Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(11.1541136158394570484299428908 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.77908793 \pm 8.2 \cdot 10^{-5} \) | \(a_{3}= -0.84954762 \pm 7.9 \cdot 10^{-5} \) |
\(a_{4}= -0.39302199 \pm 7.4 \cdot 10^{-5} \) | \(a_{5}= +0.29000761 \pm 7.0 \cdot 10^{-5} \) | \(a_{6}= +0.66187230 \pm 9.0 \cdot 10^{-5} \) |
\(a_{7}= -0.40364812 \pm 7.2 \cdot 10^{-5} \) | \(a_{8}= +1.08528662 \pm 6.2 \cdot 10^{-5} \) | \(a_{9}= -0.27826883 \pm 7.7 \cdot 10^{-5} \) |
\(a_{10}= -0.22594143 \pm 8.0 \cdot 10^{-5} \) | \(a_{11}= -1.71813494 \pm 6.6 \cdot 10^{-5} \) | \(a_{12}= +0.33389090 \pm 8.0 \cdot 10^{-5} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +0.31447738 \pm 7.8 \cdot 10^{-5} \) | \(a_{15}= -0.24637528 \pm 8.6 \cdot 10^{-5} \) |
\(a_{16}= -0.45251172 \pm 6.4 \cdot 10^{-5} \) | \(a_{17}= -1.52813884 \pm 7.2 \cdot 10^{-5} \) | \(a_{18}= +0.21679589 \pm 8.8 \cdot 10^{-5} \) |
\(a_{19}= -1.73224163 \pm 5.9 \cdot 10^{-5} \) | \(a_{20}= -0.11397937 \pm 7.2 \cdot 10^{-5} \) | \(a_{21}= +0.34291830 \pm 6.2 \cdot 10^{-5} \) |
\(a_{22}= +1.33857820 \pm 7.3 \cdot 10^{-5} \) | \(a_{23}= -1.64203854 \pm 6.0 \cdot 10^{-5} \) | \(a_{24}= -0.92200267 \pm 6.0 \cdot 10^{-5} \) |
\(a_{25}= -0.91589558 \pm 5.4 \cdot 10^{-5} \) | \(a_{26}= -0.21608011 \pm 8.2 \cdot 10^{-5} \) | \(a_{27}= +1.08595025 \pm 6.4 \cdot 10^{-5} \) |
\(a_{28}= +0.15864259 \pm 6.8 \cdot 10^{-5} \) | \(a_{29}= +0.49981393 \pm 5.3 \cdot 10^{-5} \) | \(a_{30}= +0.19194801 \pm 1.0 \cdot 10^{-4} \) |
\(a_{31}= +0.72295661 \pm 7.7 \cdot 10^{-5} \) | \(a_{32}= -0.73274020 \pm 8.3 \cdot 10^{-5} \) | \(a_{33}= +1.45963746 \pm 5.7 \cdot 10^{-5} \) |
\(a_{34}= +1.19055453 \pm 7.9 \cdot 10^{-5} \) | \(a_{35}= -0.11706103 \pm 5.8 \cdot 10^{-5} \) | \(a_{36}= +0.10936577 \pm 7.2 \cdot 10^{-5} \) |
\(a_{37}= -0.10367080 \pm 8.9 \cdot 10^{-5} \) | \(a_{38}= +1.34956855 \pm 5.6 \cdot 10^{-5} \) | \(a_{39}= -0.23562212 \pm 7.9 \cdot 10^{-5} \) |
\(a_{40}= +0.31474139 \pm 6.1 \cdot 10^{-5} \) | \(a_{41}= +0.71053435 \pm 6.5 \cdot 10^{-5} \) | \(a_{42}= -0.26716351 \pm 5.1 \cdot 10^{-5} \) |
\(a_{43}= -0.86355996 \pm 7.2 \cdot 10^{-5} \) | \(a_{44}= +0.67526482 \pm 6.9 \cdot 10^{-5} \) | \(a_{45}= -0.08070008 \pm 7.7 \cdot 10^{-5} \) |
\(a_{46}= +1.27929241 \pm 7.8 \cdot 10^{-5} \) | \(a_{47}= -0.38237666 \pm 7.5 \cdot 10^{-5} \) | \(a_{48}= +0.38443026 \pm 7.3 \cdot 10^{-5} \) |
\(a_{49}= -0.83706820 \pm 6.5 \cdot 10^{-5} \) | \(a_{50}= +0.71356320 \pm 6.5 \cdot 10^{-5} \) | \(a_{51}= +1.29822672 \pm 8.4 \cdot 10^{-5} \) |
\(a_{52}= -0.10900469 \pm 7.4 \cdot 10^{-5} \) | \(a_{53}= +0.99122803 \pm 5.5 \cdot 10^{-5} \) | \(a_{54}= -0.84605074 \pm 7.4 \cdot 10^{-5} \) |
\(a_{55}= -0.49827222 \pm 4.7 \cdot 10^{-5} \) | \(a_{56}= -0.43807391 \pm 5.4 \cdot 10^{-5} \) | \(a_{57}= +1.47162177 \pm 5.7 \cdot 10^{-5} \) |
\(a_{58}= -0.38939900 \pm 5.2 \cdot 10^{-5} \) | \(a_{59}= -0.80597950 \pm 6.6 \cdot 10^{-5} \) | \(a_{60}= +0.09683090 \pm 8.6 \cdot 10^{-5} \) |
\(a_{61}= -0.22631307 \pm 6.4 \cdot 10^{-5} \) | \(a_{62}= -0.56324677 \pm 6.7 \cdot 10^{-5} \) | \(a_{63}= +0.11232269 \pm 5.4 \cdot 10^{-5} \) |
\(a_{64}= +1.02338077 \pm 6.7 \cdot 10^{-5} \) | \(a_{65}= +0.08043364 \pm 7.0 \cdot 10^{-5} \) | \(a_{66}= -1.13718593 \pm 6.5 \cdot 10^{-5} \) |
\(a_{67}= -0.67401434 \pm 7.5 \cdot 10^{-5} \) | \(a_{68}= +0.60059217 \pm 6.4 \cdot 10^{-5} \) | \(a_{69}= +1.39498994 \pm 7.4 \cdot 10^{-5} \) |
\(a_{70}= +0.09120083 \pm 5.7 \cdot 10^{-5} \) | \(a_{71}= +0.05303531 \pm 7.6 \cdot 10^{-5} \) | \(a_{72}= -0.30200144 \pm 6.2 \cdot 10^{-5} \) |
\(a_{73}= -1.08495810 \pm 8.4 \cdot 10^{-5} \) | \(a_{74}= +0.08076867 \pm 8.2 \cdot 10^{-5} \) | \(a_{75}= +0.77809692 \pm 4.3 \cdot 10^{-5} \) |
\(a_{76}= +0.68080906 \pm 5.3 \cdot 10^{-5} \) | \(a_{77}= +0.69352194 \pm 6.8 \cdot 10^{-5} \) | \(a_{78}= +0.18357035 \pm 1.6 \cdot 10^{-4} \) |
\(a_{79}= +0.83830749 \pm 7.8 \cdot 10^{-5} \) | \(a_{80}= -0.13123184 \pm 6.0 \cdot 10^{-5} \) | \(a_{81}= -0.64429762 \pm 6.3 \cdot 10^{-5} \) |
\(a_{82}= -0.55356874 \pm 7.2 \cdot 10^{-5} \) | \(a_{83}= -1.39446334 \pm 4.7 \cdot 10^{-5} \) | \(a_{84}= -0.13477443 \pm 5.9 \cdot 10^{-5} \) |
\(a_{85}= -0.44317190 \pm 6.8 \cdot 10^{-5} \) | \(a_{86}= +0.67278914 \pm 8.6 \cdot 10^{-5} \) | \(a_{87}= -0.42461574 \pm 5.6 \cdot 10^{-5} \) |
\(a_{88}= -1.86466887 \pm 5.2 \cdot 10^{-5} \) | \(a_{89}= +1.33938879 \pm 9.3 \cdot 10^{-5} \) | \(a_{90}= +0.06287246 \pm 9.6 \cdot 10^{-5} \) |
\(a_{91}= -0.11195185 \pm 7.2 \cdot 10^{-5} \) | \(a_{92}= +0.64535726 \pm 6.6 \cdot 10^{-5} \) | \(a_{93}= -0.61418607 \pm 8.3 \cdot 10^{-5} \) |
\(a_{94}= +0.29790505 \pm 6.3 \cdot 10^{-5} \) | \(a_{95}= -0.50236326 \pm 5.2 \cdot 10^{-5} \) | \(a_{96}= +0.62249770 \pm 8.9 \cdot 10^{-5} \) |
\(a_{97}= +0.73832130 \pm 7.5 \cdot 10^{-5} \) | \(a_{98}= +0.65214973 \pm 7.8 \cdot 10^{-5} \) | \(a_{99}= +0.47810341 \pm 5.6 \cdot 10^{-5} \) |
\(a_{100}= +0.35996711 \pm 5.6 \cdot 10^{-5} \) | \(a_{101}= +0.83557847 \pm 5.5 \cdot 10^{-5} \) | \(a_{102}= -1.01143277 \pm 9.0 \cdot 10^{-5} \) |
\(a_{103}= +0.26423397 \pm 7.7 \cdot 10^{-5} \) | \(a_{104}= +0.30100435 \pm 6.2 \cdot 10^{-5} \) | \(a_{105}= +0.09944892 \pm 5.7 \cdot 10^{-5} \) |
\(a_{106}= -0.77225380 \pm 6.9 \cdot 10^{-5} \) | \(a_{107}= +0.29893335 \pm 8.1 \cdot 10^{-5} \) | \(a_{108}= -0.42680233 \pm 6.6 \cdot 10^{-5} \) |
\(a_{109}= -1.07037299 \pm 5.3 \cdot 10^{-5} \) | \(a_{110}= +0.38819787 \pm 5.4 \cdot 10^{-5} \) | \(a_{111}= +0.08807328 \pm 4.9 \cdot 10^{-5} \) |
\(a_{112}= +0.18265550 \pm 6.3 \cdot 10^{-5} \) | \(a_{113}= -0.97013493 \pm 9.3 \cdot 10^{-5} \) | \(a_{114}= -1.14652276 \pm 6.2 \cdot 10^{-5} \) |
\(a_{115}= -0.47620368 \pm 6.2 \cdot 10^{-5} \) | \(a_{116}= -0.19643787 \pm 6.0 \cdot 10^{-5} \) | \(a_{117}= -0.07717789 \pm 7.7 \cdot 10^{-5} \) |
\(a_{118}= +0.62792890 \pm 7.2 \cdot 10^{-5} \) | \(a_{119}= +0.61683037 \pm 7.9 \cdot 10^{-5} \) | \(a_{120}= -0.26738780 \pm 6.5 \cdot 10^{-5} \) |
\(a_{121}= +1.95198768 \pm 4.8 \cdot 10^{-5} \) | \(a_{122}= +0.17631778 \pm 6.1 \cdot 10^{-5} \) | \(a_{123}= -0.60363277 \pm 7.2 \cdot 10^{-5} \) |
\(a_{124}= -0.28413785 \pm 7.0 \cdot 10^{-5} \) | \(a_{125}= -0.55562431 \pm 5.8 \cdot 10^{-5} \) | \(a_{126}= -0.08750925 \pm 5.8 \cdot 10^{-5} \) |
\(a_{127}= +1.18680363 \pm 7.7 \cdot 10^{-5} \) | \(a_{128}= -0.06456340 \pm 6.4 \cdot 10^{-5} \) | \(a_{129}= +0.73363531 \pm 7.9 \cdot 10^{-5} \) |
\(a_{130}= -0.06266488 \pm 1.5 \cdot 10^{-4} \) | \(a_{131}= -1.04558165 \pm 6.2 \cdot 10^{-5} \) | \(a_{132}= -0.57366962 \pm 6.5 \cdot 10^{-5} \) |
\(a_{133}= +0.69921608 \pm 4.5 \cdot 10^{-5} \) | \(a_{134}= +0.52511644 \pm 9.1 \cdot 10^{-5} \) | \(a_{135}= +0.31493384 \pm 5.7 \cdot 10^{-5} \) |
\(a_{136}= -1.65846865 \pm 4.5 \cdot 10^{-5} \) | \(a_{137}= +0.75971757 \pm 7.4 \cdot 10^{-5} \) | \(a_{138}= -1.08681983 \pm 9.0 \cdot 10^{-5} \) |
\(a_{139}= +1.48288643 \pm 6.8 \cdot 10^{-5} \) | \(a_{140}= +0.04600756 \pm 5.6 \cdot 10^{-5} \) | \(a_{141}= +0.32484719 \pm 6.0 \cdot 10^{-5} \) |
\(a_{142}= -0.04131917 \pm 8.0 \cdot 10^{-5} \) | \(a_{143}= -0.47652490 \pm 6.6 \cdot 10^{-5} \) | \(a_{144}= +0.12591991 \pm 6.8 \cdot 10^{-5} \) |
\(a_{145}= +0.14494985 \pm 5.1 \cdot 10^{-5} \) | \(a_{146}= +0.84527777 \pm 7.9 \cdot 10^{-5} \) | \(a_{147}= +0.71112930 \pm 6.7 \cdot 10^{-5} \) |
\(a_{148}= +0.04074490 \pm 7.7 \cdot 10^{-5} \) | \(a_{149}= -1.42339512 \pm 6.9 \cdot 10^{-5} \) | \(a_{150}= -0.60620592 \pm 5.5 \cdot 10^{-5} \) |
\(a_{151}= +0.71541367 \pm 5.5 \cdot 10^{-5} \) | \(a_{152}= -1.87997868 \pm 5.0 \cdot 10^{-5} \) | \(a_{153}= +0.42523341 \pm 7.0 \cdot 10^{-5} \) |
\(a_{154}= -0.54031457 \pm 8.5 \cdot 10^{-5} \) | \(a_{155}= +0.20966292 \pm 7.3 \cdot 10^{-5} \) | \(a_{156}= +0.09260467 \pm 1.5 \cdot 10^{-4} \) |
\(a_{157}= +0.49884844 \pm 8.1 \cdot 10^{-5} \) | \(a_{158}= -0.65311525 \pm 6.9 \cdot 10^{-5} \) | \(a_{159}= -0.84209542 \pm 5.5 \cdot 10^{-5} \) |
\(a_{160}= -0.21250024 \pm 7.5 \cdot 10^{-5} \) | \(a_{161}= +0.66280577 \pm 5.3 \cdot 10^{-5} \) | \(a_{162}= +0.50196450 \pm 6.3 \cdot 10^{-5} \) |
\(a_{163}= -0.46969063 \pm 9.0 \cdot 10^{-5} \) | \(a_{164}= -0.27925563 \pm 6.7 \cdot 10^{-5} \) | \(a_{165}= +0.42330598 \pm 5.3 \cdot 10^{-5} \) |
\(a_{166}= +1.08640956 \pm 4.8 \cdot 10^{-5} \) | \(a_{167}= -1.45088655 \pm 8.6 \cdot 10^{-5} \) | \(a_{168}= +0.37216465 \pm 5.1 \cdot 10^{-5} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +0.34526988 \pm 7.4 \cdot 10^{-5} \) | \(a_{171}= +0.48202886 \pm 6.8 \cdot 10^{-5} \) |
\(a_{172}= +0.33939806 \pm 7.4 \cdot 10^{-5} \) | \(a_{173}= +1.09191311 \pm 8.7 \cdot 10^{-5} \) | \(a_{174}= +0.33081300 \pm 4.0 \cdot 10^{-5} \) |
\(a_{175}= +0.36969953 \pm 5.9 \cdot 10^{-5} \) | \(a_{176}= +0.77747620 \pm 5.5 \cdot 10^{-5} \) | \(a_{177}= +0.68471797 \pm 6.2 \cdot 10^{-5} \) |
\(a_{178}= -1.04350164 \pm 1.0 \cdot 10^{-4} \) | \(a_{179}= -0.50635074 \pm 5.7 \cdot 10^{-5} \) | \(a_{180}= +0.03171691 \pm 7.4 \cdot 10^{-5} \) |
\(a_{181}= -1.46888301 \pm 7.3 \cdot 10^{-5} \) | \(a_{182}= +0.08722033 \pm 1.5 \cdot 10^{-4} \) | \(a_{183}= +0.19226373 \pm 6.2 \cdot 10^{-5} \) |
\(a_{184}= -1.78208247 \pm 4.9 \cdot 10^{-5} \) | \(a_{185}= -0.03006532 \pm 6.4 \cdot 10^{-5} \) | \(a_{186}= +0.47850496 \pm 8.5 \cdot 10^{-5} \) |
\(a_{187}= +2.62554874 \pm 5.7 \cdot 10^{-5} \) | \(a_{188}= +0.15028244 \pm 6.9 \cdot 10^{-5} \) | \(a_{189}= -0.43834178 \pm 5.4 \cdot 10^{-5} \) |
\(a_{190}= +0.39138516 \pm 5.9 \cdot 10^{-5} \) | \(a_{191}= -0.98162163 \pm 6.6 \cdot 10^{-5} \) | \(a_{192}= -0.86941070 \pm 7.6 \cdot 10^{-5} \) |
\(a_{193}= -0.19286670 \pm 7.8 \cdot 10^{-5} \) | \(a_{194}= -0.57521721 \pm 7.2 \cdot 10^{-5} \) | \(a_{195}= -0.06833221 \pm 1.4 \cdot 10^{-4} \) |
\(a_{196}= +0.32898621 \pm 6.0 \cdot 10^{-5} \) | \(a_{197}= +1.09554099 \pm 6.7 \cdot 10^{-5} \) | \(a_{198}= -0.37248459 \pm 6.2 \cdot 10^{-5} \) |
\(a_{199}= -1.57939330 \pm 7.5 \cdot 10^{-5} \) | \(a_{200}= -0.99400923 \pm 4.4 \cdot 10^{-5} \) | \(a_{201}= +0.57260728 \pm 9.5 \cdot 10^{-5} \) |
\(a_{202}= -0.65098910 \pm 6.6 \cdot 10^{-5} \) | \(a_{203}= -0.20174895 \pm 6.1 \cdot 10^{-5} \) | \(a_{204}= -0.51023165 \pm 8.0 \cdot 10^{-5} \) |
\(a_{205}= +0.20606037 \pm 5.8 \cdot 10^{-5} \) | \(a_{206}= -0.20586150 \pm 8.9 \cdot 10^{-5} \) | \(a_{207}= +0.45692815 \pm 7.3 \cdot 10^{-5} \) |
\(a_{208}= -0.12550417 \pm 6.4 \cdot 10^{-5} \) | \(a_{209}= +2.97622488 \pm 4.9 \cdot 10^{-5} \) | \(a_{210}= -0.07747945 \pm 4.0 \cdot 10^{-5} \) |
\(a_{211}= -0.11158012 \pm 8.4 \cdot 10^{-5} \) | \(a_{212}= -0.38957442 \pm 5.9 \cdot 10^{-5} \) | \(a_{213}= -0.04505602 \pm 8.4 \cdot 10^{-5} \) |
\(a_{214}= -0.23289536 \pm 9.6 \cdot 10^{-5} \) | \(a_{215}= -0.25043896 \pm 6.6 \cdot 10^{-5} \) | \(a_{216}= +1.17856728 \pm 5.0 \cdot 10^{-5} \) |
\(a_{217}= -0.29182008 \pm 6.9 \cdot 10^{-5} \) | \(a_{218}= +0.83391468 \pm 5.8 \cdot 10^{-5} \) | \(a_{219}= +0.92172358 \pm 8.7 \cdot 10^{-5} \) |
\(a_{220}= +0.19583194 \pm 5.1 \cdot 10^{-5} \) | \(a_{221}= -0.42382946 \pm 7.2 \cdot 10^{-5} \) | \(a_{222}= -0.06861683 \pm 5.2 \cdot 10^{-5} \) |
\(a_{223}= +0.10540200 \pm 7.5 \cdot 10^{-5} \) | \(a_{224}= +0.29576921 \pm 7.4 \cdot 10^{-5} \) | \(a_{225}= +0.25486520 \pm 4.6 \cdot 10^{-5} \) |
\(a_{226}= +0.75582041 \pm 9.8 \cdot 10^{-5} \) | \(a_{227}= -0.92864616 \pm 5.6 \cdot 10^{-5} \) | \(a_{228}= -0.57837972 \pm 4.8 \cdot 10^{-5} \) |
\(a_{229}= -0.14840132 \pm 7.4 \cdot 10^{-5} \) | \(a_{230}= +0.37100454 \pm 7.7 \cdot 10^{-5} \) | \(a_{231}= -0.58917992 \pm 5.3 \cdot 10^{-5} \) |
\(a_{232}= +0.54244137 \pm 4.7 \cdot 10^{-5} \) | \(a_{233}= -0.42555887 \pm 9.3 \cdot 10^{-5} \) | \(a_{234}= +0.06012836 \pm 1.5 \cdot 10^{-4} \) |
\(a_{235}= -0.11089214 \pm 5.5 \cdot 10^{-5} \) | \(a_{236}= +0.31676767 \pm 6.7 \cdot 10^{-5} \) | \(a_{237}= -0.71218214 \pm 7.4 \cdot 10^{-5} \) |
\(a_{238}= -0.48056510 \pm 8.0 \cdot 10^{-5} \) | \(a_{239}= -1.21008594 \pm 6.8 \cdot 10^{-5} \) | \(a_{240}= +0.11148770 \pm 8.0 \cdot 10^{-5} \) |
\(a_{241}= -0.22305260 \pm 6.1 \cdot 10^{-5} \) | \(a_{242}= -1.52077005 \pm 6.0 \cdot 10^{-5} \) | \(a_{243}= -0.53858874 \pm 7.8 \cdot 10^{-5} \) |
\(a_{244}= +0.08894601 \pm 5.1 \cdot 10^{-5} \) | \(a_{245}= -0.24275615 \pm 6.2 \cdot 10^{-5} \) | \(a_{246}= +0.47028301 \pm 9.7 \cdot 10^{-5} \) |
\(a_{247}= -0.48043739 \pm 5.9 \cdot 10^{-5} \) | \(a_{248}= +0.78461514 \pm 5.9 \cdot 10^{-5} \) | \(a_{249}= +1.18466302 \pm 4.2 \cdot 10^{-5} \) |
\(a_{250}= +0.43288019 \pm 4.4 \cdot 10^{-5} \) | \(a_{251}= +0.18315321 \pm 8.3 \cdot 10^{-5} \) | \(a_{252}= -0.04414529 \pm 4.8 \cdot 10^{-5} \) |
\(a_{253}= +2.82124380 \pm 5.8 \cdot 10^{-5} \) | \(a_{254}= -0.92462439 \pm 8.5 \cdot 10^{-5} \) | \(a_{255}= +0.37649564 \pm 9.3 \cdot 10^{-5} \) |
\(a_{256}= -0.97308020 \pm 6.9 \cdot 10^{-5} \) | \(a_{257}= -1.28529717 \pm 8.4 \cdot 10^{-5} \) | \(a_{258}= -0.57156642 \pm 1.0 \cdot 10^{-4} \) |
\(a_{259}= +0.04184652 \pm 8.0 \cdot 10^{-5} \) | \(a_{260}= -0.03161219 \pm 1.4 \cdot 10^{-4} \) | \(a_{261}= -0.13908264 \pm 3.7 \cdot 10^{-5} \) |
\(a_{262}= +0.81460004 \pm 7.6 \cdot 10^{-5} \) | \(a_{263}= +0.48637746 \pm 7.4 \cdot 10^{-5} \) | \(a_{264}= +1.58412501 \pm 5.1 \cdot 10^{-5} \) |
\(a_{265}= +0.28746368 \pm 4.6 \cdot 10^{-5} \) | \(a_{266}= -0.54475081 \pm 5.0 \cdot 10^{-5} \) | \(a_{267}= -1.13787456 \pm 9.1 \cdot 10^{-5} \) |
\(a_{268}= +0.26490246 \pm 7.7 \cdot 10^{-5} \) | \(a_{269}= -0.35985045 \pm 8.6 \cdot 10^{-5} \) | \(a_{270}= -0.24536116 \pm 7.0 \cdot 10^{-5} \) |
\(a_{271}= +0.00810410 \pm 7.1 \cdot 10^{-5} \) | \(a_{272}= +0.69150074 \pm 6.6 \cdot 10^{-5} \) | \(a_{273}= +0.09510842 \pm 1.5 \cdot 10^{-4} \) |
\(a_{274}= -0.59188679 \pm 7.4 \cdot 10^{-5} \) | \(a_{275}= +1.57363221 \pm 5.4 \cdot 10^{-5} \) | \(a_{276}= -0.54826173 \pm 6.3 \cdot 10^{-5} \) |
\(a_{277}= +0.30299271 \pm 7.4 \cdot 10^{-5} \) | \(a_{278}= -1.15529892 \pm 6.5 \cdot 10^{-5} \) | \(a_{279}= -0.20117629 \pm 7.5 \cdot 10^{-5} \) |
\(a_{280}= -0.12704477 \pm 5.5 \cdot 10^{-5} \) | \(a_{281}= +0.36450805 \pm 1.0 \cdot 10^{-4} \) | \(a_{282}= -0.25308452 \pm 6.7 \cdot 10^{-5} \) |
\(a_{283}= +0.40993946 \pm 5.7 \cdot 10^{-5} \) | \(a_{284}= -0.02084404 \pm 6.7 \cdot 10^{-5} \) | \(a_{285}= +0.42678152 \pm 6.2 \cdot 10^{-5} \) |
\(a_{286}= +0.37125480 \pm 1.4 \cdot 10^{-4} \) | \(a_{287}= -0.28680586 \pm 3.5 \cdot 10^{-5} \) | \(a_{288}= +0.20389876 \pm 8.4 \cdot 10^{-5} \) |
\(a_{289}= +1.33520832 \pm 6.0 \cdot 10^{-5} \) | \(a_{290}= -0.11292868 \pm 5.4 \cdot 10^{-5} \) | \(a_{291}= -0.62723910 \pm 7.5 \cdot 10^{-5} \) |
\(a_{292}= +0.42641240 \pm 8.1 \cdot 10^{-5} \) | \(a_{293}= -0.23136739 \pm 6.4 \cdot 10^{-5} \) | \(a_{294}= -0.55403225 \pm 8.7 \cdot 10^{-5} \) |
\(a_{295}= -0.23374019 \pm 6.0 \cdot 10^{-5} \) | \(a_{296}= -0.11251253 \pm 8.1 \cdot 10^{-5} \) | \(a_{297}= -1.86580907 \pm 5.8 \cdot 10^{-5} \) |
\(a_{298}= +1.10894996 \pm 7.1 \cdot 10^{-5} \) | \(a_{299}= -0.45541955 \pm 6.0 \cdot 10^{-5} \) | \(a_{300}= -0.30580920 \pm 5.1 \cdot 10^{-5} \) |
\(a_{301}= +0.34857435 \pm 5.9 \cdot 10^{-5} \) | \(a_{302}= -0.55737015 \pm 5.3 \cdot 10^{-5} \) | \(a_{303}= -0.70986370 \pm 6.1 \cdot 10^{-5} \) |
\(a_{304}= +0.78385964 \pm 4.6 \cdot 10^{-5} \) | \(a_{305}= -0.06563251 \pm 5.2 \cdot 10^{-5} \) | \(a_{306}= -0.33129422 \pm 8.6 \cdot 10^{-5} \) |
\(a_{307}= +0.68628815 \pm 5.6 \cdot 10^{-5} \) | \(a_{308}= -0.27256938 \pm 7.3 \cdot 10^{-5} \) | \(a_{309}= -0.22447934 \pm 8.7 \cdot 10^{-5} \) |
\(a_{310}= -0.16334585 \pm 7.3 \cdot 10^{-5} \) | \(a_{311}= -0.11645345 \pm 9.4 \cdot 10^{-5} \) | \(a_{312}= -0.25571753 \pm 1.4 \cdot 10^{-4} \) |
\(a_{313}= -0.28754200 \pm 5.5 \cdot 10^{-5} \) | \(a_{314}= -0.38864680 \pm 7.6 \cdot 10^{-5} \) | \(a_{315}= +0.03257444 \pm 4.4 \cdot 10^{-5} \) |
\(a_{316}= -0.32947328 \pm 6.8 \cdot 10^{-5} \) | \(a_{317}= -0.20788982 \pm 7.0 \cdot 10^{-5} \) | \(a_{318}= +0.65606638 \pm 7.2 \cdot 10^{-5} \) |
\(a_{319}= -0.85874778 \pm 4.3 \cdot 10^{-5} \) | \(a_{320}= +0.29678822 \pm 6.7 \cdot 10^{-5} \) | \(a_{321}= -0.25395812 \pm 8.0 \cdot 10^{-5} \) |
\(a_{322}= -0.51638398 \pm 7.7 \cdot 10^{-5} \) | \(a_{323}= +2.64710573 \pm 4.3 \cdot 10^{-5} \) | \(a_{324}= +0.25322314 \pm 6.2 \cdot 10^{-5} \) |
\(a_{325}= -0.25402373 \pm 5.4 \cdot 10^{-5} \) | \(a_{326}= +0.36593030 \pm 6.4 \cdot 10^{-5} \) | \(a_{327}= +0.90933283 \pm 6.3 \cdot 10^{-5} \) |
\(a_{328}= +0.77113343 \pm 3.1 \cdot 10^{-5} \) | \(a_{329}= +0.15434562 \pm 5.5 \cdot 10^{-5} \) | \(a_{330}= -0.32979258 \pm 6.0 \cdot 10^{-5} \) |
\(a_{331}= +0.00431708 \pm 8.5 \cdot 10^{-5} \) | \(a_{332}= +0.54805476 \pm 4.4 \cdot 10^{-5} \) | \(a_{333}= +0.02884835 \pm 7.7 \cdot 10^{-5} \) |
\(a_{334}= +1.13036820 \pm 8.6 \cdot 10^{-5} \) | \(a_{335}= -0.19546929 \pm 7.9 \cdot 10^{-5} \) | \(a_{336}= -0.15517455 \pm 4.4 \cdot 10^{-5} \) |
\(a_{337}= +0.29170380 \pm 7.8 \cdot 10^{-5} \) | \(a_{338}= -0.05992984 \pm 8.2 \cdot 10^{-5} \) | \(a_{339}= +0.82417582 \pm 9.9 \cdot 10^{-5} \) |
\(a_{340}= +0.17417630 \pm 6.3 \cdot 10^{-5} \) | \(a_{341}= -1.24213702 \pm 5.5 \cdot 10^{-5} \) | \(a_{342}= -0.37554287 \pm 7.5 \cdot 10^{-5} \) |
\(a_{343}= +0.74152912 \pm 5.4 \cdot 10^{-5} \) | \(a_{344}= -0.93721007 \pm 4.2 \cdot 10^{-5} \) | \(a_{345}= +0.40455771 \pm 8.3 \cdot 10^{-5} \) |
\(a_{346}= -0.85069633 \pm 8.2 \cdot 10^{-5} \) | \(a_{347}= -0.62868119 \pm 9.5 \cdot 10^{-5} \) | \(a_{348}= +0.16688332 \pm 5.7 \cdot 10^{-5} \) |
\(a_{349}= -0.80390477 \pm 7.9 \cdot 10^{-5} \) | \(a_{350}= -0.28802844 \pm 7.6 \cdot 10^{-5} \) | \(a_{351}= +0.30118841 \pm 6.4 \cdot 10^{-5} \) |
\(a_{352}= +1.25894655 \pm 7.1 \cdot 10^{-5} \) | \(a_{353}= -1.84609871 \pm 6.3 \cdot 10^{-5} \) | \(a_{354}= -0.53345551 \pm 6.6 \cdot 10^{-5} \) |
\(a_{355}= +0.01538064 \pm 7.5 \cdot 10^{-5} \) | \(a_{356}= -0.52640925 \pm 8.2 \cdot 10^{-5} \) | \(a_{357}= -0.52402678 \pm 7.4 \cdot 10^{-5} \) |
\(a_{358}= +0.39449175 \pm 5.3 \cdot 10^{-5} \) | \(a_{359}= -0.63543113 \pm 1.0 \cdot 10^{-4} \) | \(a_{360}= -0.08758272 \pm 5.8 \cdot 10^{-5} \) |
\(a_{361}= +2.00066108 \pm 5.4 \cdot 10^{-5} \) | \(a_{362}= +1.14438903 \pm 8.0 \cdot 10^{-5} \) | \(a_{363}= -1.65830650 \pm 5.4 \cdot 10^{-5} \) |
\(a_{364}= +0.04399954 \pm 1.4 \cdot 10^{-4} \) | \(a_{365}= -0.31464611 \pm 6.9 \cdot 10^{-5} \) | \(a_{366}= -0.14979035 \pm 4.6 \cdot 10^{-5} \) |
\(a_{367}= -0.25561369 \pm 8.4 \cdot 10^{-5} \) | \(a_{368}= +0.74304168 \pm 5.5 \cdot 10^{-5} \) | \(a_{369}= -0.19771957 \pm 5.9 \cdot 10^{-5} \) |
\(a_{370}= +0.02342353 \pm 6.6 \cdot 10^{-5} \) | \(a_{371}= -0.40010733 \pm 5.6 \cdot 10^{-5} \) | \(a_{372}= +0.24138863 \pm 8.7 \cdot 10^{-5} \) |
\(a_{373}= -0.07746281 \pm 5.4 \cdot 10^{-5} \) | \(a_{374}= -2.04553334 \pm 6.1 \cdot 10^{-5} \) | \(a_{375}= +0.47202931 \pm 5.8 \cdot 10^{-5} \) |
\(a_{376}= -0.41498828 \pm 6.5 \cdot 10^{-5} \) | \(a_{377}= +0.13862344 \pm 5.3 \cdot 10^{-5} \) | \(a_{378}= +0.34150679 \pm 6.8 \cdot 10^{-5} \) |
\(a_{379}= +1.14117711 \pm 7.1 \cdot 10^{-5} \) | \(a_{380}= +0.19743981 \pm 5.5 \cdot 10^{-5} \) | \(a_{381}= -1.00824621 \pm 7.1 \cdot 10^{-5} \) |
\(a_{382}= +0.76476957 \pm 7.8 \cdot 10^{-5} \) | \(a_{383}= +1.59747675 \pm 1.0 \cdot 10^{-4} \) | \(a_{384}= +0.05484969 \pm 6.3 \cdot 10^{-5} \) |
\(a_{385}= +0.20112664 \pm 4.3 \cdot 10^{-5} \) | \(a_{386}= +0.15026012 \pm 7.3 \cdot 10^{-5} \) | \(a_{387}= +0.24030182 \pm 6.6 \cdot 10^{-5} \) |
\(a_{388}= -0.29017651 \pm 7.1 \cdot 10^{-5} \) | \(a_{389}= -1.53542889 \pm 6.7 \cdot 10^{-5} \) | \(a_{390}= +0.05323680 \pm 2.3 \cdot 10^{-4} \) |
\(a_{391}= +2.50926288 \pm 4.2 \cdot 10^{-5} \) | \(a_{392}= -0.90845892 \pm 4.9 \cdot 10^{-5} \) | \(a_{393}= +0.88827140 \pm 7.1 \cdot 10^{-5} \) |
\(a_{394}= -0.85352277 \pm 7.8 \cdot 10^{-5} \) | \(a_{395}= +0.24311556 \pm 6.2 \cdot 10^{-5} \) | \(a_{396}= -0.18790515 \pm 5.7 \cdot 10^{-5} \) |
\(a_{397}= +0.92005799 \pm 5.9 \cdot 10^{-5} \) | \(a_{398}= +1.23048626 \pm 8.6 \cdot 10^{-5} \) | \(a_{399}= -0.59401736 \pm 3.0 \cdot 10^{-5} \) |
\(a_{400}= +0.41445349 \pm 5.1 \cdot 10^{-5} \) | \(a_{401}= -0.76230062 \pm 5.7 \cdot 10^{-5} \) | \(a_{402}= -0.44611142 \pm 1.2 \cdot 10^{-4} \) |
\(a_{403}= +0.20051209 \pm 7.7 \cdot 10^{-5} \) | \(a_{404}= -0.32840072 \pm 6.4 \cdot 10^{-5} \) | \(a_{405}= -0.18685122 \pm 6.3 \cdot 10^{-5} \) |
\(a_{406}= +0.15718018 \pm 5.9 \cdot 10^{-5} \) | \(a_{407}= +0.17812042 \pm 7.6 \cdot 10^{-5} \) | \(a_{408}= +1.40894810 \pm 5.4 \cdot 10^{-5} \) |
\(a_{409}= +0.73154301 \pm 6.6 \cdot 10^{-5} \) | \(a_{410}= -0.16053915 \pm 8.0 \cdot 10^{-5} \) | \(a_{411}= -0.64541626 \pm 6.6 \cdot 10^{-5} \) |
\(a_{412}= -0.10384976 \pm 7.7 \cdot 10^{-5} \) | \(a_{413}= +0.32533211 \pm 6.9 \cdot 10^{-5} \) | \(a_{414}= -0.35598721 \pm 8.9 \cdot 10^{-5} \) |
\(a_{415}= -0.40440499 \pm 4.4 \cdot 10^{-5} \) | \(a_{416}= -0.20322557 \pm 8.3 \cdot 10^{-5} \) | \(a_{417}= -1.25978265 \pm 7.8 \cdot 10^{-5} \) |
\(a_{418}= -2.31874089 \pm 4.3 \cdot 10^{-5} \) | \(a_{419}= -1.65602687 \pm 8.3 \cdot 10^{-5} \) | \(a_{420}= -0.03908561 \pm 5.0 \cdot 10^{-5} \) |
\(a_{421}= +0.41194223 \pm 8.2 \cdot 10^{-5} \) | \(a_{422}= +0.08693072 \pm 9.3 \cdot 10^{-5} \) | \(a_{423}= +0.10640351 \pm 6.8 \cdot 10^{-5} \) |
\(a_{424}= +1.07576653 \pm 4.4 \cdot 10^{-5} \) | \(a_{425}= +1.39961562 \pm 5.1 \cdot 10^{-5} \) | \(a_{426}= +0.03510260 \pm 9.8 \cdot 10^{-5} \) |
\(a_{427}= +0.09135085 \pm 7.9 \cdot 10^{-5} \) | \(a_{428}= -0.11748738 \pm 8.2 \cdot 10^{-5} \) | \(a_{429}= +0.40483059 \pm 1.4 \cdot 10^{-4} \) |
\(a_{430}= +0.19511397 \pm 8.8 \cdot 10^{-5} \) | \(a_{431}= -1.60378561 \pm 8.9 \cdot 10^{-5} \) | \(a_{432}= -0.49140522 \pm 5.7 \cdot 10^{-5} \) |
\(a_{433}= -1.27974440 \pm 7.0 \cdot 10^{-5} \) | \(a_{434}= +0.22735350 \pm 5.2 \cdot 10^{-5} \) | \(a_{435}= -0.12314180 \pm 5.4 \cdot 10^{-5} \) |
\(a_{436}= +0.42068013 \pm 5.6 \cdot 10^{-5} \) | \(a_{437}= +2.84440753 \pm 5.5 \cdot 10^{-5} \) | \(a_{438}= -0.71810372 \pm 8.2 \cdot 10^{-5} \) |
\(a_{439}= -1.02157321 \pm 6.6 \cdot 10^{-5} \) | \(a_{440}= -0.54076817 \pm 4.8 \cdot 10^{-5} \) | \(a_{441}= +0.23292999 \pm 6.9 \cdot 10^{-5} \) |
\(a_{442}= +0.33020042 \pm 1.5 \cdot 10^{-4} \) | \(a_{443}= +0.62855377 \pm 7.6 \cdot 10^{-5} \) | \(a_{444}= -0.03461474 \pm 5.2 \cdot 10^{-5} \) |
\(a_{445}= +0.38843295 \pm 8.2 \cdot 10^{-5} \) | \(a_{446}= -0.08211743 \pm 6.6 \cdot 10^{-5} \) | \(a_{447}= +1.20924194 \pm 5.3 \cdot 10^{-5} \) |
\(a_{448}= -0.41308572 \pm 5.5 \cdot 10^{-5} \) | \(a_{449}= +0.21579845 \pm 6.0 \cdot 10^{-5} \) | \(a_{450}= -0.19856240 \pm 5.6 \cdot 10^{-5} \) |
\(a_{451}= -1.22079390 \pm 5.9 \cdot 10^{-5} \) | \(a_{452}= +0.38128436 \pm 8.6 \cdot 10^{-5} \) | \(a_{453}= -0.60777798 \pm 6.7 \cdot 10^{-5} \) |
\(a_{454}= +0.72349701 \pm 6.0 \cdot 10^{-5} \) | \(a_{455}= -0.03246689 \pm 1.4 \cdot 10^{-4} \) | \(a_{456}= +1.59713142 \pm 4.4 \cdot 10^{-5} \) |
\(a_{457}= -0.52474134 \pm 6.9 \cdot 10^{-5} \) | \(a_{458}= +0.11561768 \pm 5.8 \cdot 10^{-5} \) | \(a_{459}= -1.65948276 \pm 5.4 \cdot 10^{-5} \) |
\(a_{460}= +0.18715852 \pm 6.5 \cdot 10^{-5} \) | \(a_{461}= +0.36933515 \pm 8.2 \cdot 10^{-5} \) | \(a_{462}= +0.45902296 \pm 5.9 \cdot 10^{-5} \) |
\(a_{463}= -0.17894523 \pm 8.8 \cdot 10^{-5} \) | \(a_{464}= -0.22617166 \pm 4.3 \cdot 10^{-5} \) | \(a_{465}= -0.17811864 \pm 8.9 \cdot 10^{-5} \) |
\(a_{466}= +0.33154778 \pm 1.0 \cdot 10^{-4} \) | \(a_{467}= -1.17089132 \pm 7.0 \cdot 10^{-5} \) | \(a_{468}= +0.03033261 \pm 1.5 \cdot 10^{-4} \) |
\(a_{469}= +0.27206462 \pm 6.0 \cdot 10^{-5} \) | \(a_{470}= +0.08639473 \pm 6.2 \cdot 10^{-5} \) | \(a_{471}= -0.42379551 \pm 7.4 \cdot 10^{-5} \) |
\(a_{472}= -0.87471877 \pm 6.0 \cdot 10^{-5} \) | \(a_{473}= +1.48371254 \pm 6.4 \cdot 10^{-5} \) | \(a_{474}= +0.55485251 \pm 8.8 \cdot 10^{-5} \) |
\(a_{475}= +1.58655246 \pm 4.1 \cdot 10^{-5} \) | \(a_{476}= -0.24242790 \pm 6.1 \cdot 10^{-5} \) | \(a_{477}= -0.27582787 \pm 5.1 \cdot 10^{-5} \) |
\(a_{478}= +0.94276335 \pm 8.1 \cdot 10^{-5} \) | \(a_{479}= +0.54039487 \pm 8.5 \cdot 10^{-5} \) | \(a_{480}= +0.18052907 \pm 1.0 \cdot 10^{-4} \) |
\(a_{481}= -0.02875311 \pm 8.9 \cdot 10^{-5} \) | \(a_{482}= +0.17377759 \pm 5.9 \cdot 10^{-5} \) | \(a_{483}= -0.56308507 \pm 4.1 \cdot 10^{-5} \) |
\(a_{484}= -0.76717409 \pm 5.4 \cdot 10^{-5} \) | \(a_{485}= +0.21411880 \pm 5.3 \cdot 10^{-5} \) | \(a_{486}= +0.41960799 \pm 8.8 \cdot 10^{-5} \) |
\(a_{487}= +0.29262076 \pm 8.6 \cdot 10^{-5} \) | \(a_{488}= -0.24561455 \pm 4.6 \cdot 10^{-5} \) | \(a_{489}= +0.39902456 \pm 7.7 \cdot 10^{-5} \) |
\(a_{490}= +0.18912839 \pm 7.6 \cdot 10^{-5} \) | \(a_{491}= -1.14620725 \pm 9.3 \cdot 10^{-5} \) | \(a_{492}= +0.23724096 \pm 8.0 \cdot 10^{-5} \) |
\(a_{493}= -0.76378508 \pm 5.6 \cdot 10^{-5} \) | \(a_{494}= +0.37430297 \pm 1.4 \cdot 10^{-4} \) | \(a_{495}= +0.13865363 \pm 4.7 \cdot 10^{-5} \) |
\(a_{496}= -0.32714634 \pm 5.9 \cdot 10^{-5} \) | \(a_{497}= -0.02140760 \pm 6.1 \cdot 10^{-5} \) | \(a_{498}= -0.92295666 \pm 5.2 \cdot 10^{-5} \) |
\(a_{499}= +0.00404372 \pm 7.4 \cdot 10^{-5} \) | \(a_{500}= +0.21837257 \pm 4.6 \cdot 10^{-5} \) | \(a_{501}= +1.23259722 \pm 8.2 \cdot 10^{-5} \) |
\(a_{502}= -0.14269246 \pm 7.8 \cdot 10^{-5} \) | \(a_{503}= -0.60632638 \pm 7.7 \cdot 10^{-5} \) | \(a_{504}= +0.12190231 \pm 4.3 \cdot 10^{-5} \) |
\(a_{505}= +0.24232412 \pm 5.8 \cdot 10^{-5} \) | \(a_{506}= -2.19799700 \pm 8.5 \cdot 10^{-5} \) | \(a_{507}= -0.06534982 \pm 7.9 \cdot 10^{-5} \) |
\(a_{508}= -0.46643993 \pm 6.1 \cdot 10^{-5} \) | \(a_{509}= -1.73550597 \pm 7.9 \cdot 10^{-5} \) | \(a_{510}= -0.29332321 \pm 1.0 \cdot 10^{-4} \) |
\(a_{511}= +0.43794130 \pm 8.9 \cdot 10^{-5} \) | \(a_{512}= +0.82267845 \pm 7.0 \cdot 10^{-5} \) | \(a_{513}= -1.88112824 \pm 6.3 \cdot 10^{-5} \) |
\(a_{514}= +1.00135952 \pm 7.6 \cdot 10^{-5} \) | \(a_{515}= +0.07662986 \pm 7.6 \cdot 10^{-5} \) | \(a_{516}= -0.28833481 \pm 8.8 \cdot 10^{-5} \) |
\(a_{517}= +0.65697471 \pm 6.9 \cdot 10^{-5} \) | \(a_{518}= -0.03260212 \pm 9.3 \cdot 10^{-5} \) | \(a_{519}= -0.92763219 \pm 8.5 \cdot 10^{-5} \) |
\(a_{520}= +0.08729355 \pm 1.3 \cdot 10^{-4} \) | \(a_{521}= +1.87564346 \pm 7.8 \cdot 10^{-5} \) | \(a_{522}= +0.10835761 \pm 3.9 \cdot 10^{-5} \) |
\(a_{523}= -0.25224287 \pm 9.6 \cdot 10^{-5} \) | \(a_{524}= +0.41093658 \pm 7.8 \cdot 10^{-5} \) | \(a_{525}= -0.31407736 \pm 3.5 \cdot 10^{-5} \) |
\(a_{526}= -0.37893081 \pm 7.8 \cdot 10^{-5} \) | \(a_{527}= -1.10477808 \pm 7.5 \cdot 10^{-5} \) | \(a_{528}= -0.66050306 \pm 5.6 \cdot 10^{-5} \) |
\(a_{529}= +1.69629058 \pm 8.2 \cdot 10^{-5} \) | \(a_{530}= -0.22395948 \pm 6.3 \cdot 10^{-5} \) | \(a_{531}= +0.22427897 \pm 6.4 \cdot 10^{-5} \) |
\(a_{532}= -0.27480730 \pm 4.5 \cdot 10^{-5} \) | \(a_{533}= +0.19706677 \pm 6.5 \cdot 10^{-5} \) | \(a_{534}= +0.88650434 \pm 1.2 \cdot 10^{-4} \) |
\(a_{535}= +0.08669295 \pm 7.5 \cdot 10^{-5} \) | \(a_{536}= -0.73149875 \pm 3.8 \cdot 10^{-5} \) | \(a_{537}= +0.43016907 \pm 6.0 \cdot 10^{-5} \) |
\(a_{538}= +0.28035514 \pm 9.6 \cdot 10^{-5} \) | \(a_{539}= +1.43819612 \pm 5.5 \cdot 10^{-5} \) | \(a_{540}= -0.12377593 \pm 5.9 \cdot 10^{-5} \) |
\(a_{541}= +1.27699868 \pm 4.6 \cdot 10^{-5} \) | \(a_{542}= -0.00631381 \pm 8.0 \cdot 10^{-5} \) | \(a_{543}= +1.24788607 \pm 5.8 \cdot 10^{-5} \) |
\(a_{544}= +1.11972877 \pm 8.1 \cdot 10^{-5} \) | \(a_{545}= -0.31041632 \pm 4.9 \cdot 10^{-5} \) | \(a_{546}= -0.07409783 \pm 2.3 \cdot 10^{-4} \) |
\(a_{547}= +1.21594126 \pm 5.5 \cdot 10^{-5} \) | \(a_{548}= -0.29858572 \pm 6.8 \cdot 10^{-5} \) | \(a_{549}= +0.06297587 \pm 5.5 \cdot 10^{-5} \) |
\(a_{550}= -1.22599786 \pm 6.7 \cdot 10^{-5} \) | \(a_{551}= -0.86579850 \pm 3.6 \cdot 10^{-5} \) | \(a_{552}= +1.51396393 \pm 6.2 \cdot 10^{-5} \) |
\(a_{553}= -0.33838124 \pm 5.0 \cdot 10^{-5} \) | \(a_{554}= -0.23605797 \pm 9.2 \cdot 10^{-5} \) | \(a_{555}= +0.02554192 \pm 4.7 \cdot 10^{-5} \) |
\(a_{556}= -0.58280698 \pm 7.1 \cdot 10^{-5} \) | \(a_{557}= +0.40213535 \pm 6.3 \cdot 10^{-5} \) | \(a_{558}= +0.15673402 \pm 8.4 \cdot 10^{-5} \) |
\(a_{559}= -0.23950844 \pm 7.2 \cdot 10^{-5} \) | \(a_{560}= +0.05297149 \pm 4.5 \cdot 10^{-5} \) | \(a_{561}= -2.23052870 \pm 5.7 \cdot 10^{-5} \) |
\(a_{562}= -0.28398382 \pm 1.0 \cdot 10^{-4} \) | \(a_{563}= +0.14810058 \pm 8.2 \cdot 10^{-5} \) | \(a_{564}= -0.12767209 \pm 6.7 \cdot 10^{-5} \) |
\(a_{565}= -0.28134652 \pm 9.0 \cdot 10^{-5} \) | \(a_{566}= -0.31937888 \pm 5.6 \cdot 10^{-5} \) | \(a_{567}= +0.26006952 \pm 5.7 \cdot 10^{-5} \) |
\(a_{568}= +0.05755851 \pm 6.7 \cdot 10^{-5} \) | \(a_{569}= -0.36736582 \pm 6.9 \cdot 10^{-5} \) | \(a_{570}= -0.33250033 \pm 7.2 \cdot 10^{-5} \) |
\(a_{571}= -1.68421335 \pm 7.6 \cdot 10^{-5} \) | \(a_{572}= +0.18728476 \pm 1.4 \cdot 10^{-4} \) | \(a_{573}= +0.83393433 \pm 7.7 \cdot 10^{-5} \) |
\(a_{574}= +0.22344698 \pm 3.4 \cdot 10^{-5} \) | \(a_{575}= +1.50393585 \pm 4.5 \cdot 10^{-5} \) | \(a_{576}= -0.28477497 \pm 7.1 \cdot 10^{-5} \) |
\(a_{577}= +1.46595535 \pm 7.3 \cdot 10^{-5} \) | \(a_{578}= -1.04024469 \pm 5.6 \cdot 10^{-5} \) | \(a_{579}= +0.16384945 \pm 7.9 \cdot 10^{-5} \) |
\(a_{580}= -0.05696848 \pm 6.7 \cdot 10^{-5} \) | \(a_{581}= +0.56287251 \pm 3.8 \cdot 10^{-5} \) | \(a_{582}= +0.48867442 \pm 6.3 \cdot 10^{-5} \) |
\(a_{583}= -1.70306352 \pm 4.6 \cdot 10^{-5} \) | \(a_{584}= -1.17749052 \pm 6.6 \cdot 10^{-5} \) | \(a_{585}= -0.02238218 \pm 1.4 \cdot 10^{-4} \) |
\(a_{586}= +0.18025554 \pm 5.6 \cdot 10^{-5} \) | \(a_{587}= -1.06779850 \pm 7.7 \cdot 10^{-5} \) | \(a_{588}= -0.27948945 \pm 7.1 \cdot 10^{-5} \) |
\(a_{589}= -1.25233554 \pm 5.4 \cdot 10^{-5} \) | \(a_{590}= +0.18210416 \pm 6.9 \cdot 10^{-5} \) | \(a_{591}= -0.93071425 \pm 7.9 \cdot 10^{-5} \) |
\(a_{592}= +0.04691225 \pm 5.8 \cdot 10^{-5} \) | \(a_{593}= -0.71007853 \pm 7.5 \cdot 10^{-5} \) | \(a_{594}= +1.45362933 \pm 6.8 \cdot 10^{-5} \) |
\(a_{595}= +0.17888550 \pm 6.2 \cdot 10^{-5} \) | \(a_{596}= +0.55942559 \pm 7.4 \cdot 10^{-5} \) | \(a_{597}= +1.34176982 \pm 9.5 \cdot 10^{-5} \) |
\(a_{598}= +0.35481188 \pm 1.4 \cdot 10^{-4} \) | \(a_{599}= -1.45118047 \pm 7.8 \cdot 10^{-5} \) | \(a_{600}= +0.84445818 \pm 4.0 \cdot 10^{-5} \) |
\(a_{601}= +0.99161330 \pm 8.0 \cdot 10^{-5} \) | \(a_{602}= -0.27157007 \pm 7.0 \cdot 10^{-5} \) | \(a_{603}= +0.18755718 \pm 7.3 \cdot 10^{-5} \) |
\(a_{604}= -0.28117331 \pm 5.2 \cdot 10^{-5} \) | \(a_{605}= +0.56609129 \pm 4.1 \cdot 10^{-5} \) | \(a_{606}= +0.55304625 \pm 7.6 \cdot 10^{-5} \) |
\(a_{607}= -1.70259327 \pm 5.3 \cdot 10^{-5} \) | \(a_{608}= +1.26928309 \pm 5.1 \cdot 10^{-5} \) | \(a_{609}= +0.17139534 \pm 6.5 \cdot 10^{-5} \) |
\(a_{610}= +0.05113350 \pm 3.3 \cdot 10^{-5} \) | \(a_{611}= -0.10605221 \pm 7.5 \cdot 10^{-5} \) | \(a_{612}= -0.16712608 \pm 6.6 \cdot 10^{-5} \) |
\(a_{613}= -0.65044832 \pm 7.5 \cdot 10^{-5} \) | \(a_{614}= -0.53467881 \pm 4.6 \cdot 10^{-5} \) | \(a_{615}= -0.17505810 \pm 8.0 \cdot 10^{-5} \) |
\(a_{616}= +0.75267009 \pm 4.7 \cdot 10^{-5} \) | \(a_{617}= +1.91873943 \pm 9.1 \cdot 10^{-5} \) | \(a_{618}= +0.17488915 \pm 1.1 \cdot 10^{-4} \) |
\(a_{619}= +1.07435943 \pm 7.1 \cdot 10^{-5} \) | \(a_{620}= -0.08240214 \pm 7.2 \cdot 10^{-5} \) | \(a_{621}= -1.78317217 \pm 6.9 \cdot 10^{-5} \) |
\(a_{622}= +0.09072748 \pm 8.4 \cdot 10^{-5} \) | \(a_{623}= -0.54064177 \pm 7.3 \cdot 10^{-5} \) | \(a_{624}= +0.10662177 \pm 1.4 \cdot 10^{-4} \) |
\(a_{625}= +0.75476030 \pm 7.2 \cdot 10^{-5} \) | \(a_{626}= +0.22402050 \pm 6.6 \cdot 10^{-5} \) | \(a_{627}= -2.52844478 \pm 4.2 \cdot 10^{-5} \) |
\(a_{628}= -0.19605841 \pm 7.1 \cdot 10^{-5} \) | \(a_{629}= +0.15842337 \pm 6.3 \cdot 10^{-5} \) | \(a_{630}= -0.02537835 \pm 4.4 \cdot 10^{-5} \) |
\(a_{631}= +1.34783172 \pm 7.6 \cdot 10^{-5} \) | \(a_{632}= +0.90980391 \pm 6.1 \cdot 10^{-5} \) | \(a_{633}= +0.09479262 \pm 8.5 \cdot 10^{-5} \) |
\(a_{634}= +0.16196445 \pm 7.9 \cdot 10^{-5} \) | \(a_{635}= +0.34418209 \pm 6.0 \cdot 10^{-5} \) | \(a_{636}= +0.33096202 \pm 6.7 \cdot 10^{-5} \) |
\(a_{637}= -0.23216095 \pm 6.5 \cdot 10^{-5} \) | \(a_{638}= +0.66904003 \pm 5.1 \cdot 10^{-5} \) | \(a_{639}= -0.01475807 \pm 8.4 \cdot 10^{-5} \) |
\(a_{640}= -0.01872388 \pm 6.4 \cdot 10^{-5} \) | \(a_{641}= +1.45911299 \pm 6.9 \cdot 10^{-5} \) | \(a_{642}= +0.19785570 \pm 1.0 \cdot 10^{-4} \) |
\(a_{643}= -0.35543926 \pm 8.6 \cdot 10^{-5} \) | \(a_{644}= -0.26049725 \pm 7.0 \cdot 10^{-5} \) | \(a_{645}= +0.21275983 \pm 8.8 \cdot 10^{-5} \) |
\(a_{646}= -2.06232813 \pm 4.7 \cdot 10^{-5} \) | \(a_{647}= -0.82308563 \pm 5.6 \cdot 10^{-5} \) | \(a_{648}= -0.69924759 \pm 5.3 \cdot 10^{-5} \) |
\(a_{649}= +1.38478154 \pm 5.9 \cdot 10^{-5} \) | \(a_{650}= +0.19790682 \pm 1.3 \cdot 10^{-4} \) | \(a_{651}= +0.24791505 \pm 7.2 \cdot 10^{-5} \) |
\(a_{652}= +0.18459875 \pm 6.5 \cdot 10^{-5} \) | \(a_{653}= +0.79157777 \pm 7.4 \cdot 10^{-5} \) | \(a_{654}= -0.70845024 \pm 7.1 \cdot 10^{-5} \) |
\(a_{655}= -0.30322664 \pm 6.6 \cdot 10^{-5} \) | \(a_{656}= -0.32152512 \pm 5.8 \cdot 10^{-5} \) | \(a_{657}= +0.30191003 \pm 7.5 \cdot 10^{-5} \) |
\(a_{658}= -0.12024881 \pm 5.4 \cdot 10^{-5} \) | \(a_{659}= -0.71945929 \pm 5.6 \cdot 10^{-5} \) | \(a_{660}= -0.16636856 \pm 5.3 \cdot 10^{-5} \) |
\(a_{661}= -0.20536389 \pm 8.0 \cdot 10^{-5} \) | \(a_{662}= -0.00336339 \pm 1.0 \cdot 10^{-4} \) | \(a_{663}= +0.36006331 \pm 1.5 \cdot 10^{-4} \) |
\(a_{664}= -1.51339241 \pm 3.7 \cdot 10^{-5} \) | \(a_{665}= +0.20277799 \pm 3.8 \cdot 10^{-5} \) | \(a_{666}= -0.02247540 \pm 6.9 \cdot 10^{-5} \) |
\(a_{667}= -0.82071374 \pm 4.3 \cdot 10^{-5} \) | \(a_{668}= +0.57023032 \pm 7.6 \cdot 10^{-5} \) | \(a_{669}= -0.08954402 \pm 7.8 \cdot 10^{-5} \) |
\(a_{670}= +0.15228777 \pm 1.0 \cdot 10^{-4} \) | \(a_{671}= +0.38883640 \pm 5.0 \cdot 10^{-5} \) | \(a_{672}= -0.25127003 \pm 6.1 \cdot 10^{-5} \) |
\(a_{673}= +0.28888219 \pm 8.8 \cdot 10^{-5} \) | \(a_{674}= -0.22726291 \pm 7.5 \cdot 10^{-5} \) | \(a_{675}= -0.99461704 \pm 4.7 \cdot 10^{-5} \) |
\(a_{676}= -0.03023246 \pm 7.4 \cdot 10^{-5} \) | \(a_{677}= -0.26828564 \pm 8.2 \cdot 10^{-5} \) | \(a_{678}= -0.64210544 \pm 1.2 \cdot 10^{-4} \) |
\(a_{679}= -0.29802200 \pm 8.7 \cdot 10^{-5} \) | \(a_{680}= -0.48096854 \pm 4.9 \cdot 10^{-5} \) | \(a_{681}= +0.78892914 \pm 6.5 \cdot 10^{-5} \) |
\(a_{682}= +0.96773396 \pm 4.5 \cdot 10^{-5} \) | \(a_{683}= +1.35784409 \pm 6.7 \cdot 10^{-5} \) | \(a_{684}= -0.18944794 \pm 5.6 \cdot 10^{-5} \) |
\(a_{685}= +0.22032388 \pm 5.9 \cdot 10^{-5} \) | \(a_{686}= -0.57771639 \pm 4.3 \cdot 10^{-5} \) | \(a_{687}= +0.12607399 \pm 8.5 \cdot 10^{-5} \) |
\(a_{688}= +0.39077100 \pm 6.6 \cdot 10^{-5} \) | \(a_{689}= +0.27491719 \pm 5.5 \cdot 10^{-5} \) | \(a_{690}= -0.31518603 \pm 9.8 \cdot 10^{-5} \) |
\(a_{691}= -0.21553743 \pm 8.0 \cdot 10^{-5} \) | \(a_{692}= -0.42914587 \pm 8.5 \cdot 10^{-5} \) | \(a_{693}= -0.19298554 \pm 4.7 \cdot 10^{-5} \) |
\(a_{694}= +0.48979793 \pm 8.4 \cdot 10^{-5} \) | \(a_{695}= +0.43004836 \pm 6.3 \cdot 10^{-5} \) | \(a_{696}= -0.46082978 \pm 4.9 \cdot 10^{-5} \) |
\(a_{697}= -1.08579514 \pm 5.9 \cdot 10^{-5} \) | \(a_{698}= +0.62631251 \pm 5.9 \cdot 10^{-5} \) | \(a_{699}= +0.36153253 \pm 9.5 \cdot 10^{-5} \) |
\(a_{700}= -0.14530005 \pm 5.7 \cdot 10^{-5} \) | \(a_{701}= +0.36619484 \pm 6.5 \cdot 10^{-5} \) | \(a_{702}= -0.23465225 \pm 1.4 \cdot 10^{-4} \) |
\(a_{703}= +0.17958287 \pm 7.5 \cdot 10^{-5} \) | \(a_{704}= -1.75830626 \pm 6.4 \cdot 10^{-5} \) | \(a_{705}= +0.09420816 \pm 6.1 \cdot 10^{-5} \) |
\(a_{706}= +1.43827323 \pm 8.2 \cdot 10^{-5} \) | \(a_{707}= -0.33727968 \pm 4.0 \cdot 10^{-5} \) | \(a_{708}= -0.26910922 \pm 6.2 \cdot 10^{-5} \) |
\(a_{709}= +0.50462848 \pm 9.0 \cdot 10^{-5} \) | \(a_{710}= -0.01198287 \pm 8.5 \cdot 10^{-5} \) | \(a_{711}= -0.23327485 \pm 8.0 \cdot 10^{-5} \) |
\(a_{712}= +1.45362073 \pm 6.4 \cdot 10^{-5} \) | \(a_{713}= -1.18712262 \pm 4.4 \cdot 10^{-5} \) | \(a_{714}= +0.40826294 \pm 4.9 \cdot 10^{-5} \) |
\(a_{715}= -0.13819585 \pm 1.3 \cdot 10^{-4} \) | \(a_{716}= +0.19900698 \pm 5.3 \cdot 10^{-5} \) | \(a_{717}= +1.02802564 \pm 7.0 \cdot 10^{-5} \) |
\(a_{718}= +0.49505673 \pm 1.0 \cdot 10^{-4} \) | \(a_{719}= -0.79239099 \pm 7.1 \cdot 10^{-5} \) | \(a_{720}= +0.03651773 \pm 7.0 \cdot 10^{-5} \) |
\(a_{721}= -0.10665755 \pm 5.6 \cdot 10^{-5} \) | \(a_{722}= -1.55869090 \pm 6.2 \cdot 10^{-5} \) | \(a_{723}= +0.18949381 \pm 4.7 \cdot 10^{-5} \) |
\(a_{724}= +0.57730333 \pm 6.4 \cdot 10^{-5} \) | \(a_{725}= -0.45777737 \pm 3.5 \cdot 10^{-5} \) | \(a_{726}= +1.29196658 \pm 6.9 \cdot 10^{-5} \) |
\(a_{727}= -1.34393916 \pm 7.0 \cdot 10^{-5} \) | \(a_{728}= -0.12149984 \pm 1.3 \cdot 10^{-4} \) | \(a_{729}= +1.10185440 \pm 6.0 \cdot 10^{-5} \) |
\(a_{730}= +0.24513699 \pm 5.8 \cdot 10^{-5} \) | \(a_{731}= +1.31963951 \pm 7.1 \cdot 10^{-5} \) | \(a_{732}= -0.07556388 \pm 5.6 \cdot 10^{-5} \) |
\(a_{733}= +0.44638012 \pm 8.4 \cdot 10^{-5} \) | \(a_{734}= +0.19914554 \pm 1.0 \cdot 10^{-4} \) | \(a_{735}= +0.20623291 \pm 7.5 \cdot 10^{-5} \) |
\(a_{736}= +1.20318766 \pm 5.8 \cdot 10^{-5} \) | \(a_{737}= +1.15804759 \pm 6.0 \cdot 10^{-5} \) | \(a_{738}= +0.15404093 \pm 7.9 \cdot 10^{-5} \) |
\(a_{739}= -0.92655806 \pm 1.0 \cdot 10^{-4} \) | \(a_{740}= +0.01181633 \pm 7.3 \cdot 10^{-5} \) | \(a_{741}= +0.40815444 \pm 1.3 \cdot 10^{-4} \) |
\(a_{742}= +0.31171879 \pm 6.9 \cdot 10^{-5} \) | \(a_{743}= +0.75431609 \pm 7.6 \cdot 10^{-5} \) | \(a_{744}= -0.66656793 \pm 5.7 \cdot 10^{-5} \) |
\(a_{745}= -0.41279542 \pm 6.1 \cdot 10^{-5} \) | \(a_{746}= +0.06035034 \pm 5.6 \cdot 10^{-5} \) | \(a_{747}= +0.38803569 \pm 4.0 \cdot 10^{-5} \) |
\(a_{748}= -1.03189840 \pm 5.0 \cdot 10^{-5} \) | \(a_{749}= -0.12066388 \pm 7.1 \cdot 10^{-5} \) | \(a_{750}= -0.36775234 \pm 5.4 \cdot 10^{-5} \) |
\(a_{751}= -0.79370497 \pm 6.6 \cdot 10^{-5} \) | \(a_{752}= +0.17302992 \pm 6.4 \cdot 10^{-5} \) | \(a_{753}= -0.15559737 \pm 8.6 \cdot 10^{-5} \) |
\(a_{754}= -0.10799985 \pm 1.3 \cdot 10^{-4} \) | \(a_{755}= +0.20747541 \pm 5.5 \cdot 10^{-5} \) | \(a_{756}= +0.17227796 \pm 5.7 \cdot 10^{-5} \) |
\(a_{757}= -0.74360196 \pm 7.9 \cdot 10^{-5} \) | \(a_{758}= -0.88907731 \pm 9.1 \cdot 10^{-5} \) | \(a_{759}= -2.39678097 \pm 5.6 \cdot 10^{-5} \) |
\(a_{760}= -0.54520813 \pm 5.2 \cdot 10^{-5} \) | \(a_{761}= -0.94976792 \pm 7.8 \cdot 10^{-5} \) | \(a_{762}= +0.78551245 \pm 8.6 \cdot 10^{-5} \) |
\(a_{763}= +0.43205405 \pm 5.9 \cdot 10^{-5} \) | \(a_{764}= +0.38579889 \pm 7.1 \cdot 10^{-5} \) | \(a_{765}= +0.12332093 \pm 7.2 \cdot 10^{-5} \) |
\(a_{766}= -1.24457486 \pm 1.1 \cdot 10^{-4} \) | \(a_{767}= -0.22353849 \pm 6.6 \cdot 10^{-5} \) | \(a_{768}= +0.82667797 \pm 5.4 \cdot 10^{-5} \) |
\(a_{769}= -1.02779646 \pm 7.8 \cdot 10^{-5} \) | \(a_{770}= -0.15669534 \pm 4.6 \cdot 10^{-5} \) | \(a_{771}= +1.09192116 \pm 7.7 \cdot 10^{-5} \) |
\(a_{772}= +0.07580085 \pm 7.6 \cdot 10^{-5} \) | \(a_{773}= -0.60418695 \pm 7.5 \cdot 10^{-5} \) | \(a_{774}= -0.18721625 \pm 8.5 \cdot 10^{-5} \) |
\(a_{775}= -0.66215277 \pm 4.4 \cdot 10^{-5} \) | \(a_{776}= +0.80129023 \pm 5.6 \cdot 10^{-5} \) | \(a_{777}= -0.03555061 \pm 4.8 \cdot 10^{-5} \) |
\(a_{778}= +1.19623412 \pm 5.5 \cdot 10^{-5} \) | \(a_{779}= -1.23081719 \pm 4.6 \cdot 10^{-5} \) | \(a_{780}= +0.02685606 \pm 2.2 \cdot 10^{-4} \) |
\(a_{781}= -0.09112181 \pm 5.7 \cdot 10^{-5} \) | \(a_{782}= -1.95493643 \pm 5.4 \cdot 10^{-5} \) | \(a_{783}= +0.54277306 \pm 4.0 \cdot 10^{-5} \) |
\(a_{784}= +0.37878317 \pm 6.5 \cdot 10^{-5} \) | \(a_{785}= +0.14466985 \pm 7.2 \cdot 10^{-5} \) | \(a_{786}= -0.69204153 \pm 9.4 \cdot 10^{-5} \) |
\(a_{787}= +1.36466355 \pm 9.1 \cdot 10^{-5} \) | \(a_{788}= -0.43057171 \pm 7.4 \cdot 10^{-5} \) | \(a_{789}= -0.41320082 \pm 7.0 \cdot 10^{-5} \) |
\(a_{790}= -0.18940840 \pm 6.9 \cdot 10^{-5} \) | \(a_{791}= +0.39159314 \pm 7.6 \cdot 10^{-5} \) | \(a_{792}= +0.51887923 \pm 5.3 \cdot 10^{-5} \) |
\(a_{793}= -0.06276795 \pm 6.4 \cdot 10^{-5} \) | \(a_{794}= -0.71680608 \pm 6.9 \cdot 10^{-5} \) | \(a_{795}= -0.24421408 \pm 6.0 \cdot 10^{-5} \) |
\(a_{796}= +0.62073630 \pm 8.1 \cdot 10^{-5} \) | \(a_{797}= +1.52982137 \pm 6.0 \cdot 10^{-5} \) | \(a_{798}= +0.46279176 \pm 2.9 \cdot 10^{-5} \) |
\(a_{799}= +0.58432463 \pm 5.6 \cdot 10^{-5} \) | \(a_{800}= +0.67111352 \pm 5.8 \cdot 10^{-5} \) | \(a_{801}= -0.37271016 \pm 9.4 \cdot 10^{-5} \) |
\(a_{802}= +0.59389921 \pm 6.6 \cdot 10^{-5} \) | \(a_{803}= +1.86410443 \pm 7.8 \cdot 10^{-5} \) | \(a_{804}= -0.22504726 \pm 1.0 \cdot 10^{-4} \) |
\(a_{805}= +0.19221872 \pm 4.4 \cdot 10^{-5} \) | \(a_{806}= -0.15621655 \pm 1.5 \cdot 10^{-4} \) | \(a_{807}= +0.30571009 \pm 9.7 \cdot 10^{-5} \) |
\(a_{808}= +0.90684214 \pm 6.1 \cdot 10^{-5} \) | \(a_{809}= -0.36645440 \pm 7.8 \cdot 10^{-5} \) | \(a_{810}= +0.14557353 \pm 6.9 \cdot 10^{-5} \) |
\(a_{811}= -0.13855032 \pm 1.1 \cdot 10^{-4} \) | \(a_{812}= +0.07929178 \pm 6.5 \cdot 10^{-5} \) | \(a_{813}= -0.00688482 \pm 8.2 \cdot 10^{-5} \) |
\(a_{814}= -0.13877147 \pm 7.8 \cdot 10^{-5} \) | \(a_{815}= -0.13621386 \pm 7.8 \cdot 10^{-5} \) | \(a_{816}= -0.58746281 \pm 6.7 \cdot 10^{-5} \) |
\(a_{817}= +1.49589451 \pm 4.3 \cdot 10^{-5} \) | \(a_{818}= -0.56993633 \pm 7.7 \cdot 10^{-5} \) | \(a_{819}= +0.03115271 \pm 1.4 \cdot 10^{-4} \) |
\(a_{820}= -0.08098626 \pm 6.1 \cdot 10^{-5} \) | \(a_{821}= +1.25319739 \pm 7.7 \cdot 10^{-5} \) | \(a_{822}= +0.50283602 \pm 6.6 \cdot 10^{-5} \) |
\(a_{823}= -1.53325626 \pm 7.6 \cdot 10^{-5} \) | \(a_{824}= +0.28676960 \pm 4.7 \cdot 10^{-5} \) | \(a_{825}= -1.33687550 \pm 4.1 \cdot 10^{-5} \) |
\(a_{826}= -0.25346232 \pm 8.1 \cdot 10^{-5} \) | \(a_{827}= -1.26592420 \pm 8.1 \cdot 10^{-5} \) | \(a_{828}= -0.17958281 \pm 5.8 \cdot 10^{-5} \) |
\(a_{829}= -0.59173677 \pm 7.5 \cdot 10^{-5} \) | \(a_{830}= +0.31506705 \pm 4.5 \cdot 10^{-5} \) | \(a_{831}= -0.25740674 \pm 6.6 \cdot 10^{-5} \) |
\(a_{832}= +0.28383476 \pm 6.7 \cdot 10^{-5} \) | \(a_{833}= +1.27915642 \pm 6.4 \cdot 10^{-5} \) | \(a_{834}= +0.98148146 \pm 6.7 \cdot 10^{-5} \) |
\(a_{835}= -0.42076815 \pm 7.3 \cdot 10^{-5} \) | \(a_{836}= -1.16972184 \pm 4.6 \cdot 10^{-5} \) | \(a_{837}= +0.78509492 \pm 5.8 \cdot 10^{-5} \) |
\(a_{838}= +1.29019055 \pm 9.0 \cdot 10^{-5} \) | \(a_{839}= -0.08064328 \pm 9.6 \cdot 10^{-5} \) | \(a_{840}= +0.10793058 \pm 5.0 \cdot 10^{-5} \) |
\(a_{841}= -0.75018603 \pm 6.6 \cdot 10^{-5} \) | \(a_{842}= -0.32093922 \pm 8.9 \cdot 10^{-5} \) | \(a_{843}= -0.30966695 \pm 1.1 \cdot 10^{-4} \) |
\(a_{844}= +0.04385344 \pm 7.5 \cdot 10^{-5} \) | \(a_{845}= +0.02230828 \pm 7.0 \cdot 10^{-5} \) | \(a_{846}= -0.08289769 \pm 6.9 \cdot 10^{-5} \) |
\(a_{847}= -0.78791616 \pm 4.8 \cdot 10^{-5} \) | \(a_{848}= -0.44854230 \pm 5.9 \cdot 10^{-5} \) | \(a_{849}= -0.34826309 \pm 4.9 \cdot 10^{-5} \) |
\(a_{850}= -1.09042364 \pm 6.1 \cdot 10^{-5} \) | \(a_{851}= +0.17023145 \pm 4.6 \cdot 10^{-5} \) | \(a_{852}= +0.01770801 \pm 7.8 \cdot 10^{-5} \) |
\(a_{853}= -0.98318549 \pm 9.9 \cdot 10^{-5} \) | \(a_{854}= -0.07117034 \pm 8.2 \cdot 10^{-5} \) | \(a_{855}= +0.13979204 \pm 7.0 \cdot 10^{-5} \) |
\(a_{856}= +0.32442837 \pm 6.8 \cdot 10^{-5} \) | \(a_{857}= +0.58188786 \pm 7.1 \cdot 10^{-5} \) | \(a_{858}= -0.31539863 \pm 2.2 \cdot 10^{-4} \) |
\(a_{859}= +0.77472135 \pm 1.0 \cdot 10^{-4} \) | \(a_{860}= +0.09842802 \pm 7.0 \cdot 10^{-5} \) | \(a_{861}= +0.24365523 \pm 2.7 \cdot 10^{-5} \) |
\(a_{862}= +1.24949002 \pm 7.1 \cdot 10^{-5} \) | \(a_{863}= +0.98707644 \pm 9.2 \cdot 10^{-5} \) | \(a_{864}= -0.79571941 \pm 6.4 \cdot 10^{-5} \) |
\(a_{865}= +0.31666312 \pm 7.7 \cdot 10^{-5} \) | \(a_{866}= +0.99703342 \pm 8.3 \cdot 10^{-5} \) | \(a_{867}= -1.13432306 \pm 4.8 \cdot 10^{-5} \) |
\(a_{868}= +0.11469171 \pm 5.5 \cdot 10^{-5} \) | \(a_{869}= -1.44032540 \pm 7.1 \cdot 10^{-5} \) | \(a_{870}= +0.09593829 \pm 4.0 \cdot 10^{-5} \) |
\(a_{871}= -0.18693794 \pm 7.5 \cdot 10^{-5} \) | \(a_{872}= -1.16166149 \pm 3.7 \cdot 10^{-5} \) | \(a_{873}= -0.20545181 \pm 6.1 \cdot 10^{-5} \) |
\(a_{874}= -2.21604358 \pm 6.1 \cdot 10^{-5} \) | \(a_{875}= +0.22427671 \pm 4.7 \cdot 10^{-5} \) | \(a_{876}= -0.36225764 \pm 8.8 \cdot 10^{-5} \) |
\(a_{877}= +0.66172240 \pm 7.3 \cdot 10^{-5} \) | \(a_{878}= +0.79589536 \pm 6.2 \cdot 10^{-5} \) | \(a_{879}= +0.19655761 \pm 7.6 \cdot 10^{-5} \) |
\(a_{880}= +0.22547402 \pm 4.0 \cdot 10^{-5} \) | \(a_{881}= +0.01293227 \pm 7.6 \cdot 10^{-5} \) | \(a_{882}= -0.18147294 \pm 8.6 \cdot 10^{-5} \) |
\(a_{883}= +1.91075792 \pm 5.2 \cdot 10^{-5} \) | \(a_{884}= +0.16657430 \pm 1.4 \cdot 10^{-4} \) | \(a_{885}= +0.19857342 \pm 6.6 \cdot 10^{-5} \) |
\(a_{886}= -0.48969866 \pm 8.7 \cdot 10^{-5} \) | \(a_{887}= -0.63162067 \pm 7.2 \cdot 10^{-5} \) | \(a_{888}= +0.09558475 \pm 4.7 \cdot 10^{-5} \) |
\(a_{889}= -0.47905105 \pm 7.4 \cdot 10^{-5} \) | \(a_{890}= -0.30262342 \pm 1.0 \cdot 10^{-4} \) | \(a_{891}= +1.10699026 \pm 4.5 \cdot 10^{-5} \) |
\(a_{892}= -0.04142531 \pm 6.7 \cdot 10^{-5} \) | \(a_{893}= +0.66236878 \pm 6.8 \cdot 10^{-5} \) | \(a_{894}= -0.94210580 \pm 5.5 \cdot 10^{-5} \) |
\(a_{895}= -0.14684557 \pm 5.4 \cdot 10^{-5} \) | \(a_{896}= +0.02606090 \pm 6.9 \cdot 10^{-5} \) | \(a_{897}= +0.38690060 \pm 1.3 \cdot 10^{-4} \) |
\(a_{898}= -0.16812597 \pm 7.2 \cdot 10^{-5} \) | \(a_{899}= +0.36134379 \pm 6.0 \cdot 10^{-5} \) | \(a_{900}= -0.10016763 \pm 4.7 \cdot 10^{-5} \) |
\(a_{901}= -1.51473406 \pm 6.0 \cdot 10^{-5} \) | \(a_{902}= +0.95110580 \pm 5.3 \cdot 10^{-5} \) | \(a_{903}= -0.29613051 \pm 4.4 \cdot 10^{-5} \) |
\(a_{904}= -1.05287446 \pm 7.1 \cdot 10^{-5} \) | \(a_{905}= -0.42598726 \pm 5.9 \cdot 10^{-5} \) | \(a_{906}= +0.47351249 \pm 6.8 \cdot 10^{-5} \) |
\(a_{907}= +1.56457626 \pm 5.3 \cdot 10^{-5} \) | \(a_{908}= +0.36497836 \pm 6.0 \cdot 10^{-5} \) | \(a_{909}= -0.23251545 \pm 7.0 \cdot 10^{-5} \) |
\(a_{910}= +0.02529456 \pm 2.2 \cdot 10^{-4} \) | \(a_{911}= -1.06070664 \pm 4.5 \cdot 10^{-5} \) | \(a_{912}= -0.66592610 \pm 5.5 \cdot 10^{-5} \) |
\(a_{913}= +2.39587620 \pm 3.8 \cdot 10^{-5} \) | \(a_{914}= +0.40881965 \pm 8.7 \cdot 10^{-5} \) | \(a_{915}= +0.05575795 \pm 6.1 \cdot 10^{-5} \) |
\(a_{916}= +0.05832498 \pm 7.2 \cdot 10^{-5} \) | \(a_{917}= +0.42204707 \pm 5.0 \cdot 10^{-5} \) | \(a_{918}= +1.29288299 \pm 6.4 \cdot 10^{-5} \) |
\(a_{919}= -0.94546360 \pm 6.3 \cdot 10^{-5} \) | \(a_{920}= -0.51681749 \pm 5.7 \cdot 10^{-5} \) | \(a_{921}= -0.58303446 \pm 5.5 \cdot 10^{-5} \) |
\(a_{922}= -0.28774456 \pm 1.0 \cdot 10^{-4} \) | \(a_{923}= +0.01470935 \pm 7.6 \cdot 10^{-5} \) | \(a_{924}= +0.23156067 \pm 5.9 \cdot 10^{-5} \) |
\(a_{925}= +0.09495163 \pm 6.2 \cdot 10^{-5} \) | \(a_{926}= +0.13941407 \pm 1.1 \cdot 10^{-4} \) | \(a_{927}= -0.07352808 \pm 8.0 \cdot 10^{-5} \) |
\(a_{928}= -0.36623376 \pm 4.9 \cdot 10^{-5} \) | \(a_{929}= +0.25174702 \pm 6.7 \cdot 10^{-5} \) | \(a_{930}= +0.13877008 \pm 1.0 \cdot 10^{-4} \) |
\(a_{931}= +1.45000438 \pm 4.5 \cdot 10^{-5} \) | \(a_{932}= +0.16725400 \pm 9.4 \cdot 10^{-5} \) | \(a_{933}= +0.09893275 \pm 1.0 \cdot 10^{-4} \) |
\(a_{934}= +0.91222730 \pm 8.9 \cdot 10^{-5} \) | \(a_{935}= +0.76142913 \pm 4.5 \cdot 10^{-5} \) | \(a_{936}= -0.08376013 \pm 1.3 \cdot 10^{-4} \) |
\(a_{937}= -0.62234663 \pm 8.6 \cdot 10^{-5} \) | \(a_{938}= -0.21196226 \pm 6.1 \cdot 10^{-5} \) | \(a_{939}= +0.24428062 \pm 7.0 \cdot 10^{-5} \) |
\(a_{940}= +0.04358305 \pm 6.3 \cdot 10^{-5} \) | \(a_{941}= +1.14673941 \pm 8.5 \cdot 10^{-5} \) | \(a_{942}= +0.33017397 \pm 9.9 \cdot 10^{-5} \) |
\(a_{943}= -1.16672479 \pm 4.1 \cdot 10^{-5} \) | \(a_{944}= +0.36471517 \pm 6.8 \cdot 10^{-5} \) | \(a_{945}= -0.12712245 \pm 3.9 \cdot 10^{-5} \) |
\(a_{946}= -1.15594253 \pm 7.5 \cdot 10^{-5} \) | \(a_{947}= -1.91496584 \pm 6.1 \cdot 10^{-5} \) | \(a_{948}= +0.27990324 \pm 7.4 \cdot 10^{-5} \) |
\(a_{949}= -0.30091324 \pm 8.4 \cdot 10^{-5} \) | \(a_{950}= -1.23606388 \pm 4.3 \cdot 10^{-5} \) | \(a_{951}= +0.17661230 \pm 6.4 \cdot 10^{-5} \) |
\(a_{952}= +0.66943775 \pm 5.2 \cdot 10^{-5} \) | \(a_{953}= +1.13532024 \pm 6.9 \cdot 10^{-5} \) | \(a_{954}= +0.21489416 \pm 6.7 \cdot 10^{-5} \) |
\(a_{955}= -0.28467775 \pm 6.5 \cdot 10^{-5} \) | \(a_{956}= +0.47559039 \pm 6.6 \cdot 10^{-5} \) | \(a_{957}= +0.72954714 \pm 4.1 \cdot 10^{-5} \) |
\(a_{958}= -0.42101512 \pm 7.0 \cdot 10^{-5} \) | \(a_{959}= -0.30665857 \pm 7.9 \cdot 10^{-5} \) | \(a_{960}= -0.25213572 \pm 8.6 \cdot 10^{-5} \) |
\(a_{961}= -0.47733374 \pm 5.4 \cdot 10^{-5} \) | \(a_{962}= +0.02240120 \pm 1.7 \cdot 10^{-4} \) | \(a_{963}= -0.08318383 \pm 8.0 \cdot 10^{-5} \) |
\(a_{964}= +0.08766458 \pm 6.4 \cdot 10^{-5} \) | \(a_{965}= -0.05593281 \pm 7.4 \cdot 10^{-5} \) | \(a_{966}= +0.43869278 \pm 5.5 \cdot 10^{-5} \) |
\(a_{967}= -0.71081832 \pm 7.3 \cdot 10^{-5} \) | \(a_{968}= +2.11846613 \pm 3.3 \cdot 10^{-5} \) | \(a_{969}= -2.24884238 \pm 4.9 \cdot 10^{-5} \) |
\(a_{970}= -0.16681737 \pm 4.8 \cdot 10^{-5} \) | \(a_{971}= -0.57999376 \pm 8.1 \cdot 10^{-5} \) | \(a_{972}= +0.21167722 \pm 7.9 \cdot 10^{-5} \) |
\(a_{973}= -0.59856432 \pm 7.5 \cdot 10^{-5} \) | \(a_{974}= -0.22797730 \pm 9.9 \cdot 10^{-5} \) | \(a_{975}= +0.21580526 \pm 1.3 \cdot 10^{-4} \) |
\(a_{976}= +0.10240932 \pm 6.0 \cdot 10^{-5} \) | \(a_{977}= -0.76042719 \pm 6.1 \cdot 10^{-5} \) | \(a_{978}= -0.31087522 \pm 5.7 \cdot 10^{-5} \) |
\(a_{979}= -2.30125068 \pm 7.4 \cdot 10^{-5} \) | \(a_{980}= +0.09540851 \pm 5.6 \cdot 10^{-5} \) | \(a_{981}= +0.29785144 \pm 6.0 \cdot 10^{-5} \) |
\(a_{982}= +0.89299624 \pm 1.0 \cdot 10^{-4} \) | \(a_{983}= -0.12185490 \pm 8.1 \cdot 10^{-5} \) | \(a_{984}= -0.65511457 \pm 3.2 \cdot 10^{-5} \) |
\(a_{985}= +0.31771523 \pm 7.4 \cdot 10^{-5} \) | \(a_{986}= +0.59505574 \pm 4.0 \cdot 10^{-5} \) | \(a_{987}= -0.13112396 \pm 3.5 \cdot 10^{-5} \) |
\(a_{988}= +0.18882246 \pm 1.3 \cdot 10^{-4} \) | \(a_{989}= +1.41799873 \pm 5.1 \cdot 10^{-5} \) | \(a_{990}= -0.10802337 \pm 5.4 \cdot 10^{-5} \) |
\(a_{991}= -0.01896495 \pm 6.9 \cdot 10^{-5} \) | \(a_{992}= -0.52973938 \pm 8.2 \cdot 10^{-5} \) | \(a_{993}= -0.00366757 \pm 7.9 \cdot 10^{-5} \) |
\(a_{994}= +0.01667840 \pm 5.9 \cdot 10^{-5} \) | \(a_{995}= -0.45803608 \pm 7.8 \cdot 10^{-5} \) | \(a_{996}= -0.46559862 \pm 4.7 \cdot 10^{-5} \) |
\(a_{997}= +1.90786620 \pm 9.9 \cdot 10^{-5} \) | \(a_{998}= -0.00315042 \pm 8.1 \cdot 10^{-5} \) | \(a_{999}= -0.11258133 \pm 6.2 \cdot 10^{-5} \) |
\(a_{1000}= -0.60301163 \pm 4.9 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000