{984}= +0.11108148 \pm 3.6 \cdot 10^{-7} \) |
\(a_{985}= +0.42808496 \pm 2.5 \cdot 10^{-7} \) | \(a_{986}= +2.49523369 \pm 4.9 \cdot 10^{-7} \) | \(a_{987}= +1.35188634 \pm 2.5 \cdot 10^{-7} \) |
\(a_{988}= +0.17376843 \pm 1.8 \cdot 10^{-7} \) | \(a_{989}= -1.79433470 \pm 4.6 \cdot 10^{-7} \) | \(a_{990}= -0.49524017 \pm 1.6 \cdot 10^{-6} \) |
\(a_{991}= -0.30757737 \pm 4.2 \cdot 10^{-7} \) | \(a_{992}= -1.19588066 \pm 4.3 \cdot 10^{-7} \) | \(a_{993}= +2.51827320 \pm 3.9 \cdot 10^{-7} \) |
\(a_{994}= -0.88765635 \pm 2.4 \cdot 10^{-7} \) | \(a_{995}= +0.49564350 \pm 5.8 \cdot 10^{-7} \) | \(a_{996}= +2.37559815 \pm 5.1 \cdot 10^{-7} \) |
\(a_{997}= +0.89498335 \pm 4.5 \cdot 10^{-7} \) | \(a_{998}= -1.64048775 \pm 6.6 \cdot 10^{-7} \) | \(a_{999}= -0.47417108 \pm 2.1 \cdot 10^{-7} \) |
\(a_{1000}= +0.13224397 \pm 3.6 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000