Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(11.2612425027035251260082390096 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.72164439 \pm 4.6 \cdot 10^{-6} \) | \(a_{3}= -1.72027069 \pm 3.8 \cdot 10^{-6} \) |
\(a_{4}= -0.47922938 \pm 5.4 \cdot 10^{-6} \) | \(a_{5}= -0.98168527 \pm 3.9 \cdot 10^{-6} \) | \(a_{6}= +1.24142368 \pm 4.7 \cdot 10^{-6} \) |
\(a_{7}= -1.50765960 \pm 3.9 \cdot 10^{-6} \) | \(a_{8}= +1.06747758 \pm 4.5 \cdot 10^{-6} \) | \(a_{9}= +1.95933124 \pm 4.2 \cdot 10^{-6} \) |
\(a_{10}= +0.70842766 \pm 4.8 \cdot 10^{-6} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +0.82440426 \pm 5.0 \cdot 10^{-6} \) |
\(a_{13}= -0.52388168 \pm 3.1 \cdot 10^{-6} \) | \(a_{14}= +1.08799409 \pm 3.3 \cdot 10^{-6} \) | \(a_{15}= +1.68876439 \pm 3.0 \cdot 10^{-6} \) |
\(a_{16}= -0.29110982 \pm 4.0 \cdot 10^{-6} \) | \(a_{17}= +1.90860392 \pm 3.9 \cdot 10^{-6} \) | \(a_{18}= -1.41394039 \pm 4.3 \cdot 10^{-6} \) |
\(a_{19}= -0.25340204 \pm 2.8 \cdot 10^{-6} \) | \(a_{20}= +0.47045242 \pm 5.2 \cdot 10^{-6} \) | \(a_{21}= +2.59358262 \pm 3.0 \cdot 10^{-6} \) |
\(a_{22}= +0.21758397 \pm 4.6 \cdot 10^{-6} \) | \(a_{23}= -0.42825166 \pm 3.7 \cdot 10^{-6} \) | \(a_{24}= -1.83635039 \pm 5.3 \cdot 10^{-6} \) |
\(a_{25}= -0.03629403 \pm 3.2 \cdot 10^{-6} \) | \(a_{26}= +0.37805628 \pm 2.4 \cdot 10^{-6} \) | \(a_{27}= -1.65030942 \pm 3.6 \cdot 10^{-6} \) |
\(a_{28}= +0.72251478 \pm 4.0 \cdot 10^{-6} \) | \(a_{29}= +0.25659394 \pm 3.6 \cdot 10^{-6} \) | \(a_{30}= -1.21868734 \pm 2.7 \cdot 10^{-6} \) |
\(a_{31}= -1.16637508 \pm 3.8 \cdot 10^{-6} \) | \(a_{32}= -0.85739981 \pm 3.3 \cdot 10^{-6} \) | \(a_{33}= +0.51868113 \pm 3.8 \cdot 10^{-6} \) |
\(a_{34}= -1.37733330 \pm 4.7 \cdot 10^{-6} \) | \(a_{35}= +1.48004722 \pm 3.7 \cdot 10^{-6} \) | \(a_{36}= -0.93896910 \pm 4.5 \cdot 10^{-6} \) |
\(a_{37}= -0.20216591 \pm 3.9 \cdot 10^{-6} \) | \(a_{38}= +0.18286616 \pm 3.9 \cdot 10^{-6} \) | \(a_{39}= +0.90121830 \pm 2.3 \cdot 10^{-6} \) |
\(a_{40}= -1.04792701 \pm 3.7 \cdot 10^{-6} \) | \(a_{41}= +0.24774315 \pm 2.6 \cdot 10^{-6} \) | \(a_{42}= -1.87164434 \pm 3.3 \cdot 10^{-6} \) |
\(a_{43}= +0.05793280 \pm 3.7 \cdot 10^{-6} \) | \(a_{44}= +0.14449309 \pm 5.4 \cdot 10^{-6} \) | \(a_{45}= -1.92344662 \pm 4.1 \cdot 10^{-6} \) |
\(a_{46}= +0.30904540 \pm 5.3 \cdot 10^{-6} \) | \(a_{47}= +1.39770660 \pm 3.1 \cdot 10^{-6} \) | \(a_{48}= +0.50078769 \pm 4.1 \cdot 10^{-6} \) |
\(a_{49}= +1.27303748 \pm 3.4 \cdot 10^{-6} \) | \(a_{50}= +0.02619139 \pm 5.0 \cdot 10^{-6} \) | \(a_{51}= -3.28331538 \pm 3.8 \cdot 10^{-6} \) |
\(a_{52}= +0.25105949 \pm 3.3 \cdot 10^{-6} \) | \(a_{53}= +1.33820657 \pm 3.0 \cdot 10^{-6} \) | \(a_{54}= +1.19093653 \pm 3.1 \cdot 10^{-6} \) |
\(a_{55}= +0.29598925 \pm 3.9 \cdot 10^{-6} \) | \(a_{56}= -1.60939282 \pm 2.7 \cdot 10^{-6} \) | \(a_{57}= +0.43592010 \pm 2.5 \cdot 10^{-6} \) |
\(a_{58}= -0.18516958 \pm 3.5 \cdot 10^{-6} \) | \(a_{59}= -0.06959452 \pm 4.4 \cdot 10^{-6} \) | \(a_{60}= -0.80930551 \pm 2.4 \cdot 10^{-6} \) |
\(a_{61}= +1.17713852 \pm 3.2 \cdot 10^{-6} \) | \(a_{62}= +0.84170803 \pm 3.5 \cdot 10^{-6} \) | \(a_{63}= -2.95400456 \pm 3.0 \cdot 10^{-6} \) |
\(a_{64}= +0.90984758 \pm 4.1 \cdot 10^{-6} \) | \(a_{65}= +0.51428693 \pm 2.6 \cdot 10^{-6} \) | \(a_{66}= -0.37430332 \pm 8.5 \cdot 10^{-6} \) |
\(a_{67}= -0.24518753 \pm 4.5 \cdot 10^{-6} \) | \(a_{68}= -0.91465907 \pm 5.9 \cdot 10^{-6} \) | \(a_{69}= +0.73670878 \pm 4.3 \cdot 10^{-6} \) |
\(a_{70}= -1.06806777 \pm 3.4 \cdot 10^{-6} \) | \(a_{71}= +0.57548528 \pm 2.9 \cdot 10^{-6} \) | \(a_{72}= +2.09154217 \pm 4.4 \cdot 10^{-6} \) |
\(a_{73}= +0.26914591 \pm 3.7 \cdot 10^{-6} \) | \(a_{74}= +0.14589189 \pm 3.6 \cdot 10^{-6} \) | \(a_{75}= +0.06243556 \pm 2.4 \cdot 10^{-6} \) |
\(a_{76}= +0.12143770 \pm 3.9 \cdot 10^{-6} \) | \(a_{77}= +0.45457647 \pm 3.9 \cdot 10^{-6} \) | \(a_{78}= -0.65035913 \pm 3.0 \cdot 10^{-6} \) |
\(a_{79}= -0.65364865 \pm 3.0 \cdot 10^{-6} \) | \(a_{80}= +0.28577822 \pm 2.4 \cdot 10^{-6} \) | \(a_{81}= +0.87964767 \pm 4.1 \cdot 10^{-6} \) |
\(a_{82}= -0.17878246 \pm 2.6 \cdot 10^{-6} \) | \(a_{83}= -0.39155311 \pm 3.7 \cdot 10^{-6} \) | \(a_{84}= -1.24292099 \pm 3.1 \cdot 10^{-6} \) |
\(a_{85}= -1.87364835 \pm 3.0 \cdot 10^{-6} \) | \(a_{86}= -0.04180688 \pm 4.3 \cdot 10^{-6} \) | \(a_{87}= -0.44141104 \pm 2.6 \cdot 10^{-6} \) |
\(a_{88}= -0.32185660 \pm 4.5 \cdot 10^{-6} \) | \(a_{89}= -0.11602487 \pm 3.9 \cdot 10^{-6} \) | \(a_{90}= +1.38804445 \pm 5.0 \cdot 10^{-6} \) |
\(a_{91}= +0.78983525 \pm 3.6 \cdot 10^{-6} \) | \(a_{92}= +0.20523078 \pm 6.1 \cdot 10^{-6} \) | \(a_{93}= +2.00648086 \pm 3.9 \cdot 10^{-6} \) |
\(a_{94}= -1.00864712 \pm 3.2 \cdot 10^{-6} \) | \(a_{95}= +0.24876105 \pm 3.3 \cdot 10^{-6} \) | \(a_{96}= +1.47495976 \pm 3.4 \cdot 10^{-6} \) |
\(a_{97}= +0.05293556 \pm 3.3 \cdot 10^{-6} \) | \(a_{98}= -0.91868035 \pm 3.9 \cdot 10^{-6} \) | \(a_{99}= -0.59076060 \pm 4.2 \cdot 10^{-6} \) |
\(a_{100}= +0.01739317 \pm 5.5 \cdot 10^{-6} \) | \(a_{101}= -1.88033726 \pm 2.9 \cdot 10^{-6} \) | \(a_{102}= +2.36938611 \pm 5.5 \cdot 10^{-6} \) |
\(a_{103}= +0.64068557 \pm 4.2 \cdot 10^{-6} \) | \(a_{104}= -0.55923195 \pm 1.8 \cdot 10^{-6} \) | \(a_{105}= -2.54608185 \pm 2.7 \cdot 10^{-6} \) |
\(a_{106}= -0.96570926 \pm 3.7 \cdot 10^{-6} \) | \(a_{107}= +1.62061859 \pm 4.3 \cdot 10^{-6} \) | \(a_{108}= +0.79087676 \pm 2.7 \cdot 10^{-6} \) |
\(a_{109}= -0.34073175 \pm 2.7 \cdot 10^{-6} \) | \(a_{110}= -0.21359898 \pm 8.6 \cdot 10^{-6} \) | \(a_{111}= +0.34778009 \pm 2.2 \cdot 10^{-6} \) |
\(a_{112}= +0.43889452 \pm 3.3 \cdot 10^{-6} \) | \(a_{113}= +0.56652465 \pm 4.7 \cdot 10^{-6} \) | \(a_{114}= -0.31457929 \pm 2.9 \cdot 10^{-6} \) |
\(a_{115}= +0.42040834 \pm 2.7 \cdot 10^{-6} \) | \(a_{116}= -0.12296736 \pm 4.7 \cdot 10^{-6} \) | \(a_{117}= -1.02645775 \pm 2.9 \cdot 10^{-6} \) |
\(a_{118}= +0.05022249 \pm 5.4 \cdot 10^{-6} \) | \(a_{119}= -2.87752502 \pm 3.5 \cdot 10^{-6} \) | \(a_{120}= +1.80271812 \pm 2.8 \cdot 10^{-6} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= -0.84947540 \pm 4.5 \cdot 10^{-6} \) | \(a_{123}= -0.42618529 \pm 3.2 \cdot 10^{-6} \) |
\(a_{124}= +0.55896121 \pm 3.6 \cdot 10^{-6} \) | \(a_{125}= +1.01731459 \pm 3.6 \cdot 10^{-6} \) | \(a_{126}= +2.13174081 \pm 2.7 \cdot 10^{-6} \) |
\(a_{127}= -0.70329249 \pm 3.8 \cdot 10^{-6} \) | \(a_{128}= +0.20081341 \pm 4.0 \cdot 10^{-6} \) | \(a_{129}= -0.09966011 \pm 3.8 \cdot 10^{-6} \) |
\(a_{130}= -0.37113228 \pm 2.1 \cdot 10^{-6} \) | \(a_{131}= -1.57302151 \pm 4.4 \cdot 10^{-6} \) | \(a_{132}= -0.24856724 \pm 9.2 \cdot 10^{-6} \) |
\(a_{133}= +0.38204401 \pm 2.5 \cdot 10^{-6} \) | \(a_{134}= +0.17693820 \pm 5.2 \cdot 10^{-6} \) | \(a_{135}= +1.62008444 \pm 3.3 \cdot 10^{-6} \) |
\(a_{136}= +2.03739189 \pm 5.4 \cdot 10^{-6} \) | \(a_{137}= +1.04281417 \pm 3.7 \cdot 10^{-6} \) | \(a_{138}= -0.53164175 \pm 6.3 \cdot 10^{-6} \) |
\(a_{139}= +0.31432419 \pm 3.0 \cdot 10^{-6} \) | \(a_{140}= -0.70928211 \pm 3.9 \cdot 10^{-6} \) | \(a_{141}= -2.40443369 \pm 4.3 \cdot 10^{-6} \) |
\(a_{142}= -0.41529572 \pm 2.3 \cdot 10^{-6} \) | \(a_{143}= +0.15795627 \pm 3.1 \cdot 10^{-6} \) | \(a_{144}= -0.57038056 \pm 3.2 \cdot 10^{-6} \) |
\(a_{145}= -0.25189449 \pm 3.3 \cdot 10^{-6} \) | \(a_{146}= -0.19422763 \pm 4.1 \cdot 10^{-6} \) | \(a_{147}= -2.18996906 \pm 3.7 \cdot 10^{-6} \) |
\(a_{148}= +0.09688384 \pm 4.8 \cdot 10^{-6} \) | \(a_{149}= -0.68704360 \pm 2.9 \cdot 10^{-6} \) | \(a_{150}= -0.04505627 \pm 3.6 \cdot 10^{-6} \) |
\(a_{151}= +1.14773620 \pm 5.0 \cdot 10^{-6} \) | \(a_{152}= -0.27050099 \pm 2.9 \cdot 10^{-6} \) | \(a_{153}= +3.73958729 \pm 3.8 \cdot 10^{-6} \) |
\(a_{154}= -0.32804256 \pm 8.6 \cdot 10^{-6} \) | \(a_{155}= +1.14501323 \pm 3.6 \cdot 10^{-6} \) | \(a_{156}= -0.43189029 \pm 2.7 \cdot 10^{-6} \) |
\(a_{157}= -0.89607521 \pm 3.4 \cdot 10^{-6} \) | \(a_{158}= +0.47170188 \pm 3.0 \cdot 10^{-6} \) | \(a_{159}= -2.30207754 \pm 2.6 \cdot 10^{-6} \) |
\(a_{160}= +0.84169676 \pm 3.2 \cdot 10^{-6} \) | \(a_{161}= +0.64565772 \pm 2.9 \cdot 10^{-6} \) | \(a_{162}= -0.63479281 \pm 5.0 \cdot 10^{-6} \) |
\(a_{163}= -1.01330720 \pm 3.7 \cdot 10^{-6} \) | \(a_{164}= -0.11872580 \pm 2.2 \cdot 10^{-6} \) | \(a_{165}= -0.50918162 \pm 7.8 \cdot 10^{-6} \) |
\(a_{166}= +0.28256210 \pm 3.2 \cdot 10^{-6} \) | \(a_{167}= +0.69797662 \pm 4.9 \cdot 10^{-6} \) | \(a_{168}= +2.76859129 \pm 2.4 \cdot 10^{-6} \) |
\(a_{169}= -0.72554798 \pm 3.2 \cdot 10^{-6} \) | \(a_{170}= +1.35210781 \pm 3.2 \cdot 10^{-6} \) | \(a_{171}= -0.49649853 \pm 2.7 \cdot 10^{-6} \) |
\(a_{172}= -0.02776310 \pm 5.1 \cdot 10^{-6} \) | \(a_{173}= -0.24658106 \pm 3.8 \cdot 10^{-6} \) | \(a_{174}= +0.31854180 \pm 3.6 \cdot 10^{-6} \) |
\(a_{175}= +0.05471905 \pm 2.2 \cdot 10^{-6} \) | \(a_{176}= +0.08777291 \pm 4.0 \cdot 10^{-6} \) | \(a_{177}= +0.11972140 \pm 4.1 \cdot 10^{-6} \) |
\(a_{178}= +0.08372869 \pm 5.5 \cdot 10^{-6} \) | \(a_{179}= -1.75564909 \pm 4.3 \cdot 10^{-6} \) | \(a_{180}= +0.92177213 \pm 5.0 \cdot 10^{-6} \) |
\(a_{181}= +0.57323832 \pm 3.4 \cdot 10^{-6} \) | \(a_{182}= -0.56998017 \pm 2.7 \cdot 10^{-6} \) | \(a_{183}= -2.02499689 \pm 1.9 \cdot 10^{-6} \) |
\(a_{184}= -0.45714904 \pm 5.8 \cdot 10^{-6} \) | \(a_{185}= +0.19846330 \pm 3.8 \cdot 10^{-6} \) | \(a_{186}= -1.44796565 \pm 3.5 \cdot 10^{-6} \) |
\(a_{187}= -0.57546573 \pm 3.9 \cdot 10^{-6} \) | \(a_{188}= -0.66982207 \pm 3.6 \cdot 10^{-6} \) | \(a_{189}= +2.48810484 \pm 3.1 \cdot 10^{-6} \) |
\(a_{190}= -0.17951701 \pm 4.8 \cdot 10^{-6} \) | \(a_{191}= +1.23577470 \pm 3.8 \cdot 10^{-6} \) | \(a_{192}= -1.56518412 \pm 3.3 \cdot 10^{-6} \) |
\(a_{193}= -0.22617369 \pm 3.9 \cdot 10^{-6} \) | \(a_{194}= -0.03820065 \pm 5.1 \cdot 10^{-6} \) | \(a_{195}= -0.88471273 \pm 2.0 \cdot 10^{-6} \) |
\(a_{196}= -0.61007696 \pm 4.2 \cdot 10^{-6} \) | \(a_{197}= +1.25337196 \pm 2.8 \cdot 10^{-6} \) | \(a_{198}= +0.42631907 \pm 8.9 \cdot 10^{-6} \) |
\(a_{199}= +1.39084541 \pm 4.2 \cdot 10^{-6} \) | \(a_{200}= -0.03874307 \pm 4.5 \cdot 10^{-6} \) | \(a_{201}= +0.42178892 \pm 2.6 \cdot 10^{-6} \) |
\(a_{202}= +1.35693483 \pm 4.4 \cdot 10^{-6} \) | \(a_{203}= -0.38685632 \pm 3.7 \cdot 10^{-6} \) | \(a_{204}= +1.57346119 \pm 6.5 \cdot 10^{-6} \) |
\(a_{205}= -0.24320581 \pm 2.2 \cdot 10^{-6} \) | \(a_{206}= -0.46234714 \pm 3.3 \cdot 10^{-6} \) | \(a_{207}= -0.83908685 \pm 3.4 \cdot 10^{-6} \) |
\(a_{208}= +0.15250710 \pm 2.9 \cdot 10^{-6} \) | \(a_{209}= +0.07640359 \pm 2.8 \cdot 10^{-6} \) | \(a_{210}= +1.83736567 \pm 2.7 \cdot 10^{-6} \) |
\(a_{211}= -0.23269962 \pm 4.4 \cdot 10^{-6} \) | \(a_{212}= -0.64130791 \pm 3.8 \cdot 10^{-6} \) | \(a_{213}= -0.98999047 \pm 3.5 \cdot 10^{-6} \) |
\(a_{214}= -1.16951031 \pm 6.5 \cdot 10^{-6} \) | \(a_{215}= -0.05687178 \pm 3.6 \cdot 10^{-6} \) | \(a_{216}= -1.76166830 \pm 3.7 \cdot 10^{-6} \) |
\(a_{217}= +1.75849659 \pm 4.6 \cdot 10^{-6} \) | \(a_{218}= +0.24588716 \pm 3.1 \cdot 10^{-6} \) | \(a_{219}= -0.46300381 \pm 2.4 \cdot 10^{-6} \) |
\(a_{220}= -0.14184674 \pm 9.4 \cdot 10^{-6} \) | \(a_{221}= -0.99988263 \pm 3.0 \cdot 10^{-6} \) | \(a_{222}= -0.25097355 \pm 2.8 \cdot 10^{-6} \) |
\(a_{223}= +1.09642958 \pm 4.0 \cdot 10^{-6} \) | \(a_{224}= +1.29266706 \pm 3.2 \cdot 10^{-6} \) | \(a_{225}= -0.07111203 \pm 2.8 \cdot 10^{-6} \) |
\(a_{226}= -0.40882933 \pm 5.2 \cdot 10^{-6} \) | \(a_{227}= -0.89699652 \pm 3.2 \cdot 10^{-6} \) | \(a_{228}= -0.20890572 \pm 2.8 \cdot 10^{-6} \) |
\(a_{229}= +1.44099617 \pm 3.2 \cdot 10^{-6} \) | \(a_{230}= -0.30338532 \pm 2.9 \cdot 10^{-6} \) | \(a_{231}= -0.78199458 \pm 7.8 \cdot 10^{-6} \) |
\(a_{232}= +0.27390828 \pm 3.6 \cdot 10^{-6} \) | \(a_{233}= -1.04781614 \pm 4.5 \cdot 10^{-6} \) | \(a_{234}= +0.74073747 \pm 2.2 \cdot 10^{-6} \) |
\(a_{235}= -1.37210798 \pm 2.5 \cdot 10^{-6} \) | \(a_{236}= +0.03335174 \pm 6.4 \cdot 10^{-6} \) | \(a_{237}= +1.12445262 \pm 2.8 \cdot 10^{-6} \) |
\(a_{238}= +2.07654978 \pm 2.4 \cdot 10^{-6} \) | \(a_{239}= -0.60565594 \pm 3.5 \cdot 10^{-6} \) | \(a_{240}= -0.49161590 \pm 1.9 \cdot 10^{-6} \) |
\(a_{241}= -0.07108225 \pm 5.5 \cdot 10^{-6} \) | \(a_{242}= -0.06560404 \pm 4.6 \cdot 10^{-6} \) | \(a_{243}= +0.13707731 \pm 2.7 \cdot 10^{-6} \) |
\(a_{244}= -0.56411936 \pm 4.7 \cdot 10^{-6} \) | \(a_{245}= -1.24972214 \pm 3.5 \cdot 10^{-6} \) | \(a_{246}= +0.30755422 \pm 3.2 \cdot 10^{-6} \) |
\(a_{247}= +0.13275269 \pm 1.4 \cdot 10^{-6} \) | \(a_{248}= -1.24507924 \pm 2.7 \cdot 10^{-6} \) | \(a_{249}= +0.67357733 \pm 4.9 \cdot 10^{-6} \) |
\(a_{250}= -0.73413936 \pm 3.2 \cdot 10^{-6} \) | \(a_{251}= -1.20339988 \pm 4.4 \cdot 10^{-6} \) | \(a_{252}= +1.41564578 \pm 3.3 \cdot 10^{-6} \) |
\(a_{253}= +0.12912273 \pm 3.7 \cdot 10^{-6} \) | \(a_{254}= +0.50752708 \pm 4.4 \cdot 10^{-6} \) | \(a_{255}= +3.22318234 \pm 2.4 \cdot 10^{-6} \) |
\(a_{256}= -1.05476345 \pm 4.7 \cdot 10^{-6} \) | \(a_{257}= +0.00999948 \pm 3.2 \cdot 10^{-6} \) | \(a_{258}= +0.07191916 \pm 4.6 \cdot 10^{-6} \) |
\(a_{259}= +0.30479738 \pm 3.9 \cdot 10^{-6} \) | \(a_{260}= -0.24646141 \pm 2.7 \cdot 10^{-6} \) | \(a_{261}= +0.50275253 \pm 2.9 \cdot 10^{-6} \) |
\(a_{262}= +1.13516214 \pm 4.7 \cdot 10^{-6} \) | \(a_{263}= +1.24581096 \pm 5.0 \cdot 10^{-6} \) | \(a_{264}= +0.55368047 \pm 8.4 \cdot 10^{-6} \) |
\(a_{265}= -1.31369768 \pm 3.5 \cdot 10^{-6} \) | \(a_{266}= -0.27569992 \pm 3.1 \cdot 10^{-6} \) | \(a_{267}= +0.19959418 \pm 3.8 \cdot 10^{-6} \) |
\(a_{268}= +0.11750107 \pm 6.2 \cdot 10^{-6} \) | \(a_{269}= +0.67034441 \pm 3.5 \cdot 10^{-6} \) | \(a_{270}= -1.16912484 \pm 2.5 \cdot 10^{-6} \) |
\(a_{271}= -0.53106759 \pm 3.8 \cdot 10^{-6} \) | \(a_{272}= -0.55561334 \pm 4.7 \cdot 10^{-6} \) | \(a_{273}= -1.35873043 \pm 2.7 \cdot 10^{-6} \) |
\(a_{274}= -0.75254099 \pm 3.5 \cdot 10^{-6} \) | \(a_{275}= +0.01094306 \pm 3.2 \cdot 10^{-6} \) | \(a_{276}= -0.35305249 \pm 7.3 \cdot 10^{-6} \) |
\(a_{277}= +0.19906257 \pm 5.5 \cdot 10^{-6} \) | \(a_{278}= -0.22683029 \pm 3.8 \cdot 10^{-6} \) | \(a_{279}= -2.28531513 \pm 3.8 \cdot 10^{-6} \) |
\(a_{280}= +1.57991722 \pm 2.8 \cdot 10^{-6} \) | \(a_{281}= -0.40758192 \pm 4.5 \cdot 10^{-6} \) | \(a_{282}= +1.73514607 \pm 4.5 \cdot 10^{-6} \) |
\(a_{283}= -1.03428599 \pm 3.3 \cdot 10^{-6} \) | \(a_{284}= -0.27578946 \pm 2.8 \cdot 10^{-6} \) | \(a_{285}= -0.42793634 \pm 2.1 \cdot 10^{-6} \) |
\(a_{286}= -0.11398826 \pm 7.8 \cdot 10^{-6} \) | \(a_{287}= -0.37351235 \pm 2.5 \cdot 10^{-6} \) | \(a_{288}= -1.67993024 \pm 3.2 \cdot 10^{-6} \) |
\(a_{289}= +2.64276892 \pm 2.4 \cdot 10^{-6} \) | \(a_{290}= +0.18177825 \pm 3.2 \cdot 10^{-6} \) | \(a_{291}= -0.09106349 \pm 2.3 \cdot 10^{-6} \) |
\(a_{292}= -0.12898263 \pm 4.7 \cdot 10^{-6} \) | \(a_{293}= -0.01536538 \pm 3.8 \cdot 10^{-6} \) | \(a_{294}= +1.58037887 \pm 4.3 \cdot 10^{-6} \) |
\(a_{295}= +0.06831991 \pm 4.8 \cdot 10^{-6} \) | \(a_{296}= -0.21580758 \pm 2.8 \cdot 10^{-6} \) | \(a_{297}= +0.49758701 \pm 3.6 \cdot 10^{-6} \) |
\(a_{298}= +0.49580116 \pm 2.8 \cdot 10^{-6} \) | \(a_{299}= +0.22435320 \pm 2.2 \cdot 10^{-6} \) | \(a_{300}= -0.02992096 \pm 4.4 \cdot 10^{-6} \) |
\(a_{301}= -0.08734295 \pm 3.9 \cdot 10^{-6} \) | \(a_{302}= -0.82825738 \pm 6.1 \cdot 10^{-6} \) | \(a_{303}= +3.23468908 \pm 3.4 \cdot 10^{-6} \) |
\(a_{304}= +0.07376782 \pm 2.4 \cdot 10^{-6} \) | \(a_{305}= -1.15557954 \pm 4.3 \cdot 10^{-6} \) | \(a_{306}= -2.69865217 \pm 3.8 \cdot 10^{-6} \) |
\(a_{307}= +1.13860375 \pm 4.4 \cdot 10^{-6} \) | \(a_{308}= -0.21784640 \pm 9.4 \cdot 10^{-6} \) | \(a_{309}= -1.10215260 \pm 4.1 \cdot 10^{-6} \) |
\(a_{310}= -0.82629237 \pm 3.5 \cdot 10^{-6} \) | \(a_{311}= -1.10640194 \pm 4.5 \cdot 10^{-6} \) | \(a_{312}= +0.96203033 \pm 1.9 \cdot 10^{-6} \) |
\(a_{313}= +1.71035875 \pm 3.7 \cdot 10^{-6} \) | \(a_{314}= +0.64664764 \pm 3.5 \cdot 10^{-6} \) | \(a_{315}= +2.89990276 \pm 2.8 \cdot 10^{-6} \) |
\(a_{316}= +0.31324764 \pm 3.6 \cdot 10^{-6} \) | \(a_{317}= -0.83838871 \pm 4.3 \cdot 10^{-6} \) | \(a_{318}= +1.66128133 \pm 2.8 \cdot 10^{-6} \) |
\(a_{319}= -0.07736598 \pm 3.6 \cdot 10^{-6} \) | \(a_{320}= -0.89318397 \pm 4.9 \cdot 10^{-6} \) | \(a_{321}= -2.78790266 \pm 4.4 \cdot 10^{-6} \) |
\(a_{322}= -0.46593527 \pm 3.2 \cdot 10^{-6} \) | \(a_{323}= -0.48364412 \pm 2.2 \cdot 10^{-6} \) | \(a_{324}= -0.42155301 \pm 5.7 \cdot 10^{-6} \) |
\(a_{325}= +0.01901378 \pm 1.5 \cdot 10^{-6} \) | \(a_{326}= +0.73124745 \pm 5.0 \cdot 10^{-6} \) | \(a_{327}= +0.58615084 \pm 2.9 \cdot 10^{-6} \) |
\(a_{328}= +0.26446026 \pm 1.8 \cdot 10^{-6} \) | \(a_{329}= -2.10726577 \pm 2.3 \cdot 10^{-6} \) | \(a_{330}= +0.36744806 \pm 1.2 \cdot 10^{-5} \) |
\(a_{331}= +0.84783916 \pm 2.9 \cdot 10^{-6} \) | \(a_{332}= +0.18764375 \pm 3.7 \cdot 10^{-6} \) | \(a_{333}= -0.39610999 \pm 3.8 \cdot 10^{-6} \) |
\(a_{334}= -0.50369091 \pm 5.0 \cdot 10^{-6} \) | \(a_{335}= +0.24069698 \pm 4.9 \cdot 10^{-6} \) | \(a_{336}= -0.75501737 \pm 2.6 \cdot 10^{-6} \) |
\(a_{337}= -0.90110666 \pm 4.0 \cdot 10^{-6} \) | \(a_{338}= +0.52358763 \pm 4.2 \cdot 10^{-6} \) | \(a_{339}= -0.97457575 \pm 4.0 \cdot 10^{-6} \) |
\(a_{340}= +0.89790734 \pm 3.7 \cdot 10^{-6} \) | \(a_{341}= +0.35167532 \pm 3.9 \cdot 10^{-6} \) | \(a_{342}= +0.35829537 \pm 3.5 \cdot 10^{-6} \) |
\(a_{343}= -0.41164757 \pm 3.3 \cdot 10^{-6} \) | \(a_{344}= +0.06184197 \pm 4.6 \cdot 10^{-6} \) | \(a_{345}= -0.72321615 \pm 2.9 \cdot 10^{-6} \) |
\(a_{346}= +0.17794384 \pm 4.8 \cdot 10^{-6} \) | \(a_{347}= -1.93530603 \pm 3.3 \cdot 10^{-6} \) | \(a_{348}= +0.21153714 \pm 4.4 \cdot 10^{-6} \) |
\(a_{349}= +0.38955901 \pm 3.8 \cdot 10^{-6} \) | \(a_{350}= -0.03948769 \pm 2.7 \cdot 10^{-6} \) | \(a_{351}= +0.86456687 \pm 1.7 \cdot 10^{-6} \) |
\(a_{352}= +0.25851577 \pm 3.3 \cdot 10^{-6} \) | \(a_{353}= -0.07633052 \pm 4.1 \cdot 10^{-6} \) | \(a_{354}= -0.08639628 \pm 4.8 \cdot 10^{-6} \) |
\(a_{355}= -0.56494543 \pm 2.8 \cdot 10^{-6} \) | \(a_{356}= +0.05560253 \pm 6.9 \cdot 10^{-6} \) | \(a_{357}= +4.95012195 \pm 2.4 \cdot 10^{-6} \) |
\(a_{358}= +1.26695431 \pm 6.1 \cdot 10^{-6} \) | \(a_{359}= +1.54475801 \pm 3.9 \cdot 10^{-6} \) | \(a_{360}= -2.05323614 \pm 4.2 \cdot 10^{-6} \) |
\(a_{361}= -0.93578741 \pm 3.3 \cdot 10^{-6} \) | \(a_{362}= -0.41367422 \pm 2.1 \cdot 10^{-6} \) | \(a_{363}= -0.15638824 \pm 3.8 \cdot 10^{-6} \) |
\(a_{364}= -0.37851226 \pm 3.5 \cdot 10^{-6} \) | \(a_{365}= -0.26421657 \pm 4.6 \cdot 10^{-6} \) | \(a_{366}= +1.46132764 \pm 1.7 \cdot 10^{-6} \) |
\(a_{367}= -0.02049198 \pm 4.0 \cdot 10^{-6} \) | \(a_{368}= +0.12466826 \pm 4.8 \cdot 10^{-6} \) | \(a_{369}= +0.48541090 \pm 3.5 \cdot 10^{-6} \) |
\(a_{370}= -0.14321992 \pm 4.8 \cdot 10^{-6} \) | \(a_{371}= -2.01755999 \pm 3.3 \cdot 10^{-6} \) | \(a_{372}= -0.96156458 \pm 2.8 \cdot 10^{-6} \) |
\(a_{373}= +1.65561461 \pm 2.6 \cdot 10^{-6} \) | \(a_{374}= +0.41528162 \pm 8.6 \cdot 10^{-6} \) | \(a_{375}= -1.75005646 \pm 3.4 \cdot 10^{-6} \) |
\(a_{376}= +1.49202045 \pm 3.8 \cdot 10^{-6} \) | \(a_{377}= -0.13442487 \pm 3.2 \cdot 10^{-6} \) | \(a_{378}= -1.79552689 \pm 2.2 \cdot 10^{-6} \) |
\(a_{379}= -1.92674629 \pm 3.5 \cdot 10^{-6} \) | \(a_{380}= -0.11921360 \pm 4.8 \cdot 10^{-6} \) | \(a_{381}= +1.20985346 \pm 2.9 \cdot 10^{-6} \) |
\(a_{382}= -0.89178988 \pm 3.3 \cdot 10^{-6} \) | \(a_{383}= +1.37715960 \pm 4.1 \cdot 10^{-6} \) | \(a_{384}= -0.34545343 \pm 2.8 \cdot 10^{-6} \) |
\(a_{385}= -0.44625103 \pm 7.9 \cdot 10^{-6} \) | \(a_{386}= +0.16321697 \pm 5.1 \cdot 10^{-6} \) | \(a_{387}= +0.11350955 \pm 3.8 \cdot 10^{-6} \) |
\(a_{388}= -0.02536828 \pm 5.4 \cdot 10^{-6} \) | \(a_{389}= +0.00381523 \pm 3.8 \cdot 10^{-6} \) | \(a_{390}= +0.63844798 \pm 2.5 \cdot 10^{-6} \) |
\(a_{391}= -0.81736279 \pm 4.0 \cdot 10^{-6} \) | \(a_{392}= +1.35893896 \pm 4.3 \cdot 10^{-6} \) | \(a_{393}= +2.70602280 \pm 5.2 \cdot 10^{-6} \) |
\(a_{394}= -0.90448884 \pm 4.2 \cdot 10^{-6} \) | \(a_{395}= +0.64167726 \pm 2.6 \cdot 10^{-6} \) | \(a_{396}= +0.28310984 \pm 9.7 \cdot 10^{-6} \) |
\(a_{397}= +0.07812118 \pm 4.8 \cdot 10^{-6} \) | \(a_{398}= -1.00369578 \pm 4.7 \cdot 10^{-6} \) | \(a_{399}= -0.65721912 \pm 2.2 \cdot 10^{-6} \) |
\(a_{400}= +0.01056555 \pm 3.1 \cdot 10^{-6} \) | \(a_{401}= -1.18862338 \pm 3.2 \cdot 10^{-6} \) | \(a_{402}= -0.30438160 \pm 3.7 \cdot 10^{-6} \) |
\(a_{403}= +0.61104254 \pm 2.6 \cdot 10^{-6} \) | \(a_{404}= +0.90111286 \pm 4.8 \cdot 10^{-6} \) | \(a_{405}= -0.86353716 \pm 3.8 \cdot 10^{-6} \) |
\(a_{406}= +0.27917269 \pm 2.3 \cdot 10^{-6} \) | \(a_{407}= +0.06095532 \pm 3.9 \cdot 10^{-6} \) | \(a_{408}= -3.50486554 \pm 6.7 \cdot 10^{-6} \) |
\(a_{409}= -0.53605429 \pm 4.1 \cdot 10^{-6} \) | \(a_{410}= +0.17550810 \pm 2.2 \cdot 10^{-6} \) | \(a_{411}= -1.79392266 \pm 3.7 \cdot 10^{-6} \) |
\(a_{412}= -0.30703535 \pm 4.3 \cdot 10^{-6} \) | \(a_{413}= +0.10492484 \pm 3.8 \cdot 10^{-6} \) | \(a_{414}= +0.60552232 \pm 4.0 \cdot 10^{-6} \) |
\(a_{415}= +0.38438192 \pm 3.1 \cdot 10^{-6} \) | \(a_{416}= +0.44917606 \pm 2.2 \cdot 10^{-6} \) | \(a_{417}= -0.54072269 \pm 2.8 \cdot 10^{-6} \) |
\(a_{418}= -0.05513622 \pm 7.5 \cdot 10^{-6} \) | \(a_{419}= +1.25036830 \pm 3.7 \cdot 10^{-6} \) | \(a_{420}= +1.22015723 \pm 2.6 \cdot 10^{-6} \) |
\(a_{421}= +1.28772449 \pm 2.7 \cdot 10^{-6} \) | \(a_{422}= +0.16792638 \pm 4.6 \cdot 10^{-6} \) | \(a_{423}= +2.73857020 \pm 4.9 \cdot 10^{-6} \) |
\(a_{424}= +1.42850551 \pm 3.2 \cdot 10^{-6} \) | \(a_{425}= -0.06927093 \pm 3.0 \cdot 10^{-6} \) | \(a_{426}= +0.71442106 \pm 3.1 \cdot 10^{-6} \) |
\(a_{427}= -1.77472419 \pm 2.7 \cdot 10^{-6} \) | \(a_{428}= -0.77664804 \pm 7.1 \cdot 10^{-6} \) | \(a_{429}= -0.27172754 \pm 7.0 \cdot 10^{-6} \) |
\(a_{430}= +0.04104120 \pm 3.9 \cdot 10^{-6} \) | \(a_{431}= -1.63563992 \pm 4.9 \cdot 10^{-6} \) | \(a_{432}= +0.48042128 \pm 2.6 \cdot 10^{-6} \) |
\(a_{433}= -0.08965226 \pm 4.6 \cdot 10^{-6} \) | \(a_{434}= -1.26900919 \pm 3.8 \cdot 10^{-6} \) | \(a_{435}= +0.43332671 \pm 2.1 \cdot 10^{-6} \) |
\(a_{436}= +0.16328867 \pm 2.9 \cdot 10^{-6} \) | \(a_{437}= +0.10851984 \pm 2.9 \cdot 10^{-6} \) | \(a_{438}= +0.33412410 \pm 1.8 \cdot 10^{-6} \) |
\(a_{439}= +1.44245927 \pm 4.7 \cdot 10^{-6} \) | \(a_{440}= +0.31596188 \pm 8.5 \cdot 10^{-6} \) | \(a_{441}= +2.49430210 \pm 3.4 \cdot 10^{-6} \) |
\(a_{442}= +0.72155969 \pm 1.9 \cdot 10^{-6} \) | \(a_{443}= -0.93169771 \pm 4.9 \cdot 10^{-6} \) | \(a_{444}= -0.16666644 \pm 2.6 \cdot 10^{-6} \) |
\(a_{445}= +0.11389990 \pm 2.6 \cdot 10^{-6} \) | \(a_{446}= -0.79123225 \pm 4.2 \cdot 10^{-6} \) | \(a_{447}= +1.18190097 \pm 1.4 \cdot 10^{-6} \) |
\(a_{448}= -1.37174044 \pm 3.6 \cdot 10^{-6} \) | \(a_{449}= -0.96860510 \pm 2.9 \cdot 10^{-6} \) | \(a_{450}= +0.05131760 \pm 4.4 \cdot 10^{-6} \) |
\(a_{451}= -0.07469737 \pm 2.6 \cdot 10^{-6} \) | \(a_{452}= -0.27149526 \pm 7.1 \cdot 10^{-6} \) | \(a_{453}= -1.97441694 \pm 4.9 \cdot 10^{-6} \) |
\(a_{454}= +0.64731250 \pm 5.0 \cdot 10^{-6} \) | \(a_{455}= -0.77536963 \pm 3.1 \cdot 10^{-6} \) | \(a_{456}= +0.46533493 \pm 2.9 \cdot 10^{-6} \) |
\(a_{457}= +0.07824077 \pm 3.2 \cdot 10^{-6} \) | \(a_{458}= -1.03988680 \pm 4.7 \cdot 10^{-6} \) | \(a_{459}= -3.14978702 \pm 3.2 \cdot 10^{-6} \) |
\(a_{460}= -0.20147203 \pm 2.9 \cdot 10^{-6} \) | \(a_{461}= +0.28707732 \pm 2.5 \cdot 10^{-6} \) | \(a_{462}= +0.56432200 \pm 1.2 \cdot 10^{-5} \) |
\(a_{463}= -0.90500466 \pm 3.1 \cdot 10^{-6} \) | \(a_{464}= -0.07469702 \pm 3.9 \cdot 10^{-6} \) | \(a_{465}= -1.96973270 \pm 3.3 \cdot 10^{-6} \) |
\(a_{466}= +0.75615064 \pm 3.5 \cdot 10^{-6} \) | \(a_{467}= +1.02397093 \pm 4.0 \cdot 10^{-6} \) | \(a_{468}= +0.49190871 \pm 3.1 \cdot 10^{-6} \) |
\(a_{469}= +0.36965933 \pm 4.3 \cdot 10^{-6} \) | \(a_{470}= +0.99017402 \pm 1.9 \cdot 10^{-6} \) | \(a_{471}= +1.54149192 \pm 3.0 \cdot 10^{-6} \) |
\(a_{472}= -0.07429058 \pm 5.4 \cdot 10^{-6} \) | \(a_{473}= -0.01746740 \pm 3.7 \cdot 10^{-6} \) | \(a_{474}= -0.81145492 \pm 3.4 \cdot 10^{-6} \) |
\(a_{475}= +0.00919698 \pm 2.9 \cdot 10^{-6} \) | \(a_{476}= +1.37899454 \pm 3.6 \cdot 10^{-6} \) | \(a_{477}= +2.62198994 \pm 2.7 \cdot 10^{-6} \) |
\(a_{478}= +0.43706821 \pm 4.7 \cdot 10^{-6} \) | \(a_{479}= -0.96503297 \pm 4.9 \cdot 10^{-6} \) | \(a_{480}= -1.44794627 \pm 2.6 \cdot 10^{-6} \) |
\(a_{481}= +0.10591102 \pm 4.0 \cdot 10^{-6} \) | \(a_{482}= +0.05129611 \pm 5.2 \cdot 10^{-6} \) | \(a_{483}= -1.11070606 \pm 2.7 \cdot 10^{-6} \) |
\(a_{484}= -0.04356631 \pm 5.4 \cdot 10^{-6} \) | \(a_{485}= -0.05196606 \pm 4.2 \cdot 10^{-6} \) | \(a_{486}= -0.09892107 \pm 3.9 \cdot 10^{-6} \) |
\(a_{487}= -1.79435054 \pm 2.2 \cdot 10^{-6} \) | \(a_{488}= +1.25656897 \pm 3.3 \cdot 10^{-6} \) | \(a_{489}= +1.74316268 \pm 3.4 \cdot 10^{-6} \) |
\(a_{490}= +0.90185496 \pm 3.7 \cdot 10^{-6} \) | \(a_{491}= +0.25033981 \pm 4.9 \cdot 10^{-6} \) | \(a_{492}= +0.20424051 \pm 2.3 \cdot 10^{-6} \) |
\(a_{493}= +0.48973620 \pm 3.5 \cdot 10^{-6} \) | \(a_{494}= -0.09580023 \pm 1.7 \cdot 10^{-6} \) | \(a_{495}= +0.57994098 \pm 8.2 \cdot 10^{-6} \) |
\(a_{496}= +0.33954324 \pm 3.2 \cdot 10^{-6} \) | \(a_{497}= -0.86763592 \pm 3.3 \cdot 10^{-6} \) | \(a_{498}= -0.48608330 \pm 4.6 \cdot 10^{-6} \) |
\(a_{499}= -0.63197055 \pm 4.4 \cdot 10^{-6} \) | \(a_{500}= -0.48752704 \pm 3.9 \cdot 10^{-6} \) | \(a_{501}= -1.20070871 \pm 3.9 \cdot 10^{-6} \) |
\(a_{502}= +0.86842676 \pm 4.6 \cdot 10^{-6} \) | \(a_{503}= +1.67421783 \pm 4.9 \cdot 10^{-6} \) | \(a_{504}= -3.15333363 \pm 1.7 \cdot 10^{-6} \) |
\(a_{505}= +1.84589939 \pm 2.0 \cdot 10^{-6} \) | \(a_{506}= -0.09318070 \pm 8.3 \cdot 10^{-6} \) | \(a_{507}= +1.24813893 \pm 3.5 \cdot 10^{-6} \) |
\(a_{508}= +0.33703843 \pm 4.9 \cdot 10^{-6} \) | \(a_{509}= +0.93039931 \pm 4.0 \cdot 10^{-6} \) | \(a_{510}= -2.32599144 \pm 2.1 \cdot 10^{-6} \) |
\(a_{511}= -0.40578041 \pm 4.1 \cdot 10^{-6} \) | \(a_{512}= +0.56035071 \pm 4.4 \cdot 10^{-6} \) | \(a_{513}= +0.41819177 \pm 2.5 \cdot 10^{-6} \) |
\(a_{514}= -0.00721607 \pm 4.3 \cdot 10^{-6} \) | \(a_{515}= -0.62895158 \pm 3.7 \cdot 10^{-6} \) | \(a_{516}= +0.04776005 \pm 5.2 \cdot 10^{-6} \) |
\(a_{517}= -0.42142440 \pm 3.1 \cdot 10^{-6} \) | \(a_{518}= -0.21995532 \pm 2.8 \cdot 10^{-6} \) | \(a_{519}= +0.42418617 \pm 4.0 \cdot 10^{-6} \) |
\(a_{520}= +0.54898977 \pm 1.4 \cdot 10^{-6} \) | \(a_{521}= -0.04957566 \pm 4.6 \cdot 10^{-6} \) | \(a_{522}= -0.36280854 \pm 2.7 \cdot 10^{-6} \) |
\(a_{523}= +1.97062161 \pm 3.1 \cdot 10^{-6} \) | \(a_{524}= +0.75383812 \pm 5.7 \cdot 10^{-6} \) | \(a_{525}= -0.09413157 \pm 1.6 \cdot 10^{-6} \) |
\(a_{526}= -0.89903249 \pm 5.2 \cdot 10^{-6} \) | \(a_{527}= -2.22614805 \pm 3.0 \cdot 10^{-6} \) | \(a_{528}= -0.15099317 \pm 7.8 \cdot 10^{-6} \) |
\(a_{529}= -0.81660052 \pm 3.8 \cdot 10^{-6} \) | \(a_{530}= +0.94802255 \pm 4.7 \cdot 10^{-6} \) | \(a_{531}= -0.13635871 \pm 4.8 \cdot 10^{-6} \) |
\(a_{532}= -0.18308672 \pm 2.7 \cdot 10^{-6} \) | \(a_{533}= -0.12978810 \pm 2.1 \cdot 10^{-6} \) | \(a_{534}= -0.14403602 \pm 6.6 \cdot 10^{-6} \) |
\(a_{535}= -1.59093739 \pm 4.9 \cdot 10^{-6} \) | \(a_{536}= -0.26173219 \pm 4.0 \cdot 10^{-6} \) | \(a_{537}= +3.02019168 \pm 3.1 \cdot 10^{-6} \) |
\(a_{538}= -0.48375028 \pm 5.7 \cdot 10^{-6} \) | \(a_{539}= -0.38383524 \pm 3.5 \cdot 10^{-6} \) | \(a_{540}= -0.77639206 \pm 2.2 \cdot 10^{-6} \) |
\(a_{541}= -1.28931252 \pm 2.9 \cdot 10^{-6} \) | \(a_{542}= +0.38324195 \pm 3.2 \cdot 10^{-6} \) | \(a_{543}= -0.98612508 \pm 3.5 \cdot 10^{-6} \) |
\(a_{544}= -1.63643664 \pm 2.9 \cdot 10^{-6} \) | \(a_{545}= +0.33449134 \pm 2.8 \cdot 10^{-6} \) | \(a_{546}= +0.98052019 \pm 3.5 \cdot 10^{-6} \) |
\(a_{547}= -1.05850185 \pm 3.5 \cdot 10^{-6} \) | \(a_{548}= -0.49974719 \pm 3.9 \cdot 10^{-6} \) | \(a_{549}= +2.30640428 \pm 3.0 \cdot 10^{-6} \) |
\(a_{550}= -0.00789700 \pm 7.9 \cdot 10^{-6} \) | \(a_{551}= -0.06502143 \pm 2.3 \cdot 10^{-6} \) | \(a_{552}= +0.78642010 \pm 7.5 \cdot 10^{-6} \) |
\(a_{553}= +0.98547967 \pm 3.7 \cdot 10^{-6} \) | \(a_{554}= -0.14365239 \pm 5.6 \cdot 10^{-6} \) | \(a_{555}= -0.34141059 \pm 1.7 \cdot 10^{-6} \) |
\(a_{556}= -0.15063339 \pm 4.1 \cdot 10^{-6} \) | \(a_{557}= +0.93585076 \pm 3.3 \cdot 10^{-6} \) | \(a_{558}= +1.64918484 \pm 3.4 \cdot 10^{-6} \) |
\(a_{559}= -0.03034994 \pm 2.3 \cdot 10^{-6} \) | \(a_{560}= -0.43085628 \pm 2.5 \cdot 10^{-6} \) | \(a_{561}= +0.98995683 \pm 7.7 \cdot 10^{-6} \) |
\(a_{562}= +0.29412920 \pm 5.6 \cdot 10^{-6} \) | \(a_{563}= -0.77624202 \pm 4.0 \cdot 10^{-6} \) | \(a_{564}= +1.15227527 \pm 4.2 \cdot 10^{-6} \) |
\(a_{565}= -0.55614890 \pm 3.7 \cdot 10^{-6} \) | \(a_{566}= +0.74638668 \pm 3.5 \cdot 10^{-6} \) | \(a_{567}= -1.32620926 \pm 3.2 \cdot 10^{-6} \) |
\(a_{568}= +0.61431764 \pm 2.9 \cdot 10^{-6} \) | \(a_{569}= +0.24785496 \pm 3.8 \cdot 10^{-6} \) | \(a_{570}= +0.30881785 \pm 1.9 \cdot 10^{-6} \) |
\(a_{571}= +0.14430337 \pm 3.6 \cdot 10^{-6} \) | \(a_{572}= -0.07569729 \pm 8.6 \cdot 10^{-6} \) | \(a_{573}= -2.12586700 \pm 4.1 \cdot 10^{-6} \) |
\(a_{574}= +0.26954309 \pm 2.8 \cdot 10^{-6} \) | \(a_{575}= +0.01554298 \pm 2.9 \cdot 10^{-6} \) | \(a_{576}= +1.78269279 \pm 4.7 \cdot 10^{-6} \) |
\(a_{577}= -1.25767861 \pm 3.3 \cdot 10^{-6} \) | \(a_{578}= -1.90713935 \pm 3.6 \cdot 10^{-6} \) | \(a_{579}= +0.38907996 \pm 2.9 \cdot 10^{-6} \) |
\(a_{580}= +0.12071524 \pm 4.1 \cdot 10^{-6} \) | \(a_{581}= +0.59032880 \pm 3.3 \cdot 10^{-6} \) | \(a_{582}= +0.06571546 \pm 3.5 \cdot 10^{-6} \) |
\(a_{583}= -0.40348446 \pm 3.0 \cdot 10^{-6} \) | \(a_{584}= +0.28730722 \pm 3.4 \cdot 10^{-6} \) | \(a_{585}= +1.00765845 \pm 2.4 \cdot 10^{-6} \) |
\(a_{586}= +0.01108834 \pm 4.5 \cdot 10^{-6} \) | \(a_{587}= -1.55946747 \pm 3.3 \cdot 10^{-6} \) | \(a_{588}= +1.04949751 \pm 4.5 \cdot 10^{-6} \) |
\(a_{589}= +0.29556182 \pm 3.3 \cdot 10^{-6} \) | \(a_{590}= -0.04930268 \pm 6.6 \cdot 10^{-6} \) | \(a_{591}= -2.15613904 \pm 3.5 \cdot 10^{-6} \) |
\(a_{592}= +0.05885248 \pm 3.6 \cdot 10^{-6} \) | \(a_{593}= +1.42091411 \pm 4.7 \cdot 10^{-6} \) | \(a_{594}= -0.35908087 \pm 8.3 \cdot 10^{-6} \) |
\(a_{595}= +2.82482393 \pm 3.1 \cdot 10^{-6} \) | \(a_{596}= +0.32925148 \pm 3.6 \cdot 10^{-6} \) | \(a_{597}= -2.39263060 \pm 3.9 \cdot 10^{-6} \) |
\(a_{598}= -0.16190323 \pm 2.8 \cdot 10^{-6} \) | \(a_{599}= +1.69587612 \pm 4.0 \cdot 10^{-6} \) | \(a_{600}= +0.06664856 \pm 4.3 \cdot 10^{-6} \) |
\(a_{601}= -0.12871494 \pm 3.6 \cdot 10^{-6} \) | \(a_{602}= +0.06303055 \pm 2.9 \cdot 10^{-6} \) | \(a_{603}= -0.48040358 \pm 4.3 \cdot 10^{-6} \) |
\(a_{604}= -0.55002891 \pm 7.5 \cdot 10^{-6} \) | \(a_{605}= -0.08924412 \pm 3.9 \cdot 10^{-6} \) | \(a_{606}= -2.33429521 \pm 5.3 \cdot 10^{-6} \) |
\(a_{607}= +0.84847443 \pm 3.9 \cdot 10^{-6} \) | \(a_{608}= +0.21726686 \pm 2.9 \cdot 10^{-6} \) | \(a_{609}= +0.66549759 \pm 2.4 \cdot 10^{-6} \) |
\(a_{610}= +0.83391749 \pm 6.7 \cdot 10^{-6} \) | \(a_{611}= -0.73223288 \pm 2.2 \cdot 10^{-6} \) | \(a_{612}= -1.79212010 \pm 4.4 \cdot 10^{-6} \) |
\(a_{613}= -0.20513224 \pm 3.2 \cdot 10^{-6} \) | \(a_{614}= -0.82166701 \pm 4.9 \cdot 10^{-6} \) | \(a_{615}= +0.41837982 \pm 2.8 \cdot 10^{-6} \) |
\(a_{616}= +0.48525019 \pm 8.5 \cdot 10^{-6} \) | \(a_{617}= +0.70828673 \pm 4.4 \cdot 10^{-6} \) | \(a_{618}= +0.79536224 \pm 4.2 \cdot 10^{-6} \) |
\(a_{619}= -0.82168150 \pm 3.2 \cdot 10^{-6} \) | \(a_{620}= -0.54872398 \pm 3.7 \cdot 10^{-6} \) | \(a_{621}= +0.70674774 \pm 3.5 \cdot 10^{-6} \) |
\(a_{622}= +0.79842875 \pm 5.2 \cdot 10^{-6} \) | \(a_{623}= +0.17492601 \pm 3.0 \cdot 10^{-6} \) | \(a_{624}= -0.26235350 \pm 1.9 \cdot 10^{-6} \) |
\(a_{625}= -0.96238871 \pm 2.8 \cdot 10^{-6} \) | \(a_{626}= -1.23427079 \pm 4.8 \cdot 10^{-6} \) | \(a_{627}= -0.13143485 \pm 6.7 \cdot 10^{-6} \) |
\(a_{628}= +0.42942557 \pm 3.6 \cdot 10^{-6} \) | \(a_{629}= -0.38585465 \pm 3.8 \cdot 10^{-6} \) | \(a_{630}= -2.09269855 \pm 3.0 \cdot 10^{-6} \) |
\(a_{631}= -1.47866803 \pm 4.2 \cdot 10^{-6} \) | \(a_{632}= -0.69775528 \pm 3.2 \cdot 10^{-6} \) | \(a_{633}= +0.40030634 \pm 4.4 \cdot 10^{-6} \) |
\(a_{634}= +0.60501850 \pm 6.4 \cdot 10^{-6} \) | \(a_{635}= +0.69041188 \pm 4.2 \cdot 10^{-6} \) | \(a_{636}= +1.10322319 \pm 2.6 \cdot 10^{-6} \) |
\(a_{637}= -0.66692102 \pm 2.0 \cdot 10^{-6} \) | \(a_{638}= +0.05583073 \pm 8.3 \cdot 10^{-6} \) | \(a_{639}= +1.12756630 \pm 3.5 \cdot 10^{-6} \) |
\(a_{640}= -0.19713557 \pm 4.8 \cdot 10^{-6} \) | \(a_{641}= +1.34511133 \pm 4.4 \cdot 10^{-6} \) | \(a_{642}= +2.01187430 \pm 6.0 \cdot 10^{-6} \) |
\(a_{643}= +0.16049357 \pm 3.5 \cdot 10^{-6} \) | \(a_{644}= -0.30941815 \pm 3.2 \cdot 10^{-6} \) | \(a_{645}= +0.09783486 \pm 3.0 \cdot 10^{-6} \) |
\(a_{646}= +0.34901906 \pm 3.0 \cdot 10^{-6} \) | \(a_{647}= +1.54508448 \pm 4.7 \cdot 10^{-6} \) | \(a_{648}= +0.93900417 \pm 5.3 \cdot 10^{-6} \) |
\(a_{649}= +0.02098354 \pm 4.4 \cdot 10^{-6} \) | \(a_{650}= -0.01372119 \pm 1.5 \cdot 10^{-6} \) | \(a_{651}= -3.02509014 \pm 3.8 \cdot 10^{-6} \) |
\(a_{652}= +0.48560658 \pm 5.1 \cdot 10^{-6} \) | \(a_{653}= +1.32784240 \pm 3.4 \cdot 10^{-6} \) | \(a_{654}= -0.42299247 \pm 3.1 \cdot 10^{-6} \) |
\(a_{655}= +1.54421204 \pm 3.4 \cdot 10^{-6} \) | \(a_{656}= -0.07212047 \pm 2.1 \cdot 10^{-6} \) | \(a_{657}= +0.52734598 \pm 3.3 \cdot 10^{-6} \) |
\(a_{658}= +1.52069651 \pm 2.0 \cdot 10^{-6} \) | \(a_{659}= -0.51671900 \pm 3.8 \cdot 10^{-6} \) | \(a_{660}= +0.24401479 \pm 1.3 \cdot 10^{-5} \) |
\(a_{661}= +0.06892745 \pm 4.5 \cdot 10^{-6} \) | \(a_{662}= -0.61183837 \pm 3.4 \cdot 10^{-6} \) | \(a_{663}= +1.72006878 \pm 1.6 \cdot 10^{-6} \) |
\(a_{664}= -0.41797416 \pm 4.0 \cdot 10^{-6} \) | \(a_{665}= -0.37504698 \pm 2.5 \cdot 10^{-6} \) | \(a_{666}= +0.28585055 \pm 3.5 \cdot 10^{-6} \) |
\(a_{667}= -0.10988678 \pm 3.3 \cdot 10^{-6} \) | \(a_{668}= -0.33449090 \pm 6.5 \cdot 10^{-6} \) | \(a_{669}= -1.88615566 \pm 4.3 \cdot 10^{-6} \) |
\(a_{670}= -0.17369763 \pm 6.8 \cdot 10^{-6} \) | \(a_{671}= -0.35492062 \pm 3.2 \cdot 10^{-6} \) | \(a_{672}= -2.22373725 \pm 3.1 \cdot 10^{-6} \) |
\(a_{673}= -0.60909699 \pm 2.9 \cdot 10^{-6} \) | \(a_{674}= +0.65027856 \pm 2.9 \cdot 10^{-6} \) | \(a_{675}= +0.05989638 \pm 1.6 \cdot 10^{-6} \) |
\(a_{676}= +0.34770391 \pm 4.7 \cdot 10^{-6} \) | \(a_{677}= -0.77977101 \pm 4.3 \cdot 10^{-6} \) | \(a_{678}= +0.70329712 \pm 6.2 \cdot 10^{-6} \) |
\(a_{679}= -0.07980881 \pm 2.7 \cdot 10^{-6} \) | \(a_{680}= -2.00007760 \pm 2.8 \cdot 10^{-6} \) | \(a_{681}= +1.54307682 \pm 3.3 \cdot 10^{-6} \) |
\(a_{682}= -0.25378452 \pm 8.5 \cdot 10^{-6} \) | \(a_{683}= -0.88772100 \pm 3.2 \cdot 10^{-6} \) | \(a_{684}= +0.23793668 \pm 3.3 \cdot 10^{-6} \) |
\(a_{685}= -1.02371531 \pm 3.8 \cdot 10^{-6} \) | \(a_{686}= +0.29706316 \pm 3.6 \cdot 10^{-6} \) | \(a_{687}= -2.47890348 \pm 2.1 \cdot 10^{-6} \) |
\(a_{688}= -0.01686481 \pm 3.6 \cdot 10^{-6} \) | \(a_{689}= -0.70106191 \pm 2.0 \cdot 10^{-6} \) | \(a_{690}= +0.52190488 \pm 2.8 \cdot 10^{-6} \) |
\(a_{691}= -0.71605197 \pm 4.0 \cdot 10^{-6} \) | \(a_{692}= +0.11816889 \pm 5.1 \cdot 10^{-6} \) | \(a_{693}= +0.89066589 \pm 8.2 \cdot 10^{-6} \) |
\(a_{694}= +1.39660273 \pm 4.0 \cdot 10^{-6} \) | \(a_{695}= -0.30856743 \pm 3.3 \cdot 10^{-6} \) | \(a_{696}= -0.47119639 \pm 4.1 \cdot 10^{-6} \) |
\(a_{697}= +0.47284356 \pm 2.2 \cdot 10^{-6} \) | \(a_{698}= -0.28112307 \pm 3.8 \cdot 10^{-6} \) | \(a_{699}= +1.80252740 \pm 5.0 \cdot 10^{-6} \) |
\(a_{700}= -0.02622298 \pm 2.8 \cdot 10^{-6} \) | \(a_{701}= +0.09380524 \pm 4.7 \cdot 10^{-6} \) | \(a_{702}= -0.62390983 \pm 1.5 \cdot 10^{-6} \) |
\(a_{703}= +0.05122925 \pm 2.4 \cdot 10^{-6} \) | \(a_{704}= -0.27432937 \pm 4.1 \cdot 10^{-6} \) | \(a_{705}= +2.36039713 \pm 3.5 \cdot 10^{-6} \) |
\(a_{706}= +0.05508349 \pm 3.5 \cdot 10^{-6} \) | \(a_{707}= +2.83490853 \pm 2.5 \cdot 10^{-6} \) | \(a_{708}= -0.05737401 \pm 5.5 \cdot 10^{-6} \) |
\(a_{709}= -0.00743231 \pm 3.3 \cdot 10^{-6} \) | \(a_{710}= +0.40768969 \pm 1.8 \cdot 10^{-6} \) | \(a_{711}= -1.28071423 \pm 1.6 \cdot 10^{-6} \) |
\(a_{712}= -0.12385395 \pm 6.3 \cdot 10^{-6} \) | \(a_{713}= +0.49950206 \pm 3.6 \cdot 10^{-6} \) | \(a_{714}= -3.57222772 \pm 2.5 \cdot 10^{-6} \) |
\(a_{715}= -0.15506334 \pm 7.1 \cdot 10^{-6} \) | \(a_{716}= +0.84135863 \pm 6.7 \cdot 10^{-6} \) | \(a_{717}= +1.04189217 \pm 2.8 \cdot 10^{-6} \) |
\(a_{718}= -1.11476595 \pm 4.8 \cdot 10^{-6} \) | \(a_{719}= -0.64432784 \pm 4.4 \cdot 10^{-6} \) | \(a_{720}= +0.55993420 \pm 2.2 \cdot 10^{-6} \) |
\(a_{721}= -0.96593575 \pm 4.5 \cdot 10^{-6} \) | \(a_{722}= +0.67530573 \pm 3.3 \cdot 10^{-6} \) | \(a_{723}= +0.12228072 \pm 5.5 \cdot 10^{-6} \) |
\(a_{724}= -0.27471265 \pm 2.9 \cdot 10^{-6} \) | \(a_{725}= -0.00931283 \pm 2.7 \cdot 10^{-6} \) | \(a_{726}= +0.11285670 \pm 8.5 \cdot 10^{-6} \) |
\(a_{727}= -1.14223993 \pm 4.4 \cdot 10^{-6} \) | \(a_{728}= +0.84313142 \pm 1.8 \cdot 10^{-6} \) | \(a_{729}= -1.11545775 \pm 3.4 \cdot 10^{-6} \) |
\(a_{730}= +0.19067040 \pm 6.1 \cdot 10^{-6} \) | \(a_{731}= +0.11057078 \pm 3.5 \cdot 10^{-6} \) | \(a_{732}= +0.97043801 \pm 1.5 \cdot 10^{-6} \) |
\(a_{733}= -0.11644691 \pm 5.3 \cdot 10^{-6} \) | \(a_{734}= +0.01478792 \pm 4.2 \cdot 10^{-6} \) | \(a_{735}= +2.14986036 \pm 3.1 \cdot 10^{-6} \) |
\(a_{736}= +0.36718289 \pm 3.5 \cdot 10^{-6} \) | \(a_{737}= +0.07392682 \pm 4.5 \cdot 10^{-6} \) | \(a_{738}= -0.35029405 \pm 3.1 \cdot 10^{-6} \) |
\(a_{739}= -0.62354207 \pm 4.8 \cdot 10^{-6} \) | \(a_{740}= -0.09510944 \pm 5.5 \cdot 10^{-6} \) | \(a_{741}= -0.22837055 \pm 1.6 \cdot 10^{-6} \) |
\(a_{742}= +1.45596084 \pm 3.1 \cdot 10^{-6} \) | \(a_{743}= +0.14998257 \pm 3.5 \cdot 10^{-6} \) | \(a_{744}= +2.14187333 \pm 3.4 \cdot 10^{-6} \) |
\(a_{745}= +0.67446058 \pm 3.2 \cdot 10^{-6} \) | \(a_{746}= -1.19476499 \pm 2.1 \cdot 10^{-6} \) | \(a_{747}= -0.76718223 \pm 5.6 \cdot 10^{-6} \) |
\(a_{748}= +0.27578009 \pm 9.3 \cdot 10^{-6} \) | \(a_{749}= -2.44334118 \pm 2.8 \cdot 10^{-6} \) | \(a_{750}= +1.26291842 \pm 3.4 \cdot 10^{-6} \) |
\(a_{751}= -0.60858121 \pm 4.1 \cdot 10^{-6} \) | \(a_{752}= -0.40688612 \pm 3.2 \cdot 10^{-6} \) | \(a_{753}= +2.07017353 \pm 4.4 \cdot 10^{-6} \) |
\(a_{754}= +0.09700695 \pm 1.8 \cdot 10^{-6} \) | \(a_{755}= -1.12671572 \pm 4.3 \cdot 10^{-6} \) | \(a_{756}= -1.19237294 \pm 2.5 \cdot 10^{-6} \) |
\(a_{757}= -0.30744429 \pm 3.5 \cdot 10^{-6} \) | \(a_{758}= +1.39042564 \pm 4.0 \cdot 10^{-6} \) | \(a_{759}= -0.22212605 \pm 7.5 \cdot 10^{-6} \) |
\(a_{760}= +0.26554684 \pm 3.2 \cdot 10^{-6} \) | \(a_{761}= +0.91044537 \pm 4.0 \cdot 10^{-6} \) | \(a_{762}= -0.87308396 \pm 3.4 \cdot 10^{-6} \) |
\(a_{763}= +0.51370750 \pm 3.3 \cdot 10^{-6} \) | \(a_{764}= -0.59221955 \pm 3.5 \cdot 10^{-6} \) | \(a_{765}= -3.67109775 \pm 3.3 \cdot 10^{-6} \) |
\(a_{766}= -0.99381949 \pm 5.9 \cdot 10^{-6} \) | \(a_{767}= +0.03645929 \pm 2.7 \cdot 10^{-6} \) | \(a_{768}= +1.81447865 \pm 4.6 \cdot 10^{-6} \) |
\(a_{769}= +1.86305500 \pm 3.3 \cdot 10^{-6} \) | \(a_{770}= +0.32203455 \pm 1.2 \cdot 10^{-5} \) | \(a_{771}= -0.01720181 \pm 2.1 \cdot 10^{-6} \) |
\(a_{772}= +0.10838908 \pm 6.0 \cdot 10^{-6} \) | \(a_{773}= +0.14922248 \pm 4.0 \cdot 10^{-6} \) | \(a_{774}= -0.08191353 \pm 3.9 \cdot 10^{-6} \) |
\(a_{775}= +0.04233246 \pm 1.9 \cdot 10^{-6} \) | \(a_{776}= +0.05650752 \pm 4.2 \cdot 10^{-6} \) | \(a_{777}= -0.52433399 \pm 2.4 \cdot 10^{-6} \) |
\(a_{778}= -0.00275324 \pm 2.4 \cdot 10^{-6} \) | \(a_{779}= -0.06277862 \pm 2.1 \cdot 10^{-6} \) | \(a_{780}= +0.42398033 \pm 2.2 \cdot 10^{-6} \) |
\(a_{781}= -0.17351534 \pm 2.9 \cdot 10^{-6} \) | \(a_{782}= +0.58984527 \pm 6.6 \cdot 10^{-6} \) | \(a_{783}= -0.42345940 \pm 2.3 \cdot 10^{-6} \) |
\(a_{784}= -0.37059371 \pm 3.0 \cdot 10^{-6} \) | \(a_{785}= +0.87966383 \pm 3.5 \cdot 10^{-6} \) | \(a_{786}= -1.95278616 \pm 6.1 \cdot 10^{-6} \) |
\(a_{787}= -0.72123429 \pm 5.1 \cdot 10^{-6} \) | \(a_{788}= -0.60065267 \pm 4.8 \cdot 10^{-6} \) | \(a_{789}= -2.14313208 \pm 4.5 \cdot 10^{-6} \) |
\(a_{790}= -0.46306279 \pm 1.9 \cdot 10^{-6} \) | \(a_{791}= -0.85412633 \pm 4.6 \cdot 10^{-6} \) | \(a_{792}= -0.63062369 \pm 8.8 \cdot 10^{-6} \) |
\(a_{793}= -0.61668131 \pm 1.9 \cdot 10^{-6} \) | \(a_{794}= -0.05637571 \pm 4.9 \cdot 10^{-6} \) | \(a_{795}= +2.25991561 \pm 2.2 \cdot 10^{-6} \) |
\(a_{796}= -0.66653399 \pm 4.7 \cdot 10^{-6} \) | \(a_{797}= +1.42788788 \pm 3.4 \cdot 10^{-6} \) | \(a_{798}= +0.47427849 \pm 2.6 \cdot 10^{-6} \) |
\(a_{799}= +2.66766829 \pm 3.1 \cdot 10^{-6} \) | \(a_{800}= +0.03111850 \pm 2.8 \cdot 10^{-6} \) | \(a_{801}= -0.22733115 \pm 3.1 \cdot 10^{-6} \) |
\(a_{802}= +0.85776339 \pm 4.3 \cdot 10^{-6} \) | \(a_{803}= -0.08115054 \pm 3.7 \cdot 10^{-6} \) | \(a_{804}= -0.20213364 \pm 3.9 \cdot 10^{-6} \) |
\(a_{805}= -0.63383268 \pm 2.7 \cdot 10^{-6} \) | \(a_{806}= -0.44095542 \pm 2.4 \cdot 10^{-6} \) | \(a_{807}= -1.15317384 \pm 3.4 \cdot 10^{-6} \) |
\(a_{808}= -2.00721787 \pm 4.5 \cdot 10^{-6} \) | \(a_{809}= +0.93388771 \pm 4.8 \cdot 10^{-6} \) | \(a_{810}= +0.62316675 \pm 4.7 \cdot 10^{-6} \) |
\(a_{811}= -0.53936425 \pm 3.8 \cdot 10^{-6} \) | \(a_{812}= +0.18539292 \pm 3.7 \cdot 10^{-6} \) | \(a_{813}= +0.91358002 \pm 5.2 \cdot 10^{-6} \) |
\(a_{814}= -0.04398806 \pm 8.6 \cdot 10^{-6} \) | \(a_{815}= +0.99474875 \pm 4.5 \cdot 10^{-6} \) | \(a_{816}= +0.95580535 \pm 5.2 \cdot 10^{-6} \) |
\(a_{817}= -0.01468029 \pm 2.5 \cdot 10^{-6} \) | \(a_{818}= +0.38684057 \pm 5.8 \cdot 10^{-6} \) | \(a_{819}= +1.54754888 \pm 3.2 \cdot 10^{-6} \) |
\(a_{820}= +0.11655137 \pm 2.0 \cdot 10^{-6} \) | \(a_{821}= -1.00605235 \pm 5.2 \cdot 10^{-6} \) | \(a_{822}= +1.29457421 \pm 3.5 \cdot 10^{-6} \) |
\(a_{823}= +1.20884455 \pm 3.4 \cdot 10^{-6} \) | \(a_{824}= +0.68391748 \pm 3.3 \cdot 10^{-6} \) | \(a_{825}= -0.01882503 \pm 7.1 \cdot 10^{-6} \) |
\(a_{826}= -0.07571842 \pm 2.8 \cdot 10^{-6} \) | \(a_{827}= -1.50467955 \pm 4.1 \cdot 10^{-6} \) | \(a_{828}= +0.40211507 \pm 4.0 \cdot 10^{-6} \) |
\(a_{829}= -1.22435256 \pm 2.9 \cdot 10^{-6} \) | \(a_{830}= -0.27738705 \pm 2.2 \cdot 10^{-6} \) | \(a_{831}= -0.34244150 \pm 5.2 \cdot 10^{-6} \) |
\(a_{832}= -0.47665248 \pm 3.2 \cdot 10^{-6} \) | \(a_{833}= +2.42972431 \pm 3.2 \cdot 10^{-6} \) | \(a_{834}= +0.39020950 \pm 3.7 \cdot 10^{-6} \) |
\(a_{835}= -0.68519336 \pm 3.9 \cdot 10^{-6} \) | \(a_{836}= -0.03661484 \pm 8.3 \cdot 10^{-6} \) | \(a_{837}= +1.92487978 \pm 4.4 \cdot 10^{-6} \) |
\(a_{838}= -0.90232126 \pm 3.8 \cdot 10^{-6} \) | \(a_{839}= -1.11259525 \pm 4.0 \cdot 10^{-6} \) | \(a_{840}= -2.71788529 \pm 2.0 \cdot 10^{-6} \) |
\(a_{841}= -0.93415955 \pm 2.6 \cdot 10^{-6} \) | \(a_{842}= -0.92927915 \pm 3.1 \cdot 10^{-6} \) | \(a_{843}= +0.70115122 \pm 3.5 \cdot 10^{-6} \) |
\(a_{844}= +0.11151650 \pm 4.9 \cdot 10^{-6} \) | \(a_{845}= +0.71225977 \pm 3.3 \cdot 10^{-6} \) | \(a_{846}= -1.97627381 \pm 4.0 \cdot 10^{-6} \) |
\(a_{847}= -0.13705996 \pm 3.9 \cdot 10^{-6} \) | \(a_{848}= -0.38956507 \pm 2.2 \cdot 10^{-6} \) | \(a_{849}= +1.77925187 \pm 3.7 \cdot 10^{-6} \) |
\(a_{850}= +0.04998898 \pm 4.8 \cdot 10^{-6} \) | \(a_{851}= +0.08657789 \pm 2.1 \cdot 10^{-6} \) | \(a_{852}= +0.47443252 \pm 3.1 \cdot 10^{-6} \) |
\(a_{853}= +0.70364523 \pm 4.8 \cdot 10^{-6} \) | \(a_{854}= +1.28071975 \pm 2.9 \cdot 10^{-6} \) | \(a_{855}= +0.48740529 \pm 3.2 \cdot 10^{-6} \) |
\(a_{856}= +1.72997401 \pm 6.1 \cdot 10^{-6} \) | \(a_{857}= +0.00489219 \pm 3.7 \cdot 10^{-6} \) | \(a_{858}= +0.19609066 \pm 1.1 \cdot 10^{-5} \) |
\(a_{859}= -0.55427630 \pm 4.3 \cdot 10^{-6} \) | \(a_{860}= +0.02725463 \pm 4.3 \cdot 10^{-6} \) | \(a_{861}= +0.64254234 \pm 2.6 \cdot 10^{-6} \) |
\(a_{862}= +1.18035036 \pm 5.5 \cdot 10^{-6} \) | \(a_{863}= -0.99070064 \pm 3.7 \cdot 10^{-6} \) | \(a_{864}= +1.41497498 \pm 2.9 \cdot 10^{-6} \) |
\(a_{865}= +0.24206500 \pm 4.3 \cdot 10^{-6} \) | \(a_{866}= +0.06469705 \pm 5.7 \cdot 10^{-6} \) | \(a_{867}= -4.54627790 \pm 2.5 \cdot 10^{-6} \) |
\(a_{868}= -0.84272323 \pm 4.2 \cdot 10^{-6} \) | \(a_{869}= +0.19708248 \pm 3.0 \cdot 10^{-6} \) | \(a_{870}= -0.31270779 \pm 1.6 \cdot 10^{-6} \) |
\(a_{871}= +0.12844926 \pm 4.2 \cdot 10^{-6} \) | \(a_{872}= -0.36372350 \pm 2.2 \cdot 10^{-6} \) | \(a_{873}= +0.10371830 \pm 2.9 \cdot 10^{-6} \) |
\(a_{874}= -0.07831273 \pm 4.0 \cdot 10^{-6} \) | \(a_{875}= -1.53376410 \pm 3.7 \cdot 10^{-6} \) | \(a_{876}= +0.22188503 \pm 1.9 \cdot 10^{-6} \) |
\(a_{877}= -1.41809478 \pm 4.0 \cdot 10^{-6} \) | \(a_{878}= -1.04094263 \pm 6.1 \cdot 10^{-6} \) | \(a_{879}= +0.02643260 \pm 3.6 \cdot 10^{-6} \) |
\(a_{880}= -0.08616538 \pm 8.0 \cdot 10^{-6} \) | \(a_{881}= -0.39050086 \pm 4.6 \cdot 10^{-6} \) | \(a_{882}= -1.79999911 \pm 3.6 \cdot 10^{-6} \) |
\(a_{883}= +1.38017565 \pm 4.6 \cdot 10^{-6} \) | \(a_{884}= +0.47917313 \pm 3.2 \cdot 10^{-6} \) | \(a_{885}= -0.11752874 \pm 3.1 \cdot 10^{-6} \) |
\(a_{886}= +0.67235442 \pm 6.2 \cdot 10^{-6} \) | \(a_{887}= -0.57112862 \pm 3.3 \cdot 10^{-6} \) | \(a_{888}= +0.37124745 \pm 2.2 \cdot 10^{-6} \) |
\(a_{889}= +1.06032568 \pm 3.5 \cdot 10^{-6} \) | \(a_{890}= -0.08219523 \pm 3.2 \cdot 10^{-6} \) | \(a_{891}= -0.26522375 \pm 4.1 \cdot 10^{-6} \) |
\(a_{892}= -0.52544127 \pm 4.9 \cdot 10^{-6} \) | \(a_{893}= -0.35418170 \pm 1.9 \cdot 10^{-6} \) | \(a_{894}= -0.85291220 \pm 1.7 \cdot 10^{-6} \) |
\(a_{895}= +1.72349485 \pm 5.4 \cdot 10^{-6} \) | \(a_{896}= -0.30275827 \pm 3.1 \cdot 10^{-6} \) | \(a_{897}= -0.38594823 \pm 2.4 \cdot 10^{-6} \) |
\(a_{898}= +0.69898843 \pm 3.4 \cdot 10^{-6} \) | \(a_{899}= -0.29928478 \pm 3.6 \cdot 10^{-6} \) | \(a_{900}= +0.03407898 \pm 4.7 \cdot 10^{-6} \) |
\(a_{901}= +2.55410631 \pm 2.6 \cdot 10^{-6} \) | \(a_{902}= +0.05390494 \pm 7.2 \cdot 10^{-6} \) | \(a_{903}= +0.15025351 \pm 3.1 \cdot 10^{-6} \) |
\(a_{904}= +0.60475236 \pm 6.2 \cdot 10^{-6} \) | \(a_{905}= -0.56273962 \pm 2.9 \cdot 10^{-6} \) | \(a_{906}= +1.42482690 \pm 7.0 \cdot 10^{-6} \) |
\(a_{907}= -0.60963670 \pm 4.8 \cdot 10^{-6} \) | \(a_{908}= +0.42986709 \pm 5.9 \cdot 10^{-6} \) | \(a_{909}= -3.68420355 \pm 2.6 \cdot 10^{-6} \) |
\(a_{910}= +0.55954114 \pm 2.4 \cdot 10^{-6} \) | \(a_{911}= -0.67042608 \pm 3.3 \cdot 10^{-6} \) | \(a_{912}= -0.12690062 \pm 2.6 \cdot 10^{-6} \) |
\(a_{913}= +0.11805770 \pm 3.7 \cdot 10^{-6} \) | \(a_{914}= -0.05646201 \pm 4.6 \cdot 10^{-6} \) | \(a_{915}= +1.98790962 \pm 1.5 \cdot 10^{-6} \) |
\(a_{916}= -0.69056770 \pm 4.9 \cdot 10^{-6} \) | \(a_{917}= +2.37158099 \pm 3.5 \cdot 10^{-6} \) | \(a_{918}= +2.27302612 \pm 3.0 \cdot 10^{-6} \) |
\(a_{919}= +1.19176685 \pm 3.5 \cdot 10^{-6} \) | \(a_{920}= +0.44877648 \pm 2.1 \cdot 10^{-6} \) | \(a_{921}= -1.95870666 \pm 3.9 \cdot 10^{-6} \) |
\(a_{922}= -0.20716774 \pm 3.8 \cdot 10^{-6} \) | \(a_{923}= -0.30148620 \pm 1.5 \cdot 10^{-6} \) | \(a_{924}= +0.37475478 \pm 1.3 \cdot 10^{-5} \) |
\(a_{925}= +0.00733742 \pm 3.1 \cdot 10^{-6} \) | \(a_{926}= +0.65309153 \pm 3.5 \cdot 10^{-6} \) | \(a_{927}= +1.25531525 \pm 5.1 \cdot 10^{-6} \) |
\(a_{928}= -0.22000360 \pm 2.6 \cdot 10^{-6} \) | \(a_{929}= +0.15913182 \pm 3.8 \cdot 10^{-6} \) | \(a_{930}= +1.42144655 \pm 2.9 \cdot 10^{-6} \) |
\(a_{931}= -0.32259029 \pm 2.1 \cdot 10^{-6} \) | \(a_{932}= +0.50214428 \pm 4.2 \cdot 10^{-6} \) | \(a_{933}= +1.90331083 \pm 2.1 \cdot 10^{-6} \) |
\(a_{934}= -0.73894287 \pm 4.5 \cdot 10^{-6} \) | \(a_{935}= +0.56492623 \pm 7.9 \cdot 10^{-6} \) | \(a_{936}= -1.09572063 \pm 1.5 \cdot 10^{-6} \) |
\(a_{937}= -0.50138496 \pm 3.6 \cdot 10^{-6} \) | \(a_{938}= -0.26676258 \pm 3.6 \cdot 10^{-6} \) | \(a_{939}= -2.94228003 \pm 3.8 \cdot 10^{-6} \) |
\(a_{940}= +0.65755446 \pm 2.0 \cdot 10^{-6} \) | \(a_{941}= -0.94139144 \pm 3.8 \cdot 10^{-6} \) | \(a_{942}= -1.11240899 \pm 3.1 \cdot 10^{-6} \) |
\(a_{943}= -0.10609642 \pm 2.4 \cdot 10^{-6} \) | \(a_{944}= +0.02025965 \pm 4.0 \cdot 10^{-6} \) | \(a_{945}= -2.44253587 \pm 3.1 \cdot 10^{-6} \) |
\(a_{946}= +0.01260525 \pm 8.4 \cdot 10^{-6} \) | \(a_{947}= +0.29683930 \pm 4.8 \cdot 10^{-6} \) | \(a_{948}= -0.53887073 \pm 3.9 \cdot 10^{-6} \) |
\(a_{949}= -0.14100061 \pm 2.5 \cdot 10^{-6} \) | \(a_{950}= -0.00663695 \pm 4.3 \cdot 10^{-6} \) | \(a_{951}= +1.44225552 \pm 4.4 \cdot 10^{-6} \) |
\(a_{952}= -3.07169344 \pm 2.5 \cdot 10^{-6} \) | \(a_{953}= +1.03983966 \pm 3.5 \cdot 10^{-6} \) | \(a_{954}= -1.89214432 \pm 3.4 \cdot 10^{-6} \) |
\(a_{955}= -1.21314182 \pm 3.4 \cdot 10^{-6} \) | \(a_{956}= +0.29024812 \pm 5.2 \cdot 10^{-6} \) | \(a_{957}= +0.13309044 \pm 7.4 \cdot 10^{-6} \) |
\(a_{958}= +0.69641062 \pm 5.2 \cdot 10^{-6} \) | \(a_{959}= -1.57220880 \pm 3.6 \cdot 10^{-6} \) | \(a_{960}= +1.53651820 \pm 3.0 \cdot 10^{-6} \) |
\(a_{961}= +0.36043083 \pm 4.8 \cdot 10^{-6} \) | \(a_{962}= -0.07643009 \pm 2.1 \cdot 10^{-6} \) | \(a_{963}= +3.17532863 \pm 5.0 \cdot 10^{-6} \) |
\(a_{964}= +0.03406470 \pm 6.4 \cdot 10^{-6} \) | \(a_{965}= +0.22203138 \pm 4.5 \cdot 10^{-6} \) | \(a_{966}= +0.80153479 \pm 3.4 \cdot 10^{-6} \) |
\(a_{967}= +0.83238307 \pm 4.4 \cdot 10^{-6} \) | \(a_{968}= +0.09704342 \pm 4.5 \cdot 10^{-6} \) | \(a_{969}= +0.83199880 \pm 2.3 \cdot 10^{-6} \) |
\(a_{970}= +0.03750102 \pm 6.6 \cdot 10^{-6} \) | \(a_{971}= -1.53003601 \pm 4.8 \cdot 10^{-6} \) | \(a_{972}= -0.06569147 \pm 4.4 \cdot 10^{-6} \) |
\(a_{973}= -0.47389389 \pm 3.4 \cdot 10^{-6} \) | \(a_{974}= +1.29488299 \pm 3.0 \cdot 10^{-6} \) | \(a_{975}= -0.03270885 \pm 1.1 \cdot 10^{-6} \) |
\(a_{976}= -0.34267658 \pm 2.1 \cdot 10^{-6} \) | \(a_{977}= -1.28793086 \pm 3.5 \cdot 10^{-6} \) | \(a_{978}= -1.25794356 \pm 3.9 \cdot 10^{-6} \) |
\(a_{979}= +0.03498281 \pm 3.9 \cdot 10^{-6} \) | \(a_{980}= +0.59890357 \pm 3.8 \cdot 10^{-6} \) | \(a_{981}= -0.66760637 \pm 2.8 \cdot 10^{-6} \) |
\(a_{982}= -0.18065632 \pm 4.9 \cdot 10^{-6} \) | \(a_{983}= +0.68273579 \pm 3.4 \cdot 10^{-6} \) | \(a_{984}= -0.45494324 \pm 2.9 \cdot 10^{-6} \) |
\(a_{985}= -1.23041679 \pm 2.0 \cdot 10^{-6} \) | \(a_{986}= -0.35341538 \pm 3.9 \cdot 10^{-6} \) | \(a_{987}= +3.62506754 \pm 2.0 \cdot 10^{-6} \) |
\(a_{988}= -0.06361899 \pm 1.5 \cdot 10^{-6} \) | \(a_{989}= -0.02480982 \pm 3.7 \cdot 10^{-6} \) | \(a_{990}= -0.41851115 \pm 1.2 \cdot 10^{-5} \) |
\(a_{991}= -0.09657618 \pm 3.4 \cdot 10^{-6} \) | \(a_{992}= +1.00004977 \pm 3.5 \cdot 10^{-6} \) | \(a_{993}= -1.45851286 \pm 3.1 \cdot 10^{-6} \) |
\(a_{994}= +0.62612459 \pm 1.9 \cdot 10^{-6} \) | \(a_{995}= -1.36537245 \pm 4.7 \cdot 10^{-6} \) | \(a_{996}= -0.32279805 \pm 4.1 \cdot 10^{-6} \) |
\(a_{997}= -0.83422111 \pm 3.6 \cdot 10^{-6} \) | \(a_{998}= +0.45605800 \pm 5.3 \cdot 10^{-6} \) | \(a_{999}= +0.33363631 \pm 1.7 \cdot 10^{-6} \) |
\(a_{1000}= +1.08596051 \pm 2.9 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000