Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.1445892937610080453709428861 \pm 3 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.30285279 \pm 1.1 \cdot 10^{-6} \) | \(a_{3}= +0.21575518 \pm 8.8 \cdot 10^{-7} \) |
\(a_{4}= -0.90828019 \pm 1.2 \cdot 10^{-6} \) | \(a_{5}= -1.02721771 \pm 9.7 \cdot 10^{-7} \) | \(a_{6}= -0.06534206 \pm 1.1 \cdot 10^{-6} \) |
\(a_{7}= +1.43198668 \pm 8.8 \cdot 10^{-7} \) | \(a_{8}= +0.57792798 \pm 1.1 \cdot 10^{-6} \) | \(a_{9}= -0.95344970 \pm 7.8 \cdot 10^{-7} \) |
\(a_{10}= +0.31109575 \pm 8.8 \cdot 10^{-7} \) | \(a_{11}= -1.39422847 \pm 6.6 \cdot 10^{-7} \) | \(a_{12}= -0.19596616 \pm 1.1 \cdot 10^{-6} \) |
\(a_{13}= -0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= -0.43368116 \pm 1.2 \cdot 10^{-6} \) | \(a_{15}= -0.22162754 \pm 7.2 \cdot 10^{-7} \) |
\(a_{16}= +0.73325309 \pm 7.9 \cdot 10^{-7} \) | \(a_{17}= -0.54669496 \pm 8.6 \cdot 10^{-7} \) | \(a_{18}= +0.28875490 \pm 9.2 \cdot 10^{-7} \) |
\(a_{19}= -1.85071656 \pm 9.4 \cdot 10^{-7} \) | \(a_{20}= +0.93300149 \pm 1.0 \cdot 10^{-6} \) | \(a_{21}= +0.30895854 \pm 7.2 \cdot 10^{-7} \) |
\(a_{22}= +0.42224598 \pm 6.3 \cdot 10^{-7} \) | \(a_{23}= +0.22745624 \pm 6.3 \cdot 10^{-7} \) | \(a_{24}= +0.12469096 \pm 1.0 \cdot 10^{-6} \) |
\(a_{25}= +0.05517621 \pm 1.0 \cdot 10^{-6} \) | \(a_{26}= +0.08399625 \pm 1.1 \cdot 10^{-6} \) | \(a_{27}= -0.42146689 \pm 9.5 \cdot 10^{-7} \) |
\(a_{28}= -1.30064513 \pm 1.3 \cdot 10^{-6} \) | \(a_{29}= +0.32871316 \pm 8.3 \cdot 10^{-7} \) | \(a_{30}= +0.06712052 \pm 6.0 \cdot 10^{-7} \) |
\(a_{31}= -0.70094149 \pm 6.5 \cdot 10^{-7} \) | \(a_{32}= -0.79999572 \pm 8.6 \cdot 10^{-7} \) | \(a_{33}= -0.30081202 \pm 7.7 \cdot 10^{-7} \) |
\(a_{34}= +0.16556809 \pm 1.1 \cdot 10^{-6} \) | \(a_{35}= -1.47096207 \pm 8.0 \cdot 10^{-7} \) | \(a_{36}= +0.86599947 \pm 7.7 \cdot 10^{-7} \) |
\(a_{37}= +1.58937437 \pm 7.7 \cdot 10^{-7} \) | \(a_{38}= +0.56049467 \pm 1.2 \cdot 10^{-6} \) | \(a_{39}= -0.05983972 \pm 8.9 \cdot 10^{-7} \) |
\(a_{40}= -0.59365785 \pm 1.0 \cdot 10^{-6} \) | \(a_{41}= -1.40541165 \pm 1.2 \cdot 10^{-6} \) | \(a_{42}= -0.09356896 \pm 1.0 \cdot 10^{-6} \) |
\(a_{43}= +0.69052302 \pm 7.3 \cdot 10^{-7} \) | \(a_{44}= +1.26635010 \pm 5.1 \cdot 10^{-7} \) | \(a_{45}= +0.97940042 \pm 6.7 \cdot 10^{-7} \) |
\(a_{46}= -0.06888576 \pm 7.5 \cdot 10^{-7} \) | \(a_{47}= +0.38806137 \pm 6.7 \cdot 10^{-7} \) | \(a_{48}= +0.15820315 \pm 7.1 \cdot 10^{-7} \) |
\(a_{49}= +1.05058585 \pm 6.7 \cdot 10^{-7} \) | \(a_{50}= -0.01671027 \pm 8.6 \cdot 10^{-7} \) | \(a_{51}= -0.11795227 \pm 9.4 \cdot 10^{-7} \) |
\(a_{52}= +0.25191160 \pm 1.2 \cdot 10^{-6} \) | \(a_{53}= +1.10079537 \pm 9.3 \cdot 10^{-7} \) | \(a_{54}= +0.12764242 \pm 1.0 \cdot 10^{-6} \) |
\(a_{55}= +1.43217617 \pm 6.2 \cdot 10^{-7} \) | \(a_{56}= +0.82758517 \pm 1.0 \cdot 10^{-6} \) | \(a_{57}= -0.39930169 \pm 5.3 \cdot 10^{-7} \) |
\(a_{58}= -0.09955170 \pm 1.3 \cdot 10^{-6} \) | \(a_{59}= -0.65845074 \pm 7.7 \cdot 10^{-7} \) | \(a_{60}= +0.20129991 \pm 7.0 \cdot 10^{-7} \) |
\(a_{61}= +0.87680381 \pm 8.5 \cdot 10^{-7} \) | \(a_{62}= +0.21228209 \pm 5.7 \cdot 10^{-7} \) | \(a_{63}= -1.36532727 \pm 6.5 \cdot 10^{-7} \) |
\(a_{64}= -0.49097215 \pm 1.1 \cdot 10^{-6} \) | \(a_{65}= +0.28489893 \pm 9.8 \cdot 10^{-7} \) | \(a_{66}= +0.09110176 \pm 8.1 \cdot 10^{-7} \) |
\(a_{67}= +1.05012224 \pm 7.4 \cdot 10^{-7} \) | \(a_{68}= +0.49655220 \pm 1.1 \cdot 10^{-6} \) | \(a_{69}= +0.04907486 \pm 5.9 \cdot 10^{-7} \) |
\(a_{70}= +0.44548497 \pm 9.4 \cdot 10^{-7} \) | \(a_{71}= +0.41549144 \pm 7.1 \cdot 10^{-7} \) | \(a_{72}= -0.55102526 \pm 8.8 \cdot 10^{-7} \) |
\(a_{73}= +1.94001774 \pm 7.3 \cdot 10^{-7} \) | \(a_{74}= -0.48134646 \pm 9.2 \cdot 10^{-7} \) | \(a_{75}= +0.01190455 \pm 9.3 \cdot 10^{-7} \) |
\(a_{76}= +1.68096919 \pm 1.2 \cdot 10^{-6} \) | \(a_{77}= -1.99651660 \pm 6.0 \cdot 10^{-7} \) | \(a_{78}= +0.01812263 \pm 2.0 \cdot 10^{-6} \) |
\(a_{79}= -1.44957554 \pm 6.7 \cdot 10^{-7} \) | \(a_{80}= -0.75321055 \pm 9.1 \cdot 10^{-7} \) | \(a_{81}= +0.86251604 \pm 9.4 \cdot 10^{-7} \) |
\(a_{82}= +0.42563284 \pm 1.7 \cdot 10^{-6} \) | \(a_{83}= +0.11512371 \pm 1.0 \cdot 10^{-6} \) | \(a_{84}= -0.28062092 \pm 1.1 \cdot 10^{-6} \) |
\(a_{85}= +0.56157475 \pm 6.3 \cdot 10^{-7} \) | \(a_{86}= -0.20912682 \pm 6.9 \cdot 10^{-7} \) | \(a_{87}= +0.07092157 \pm 8.6 \cdot 10^{-7} \) |
\(a_{88}= -0.80576364 \pm 6.4 \cdot 10^{-7} \) | \(a_{89}= +0.61935758 \pm 8.1 \cdot 10^{-7} \) | \(a_{90}= -0.29661415 \pm 7.3 \cdot 10^{-7} \) |
\(a_{91}= -0.39716165 \pm 8.9 \cdot 10^{-7} \) | \(a_{92}= -0.20659400 \pm 7.6 \cdot 10^{-7} \) | \(a_{93}= -0.15123176 \pm 6.3 \cdot 10^{-7} \) |
\(a_{94}= -0.11752547 \pm 9.3 \cdot 10^{-7} \) | \(a_{95}= +1.90108882 \pm 9.5 \cdot 10^{-7} \) | \(a_{96}= -0.17260322 \pm 5.9 \cdot 10^{-7} \) |
\(a_{97}= +0.67656820 \pm 9.7 \cdot 10^{-7} \) | \(a_{98}= -0.31817285 \pm 8.2 \cdot 10^{-7} \) | \(a_{99}= +1.32932672 \pm 8.6 \cdot 10^{-7} \) |
\(a_{100}= -0.05011546 \pm 1.1 \cdot 10^{-6} \) | \(a_{101}= -1.09001044 \pm 8.6 \cdot 10^{-7} \) | \(a_{102}= +0.03572217 \pm 1.2 \cdot 10^{-6} \) |
\(a_{103}= +0.33673586 \pm 1.0 \cdot 10^{-6} \) | \(a_{104}= -0.16028838 \pm 1.1 \cdot 10^{-6} \) | \(a_{105}= -0.31736769 \pm 5.6 \cdot 10^{-7} \) |
\(a_{106}= -0.33337895 \pm 6.8 \cdot 10^{-7} \) | \(a_{107}= -0.17059581 \pm 8.7 \cdot 10^{-7} \) | \(a_{108}= +0.38281003 \pm 9.4 \cdot 10^{-7} \) |
\(a_{109}= -1.09539721 \pm 1.0 \cdot 10^{-6} \) | \(a_{110}= -0.43373855 \pm 5.2 \cdot 10^{-7} \) | \(a_{111}= +0.34291576 \pm 8.5 \cdot 10^{-7} \) |
\(a_{112}= +1.05000865 \pm 5.4 \cdot 10^{-7} \) | \(a_{113}= -1.01223044 \pm 6.3 \cdot 10^{-7} \) | \(a_{114}= +0.12092963 \pm 5.0 \cdot 10^{-7} \) |
\(a_{115}= -0.23364708 \pm 6.4 \cdot 10^{-7} \) | \(a_{116}= -0.29856366 \pm 1.5 \cdot 10^{-6} \) | \(a_{117}= +0.26443937 \pm 8.0 \cdot 10^{-7} \) |
\(a_{118}= +0.19941364 \pm 6.0 \cdot 10^{-7} \) | \(a_{119}= -0.78285990 \pm 7.5 \cdot 10^{-7} \) | \(a_{120}= -0.12808476 \pm 6.8 \cdot 10^{-7} \) |
\(a_{121}= +0.94387304 \pm 8.8 \cdot 10^{-7} \) | \(a_{122}= -0.26554248 \pm 9.9 \cdot 10^{-7} \) | \(a_{123}= -0.30322485 \pm 1.2 \cdot 10^{-6} \) |
\(a_{124}= +0.63665127 \pm 4.9 \cdot 10^{-7} \) | \(a_{125}= +0.97053972 \pm 1.1 \cdot 10^{-6} \) | \(a_{126}= +0.41349317 \pm 9.1 \cdot 10^{-7} \) |
\(a_{127}= -1.01666719 \pm 1.0 \cdot 10^{-6} \) | \(a_{128}= +0.94868801 \pm 1.2 \cdot 10^{-6} \) | \(a_{129}= +0.14898392 \pm 6.5 \cdot 10^{-7} \) |
\(a_{130}= -0.08628244 \pm 2.1 \cdot 10^{-6} \) | \(a_{131}= +1.60789109 \pm 6.5 \cdot 10^{-7} \) | \(a_{132}= +0.27322159 \pm 3.7 \cdot 10^{-7} \) |
\(a_{133}= -2.65020146 \pm 1.0 \cdot 10^{-6} \) | \(a_{134}= -0.31803245 \pm 8.6 \cdot 10^{-7} \) | \(a_{135}= +0.43293825 \pm 9.1 \cdot 10^{-7} \) |
\(a_{136}= -0.31595031 \pm 1.0 \cdot 10^{-6} \) | \(a_{137}= -1.34143260 \pm 5.3 \cdot 10^{-7} \) | \(a_{138}= -0.01486246 \pm 6.9 \cdot 10^{-7} \) |
\(a_{139}= +1.45729083 \pm 6.9 \cdot 10^{-7} \) | \(a_{140}= +1.33604571 \pm 1.0 \cdot 10^{-6} \) | \(a_{141}= +0.08372625 \pm 7.6 \cdot 10^{-7} \) |
\(a_{142}= -0.12583274 \pm 8.6 \cdot 10^{-7} \) | \(a_{143}= +0.38668940 \pm 6.7 \cdot 10^{-7} \) | \(a_{144}= -0.69911994 \pm 8.0 \cdot 10^{-7} \) |
\(a_{145}= -0.33765998 \pm 5.9 \cdot 10^{-7} \) | \(a_{146}= -0.58753978 \pm 9.7 \cdot 10^{-7} \) | \(a_{147}= +0.22666934 \pm 5.3 \cdot 10^{-7} \) |
\(a_{148}= -1.44359726 \pm 8.7 \cdot 10^{-7} \) | \(a_{149}= -0.34263107 \pm 6.2 \cdot 10^{-7} \) | \(a_{150}= -0.00360533 \pm 9.4 \cdot 10^{-7} \) |
\(a_{151}= +0.22674093 \pm 6.8 \cdot 10^{-7} \) | \(a_{152}= -1.06958088 \pm 1.1 \cdot 10^{-6} \) | \(a_{153}= +0.52124615 \pm 6.6 \cdot 10^{-7} \) |
\(a_{154}= +0.60465062 \pm 5.0 \cdot 10^{-7} \) | \(a_{155}= +0.72001951 \pm 5.8 \cdot 10^{-7} \) | \(a_{156}= +0.05435123 \pm 2.1 \cdot 10^{-6} \) |
\(a_{157}= -1.24930192 \pm 7.7 \cdot 10^{-7} \) | \(a_{158}= +0.43900800 \pm 8.1 \cdot 10^{-7} \) | \(a_{159}= +0.23750230 \pm 7.6 \cdot 10^{-7} \) |
\(a_{160}= +0.82176977 \pm 1.0 \cdot 10^{-6} \) | \(a_{161}= +0.32571431 \pm 5.5 \cdot 10^{-7} \) | \(a_{162}= -0.26121539 \pm 1.3 \cdot 10^{-6} \) |
\(a_{163}= -0.87854671 \pm 7.7 \cdot 10^{-7} \) | \(a_{164}= +1.27650756 \pm 1.9 \cdot 10^{-6} \) | \(a_{165}= +0.30899943 \pm 5.7 \cdot 10^{-7} \) |
\(a_{166}= -0.03486554 \pm 1.4 \cdot 10^{-6} \) | \(a_{167}= +0.14704295 \pm 9.8 \cdot 10^{-7} \) | \(a_{168}= +0.17855579 \pm 9.2 \cdot 10^{-7} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= -0.17007448 \pm 6.0 \cdot 10^{-7} \) | \(a_{171}= +1.76456515 \pm 8.0 \cdot 10^{-7} \) |
\(a_{172}= -0.62718837 \pm 5.1 \cdot 10^{-7} \) | \(a_{173}= -0.30379816 \pm 8.2 \cdot 10^{-7} \) | \(a_{174}= -0.02147879 \pm 1.3 \cdot 10^{-6} \) |
\(a_{175}= +0.07901160 \pm 7.8 \cdot 10^{-7} \) | \(a_{176}= -1.02232233 \pm 6.0 \cdot 10^{-7} \) | \(a_{177}= -0.14206416 \pm 6.6 \cdot 10^{-7} \) |
\(a_{178}= -0.18757417 \pm 1.1 \cdot 10^{-6} \) | \(a_{179}= +0.18689754 \pm 1.0 \cdot 10^{-6} \) | \(a_{180}= -0.88956999 \pm 7.9 \cdot 10^{-7} \) |
\(a_{181}= +0.60956442 \pm 8.2 \cdot 10^{-7} \) | \(a_{182}= +0.12028151 \pm 2.0 \cdot 10^{-6} \) | \(a_{183}= +0.18917496 \pm 7.6 \cdot 10^{-7} \) |
\(a_{184}= +0.13145333 \pm 7.4 \cdot 10^{-7} \) | \(a_{185}= -1.63263350 \pm 7.6 \cdot 10^{-7} \) | \(a_{186}= +0.04580096 \pm 6.0 \cdot 10^{-7} \) |
\(a_{187}= +0.76221768 \pm 5.1 \cdot 10^{-7} \) | \(a_{188}= -0.35246846 \pm 9.9 \cdot 10^{-7} \) | \(a_{189}= -0.60353498 \pm 6.4 \cdot 10^{-7} \) |
\(a_{190}= -0.57575005 \pm 1.2 \cdot 10^{-6} \) | \(a_{191}= +0.17154990 \pm 1.2 \cdot 10^{-6} \) | \(a_{192}= -0.10592979 \pm 9.4 \cdot 10^{-7} \) |
\(a_{193}= +1.63251115 \pm 8.5 \cdot 10^{-7} \) | \(a_{194}= -0.20490057 \pm 1.4 \cdot 10^{-6} \) | \(a_{195}= +0.06146842 \pm 1.8 \cdot 10^{-6} \) |
\(a_{196}= -0.95422631 \pm 8.3 \cdot 10^{-7} \) | \(a_{197}= -0.97189137 \pm 1.0 \cdot 10^{-6} \) | \(a_{198}= -0.40259031 \pm 8.9 \cdot 10^{-7} \) |
\(a_{199}= +0.25194128 \pm 1.0 \cdot 10^{-6} \) | \(a_{200}= +0.03188788 \pm 9.7 \cdot 10^{-7} \) | \(a_{201}= +0.22656931 \pm 5.2 \cdot 10^{-7} \) |
\(a_{202}= +0.33011270 \pm 7.6 \cdot 10^{-7} \) | \(a_{203}= +0.47071287 \pm 8.2 \cdot 10^{-7} \) | \(a_{204}= +0.10713371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{205}= +1.44366373 \pm 1.3 \cdot 10^{-6} \) | \(a_{206}= -0.10198140 \pm 1.0 \cdot 10^{-6} \) | \(a_{207}= -0.21686808 \pm 5.2 \cdot 10^{-7} \) |
\(a_{208}= -0.20336782 \pm 8.0 \cdot 10^{-7} \) | \(a_{209}= +2.58032173 \pm 5.0 \cdot 10^{-7} \) | \(a_{210}= +0.09611569 \pm 5.4 \cdot 10^{-7} \) |
\(a_{211}= +1.06616132 \pm 1.0 \cdot 10^{-6} \) | \(a_{212}= -0.99983062 \pm 6.2 \cdot 10^{-7} \) | \(a_{213}= +0.08964443 \pm 4.7 \cdot 10^{-7} \) |
\(a_{214}= +0.05166542 \pm 1.2 \cdot 10^{-6} \) | \(a_{215}= -0.70931747 \pm 8.0 \cdot 10^{-7} \) | \(a_{216}= -0.24357751 \pm 1.0 \cdot 10^{-6} \) |
\(a_{217}= -1.00373888 \pm 6.1 \cdot 10^{-7} \) | \(a_{218}= +0.33174410 \pm 1.5 \cdot 10^{-6} \) | \(a_{219}= +0.41856888 \pm 7.4 \cdot 10^{-7} \) |
\(a_{220}= -1.30081724 \pm 5.4 \cdot 10^{-7} \) | \(a_{221}= +0.15162590 \pm 8.7 \cdot 10^{-7} \) | \(a_{222}= -0.10385299 \pm 1.0 \cdot 10^{-6} \) |
\(a_{223}= -0.52034947 \pm 9.9 \cdot 10^{-7} \) | \(a_{224}= -1.14558321 \pm 7.2 \cdot 10^{-7} \) | \(a_{225}= -0.05260775 \pm 7.4 \cdot 10^{-7} \) |
\(a_{226}= +0.30655681 \pm 5.3 \cdot 10^{-7} \) | \(a_{227}= -0.30456146 \pm 7.4 \cdot 10^{-7} \) | \(a_{228}= +0.36267781 \pm 4.2 \cdot 10^{-7} \) |
\(a_{229}= +1.43962591 \pm 8.1 \cdot 10^{-7} \) | \(a_{230}= +0.07076067 \pm 6.0 \cdot 10^{-7} \) | \(a_{231}= -0.43075880 \pm 4.5 \cdot 10^{-7} \) |
\(a_{232}= +0.18997253 \pm 1.3 \cdot 10^{-6} \) | \(a_{233}= -0.71066856 \pm 7.5 \cdot 10^{-7} \) | \(a_{234}= -0.08008620 \pm 1.9 \cdot 10^{-6} \) |
\(a_{235}= -0.39862351 \pm 5.6 \cdot 10^{-7} \) | \(a_{236}= +0.59805776 \pm 7.3 \cdot 10^{-7} \) | \(a_{237}= -0.31275343 \pm 5.2 \cdot 10^{-7} \) |
\(a_{238}= +0.23709131 \pm 1.0 \cdot 10^{-6} \) | \(a_{239}= +0.71875774 \pm 6.4 \cdot 10^{-7} \) | \(a_{240}= -0.16250908 \pm 5.8 \cdot 10^{-7} \) |
\(a_{241}= -0.64629223 \pm 1.0 \cdot 10^{-6} \) | \(a_{242}= -0.28585458 \pm 1.1 \cdot 10^{-6} \) | \(a_{243}= +0.60755920 \pm 7.7 \cdot 10^{-7} \) |
\(a_{244}= -0.79638353 \pm 1.0 \cdot 10^{-6} \) | \(a_{245}= -1.07918038 \pm 6.8 \cdot 10^{-7} \) | \(a_{246}= +0.09183249 \pm 1.8 \cdot 10^{-6} \) |
\(a_{247}= +0.51329642 \pm 9.5 \cdot 10^{-7} \) | \(a_{248}= -0.40509370 \pm 6.6 \cdot 10^{-7} \) | \(a_{249}= +0.02483854 \pm 1.0 \cdot 10^{-6} \) |
\(a_{250}= -0.29393066 \pm 1.0 \cdot 10^{-6} \) | \(a_{251}= +0.21999715 \pm 1.0 \cdot 10^{-6} \) | \(a_{252}= +1.24009971 \pm 9.5 \cdot 10^{-7} \) |
\(a_{253}= -0.31712597 \pm 4.9 \cdot 10^{-7} \) | \(a_{254}= +0.30790050 \pm 1.4 \cdot 10^{-6} \) | \(a_{255}= +0.12116266 \pm 4.8 \cdot 10^{-7} \) |
\(a_{256}= +0.20365934 \pm 1.0 \cdot 10^{-6} \) | \(a_{257}= +1.00117870 \pm 1.1 \cdot 10^{-6} \) | \(a_{258}= -0.04512020 \pm 5.9 \cdot 10^{-7} \) |
\(a_{259}= +2.27596293 \pm 5.9 \cdot 10^{-7} \) | \(a_{260}= -0.25876805 \pm 2.2 \cdot 10^{-6} \) | \(a_{261}= -0.31341147 \pm 4.9 \cdot 10^{-7} \) |
\(a_{262}= -0.48695430 \pm 8.2 \cdot 10^{-7} \) | \(a_{263}= +1.15420300 \pm 8.1 \cdot 10^{-7} \) | \(a_{264}= -0.17384768 \pm 7.1 \cdot 10^{-7} \) |
\(a_{265}= -1.13075649 \pm 1.1 \cdot 10^{-6} \) | \(a_{266}= +0.80262090 \pm 1.6 \cdot 10^{-6} \) | \(a_{267}= +0.13362961 \pm 7.0 \cdot 10^{-7} \) |
\(a_{268}= -0.95380523 \pm 8.9 \cdot 10^{-7} \) | \(a_{269}= -1.56080526 \pm 1.0 \cdot 10^{-6} \) | \(a_{270}= -0.13111656 \pm 5.9 \cdot 10^{-7} \) |
\(a_{271}= +0.10286613 \pm 1.0 \cdot 10^{-6} \) | \(a_{272}= -0.40086577 \pm 5.3 \cdot 10^{-7} \) | \(a_{273}= -0.08568968 \pm 1.7 \cdot 10^{-6} \) |
\(a_{274}= +0.40625661 \pm 8.3 \cdot 10^{-7} \) | \(a_{275}= -0.07692825 \pm 6.4 \cdot 10^{-7} \) | \(a_{276}= -0.04457373 \pm 6.5 \cdot 10^{-7} \) |
\(a_{277}= +0.95228053 \pm 7.5 \cdot 10^{-7} \) | \(a_{278}= -0.44134459 \pm 5.6 \cdot 10^{-7} \) | \(a_{279}= +0.66831246 \pm 6.5 \cdot 10^{-7} \) |
\(a_{280}= -0.85011013 \pm 8.4 \cdot 10^{-7} \) | \(a_{281}= +0.28811647 \pm 7.9 \cdot 10^{-7} \) | \(a_{282}= -0.02535673 \pm 8.9 \cdot 10^{-7} \) |
\(a_{283}= +0.02200489 \pm 8.4 \cdot 10^{-7} \) | \(a_{284}= -0.37738265 \pm 8.5 \cdot 10^{-7} \) | \(a_{285}= +0.41016976 \pm 5.0 \cdot 10^{-7} \) |
\(a_{286}= -0.11710996 \pm 1.8 \cdot 10^{-6} \) | \(a_{287}= -2.01253076 \pm 1.1 \cdot 10^{-6} \) | \(a_{288}= +0.76275568 \pm 6.5 \cdot 10^{-7} \) |
\(a_{289}= -0.70112462 \pm 8.2 \cdot 10^{-7} \) | \(a_{290}= +0.10226127 \pm 8.7 \cdot 10^{-7} \) | \(a_{291}= +0.14597309 \pm 1.0 \cdot 10^{-6} \) |
\(a_{292}= -1.76207968 \pm 1.0 \cdot 10^{-6} \) | \(a_{293}= +0.70051435 \pm 5.9 \cdot 10^{-7} \) | \(a_{294}= -0.06864744 \pm 5.1 \cdot 10^{-7} \) |
\(a_{295}= +0.67637226 \pm 1.1 \cdot 10^{-6} \) | \(a_{296}= +0.91854392 \pm 8.7 \cdot 10^{-7} \) | \(a_{297}= +0.58762114 \pm 9.1 \cdot 10^{-7} \) |
\(a_{298}= +0.10376678 \pm 6.4 \cdot 10^{-7} \) | \(a_{299}= -0.06308501 \pm 6.4 \cdot 10^{-7} \) | \(a_{300}= -0.01081267 \pm 1.0 \cdot 10^{-6} \) |
\(a_{301}= +0.98881976 \pm 4.9 \cdot 10^{-7} \) | \(a_{302}= -0.06866912 \pm 7.6 \cdot 10^{-7} \) | \(a_{303}= -0.23517540 \pm 7.1 \cdot 10^{-7} \) |
\(a_{304}= -1.35704363 \pm 6.9 \cdot 10^{-7} \) | \(a_{305}= -0.90066840 \pm 1.1 \cdot 10^{-6} \) | \(a_{306}= -0.15786085 \pm 7.0 \cdot 10^{-7} \) |
\(a_{307}= -0.85617207 \pm 1.2 \cdot 10^{-6} \) | \(a_{308}= +1.81339647 \pm 5.2 \cdot 10^{-7} \) | \(a_{309}= +0.07265251 \pm 8.2 \cdot 10^{-7} \) |
\(a_{310}= -0.21805992 \pm 4.7 \cdot 10^{-7} \) | \(a_{311}= -0.05605238 \pm 7.3 \cdot 10^{-7} \) | \(a_{312}= -0.03458305 \pm 2.0 \cdot 10^{-6} \) |
\(a_{313}= -0.07144999 \pm 1.0 \cdot 10^{-6} \) | \(a_{314}= +0.37835457 \pm 8.9 \cdot 10^{-7} \) | \(a_{315}= +1.40248835 \pm 6.5 \cdot 10^{-7} \) |
\(a_{316}= +1.31662074 \pm 7.6 \cdot 10^{-7} \) | \(a_{317}= +0.55730524 \pm 8.2 \cdot 10^{-7} \) | \(a_{318}= -0.07192824 \pm 5.9 \cdot 10^{-7} \) |
\(a_{319}= -0.45830125 \pm 3.4 \cdot 10^{-7} \) | \(a_{320}= +0.50433529 \pm 9.8 \cdot 10^{-7} \) | \(a_{321}= -0.03680693 \pm 7.6 \cdot 10^{-7} \) |
\(a_{322}= -0.09864349 \pm 7.2 \cdot 10^{-7} \) | \(a_{323}= +1.01177742 \pm 6.8 \cdot 10^{-7} \) | \(a_{324}= -0.78340623 \pm 1.2 \cdot 10^{-6} \) |
\(a_{325}= -0.01530313 \pm 1.0 \cdot 10^{-6} \) | \(a_{326}= +0.26607032 \pm 9.2 \cdot 10^{-7} \) | \(a_{327}= -0.23633762 \pm 9.9 \cdot 10^{-7} \) |
\(a_{328}= -0.81222672 \pm 1.6 \cdot 10^{-6} \) | \(a_{329}= +0.55569872 \pm 6.2 \cdot 10^{-7} \) | \(a_{330}= -0.09358134 \pm 5.3 \cdot 10^{-7} \) |
\(a_{331}= -0.32153666 \pm 1.0 \cdot 10^{-6} \) | \(a_{332}= -0.10456459 \pm 1.5 \cdot 10^{-6} \) | \(a_{333}= -1.51538852 \pm 7.4 \cdot 10^{-7} \) |
\(a_{334}= -0.04453237 \pm 9.0 \cdot 10^{-7} \) | \(a_{335}= -1.07870416 \pm 6.7 \cdot 10^{-7} \) | \(a_{336}= +0.22654481 \pm 4.7 \cdot 10^{-7} \) |
\(a_{337}= +0.61563723 \pm 1.0 \cdot 10^{-6} \) | \(a_{338}= -0.02329637 \pm 1.1 \cdot 10^{-6} \) | \(a_{339}= -0.21839396 \pm 6.3 \cdot 10^{-7} \) |
\(a_{340}= -0.51006722 \pm 6.0 \cdot 10^{-7} \) | \(a_{341}= +0.97727259 \pm 7.3 \cdot 10^{-7} \) | \(a_{342}= -0.53440348 \pm 1.1 \cdot 10^{-6} \) |
\(a_{343}= +0.07243826 \pm 7.8 \cdot 10^{-7} \) | \(a_{344}= +0.39907257 \pm 7.8 \cdot 10^{-7} \) | \(a_{345}= -0.05041057 \pm 5.2 \cdot 10^{-7} \) |
\(a_{346}= +0.09200612 \pm 1.0 \cdot 10^{-6} \) | \(a_{347}= -1.07286992 \pm 8.4 \cdot 10^{-7} \) | \(a_{348}= -0.06441666 \pm 1.5 \cdot 10^{-6} \) |
\(a_{349}= -0.98455042 \pm 1.1 \cdot 10^{-6} \) | \(a_{350}= -0.02392888 \pm 7.9 \cdot 10^{-7} \) | \(a_{351}= +0.11689388 \pm 9.6 \cdot 10^{-7} \) |
\(a_{352}= +1.11537681 \pm 5.3 \cdot 10^{-7} \) | \(a_{353}= -1.11531002 \pm 1.0 \cdot 10^{-6} \) | \(a_{354}= +0.04302453 \pm 5.4 \cdot 10^{-7} \) |
\(a_{355}= -0.42680017 \pm 7.4 \cdot 10^{-7} \) | \(a_{356}= -0.56255022 \pm 1.2 \cdot 10^{-6} \) | \(a_{357}= -0.16890608 \pm 7.8 \cdot 10^{-7} \) |
\(a_{358}= -0.05660244 \pm 1.1 \cdot 10^{-6} \) | \(a_{359}= +0.30454741 \pm 6.8 \cdot 10^{-7} \) | \(a_{360}= +0.56602290 \pm 8.0 \cdot 10^{-7} \) |
\(a_{361}= +2.42515179 \pm 1.2 \cdot 10^{-6} \) | \(a_{362}= -0.18460828 \pm 8.5 \cdot 10^{-7} \) | \(a_{363}= +0.20364550 \pm 9.0 \cdot 10^{-7} \) |
\(a_{364}= +0.36073405 \pm 2.1 \cdot 10^{-6} \) | \(a_{365}= -1.99282057 \pm 4.7 \cdot 10^{-7} \) | \(a_{366}= -0.05729217 \pm 8.9 \cdot 10^{-7} \) |
\(a_{367}= -0.54286747 \pm 1.0 \cdot 10^{-6} \) | \(a_{368}= +0.16678299 \pm 5.7 \cdot 10^{-7} \) | \(a_{369}= +1.33998932 \pm 6.4 \cdot 10^{-7} \) |
\(a_{370}= +0.49444761 \pm 6.5 \cdot 10^{-7} \) | \(a_{371}= +1.57632430 \pm 7.2 \cdot 10^{-7} \) | \(a_{372}= +0.13736081 \pm 3.8 \cdot 10^{-7} \) |
\(a_{373}= +0.71537822 \pm 8.3 \cdot 10^{-7} \) | \(a_{374}= -0.23083975 \pm 4.8 \cdot 10^{-7} \) | \(a_{375}= +0.20939897 \pm 8.5 \cdot 10^{-7} \) |
\(a_{376}= +0.22427153 \pm 1.0 \cdot 10^{-6} \) | \(a_{377}= -0.09116863 \pm 8.4 \cdot 10^{-7} \) | \(a_{378}= +0.18278225 \pm 7.8 \cdot 10^{-7} \) |
\(a_{379}= -0.69122230 \pm 1.0 \cdot 10^{-6} \) | \(a_{380}= -1.72672131 \pm 1.2 \cdot 10^{-6} \) | \(a_{381}= -0.21935121 \pm 1.0 \cdot 10^{-6} \) |
\(a_{382}= -0.05195437 \pm 1.8 \cdot 10^{-6} \) | \(a_{383}= +0.70847751 \pm 6.6 \cdot 10^{-7} \) | \(a_{384}= +0.20468435 \pm 1.2 \cdot 10^{-6} \) |
\(a_{385}= +2.05085720 \pm 5.3 \cdot 10^{-7} \) | \(a_{386}= -0.49441056 \pm 1.2 \cdot 10^{-6} \) | \(a_{387}= -0.65837896 \pm 6.8 \cdot 10^{-7} \) |
\(a_{388}= -0.61451349 \pm 1.5 \cdot 10^{-6} \) | \(a_{389}= -1.51135428 \pm 9.1 \cdot 10^{-7} \) | \(a_{390}= -0.01861588 \pm 3.0 \cdot 10^{-6} \) |
\(a_{391}= -0.12434918 \pm 5.7 \cdot 10^{-7} \) | \(a_{392}= +0.60716295 \pm 7.5 \cdot 10^{-7} \) | \(a_{393}= +0.34691083 \pm 6.1 \cdot 10^{-7} \) |
\(a_{394}= +0.29434001 \pm 1.5 \cdot 10^{-6} \) | \(a_{395}= +1.48902966 \pm 6.8 \cdot 10^{-7} \) | \(a_{396}= -1.20740113 \pm 3.6 \cdot 10^{-7} \) |
\(a_{397}= +1.19978739 \pm 1.0 \cdot 10^{-6} \) | \(a_{398}= -0.07630112 \pm 1.2 \cdot 10^{-6} \) | \(a_{399}= -0.57179469 \pm 3.5 \cdot 10^{-7} \) |
\(a_{400}= +0.04045813 \pm 7.6 \cdot 10^{-7} \) | \(a_{401}= -0.95734822 \pm 8.4 \cdot 10^{-7} \) | \(a_{402}= -0.06861715 \pm 4.2 \cdot 10^{-7} \) |
\(a_{403}= +0.19440619 \pm 6.7 \cdot 10^{-7} \) | \(a_{404}= +0.99003489 \pm 9.2 \cdot 10^{-7} \) | \(a_{405}= -0.88599174 \pm 5.5 \cdot 10^{-7} \) |
\(a_{406}= -0.14255671 \pm 1.3 \cdot 10^{-6} \) | \(a_{407}= -2.21595101 \pm 6.5 \cdot 10^{-7} \) | \(a_{408}= -0.06816792 \pm 1.1 \cdot 10^{-6} \) |
\(a_{409}= +0.45063288 \pm 8.2 \cdot 10^{-7} \) | \(a_{410}= -0.43721759 \pm 1.0 \cdot 10^{-6} \) | \(a_{411}= -0.28942103 \pm 3.8 \cdot 10^{-7} \) |
\(a_{412}= -0.30585051 \pm 1.2 \cdot 10^{-6} \) | \(a_{413}= -0.94289269 \pm 5.4 \cdot 10^{-7} \) | \(a_{414}= +0.06567910 \pm 5.9 \cdot 10^{-7} \) |
\(a_{415}= -0.11825712 \pm 8.1 \cdot 10^{-7} \) | \(a_{416}= +0.22187889 \pm 8.7 \cdot 10^{-7} \) | \(a_{417}= +0.31441805 \pm 5.8 \cdot 10^{-7} \) |
\(a_{418}= -0.78145763 \pm 5.4 \cdot 10^{-7} \) | \(a_{419}= +1.64181514 \pm 8.2 \cdot 10^{-7} \) | \(a_{420}= +0.28825878 \pm 6.0 \cdot 10^{-7} \) |
\(a_{421}= +0.63300988 \pm 1.0 \cdot 10^{-6} \) | \(a_{422}= -0.32288993 \pm 1.4 \cdot 10^{-6} \) | \(a_{423}= -0.36999700 \pm 8.4 \cdot 10^{-7} \) |
\(a_{424}= +0.63618044 \pm 8.8 \cdot 10^{-7} \) | \(a_{425}= -0.03016456 \pm 8.6 \cdot 10^{-7} \) | \(a_{426}= -0.02714907 \pm 4.0 \cdot 10^{-7} \) |
\(a_{427}= +1.25557137 \pm 8.1 \cdot 10^{-7} \) | \(a_{428}= +0.15494879 \pm 1.4 \cdot 10^{-6} \) | \(a_{429}= +0.08343024 \pm 1.5 \cdot 10^{-6} \) |
\(a_{430}= +0.21481877 \pm 6.9 \cdot 10^{-7} \) | \(a_{431}= -1.44988921 \pm 1.1 \cdot 10^{-6} \) | \(a_{432}= -0.30904190 \pm 8.7 \cdot 10^{-7} \) |
\(a_{433}= +0.19772844 \pm 8.9 \cdot 10^{-7} \) | \(a_{434}= +0.30398512 \pm 4.7 \cdot 10^{-7} \) | \(a_{435}= -0.07285189 \pm 4.9 \cdot 10^{-7} \) |
\(a_{436}= +0.99492758 \pm 1.6 \cdot 10^{-6} \) | \(a_{437}= -0.42095703 \pm 7.0 \cdot 10^{-7} \) | \(a_{438}= -0.12676475 \pm 9.8 \cdot 10^{-7} \) |
\(a_{439}= +0.48659924 \pm 7.9 \cdot 10^{-7} \) | \(a_{440}= +0.82769468 \pm 6.1 \cdot 10^{-7} \) | \(a_{441}= -1.00168076 \pm 7.3 \cdot 10^{-7} \) |
\(a_{442}= -0.04592033 \pm 2.0 \cdot 10^{-6} \) | \(a_{443}= +0.47392147 \pm 5.0 \cdot 10^{-7} \) | \(a_{444}= -0.31146359 \pm 9.3 \cdot 10^{-7} \) |
\(a_{445}= -0.63621507 \pm 6.8 \cdot 10^{-7} \) | \(a_{446}= +0.15758929 \pm 1.2 \cdot 10^{-6} \) | \(a_{447}= -0.07392443 \pm 6.5 \cdot 10^{-7} \) |
\(a_{448}= -0.70306558 \pm 1.1 \cdot 10^{-6} \) | \(a_{449}= -0.51687112 \pm 8.1 \cdot 10^{-7} \) | \(a_{450}= +0.01593240 \pm 6.7 \cdot 10^{-7} \) |
\(a_{451}= +1.95946495 \pm 6.9 \cdot 10^{-7} \) | \(a_{452}= +0.91938885 \pm 5.4 \cdot 10^{-7} \) | \(a_{453}= +0.04892053 \pm 7.1 \cdot 10^{-7} \) |
\(a_{454}= +0.09223729 \pm 9.5 \cdot 10^{-7} \) | \(a_{455}= +0.40797147 \pm 1.8 \cdot 10^{-6} \) | \(a_{456}= -0.23076762 \pm 5.8 \cdot 10^{-7} \) |
\(a_{457}= +0.36744677 \pm 9.4 \cdot 10^{-7} \) | \(a_{458}= -0.43599472 \pm 1.1 \cdot 10^{-6} \) | \(a_{459}= +0.23041383 \pm 9.3 \cdot 10^{-7} \) |
\(a_{460}= +0.21221701 \pm 6.4 \cdot 10^{-7} \) | \(a_{461}= +0.52490883 \pm 1.0 \cdot 10^{-6} \) | \(a_{462}= +0.13045650 \pm 4.3 \cdot 10^{-7} \) |
\(a_{463}= -1.10305239 \pm 1.0 \cdot 10^{-6} \) | \(a_{464}= +0.24102994 \pm 9.9 \cdot 10^{-7} \) | \(a_{465}= +0.15534794 \pm 4.7 \cdot 10^{-7} \) |
\(a_{466}= +0.21522795 \pm 1.0 \cdot 10^{-6} \) | \(a_{467}= -1.54330845 \pm 1.0 \cdot 10^{-6} \) | \(a_{468}= -0.24018504 \pm 2.0 \cdot 10^{-6} \) |
\(a_{469}= +1.50376106 \pm 7.9 \cdot 10^{-7} \) | \(a_{470}= +0.12072424 \pm 7.9 \cdot 10^{-7} \) | \(a_{471}= -0.26954336 \pm 7.3 \cdot 10^{-7} \) |
\(a_{472}= -0.38053711 \pm 7.5 \cdot 10^{-7} \) | \(a_{473}= -0.96274685 \pm 5.2 \cdot 10^{-7} \) | \(a_{474}= +0.09471825 \pm 5.6 \cdot 10^{-7} \) |
\(a_{475}= -0.10211553 \pm 5.3 \cdot 10^{-7} \) | \(a_{476}= +0.71105614 \pm 1.2 \cdot 10^{-6} \) | \(a_{477}= -1.04955302 \pm 7.2 \cdot 10^{-7} \) |
\(a_{478}= -0.21767779 \pm 8.5 \cdot 10^{-7} \) | \(a_{479}= -1.49664529 \pm 9.8 \cdot 10^{-7} \) | \(a_{480}= +0.17730108 \pm 6.4 \cdot 10^{-7} \) |
\(a_{481}= -0.44081314 \pm 7.8 \cdot 10^{-7} \) | \(a_{482}= +0.19573140 \pm 1.1 \cdot 10^{-6} \) | \(a_{483}= +0.07027455 \pm 4.7 \cdot 10^{-7} \) |
\(a_{484}= -0.85730118 \pm 1.1 \cdot 10^{-6} \) | \(a_{485}= -0.69498283 \pm 6.9 \cdot 10^{-7} \) | \(a_{486}= -0.18400100 \pm 8.4 \cdot 10^{-7} \) |
\(a_{487}= +0.60387948 \pm 9.9 \cdot 10^{-7} \) | \(a_{488}= +0.50672945 \pm 8.9 \cdot 10^{-7} \) | \(a_{489}= -0.18955100 \pm 7.6 \cdot 10^{-7} \) |
\(a_{490}= +0.32683279 \pm 7.6 \cdot 10^{-7} \) | \(a_{491}= +1.11708828 \pm 7.4 \cdot 10^{-7} \) | \(a_{492}= +0.27541312 \pm 2.0 \cdot 10^{-6} \) |
\(a_{493}= -0.17970583 \pm 8.9 \cdot 10^{-7} \) | \(a_{494}= -0.15545325 \pm 2.1 \cdot 10^{-6} \) | \(a_{495}= -1.36550795 \pm 4.7 \cdot 10^{-7} \) |
\(a_{496}= -0.51396751 \pm 4.6 \cdot 10^{-7} \) | \(a_{497}= +0.59497821 \pm 7.2 \cdot 10^{-7} \) | \(a_{498}= -0.00752242 \pm 1.4 \cdot 10^{-6} \) |
\(a_{499}= +0.65419110 \pm 8.1 \cdot 10^{-7} \) | \(a_{500}= -0.88152200 \pm 1.2 \cdot 10^{-6} \) | \(a_{501}= +0.03172528 \pm 9.2 \cdot 10^{-7} \) |
\(a_{502}= -0.06662675 \pm 1.3 \cdot 10^{-6} \) | \(a_{503}= +0.60205181 \pm 9.5 \cdot 10^{-7} \) | \(a_{504}= -0.78906083 \pm 7.4 \cdot 10^{-7} \) |
\(a_{505}= +1.11967803 \pm 1.2 \cdot 10^{-6} \) | \(a_{506}= +0.09604248 \pm 4.7 \cdot 10^{-7} \) | \(a_{507}= +0.01659655 \pm 8.9 \cdot 10^{-7} \) |
\(a_{508}= +0.92341867 \pm 1.5 \cdot 10^{-6} \) | \(a_{509}= +0.89707779 \pm 9.9 \cdot 10^{-7} \) | \(a_{510}= -0.03669445 \pm 5.1 \cdot 10^{-7} \) |
\(a_{511}= +2.77807956 \pm 6.3 \cdot 10^{-7} \) | \(a_{512}= -1.01036681 \pm 8.1 \cdot 10^{-7} \) | \(a_{513}= +0.78001576 \pm 6.8 \cdot 10^{-7} \) |
\(a_{514}= -0.30320976 \pm 1.6 \cdot 10^{-6} \) | \(a_{515}= -0.34590104 \pm 1.4 \cdot 10^{-6} \) | \(a_{516}= -0.13531914 \pm 3.8 \cdot 10^{-7} \) |
\(a_{517}= -0.54104622 \pm 5.9 \cdot 10^{-7} \) | \(a_{518}= -0.68928172 \pm 8.2 \cdot 10^{-7} \) | \(a_{519}= -0.06554603 \pm 8.5 \cdot 10^{-7} \) |
\(a_{520}= +0.16465106 \pm 2.1 \cdot 10^{-6} \) | \(a_{521}= -1.53966956 \pm 5.5 \cdot 10^{-7} \) | \(a_{522}= +0.09491754 \pm 6.8 \cdot 10^{-7} \) |
\(a_{523}= +1.65720441 \pm 7.0 \cdot 10^{-7} \) | \(a_{524}= -1.46041562 \pm 7.9 \cdot 10^{-7} \) | \(a_{525}= +0.01704716 \pm 6.8 \cdot 10^{-7} \) |
\(a_{526}= -0.34955360 \pm 1.0 \cdot 10^{-6} \) | \(a_{527}= +0.38320118 \pm 6.3 \cdot 10^{-7} \) | \(a_{528}= -0.22057134 \pm 8.1 \cdot 10^{-7} \) |
\(a_{529}= -0.94826366 \pm 6.1 \cdot 10^{-7} \) | \(a_{530}= +0.34245276 \pm 6.8 \cdot 10^{-7} \) | \(a_{531}= +0.62779966 \pm 5.4 \cdot 10^{-7} \) |
\(a_{532}= +2.40712548 \pm 1.7 \cdot 10^{-6} \) | \(a_{533}= +0.38979106 \pm 1.3 \cdot 10^{-6} \) | \(a_{534}= -0.04047010 \pm 9.8 \cdot 10^{-7} \) |
\(a_{535}= +0.17523903 \pm 9.2 \cdot 10^{-7} \) | \(a_{536}= +0.60689502 \pm 8.7 \cdot 10^{-7} \) | \(a_{537}= +0.04032411 \pm 1.0 \cdot 10^{-6} \) |
\(a_{538}= +0.47269423 \pm 1.1 \cdot 10^{-6} \) | \(a_{539}= -1.46475670 \pm 5.7 \cdot 10^{-7} \) | \(a_{540}= -0.39322924 \pm 8.8 \cdot 10^{-7} \) |
\(a_{541}= +0.05046797 \pm 8.8 \cdot 10^{-7} \) | \(a_{542}= -0.03115329 \pm 1.1 \cdot 10^{-6} \) | \(a_{543}= +0.13151668 \pm 6.7 \cdot 10^{-7} \) |
\(a_{544}= +0.43735363 \pm 5.9 \cdot 10^{-7} \) | \(a_{545}= +1.12521140 \pm 1.0 \cdot 10^{-6} \) | \(a_{546}= +0.02595136 \pm 2.9 \cdot 10^{-6} \) |
\(a_{547}= -0.92880612 \pm 1.2 \cdot 10^{-6} \) | \(a_{548}= +1.21839666 \pm 1.0 \cdot 10^{-6} \) | \(a_{549}= -0.83598833 \pm 6.4 \cdot 10^{-7} \) |
\(a_{550}= +0.02329794 \pm 4.7 \cdot 10^{-7} \) | \(a_{551}= -0.60835490 \pm 6.1 \cdot 10^{-7} \) | \(a_{552}= +0.02836174 \pm 6.4 \cdot 10^{-7} \) |
\(a_{553}= -2.07577286 \pm 7.8 \cdot 10^{-7} \) | \(a_{554}= -0.28840081 \pm 1.0 \cdot 10^{-6} \) | \(a_{555}= -0.35224914 \pm 7.1 \cdot 10^{-7} \) |
\(a_{556}= -1.32362839 \pm 5.8 \cdot 10^{-7} \) | \(a_{557}= -1.51714994 \pm 1.1 \cdot 10^{-6} \) | \(a_{558}= -0.20240029 \pm 6.4 \cdot 10^{-7} \) |
\(a_{559}= -0.19151663 \pm 7.4 \cdot 10^{-7} \) | \(a_{560}= -1.07858748 \pm 5.8 \cdot 10^{-7} \) | \(a_{561}= +0.16445241 \pm 6.8 \cdot 10^{-7} \) |
\(a_{562}= -0.08725688 \pm 9.9 \cdot 10^{-7} \) | \(a_{563}= +0.42490307 \pm 6.3 \cdot 10^{-7} \) | \(a_{564}= -0.07604690 \pm 7.0 \cdot 10^{-7} \) |
\(a_{565}= +1.03978103 \pm 8.9 \cdot 10^{-7} \) | \(a_{566}= -0.00666424 \pm 1.2 \cdot 10^{-6} \) | \(a_{567}= +1.23511147 \pm 8.4 \cdot 10^{-7} \) |
\(a_{568}= +0.24012413 \pm 8.5 \cdot 10^{-7} \) | \(a_{569}= -0.75814004 \pm 9.9 \cdot 10^{-7} \) | \(a_{570}= -0.12422106 \pm 4.3 \cdot 10^{-7} \) |
\(a_{571}= +0.70052872 \pm 9.4 \cdot 10^{-7} \) | \(a_{572}= -0.35122232 \pm 1.9 \cdot 10^{-6} \) | \(a_{573}= +0.03701278 \pm 1.1 \cdot 10^{-6} \) |
\(a_{574}= +0.60950056 \pm 1.7 \cdot 10^{-6} \) | \(a_{575}= +0.01255017 \pm 6.0 \cdot 10^{-7} \) | \(a_{576}= +0.46811725 \pm 8.9 \cdot 10^{-7} \) |
\(a_{577}= -0.35058696 \pm 8.5 \cdot 10^{-7} \) | \(a_{578}= +0.21233755 \pm 8.3 \cdot 10^{-7} \) | \(a_{579}= +0.35222274 \pm 9.1 \cdot 10^{-7} \) |
\(a_{580}= +0.30668987 \pm 1.0 \cdot 10^{-6} \) | \(a_{581}= +0.16485562 \pm 1.0 \cdot 10^{-6} \) | \(a_{582}= -0.04420836 \pm 1.6 \cdot 10^{-6} \) |
\(a_{583}= -1.53476025 \pm 7.9 \cdot 10^{-7} \) | \(a_{584}= +1.12119053 \pm 1.0 \cdot 10^{-6} \) | \(a_{585}= -0.27163680 \pm 1.7 \cdot 10^{-6} \) |
\(a_{586}= -0.21215273 \pm 8.0 \cdot 10^{-7} \) | \(a_{587}= +1.87182870 \pm 7.9 \cdot 10^{-7} \) | \(a_{588}= -0.20587927 \pm 3.0 \cdot 10^{-7} \) |
\(a_{589}= +1.29724403 \pm 6.7 \cdot 10^{-7} \) | \(a_{590}= -0.20484123 \pm 6.6 \cdot 10^{-7} \) | \(a_{591}= -0.20969060 \pm 1.1 \cdot 10^{-6} \) |
\(a_{592}= +1.16541367 \pm 6.0 \cdot 10^{-7} \) | \(a_{593}= -1.89357031 \pm 1.1 \cdot 10^{-6} \) | \(a_{594}= -0.17796270 \pm 9.0 \cdot 10^{-7} \) |
\(a_{595}= +0.80416755 \pm 4.8 \cdot 10^{-7} \) | \(a_{596}= +0.31120501 \pm 6.1 \cdot 10^{-7} \) | \(a_{597}= +0.05435764 \pm 9.6 \cdot 10^{-7} \) |
\(a_{598}= +0.01910547 \pm 1.8 \cdot 10^{-6} \) | \(a_{599}= -1.37507554 \pm 9.6 \cdot 10^{-7} \) | \(a_{600}= +0.00687997 \pm 9.2 \cdot 10^{-7} \) |
\(a_{601}= +1.18764369 \pm 6.2 \cdot 10^{-7} \) | \(a_{602}= -0.29946682 \pm 6.0 \cdot 10^{-7} \) | \(a_{603}= -1.00123874 \pm 5.5 \cdot 10^{-7} \) |
\(a_{604}= -0.20594429 \pm 7.4 \cdot 10^{-7} \) | \(a_{605}= -0.96956310 \pm 8.2 \cdot 10^{-7} \) | \(a_{606}= +0.07122353 \pm 6.8 \cdot 10^{-7} \) |
\(a_{607}= +1.09088397 \pm 9.6 \cdot 10^{-7} \) | \(a_{608}= +1.48056533 \pm 9.1 \cdot 10^{-7} \) | \(a_{609}= +0.10155874 \pm 8.7 \cdot 10^{-7} \) |
\(a_{610}= +0.27276994 \pm 8.2 \cdot 10^{-7} \) | \(a_{611}= -0.10762886 \pm 6.8 \cdot 10^{-7} \) | \(a_{612}= -0.47343755 \pm 4.2 \cdot 10^{-7} \) |
\(a_{613}= +0.83615600 \pm 8.7 \cdot 10^{-7} \) | \(a_{614}= +0.25929410 \pm 1.5 \cdot 10^{-6} \) | \(a_{615}= +0.31147793 \pm 1.0 \cdot 10^{-6} \) |
\(a_{616}= -1.15384280 \pm 5.7 \cdot 10^{-7} \) | \(a_{617}= +0.98450925 \pm 6.8 \cdot 10^{-7} \) | \(a_{618}= -0.02200301 \pm 9.4 \cdot 10^{-7} \) |
\(a_{619}= -0.59146442 \pm 9.0 \cdot 10^{-7} \) | \(a_{620}= -0.65397946 \pm 4.7 \cdot 10^{-7} \) | \(a_{621}= -0.09586528 \pm 6.4 \cdot 10^{-7} \) |
\(a_{622}= +0.01697562 \pm 9.4 \cdot 10^{-7} \) | \(a_{623}= +0.88691180 \pm 8.7 \cdot 10^{-7} \) | \(a_{624}= -0.04387766 \pm 1.6 \cdot 10^{-6} \) |
\(a_{625}= -1.05213180 \pm 9.9 \cdot 10^{-7} \) | \(a_{626}= +0.02163883 \pm 1.5 \cdot 10^{-6} \) | \(a_{627}= +0.55671778 \pm 4.1 \cdot 10^{-7} \) |
\(a_{628}= +1.13471618 \pm 9.3 \cdot 10^{-7} \) | \(a_{629}= -0.86890297 \pm 6.9 \cdot 10^{-7} \) | \(a_{630}= -0.42474751 \pm 8.4 \cdot 10^{-7} \) |
\(a_{631}= -1.36400857 \pm 7.7 \cdot 10^{-7} \) | \(a_{632}= -0.83775026 \pm 6.8 \cdot 10^{-7} \) | \(a_{633}= +0.23002983 \pm 1.1 \cdot 10^{-6} \) |
\(a_{634}= -0.16878145 \pm 1.1 \cdot 10^{-6} \) | \(a_{635}= +1.04433854 \pm 7.6 \cdot 10^{-7} \) | \(a_{636}= -0.21571864 \pm 5.1 \cdot 10^{-7} \) |
\(a_{637}= -0.29138009 \pm 6.8 \cdot 10^{-7} \) | \(a_{638}= +0.13879781 \pm 4.3 \cdot 10^{-7} \) | \(a_{639}= -0.39615019 \pm 5.7 \cdot 10^{-7} \) |
\(a_{640}= -0.97450912 \pm 1.1 \cdot 10^{-6} \) | \(a_{641}= +0.74887545 \pm 9.6 \cdot 10^{-7} \) | \(a_{642}= +0.01114708 \pm 1.1 \cdot 10^{-6} \) |
\(a_{643}= -0.15412755 \pm 9.1 \cdot 10^{-7} \) | \(a_{644}= -0.29583985 \pm 7.8 \cdot 10^{-7} \) | \(a_{645}= -0.15303892 \pm 6.6 \cdot 10^{-7} \) |
\(a_{646}= -0.30641961 \pm 6.6 \cdot 10^{-7} \) | \(a_{647}= -0.13480436 \pm 6.0 \cdot 10^{-7} \) | \(a_{648}= +0.49847215 \pm 1.1 \cdot 10^{-6} \) |
\(a_{649}= +0.91803077 \pm 5.5 \cdot 10^{-7} \) | \(a_{650}= +0.00463460 \pm 2.2 \cdot 10^{-6} \) | \(a_{651}= -0.21656186 \pm 4.2 \cdot 10^{-7} \) |
\(a_{652}= +0.79796657 \pm 1.0 \cdot 10^{-6} \) | \(a_{653}= +0.45808615 \pm 8.5 \cdot 10^{-7} \) | \(a_{654}= +0.07157551 \pm 1.4 \cdot 10^{-6} \) |
\(a_{655}= -1.65165419 \pm 6.1 \cdot 10^{-7} \) | \(a_{656}= -1.03052243 \pm 1.0 \cdot 10^{-6} \) | \(a_{657}= -1.84970934 \pm 4.3 \cdot 10^{-7} \) |
\(a_{658}= -0.16829491 \pm 9.4 \cdot 10^{-7} \) | \(a_{659}= +0.41061949 \pm 1.0 \cdot 10^{-6} \) | \(a_{660}= -0.28065806 \pm 3.3 \cdot 10^{-7} \) |
\(a_{661}= +0.54729561 \pm 8.2 \cdot 10^{-7} \) | \(a_{662}= +0.09737827 \pm 1.2 \cdot 10^{-6} \) | \(a_{663}= +0.03271407 \pm 1.7 \cdot 10^{-6} \) |
\(a_{664}= +0.06653321 \pm 1.2 \cdot 10^{-6} \) | \(a_{665}= +2.72233386 \pm 1.0 \cdot 10^{-6} \) | \(a_{666}= +0.45893964 \pm 7.5 \cdot 10^{-7} \) |
\(a_{667}= +0.07476786 \pm 5.6 \cdot 10^{-7} \) | \(a_{668}= -0.13355620 \pm 1.0 \cdot 10^{-6} \) | \(a_{669}= -0.11226809 \pm 8.4 \cdot 10^{-7} \) |
\(a_{670}= +0.32668856 \pm 7.9 \cdot 10^{-7} \) | \(a_{671}= -1.22246484 \pm 6.2 \cdot 10^{-7} \) | \(a_{672}= -0.24716551 \pm 4.5 \cdot 10^{-7} \) |
\(a_{673}= -0.93549190 \pm 9.2 \cdot 10^{-7} \) | \(a_{674}= -0.18644745 \pm 1.1 \cdot 10^{-6} \) | \(a_{675}= -0.02325495 \pm 1.1 \cdot 10^{-6} \) |
\(a_{676}= -0.06986771 \pm 1.2 \cdot 10^{-6} \) | \(a_{677}= +1.79163420 \pm 9.4 \cdot 10^{-7} \) | \(a_{678}= +0.06614122 \pm 5.8 \cdot 10^{-7} \) |
\(a_{679}= +0.96883665 \pm 9.2 \cdot 10^{-7} \) | \(a_{680}= +0.32454976 \pm 6.2 \cdot 10^{-7} \) | \(a_{681}= -0.06571071 \pm 9.0 \cdot 10^{-7} \) |
\(a_{682}= -0.29596973 \pm 6.1 \cdot 10^{-7} \) | \(a_{683}= -0.43581925 \pm 9.6 \cdot 10^{-7} \) | \(a_{684}= -1.60271957 \pm 1.1 \cdot 10^{-6} \) |
\(a_{685}= +1.37794332 \pm 5.9 \cdot 10^{-7} \) | \(a_{686}= -0.02193813 \pm 9.4 \cdot 10^{-7} \) | \(a_{687}= +0.31060675 \pm 8.3 \cdot 10^{-7} \) |
\(a_{688}= +0.50632813 \pm 4.9 \cdot 10^{-7} \) | \(a_{689}= -0.30530570 \pm 9.4 \cdot 10^{-7} \) | \(a_{690}= +0.01526698 \pm 4.6 \cdot 10^{-7} \) |
\(a_{691}= +0.68614082 \pm 9.0 \cdot 10^{-7} \) | \(a_{692}= +0.27593385 \pm 1.2 \cdot 10^{-6} \) | \(a_{693}= +1.90357816 \pm 4.8 \cdot 10^{-7} \) |
\(a_{694}= +0.32492165 \pm 1.2 \cdot 10^{-6} \) | \(a_{695}= -1.49695494 \pm 8.0 \cdot 10^{-7} \) | \(a_{696}= +0.04098756 \pm 1.2 \cdot 10^{-6} \) |
\(a_{697}= +0.76833147 \pm 1.3 \cdot 10^{-6} \) | \(a_{698}= +0.29817384 \pm 1.4 \cdot 10^{-6} \) | \(a_{699}= -0.15333042 \pm 4.9 \cdot 10^{-7} \) |
\(a_{700}= -0.07176468 \pm 9.8 \cdot 10^{-7} \) | \(a_{701}= +0.31795541 \pm 8.8 \cdot 10^{-7} \) | \(a_{702}= -0.03540164 \pm 2.1 \cdot 10^{-6} \) |
\(a_{703}= -2.94148148 \pm 7.4 \cdot 10^{-7} \) | \(a_{704}= +0.68452735 \pm 5.9 \cdot 10^{-7} \) | \(a_{705}= -0.08600509 \pm 4.5 \cdot 10^{-7} \) |
\(a_{706}= +0.33777475 \pm 1.0 \cdot 10^{-6} \) | \(a_{707}= -1.56088043 \pm 7.7 \cdot 10^{-7} \) | \(a_{708}= +0.12903406 \pm 5.0 \cdot 10^{-7} \) |
\(a_{709}= +1.12935366 \pm 1.0 \cdot 10^{-6} \) | \(a_{710}= +0.12925762 \pm 8.7 \cdot 10^{-7} \) | \(a_{711}= +1.38209737 \pm 7.2 \cdot 10^{-7} \) |
\(a_{712}= +0.35794407 \pm 1.2 \cdot 10^{-6} \) | \(a_{713}= -0.15943352 \pm 5.4 \cdot 10^{-7} \) | \(a_{714}= +0.05115368 \pm 1.1 \cdot 10^{-6} \) |
\(a_{715}= -0.39721420 \pm 1.6 \cdot 10^{-6} \) | \(a_{716}= -0.16975533 \pm 1.3 \cdot 10^{-6} \) | \(a_{717}= +0.15507571 \pm 4.9 \cdot 10^{-7} \) |
\(a_{718}= -0.09223303 \pm 6.6 \cdot 10^{-7} \) | \(a_{719}= -1.09429096 \pm 6.4 \cdot 10^{-7} \) | \(a_{720}= +0.71814838 \pm 6.9 \cdot 10^{-7} \) |
\(a_{721}= +0.48220127 \pm 9.2 \cdot 10^{-7} \) | \(a_{722}= -0.73446398 \pm 1.8 \cdot 10^{-6} \) | \(a_{723}= -0.13944090 \pm 7.5 \cdot 10^{-7} \) |
\(a_{724}= -0.55365529 \pm 8.6 \cdot 10^{-7} \) | \(a_{725}= +0.01813715 \pm 6.7 \cdot 10^{-7} \) | \(a_{726}= -0.06167461 \pm 1.1 \cdot 10^{-6} \) |
\(a_{727}= +0.57219926 \pm 1.1 \cdot 10^{-6} \) | \(a_{728}= -0.22953083 \pm 2.0 \cdot 10^{-6} \) | \(a_{729}= -0.73143199 \pm 7.3 \cdot 10^{-7} \) |
\(a_{730}= +0.60353127 \pm 6.4 \cdot 10^{-7} \) | \(a_{731}= -0.37750545 \pm 5.3 \cdot 10^{-7} \) | \(a_{732}= -0.17182387 \pm 9.0 \cdot 10^{-7} \) |
\(a_{733}= -1.48229722 \pm 9.7 \cdot 10^{-7} \) | \(a_{734}= +0.16440893 \pm 1.2 \cdot 10^{-6} \) | \(a_{735}= -0.23283876 \pm 4.0 \cdot 10^{-7} \) |
\(a_{736}= -0.18196402 \pm 6.1 \cdot 10^{-7} \) | \(a_{737}= -1.46411033 \pm 5.9 \cdot 10^{-7} \) | \(a_{738}= -0.40581950 \pm 7.6 \cdot 10^{-7} \) |
\(a_{739}= -0.24713590 \pm 1.0 \cdot 10^{-6} \) | \(a_{740}= +1.48288866 \pm 6.1 \cdot 10^{-7} \) | \(a_{741}= +0.11074636 \pm 1.8 \cdot 10^{-6} \) |
\(a_{742}= -0.47739421 \pm 4.8 \cdot 10^{-7} \) | \(a_{743}= -0.60813473 \pm 7.3 \cdot 10^{-7} \) | \(a_{744}= -0.08740106 \pm 6.1 \cdot 10^{-7} \) |
\(a_{745}= +0.35195670 \pm 5.4 \cdot 10^{-7} \) | \(a_{746}= -0.21665429 \pm 1.0 \cdot 10^{-6} \) | \(a_{747}= -0.10976467 \pm 1.0 \cdot 10^{-6} \) |
\(a_{748}= -0.69230722 \pm 3.8 \cdot 10^{-7} \) | \(a_{749}= -0.24429092 \pm 9.0 \cdot 10^{-7} \) | \(a_{750}= -0.06341706 \pm 8.2 \cdot 10^{-7} \) |
\(a_{751}= +1.86593625 \pm 9.8 \cdot 10^{-7} \) | \(a_{752}= +0.28454720 \pm 9.4 \cdot 10^{-7} \) | \(a_{753}= +0.04746552 \pm 1.0 \cdot 10^{-6} \) |
\(a_{754}= +0.02761067 \pm 2.0 \cdot 10^{-6} \) | \(a_{755}= -0.23291229 \pm 6.2 \cdot 10^{-7} \) | \(a_{756}= +0.54817886 \pm 8.9 \cdot 10^{-7} \) |
\(a_{757}= +1.36814489 \pm 7.9 \cdot 10^{-7} \) | \(a_{758}= +0.20933860 \pm 1.1 \cdot 10^{-6} \) | \(a_{759}= -0.06842157 \pm 5.7 \cdot 10^{-7} \) |
\(a_{760}= +1.09869242 \pm 1.1 \cdot 10^{-6} \) | \(a_{761}= -0.98648089 \pm 1.0 \cdot 10^{-6} \) | \(a_{762}= +0.06643113 \pm 1.6 \cdot 10^{-6} \) |
\(a_{763}= -1.56859421 \pm 1.1 \cdot 10^{-6} \) | \(a_{764}= -0.15581537 \pm 1.9 \cdot 10^{-6} \) | \(a_{765}= -0.53543327 \pm 4.7 \cdot 10^{-7} \) |
\(a_{766}= -0.21456439 \pm 7.5 \cdot 10^{-7} \) | \(a_{767}= +0.18262138 \pm 7.8 \cdot 10^{-7} \) | \(a_{768}= +0.04394056 \pm 1.0 \cdot 10^{-6} \) |
\(a_{769}= +1.38187666 \pm 8.9 \cdot 10^{-7} \) | \(a_{770}= -0.62110782 \pm 4.4 \cdot 10^{-7} \) | \(a_{771}= +0.21600949 \pm 1.1 \cdot 10^{-6} \) |
\(a_{772}= -1.48277753 \pm 1.2 \cdot 10^{-6} \) | \(a_{773}= +0.51934119 \pm 7.1 \cdot 10^{-7} \) | \(a_{774}= +0.19939191 \pm 6.5 \cdot 10^{-7} \) |
\(a_{775}= -0.03867530 \pm 5.5 \cdot 10^{-7} \) | \(a_{776}= +0.39100769 \pm 1.3 \cdot 10^{-6} \) | \(a_{777}= +0.49105079 \pm 6.7 \cdot 10^{-7} \) |
\(a_{778}= +0.45771786 \pm 1.0 \cdot 10^{-6} \) | \(a_{779}= +2.60101862 \pm 8.5 \cdot 10^{-7} \) | \(a_{780}= -0.05583055 \pm 3.1 \cdot 10^{-6} \) |
\(a_{781}= -0.57929000 \pm 4.4 \cdot 10^{-7} \) | \(a_{782}= +0.03765950 \pm 6.5 \cdot 10^{-7} \) | \(a_{783}= -0.13854172 \pm 7.0 \cdot 10^{-7} \) |
\(a_{784}= +0.77034531 \pm 5.3 \cdot 10^{-7} \) | \(a_{785}= +1.28330505 \pm 7.3 \cdot 10^{-7} \) | \(a_{786}= -0.10506291 \pm 7.5 \cdot 10^{-7} \) |
\(a_{787}= +0.45833834 \pm 9.5 \cdot 10^{-7} \) | \(a_{788}= +0.88274967 \pm 1.6 \cdot 10^{-6} \) | \(a_{789}= +0.24902528 \pm 9.0 \cdot 10^{-7} \) |
\(a_{790}= -0.45095679 \pm 7.4 \cdot 10^{-7} \) | \(a_{791}= -1.44950051 \pm 4.8 \cdot 10^{-7} \) | \(a_{792}= +0.76825511 \pm 8.3 \cdot 10^{-7} \) |
\(a_{793}= -0.24318162 \pm 8.6 \cdot 10^{-7} \) | \(a_{794}= -0.36335896 \pm 1.1 \cdot 10^{-6} \) | \(a_{795}= -0.24396657 \pm 7.9 \cdot 10^{-7} \) |
\(a_{796}= -0.22883327 \pm 1.4 \cdot 10^{-6} \) | \(a_{797}= +0.55344738 \pm 6.8 \cdot 10^{-7} \) | \(a_{798}= +0.17316962 \pm 3.8 \cdot 10^{-7} \) |
\(a_{799}= -0.21215120 \pm 6.4 \cdot 10^{-7} \) | \(a_{800}= -0.04414074 \pm 9.2 \cdot 10^{-7} \) | \(a_{801}= -0.59052630 \pm 6.8 \cdot 10^{-7} \) |
\(a_{802}= +0.28993558 \pm 1.0 \cdot 10^{-6} \) | \(a_{803}= -2.70482798 \pm 3.8 \cdot 10^{-7} \) | \(a_{804}= -0.20578842 \pm 4.0 \cdot 10^{-7} \) |
\(a_{805}= -0.33457950 \pm 5.0 \cdot 10^{-7} \) | \(a_{806}= -0.05887646 \pm 1.8 \cdot 10^{-6} \) | \(a_{807}= -0.33675182 \pm 9.0 \cdot 10^{-7} \) |
\(a_{808}= -0.62994753 \pm 8.1 \cdot 10^{-7} \) | \(a_{809}= +1.11417998 \pm 6.6 \cdot 10^{-7} \) | \(a_{810}= +0.26832507 \pm 7.5 \cdot 10^{-7} \) |
\(a_{811}= -0.38320146 \pm 8.2 \cdot 10^{-7} \) | \(a_{812}= -0.42753918 \pm 1.4 \cdot 10^{-6} \) | \(a_{813}= +0.02219390 \pm 6.6 \cdot 10^{-7} \) |
\(a_{814}= +0.67110694 \pm 6.9 \cdot 10^{-7} \) | \(a_{815}= +0.90245873 \pm 9.1 \cdot 10^{-7} \) | \(a_{816}= -0.08648887 \pm 6.2 \cdot 10^{-7} \) |
\(a_{817}= -1.27796238 \pm 1.0 \cdot 10^{-6} \) | \(a_{818}= -0.13647542 \pm 1.0 \cdot 10^{-6} \) | \(a_{819}= +0.37867365 \pm 1.6 \cdot 10^{-6} \) |
\(a_{820}= -1.31125117 \pm 1.4 \cdot 10^{-6} \) | \(a_{821}= +1.91416321 \pm 6.1 \cdot 10^{-7} \) | \(a_{822}= +0.08765197 \pm 3.9 \cdot 10^{-7} \) |
\(a_{823}= +1.68480542 \pm 9.9 \cdot 10^{-7} \) | \(a_{824}= +0.19460908 \pm 9.5 \cdot 10^{-7} \) | \(a_{825}= -0.01659767 \pm 7.0 \cdot 10^{-7} \) |
\(a_{826}= +0.28555768 \pm 5.0 \cdot 10^{-7} \) | \(a_{827}= -1.81493488 \pm 1.0 \cdot 10^{-6} \) | \(a_{828}= +0.19697698 \pm 4.9 \cdot 10^{-7} \) |
\(a_{829}= +0.79878257 \pm 1.0 \cdot 10^{-6} \) | \(a_{830}= +0.03581450 \pm 9.4 \cdot 10^{-7} \) | \(a_{831}= +0.20545946 \pm 6.7 \cdot 10^{-7} \) |
\(a_{832}= +0.13617117 \pm 1.1 \cdot 10^{-6} \) | \(a_{833}= -0.57434999 \pm 4.9 \cdot 10^{-7} \) | \(a_{834}= -0.09522238 \pm 5.2 \cdot 10^{-7} \) |
\(a_{835}= -0.15104512 \pm 1.4 \cdot 10^{-6} \) | \(a_{836}= -2.34365510 \pm 4.8 \cdot 10^{-7} \) | \(a_{837}= +0.29542363 \pm 7.8 \cdot 10^{-7} \) |
\(a_{838}= -0.49722829 \pm 1.2 \cdot 10^{-6} \) | \(a_{839}= -1.43564358 \pm 9.8 \cdot 10^{-7} \) | \(a_{840}= -0.18341567 \pm 5.5 \cdot 10^{-7} \) |
\(a_{841}= -0.89194766 \pm 8.4 \cdot 10^{-7} \) | \(a_{842}= -0.19170881 \pm 1.1 \cdot 10^{-6} \) | \(a_{843}= +0.06216262 \pm 9.5 \cdot 10^{-7} \) |
\(a_{844}= -0.96837321 \pm 1.6 \cdot 10^{-6} \) | \(a_{845}= -0.07901675 \pm 9.8 \cdot 10^{-7} \) | \(a_{846}= +0.11205462 \pm 9.9 \cdot 10^{-7} \) |
\(a_{847}= +1.35161361 \pm 9.0 \cdot 10^{-7} \) | \(a_{848}= +0.80716160 \pm 5.4 \cdot 10^{-7} \) | \(a_{849}= +0.00474767 \pm 8.9 \cdot 10^{-7} \) |
\(a_{850}= +0.00913542 \pm 9.5 \cdot 10^{-7} \) | \(a_{851}= +0.36151312 \pm 6.4 \cdot 10^{-7} \) | \(a_{852}= -0.08142226 \pm 3.2 \cdot 10^{-7} \) |
\(a_{853}= +0.94160746 \pm 8.9 \cdot 10^{-7} \) | \(a_{854}= -0.38025329 \pm 1.1 \cdot 10^{-6} \) | \(a_{855}= -1.81259257 \pm 8.1 \cdot 10^{-7} \) |
\(a_{856}= -0.09859209 \pm 1.3 \cdot 10^{-6} \) | \(a_{857}= +0.95447407 \pm 9.1 \cdot 10^{-7} \) | \(a_{858}= -0.02526708 \pm 2.7 \cdot 10^{-6} \) |
\(a_{859}= +0.99549697 \pm 6.5 \cdot 10^{-7} \) | \(a_{860}= +0.64425900 \pm 5.4 \cdot 10^{-7} \) | \(a_{861}= -0.43421394 \pm 1.2 \cdot 10^{-6} \) |
\(a_{862}= +0.43910299 \pm 1.6 \cdot 10^{-6} \) | \(a_{863}= -0.31423386 \pm 9.0 \cdot 10^{-7} \) | \(a_{864}= +0.33717171 \pm 7.4 \cdot 10^{-7} \) |
\(a_{865}= +0.31206685 \pm 8.6 \cdot 10^{-7} \) | \(a_{866}= -0.05988261 \pm 8.3 \cdot 10^{-7} \) | \(a_{867}= -0.15127127 \pm 7.0 \cdot 10^{-7} \) |
\(a_{868}= +0.91167614 \pm 5.1 \cdot 10^{-7} \) | \(a_{869}= +2.02103949 \pm 7.0 \cdot 10^{-7} \) | \(a_{870}= +0.02206340 \pm 6.7 \cdot 10^{-7} \) |
\(a_{871}= -0.29125151 \pm 7.5 \cdot 10^{-7} \) | \(a_{872}= -0.63306069 \pm 1.3 \cdot 10^{-6} \) | \(a_{873}= -0.64507375 \pm 6.5 \cdot 10^{-7} \) |
\(a_{874}= +0.12748801 \pm 8.1 \cdot 10^{-7} \) | \(a_{875}= +1.38979995 \pm 9.7 \cdot 10^{-7} \) | \(a_{876}= -0.38017782 \pm 1.0 \cdot 10^{-6} \) |
\(a_{877}= -0.21095694 \pm 9.1 \cdot 10^{-7} \) | \(a_{878}= -0.14736794 \pm 9.7 \cdot 10^{-7} \) | \(a_{879}= +0.15113960 \pm 6.6 \cdot 10^{-7} \) |
\(a_{880}= +1.05014760 \pm 6.0 \cdot 10^{-7} \) | \(a_{881}= +1.79046100 \pm 8.1 \cdot 10^{-7} \) | \(a_{882}= +0.30336181 \pm 9.1 \cdot 10^{-7} \) |
\(a_{883}= -1.73118245 \pm 1.0 \cdot 10^{-6} \) | \(a_{884}= -0.13771880 \pm 2.1 \cdot 10^{-6} \) | \(a_{885}= +0.14593082 \pm 8.7 \cdot 10^{-7} \) |
\(a_{886}= -0.14352844 \pm 6.3 \cdot 10^{-7} \) | \(a_{887}= +0.19210208 \pm 7.7 \cdot 10^{-7} \) | \(a_{888}= +0.19818061 \pm 9.4 \cdot 10^{-7} \) |
\(a_{889}= -1.45585388 \pm 1.0 \cdot 10^{-6} \) | \(a_{890}= +0.19267951 \pm 9.6 \cdot 10^{-7} \) | \(a_{891}= -1.20254442 \pm 8.3 \cdot 10^{-7} \) |
\(a_{892}= +0.47262312 \pm 1.3 \cdot 10^{-6} \) | \(a_{893}= -0.71819161 \pm 7.3 \cdot 10^{-7} \) | \(a_{894}= +0.02238822 \pm 7.0 \cdot 10^{-7} \) |
\(a_{895}= -0.19198446 \pm 1.1 \cdot 10^{-6} \) | \(a_{896}= +1.35850859 \pm 1.3 \cdot 10^{-6} \) | \(a_{897}= -0.01361092 \pm 1.5 \cdot 10^{-6} \) |
\(a_{898}= +0.15653586 \pm 9.4 \cdot 10^{-7} \) | \(a_{899}= -0.23040870 \pm 3.8 \cdot 10^{-7} \) | \(a_{900}= +0.04778257 \pm 5.1 \cdot 10^{-7} \) |
\(a_{901}= -0.60179928 \pm 9.0 \cdot 10^{-7} \) | \(a_{902}= -0.59342942 \pm 6.4 \cdot 10^{-7} \) | \(a_{903}= +0.21334299 \pm 4.3 \cdot 10^{-7} \) |
\(a_{904}= -0.58499629 \pm 6.0 \cdot 10^{-7} \) | \(a_{905}= -0.62615536 \pm 8.8 \cdot 10^{-7} \) | \(a_{906}= -0.01481572 \pm 7.6 \cdot 10^{-7} \) |
\(a_{907}= +1.28344726 \pm 6.7 \cdot 10^{-7} \) | \(a_{908}= +0.27662714 \pm 9.5 \cdot 10^{-7} \) | \(a_{909}= +1.03927013 \pm 6.1 \cdot 10^{-7} \) |
\(a_{910}= -0.12355530 \pm 3.0 \cdot 10^{-6} \) | \(a_{911}= +0.08836290 \pm 9.7 \cdot 10^{-7} \) | \(a_{912}= -0.29278919 \pm 4.0 \cdot 10^{-7} \) |
\(a_{913}= -0.16050876 \pm 6.9 \cdot 10^{-7} \) | \(a_{914}= -0.11128228 \pm 1.3 \cdot 10^{-6} \) | \(a_{915}= -0.19432387 \pm 8.5 \cdot 10^{-7} \) |
\(a_{916}= -1.30758369 \pm 1.1 \cdot 10^{-6} \) | \(a_{917}= +2.30247861 \pm 6.2 \cdot 10^{-7} \) | \(a_{918}= -0.06978147 \pm 1.0 \cdot 10^{-6} \) |
\(a_{919}= +0.24729024 \pm 1.1 \cdot 10^{-6} \) | \(a_{920}= -0.13503118 \pm 7.0 \cdot 10^{-7} \) | \(a_{921}= -0.18472356 \pm 1.3 \cdot 10^{-6} \) |
\(a_{922}= -0.15897010 \pm 1.4 \cdot 10^{-6} \) | \(a_{923}= -0.11523659 \pm 7.3 \cdot 10^{-7} \) | \(a_{924}= +0.39124968 \pm 3.4 \cdot 10^{-7} \) |
\(a_{925}= +0.08769566 \pm 7.5 \cdot 10^{-7} \) | \(a_{926}= +0.33406249 \pm 1.3 \cdot 10^{-6} \) | \(a_{927}= -0.32106071 \pm 5.5 \cdot 10^{-7} \) |
\(a_{928}= -0.26296913 \pm 9.7 \cdot 10^{-7} \) | \(a_{929}= -0.55562856 \pm 7.1 \cdot 10^{-7} \) | \(a_{930}= -0.04704756 \pm 3.9 \cdot 10^{-7} \) |
\(a_{931}= -1.94433662 \pm 9.4 \cdot 10^{-7} \) | \(a_{932}= +0.64548617 \pm 1.0 \cdot 10^{-6} \) | \(a_{933}= -0.01209359 \pm 7.3 \cdot 10^{-7} \) |
\(a_{934}= +0.46739527 \pm 1.1 \cdot 10^{-6} \) | \(a_{935}= -0.78296350 \pm 3.5 \cdot 10^{-7} \) | \(a_{936}= +0.15282691 \pm 1.9 \cdot 10^{-6} \) |
\(a_{937}= -0.04125489 \pm 5.7 \cdot 10^{-7} \) | \(a_{938}= -0.45541823 \pm 1.0 \cdot 10^{-6} \) | \(a_{939}= -0.01541570 \pm 1.1 \cdot 10^{-6} \) |
\(a_{940}= +0.36206184 \pm 9.5 \cdot 10^{-7} \) | \(a_{941}= -0.44036713 \pm 9.8 \cdot 10^{-7} \) | \(a_{942}= +0.08163196 \pm 7.7 \cdot 10^{-7} \) |
\(a_{943}= -0.31966965 \pm 8.1 \cdot 10^{-7} \) | \(a_{944}= -0.48281104 \pm 6.8 \cdot 10^{-7} \) | \(a_{945}= +0.61996181 \pm 6.5 \cdot 10^{-7} \) |
\(a_{946}= +0.29157057 \pm 5.2 \cdot 10^{-7} \) | \(a_{947}= -0.96506325 \pm 8.7 \cdot 10^{-7} \) | \(a_{948}= +0.28406775 \pm 3.4 \cdot 10^{-7} \) |
\(a_{949}= -0.53806411 \pm 7.4 \cdot 10^{-7} \) | \(a_{950}= +0.03092597 \pm 4.5 \cdot 10^{-7} \) | \(a_{951}= +0.12024149 \pm 8.5 \cdot 10^{-7} \) |
\(a_{952}= -0.45243664 \pm 9.6 \cdot 10^{-7} \) | \(a_{953}= +0.60580619 \pm 9.1 \cdot 10^{-7} \) | \(a_{954}= +0.31786006 \pm 6.0 \cdot 10^{-7} \) |
\(a_{955}= -0.17621909 \pm 9.9 \cdot 10^{-7} \) | \(a_{956}= -0.65283342 \pm 9.1 \cdot 10^{-7} \) | \(a_{957}= -0.09888087 \pm 3.6 \cdot 10^{-7} \) |
\(a_{958}= +0.45326320 \pm 1.1 \cdot 10^{-6} \) | \(a_{959}= -1.92091361 \pm 5.7 \cdot 10^{-7} \) | \(a_{960}= +0.10881295 \pm 5.6 \cdot 10^{-7} \) |
\(a_{961}= -0.50868102 \pm 7.9 \cdot 10^{-7} \) | \(a_{962}= +0.13350149 \pm 1.9 \cdot 10^{-6} \) | \(a_{963}= +0.16265452 \pm 5.7 \cdot 10^{-7} \) |
\(a_{964}= +0.58701443 \pm 1.3 \cdot 10^{-6} \) | \(a_{965}= -1.67694436 \pm 6.7 \cdot 10^{-7} \) | \(a_{966}= -0.02128284 \pm 6.1 \cdot 10^{-7} \) |
\(a_{967}= +0.44405376 \pm 1.2 \cdot 10^{-6} \) | \(a_{968}= +0.54549064 \pm 1.0 \cdot 10^{-6} \) | \(a_{969}= +0.21829622 \pm 5.5 \cdot 10^{-7} \) |
\(a_{970}= +0.21047749 \pm 7.4 \cdot 10^{-7} \) | \(a_{971}= +1.11312461 \pm 7.5 \cdot 10^{-7} \) | \(a_{972}= -0.55183398 \pm 7.9 \cdot 10^{-7} \) |
\(a_{973}= +2.08682105 \pm 6.4 \cdot 10^{-7} \) | \(a_{974}= -0.18288658 \pm 1.5 \cdot 10^{-6} \) | \(a_{975}= -0.00330173 \pm 1.9 \cdot 10^{-6} \) |
\(a_{976}= +0.64291910 \pm 6.2 \cdot 10^{-7} \) | \(a_{977}= +0.92586265 \pm 1.0 \cdot 10^{-6} \) | \(a_{978}= +0.05740605 \pm 9.7 \cdot 10^{-7} \) |
\(a_{979}= -0.86352597 \pm 5.3 \cdot 10^{-7} \) | \(a_{980}= +0.98019816 \pm 8.4 \cdot 10^{-7} \) | \(a_{981}= +1.04440614 \pm 6.6 \cdot 10^{-7} \) |
\(a_{982}= -0.33831330 \pm 9.2 \cdot 10^{-7} \) | \(a_{983}= -0.42735818 \pm 9.1 \cdot 10^{-7} \) | \(a_{984}= -0.17524212 \pm 1.6 \cdot 10^{-6} \) |
\(a_{985}= +0.99834402 \pm 6.8 \cdot 10^{-7} \) | \(a_{986}= +0.05442441 \pm 1.4 \cdot 10^{-6} \) | \(a_{987}= +0.11989488 \pm 4.7 \cdot 10^{-7} \) |
\(a_{988}= -0.46621697 \pm 2.2 \cdot 10^{-6} \) | \(a_{989}= +0.15706377 \pm 6.8 \cdot 10^{-7} \) | \(a_{990}= +0.41354789 \pm 4.9 \cdot 10^{-7} \) |
\(a_{991}= +1.52947970 \pm 7.2 \cdot 10^{-7} \) | \(a_{992}= +0.56075020 \pm 5.6 \cdot 10^{-7} \) | \(a_{993}= -0.06937320 \pm 9.5 \cdot 10^{-7} \) |
\(a_{994}= -0.18019081 \pm 1.0 \cdot 10^{-6} \) | \(a_{995}= -0.25879854 \pm 1.0 \cdot 10^{-6} \) | \(a_{996}= -0.02256035 \pm 1.4 \cdot 10^{-6} \) |
\(a_{997}= -0.95396608 \pm 6.5 \cdot 10^{-7} \) | \(a_{998}= -0.19812360 \pm 1.2 \cdot 10^{-6} \) | \(a_{999}= -0.66986868 \pm 8.7 \cdot 10^{-7} \) |
\(a_{1000}= +0.56090206 \pm 1.0 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000