Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(11.8337126875639271993663271549 \pm 3 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.80672308 \pm 6.3 \cdot 10^{-6} \) | \(a_{3}= -1.21763440 \pm 6.1 \cdot 10^{-6} \) |
\(a_{4}= +2.26424828 \pm 5.7 \cdot 10^{-6} \) | \(a_{5}= +1.88999499 \pm 5.4 \cdot 10^{-6} \) | \(a_{6}= -2.19992817 \pm 6.9 \cdot 10^{-6} \) |
\(a_{7}= +0.80009276 \pm 5.5 \cdot 10^{-6} \) | \(a_{8}= +2.28414654 \pm 4.8 \cdot 10^{-6} \) | \(a_{9}= +0.48263353 \pm 5.9 \cdot 10^{-6} \) |
\(a_{10}= +3.41469757 \pm 6.2 \cdot 10^{-6} \) | \(a_{11}= -0.66448297 \pm 5.1 \cdot 10^{-6} \) | \(a_{12}= -2.75702659 \pm 6.2 \cdot 10^{-6} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +1.44554606 \pm 6.0 \cdot 10^{-6} \) | \(a_{15}= -2.30132291 \pm 6.6 \cdot 10^{-6} \) |
\(a_{16}= +1.86257199 \pm 4.9 \cdot 10^{-6} \) | \(a_{17}= +0.52529368 \pm 5.6 \cdot 10^{-6} \) | \(a_{18}= +0.87198513 \pm 6.8 \cdot 10^{-6} \) |
\(a_{19}= -0.91961006 \pm 4.5 \cdot 10^{-6} \) | \(a_{20}= +4.27941791 \pm 5.6 \cdot 10^{-6} \) | \(a_{21}= -0.97422047 \pm 4.7 \cdot 10^{-6} \) |
\(a_{22}= -1.20053672 \pm 5.6 \cdot 10^{-6} \) | \(a_{23}= +1.15154304 \pm 4.6 \cdot 10^{-6} \) | \(a_{24}= -2.78125540 \pm 4.6 \cdot 10^{-6} \) |
\(a_{25}= +2.57208106 \pm 4.2 \cdot 10^{-6} \) | \(a_{26}= +0.50109482 \pm 6.3 \cdot 10^{-6} \) | \(a_{27}= +0.62996322 \pm 4.9 \cdot 10^{-6} \) |
\(a_{28}= +1.81160866 \pm 5.2 \cdot 10^{-6} \) | \(a_{29}= +0.04625535 \pm 4.1 \cdot 10^{-6} \) | \(a_{30}= -4.15785321 \pm 7.9 \cdot 10^{-6} \) |
\(a_{31}= -0.15208597 \pm 5.9 \cdot 10^{-6} \) | \(a_{32}= +1.08100526 \pm 6.4 \cdot 10^{-6} \) | \(a_{33}= +0.80909732 \pm 4.4 \cdot 10^{-6} \) |
\(a_{34}= +0.94906021 \pm 6.1 \cdot 10^{-6} \) | \(a_{35}= +1.51217131 \pm 4.5 \cdot 10^{-6} \) | \(a_{36}= +1.09280213 \pm 5.5 \cdot 10^{-6} \) |
\(a_{37}= +0.18419875 \pm 6.8 \cdot 10^{-6} \) | \(a_{38}= -1.66148072 \pm 4.3 \cdot 10^{-6} \) | \(a_{39}= -0.33771102 \pm 6.1 \cdot 10^{-6} \) |
\(a_{40}= +4.31702552 \pm 4.7 \cdot 10^{-6} \) | \(a_{41}= +1.41220945 \pm 5.0 \cdot 10^{-6} \) | \(a_{42}= -1.76014660 \pm 3.9 \cdot 10^{-6} \) |
\(a_{43}= -0.22158353 \pm 5.5 \cdot 10^{-6} \) | \(a_{44}= -1.50455442 \pm 5.3 \cdot 10^{-6} \) | \(a_{45}= +0.91217495 \pm 6.0 \cdot 10^{-6} \) |
\(a_{46}= +2.08051939 \pm 6.0 \cdot 10^{-6} \) | \(a_{47}= -1.51353262 \pm 5.7 \cdot 10^{-6} \) | \(a_{48}= -2.26793173 \pm 5.6 \cdot 10^{-6} \) |
\(a_{49}= -0.35985157 \pm 5.0 \cdot 10^{-6} \) | \(a_{50}= +4.64703821 \pm 5.0 \cdot 10^{-6} \) | \(a_{51}= -0.63961565 \pm 6.5 \cdot 10^{-6} \) |
\(a_{52}= +0.62798948 \pm 5.7 \cdot 10^{-6} \) | \(a_{53}= +0.58417666 \pm 4.2 \cdot 10^{-6} \) | \(a_{54}= +1.13816908 \pm 5.7 \cdot 10^{-6} \) |
\(a_{55}= -1.25586949 \pm 3.7 \cdot 10^{-6} \) | \(a_{56}= +1.82752911 \pm 4.2 \cdot 10^{-6} \) | \(a_{57}= +1.11974884 \pm 4.4 \cdot 10^{-6} \) |
\(a_{58}= +0.08357061 \pm 4.0 \cdot 10^{-6} \) | \(a_{59}= -0.38073459 \pm 5.1 \cdot 10^{-6} \) | \(a_{60}= -5.21076644 \pm 6.6 \cdot 10^{-6} \) |
\(a_{61}= +0.48402412 \pm 4.9 \cdot 10^{-6} \) | \(a_{62}= -0.27477723 \pm 5.2 \cdot 10^{-6} \) | \(a_{63}= +0.38615159 \pm 4.2 \cdot 10^{-6} \) |
\(a_{64}= +0.09050516 \pm 5.1 \cdot 10^{-6} \) | \(a_{65}= +0.52419030 \pm 5.4 \cdot 10^{-6} \) | \(a_{66}= +1.46181480 \pm 5.0 \cdot 10^{-6} \) |
\(a_{67}= -0.76124632 \pm 5.8 \cdot 10^{-6} \) | \(a_{68}= +1.18939531 \pm 4.9 \cdot 10^{-6} \) | \(a_{69}= -1.40215842 \pm 5.7 \cdot 10^{-6} \) |
\(a_{70}= +2.73207480 \pm 4.4 \cdot 10^{-6} \) | \(a_{71}= +0.62693424 \pm 5.9 \cdot 10^{-6} \) | \(a_{72}= +1.10240570 \pm 4.7 \cdot 10^{-6} \) |
\(a_{73}= -0.82520319 \pm 6.5 \cdot 10^{-6} \) | \(a_{74}= +0.33279613 \pm 6.3 \cdot 10^{-6} \) | \(a_{75}= -3.13185438 \pm 3.3 \cdot 10^{-6} \) |
\(a_{76}= -2.08222550 \pm 4.1 \cdot 10^{-6} \) | \(a_{77}= -0.53164802 \pm 5.2 \cdot 10^{-6} \) | \(a_{78}= -0.61015029 \pm 1.2 \cdot 10^{-5} \) |
\(a_{79}= +1.35611152 \pm 6.0 \cdot 10^{-6} \) | \(a_{80}= +3.52025173 \pm 4.6 \cdot 10^{-6} \) | \(a_{81}= -1.24969841 \pm 4.9 \cdot 10^{-6} \) |
\(a_{82}= +2.55147140 \pm 5.5 \cdot 10^{-6} \) | \(a_{83}= +0.25960819 \pm 3.6 \cdot 10^{-6} \) | \(a_{84}= -2.20587702 \pm 4.5 \cdot 10^{-6} \) |
\(a_{85}= +0.99280242 \pm 5.2 \cdot 10^{-6} \) | \(a_{86}= -0.40034008 \pm 6.6 \cdot 10^{-6} \) | \(a_{87}= -0.05632211 \pm 4.3 \cdot 10^{-6} \) |
\(a_{88}= -1.51777648 \pm 4.0 \cdot 10^{-6} \) | \(a_{89}= -1.93282484 \pm 7.1 \cdot 10^{-6} \) | \(a_{90}= +1.64804753 \pm 7.4 \cdot 10^{-6} \) |
\(a_{91}= +0.22190581 \pm 5.6 \cdot 10^{-6} \) | \(a_{92}= +2.60737936 \pm 5.1 \cdot 10^{-6} \) | \(a_{93}= +0.18518511 \pm 6.4 \cdot 10^{-6} \) |
\(a_{94}= -2.73453431 \pm 4.8 \cdot 10^{-6} \) | \(a_{95}= -1.73805841 \pm 4.0 \cdot 10^{-6} \) | \(a_{96}= -1.31626919 \pm 6.9 \cdot 10^{-6} \) |
\(a_{97}= +1.30498490 \pm 5.8 \cdot 10^{-6} \) | \(a_{98}= -0.65015214 \pm 6.0 \cdot 10^{-6} \) | \(a_{99}= -0.32070176 \pm 4.3 \cdot 10^{-6} \) |
\(a_{100}= +5.82383012 \pm 4.3 \cdot 10^{-6} \) | \(a_{101}= +0.09660379 \pm 4.2 \cdot 10^{-6} \) | \(a_{102}= -1.15560836 \pm 6.9 \cdot 10^{-6} \) |
\(a_{103}= -1.19692726 \pm 5.9 \cdot 10^{-6} \) | \(a_{104}= +0.63350827 \pm 4.8 \cdot 10^{-6} \) | \(a_{105}= -1.84127180 \pm 4.4 \cdot 10^{-6} \) |
\(a_{106}= +1.05544546 \pm 5.3 \cdot 10^{-6} \) | \(a_{107}= -0.68492512 \pm 6.3 \cdot 10^{-6} \) | \(a_{108}= +1.42639313 \pm 5.1 \cdot 10^{-6} \) |
\(a_{109}= +0.05752036 \pm 4.1 \cdot 10^{-6} \) | \(a_{110}= -2.26900838 \pm 4.1 \cdot 10^{-6} \) | \(a_{111}= -0.22428673 \pm 3.8 \cdot 10^{-6} \) |
\(a_{112}= +1.49023037 \pm 4.8 \cdot 10^{-6} \) | \(a_{113}= -0.83153969 \pm 7.1 \cdot 10^{-6} \) | \(a_{114}= +2.02307608 \pm 4.8 \cdot 10^{-6} \) |
\(a_{115}= +2.17641058 \pm 4.8 \cdot 10^{-6} \) | \(a_{116}= +0.10473360 \pm 4.6 \cdot 10^{-6} \) | \(a_{117}= +0.13385846 \pm 5.9 \cdot 10^{-6} \) |
\(a_{118}= -0.68788197 \pm 5.6 \cdot 10^{-6} \) | \(a_{119}= +0.42028367 \pm 6.1 \cdot 10^{-6} \) | \(a_{120}= -5.25655877 \pm 5.0 \cdot 10^{-6} \) |
\(a_{121}= -0.55846238 \pm 3.7 \cdot 10^{-6} \) | \(a_{122}= +0.87449754 \pm 4.7 \cdot 10^{-6} \) | \(a_{123}= -1.71955480 \pm 5.6 \cdot 10^{-6} \) |
\(a_{124}= -0.34436040 \pm 5.4 \cdot 10^{-6} \) | \(a_{125}= +2.97122533 \pm 4.5 \cdot 10^{-6} \) | \(a_{126}= +0.69766899 \pm 4.5 \cdot 10^{-6} \) |
\(a_{127}= -1.54575135 \pm 5.9 \cdot 10^{-6} \) | \(a_{128}= -0.91748750 \pm 4.9 \cdot 10^{-6} \) | \(a_{129}= +0.26980773 \pm 6.1 \cdot 10^{-6} \) |
\(a_{130}= +0.94706670 \pm 1.1 \cdot 10^{-5} \) | \(a_{131}= -0.21582805 \pm 4.8 \cdot 10^{-6} \) | \(a_{132}= +1.83199722 \pm 5.0 \cdot 10^{-6} \) |
\(a_{133}= -0.73577335 \pm 3.4 \cdot 10^{-6} \) | \(a_{134}= -1.37536129 \pm 7.0 \cdot 10^{-6} \) | \(a_{135}= +1.19062732 \pm 4.4 \cdot 10^{-6} \) |
\(a_{136}= +1.19984774 \pm 3.4 \cdot 10^{-6} \) | \(a_{137}= -0.74071083 \pm 5.7 \cdot 10^{-6} \) | \(a_{138}= -2.53331198 \pm 6.9 \cdot 10^{-6} \) |
\(a_{139}= +0.09825245 \pm 5.2 \cdot 10^{-6} \) | \(a_{140}= +3.42393129 \pm 4.3 \cdot 10^{-6} \) | \(a_{141}= +1.84292938 \pm 4.6 \cdot 10^{-6} \) |
\(a_{142}= +1.13269657 \pm 6.1 \cdot 10^{-6} \) | \(a_{143}= -0.18429442 \pm 5.1 \cdot 10^{-6} \) | \(a_{144}= +0.89893969 \pm 5.2 \cdot 10^{-6} \) |
\(a_{145}= +0.08742238 \pm 3.9 \cdot 10^{-6} \) | \(a_{146}= -1.49091365 \pm 6.1 \cdot 10^{-6} \) | \(a_{147}= +0.43816765 \pm 5.2 \cdot 10^{-6} \) |
\(a_{148}= +0.41707169 \pm 5.9 \cdot 10^{-6} \) | \(a_{149}= +0.87541887 \pm 5.3 \cdot 10^{-6} \) | \(a_{150}= -5.65839358 \pm 4.3 \cdot 10^{-6} \) |
\(a_{151}= +0.14346727 \pm 4.2 \cdot 10^{-6} \) | \(a_{152}= -2.10052414 \pm 3.8 \cdot 10^{-6} \) | \(a_{153}= +0.25352434 \pm 5.4 \cdot 10^{-6} \) |
\(a_{154}= -0.96054074 \pm 6.6 \cdot 10^{-6} \) | \(a_{155}= -0.28744172 \pm 5.6 \cdot 10^{-6} \) | \(a_{156}= -0.76466160 \pm 1.1 \cdot 10^{-5} \) |
\(a_{157}= -0.22952677 \pm 6.2 \cdot 10^{-6} \) | \(a_{158}= +2.45011798 \pm 5.3 \cdot 10^{-6} \) | \(a_{159}= -0.71131360 \pm 4.2 \cdot 10^{-6} \) |
\(a_{160}= +2.04309452 \pm 5.8 \cdot 10^{-6} \) | \(a_{161}= +0.92134125 \pm 4.1 \cdot 10^{-6} \) | \(a_{162}= -2.25785895 \pm 4.8 \cdot 10^{-6} \) |
\(a_{163}= -1.08741499 \pm 6.9 \cdot 10^{-6} \) | \(a_{164}= +3.19759282 \pm 5.1 \cdot 10^{-6} \) | \(a_{165}= +1.52918989 \pm 4.1 \cdot 10^{-6} \) |
\(a_{166}= +0.46904010 \pm 3.7 \cdot 10^{-6} \) | \(a_{167}= -0.02783566 \pm 6.6 \cdot 10^{-6} \) | \(a_{168}= -2.22526231 \pm 3.9 \cdot 10^{-6} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +1.79371904 \pm 5.7 \cdot 10^{-6} \) | \(a_{171}= -0.44383465 \pm 5.2 \cdot 10^{-6} \) |
\(a_{172}= -0.50172013 \pm 5.7 \cdot 10^{-6} \) | \(a_{173}= -0.36921841 \pm 6.7 \cdot 10^{-6} \) | \(a_{174}= -0.10175845 \pm 3.1 \cdot 10^{-6} \) |
\(a_{175}= +2.05790344 \pm 4.5 \cdot 10^{-6} \) | \(a_{176}= -1.23764737 \pm 4.2 \cdot 10^{-6} \) | \(a_{177}= +0.46359554 \pm 4.7 \cdot 10^{-6} \) |
\(a_{178}= -3.49207924 \pm 8.1 \cdot 10^{-6} \) | \(a_{179}= +0.26211190 \pm 4.3 \cdot 10^{-6} \) | \(a_{180}= +2.06539055 \pm 5.7 \cdot 10^{-6} \) |
\(a_{181}= +0.53031990 \pm 5.6 \cdot 10^{-6} \) | \(a_{182}= +0.40092234 \pm 1.1 \cdot 10^{-5} \) | \(a_{183}= -0.58936442 \pm 4.8 \cdot 10^{-6} \) |
\(a_{184}= +2.63029306 \pm 3.8 \cdot 10^{-6} \) | \(a_{185}= +0.34813471 \pm 4.9 \cdot 10^{-6} \) | \(a_{186}= +0.33457821 \pm 6.6 \cdot 10^{-6} \) |
\(a_{187}= -0.34904870 \pm 4.4 \cdot 10^{-6} \) | \(a_{188}= -3.42701363 \pm 5.3 \cdot 10^{-6} \) | \(a_{189}= +0.50402901 \pm 4.2 \cdot 10^{-6} \) |
\(a_{190}= -3.14019024 \pm 4.5 \cdot 10^{-6} \) | \(a_{191}= +0.69812744 \pm 5.1 \cdot 10^{-6} \) | \(a_{192}= -0.11020219 \pm 5.8 \cdot 10^{-6} \) |
\(a_{193}= -1.13492930 \pm 6.0 \cdot 10^{-6} \) | \(a_{194}= +2.35774633 \pm 5.5 \cdot 10^{-6} \) | \(a_{195}= -0.63827214 \pm 1.1 \cdot 10^{-5} \) |
\(a_{196}= -0.81479331 \pm 4.6 \cdot 10^{-6} \) | \(a_{197}= -0.81522046 \pm 5.2 \cdot 10^{-6} \) | \(a_{198}= -0.57941927 \pm 4.7 \cdot 10^{-6} \) |
\(a_{199}= -0.93464215 \pm 5.8 \cdot 10^{-6} \) | \(a_{200}= +5.87501007 \pm 3.4 \cdot 10^{-6} \) | \(a_{201}= +0.92691970 \pm 7.3 \cdot 10^{-6} \) |
\(a_{202}= +0.17453630 \pm 5.0 \cdot 10^{-6} \) | \(a_{203}= +0.03700857 \pm 4.7 \cdot 10^{-6} \) | \(a_{204}= -1.44824864 \pm 6.1 \cdot 10^{-6} \) |
\(a_{205}= +2.66906879 \pm 4.5 \cdot 10^{-6} \) | \(a_{206}= -2.16251610 \pm 6.9 \cdot 10^{-6} \) | \(a_{207}= +0.55577328 \pm 5.6 \cdot 10^{-6} \) |
\(a_{208}= +0.51658452 \pm 4.9 \cdot 10^{-6} \) | \(a_{209}= +0.61106523 \pm 3.8 \cdot 10^{-6} \) | \(a_{210}= -3.32666826 \pm 3.0 \cdot 10^{-6} \) |
\(a_{211}= -1.69749910 \pm 6.5 \cdot 10^{-6} \) | \(a_{212}= +1.32272101 \pm 4.5 \cdot 10^{-6} \) | \(a_{213}= -0.76337670 \pm 6.5 \cdot 10^{-6} \) |
\(a_{214}= -1.23747002 \pm 7.4 \cdot 10^{-6} \) | \(a_{215}= -0.41879177 \pm 5.1 \cdot 10^{-6} \) | \(a_{216}= +1.43892830 \pm 3.8 \cdot 10^{-6} \) |
\(a_{217}= -0.12168288 \pm 5.3 \cdot 10^{-6} \) | \(a_{218}= +0.10392337 \pm 4.5 \cdot 10^{-6} \) | \(a_{219}= +1.00479579 \pm 6.7 \cdot 10^{-6} \) |
\(a_{220}= -2.84360033 \pm 4.0 \cdot 10^{-6} \) | \(a_{221}= +0.14569025 \pm 5.6 \cdot 10^{-6} \) | \(a_{222}= -0.40522401 \pm 4.0 \cdot 10^{-6} \) |
\(a_{223}= -0.65095779 \pm 5.7 \cdot 10^{-6} \) | \(a_{224}= +0.86490448 \pm 5.7 \cdot 10^{-6} \) | \(a_{225}= +1.24137255 \pm 3.5 \cdot 10^{-6} \) |
\(a_{226}= -1.50236195 \pm 7.5 \cdot 10^{-6} \) | \(a_{227}= +1.03144115 \pm 4.3 \cdot 10^{-6} \) | \(a_{228}= +2.53538939 \pm 3.7 \cdot 10^{-6} \) |
\(a_{229}= +1.51468313 \pm 5.7 \cdot 10^{-6} \) | \(a_{230}= +3.93217123 \pm 6.0 \cdot 10^{-6} \) | \(a_{231}= +0.64735291 \pm 4.1 \cdot 10^{-6} \) |
\(a_{232}= +0.10565400 \pm 3.6 \cdot 10^{-6} \) | \(a_{233}= +0.96645414 \pm 7.2 \cdot 10^{-6} \) | \(a_{234}= +0.24184516 \pm 1.2 \cdot 10^{-5} \) |
\(a_{235}= -2.86056907 \pm 4.2 \cdot 10^{-6} \) | \(a_{236}= -0.86207765 \pm 5.1 \cdot 10^{-6} \) | \(a_{237}= -1.65124804 \pm 5.7 \cdot 10^{-6} \) |
\(a_{238}= +0.75933620 \pm 6.2 \cdot 10^{-6} \) | \(a_{239}= +0.78539527 \pm 5.2 \cdot 10^{-6} \) | \(a_{240}= -4.28637960 \pm 6.2 \cdot 10^{-6} \) |
\(a_{241}= +0.60846119 \pm 4.7 \cdot 10^{-6} \) | \(a_{242}= -1.00898687 \pm 4.6 \cdot 10^{-6} \) | \(a_{243}= +0.89171255 \pm 6.0 \cdot 10^{-6} \) |
\(a_{244}= +1.09595078 \pm 4.0 \cdot 10^{-6} \) | \(a_{245}= -0.68011767 \pm 4.8 \cdot 10^{-6} \) | \(a_{246}= -3.10675935 \pm 7.4 \cdot 10^{-6} \) |
\(a_{247}= -0.25505394 \pm 4.5 \cdot 10^{-6} \) | \(a_{248}= -0.34738664 \pm 4.5 \cdot 10^{-6} \) | \(a_{249}= -0.31610786 \pm 3.2 \cdot 10^{-6} \) |
\(a_{250}= +5.36818138 \pm 3.4 \cdot 10^{-6} \) | \(a_{251}= -0.47924575 \pm 6.4 \cdot 10^{-6} \) | \(a_{252}= +0.87434307 \pm 3.7 \cdot 10^{-6} \) |
\(a_{253}= -0.76518074 \pm 4.5 \cdot 10^{-6} \) | \(a_{254}= -2.79274463 \pm 6.5 \cdot 10^{-6} \) | \(a_{255}= -1.20887038 \pm 7.1 \cdot 10^{-6} \) |
\(a_{256}= -1.74815100 \pm 5.3 \cdot 10^{-6} \) | \(a_{257}= +0.75177840 \pm 6.5 \cdot 10^{-6} \) | \(a_{258}= +0.48746785 \pm 8.0 \cdot 10^{-6} \) |
\(a_{259}= +0.14737608 \pm 6.2 \cdot 10^{-6} \) | \(a_{260}= +1.18689698 \pm 1.1 \cdot 10^{-5} \) | \(a_{261}= +0.02232438 \pm 2.9 \cdot 10^{-6} \) |
\(a_{262}= -0.38994152 \pm 5.9 \cdot 10^{-6} \) | \(a_{263}= -0.41542703 \pm 5.7 \cdot 10^{-6} \) | \(a_{264}= +1.84809685 \pm 3.9 \cdot 10^{-6} \) |
\(a_{265}= +1.10409097 \pm 3.5 \cdot 10^{-6} \) | \(a_{266}= -1.32933870 \pm 3.9 \cdot 10^{-6} \) | \(a_{267}= +2.35347401 \pm 7.0 \cdot 10^{-6} \) |
\(a_{268}= -1.72365066 \pm 5.9 \cdot 10^{-6} \) | \(a_{269}= +1.33206630 \pm 6.6 \cdot 10^{-6} \) | \(a_{270}= +2.15113386 \pm 5.4 \cdot 10^{-6} \) |
\(a_{271}= -0.90369284 \pm 5.5 \cdot 10^{-6} \) | \(a_{272}= +0.97839729 \pm 5.1 \cdot 10^{-6} \) | \(a_{273}= -0.27020014 \pm 1.1 \cdot 10^{-5} \) |
\(a_{274}= -1.33825935 \pm 5.7 \cdot 10^{-6} \) | \(a_{275}= -1.70910407 \pm 4.2 \cdot 10^{-6} \) | \(a_{276}= -3.17483479 \pm 4.9 \cdot 10^{-6} \) |
\(a_{277}= +0.87195593 \pm 5.7 \cdot 10^{-6} \) | \(a_{278}= +0.17751496 \pm 5.0 \cdot 10^{-6} \) | \(a_{279}= -0.07340179 \pm 5.8 \cdot 10^{-6} \) |
\(a_{280}= +3.45402087 \pm 4.3 \cdot 10^{-6} \) | \(a_{281}= -1.81293794 \pm 8.4 \cdot 10^{-6} \) | \(a_{282}= +3.32966304 \pm 5.2 \cdot 10^{-6} \) |
\(a_{283}= -1.63606799 \pm 4.4 \cdot 10^{-6} \) | \(a_{284}= +1.41953478 \pm 5.2 \cdot 10^{-6} \) | \(a_{285}= +2.11631970 \pm 4.8 \cdot 10^{-6} \) |
\(a_{286}= -0.33296898 \pm 1.1 \cdot 10^{-5} \) | \(a_{287}= +1.12989856 \pm 2.7 \cdot 10^{-6} \) | \(a_{288}= +0.52172938 \pm 6.4 \cdot 10^{-6} \) |
\(a_{289}= -0.72406655 \pm 4.6 \cdot 10^{-6} \) | \(a_{290}= +0.15794804 \pm 4.2 \cdot 10^{-6} \) | \(a_{291}= -1.58899450 \pm 5.7 \cdot 10^{-6} \) |
\(a_{292}= -1.86846491 \pm 6.2 \cdot 10^{-6} \) | \(a_{293}= -0.55434576 \pm 4.9 \cdot 10^{-6} \) | \(a_{294}= +0.79164761 \pm 6.7 \cdot 10^{-6} \) |
\(a_{295}= -0.71958647 \pm 4.6 \cdot 10^{-6} \) | \(a_{296}= +0.42073693 \pm 6.2 \cdot 10^{-6} \) | \(a_{297}= -0.41859983 \pm 4.4 \cdot 10^{-6} \) |
\(a_{298}= +1.58163948 \pm 5.5 \cdot 10^{-6} \) | \(a_{299}= +0.31938058 \pm 4.6 \cdot 10^{-6} \) | \(a_{300}= -7.09129588 \pm 3.9 \cdot 10^{-6} \) |
\(a_{301}= -0.17728738 \pm 4.6 \cdot 10^{-6} \) | \(a_{302}= +0.25920564 \pm 4.1 \cdot 10^{-6} \) | \(a_{303}= -0.11762810 \pm 4.7 \cdot 10^{-6} \) |
\(a_{304}= -1.71283994 \pm 3.6 \cdot 10^{-6} \) | \(a_{305}= +0.91480316 \pm 4.0 \cdot 10^{-6} \) | \(a_{306}= +0.45804828 \pm 6.6 \cdot 10^{-6} \) |
\(a_{307}= +0.48809050 \pm 4.3 \cdot 10^{-6} \) | \(a_{308}= -1.20378310 \pm 5.6 \cdot 10^{-6} \) | \(a_{309}= +1.45741980 \pm 6.7 \cdot 10^{-6} \) |
\(a_{310}= -0.51932759 \pm 5.6 \cdot 10^{-6} \) | \(a_{311}= +1.71528644 \pm 7.3 \cdot 10^{-6} \) | \(a_{312}= -0.77138146 \pm 1.0 \cdot 10^{-5} \) |
\(a_{313}= +0.98474662 \pm 4.2 \cdot 10^{-6} \) | \(a_{314}= -0.41469131 \pm 5.9 \cdot 10^{-6} \) | \(a_{315}= +0.72982457 \pm 3.4 \cdot 10^{-6} \) |
\(a_{316}= +3.07057318 \pm 5.3 \cdot 10^{-6} \) | \(a_{317}= +1.08173422 \pm 5.4 \cdot 10^{-6} \) | \(a_{318}= -1.28514670 \pm 5.5 \cdot 10^{-6} \) |
\(a_{319}= -0.03073589 \pm 3.3 \cdot 10^{-6} \) | \(a_{320}= +0.17105429 \pm 5.1 \cdot 10^{-6} \) | \(a_{321}= +0.83398839 \pm 6.2 \cdot 10^{-6} \) |
\(a_{322}= +1.66460851 \pm 5.9 \cdot 10^{-6} \) | \(a_{323}= -0.48306535 \pm 3.3 \cdot 10^{-6} \) | \(a_{324}= -2.82962746 \pm 4.7 \cdot 10^{-6} \) |
\(a_{325}= +0.71336694 \pm 4.2 \cdot 10^{-6} \) | \(a_{326}= -1.96465775 \pm 4.9 \cdot 10^{-6} \) | \(a_{327}= -0.07003877 \pm 4.8 \cdot 10^{-6} \) |
\(a_{328}= +3.22569333 \pm 2.4 \cdot 10^{-6} \) | \(a_{329}= -1.21096649 \pm 4.2 \cdot 10^{-6} \) | \(a_{330}= +2.76282266 \pm 4.6 \cdot 10^{-6} \) |
\(a_{331}= -1.39290122 \pm 6.5 \cdot 10^{-6} \) | \(a_{332}= +0.58781739 \pm 3.4 \cdot 10^{-6} \) | \(a_{333}= +0.08890049 \pm 5.9 \cdot 10^{-6} \) |
\(a_{334}= -0.05029133 \pm 6.6 \cdot 10^{-6} \) | \(a_{335}= -1.43875172 \pm 6.1 \cdot 10^{-6} \) | \(a_{336}= -1.81455576 \pm 3.4 \cdot 10^{-6} \) |
\(a_{337}= -1.44784369 \pm 6.0 \cdot 10^{-6} \) | \(a_{338}= +0.13897870 \pm 6.3 \cdot 10^{-6} \) | \(a_{339}= +1.01251133 \pm 7.6 \cdot 10^{-6} \) |
\(a_{340}= +2.24795117 \pm 4.8 \cdot 10^{-6} \) | \(a_{341}= +0.10105854 \pm 4.3 \cdot 10^{-6} \) | \(a_{342}= -0.80188630 \pm 5.8 \cdot 10^{-6} \) |
\(a_{343}= -1.08800740 \pm 4.1 \cdot 10^{-6} \) | \(a_{344}= -0.50612926 \pm 3.3 \cdot 10^{-6} \) | \(a_{345}= -2.65007239 \pm 6.4 \cdot 10^{-6} \) |
\(a_{346}= -0.66707542 \pm 6.3 \cdot 10^{-6} \) | \(a_{347}= +1.48658044 \pm 7.3 \cdot 10^{-6} \) | \(a_{348}= -0.12752723 \pm 4.4 \cdot 10^{-6} \) |
\(a_{349}= +1.21873655 \pm 6.1 \cdot 10^{-6} \) | \(a_{350}= +3.71806164 \pm 5.9 \cdot 10^{-6} \) | \(a_{351}= +0.17472036 \pm 4.9 \cdot 10^{-6} \) |
\(a_{352}= -0.71830959 \pm 5.4 \cdot 10^{-6} \) | \(a_{353}= -0.47853283 \pm 4.9 \cdot 10^{-6} \) | \(a_{354}= +0.83758875 \pm 5.1 \cdot 10^{-6} \) |
\(a_{355}= +1.18490258 \pm 5.8 \cdot 10^{-6} \) | \(a_{356}= -4.37639531 \pm 6.3 \cdot 10^{-6} \) | \(a_{357}= -0.51175185 \pm 5.7 \cdot 10^{-6} \) |
\(a_{358}= +0.47356363 \pm 4.1 \cdot 10^{-6} \) | \(a_{359}= -1.10772557 \pm 7.8 \cdot 10^{-6} \) | \(a_{360}= +2.08354125 \pm 4.5 \cdot 10^{-6} \) |
\(a_{361}= -0.15431733 \pm 4.1 \cdot 10^{-6} \) | \(a_{362}= +0.95814120 \pm 6.1 \cdot 10^{-6} \) | \(a_{363}= +0.68000300 \pm 4.2 \cdot 10^{-6} \) |
\(a_{364}= +0.50244984 \pm 1.1 \cdot 10^{-5} \) | \(a_{365}= -1.55962990 \pm 5.3 \cdot 10^{-6} \) | \(a_{366}= -1.06481829 \pm 3.5 \cdot 10^{-6} \) |
\(a_{367}= +0.12087121 \pm 6.5 \cdot 10^{-6} \) | \(a_{368}= +2.14483182 \pm 4.2 \cdot 10^{-6} \) | \(a_{369}= +0.68157963 \pm 4.5 \cdot 10^{-6} \) |
\(a_{370}= +0.62898301 \pm 5.1 \cdot 10^{-6} \) | \(a_{371}= +0.46739552 \pm 4.3 \cdot 10^{-6} \) | \(a_{372}= +0.41930506 \pm 6.7 \cdot 10^{-6} \) |
\(a_{373}= +0.80811813 \pm 4.2 \cdot 10^{-6} \) | \(a_{374}= -0.63063435 \pm 4.7 \cdot 10^{-6} \) | \(a_{375}= -3.61786617 \pm 4.5 \cdot 10^{-6} \) |
\(a_{376}= -3.45713030 \pm 5.0 \cdot 10^{-6} \) | \(a_{377}= +0.01282893 \pm 4.1 \cdot 10^{-6} \) | \(a_{378}= +0.91064084 \pm 5.2 \cdot 10^{-6} \) |
\(a_{379}= +0.15650161 \pm 5.4 \cdot 10^{-6} \) | \(a_{380}= -3.93539576 \pm 4.2 \cdot 10^{-6} \) | \(a_{381}= +1.88216001 \pm 5.4 \cdot 10^{-6} \) |
\(a_{382}= +1.26132296 \pm 6.0 \cdot 10^{-6} \) | \(a_{383}= +1.53983565 \pm 8.0 \cdot 10^{-6} \) | \(a_{384}= +1.11716434 \pm 4.9 \cdot 10^{-6} \) |
\(a_{385}= -1.00481209 \pm 3.3 \cdot 10^{-6} \) | \(a_{386}= -2.05050296 \pm 5.7 \cdot 10^{-6} \) | \(a_{387}= -0.10694364 \pm 5.1 \cdot 10^{-6} \) |
\(a_{388}= +2.95480981 \pm 5.5 \cdot 10^{-6} \) | \(a_{389}= -0.51978214 \pm 5.2 \cdot 10^{-6} \) | \(a_{390}= -1.15318100 \pm 1.7 \cdot 10^{-5} \) |
\(a_{391}= +0.60489828 \pm 3.2 \cdot 10^{-6} \) | \(a_{392}= -0.82195373 \pm 3.8 \cdot 10^{-6} \) | \(a_{393}= +0.26279966 \pm 5.4 \cdot 10^{-6} \) |
\(a_{394}= -1.47287762 \pm 6.0 \cdot 10^{-6} \) | \(a_{395}= +2.56304398 \pm 4.8 \cdot 10^{-6} \) | \(a_{396}= -0.72614841 \pm 4.4 \cdot 10^{-6} \) |
\(a_{397}= -1.67856862 \pm 4.5 \cdot 10^{-6} \) | \(a_{398}= -1.68863953 \pm 6.7 \cdot 10^{-6} \) | \(a_{399}= +0.89590294 \pm 2.3 \cdot 10^{-6} \) |
\(a_{400}= +4.79068615 \pm 3.9 \cdot 10^{-6} \) | \(a_{401}= +1.23009581 \pm 4.3 \cdot 10^{-6} \) | \(a_{402}= +1.67468721 \pm 9.4 \cdot 10^{-6} \) |
\(a_{403}= -0.04218106 \pm 5.9 \cdot 10^{-6} \) | \(a_{404}= +0.21873497 \pm 4.9 \cdot 10^{-6} \) | \(a_{405}= -2.36192373 \pm 4.9 \cdot 10^{-6} \) |
\(a_{406}= +0.06686424 \pm 4.6 \cdot 10^{-6} \) | \(a_{407}= -0.12239693 \pm 5.9 \cdot 10^{-6} \) | \(a_{408}= -1.46097588 \pm 4.2 \cdot 10^{-6} \) |
\(a_{409}= +0.30128155 \pm 5.1 \cdot 10^{-6} \) | \(a_{410}= +4.82226817 \pm 6.2 \cdot 10^{-6} \) | \(a_{411}= +0.90191499 \pm 5.1 \cdot 10^{-6} \) |
\(a_{412}= -2.71014048 \pm 5.9 \cdot 10^{-6} \) | \(a_{413}= -0.30462299 \pm 5.3 \cdot 10^{-6} \) | \(a_{414}= +1.00412841 \pm 6.9 \cdot 10^{-6} \) |
\(a_{415}= +0.49065817 \pm 3.4 \cdot 10^{-6} \) | \(a_{416}= +0.29981691 \pm 6.4 \cdot 10^{-6} \) | \(a_{417}= -0.11963556 \pm 6.0 \cdot 10^{-6} \) |
\(a_{418}= +1.10402565 \pm 3.3 \cdot 10^{-6} \) | \(a_{419}= +1.12458889 \pm 6.4 \cdot 10^{-6} \) | \(a_{420}= -4.16909651 \pm 3.8 \cdot 10^{-6} \) |
\(a_{421}= -0.37149827 \pm 6.3 \cdot 10^{-6} \) | \(a_{422}= -3.06691080 \pm 7.2 \cdot 10^{-6} \) | \(a_{423}= -0.73048158 \pm 5.2 \cdot 10^{-6} \) |
\(a_{424}= +1.33434511 \pm 3.4 \cdot 10^{-6} \) | \(a_{425}= +1.35109792 \pm 3.9 \cdot 10^{-6} \) | \(a_{426}= -1.37921030 \pm 7.5 \cdot 10^{-6} \) |
\(a_{427}= +0.38726419 \pm 6.0 \cdot 10^{-6} \) | \(a_{428}= -1.55084053 \pm 6.3 \cdot 10^{-6} \) | \(a_{429}= +0.22440322 \pm 1.1 \cdot 10^{-5} \) |
\(a_{430}= -0.75664075 \pm 6.7 \cdot 10^{-6} \) | \(a_{431}= +0.91563364 \pm 6.8 \cdot 10^{-6} \) | \(a_{432}= +1.17335184 \pm 4.4 \cdot 10^{-6} \) |
\(a_{433}= +1.20612867 \pm 5.4 \cdot 10^{-6} \) | \(a_{434}= -0.21984727 \pm 4.0 \cdot 10^{-6} \) | \(a_{435}= -0.10644850 \pm 4.1 \cdot 10^{-6} \) |
\(a_{436}= +0.13024038 \pm 4.3 \cdot 10^{-6} \) | \(a_{437}= -1.05897057 \pm 4.2 \cdot 10^{-6} \) | \(a_{438}= +1.81538775 \pm 6.3 \cdot 10^{-6} \) |
\(a_{439}= -0.82616363 \pm 5.1 \cdot 10^{-6} \) | \(a_{440}= -2.86858995 \pm 3.7 \cdot 10^{-6} \) | \(a_{441}= -0.17367643 \pm 5.3 \cdot 10^{-6} \) |
\(a_{442}= +0.26322194 \pm 1.1 \cdot 10^{-5} \) | \(a_{443}= +0.34128939 \pm 5.8 \cdot 10^{-6} \) | \(a_{444}= -0.50784084 \pm 4.0 \cdot 10^{-6} \) |
\(a_{445}= -3.65302926 \pm 6.3 \cdot 10^{-6} \) | \(a_{446}= -1.17610047 \pm 5.0 \cdot 10^{-6} \) | \(a_{447}= -1.06594013 \pm 4.1 \cdot 10^{-6} \) |
\(a_{448}= +0.07241252 \pm 4.3 \cdot 10^{-6} \) | \(a_{449}= -0.51196746 \pm 4.6 \cdot 10^{-6} \) | \(a_{450}= +2.24281644 \pm 4.3 \cdot 10^{-6} \) |
\(a_{451}= -0.93838913 \pm 4.6 \cdot 10^{-6} \) | \(a_{452}= -1.88281231 \pm 6.6 \cdot 10^{-6} \) | \(a_{453}= -0.17469069 \pm 5.2 \cdot 10^{-6} \) |
\(a_{454}= +1.86352853 \pm 4.6 \cdot 10^{-6} \) | \(a_{455}= +0.41940086 \pm 1.1 \cdot 10^{-5} \) | \(a_{456}= +2.55767045 \pm 3.4 \cdot 10^{-6} \) |
\(a_{457}= +1.30869561 \pm 5.3 \cdot 10^{-6} \) | \(a_{458}= +2.73661297 \pm 4.5 \cdot 10^{-6} \) | \(a_{459}= +0.33091569 \pm 4.1 \cdot 10^{-6} \) |
\(a_{460}= +4.92793392 \pm 5.0 \cdot 10^{-6} \) | \(a_{461}= +0.77587066 \pm 6.3 \cdot 10^{-6} \) | \(a_{462}= +1.16958744 \pm 4.5 \cdot 10^{-6} \) |
\(a_{463}= +0.56202657 \pm 6.8 \cdot 10^{-6} \) | \(a_{464}= +0.08615392 \pm 3.3 \cdot 10^{-6} \) | \(a_{465}= +0.34999893 \pm 6.9 \cdot 10^{-6} \) |
\(a_{466}= +1.74611501 \pm 8.2 \cdot 10^{-6} \) | \(a_{467}= -1.65832246 \pm 5.4 \cdot 10^{-6} \) | \(a_{468}= +0.30308878 \pm 1.1 \cdot 10^{-5} \) |
\(a_{469}= -0.60906767 \pm 4.6 \cdot 10^{-6} \) | \(a_{470}= -5.16825615 \pm 4.8 \cdot 10^{-6} \) | \(a_{471}= +0.27947969 \pm 5.7 \cdot 10^{-6} \) |
\(a_{472}= -0.86965360 \pm 4.6 \cdot 10^{-6} \) | \(a_{473}= +0.14723848 \pm 4.9 \cdot 10^{-6} \) | \(a_{474}= -2.98334793 \pm 6.8 \cdot 10^{-6} \) |
\(a_{475}= -2.36531162 \pm 3.1 \cdot 10^{-6} \) | \(a_{476}= +0.95162657 \pm 4.7 \cdot 10^{-6} \) | \(a_{477}= +0.28194324 \pm 3.9 \cdot 10^{-6} \) |
\(a_{478}= +1.41899176 \pm 6.2 \cdot 10^{-6} \) | \(a_{479}= +0.71303902 \pm 6.5 \cdot 10^{-6} \) | \(a_{480}= -2.48774217 \pm 7.7 \cdot 10^{-6} \) |
\(a_{481}= +0.05108754 \pm 6.9 \cdot 10^{-6} \) | \(a_{482}= +1.09932088 \pm 4.6 \cdot 10^{-6} \) | \(a_{483}= -1.12185680 \pm 3.1 \cdot 10^{-6} \) |
\(a_{484}= -1.26449748 \pm 4.2 \cdot 10^{-6} \) | \(a_{485}= +2.46641492 \pm 4.1 \cdot 10^{-6} \) | \(a_{486}= +1.61107764 \pm 6.8 \cdot 10^{-6} \) |
\(a_{487}= +1.92734612 \pm 6.7 \cdot 10^{-6} \) | \(a_{488}= +1.10558202 \pm 3.5 \cdot 10^{-6} \) | \(a_{489}= +1.32407389 \pm 5.9 \cdot 10^{-6} \) |
\(a_{490}= -1.22878429 \pm 5.8 \cdot 10^{-6} \) | \(a_{491}= -1.22575446 \pm 7.1 \cdot 10^{-6} \) | \(a_{492}= -3.89349900 \pm 6.2 \cdot 10^{-6} \) |
\(a_{493}= +0.02429764 \pm 4.3 \cdot 10^{-6} \) | \(a_{494}= -0.46081184 \pm 1.0 \cdot 10^{-5} \) | \(a_{495}= -0.60612472 \pm 3.6 \cdot 10^{-6} \) |
\(a_{496}= -0.28327107 \pm 4.5 \cdot 10^{-6} \) | \(a_{497}= +0.50160555 \pm 4.7 \cdot 10^{-6} \) | \(a_{498}= -0.57111936 \pm 4.0 \cdot 10^{-6} \) |
\(a_{499}= +0.64954819 \pm 5.7 \cdot 10^{-6} \) | \(a_{500}= +6.72759185 \pm 3.6 \cdot 10^{-6} \) | \(a_{501}= +0.03389365 \pm 6.3 \cdot 10^{-6} \) |
\(a_{502}= -0.86586435 \pm 6.0 \cdot 10^{-6} \) | \(a_{503}= +0.06989959 \pm 5.9 \cdot 10^{-6} \) | \(a_{504}= +0.88202682 \pm 3.3 \cdot 10^{-6} \) |
\(a_{505}= +0.18258068 \pm 4.4 \cdot 10^{-6} \) | \(a_{506}= -1.38246971 \pm 6.5 \cdot 10^{-6} \) | \(a_{507}= -0.09366418 \pm 6.1 \cdot 10^{-6} \) |
\(a_{508}= -3.49996483 \pm 4.7 \cdot 10^{-6} \) | \(a_{509}= +0.27102979 \pm 6.1 \cdot 10^{-6} \) | \(a_{510}= -2.18409401 \pm 8.1 \cdot 10^{-6} \) |
\(a_{511}= -0.66023910 \pm 6.8 \cdot 10^{-6} \) | \(a_{512}= -2.24093726 \pm 5.4 \cdot 10^{-6} \) | \(a_{513}= -0.57932051 \pm 4.9 \cdot 10^{-6} \) |
\(a_{514}= +1.35825538 \pm 5.9 \cdot 10^{-6} \) | \(a_{515}= -2.26218652 \pm 5.9 \cdot 10^{-6} \) | \(a_{516}= +0.61091169 \pm 6.7 \cdot 10^{-6} \) |
\(a_{517}= +1.00571665 \pm 5.3 \cdot 10^{-6} \) | \(a_{518}= +0.26626777 \pm 7.2 \cdot 10^{-6} \) | \(a_{519}= +0.44957303 \pm 6.5 \cdot 10^{-6} \) |
\(a_{520}= +1.19732745 \pm 1.0 \cdot 10^{-5} \) | \(a_{521}= +1.28356852 \pm 6.0 \cdot 10^{-6} \) | \(a_{522}= +0.04033398 \pm 3.0 \cdot 10^{-6} \) |
\(a_{523}= +1.87593311 \pm 7.4 \cdot 10^{-6} \) | \(a_{524}= -0.48868829 \pm 6.0 \cdot 10^{-6} \) | \(a_{525}= -2.50577401 \pm 2.7 \cdot 10^{-6} \) |
\(a_{526}= -0.75056160 \pm 6.0 \cdot 10^{-6} \) | \(a_{527}= -0.07988980 \pm 5.8 \cdot 10^{-6} \) | \(a_{528}= +1.50700201 \pm 4.3 \cdot 10^{-6} \) |
\(a_{529}= +0.32605138 \pm 6.3 \cdot 10^{-6} \) | \(a_{530}= +1.99478664 \pm 4.9 \cdot 10^{-6} \) | \(a_{531}= -0.18375528 \pm 5.0 \cdot 10^{-6} \) |
\(a_{532}= -1.66597355 \pm 3.4 \cdot 10^{-6} \) | \(a_{533}= +0.39167643 \pm 5.0 \cdot 10^{-6} \) | \(a_{534}= +4.25207580 \pm 9.4 \cdot 10^{-6} \) |
\(a_{535}= -1.29450505 \pm 5.8 \cdot 10^{-6} \) | \(a_{536}= -1.73879814 \pm 2.9 \cdot 10^{-6} \) | \(a_{537}= -0.31915647 \pm 4.6 \cdot 10^{-6} \) |
\(a_{538}= +2.40667493 \pm 7.4 \cdot 10^{-6} \) | \(a_{539}= +0.23911524 \pm 4.2 \cdot 10^{-6} \) | \(a_{540}= +2.69587586 \pm 4.5 \cdot 10^{-6} \) |
\(a_{541}= +0.42074951 \pm 3.5 \cdot 10^{-6} \) | \(a_{542}= -1.63272270 \pm 6.2 \cdot 10^{-6} \) | \(a_{543}= -0.64573575 \pm 4.4 \cdot 10^{-6} \) |
\(a_{544}= +0.56784523 \pm 6.2 \cdot 10^{-6} \) | \(a_{545}= +0.10871320 \pm 3.8 \cdot 10^{-6} \) | \(a_{546}= -0.48817683 \pm 1.8 \cdot 10^{-5} \) |
\(a_{547}= +0.35036286 \pm 4.2 \cdot 10^{-6} \) | \(a_{548}= -1.67715322 \pm 5.2 \cdot 10^{-6} \) | \(a_{549}= +0.23360627 \pm 4.3 \cdot 10^{-6} \) |
\(a_{550}= -3.08787776 \pm 5.1 \cdot 10^{-6} \) | \(a_{551}= -0.04253689 \pm 2.8 \cdot 10^{-6} \) | \(a_{552}= -3.20273531 \pm 4.8 \cdot 10^{-6} \) |
\(a_{553}= +1.08501501 \pm 3.9 \cdot 10^{-6} \) | \(a_{554}= +1.57538291 \pm 7.1 \cdot 10^{-6} \) | \(a_{555}= -0.42390080 \pm 3.6 \cdot 10^{-6} \) |
\(a_{556}= +0.22246793 \pm 5.4 \cdot 10^{-6} \) | \(a_{557}= -1.31815177 \pm 4.9 \cdot 10^{-6} \) | \(a_{558}= -0.13261670 \pm 6.4 \cdot 10^{-6} \) |
\(a_{559}= -0.06145621 \pm 5.5 \cdot 10^{-6} \) | \(a_{560}= +2.81652793 \pm 3.5 \cdot 10^{-6} \) | \(a_{561}= +0.42501371 \pm 4.4 \cdot 10^{-6} \) |
\(a_{562}= -3.27547682 \pm 7.8 \cdot 10^{-6} \) | \(a_{563}= +0.74162071 \pm 6.3 \cdot 10^{-6} \) | \(a_{564}= +4.17284967 \pm 5.1 \cdot 10^{-6} \) |
\(a_{565}= -1.57160585 \pm 7.0 \cdot 10^{-6} \) | \(a_{566}= -2.95592180 \pm 4.3 \cdot 10^{-6} \) | \(a_{567}= -0.99987465 \pm 4.4 \cdot 10^{-6} \) |
\(a_{568}= +1.43200969 \pm 5.1 \cdot 10^{-6} \) | \(a_{569}= -1.07274538 \pm 5.3 \cdot 10^{-6} \) | \(a_{570}= +3.82360365 \pm 5.5 \cdot 10^{-6} \) |
\(a_{571}= -0.45265081 \pm 5.8 \cdot 10^{-6} \) | \(a_{572}= -0.41728832 \pm 1.0 \cdot 10^{-5} \) | \(a_{573}= -0.85006399 \pm 6.0 \cdot 10^{-6} \) |
\(a_{574}= +2.04141380 \pm 2.6 \cdot 10^{-6} \) | \(a_{575}= +2.96186206 \pm 3.4 \cdot 10^{-6} \) | \(a_{576}= +0.04368082 \pm 5.4 \cdot 10^{-6} \) |
\(a_{577}= +1.71488350 \pm 5.6 \cdot 10^{-6} \) | \(a_{578}= -1.30818775 \pm 4.3 \cdot 10^{-6} \) | \(a_{579}= +1.38192896 \pm 6.1 \cdot 10^{-6} \) |
\(a_{580}= +0.19794598 \pm 5.1 \cdot 10^{-6} \) | \(a_{581}= +0.20771063 \pm 3.0 \cdot 10^{-6} \) | \(a_{582}= -2.87087303 \pm 4.8 \cdot 10^{-6} \) |
\(a_{583}= -0.38817545 \pm 3.5 \cdot 10^{-6} \) | \(a_{584}= -1.88488502 \pm 5.1 \cdot 10^{-6} \) | \(a_{585}= +0.25299181 \pm 1.1 \cdot 10^{-5} \) |
\(a_{586}= -1.00154929 \pm 4.3 \cdot 10^{-6} \) | \(a_{587}= +0.63169359 \pm 5.9 \cdot 10^{-6} \) | \(a_{588}= +0.99212036 \pm 5.5 \cdot 10^{-6} \) |
\(a_{589}= +0.13985979 \pm 4.2 \cdot 10^{-6} \) | \(a_{590}= -1.30009349 \pm 5.3 \cdot 10^{-6} \) | \(a_{591}= +0.99264047 \pm 6.1 \cdot 10^{-6} \) |
\(a_{592}= +0.34308343 \pm 4.5 \cdot 10^{-6} \) | \(a_{593}= -0.18182990 \pm 5.8 \cdot 10^{-6} \) | \(a_{594}= -0.75629397 \pm 5.2 \cdot 10^{-6} \) |
\(a_{595}= +0.79433403 \pm 4.7 \cdot 10^{-6} \) | \(a_{596}= +1.98216568 \pm 5.7 \cdot 10^{-6} \) | \(a_{597}= +1.13805243 \pm 7.3 \cdot 10^{-6} \) |
\(a_{598}= +0.57703226 \pm 1.1 \cdot 10^{-5} \) | \(a_{599}= -1.33706480 \pm 6.0 \cdot 10^{-6} \) | \(a_{600}= -7.15361434 \pm 3.1 \cdot 10^{-6} \) |
\(a_{601}= -1.35855516 \pm 6.1 \cdot 10^{-6} \) | \(a_{602}= -0.32030920 \pm 5.4 \cdot 10^{-6} \) | \(a_{603}= -0.36740299 \pm 5.6 \cdot 10^{-6} \) |
\(a_{604}= +0.32484553 \pm 4.0 \cdot 10^{-6} \) | \(a_{605}= -1.05549110 \pm 3.1 \cdot 10^{-6} \) | \(a_{606}= -0.21252140 \pm 5.8 \cdot 10^{-6} \) |
\(a_{607}= +1.07164622 \pm 4.1 \cdot 10^{-6} \) | \(a_{608}= -0.99410331 \pm 3.9 \cdot 10^{-6} \) | \(a_{609}= -0.04506291 \pm 5.0 \cdot 10^{-6} \) |
\(a_{610}= +1.65279598 \pm 2.6 \cdot 10^{-6} \) | \(a_{611}= -0.41977842 \pm 5.8 \cdot 10^{-6} \) | \(a_{612}= +0.57404205 \pm 5.1 \cdot 10^{-6} \) |
\(a_{613}= +0.70303918 \pm 5.8 \cdot 10^{-6} \) | \(a_{614}= +0.88184438 \pm 3.6 \cdot 10^{-6} \) | \(a_{615}= -3.24994996 \pm 6.2 \cdot 10^{-6} \) |
\(a_{616}= -1.21436198 \pm 3.6 \cdot 10^{-6} \) | \(a_{617}= -0.13419305 \pm 7.0 \cdot 10^{-6} \) | \(a_{618}= +2.63315399 \pm 9.1 \cdot 10^{-6} \) |
\(a_{619}= -0.09911600 \pm 5.4 \cdot 10^{-6} \) | \(a_{620}= -0.65083942 \pm 5.5 \cdot 10^{-6} \) | \(a_{621}= +0.72542976 \pm 5.3 \cdot 10^{-6} \) |
\(a_{622}= +3.09904760 \pm 6.5 \cdot 10^{-6} \) | \(a_{623}= -1.54643916 \pm 5.6 \cdot 10^{-6} \) | \(a_{624}= -0.62901109 \pm 1.1 \cdot 10^{-5} \) |
\(a_{625}= +3.04351993 \pm 5.5 \cdot 10^{-6} \) | \(a_{626}= +1.77916444 \pm 5.1 \cdot 10^{-6} \) | \(a_{627}= -0.74405404 \pm 3.2 \cdot 10^{-6} \) |
\(a_{628}= -0.51970559 \pm 5.5 \cdot 10^{-6} \) | \(a_{629}= +0.09675844 \pm 4.9 \cdot 10^{-6} \) | \(a_{630}= +1.31859089 \pm 3.4 \cdot 10^{-6} \) |
\(a_{631}= -1.10535874 \pm 5.8 \cdot 10^{-6} \) | \(a_{632}= +3.09755744 \pm 4.7 \cdot 10^{-6} \) | \(a_{633}= +2.06693330 \pm 6.5 \cdot 10^{-6} \) |
\(a_{634}= +1.95439418 \pm 6.1 \cdot 10^{-6} \) | \(a_{635}= -2.92146230 \pm 4.6 \cdot 10^{-6} \) | \(a_{636}= -1.61059060 \pm 5.1 \cdot 10^{-6} \) |
\(a_{637}= -0.09980487 \pm 5.0 \cdot 10^{-6} \) | \(a_{638}= -0.05553125 \pm 3.9 \cdot 10^{-6} \) | \(a_{639}= +0.30257948 \pm 6.5 \cdot 10^{-6} \) |
\(a_{640}= -1.73404678 \pm 4.9 \cdot 10^{-6} \) | \(a_{641}= +1.94953432 \pm 5.3 \cdot 10^{-6} \) | \(a_{642}= +1.50678607 \pm 8.0 \cdot 10^{-6} \) |
\(a_{643}= -1.15083445 \pm 6.6 \cdot 10^{-6} \) | \(a_{644}= +2.08614535 \pm 5.4 \cdot 10^{-6} \) | \(a_{645}= +0.50993526 \pm 6.8 \cdot 10^{-6} \) |
\(a_{646}= -0.87276532 \pm 3.6 \cdot 10^{-6} \) | \(a_{647}= +0.73472106 \pm 4.3 \cdot 10^{-6} \) | \(a_{648}= -2.85449429 \pm 4.1 \cdot 10^{-6} \) |
\(a_{649}= +0.25299165 \pm 4.5 \cdot 10^{-6} \) | \(a_{650}= +1.28885650 \pm 1.0 \cdot 10^{-5} \) | \(a_{651}= +0.14816526 \pm 5.6 \cdot 10^{-6} \) |
\(a_{652}= -2.46217751 \pm 5.0 \cdot 10^{-6} \) | \(a_{653}= -0.74581170 \pm 5.7 \cdot 10^{-6} \) | \(a_{654}= -0.12654067 \pm 5.5 \cdot 10^{-6} \) |
\(a_{655}= -0.40791394 \pm 5.1 \cdot 10^{-6} \) | \(a_{656}= +2.63034177 \pm 4.5 \cdot 10^{-6} \) | \(a_{657}= -0.39827073 \pm 5.8 \cdot 10^{-6} \) |
\(a_{658}= -2.18788111 \pm 4.2 \cdot 10^{-6} \) | \(a_{659}= -1.15085998 \pm 4.3 \cdot 10^{-6} \) | \(a_{660}= +3.46246557 \pm 4.1 \cdot 10^{-6} \) |
\(a_{661}= -0.68656104 \pm 6.1 \cdot 10^{-6} \) | \(a_{662}= -2.51658677 \pm 7.8 \cdot 10^{-6} \) | \(a_{663}= -0.17739746 \pm 1.1 \cdot 10^{-5} \) |
\(a_{664}= +0.59298314 \pm 2.8 \cdot 10^{-6} \) | \(a_{665}= -1.39060795 \pm 2.9 \cdot 10^{-6} \) | \(a_{666}= +0.16061857 \pm 5.3 \cdot 10^{-6} \) |
\(a_{667}= +0.05326503 \pm 3.3 \cdot 10^{-6} \) | \(a_{668}= -0.06302684 \pm 5.8 \cdot 10^{-6} \) | \(a_{669}= +0.79262860 \pm 6.0 \cdot 10^{-6} \) |
\(a_{670}= -2.59942594 \pm 7.9 \cdot 10^{-6} \) | \(a_{671}= -0.32162578 \pm 3.8 \cdot 10^{-6} \) | \(a_{672}= -1.05313745 \pm 4.7 \cdot 10^{-6} \) |
\(a_{673}= +0.07843447 \pm 6.8 \cdot 10^{-6} \) | \(a_{674}= -2.61585260 \pm 5.8 \cdot 10^{-6} \) | \(a_{675}= +1.62031646 \pm 3.6 \cdot 10^{-6} \) |
\(a_{676}= +0.17417294 \pm 5.7 \cdot 10^{-6} \) | \(a_{677}= +1.94762051 \pm 6.3 \cdot 10^{-6} \) | \(a_{678}= +1.82932758 \pm 9.5 \cdot 10^{-6} \) |
\(a_{679}= +1.04410897 \pm 6.7 \cdot 10^{-6} \) | \(a_{680}= +2.26770621 \pm 3.7 \cdot 10^{-6} \) | \(a_{681}= -1.25591822 \pm 5.0 \cdot 10^{-6} \) |
\(a_{682}= +0.18258479 \pm 3.4 \cdot 10^{-6} \) | \(a_{683}= +0.27755873 \pm 5.2 \cdot 10^{-6} \) | \(a_{684}= -1.00495183 \pm 4.3 \cdot 10^{-6} \) |
\(a_{685}= -1.39993976 \pm 4.5 \cdot 10^{-6} \) | \(a_{686}= -1.96572808 \pm 3.3 \cdot 10^{-6} \) | \(a_{687}= -1.84433028 \pm 6.5 \cdot 10^{-6} \) |
\(a_{688}= -0.41271528 \pm 5.1 \cdot 10^{-6} \) | \(a_{689}= +0.16202146 \pm 4.2 \cdot 10^{-6} \) | \(a_{690}= -4.78794694 \pm 7.6 \cdot 10^{-6} \) |
\(a_{691}= +1.88528754 \pm 6.2 \cdot 10^{-6} \) | \(a_{692}= -0.83600215 \pm 6.5 \cdot 10^{-6} \) | \(a_{693}= -0.25659116 \pm 3.6 \cdot 10^{-6} \) |
\(a_{694}= +2.68583918 \pm 6.4 \cdot 10^{-6} \) | \(a_{695}= +0.18569663 \pm 4.9 \cdot 10^{-6} \) | \(a_{696}= -0.12864795 \pm 3.7 \cdot 10^{-6} \) |
\(a_{697}= +0.74182470 \pm 4.5 \cdot 10^{-6} \) | \(a_{698}= +2.20191945 \pm 4.6 \cdot 10^{-6} \) | \(a_{699}= -1.17678781 \pm 7.3 \cdot 10^{-6} \) |
\(a_{700}= +4.65960432 \pm 4.4 \cdot 10^{-6} \) | \(a_{701}= -0.52061183 \pm 5.0 \cdot 10^{-6} \) | \(a_{702}= +0.31567131 \pm 1.1 \cdot 10^{-5} \) |
\(a_{703}= -0.16939102 \pm 5.8 \cdot 10^{-6} \) | \(a_{704}= -0.06013914 \pm 4.9 \cdot 10^{-6} \) | \(a_{705}= +3.48312729 \pm 4.7 \cdot 10^{-6} \) |
\(a_{706}= -0.86457630 \pm 6.3 \cdot 10^{-6} \) | \(a_{707}= +0.07729199 \pm 3.1 \cdot 10^{-6} \) | \(a_{708}= +1.04969539 \pm 4.8 \cdot 10^{-6} \) |
\(a_{709}= +1.88060944 \pm 7.0 \cdot 10^{-6} \) | \(a_{710}= +2.14079084 \pm 6.5 \cdot 10^{-6} \) | \(a_{711}= +0.65450488 \pm 6.1 \cdot 10^{-6} \) |
\(a_{712}= -4.41485517 \pm 5.0 \cdot 10^{-6} \) | \(a_{713}= -0.17513354 \pm 3.4 \cdot 10^{-6} \) | \(a_{714}= -0.92459388 \pm 3.8 \cdot 10^{-6} \) |
\(a_{715}= -0.34831553 \pm 1.0 \cdot 10^{-5} \) | \(a_{716}= +0.59348643 \pm 4.0 \cdot 10^{-6} \) | \(a_{717}= -0.95632430 \pm 5.4 \cdot 10^{-6} \) |
\(a_{718}= -2.00135335 \pm 8.1 \cdot 10^{-6} \) | \(a_{719}= -0.75811571 \pm 5.5 \cdot 10^{-6} \) | \(a_{720}= +1.69899151 \pm 5.4 \cdot 10^{-6} \) |
\(a_{721}= -0.95765283 \pm 4.3 \cdot 10^{-6} \) | \(a_{722}= -0.27880869 \pm 4.8 \cdot 10^{-6} \) | \(a_{723}= -0.74088328 \pm 3.6 \cdot 10^{-6} \) |
\(a_{724}= +1.20077592 \pm 5.0 \cdot 10^{-6} \) | \(a_{725}= +0.11897251 \pm 2.7 \cdot 10^{-6} \) | \(a_{726}= +1.22857712 \pm 5.3 \cdot 10^{-6} \) |
\(a_{727}= -0.43152329 \pm 5.4 \cdot 10^{-6} \) | \(a_{728}= +0.50686538 \pm 1.0 \cdot 10^{-5} \) | \(a_{729}= +0.16391853 \pm 4.6 \cdot 10^{-6} \) |
\(a_{730}= -2.81781934 \pm 4.4 \cdot 10^{-6} \) | \(a_{731}= -0.11639643 \pm 5.4 \cdot 10^{-6} \) | \(a_{732}= -1.33446736 \pm 4.3 \cdot 10^{-6} \) |
\(a_{733}= -1.32969320 \pm 6.5 \cdot 10^{-6} \) | \(a_{734}= +0.21838080 \pm 8.4 \cdot 10^{-6} \) | \(a_{735}= +0.82813467 \pm 5.8 \cdot 10^{-6} \) |
\(a_{736}= +1.24482409 \pm 4.4 \cdot 10^{-6} \) | \(a_{737}= +0.50583521 \pm 4.6 \cdot 10^{-6} \) | \(a_{738}= +1.23142564 \pm 6.1 \cdot 10^{-6} \) |
\(a_{739}= +1.39025454 \pm 7.7 \cdot 10^{-6} \) | \(a_{740}= +0.78826341 \pm 5.6 \cdot 10^{-6} \) | \(a_{741}= +0.31056245 \pm 1.0 \cdot 10^{-5} \) |
\(a_{742}= +0.84445427 \pm 5.3 \cdot 10^{-6} \) | \(a_{743}= -0.83193288 \pm 5.9 \cdot 10^{-6} \) | \(a_{744}= +0.42298993 \pm 4.4 \cdot 10^{-6} \) |
\(a_{745}= +1.65453729 \pm 4.7 \cdot 10^{-6} \) | \(a_{746}= +1.46004567 \pm 4.3 \cdot 10^{-6} \) | \(a_{747}= +0.12529561 \pm 3.1 \cdot 10^{-6} \) |
\(a_{748}= -0.79033293 \pm 3.9 \cdot 10^{-6} \) | \(a_{749}= -0.54800363 \pm 5.5 \cdot 10^{-6} \) | \(a_{750}= -6.53648230 \pm 4.2 \cdot 10^{-6} \) |
\(a_{751}= -1.30125256 \pm 5.1 \cdot 10^{-6} \) | \(a_{752}= -2.81906346 \pm 4.9 \cdot 10^{-6} \) | \(a_{753}= +0.58354611 \pm 6.6 \cdot 10^{-6} \) |
\(a_{754}= +0.02317832 \pm 1.0 \cdot 10^{-5} \) | \(a_{755}= +0.27115243 \pm 4.2 \cdot 10^{-6} \) | \(a_{756}= +1.14124681 \pm 4.4 \cdot 10^{-6} \) |
\(a_{757}= +1.05421736 \pm 6.1 \cdot 10^{-6} \) | \(a_{758}= +0.28275507 \pm 7.0 \cdot 10^{-6} \) | \(a_{759}= +0.93171039 \pm 4.3 \cdot 10^{-6} \) |
\(a_{760}= -3.96998011 \pm 4.0 \cdot 10^{-6} \) | \(a_{761}= -0.52744533 \pm 6.0 \cdot 10^{-6} \) | \(a_{762}= +3.40054193 \pm 6.6 \cdot 10^{-6} \) |
\(a_{763}= +0.04602163 \pm 4.6 \cdot 10^{-6} \) | \(a_{764}= +1.58073386 \pm 5.4 \cdot 10^{-6} \) | \(a_{765}= +0.47915973 \pm 5.6 \cdot 10^{-6} \) |
\(a_{766}= +2.78205660 \pm 8.5 \cdot 10^{-6} \) | \(a_{767}= -0.10559678 \pm 5.1 \cdot 10^{-6} \) | \(a_{768}= +2.12860879 \pm 4.2 \cdot 10^{-6} \) |
\(a_{769}= +1.10539783 \pm 6.0 \cdot 10^{-6} \) | \(a_{770}= -1.81541718 \pm 3.5 \cdot 10^{-6} \) | \(a_{771}= -0.91539124 \pm 6.0 \cdot 10^{-6} \) |
\(a_{772}= -2.56976172 \pm 5.9 \cdot 10^{-6} \) | \(a_{773}= -0.10637356 \pm 5.8 \cdot 10^{-6} \) | \(a_{774}= -0.19321755 \pm 6.5 \cdot 10^{-6} \) |
\(a_{775}= -0.39117744 \pm 3.4 \cdot 10^{-6} \) | \(a_{776}= +2.98077674 \pm 4.3 \cdot 10^{-6} \) | \(a_{777}= -0.17945019 \pm 3.7 \cdot 10^{-6} \) |
\(a_{778}= -0.93910239 \pm 4.2 \cdot 10^{-6} \) | \(a_{779}= -1.29868202 \pm 3.5 \cdot 10^{-6} \) | \(a_{780}= -1.44520658 \pm 1.7 \cdot 10^{-5} \) |
\(a_{781}= -0.41658713 \pm 4.4 \cdot 10^{-6} \) | \(a_{782}= +1.09288368 \pm 4.2 \cdot 10^{-6} \) | \(a_{783}= +0.02913917 \pm 3.1 \cdot 10^{-6} \) |
\(a_{784}= -0.67024946 \pm 5.0 \cdot 10^{-6} \) | \(a_{785}= -0.43380444 \pm 5.5 \cdot 10^{-6} \) | \(a_{786}= +0.47480621 \pm 7.2 \cdot 10^{-6} \) |
\(a_{787}= +0.10734556 \pm 7.0 \cdot 10^{-6} \) | \(a_{788}= -1.84586152 \pm 5.7 \cdot 10^{-6} \) | \(a_{789}= +0.50583824 \pm 5.4 \cdot 10^{-6} \) |
\(a_{790}= +4.63071071 \pm 5.3 \cdot 10^{-6} \) | \(a_{791}= -0.66530889 \pm 5.8 \cdot 10^{-6} \) | \(a_{792}= -0.73252981 \pm 4.1 \cdot 10^{-6} \) |
\(a_{793}= +0.13424414 \pm 5.0 \cdot 10^{-6} \) | \(a_{794}= -3.03270866 \pm 5.3 \cdot 10^{-6} \) | \(a_{795}= -1.34437914 \pm 4.6 \cdot 10^{-6} \) |
\(a_{796}= -2.11626187 \pm 6.2 \cdot 10^{-6} \) | \(a_{797}= -1.49194806 \pm 4.6 \cdot 10^{-6} \) | \(a_{798}= +1.61864852 \pm 2.3 \cdot 10^{-6} \) |
\(a_{799}= -0.79504912 \pm 4.3 \cdot 10^{-6} \) | \(a_{800}= +2.78043316 \pm 4.4 \cdot 10^{-6} \) | \(a_{801}= -0.93284607 \pm 7.2 \cdot 10^{-6} \) |
\(a_{802}= +2.22244249 \pm 5.1 \cdot 10^{-6} \) | \(a_{803}= +0.54833347 \pm 6.0 \cdot 10^{-6} \) | \(a_{804}= +2.09877633 \pm 7.8 \cdot 10^{-6} \) |
\(a_{805}= +1.74133035 \pm 3.4 \cdot 10^{-6} \) | \(a_{806}= -0.07620949 \pm 1.2 \cdot 10^{-5} \) | \(a_{807}= -1.62196975 \pm 7.5 \cdot 10^{-6} \) |
\(a_{808}= +0.22065721 \pm 4.7 \cdot 10^{-6} \) | \(a_{809}= -0.55046909 \pm 6.0 \cdot 10^{-6} \) | \(a_{810}= -4.26734210 \pm 5.3 \cdot 10^{-6} \) |
\(a_{811}= +0.47569424 \pm 8.8 \cdot 10^{-6} \) | \(a_{812}= +0.08379660 \pm 5.0 \cdot 10^{-6} \) | \(a_{813}= +1.10036748 \pm 6.3 \cdot 10^{-6} \) |
\(a_{814}= -0.22113736 \pm 6.0 \cdot 10^{-6} \) | \(a_{815}= -2.05520888 \pm 6.0 \cdot 10^{-6} \) | \(a_{816}= -1.19133020 \pm 5.2 \cdot 10^{-6} \) |
\(a_{817}= +0.20377045 \pm 3.3 \cdot 10^{-6} \) | \(a_{818}= +0.54433233 \pm 5.9 \cdot 10^{-6} \) | \(a_{819}= +0.10709918 \pm 1.1 \cdot 10^{-5} \) |
\(a_{820}= +6.04343441 \pm 4.7 \cdot 10^{-6} \) | \(a_{821}= -1.09200956 \pm 5.9 \cdot 10^{-6} \) | \(a_{822}= +1.62951062 \pm 5.1 \cdot 10^{-6} \) |
\(a_{823}= +0.93783283 \pm 5.9 \cdot 10^{-6} \) | \(a_{824}= -2.73395726 \pm 3.6 \cdot 10^{-6} \) | \(a_{825}= +2.08106390 \pm 3.1 \cdot 10^{-6} \) |
\(a_{826}= -0.55036939 \pm 6.3 \cdot 10^{-6} \) | \(a_{827}= +0.98333432 \pm 6.2 \cdot 10^{-6} \) | \(a_{828}= +1.25840869 \pm 4.4 \cdot 10^{-6} \) |
\(a_{829}= -0.25702987 \pm 5.8 \cdot 10^{-6} \) | \(a_{830}= +0.88648345 \pm 3.4 \cdot 10^{-6} \) | \(a_{831}= -1.06172354 \pm 5.0 \cdot 10^{-6} \) |
\(a_{832}= +0.02510161 \pm 5.1 \cdot 10^{-6} \) | \(a_{833}= -0.18902776 \pm 4.9 \cdot 10^{-6} \) | \(a_{834}= -0.21614833 \pm 5.2 \cdot 10^{-6} \) |
\(a_{835}= -0.05260925 \pm 5.6 \cdot 10^{-6} \) | \(a_{836}= +1.38360339 \pm 3.5 \cdot 10^{-6} \) | \(a_{837}= -0.09580857 \pm 4.5 \cdot 10^{-6} \) |
\(a_{838}= +2.03182070 \pm 6.9 \cdot 10^{-6} \) | \(a_{839}= +0.51749166 \pm 7.4 \cdot 10^{-6} \) | \(a_{840}= -4.20573462 \pm 3.8 \cdot 10^{-6} \) |
\(a_{841}= -0.99786044 \pm 5.1 \cdot 10^{-6} \) | \(a_{842}= -0.67119451 \pm 6.9 \cdot 10^{-6} \) | \(a_{843}= +2.20749560 \pm 8.8 \cdot 10^{-6} \) |
\(a_{844}= -3.84355942 \pm 5.8 \cdot 10^{-6} \) | \(a_{845}= +0.14538423 \pm 5.4 \cdot 10^{-6} \) | \(a_{846}= -1.31977794 \pm 5.3 \cdot 10^{-6} \) |
\(a_{847}= -0.44682171 \pm 3.7 \cdot 10^{-6} \) | \(a_{848}= +1.08807109 \pm 4.6 \cdot 10^{-6} \) | \(a_{849}= +1.99213267 \pm 3.8 \cdot 10^{-6} \) |
\(a_{850}= +2.44105980 \pm 4.7 \cdot 10^{-6} \) | \(a_{851}= +0.21211279 \pm 3.6 \cdot 10^{-6} \) | \(a_{852}= -1.72847438 \pm 6.0 \cdot 10^{-6} \) |
\(a_{853}= -0.18732946 \pm 7.7 \cdot 10^{-6} \) | \(a_{854}= +0.69967915 \pm 6.3 \cdot 10^{-6} \) | \(a_{855}= -0.83884526 \pm 5.4 \cdot 10^{-6} \) |
\(a_{856}= -1.56446935 \pm 5.2 \cdot 10^{-6} \) | \(a_{857}= +0.97860430 \pm 5.4 \cdot 10^{-6} \) | \(a_{858}= +0.40543448 \pm 1.7 \cdot 10^{-5} \) |
\(a_{859}= +0.12540352 \pm 7.9 \cdot 10^{-6} \) | \(a_{860}= -0.94824854 \pm 5.4 \cdot 10^{-6} \) | \(a_{861}= -1.37580335 \pm 2.1 \cdot 10^{-6} \) |
\(a_{862}= +1.65429642 \pm 5.5 \cdot 10^{-6} \) | \(a_{863}= -0.91265713 \pm 7.1 \cdot 10^{-6} \) | \(a_{864}= +0.68099355 \pm 4.9 \cdot 10^{-6} \) |
\(a_{865}= -0.69782094 \pm 5.9 \cdot 10^{-6} \) | \(a_{866}= +2.17914051 \pm 6.4 \cdot 10^{-6} \) | \(a_{867}= +0.88164834 \pm 3.7 \cdot 10^{-6} \) |
\(a_{868}= -0.27552026 \pm 4.2 \cdot 10^{-6} \) | \(a_{869}= -0.90111301 \pm 5.4 \cdot 10^{-6} \) | \(a_{870}= -0.19232296 \pm 3.1 \cdot 10^{-6} \) |
\(a_{871}= -0.21113174 \pm 5.8 \cdot 10^{-6} \) | \(a_{872}= +0.13138494 \pm 2.9 \cdot 10^{-6} \) | \(a_{873}= +0.62982946 \pm 4.7 \cdot 10^{-6} \) |
\(a_{874}= -1.91326657 \pm 4.7 \cdot 10^{-6} \) | \(a_{875}= +2.37725588 \pm 3.6 \cdot 10^{-6} \) | \(a_{876}= +2.27510715 \pm 6.7 \cdot 10^{-6} \) |
\(a_{877}= -0.66972211 \pm 5.6 \cdot 10^{-6} \) | \(a_{878}= -1.49264889 \pm 4.8 \cdot 10^{-6} \) | \(a_{879}= +0.67499047 \pm 5.8 \cdot 10^{-6} \) |
\(a_{880}= -2.33914733 \pm 3.0 \cdot 10^{-6} \) | \(a_{881}= -0.96762188 \pm 5.8 \cdot 10^{-6} \) | \(a_{882}= -0.31378522 \pm 6.6 \cdot 10^{-6} \) |
\(a_{883}= -0.95541741 \pm 4.0 \cdot 10^{-6} \) | \(a_{884}= +0.32987890 \pm 1.1 \cdot 10^{-5} \) | \(a_{885}= +0.87619324 \pm 5.0 \cdot 10^{-6} \) |
\(a_{886}= +0.61661541 \pm 6.7 \cdot 10^{-6} \) | \(a_{887}= +1.21246333 \pm 5.5 \cdot 10^{-6} \) | \(a_{888}= -0.51230376 \pm 3.6 \cdot 10^{-6} \) |
\(a_{889}= -1.23674446 \pm 5.7 \cdot 10^{-6} \) | \(a_{890}= -6.60001227 \pm 8.0 \cdot 10^{-6} \) | \(a_{891}= +0.83040331 \pm 3.4 \cdot 10^{-6} \) |
\(a_{892}= -1.47393006 \pm 5.2 \cdot 10^{-6} \) | \(a_{893}= +1.39185982 \pm 5.2 \cdot 10^{-6} \) | \(a_{894}= -1.92585864 \pm 4.2 \cdot 10^{-6} \) |
\(a_{895}= +0.49539019 \pm 4.1 \cdot 10^{-6} \) | \(a_{896}= -0.73407511 \pm 5.3 \cdot 10^{-6} \) | \(a_{897}= -0.38888878 \pm 1.0 \cdot 10^{-5} \) |
\(a_{898}= -0.92498343 \pm 5.5 \cdot 10^{-6} \) | \(a_{899}= -0.00703479 \pm 4.6 \cdot 10^{-6} \) | \(a_{900}= +2.81077567 \pm 3.6 \cdot 10^{-6} \) |
\(a_{901}= +0.30686431 \pm 4.6 \cdot 10^{-6} \) | \(a_{902}= -1.69540930 \pm 4.1 \cdot 10^{-6} \) | \(a_{903}= +0.21587121 \pm 3.3 \cdot 10^{-6} \) |
\(a_{904}= -1.89935850 \pm 5.5 \cdot 10^{-6} \) | \(a_{905}= +1.00230195 \pm 4.6 \cdot 10^{-6} \) | \(a_{906}= -0.31561770 \pm 5.2 \cdot 10^{-6} \) |
\(a_{907}= +0.13321742 \pm 4.1 \cdot 10^{-6} \) | \(a_{908}= +2.33543885 \pm 4.6 \cdot 10^{-6} \) | \(a_{909}= +0.04662423 \pm 5.4 \cdot 10^{-6} \) |
\(a_{910}= +0.75774121 \pm 1.7 \cdot 10^{-5} \) | \(a_{911}= +1.20979907 \pm 3.4 \cdot 10^{-6} \) | \(a_{912}= +2.08561283 \pm 4.2 \cdot 10^{-6} \) |
\(a_{913}= -0.17250522 \pm 2.9 \cdot 10^{-6} \) | \(a_{914}= +2.36445056 \pm 6.7 \cdot 10^{-6} \) | \(a_{915}= -1.11389579 \pm 4.7 \cdot 10^{-6} \) |
\(a_{916}= +3.42961867 \pm 5.5 \cdot 10^{-6} \) | \(a_{917}= -0.17268246 \pm 3.9 \cdot 10^{-6} \) | \(a_{918}= +0.59787302 \pm 4.9 \cdot 10^{-6} \) |
\(a_{919}= -1.54287683 \pm 4.8 \cdot 10^{-6} \) | \(a_{920}= +4.97124071 \pm 4.4 \cdot 10^{-6} \) | \(a_{921}= -0.59431579 \pm 4.2 \cdot 10^{-6} \) |
\(a_{922}= +1.40178343 \pm 8.0 \cdot 10^{-6} \) | \(a_{923}= +0.17388027 \pm 5.9 \cdot 10^{-6} \) | \(a_{924}= +1.46576771 \pm 4.5 \cdot 10^{-6} \) |
\(a_{925}= +0.47377411 \pm 4.8 \cdot 10^{-6} \) | \(a_{926}= +1.01542638 \pm 8.7 \cdot 10^{-6} \) | \(a_{927}= -0.57767722 \pm 6.2 \cdot 10^{-6} \) |
\(a_{928}= +0.05000228 \pm 3.8 \cdot 10^{-6} \) | \(a_{929}= +1.56385423 \pm 5.2 \cdot 10^{-6} \) | \(a_{930}= +0.63235114 \pm 7.8 \cdot 10^{-6} \) |
\(a_{931}= +0.33092313 \pm 3.5 \cdot 10^{-6} \) | \(a_{932}= +2.18829213 \pm 7.3 \cdot 10^{-6} \) | \(a_{933}= -2.08859177 \pm 8.2 \cdot 10^{-6} \) |
\(a_{934}= -2.99612946 \pm 6.9 \cdot 10^{-6} \) | \(a_{935}= -0.65970030 \pm 3.4 \cdot 10^{-6} \) | \(a_{936}= +0.30575233 \pm 1.0 \cdot 10^{-5} \) |
\(a_{937}= -0.39702685 \pm 6.7 \cdot 10^{-6} \) | \(a_{938}= -1.10041661 \pm 4.7 \cdot 10^{-6} \) | \(a_{939}= -1.19906136 \pm 5.4 \cdot 10^{-6} \) |
\(a_{940}= -6.47703859 \pm 4.8 \cdot 10^{-6} \) | \(a_{941}= +1.29362261 \pm 6.6 \cdot 10^{-6} \) | \(a_{942}= +0.50494240 \pm 7.6 \cdot 10^{-6} \) |
\(a_{943}= +1.62621997 \pm 3.1 \cdot 10^{-6} \) | \(a_{944}= -0.70914559 \pm 5.2 \cdot 10^{-6} \) | \(a_{945}= +0.95261230 \pm 3.0 \cdot 10^{-6} \) |
\(a_{946}= +0.26601917 \pm 5.7 \cdot 10^{-6} \) | \(a_{947}= -1.39012688 \pm 4.7 \cdot 10^{-6} \) | \(a_{948}= -3.73883552 \pm 5.7 \cdot 10^{-6} \) |
\(a_{949}= -0.22887019 \pm 6.5 \cdot 10^{-6} \) | \(a_{950}= -4.27346310 \pm 3.3 \cdot 10^{-6} \) | \(a_{951}= -1.31715680 \pm 4.9 \cdot 10^{-6} \) |
\(a_{952}= +0.95998949 \pm 4.0 \cdot 10^{-6} \) | \(a_{953}= +0.57237377 \pm 5.3 \cdot 10^{-6} \) | \(a_{954}= +0.50939336 \pm 5.1 \cdot 10^{-6} \) |
\(a_{955}= +1.31945737 \pm 5.0 \cdot 10^{-6} \) | \(a_{956}= +1.77832990 \pm 5.1 \cdot 10^{-6} \) | \(a_{957}= +0.03742508 \pm 3.1 \cdot 10^{-6} \) |
\(a_{958}= +1.28826405 \pm 5.4 \cdot 10^{-6} \) | \(a_{959}= -0.59263737 \pm 6.1 \cdot 10^{-6} \) | \(a_{960}= -0.20828159 \pm 6.6 \cdot 10^{-6} \) |
\(a_{961}= -0.97686986 \pm 4.2 \cdot 10^{-6} \) | \(a_{962}= +0.09230104 \pm 1.3 \cdot 10^{-5} \) | \(a_{963}= -0.33056783 \pm 6.2 \cdot 10^{-6} \) |
\(a_{964}= +1.37770721 \pm 4.9 \cdot 10^{-6} \) | \(a_{965}= -2.14501069 \pm 5.7 \cdot 10^{-6} \) | \(a_{966}= -2.02688457 \pm 4.2 \cdot 10^{-6} \) |
\(a_{967}= +0.68143466 \pm 5.6 \cdot 10^{-6} \) | \(a_{968}= -1.27560992 \pm 2.5 \cdot 10^{-6} \) | \(a_{969}= +0.58819699 \pm 3.7 \cdot 10^{-6} \) |
\(a_{970}= +4.45612875 \pm 3.7 \cdot 10^{-6} \) | \(a_{971}= -0.61451766 \pm 6.2 \cdot 10^{-6} \) | \(a_{972}= +2.01905861 \pm 6.1 \cdot 10^{-6} \) |
\(a_{973}= +0.07861107 \pm 5.8 \cdot 10^{-6} \) | \(a_{974}= +3.48218072 \pm 7.6 \cdot 10^{-6} \) | \(a_{975}= -0.86862012 \pm 1.0 \cdot 10^{-5} \) |
\(a_{976}= +0.90152977 \pm 4.6 \cdot 10^{-6} \) | \(a_{977}= -0.39998815 \pm 4.7 \cdot 10^{-6} \) | \(a_{978}= +2.39223486 \pm 4.4 \cdot 10^{-6} \) |
\(a_{979}= +1.28432919 \pm 5.7 \cdot 10^{-6} \) | \(a_{980}= -1.53995527 \pm 4.3 \cdot 10^{-6} \) | \(a_{981}= +0.02776126 \pm 4.6 \cdot 10^{-6} \) |
\(a_{982}= -2.21459887 \pm 8.1 \cdot 10^{-6} \) | \(a_{983}= -1.99124117 \pm 6.2 \cdot 10^{-6} \) | \(a_{984}= -3.92771516 \pm 2.4 \cdot 10^{-6} \) |
\(a_{985}= -1.54076259 \pm 5.7 \cdot 10^{-6} \) | \(a_{986}= +0.04389911 \pm 3.1 \cdot 10^{-6} \) | \(a_{987}= +1.47451445 \pm 2.7 \cdot 10^{-6} \) |
\(a_{988}= -0.57750545 \pm 1.0 \cdot 10^{-5} \) | \(a_{989}= -0.25516298 \pm 3.9 \cdot 10^{-6} \) | \(a_{990}= -1.09509952 \pm 4.1 \cdot 10^{-6} \) |
\(a_{991}= -0.51831879 \pm 5.3 \cdot 10^{-6} \) | \(a_{992}= -0.16440573 \pm 6.3 \cdot 10^{-6} \) | \(a_{993}= +1.69604443 \pm 6.0 \cdot 10^{-6} \) |
\(a_{994}= +0.90626232 \pm 4.6 \cdot 10^{-6} \) | \(a_{995}= -1.76646897 \pm 6.0 \cdot 10^{-6} \) | \(a_{996}= -0.71574668 \pm 3.6 \cdot 10^{-6} \) |
\(a_{997}= -0.17162008 \pm 7.6 \cdot 10^{-6} \) | \(a_{998}= +1.17355371 \pm 6.3 \cdot 10^{-6} \) | \(a_{999}= +0.11603843 \pm 4.8 \cdot 10^{-6} \) |
\(a_{1000}= +6.78671407 \pm 3.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000