Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(13.3582067458369704833518679994 \pm 4 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.80423950 \pm 1.5 \cdot 10^{-4} \) | \(a_{3}= +0.67317451 \pm 1.4 \cdot 10^{-4} \) |
\(a_{4}= -0.35319882 \pm 1.3 \cdot 10^{-4} \) | \(a_{5}= +0.27788527 \pm 1.3 \cdot 10^{-4} \) | \(a_{6}= -0.54139354 \pm 1.6 \cdot 10^{-4} \) |
\(a_{7}= -1.26715774 \pm 1.3 \cdot 10^{-4} \) | \(a_{8}= +1.08829595 \pm 1.1 \cdot 10^{-4} \) | \(a_{9}= -0.54683607 \pm 1.4 \cdot 10^{-4} \) |
\(a_{10}= -0.22348632 \pm 1.4 \cdot 10^{-4} \) | \(a_{11}= -1.29891987 \pm 1.2 \cdot 10^{-4} \) | \(a_{12}= -0.23776444 \pm 1.4 \cdot 10^{-4} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +1.01909832 \pm 1.4 \cdot 10^{-4} \) | \(a_{15}= +0.18706528 \pm 1.5 \cdot 10^{-4} \) |
\(a_{16}= -0.52205177 \pm 1.2 \cdot 10^{-4} \) | \(a_{17}= -0.09971520 \pm 1.3 \cdot 10^{-4} \) | \(a_{18}= +0.43978717 \pm 1.6 \cdot 10^{-4} \) |
\(a_{19}= +0.98390521 \pm 1.1 \cdot 10^{-4} \) | \(a_{20}= -0.09814875 \pm 1.3 \cdot 10^{-4} \) | \(a_{21}= -0.85301830 \pm 1.1 \cdot 10^{-4} \) |
\(a_{22}= +1.04464267 \pm 1.3 \cdot 10^{-4} \) | \(a_{23}= -0.60576610 \pm 1.1 \cdot 10^{-4} \) | \(a_{24}= +0.73261310 \pm 1.1 \cdot 10^{-4} \) |
\(a_{25}= -0.92277977 \pm 1.0 \cdot 10^{-4} \) | \(a_{26}= -0.22305591 \pm 1.5 \cdot 10^{-4} \) | \(a_{27}= -1.04129062 \pm 1.1 \cdot 10^{-4} \) |
\(a_{28}= +0.44755862 \pm 1.2 \cdot 10^{-4} \) | \(a_{29}= +0.80154077 \pm 1.0 \cdot 10^{-4} \) | \(a_{30}= -0.15044529 \pm 1.9 \cdot 10^{-4} \) |
\(a_{31}= -1.57670479 \pm 1.4 \cdot 10^{-4} \) | \(a_{32}= -0.66844129 \pm 1.5 \cdot 10^{-4} \) | \(a_{33}= -0.87439975 \pm 1.0 \cdot 10^{-4} \) |
\(a_{34}= +0.08019490 \pm 1.4 \cdot 10^{-4} \) | \(a_{35}= -0.35212448 \pm 1.0 \cdot 10^{-4} \) | \(a_{36}= +0.19314186 \pm 1.3 \cdot 10^{-4} \) |
\(a_{37}= +0.14023588 \pm 1.6 \cdot 10^{-4} \) | \(a_{38}= -0.79129544 \pm 1.0 \cdot 10^{-4} \) | \(a_{39}= +0.18670502 \pm 1.4 \cdot 10^{-4} \) |
\(a_{40}= +0.30242142 \pm 1.1 \cdot 10^{-4} \) | \(a_{41}= -1.04120720 \pm 1.2 \cdot 10^{-4} \) | \(a_{42}= +0.68603101 \pm 9.6 \cdot 10^{-5} \) |
\(a_{43}= +1.13507617 \pm 1.3 \cdot 10^{-4} \) | \(a_{44}= +0.45877696 \pm 1.2 \cdot 10^{-4} \) | \(a_{45}= -0.15195769 \pm 1.4 \cdot 10^{-4} \) |
\(a_{46}= +0.48718103 \pm 1.4 \cdot 10^{-4} \) | \(a_{47}= +1.29695332 \pm 1.3 \cdot 10^{-4} \) | \(a_{48}= -0.35143195 \pm 1.3 \cdot 10^{-4} \) |
\(a_{49}= +0.60568875 \pm 1.2 \cdot 10^{-4} \) | \(a_{50}= +0.74213595 \pm 1.2 \cdot 10^{-4} \) | \(a_{51}= -0.06712573 \pm 1.5 \cdot 10^{-4} \) |
\(a_{52}= -0.09795973 \pm 1.3 \cdot 10^{-4} \) | \(a_{53}= +0.92117423 \pm 1.0 \cdot 10^{-4} \) | \(a_{54}= +0.83744705 \pm 1.3 \cdot 10^{-4} \) |
\(a_{55}= -0.36095070 \pm 8.9 \cdot 10^{-5} \) | \(a_{56}= -1.37904264 \pm 1.0 \cdot 10^{-4} \) | \(a_{57}= +0.66233991 \pm 1.0 \cdot 10^{-4} \) |
\(a_{58}= -0.64463075 \pm 9.8 \cdot 10^{-5} \) | \(a_{59}= +1.84432955 \pm 1.2 \cdot 10^{-4} \) | \(a_{60}= -0.06607124 \pm 1.5 \cdot 10^{-4} \) |
\(a_{61}= +0.25920991 \pm 1.2 \cdot 10^{-4} \) | \(a_{62}= +1.26804828 \pm 1.2 \cdot 10^{-4} \) | \(a_{63}= +0.69292756 \pm 1.0 \cdot 10^{-4} \) |
\(a_{64}= +1.05963866 \pm 1.2 \cdot 10^{-4} \) | \(a_{65}= +0.07707151 \pm 1.3 \cdot 10^{-4} \) | \(a_{66}= +0.70322682 \pm 1.2 \cdot 10^{-4} \) |
\(a_{67}= -1.21078204 \pm 1.4 \cdot 10^{-4} \) | \(a_{68}= +0.03521929 \pm 1.1 \cdot 10^{-4} \) | \(a_{69}= -0.40778630 \pm 1.3 \cdot 10^{-4} \) |
\(a_{70}= +0.28319242 \pm 1.0 \cdot 10^{-4} \) | \(a_{71}= -0.17641001 \pm 1.4 \cdot 10^{-4} \) | \(a_{72}= -0.59511948 \pm 1.1 \cdot 10^{-4} \) |
\(a_{73}= -0.15245514 \pm 1.5 \cdot 10^{-4} \) | \(a_{74}= -0.11278324 \pm 1.5 \cdot 10^{-4} \) | \(a_{75}= -0.62119183 \pm 8.0 \cdot 10^{-5} \) |
\(a_{76}= -0.34751416 \pm 9.9 \cdot 10^{-5} \) | \(a_{77}= +1.64593637 \pm 1.2 \cdot 10^{-4} \) | \(a_{78}= -0.15015555 \pm 3.0 \cdot 10^{-4} \) |
\(a_{79}= -0.02086320 \pm 1.4 \cdot 10^{-4} \) | \(a_{80}= -0.14507050 \pm 1.1 \cdot 10^{-4} \) | \(a_{81}= -0.15413424 \pm 1.1 \cdot 10^{-4} \) |
\(a_{82}= +0.83737996 \pm 1.3 \cdot 10^{-4} \) | \(a_{83}= +1.35531351 \pm 8.8 \cdot 10^{-5} \) | \(a_{84}= +0.30128506 \pm 1.1 \cdot 10^{-4} \) |
\(a_{85}= -0.02770939 \pm 1.2 \cdot 10^{-4} \) | \(a_{86}= -0.91287310 \pm 1.6 \cdot 10^{-4} \) | \(a_{87}= +0.53957682 \pm 1.0 \cdot 10^{-4} \) |
\(a_{88}= -1.41360923 \pm 9.7 \cdot 10^{-5} \) | \(a_{89}= +1.88802497 \pm 1.7 \cdot 10^{-4} \) | \(a_{90}= +0.12221038 \pm 1.7 \cdot 10^{-4} \) |
\(a_{91}= -0.35144632 \pm 1.3 \cdot 10^{-4} \) | \(a_{92}= +0.21395587 \pm 1.2 \cdot 10^{-4} \) | \(a_{93}= -1.06139748 \pm 1.5 \cdot 10^{-4} \) |
\(a_{94}= -1.04306109 \pm 1.1 \cdot 10^{-4} \) | \(a_{95}= +0.27341277 \pm 9.8 \cdot 10^{-5} \) | \(a_{96}= -0.44997764 \pm 1.6 \cdot 10^{-4} \) |
\(a_{97}= +0.68719464 \pm 1.3 \cdot 10^{-4} \) | \(a_{98}= -0.48711882 \pm 1.4 \cdot 10^{-4} \) | \(a_{99}= +0.71029624 \pm 1.0 \cdot 10^{-4} \) |
\(a_{100}= +0.32592473 \pm 1.0 \cdot 10^{-4} \) | \(a_{101}= -0.90445480 \pm 1.0 \cdot 10^{-4} \) | \(a_{102}= +0.05398516 \pm 1.6 \cdot 10^{-4} \) |
\(a_{103}= -0.00029133 \pm 1.4 \cdot 10^{-4} \) | \(a_{104}= +0.30183899 \pm 1.1 \cdot 10^{-4} \) | \(a_{105}= -0.23704122 \pm 1.0 \cdot 10^{-4} \) |
\(a_{106}= -0.74084471 \pm 1.2 \cdot 10^{-4} \) | \(a_{107}= -1.04918449 \pm 1.5 \cdot 10^{-4} \) | \(a_{108}= +0.36778262 \pm 1.2 \cdot 10^{-4} \) |
\(a_{109}= +1.58511780 \pm 9.9 \cdot 10^{-5} \) | \(a_{110}= +0.29029082 \pm 1.0 \cdot 10^{-4} \) | \(a_{111}= +0.09440322 \pm 9.2 \cdot 10^{-5} \) |
\(a_{112}= +0.66152195 \pm 1.1 \cdot 10^{-4} \) | \(a_{113}= +1.80516600 \pm 1.7 \cdot 10^{-4} \) | \(a_{114}= -0.53267992 \pm 1.1 \cdot 10^{-4} \) |
\(a_{115}= -0.16833348 \pm 1.1 \cdot 10^{-4} \) | \(a_{116}= -0.28310325 \pm 1.1 \cdot 10^{-4} \) | \(a_{117}= -0.15166504 \pm 1.4 \cdot 10^{-4} \) |
\(a_{118}= -1.48328268 \pm 1.3 \cdot 10^{-4} \) | \(a_{119}= +0.12635489 \pm 1.4 \cdot 10^{-4} \) | \(a_{120}= +0.20358239 \pm 1.2 \cdot 10^{-4} \) |
\(a_{121}= +0.68719283 \pm 9.0 \cdot 10^{-5} \) | \(a_{122}= -0.20846685 \pm 1.1 \cdot 10^{-4} \) | \(a_{123}= -0.70091415 \pm 1.3 \cdot 10^{-4} \) |
\(a_{124}= +0.55689027 \pm 1.3 \cdot 10^{-4} \) | \(a_{125}= -0.53431219 \pm 1.0 \cdot 10^{-4} \) | \(a_{126}= -0.55727972 \pm 1.0 \cdot 10^{-4} \) |
\(a_{127}= -0.49647765 \pm 1.4 \cdot 10^{-4} \) | \(a_{128}= -0.18376199 \pm 1.2 \cdot 10^{-4} \) | \(a_{129}= +0.76410435 \pm 1.4 \cdot 10^{-4} \) |
\(a_{130}= -0.06198395 \pm 2.8 \cdot 10^{-4} \) | \(a_{131}= +0.93630398 \pm 1.1 \cdot 10^{-4} \) | \(a_{132}= +0.30883696 \pm 1.2 \cdot 10^{-4} \) |
\(a_{133}= -1.24676311 \pm 8.3 \cdot 10^{-5} \) | \(a_{134}= +0.97375875 \pm 1.6 \cdot 10^{-4} \) | \(a_{135}= -0.28935933 \pm 1.0 \cdot 10^{-4} \) |
\(a_{136}= -0.10851965 \pm 8.4 \cdot 10^{-5} \) | \(a_{137}= -1.07168639 \pm 1.3 \cdot 10^{-4} \) | \(a_{138}= +0.32795785 \pm 1.6 \cdot 10^{-4} \) |
\(a_{139}= -0.75037837 \pm 1.2 \cdot 10^{-4} \) | \(a_{140}= +0.12436995 \pm 1.0 \cdot 10^{-4} \) | \(a_{141}= +0.87307592 \pm 1.1 \cdot 10^{-4} \) |
\(a_{142}= +0.14187590 \pm 1.4 \cdot 10^{-4} \) | \(a_{143}= -0.36025555 \pm 1.2 \cdot 10^{-4} \) | \(a_{144}= +0.28547674 \pm 1.2 \cdot 10^{-4} \) |
\(a_{145}= +0.22273638 \pm 9.6 \cdot 10^{-5} \) | \(a_{146}= +0.12261045 \pm 1.4 \cdot 10^{-4} \) | \(a_{147}= +0.40773423 \pm 1.2 \cdot 10^{-4} \) |
\(a_{148}= -0.04953115 \pm 1.4 \cdot 10^{-4} \) | \(a_{149}= -0.28220468 \pm 1.2 \cdot 10^{-4} \) | \(a_{150}= +0.49958701 \pm 1.0 \cdot 10^{-4} \) |
\(a_{151}= -0.15061258 \pm 1.0 \cdot 10^{-4} \) | \(a_{152}= +1.07078005 \pm 9.3 \cdot 10^{-5} \) | \(a_{153}= +0.05452787 \pm 1.3 \cdot 10^{-4} \) |
\(a_{154}= -1.32372705 \pm 1.5 \cdot 10^{-4} \) | \(a_{155}= -0.43814304 \pm 1.3 \cdot 10^{-4} \) | \(a_{156}= -0.06594399 \pm 2.8 \cdot 10^{-4} \) |
\(a_{157}= +1.10208460 \pm 1.5 \cdot 10^{-4} \) | \(a_{158}= +0.01677901 \pm 1.3 \cdot 10^{-4} \) | \(a_{159}= +0.62011102 \pm 1.0 \cdot 10^{-4} \) |
\(a_{160}= -0.18574999 \pm 1.4 \cdot 10^{-4} \) | \(a_{161}= +0.76760121 \pm 1.0 \cdot 10^{-4} \) | \(a_{162}= +0.12396084 \pm 1.1 \cdot 10^{-4} \) |
\(a_{163}= -0.68766183 \pm 1.6 \cdot 10^{-4} \) | \(a_{164}= +0.36775315 \pm 1.2 \cdot 10^{-4} \) | \(a_{165}= -0.24298282 \pm 9.8 \cdot 10^{-5} \) |
\(a_{166}= -1.08999667 \pm 8.9 \cdot 10^{-5} \) | \(a_{167}= -0.58417799 \pm 1.5 \cdot 10^{-4} \) | \(a_{168}= -0.92833636 \pm 9.4 \cdot 10^{-5} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +0.02228498 \pm 1.3 \cdot 10^{-4} \) | \(a_{171}= -0.53803486 \pm 1.2 \cdot 10^{-4} \) |
\(a_{172}= -0.40090756 \pm 1.3 \cdot 10^{-4} \) | \(a_{173}= -0.75763531 \pm 1.6 \cdot 10^{-4} \) | \(a_{174}= -0.43394899 \pm 7.4 \cdot 10^{-5} \) |
\(a_{175}= +1.16930754 \pm 1.1 \cdot 10^{-4} \) | \(a_{176}= +0.67810342 \pm 1.0 \cdot 10^{-4} \) | \(a_{177}= +1.24155565 \pm 1.1 \cdot 10^{-4} \) |
\(a_{178}= -1.51842426 \pm 1.9 \cdot 10^{-4} \) | \(a_{179}= -0.46191185 \pm 1.0 \cdot 10^{-4} \) | \(a_{180}= +0.05367128 \pm 1.3 \cdot 10^{-4} \) |
\(a_{181}= +1.20985633 \pm 1.3 \cdot 10^{-4} \) | \(a_{182}= +0.28264702 \pm 2.8 \cdot 10^{-4} \) | \(a_{183}= +0.17449351 \pm 1.1 \cdot 10^{-4} \) |
\(a_{184}= -0.65925279 \pm 9.2 \cdot 10^{-5} \) | \(a_{185}= +0.03896949 \pm 1.1 \cdot 10^{-4} \) | \(a_{186}= +0.85361778 \pm 1.5 \cdot 10^{-4} \) |
\(a_{187}= +0.12952205 \pm 1.0 \cdot 10^{-4} \) | \(a_{188}= -0.45808238 \pm 1.2 \cdot 10^{-4} \) | \(a_{189}= +1.31947948 \pm 1.0 \cdot 10^{-4} \) |
\(a_{190}= -0.21988935 \pm 1.1 \cdot 10^{-4} \) | \(a_{191}= +1.59656162 \pm 1.2 \cdot 10^{-4} \) | \(a_{192}= +0.71332174 \pm 1.4 \cdot 10^{-4} \) |
\(a_{193}= +0.61264395 \pm 1.4 \cdot 10^{-4} \) | \(a_{194}= -0.55266907 \pm 1.3 \cdot 10^{-4} \) | \(a_{195}= +0.05188258 \pm 2.7 \cdot 10^{-4} \) |
\(a_{196}= -0.21392855 \pm 1.1 \cdot 10^{-4} \) | \(a_{197}= -0.12055212 \pm 1.2 \cdot 10^{-4} \) | \(a_{198}= -0.57124830 \pm 1.1 \cdot 10^{-4} \) |
\(a_{199}= -0.76667332 \pm 1.4 \cdot 10^{-4} \) | \(a_{200}= -1.00425749 \pm 8.2 \cdot 10^{-5} \) | \(a_{201}= -0.81506761 \pm 1.7 \cdot 10^{-4} \) |
\(a_{202}= +0.72739828 \pm 1.2 \cdot 10^{-4} \) | \(a_{203}= -1.01567859 \pm 1.1 \cdot 10^{-4} \) | \(a_{204}= +0.02370873 \pm 1.4 \cdot 10^{-4} \) |
\(a_{205}= -0.28933615 \pm 1.0 \cdot 10^{-4} \) | \(a_{206}= +0.00023430 \pm 1.6 \cdot 10^{-4} \) | \(a_{207}= +0.33125476 \pm 1.3 \cdot 10^{-4} \) |
\(a_{208}= -0.14479111 \pm 1.2 \cdot 10^{-4} \) | \(a_{209}= -1.27801403 \pm 9.2 \cdot 10^{-5} \) | \(a_{210}= +0.19063792 \pm 7.4 \cdot 10^{-5} \) |
\(a_{211}= +0.38440927 \pm 1.5 \cdot 10^{-4} \) | \(a_{212}= -0.32535765 \pm 1.1 \cdot 10^{-4} \) | \(a_{213}= -0.11875472 \pm 1.5 \cdot 10^{-4} \) |
\(a_{214}= +0.84379562 \pm 1.7 \cdot 10^{-4} \) | \(a_{215}= +0.31542095 \pm 1.2 \cdot 10^{-4} \) | \(a_{216}= -1.13323237 \pm 9.3 \cdot 10^{-5} \) |
\(a_{217}= +1.99793368 \pm 1.2 \cdot 10^{-4} \) | \(a_{218}= -1.27481435 \pm 1.0 \cdot 10^{-4} \) | \(a_{219}= -0.10262892 \pm 1.6 \cdot 10^{-4} \) |
\(a_{220}= +0.12748736 \pm 9.6 \cdot 10^{-5} \) | \(a_{221}= -0.02765602 \pm 1.3 \cdot 10^{-4} \) | \(a_{222}= -0.07592280 \pm 9.7 \cdot 10^{-5} \) |
\(a_{223}= +0.68864389 \pm 1.3 \cdot 10^{-4} \) | \(a_{224}= +0.84702055 \pm 1.3 \cdot 10^{-4} \) | \(a_{225}= +0.50460927 \pm 8.5 \cdot 10^{-5} \) |
\(a_{226}= -1.45178581 \pm 1.8 \cdot 10^{-4} \) | \(a_{227}= -0.68436506 \pm 1.0 \cdot 10^{-4} \) | \(a_{228}= -0.23393768 \pm 8.9 \cdot 10^{-5} \) |
\(a_{229}= +1.15315916 \pm 1.3 \cdot 10^{-4} \) | \(a_{230}= +0.13538043 \pm 1.4 \cdot 10^{-4} \) | \(a_{231}= +1.10800242 \pm 9.8 \cdot 10^{-5} \) |
\(a_{232}= +0.87231357 \pm 8.7 \cdot 10^{-5} \) | \(a_{233}= +0.13000455 \pm 1.7 \cdot 10^{-4} \) | \(a_{234}= +0.12197502 \pm 2.9 \cdot 10^{-4} \) |
\(a_{235}= +0.36040423 \pm 1.0 \cdot 10^{-4} \) | \(a_{236}= -0.65141502 \pm 1.2 \cdot 10^{-4} \) | \(a_{237}= -0.01404457 \pm 1.3 \cdot 10^{-4} \) |
\(a_{238}= -0.10161959 \pm 1.5 \cdot 10^{-4} \) | \(a_{239}= -1.20364646 \pm 1.2 \cdot 10^{-4} \) | \(a_{240}= -0.09765776 \pm 1.4 \cdot 10^{-4} \) |
\(a_{241}= -0.70720233 \pm 1.1 \cdot 10^{-4} \) | \(a_{242}= -0.55266762 \pm 1.1 \cdot 10^{-4} \) | \(a_{243}= +0.93753138 \pm 1.4 \cdot 10^{-4} \) |
\(a_{244}= -0.09155264 \pm 9.6 \cdot 10^{-5} \) | \(a_{245}= +0.16831198 \pm 1.1 \cdot 10^{-4} \) | \(a_{246}= +0.56370285 \pm 1.8 \cdot 10^{-4} \) |
\(a_{247}= +0.27288621 \pm 1.1 \cdot 10^{-4} \) | \(a_{248}= -1.71592143 \pm 1.1 \cdot 10^{-4} \) | \(a_{249}= +0.91236251 \pm 7.8 \cdot 10^{-5} \) |
\(a_{250}= +0.42971497 \pm 8.2 \cdot 10^{-5} \) | \(a_{251}= +1.09770197 \pm 1.5 \cdot 10^{-4} \) | \(a_{252}= -0.24474120 \pm 8.9 \cdot 10^{-5} \) |
\(a_{253}= +0.78684163 \pm 1.0 \cdot 10^{-4} \) | \(a_{254}= +0.39928694 \pm 1.5 \cdot 10^{-4} \) | \(a_{255}= -0.01865325 \pm 1.7 \cdot 10^{-4} \) |
\(a_{256}= -0.91185001 \pm 1.2 \cdot 10^{-4} \) | \(a_{257}= -1.44486180 \pm 1.5 \cdot 10^{-4} \) | \(a_{258}= -0.61452290 \pm 1.9 \cdot 10^{-4} \) |
\(a_{259}= -0.17770098 \pm 1.5 \cdot 10^{-4} \) | \(a_{260}= -0.02722157 \pm 2.6 \cdot 10^{-4} \) | \(a_{261}= -0.43831141 \pm 7.0 \cdot 10^{-5} \) |
\(a_{262}= -0.75301265 \pm 1.4 \cdot 10^{-4} \) | \(a_{263}= -0.73304612 \pm 1.3 \cdot 10^{-4} \) | \(a_{264}= -0.95160571 \pm 9.6 \cdot 10^{-5} \) |
\(a_{265}= +0.25598075 \pm 8.6 \cdot 10^{-5} \) | \(a_{266}= +1.00269614 \pm 9.4 \cdot 10^{-5} \) | \(a_{267}= +1.27097029 \pm 1.6 \cdot 10^{-4} \) |
\(a_{268}= +0.42764679 \pm 1.4 \cdot 10^{-4} \) | \(a_{269}= -0.18340863 \pm 1.6 \cdot 10^{-4} \) | \(a_{270}= +0.23271420 \pm 1.3 \cdot 10^{-4} \) |
\(a_{271}= -0.64133200 \pm 1.3 \cdot 10^{-4} \) | \(a_{272}= +0.05205650 \pm 1.2 \cdot 10^{-4} \) | \(a_{273}= -0.23658471 \pm 2.8 \cdot 10^{-4} \) |
\(a_{274}= +0.86189253 \pm 1.3 \cdot 10^{-4} \) | \(a_{275}= +1.19861699 \pm 1.0 \cdot 10^{-4} \) | \(a_{276}= +0.14402964 \pm 1.1 \cdot 10^{-4} \) |
\(a_{277}= -1.82624216 \pm 1.3 \cdot 10^{-4} \) | \(a_{278}= +0.60348393 \pm 1.2 \cdot 10^{-4} \) | \(a_{279}= +0.86219905 \pm 1.4 \cdot 10^{-4} \) |
\(a_{280}= -0.38321564 \pm 1.0 \cdot 10^{-4} \) | \(a_{281}= +0.39594286 \pm 2.0 \cdot 10^{-4} \) | \(a_{282}= -0.70216214 \pm 1.2 \cdot 10^{-4} \) |
\(a_{283}= -0.90069432 \pm 1.0 \cdot 10^{-4} \) | \(a_{284}= +0.06230781 \pm 1.2 \cdot 10^{-4} \) | \(a_{285}= +0.18405451 \pm 1.1 \cdot 10^{-4} \) |
\(a_{286}= +0.28973175 \pm 2.7 \cdot 10^{-4} \) | \(a_{287}= +1.31937376 \pm 6.6 \cdot 10^{-5} \) | \(a_{288}= +0.36552781 \pm 1.5 \cdot 10^{-4} \) |
\(a_{289}= -0.99005688 \pm 1.1 \cdot 10^{-4} \) | \(a_{290}= -0.17913339 \pm 1.0 \cdot 10^{-4} \) | \(a_{291}= +0.46260192 \pm 1.3 \cdot 10^{-4} \) |
\(a_{292}= +0.05384698 \pm 1.5 \cdot 10^{-4} \) | \(a_{293}= +0.16022934 \pm 1.1 \cdot 10^{-4} \) | \(a_{294}= -0.32791598 \pm 1.6 \cdot 10^{-4} \) |
\(a_{295}= +0.51251202 \pm 1.1 \cdot 10^{-4} \) | \(a_{296}= +0.15261814 \pm 1.5 \cdot 10^{-4} \) | \(a_{297}= +1.35255308 \pm 1.0 \cdot 10^{-4} \) |
\(a_{298}= +0.22696015 \pm 1.3 \cdot 10^{-4} \) | \(a_{299}= -0.16800929 \pm 1.1 \cdot 10^{-4} \) | \(a_{300}= +0.21940422 \pm 9.5 \cdot 10^{-5} \) |
\(a_{301}= -1.43832056 \pm 1.1 \cdot 10^{-4} \) | \(a_{302}= +0.12112858 \pm 1.0 \cdot 10^{-4} \) | \(a_{303}= -0.60885592 \pm 1.1 \cdot 10^{-4} \) |
\(a_{304}= -0.51364946 \pm 8.6 \cdot 10^{-5} \) | \(a_{305}= +0.07203062 \pm 9.6 \cdot 10^{-5} \) | \(a_{306}= -0.04385346 \pm 1.6 \cdot 10^{-4} \) |
\(a_{307}= +1.27594360 \pm 1.0 \cdot 10^{-4} \) | \(a_{308}= -0.58134278 \pm 1.3 \cdot 10^{-4} \) | \(a_{309}= -0.00019612 \pm 1.6 \cdot 10^{-4} \) |
\(a_{310}= +0.35237194 \pm 1.3 \cdot 10^{-4} \) | \(a_{311}= -1.48536252 \pm 1.7 \cdot 10^{-4} \) | \(a_{312}= +0.20319031 \pm 2.6 \cdot 10^{-4} \) |
\(a_{313}= +1.59074142 \pm 1.0 \cdot 10^{-4} \) | \(a_{314}= -0.88633997 \pm 1.4 \cdot 10^{-4} \) | \(a_{315}= +0.19255437 \pm 8.2 \cdot 10^{-5} \) |
\(a_{316}= +0.00736886 \pm 1.2 \cdot 10^{-4} \) | \(a_{317}= -0.41291135 \pm 1.3 \cdot 10^{-4} \) | \(a_{318}= -0.49871778 \pm 1.3 \cdot 10^{-4} \) |
\(a_{319}= -1.04113723 \pm 8.1 \cdot 10^{-5} \) | \(a_{320}= +0.29445798 \pm 1.2 \cdot 10^{-4} \) | \(a_{321}= -0.70628426 \pm 1.4 \cdot 10^{-4} \) |
\(a_{322}= -0.61733522 \pm 1.4 \cdot 10^{-4} \) | \(a_{323}= -0.09811030 \pm 8.0 \cdot 10^{-5} \) | \(a_{324}= +0.05444003 \pm 1.1 \cdot 10^{-4} \) |
\(a_{325}= -0.25593306 \pm 1.0 \cdot 10^{-4} \) | \(a_{326}= +0.55304481 \pm 1.1 \cdot 10^{-4} \) | \(a_{327}= +1.06706090 \pm 1.1 \cdot 10^{-4} \) |
\(a_{328}= -1.13314157 \pm 5.8 \cdot 10^{-5} \) | \(a_{329}= -1.64344444 \pm 1.0 \cdot 10^{-4} \) | \(a_{330}= +0.19541638 \pm 1.1 \cdot 10^{-4} \) |
\(a_{331}= +1.61475953 \pm 1.5 \cdot 10^{-4} \) | \(a_{332}= -0.47869513 \pm 8.1 \cdot 10^{-5} \) | \(a_{333}= -0.07668604 \pm 1.4 \cdot 10^{-4} \) |
\(a_{334}= +0.46981901 \pm 1.6 \cdot 10^{-4} \) | \(a_{335}= -0.33645850 \pm 1.4 \cdot 10^{-4} \) | \(a_{336}= +0.44531972 \pm 8.3 \cdot 10^{-5} \) |
\(a_{337}= -1.40032460 \pm 1.4 \cdot 10^{-4} \) | \(a_{338}= -0.06186458 \pm 1.5 \cdot 10^{-4} \) | \(a_{339}= +1.21519174 \pm 1.8 \cdot 10^{-4} \) |
\(a_{340}= +0.00978692 \pm 1.1 \cdot 10^{-4} \) | \(a_{341}= +2.04801318 \pm 1.0 \cdot 10^{-4} \) | \(a_{342}= +0.43270889 \pm 1.4 \cdot 10^{-4} \) |
\(a_{343}= +0.49965455 \pm 1.0 \cdot 10^{-4} \) | \(a_{344}= +1.23529880 \pm 7.9 \cdot 10^{-5} \) | \(a_{345}= -0.11331781 \pm 1.5 \cdot 10^{-4} \) |
\(a_{346}= +0.60932024 \pm 1.5 \cdot 10^{-4} \) | \(a_{347}= +0.31264037 \pm 1.7 \cdot 10^{-4} \) | \(a_{348}= -0.19057789 \pm 1.0 \cdot 10^{-4} \) |
\(a_{349}= +0.36756498 \pm 1.4 \cdot 10^{-4} \) | \(a_{350}= -0.94040331 \pm 1.4 \cdot 10^{-4} \) | \(a_{351}= -0.28880206 \pm 1.1 \cdot 10^{-4} \) |
\(a_{352}= +0.86825167 \pm 1.3 \cdot 10^{-4} \) | \(a_{353}= +1.13863489 \pm 1.1 \cdot 10^{-4} \) | \(a_{354}= -0.99850810 \pm 1.2 \cdot 10^{-4} \) |
\(a_{355}= -0.04902174 \pm 1.3 \cdot 10^{-4} \) | \(a_{356}= -0.66684819 \pm 1.5 \cdot 10^{-4} \) | \(a_{357}= +0.08505889 \pm 1.3 \cdot 10^{-4} \) |
\(a_{358}= +0.37148776 \pm 1.0 \cdot 10^{-4} \) | \(a_{359}= -1.32910991 \pm 1.8 \cdot 10^{-4} \) | \(a_{360}= -0.16537494 \pm 1.0 \cdot 10^{-4} \) |
\(a_{361}= -0.03193054 \pm 1.0 \cdot 10^{-4} \) | \(a_{362}= -0.97301425 \pm 1.4 \cdot 10^{-4} \) | \(a_{363}= +0.46260070 \pm 1.0 \cdot 10^{-4} \) |
\(a_{364}= +0.12413043 \pm 2.7 \cdot 10^{-4} \) | \(a_{365}= -0.04236504 \pm 1.2 \cdot 10^{-4} \) | \(a_{366}= -0.14033457 \pm 8.6 \cdot 10^{-5} \) |
\(a_{367}= -1.01883935 \pm 1.5 \cdot 10^{-4} \) | \(a_{368}= +0.31624127 \pm 1.0 \cdot 10^{-4} \) | \(a_{369}= +0.56936966 \pm 1.1 \cdot 10^{-4} \) |
\(a_{370}= -0.03134080 \pm 1.2 \cdot 10^{-4} \) | \(a_{371}= -1.16727307 \pm 1.0 \cdot 10^{-4} \) | \(a_{372}= +0.37488434 \pm 1.6 \cdot 10^{-4} \) |
\(a_{373}= -1.59189189 \pm 1.0 \cdot 10^{-4} \) | \(a_{374}= -0.10416675 \pm 1.1 \cdot 10^{-4} \) | \(a_{375}= -0.35968535 \pm 1.0 \cdot 10^{-4} \) |
\(a_{376}= +1.41146904 \pm 1.2 \cdot 10^{-4} \) | \(a_{377}= +0.22230741 \pm 1.0 \cdot 10^{-4} \) | \(a_{378}= -1.06117752 \pm 1.2 \cdot 10^{-4} \) |
\(a_{379}= +0.86647413 \pm 1.3 \cdot 10^{-4} \) | \(a_{380}= -0.09656907 \pm 1.0 \cdot 10^{-4} \) | \(a_{381}= -0.33421610 \pm 1.3 \cdot 10^{-4} \) |
\(a_{382}= -1.28401792 \pm 1.4 \cdot 10^{-4} \) | \(a_{383}= +0.68284992 \pm 1.9 \cdot 10^{-4} \) | \(a_{384}= -0.12370389 \pm 1.1 \cdot 10^{-4} \) |
\(a_{385}= +0.45738148 \pm 8.1 \cdot 10^{-5} \) | \(a_{386}= -0.49271247 \pm 1.3 \cdot 10^{-4} \) | \(a_{387}= -0.62070060 \pm 1.2 \cdot 10^{-4} \) |
\(a_{388}= -0.24271633 \pm 1.3 \cdot 10^{-4} \) | \(a_{389}= +1.43892583 \pm 1.2 \cdot 10^{-4} \) | \(a_{390}= -0.04172602 \pm 4.3 \cdot 10^{-4} \) |
\(a_{391}= +0.06040409 \pm 7.9 \cdot 10^{-5} \) | \(a_{392}= +0.65916861 \pm 9.1 \cdot 10^{-5} \) | \(a_{393}= +0.63029597 \pm 1.3 \cdot 10^{-4} \) |
\(a_{394}= +0.09695278 \pm 1.4 \cdot 10^{-4} \) | \(a_{395}= -0.00579757 \pm 1.1 \cdot 10^{-4} \) | \(a_{396}= -0.25087579 \pm 1.0 \cdot 10^{-4} \) |
\(a_{397}= -0.51644684 \pm 1.0 \cdot 10^{-4} \) | \(a_{398}= +0.61658897 \pm 1.6 \cdot 10^{-4} \) | \(a_{399}= -0.83928915 \pm 5.6 \cdot 10^{-5} \) |
\(a_{400}= +0.48173882 \pm 9.6 \cdot 10^{-5} \) | \(a_{401}= +1.13628501 \pm 1.0 \cdot 10^{-4} \) | \(a_{402}= +0.65550957 \pm 2.2 \cdot 10^{-4} \) |
\(a_{403}= -0.43729923 \pm 1.4 \cdot 10^{-4} \) | \(a_{404}= +0.31945237 \pm 1.1 \cdot 10^{-4} \) | \(a_{405}= -0.04283163 \pm 1.1 \cdot 10^{-4} \) |
\(a_{406}= +0.81684885 \pm 1.1 \cdot 10^{-4} \) | \(a_{407}= -0.18215517 \pm 1.4 \cdot 10^{-4} \) | \(a_{408}= -0.07305266 \pm 1.0 \cdot 10^{-4} \) |
\(a_{409}= +1.02542787 \pm 1.2 \cdot 10^{-4} \) | \(a_{410}= +0.23269556 \pm 1.4 \cdot 10^{-4} \) | \(a_{411}= -0.72143197 \pm 1.2 \cdot 10^{-4} \) |
\(a_{412}= +0.00010290 \pm 1.4 \cdot 10^{-4} \) | \(a_{413}= -2.33705647 \pm 1.2 \cdot 10^{-4} \) | \(a_{414}= -0.26640816 \pm 1.6 \cdot 10^{-4} \) |
\(a_{415}= +0.37662167 \pm 8.2 \cdot 10^{-5} \) | \(a_{416}= -0.18539226 \pm 1.5 \cdot 10^{-4} \) | \(a_{417}= -0.50513559 \pm 1.4 \cdot 10^{-4} \) |
\(a_{418}= +1.02782937 \pm 7.9 \cdot 10^{-5} \) | \(a_{419}= -0.52373143 \pm 1.5 \cdot 10^{-4} \) | \(a_{420}= +0.08372268 \pm 9.3 \cdot 10^{-5} \) |
\(a_{421}= +0.72488212 \pm 1.5 \cdot 10^{-4} \) | \(a_{422}= -0.30915712 \pm 1.7 \cdot 10^{-4} \) | \(a_{423}= -0.70922086 \pm 1.2 \cdot 10^{-4} \) |
\(a_{424}= +1.00251019 \pm 8.3 \cdot 10^{-5} \) | \(a_{425}= +0.09201517 \pm 9.5 \cdot 10^{-5} \) | \(a_{426}= +0.09550724 \pm 1.8 \cdot 10^{-4} \) |
\(a_{427}= -0.32845985 \pm 1.4 \cdot 10^{-4} \) | \(a_{428}= +0.37057072 \pm 1.5 \cdot 10^{-4} \) | \(a_{429}= -0.24251486 \pm 2.7 \cdot 10^{-4} \) |
\(a_{430}= -0.25367399 \pm 1.6 \cdot 10^{-4} \) | \(a_{431}= +1.82238106 \pm 1.6 \cdot 10^{-4} \) | \(a_{432}= +0.54360762 \pm 1.0 \cdot 10^{-4} \) |
\(a_{433}= +0.44118288 \pm 1.3 \cdot 10^{-4} \) | \(a_{434}= -1.60681719 \pm 9.8 \cdot 10^{-5} \) | \(a_{435}= +0.14994045 \pm 1.0 \cdot 10^{-4} \) |
\(a_{436}= -0.55986173 \pm 1.0 \cdot 10^{-4} \) | \(a_{437}= -0.59601642 \pm 1.0 \cdot 10^{-4} \) | \(a_{438}= +0.08253823 \pm 1.5 \cdot 10^{-4} \) |
\(a_{439}= +1.56241544 \pm 1.2 \cdot 10^{-4} \) | \(a_{440}= -0.39282119 \pm 8.9 \cdot 10^{-5} \) | \(a_{441}= -0.33121246 \pm 1.2 \cdot 10^{-4} \) |
\(a_{442}= +0.02224206 \pm 2.8 \cdot 10^{-4} \) | \(a_{443}= -1.59155283 \pm 1.4 \cdot 10^{-4} \) | \(a_{444}= -0.03334311 \pm 9.7 \cdot 10^{-5} \) |
\(a_{445}= +0.52465434 \pm 1.5 \cdot 10^{-4} \) | \(a_{446}= -0.55383462 \pm 1.2 \cdot 10^{-4} \) | \(a_{447}= -0.18997300 \pm 9.8 \cdot 10^{-5} \) |
\(a_{448}= -1.34272934 \pm 1.0 \cdot 10^{-4} \) | \(a_{449}= -0.12821637 \pm 1.1 \cdot 10^{-4} \) | \(a_{450}= -0.40582671 \pm 1.0 \cdot 10^{-4} \) |
\(a_{451}= +1.35244472 \pm 1.1 \cdot 10^{-4} \) | \(a_{452}= -0.63758250 \pm 1.6 \cdot 10^{-4} \) | \(a_{453}= -0.10138855 \pm 1.2 \cdot 10^{-4} \) |
\(a_{454}= +0.55039342 \pm 1.1 \cdot 10^{-4} \) | \(a_{455}= -0.09766176 \pm 2.6 \cdot 10^{-4} \) | \(a_{456}= +0.72082184 \pm 8.2 \cdot 10^{-5} \) |
\(a_{457}= +0.36408801 \pm 1.2 \cdot 10^{-4} \) | \(a_{458}= -0.92741615 \pm 1.0 \cdot 10^{-4} \) | \(a_{459}= +0.10383250 \pm 1.0 \cdot 10^{-4} \) |
\(a_{460}= +0.05945519 \pm 1.2 \cdot 10^{-4} \) | \(a_{461}= +0.69908627 \pm 1.5 \cdot 10^{-4} \) | \(a_{462}= -0.89109932 \pm 1.0 \cdot 10^{-4} \) |
\(a_{463}= -0.69147242 \pm 1.6 \cdot 10^{-4} \) | \(a_{464}= -0.41844578 \pm 8.1 \cdot 10^{-5} \) | \(a_{465}= -0.29494673 \pm 1.6 \cdot 10^{-4} \) |
\(a_{466}= -0.10455480 \pm 1.9 \cdot 10^{-4} \) | \(a_{467}= -0.45889920 \pm 1.3 \cdot 10^{-4} \) | \(a_{468}= +0.05356791 \pm 2.8 \cdot 10^{-4} \) |
\(a_{469}= +1.53425184 \pm 1.1 \cdot 10^{-4} \) | \(a_{470}= -0.28985132 \pm 1.1 \cdot 10^{-4} \) | \(a_{471}= +0.74189526 \pm 1.3 \cdot 10^{-4} \) |
\(a_{472}= +2.00717637 \pm 1.1 \cdot 10^{-4} \) | \(a_{473}= -1.47437299 \pm 1.2 \cdot 10^{-4} \) | \(a_{474}= +0.01129520 \pm 1.6 \cdot 10^{-4} \) |
\(a_{475}= -0.90792783 \pm 7.6 \cdot 10^{-5} \) | \(a_{476}= -0.04462840 \pm 1.1 \cdot 10^{-4} \) | \(a_{477}= -0.50373130 \pm 9.5 \cdot 10^{-5} \) |
\(a_{478}= +0.96802003 \pm 1.5 \cdot 10^{-4} \) | \(a_{479}= +1.68134953 \pm 1.5 \cdot 10^{-4} \) | \(a_{480}= -0.12504216 \pm 1.8 \cdot 10^{-4} \) |
\(a_{481}= +0.03889444 \pm 1.6 \cdot 10^{-4} \) | \(a_{482}= +0.56876005 \pm 1.1 \cdot 10^{-4} \) | \(a_{483}= +0.51672957 \pm 7.6 \cdot 10^{-5} \) |
\(a_{484}= -0.24271570 \pm 1.0 \cdot 10^{-4} \) | \(a_{485}= +0.19096127 \pm 9.8 \cdot 10^{-5} \) | \(a_{486}= -0.75399977 \pm 1.6 \cdot 10^{-4} \) |
\(a_{487}= +1.33497246 \pm 1.6 \cdot 10^{-4} \) | \(a_{488}= +0.28209710 \pm 8.6 \cdot 10^{-5} \) | \(a_{489}= -0.46291642 \pm 1.4 \cdot 10^{-4} \) |
\(a_{490}= -0.13536315 \pm 1.4 \cdot 10^{-4} \) | \(a_{491}= -0.41397803 \pm 1.7 \cdot 10^{-4} \) | \(a_{492}= +0.24756205 \pm 1.5 \cdot 10^{-4} \) |
\(a_{493}= -0.07992580 \pm 1.0 \cdot 10^{-4} \) | \(a_{494}= -0.21946587 \pm 2.6 \cdot 10^{-4} \) | \(a_{495}= +0.19738087 \pm 8.8 \cdot 10^{-5} \) |
\(a_{496}= +0.82312153 \pm 1.1 \cdot 10^{-4} \) | \(a_{497}= +0.22353931 \pm 1.1 \cdot 10^{-4} \) | \(a_{498}= -0.73375798 \pm 9.6 \cdot 10^{-5} \) |
\(a_{499}= +0.13927709 \pm 1.3 \cdot 10^{-4} \) | \(a_{500}= +0.18871843 \pm 8.6 \cdot 10^{-5} \) | \(a_{501}= -0.39325373 \pm 1.5 \cdot 10^{-4} \) |
\(a_{502}= -0.88281529 \pm 1.4 \cdot 10^{-4} \) | \(a_{503}= +0.63956854 \pm 1.4 \cdot 10^{-4} \) | \(a_{504}= +0.75411026 \pm 8.0 \cdot 10^{-5} \) |
\(a_{505}= -0.25133467 \pm 1.0 \cdot 10^{-4} \) | \(a_{506}= -0.63280912 \pm 1.5 \cdot 10^{-4} \) | \(a_{507}= +0.05178265 \pm 1.4 \cdot 10^{-4} \) |
\(a_{508}= +0.17535532 \pm 1.1 \cdot 10^{-4} \) | \(a_{509}= -1.59228022 \pm 1.4 \cdot 10^{-4} \) | \(a_{510}= +0.01500168 \pm 1.9 \cdot 10^{-4} \) |
\(a_{511}= +0.19318471 \pm 1.6 \cdot 10^{-4} \) | \(a_{512}= +0.91710779 \pm 1.3 \cdot 10^{-4} \) | \(a_{513}= -1.02453127 \pm 1.1 \cdot 10^{-4} \) |
\(a_{514}= +1.16201494 \pm 1.4 \cdot 10^{-4} \) | \(a_{515}= -0.00008096 \pm 1.4 \cdot 10^{-4} \) | \(a_{516}= -0.26988075 \pm 1.6 \cdot 10^{-4} \) |
\(a_{517}= -1.68463843 \pm 1.2 \cdot 10^{-4} \) | \(a_{518}= +0.14291415 \pm 1.7 \cdot 10^{-4} \) | \(a_{519}= -0.51002078 \pm 1.5 \cdot 10^{-4} \) |
\(a_{520}= +0.08387661 \pm 2.4 \cdot 10^{-4} \) | \(a_{521}= -1.20930705 \pm 1.4 \cdot 10^{-4} \) | \(a_{522}= +0.35250735 \pm 7.2 \cdot 10^{-5} \) |
\(a_{523}= +0.30962209 \pm 1.7 \cdot 10^{-4} \) | \(a_{524}= -0.33070146 \pm 1.4 \cdot 10^{-4} \) | \(a_{525}= +0.78714803 \pm 6.6 \cdot 10^{-5} \) |
\(a_{526}= +0.58954465 \pm 1.4 \cdot 10^{-4} \) | \(a_{527}= +0.15722143 \pm 1.4 \cdot 10^{-4} \) | \(a_{528}= +0.45648194 \pm 1.0 \cdot 10^{-4} \) |
\(a_{529}= -0.63304743 \pm 1.5 \cdot 10^{-4} \) | \(a_{530}= -0.20586984 \pm 1.1 \cdot 10^{-4} \) | \(a_{531}= -1.00854593 \pm 1.2 \cdot 10^{-4} \) |
\(a_{532}= +0.44035526 \pm 8.3 \cdot 10^{-5} \) | \(a_{533}= -0.28877892 \pm 1.2 \cdot 10^{-4} \) | \(a_{534}= -1.02216452 \pm 2.2 \cdot 10^{-4} \) |
\(a_{535}= -0.29155292 \pm 1.4 \cdot 10^{-4} \) | \(a_{536}= -1.31768919 \pm 7.1 \cdot 10^{-5} \) | \(a_{537}= -0.31094729 \pm 1.1 \cdot 10^{-4} \) |
\(a_{538}= +0.14750447 \pm 1.7 \cdot 10^{-4} \) | \(a_{539}= -0.78674115 \pm 1.0 \cdot 10^{-4} \) | \(a_{540}= +0.10220137 \pm 1.1 \cdot 10^{-4} \) |
\(a_{541}= +1.11814844 \pm 8.6 \cdot 10^{-5} \) | \(a_{542}= +0.51578453 \pm 1.5 \cdot 10^{-4} \) | \(a_{543}= +0.81444444 \pm 1.0 \cdot 10^{-4} \) |
\(a_{544}= +0.06665376 \pm 1.5 \cdot 10^{-4} \) | \(a_{545}= +0.44048089 \pm 9.2 \cdot 10^{-5} \) | \(a_{546}= +0.19027077 \pm 4.3 \cdot 10^{-4} \) |
\(a_{547}= +1.90150501 \pm 1.0 \cdot 10^{-4} \) | \(a_{548}= +0.37851837 \pm 1.2 \cdot 10^{-4} \) | \(a_{549}= -0.14174533 \pm 1.0 \cdot 10^{-4} \) |
\(a_{550}= -0.96397513 \pm 1.2 \cdot 10^{-4} \) | \(a_{551}= +0.78864014 \pm 6.8 \cdot 10^{-5} \) | \(a_{552}= -0.44379218 \pm 1.1 \cdot 10^{-4} \) |
\(a_{553}= +0.02643696 \pm 9.4 \cdot 10^{-5} \) | \(a_{554}= +1.46873609 \pm 1.7 \cdot 10^{-4} \) | \(a_{555}= +0.02623326 \pm 8.7 \cdot 10^{-5} \) |
\(a_{556}= +0.26503275 \pm 1.3 \cdot 10^{-4} \) | \(a_{557}= +0.61700542 \pm 1.1 \cdot 10^{-4} \) | \(a_{558}= -0.69341454 \pm 1.5 \cdot 10^{-4} \) |
\(a_{559}= +0.31481349 \pm 1.3 \cdot 10^{-4} \) | \(a_{560}= +0.18382721 \pm 8.4 \cdot 10^{-5} \) | \(a_{561}= +0.08719094 \pm 1.0 \cdot 10^{-4} \) |
\(a_{562}= -0.31843289 \pm 1.9 \cdot 10^{-4} \) | \(a_{563}= -0.77499583 \pm 1.5 \cdot 10^{-4} \) | \(a_{564}= -0.30836938 \pm 1.2 \cdot 10^{-4} \) |
\(a_{565}= +0.50162905 \pm 1.6 \cdot 10^{-4} \) | \(a_{566}= +0.72437396 \pm 1.0 \cdot 10^{-4} \) | \(a_{567}= +0.19531239 \pm 1.0 \cdot 10^{-4} \) |
\(a_{568}= -0.19198630 \pm 1.2 \cdot 10^{-4} \) | \(a_{569}= -0.16677244 \pm 1.2 \cdot 10^{-4} \) | \(a_{570}= -0.14802391 \pm 1.3 \cdot 10^{-4} \) |
\(a_{571}= +0.98484214 \pm 1.4 \cdot 10^{-4} \) | \(a_{572}= +0.12724184 \pm 2.6 \cdot 10^{-4} \) | \(a_{573}= +1.07476459 \pm 1.4 \cdot 10^{-4} \) |
\(a_{574}= -1.06109250 \pm 6.3 \cdot 10^{-5} \) | \(a_{575}= +0.55898871 \pm 8.3 \cdot 10^{-5} \) | \(a_{576}= -0.57944865 \pm 1.3 \cdot 10^{-4} \) |
\(a_{577}= +1.31560879 \pm 1.3 \cdot 10^{-4} \) | \(a_{578}= +0.79624285 \pm 1.0 \cdot 10^{-4} \) | \(a_{579}= +0.41241629 \pm 1.4 \cdot 10^{-4} \) |
\(a_{580}= -0.07867023 \pm 1.2 \cdot 10^{-4} \) | \(a_{581}= -1.71739601 \pm 7.2 \cdot 10^{-5} \) | \(a_{582}= -0.37204274 \pm 1.1 \cdot 10^{-4} \) |
\(a_{583}= -1.19653152 \pm 8.6 \cdot 10^{-5} \) | \(a_{584}= -0.16591631 \pm 1.2 \cdot 10^{-4} \) | \(a_{585}= -0.04214548 \pm 2.7 \cdot 10^{-4} \) |
\(a_{586}= -0.12886277 \pm 1.0 \cdot 10^{-4} \) | \(a_{587}= -1.94083363 \pm 1.4 \cdot 10^{-4} \) | \(a_{588}= -0.14401125 \pm 1.3 \cdot 10^{-4} \) |
\(a_{589}= -1.55132806 \pm 1.0 \cdot 10^{-4} \) | \(a_{590}= -0.41218242 \pm 1.2 \cdot 10^{-4} \) | \(a_{591}= -0.08115262 \pm 1.4 \cdot 10^{-4} \) |
\(a_{592}= -0.07321039 \pm 1.0 \cdot 10^{-4} \) | \(a_{593}= +1.30428806 \pm 1.4 \cdot 10^{-4} \) | \(a_{594}= -1.08777662 \pm 1.2 \cdot 10^{-4} \) |
\(a_{595}= +0.03511216 \pm 1.1 \cdot 10^{-4} \) | \(a_{596}= +0.09967436 \pm 1.3 \cdot 10^{-4} \) | \(a_{597}= -0.51610494 \pm 1.7 \cdot 10^{-4} \) |
\(a_{598}= +0.13511971 \pm 2.6 \cdot 10^{-4} \) | \(a_{599}= -0.63520412 \pm 1.4 \cdot 10^{-4} \) | \(a_{600}= -0.67604055 \pm 7.5 \cdot 10^{-5} \) |
\(a_{601}= +0.74581283 \pm 1.4 \cdot 10^{-4} \) | \(a_{602}= +1.15675422 \pm 1.3 \cdot 10^{-4} \) | \(a_{603}= +0.66209930 \pm 1.3 \cdot 10^{-4} \) |
\(a_{604}= +0.05319618 \pm 9.8 \cdot 10^{-5} \) | \(a_{605}= +0.19096077 \pm 7.6 \cdot 10^{-5} \) | \(a_{606}= +0.48966598 \pm 1.4 \cdot 10^{-4} \) |
\(a_{607}= +1.57031014 \pm 9.9 \cdot 10^{-5} \) | \(a_{608}= -0.65768287 \pm 9.5 \cdot 10^{-5} \) | \(a_{609}= -0.68372894 \pm 1.2 \cdot 10^{-4} \) |
\(a_{610}= -0.05792987 \pm 6.3 \cdot 10^{-5} \) | \(a_{611}= +0.35971013 \pm 1.3 \cdot 10^{-4} \) | \(a_{612}= -0.01925918 \pm 1.2 \cdot 10^{-4} \) |
\(a_{613}= -0.37269396 \pm 1.4 \cdot 10^{-4} \) | \(a_{614}= -1.02616425 \pm 8.7 \cdot 10^{-5} \) | \(a_{615}= -0.19477372 \pm 1.5 \cdot 10^{-4} \) |
\(a_{616}= +1.79126589 \pm 8.8 \cdot 10^{-5} \) | \(a_{617}= +1.25530092 \pm 1.6 \cdot 10^{-4} \) | \(a_{618}= +0.00015772 \pm 2.1 \cdot 10^{-4} \) |
\(a_{619}= -1.29011084 \pm 1.3 \cdot 10^{-4} \) | \(a_{620}= +0.15475161 \pm 1.3 \cdot 10^{-4} \) | \(a_{621}= +0.63077856 \pm 1.2 \cdot 10^{-4} \) |
\(a_{622}= +1.19458722 \pm 1.5 \cdot 10^{-4} \) | \(a_{623}= -2.39242546 \pm 1.3 \cdot 10^{-4} \) | \(a_{624}= -0.09746969 \pm 2.6 \cdot 10^{-4} \) |
\(a_{625}= +0.77430229 \pm 1.3 \cdot 10^{-4} \) | \(a_{626}= -1.27933709 \pm 1.2 \cdot 10^{-4} \) | \(a_{627}= -0.86032647 \pm 7.8 \cdot 10^{-5} \) |
\(a_{628}= -0.38925498 \pm 1.3 \cdot 10^{-4} \) | \(a_{629}= -0.01398365 \pm 1.1 \cdot 10^{-4} \) | \(a_{630}= -0.15485983 \pm 8.2 \cdot 10^{-5} \) |
\(a_{631}= +1.53184697 \pm 1.4 \cdot 10^{-4} \) | \(a_{632}= -0.02270533 \pm 1.1 \cdot 10^{-4} \) | \(a_{633}= +0.25877452 \pm 1.5 \cdot 10^{-4} \) |
\(a_{634}= +0.33207962 \pm 1.4 \cdot 10^{-4} \) | \(a_{635}= -0.13796383 \pm 1.1 \cdot 10^{-4} \) | \(a_{636}= -0.21902248 \pm 1.2 \cdot 10^{-4} \) |
\(a_{637}= +0.16798783 \pm 1.2 \cdot 10^{-4} \) | \(a_{638}= +0.83732369 \pm 9.5 \cdot 10^{-5} \) | \(a_{639}= +0.09646736 \pm 1.5 \cdot 10^{-4} \) |
\(a_{640}= -0.05106475 \pm 1.1 \cdot 10^{-4} \) | \(a_{641}= +0.61494586 \pm 1.2 \cdot 10^{-4} \) | \(a_{642}= +0.56802170 \pm 1.9 \cdot 10^{-4} \) |
\(a_{643}= +0.02265742 \pm 1.5 \cdot 10^{-4} \) | \(a_{644}= -0.27111584 \pm 1.3 \cdot 10^{-4} \) | \(a_{645}= +0.21233335 \pm 1.6 \cdot 10^{-4} \) |
\(a_{646}= +0.07890418 \pm 8.8 \cdot 10^{-5} \) | \(a_{647}= +0.17597189 \pm 1.0 \cdot 10^{-4} \) | \(a_{648}= -0.16774367 \pm 9.8 \cdot 10^{-5} \) |
\(a_{649}= -2.39563630 \pm 1.0 \cdot 10^{-4} \) | \(a_{650}= +0.20583148 \pm 2.5 \cdot 10^{-4} \) | \(a_{651}= +1.34495804 \pm 1.3 \cdot 10^{-4} \) |
\(a_{652}= +0.24288135 \pm 1.2 \cdot 10^{-4} \) | \(a_{653}= -0.53781175 \pm 1.3 \cdot 10^{-4} \) | \(a_{654}= -0.85817253 \pm 1.3 \cdot 10^{-4} \) |
\(a_{655}= +0.26018509 \pm 1.2 \cdot 10^{-4} \) | \(a_{656}= +0.54356407 \pm 1.0 \cdot 10^{-4} \) | \(a_{657}= +0.08336797 \pm 1.4 \cdot 10^{-4} \) |
\(a_{658}= +1.32172294 \pm 1.0 \cdot 10^{-4} \) | \(a_{659}= -0.20323680 \pm 1.0 \cdot 10^{-4} \) | \(a_{660}= +0.08582124 \pm 9.9 \cdot 10^{-5} \) |
\(a_{661}= -0.47772056 \pm 1.4 \cdot 10^{-4} \) | \(a_{662}= -1.29865341 \pm 1.8 \cdot 10^{-4} \) | \(a_{663}= -0.01861733 \pm 2.8 \cdot 10^{-4} \) |
\(a_{664}= +1.47498220 \pm 6.8 \cdot 10^{-5} \) | \(a_{665}= -0.34645711 \pm 7.1 \cdot 10^{-5} \) | \(a_{666}= +0.06167394 \pm 1.2 \cdot 10^{-4} \) |
\(a_{667}= -0.48554623 \pm 8.1 \cdot 10^{-5} \) | \(a_{668}= +0.20633098 \pm 1.4 \cdot 10^{-4} \) | \(a_{669}= +0.46357752 \pm 1.4 \cdot 10^{-4} \) |
\(a_{670}= +0.27059322 \pm 1.9 \cdot 10^{-4} \) | \(a_{671}= -0.33669291 \pm 9.3 \cdot 10^{-5} \) | \(a_{672}= +0.57019265 \pm 1.1 \cdot 10^{-4} \) |
\(a_{673}= +0.03260840 \pm 1.6 \cdot 10^{-4} \) | \(a_{674}= +1.12619636 \pm 1.4 \cdot 10^{-4} \) | \(a_{675}= +0.96088193 \pm 8.7 \cdot 10^{-5} \) |
\(a_{676}= -0.02716914 \pm 1.3 \cdot 10^{-4} \) | \(a_{677}= +0.99230756 \pm 1.5 \cdot 10^{-4} \) | \(a_{678}= -0.97730521 \pm 2.2 \cdot 10^{-4} \) |
\(a_{679}= -0.87078401 \pm 1.6 \cdot 10^{-4} \) | \(a_{680}= -0.03015601 \pm 9.1 \cdot 10^{-5} \) | \(a_{681}= -0.46069712 \pm 1.2 \cdot 10^{-4} \) |
\(a_{682}= -1.64709310 \pm 8.4 \cdot 10^{-5} \) | \(a_{683}= -0.46252369 \pm 1.2 \cdot 10^{-4} \) | \(a_{684}= +0.19003328 \pm 1.0 \cdot 10^{-4} \) |
\(a_{685}= -0.29780587 \pm 1.1 \cdot 10^{-4} \) | \(a_{686}= -0.40184193 \pm 8.0 \cdot 10^{-5} \) | \(a_{687}= +0.77627736 \pm 1.5 \cdot 10^{-4} \) |
\(a_{688}= -0.59256853 \pm 1.2 \cdot 10^{-4} \) | \(a_{689}= +0.25548776 \pm 1.0 \cdot 10^{-4} \) | \(a_{690}= +0.09113466 \pm 1.8 \cdot 10^{-4} \) |
\(a_{691}= -1.18965024 \pm 1.5 \cdot 10^{-4} \) | \(a_{692}= +0.26759590 \pm 1.5 \cdot 10^{-4} \) | \(a_{693}= -0.90005738 \pm 8.7 \cdot 10^{-5} \) |
\(a_{694}= -0.25143773 \pm 1.5 \cdot 10^{-4} \) | \(a_{695}= -0.20851910 \pm 1.1 \cdot 10^{-4} \) | \(a_{696}= +0.58721926 \pm 9.1 \cdot 10^{-5} \) |
\(a_{697}= +0.10382418 \pm 1.1 \cdot 10^{-4} \) | \(a_{698}= -0.29561028 \pm 1.1 \cdot 10^{-4} \) | \(a_{699}= +0.08751575 \pm 1.7 \cdot 10^{-4} \) |
\(a_{700}= -0.41299804 \pm 1.0 \cdot 10^{-4} \) | \(a_{701}= -1.57068714 \pm 1.2 \cdot 10^{-4} \) | \(a_{702}= +0.23226602 \pm 2.7 \cdot 10^{-4} \) |
\(a_{703}= +0.13797881 \pm 1.4 \cdot 10^{-4} \) | \(a_{704}= -1.37638572 \pm 1.1 \cdot 10^{-4} \) | \(a_{705}= +0.24261494 \pm 1.1 \cdot 10^{-4} \) |
\(a_{706}= -0.91573516 \pm 1.5 \cdot 10^{-4} \) | \(a_{707}= +1.14608690 \pm 7.5 \cdot 10^{-5} \) | \(a_{708}= -0.43851599 \pm 1.1 \cdot 10^{-4} \) |
\(a_{709}= +1.51587812 \pm 1.6 \cdot 10^{-4} \) | \(a_{710}= +0.03942522 \pm 1.5 \cdot 10^{-4} \) | \(a_{711}= +0.01140875 \pm 1.4 \cdot 10^{-4} \) |
\(a_{712}= +2.05472992 \pm 1.2 \cdot 10^{-4} \) | \(a_{713}= +0.95511431 \pm 8.2 \cdot 10^{-5} \) | \(a_{714}= -0.06840772 \pm 9.2 \cdot 10^{-5} \) |
\(a_{715}= -0.10010971 \pm 2.5 \cdot 10^{-4} \) | \(a_{716}= +0.16314672 \pm 9.8 \cdot 10^{-5} \) | \(a_{717}= -0.81026412 \pm 1.3 \cdot 10^{-4} \) |
\(a_{718}= +1.06892269 \pm 1.9 \cdot 10^{-4} \) | \(a_{719}= -0.92626687 \pm 1.3 \cdot 10^{-4} \) | \(a_{720}= +0.07932978 \pm 1.3 \cdot 10^{-4} \) |
\(a_{721}= +0.00036916 \pm 1.0 \cdot 10^{-4} \) | \(a_{722}= +0.02567980 \pm 1.1 \cdot 10^{-4} \) | \(a_{723}= -0.47607059 \pm 8.8 \cdot 10^{-5} \) |
\(a_{724}= -0.42731983 \pm 1.2 \cdot 10^{-4} \) | \(a_{725}= -0.73964561 \pm 6.6 \cdot 10^{-5} \) | \(a_{726}= -0.37204176 \pm 1.2 \cdot 10^{-4} \) |
\(a_{727}= -0.18307788 \pm 1.3 \cdot 10^{-4} \) | \(a_{728}= -0.38247761 \pm 2.5 \cdot 10^{-4} \) | \(a_{729}= +0.78525647 \pm 1.1 \cdot 10^{-4} \) |
\(a_{730}= +0.03407164 \pm 1.0 \cdot 10^{-4} \) | \(a_{731}= -0.11318434 \pm 1.3 \cdot 10^{-4} \) | \(a_{732}= -0.06163090 \pm 1.0 \cdot 10^{-4} \) |
\(a_{733}= +1.37848698 \pm 1.5 \cdot 10^{-4} \) | \(a_{734}= +0.81939085 \pm 2.0 \cdot 10^{-4} \) | \(a_{735}= +0.11330334 \pm 1.4 \cdot 10^{-4} \) |
\(a_{736}= +0.40491907 \pm 1.0 \cdot 10^{-4} \) | \(a_{737}= +1.57270885 \pm 1.1 \cdot 10^{-4} \) | \(a_{738}= -0.45790957 \pm 1.4 \cdot 10^{-4} \) |
\(a_{739}= +1.64292727 \pm 1.8 \cdot 10^{-4} \) | \(a_{740}= -0.01376398 \pm 1.3 \cdot 10^{-4} \) | \(a_{741}= +0.18370004 \pm 2.5 \cdot 10^{-4} \) |
\(a_{742}= +0.93876711 \pm 1.2 \cdot 10^{-4} \) | \(a_{743}= -0.49456773 \pm 1.4 \cdot 10^{-4} \) | \(a_{744}= -1.15511458 \pm 1.0 \cdot 10^{-4} \) |
\(a_{745}= -0.07842052 \pm 1.1 \cdot 10^{-4} \) | \(a_{746}= +1.28026234 \pm 1.0 \cdot 10^{-4} \) | \(a_{747}= -0.74113432 \pm 7.5 \cdot 10^{-5} \) |
\(a_{748}= -0.04574704 \pm 9.4 \cdot 10^{-5} \) | \(a_{749}= +1.32948225 \pm 1.3 \cdot 10^{-4} \) | \(a_{750}= +0.28927316 \pm 1.0 \cdot 10^{-4} \) |
\(a_{751}= -0.22785797 \pm 1.2 \cdot 10^{-4} \) | \(a_{752}= -0.67707678 \pm 1.2 \cdot 10^{-4} \) | \(a_{753}= +0.73894499 \pm 1.5 \cdot 10^{-4} \) |
\(a_{754}= -0.17878840 \pm 2.5 \cdot 10^{-4} \) | \(a_{755}= -0.04185302 \pm 1.0 \cdot 10^{-4} \) | \(a_{756}= -0.46603859 \pm 1.0 \cdot 10^{-4} \) |
\(a_{757}= -1.55425101 \pm 1.4 \cdot 10^{-4} \) | \(a_{758}= -0.69685272 \pm 1.7 \cdot 10^{-4} \) | \(a_{759}= +0.52968173 \pm 1.0 \cdot 10^{-4} \) |
\(a_{760}= +0.29755401 \pm 9.6 \cdot 10^{-5} \) | \(a_{761}= +0.24998453 \pm 1.4 \cdot 10^{-4} \) | \(a_{762}= +0.26878979 \pm 1.6 \cdot 10^{-4} \) |
\(a_{763}= -2.00859429 \pm 1.1 \cdot 10^{-4} \) | \(a_{764}= -0.56390368 \pm 1.3 \cdot 10^{-4} \) | \(a_{765}= +0.01515249 \pm 1.3 \cdot 10^{-4} \) |
\(a_{766}= -0.54917488 \pm 2.0 \cdot 10^{-4} \) | \(a_{767}= +0.51152498 \pm 1.2 \cdot 10^{-4} \) | \(a_{768}= -0.61383419 \pm 1.0 \cdot 10^{-4} \) |
\(a_{769}= -0.48079144 \pm 1.4 \cdot 10^{-4} \) | \(a_{770}= -0.36784426 \pm 8.6 \cdot 10^{-5} \) | \(a_{771}= -0.97264414 \pm 1.4 \cdot 10^{-4} \) |
\(a_{772}= -0.21638512 \pm 1.4 \cdot 10^{-4} \) | \(a_{773}= +1.37820645 \pm 1.4 \cdot 10^{-4} \) | \(a_{774}= +0.49919194 \pm 1.5 \cdot 10^{-4} \) |
\(a_{775}= +1.45495129 \pm 8.2 \cdot 10^{-5} \) | \(a_{776}= +0.74787114 \pm 1.0 \cdot 10^{-4} \) | \(a_{777}= -0.11962377 \pm 9.0 \cdot 10^{-5} \) |
\(a_{778}= -1.15724100 \pm 1.0 \cdot 10^{-4} \) | \(a_{779}= -1.02444919 \pm 8.6 \cdot 10^{-5} \) | \(a_{780}= -0.01832486 \pm 4.1 \cdot 10^{-4} \) |
\(a_{781}= +0.22914247 \pm 1.0 \cdot 10^{-4} \) | \(a_{782}= -0.04857935 \pm 1.0 \cdot 10^{-4} \) | \(a_{783}= -0.83463689 \pm 7.5 \cdot 10^{-5} \) |
\(a_{784}= -0.31620089 \pm 1.2 \cdot 10^{-4} \) | \(a_{785}= +0.30625308 \pm 1.3 \cdot 10^{-4} \) | \(a_{786}= -0.50690892 \pm 1.7 \cdot 10^{-4} \) |
\(a_{787}= +0.52679135 \pm 1.6 \cdot 10^{-4} \) | \(a_{788}= +0.04257887 \pm 1.3 \cdot 10^{-4} \) | \(a_{789}= -0.49346797 \pm 1.3 \cdot 10^{-4} \) |
\(a_{790}= +0.00466264 \pm 1.2 \cdot 10^{-4} \) | \(a_{791}= -2.28743007 \pm 1.4 \cdot 10^{-4} \) | \(a_{792}= +0.77301252 \pm 9.9 \cdot 10^{-5} \) |
\(a_{793}= +0.07189189 \pm 1.2 \cdot 10^{-4} \) | \(a_{794}= +0.41534695 \pm 1.2 \cdot 10^{-4} \) | \(a_{795}= +0.17231972 \pm 1.1 \cdot 10^{-4} \) |
\(a_{796}= +0.27078811 \pm 1.5 \cdot 10^{-4} \) | \(a_{797}= +0.63204683 \pm 1.1 \cdot 10^{-4} \) | \(a_{798}= +0.67498949 \pm 5.5 \cdot 10^{-5} \) |
\(a_{799}= -0.12932596 \pm 1.0 \cdot 10^{-4} \) | \(a_{800}= +0.61682410 \pm 1.0 \cdot 10^{-4} \) | \(a_{801}= -1.03244016 \pm 1.7 \cdot 10^{-4} \) |
\(a_{802}= -0.91384529 \pm 1.2 \cdot 10^{-4} \) | \(a_{803}= +0.19802701 \pm 1.4 \cdot 10^{-4} \) | \(a_{804}= +0.28788092 \pm 1.8 \cdot 10^{-4} \) |
\(a_{805}= +0.21330507 \pm 8.2 \cdot 10^{-5} \) | \(a_{806}= +0.35169331 \pm 2.9 \cdot 10^{-4} \) | \(a_{807}= -0.12346602 \pm 1.8 \cdot 10^{-4} \) |
\(a_{808}= -0.98431449 \pm 1.1 \cdot 10^{-4} \) | \(a_{809}= +1.18225924 \pm 1.4 \cdot 10^{-4} \) | \(a_{810}= +0.03444689 \pm 1.2 \cdot 10^{-4} \) |
\(a_{811}= -0.78172639 \pm 2.1 \cdot 10^{-4} \) | \(a_{812}= +0.35873648 \pm 1.2 \cdot 10^{-4} \) | \(a_{813}= -0.43172836 \pm 1.5 \cdot 10^{-4} \) |
\(a_{814}= +0.14649639 \pm 1.4 \cdot 10^{-4} \) | \(a_{815}= -0.19109110 \pm 1.4 \cdot 10^{-4} \) | \(a_{816}= +0.03504311 \pm 1.2 \cdot 10^{-4} \) |
\(a_{817}= +1.11680736 \pm 8.1 \cdot 10^{-5} \) | \(a_{818}= -0.82468961 \pm 1.4 \cdot 10^{-4} \) | \(a_{819}= +0.19218353 \pm 2.7 \cdot 10^{-4} \) |
\(a_{820}= +0.10219319 \pm 1.1 \cdot 10^{-4} \) | \(a_{821}= -0.61203858 \pm 1.4 \cdot 10^{-4} \) | \(a_{822}= +0.58020409 \pm 1.2 \cdot 10^{-4} \) |
\(a_{823}= +0.33309331 \pm 1.4 \cdot 10^{-4} \) | \(a_{824}= -0.00031705 \pm 8.7 \cdot 10^{-5} \) | \(a_{825}= +0.80687841 \pm 7.6 \cdot 10^{-5} \) |
\(a_{826}= +1.87955314 \pm 1.5 \cdot 10^{-4} \) | \(a_{827}= +0.73371779 \pm 1.5 \cdot 10^{-4} \) | \(a_{828}= -0.11699879 \pm 1.0 \cdot 10^{-4} \) |
\(a_{829}= +1.34128985 \pm 1.4 \cdot 10^{-4} \) | \(a_{830}= -0.30289402 \pm 8.3 \cdot 10^{-5} \) | \(a_{831}= -1.22937968 \pm 1.2 \cdot 10^{-4} \) |
\(a_{832}= +0.29389089 \pm 1.2 \cdot 10^{-4} \) | \(a_{833}= -0.06039637 \pm 1.1 \cdot 10^{-4} \) | \(a_{834}= +0.40625000 \pm 1.2 \cdot 10^{-4} \) |
\(a_{835}= -0.16233446 \pm 1.3 \cdot 10^{-4} \) | \(a_{836}= +0.45139305 \pm 8.5 \cdot 10^{-5} \) | \(a_{837}= +1.64180791 \pm 1.0 \cdot 10^{-4} \) |
\(a_{838}= +0.42120550 \pm 1.6 \cdot 10^{-4} \) | \(a_{839}= -1.33333720 \pm 1.7 \cdot 10^{-4} \) | \(a_{840}= -0.25797100 \pm 9.3 \cdot 10^{-5} \) |
\(a_{841}= -0.35753240 \pm 1.2 \cdot 10^{-4} \) | \(a_{842}= -0.58297884 \pm 1.6 \cdot 10^{-4} \) | \(a_{843}= +0.26653864 \pm 2.1 \cdot 10^{-4} \) |
\(a_{844}= -0.13577290 \pm 1.4 \cdot 10^{-4} \) | \(a_{845}= +0.02137579 \pm 1.3 \cdot 10^{-4} \) | \(a_{846}= +0.57038343 \pm 1.2 \cdot 10^{-4} \) |
\(a_{847}= -0.87078172 \pm 9.0 \cdot 10^{-5} \) | \(a_{848}= -0.48090064 \pm 1.1 \cdot 10^{-4} \) | \(a_{849}= -0.60632446 \pm 9.1 \cdot 10^{-5} \) |
\(a_{850}= -0.07400223 \pm 1.1 \cdot 10^{-4} \) | \(a_{851}= -0.08495014 \pm 8.7 \cdot 10^{-5} \) | \(a_{852}= +0.04194403 \pm 1.4 \cdot 10^{-4} \) |
\(a_{853}= +1.50679036 \pm 1.8 \cdot 10^{-4} \) | \(a_{854}= +0.26416039 \pm 1.5 \cdot 10^{-4} \) | \(a_{855}= -0.14951197 \pm 1.3 \cdot 10^{-4} \) |
\(a_{856}= -1.14182323 \pm 1.2 \cdot 10^{-4} \) | \(a_{857}= +0.16746918 \pm 1.3 \cdot 10^{-4} \) | \(a_{858}= +0.19504003 \pm 4.2 \cdot 10^{-4} \) |
\(a_{859}= -1.75413738 \pm 1.9 \cdot 10^{-4} \) | \(a_{860}= -0.11140631 \pm 1.3 \cdot 10^{-4} \) | \(a_{861}= +0.88816879 \pm 5.1 \cdot 10^{-5} \) |
\(a_{862}= -1.46563084 \pm 1.3 \cdot 10^{-4} \) | \(a_{863}= +0.44390888 \pm 1.7 \cdot 10^{-4} \) | \(a_{864}= +0.69604164 \pm 1.1 \cdot 10^{-4} \) |
\(a_{865}= -0.21053570 \pm 1.4 \cdot 10^{-4} \) | \(a_{866}= -0.35481670 \pm 1.5 \cdot 10^{-4} \) | \(a_{867}= -0.66648106 \pm 9.0 \cdot 10^{-5} \) |
\(a_{868}= -0.70566782 \pm 1.0 \cdot 10^{-4} \) | \(a_{869}= +0.02709962 \pm 1.3 \cdot 10^{-4} \) | \(a_{870}= -0.12058803 \pm 7.5 \cdot 10^{-5} \) |
\(a_{871}= -0.33581052 \pm 1.4 \cdot 10^{-4} \) | \(a_{872}= +1.72507728 \pm 7.0 \cdot 10^{-5} \) | \(a_{873}= -0.37578282 \pm 1.1 \cdot 10^{-4} \) |
\(a_{874}= +0.47933995 \pm 1.1 \cdot 10^{-4} \) | \(a_{875}= +0.67705782 \pm 8.7 \cdot 10^{-5} \) | \(a_{876}= +0.03624841 \pm 1.6 \cdot 10^{-4} \) |
\(a_{877}= +0.40561500 \pm 1.3 \cdot 10^{-4} \) | \(a_{878}= -1.25655622 \pm 1.1 \cdot 10^{-4} \) | \(a_{879}= +0.10786231 \pm 1.4 \cdot 10^{-4} \) |
\(a_{880}= +0.18843496 \pm 7.4 \cdot 10^{-5} \) | \(a_{881}= -0.62879023 \pm 1.4 \cdot 10^{-4} \) | \(a_{882}= +0.26637414 \pm 1.5 \cdot 10^{-4} \) |
\(a_{883}= -1.67184225 \pm 9.7 \cdot 10^{-5} \) | \(a_{884}= +0.00976807 \pm 2.7 \cdot 10^{-4} \) | \(a_{885}= +0.34501003 \pm 1.2 \cdot 10^{-4} \) |
\(a_{886}= +1.27998966 \pm 1.6 \cdot 10^{-4} \) | \(a_{887}= -1.50106440 \pm 1.3 \cdot 10^{-4} \) | \(a_{888}= +0.10273864 \pm 8.7 \cdot 10^{-5} \) |
\(a_{889}= +0.62911550 \pm 1.3 \cdot 10^{-4} \) | \(a_{890}= -0.42194774 \pm 1.9 \cdot 10^{-4} \) | \(a_{891}= +0.20020802 \pm 8.3 \cdot 10^{-5} \) |
\(a_{892}= -0.24322821 \pm 1.2 \cdot 10^{-4} \) | \(a_{893}= +1.27607913 \pm 1.2 \cdot 10^{-4} \) | \(a_{894}= +0.15278379 \pm 1.0 \cdot 10^{-4} \) |
\(a_{895}= -0.12835850 \pm 1.0 \cdot 10^{-4} \) | \(a_{896}= +0.23285543 \pm 1.2 \cdot 10^{-4} \) | \(a_{897}= -0.11309957 \pm 2.5 \cdot 10^{-4} \) |
\(a_{898}= +0.10311667 \pm 1.3 \cdot 10^{-4} \) | \(a_{899}= -1.26379316 \pm 1.1 \cdot 10^{-4} \) | \(a_{900}= -0.17822740 \pm 8.8 \cdot 10^{-5} \) |
\(a_{901}= -0.09185507 \pm 1.1 \cdot 10^{-4} \) | \(a_{902}= -1.08768947 \pm 1.0 \cdot 10^{-4} \) | \(a_{903}= -0.96824075 \pm 8.1 \cdot 10^{-5} \) |
\(a_{904}= +1.96455484 \pm 1.3 \cdot 10^{-4} \) | \(a_{905}= +0.33620126 \pm 1.1 \cdot 10^{-4} \) | \(a_{906}= +0.08154068 \pm 1.2 \cdot 10^{-4} \) |
\(a_{907}= +1.22222709 \pm 9.8 \cdot 10^{-5} \) | \(a_{908}= +0.24171693 \pm 1.1 \cdot 10^{-4} \) | \(a_{909}= +0.49458851 \pm 1.3 \cdot 10^{-4} \) |
\(a_{910}= +0.07854344 \pm 4.1 \cdot 10^{-4} \) | \(a_{911}= +0.66909445 \pm 8.3 \cdot 10^{-5} \) | \(a_{912}= -0.34577573 \pm 1.0 \cdot 10^{-4} \) |
\(a_{913}= -1.76044365 \pm 7.0 \cdot 10^{-5} \) | \(a_{914}= -0.29281396 \pm 1.6 \cdot 10^{-4} \) | \(a_{915}= +0.04848918 \pm 1.1 \cdot 10^{-4} \) |
\(a_{916}= -0.40729445 \pm 1.3 \cdot 10^{-4} \) | \(a_{917}= -1.18644483 \pm 9.4 \cdot 10^{-5} \) | \(a_{918}= -0.08350620 \pm 1.2 \cdot 10^{-4} \) |
\(a_{919}= +1.91744173 \pm 1.1 \cdot 10^{-4} \) | \(a_{920}= -0.18319664 \pm 1.0 \cdot 10^{-4} \) | \(a_{921}= +0.85893271 \pm 1.0 \cdot 10^{-4} \) |
\(a_{922}= -0.56223280 \pm 1.9 \cdot 10^{-4} \) | \(a_{923}= -0.04892733 \pm 1.4 \cdot 10^{-4} \) | \(a_{924}= -0.39134515 \pm 1.0 \cdot 10^{-4} \) |
\(a_{925}= -0.12940683 \pm 1.1 \cdot 10^{-4} \) | \(a_{926}= +0.55610944 \pm 2.1 \cdot 10^{-4} \) | \(a_{927}= +0.00015931 \pm 1.4 \cdot 10^{-4} \) |
\(a_{928}= -0.53578294 \pm 9.1 \cdot 10^{-5} \) | \(a_{929}= -0.80348155 \pm 1.2 \cdot 10^{-4} \) | \(a_{930}= +0.23720781 \pm 1.8 \cdot 10^{-4} \) |
\(a_{931}= +0.59594032 \pm 8.5 \cdot 10^{-5} \) | \(a_{932}= -0.04591745 \pm 1.7 \cdot 10^{-4} \) | \(a_{933}= -0.99990820 \pm 1.9 \cdot 10^{-4} \) |
\(a_{934}= +0.36906487 \pm 1.6 \cdot 10^{-4} \) | \(a_{935}= +0.03599227 \pm 8.3 \cdot 10^{-5} \) | \(a_{936}= -0.16505645 \pm 2.5 \cdot 10^{-4} \) |
\(a_{937}= +1.16442706 \pm 1.6 \cdot 10^{-4} \) | \(a_{938}= -1.23390594 \pm 1.1 \cdot 10^{-4} \) | \(a_{939}= +1.07084658 \pm 1.3 \cdot 10^{-4} \) |
\(a_{940}= -0.12729435 \pm 1.1 \cdot 10^{-4} \) | \(a_{941}= +1.06460702 \pm 1.5 \cdot 10^{-4} \) | \(a_{942}= -0.59666148 \pm 1.8 \cdot 10^{-4} \) |
\(a_{943}= +0.63072803 \pm 7.6 \cdot 10^{-5} \) | \(a_{944}= -0.96283551 \pm 1.2 \cdot 10^{-4} \) | \(a_{945}= +0.36666392 \pm 7.2 \cdot 10^{-5} \) |
\(a_{946}= +1.18574901 \pm 1.3 \cdot 10^{-4} \) | \(a_{947}= +0.72728868 \pm 1.1 \cdot 10^{-4} \) | \(a_{948}= +0.00496053 \pm 1.3 \cdot 10^{-4} \) |
\(a_{949}= -0.04228345 \pm 1.5 \cdot 10^{-4} \) | \(a_{950}= +0.73019143 \pm 8.0 \cdot 10^{-5} \) | \(a_{951}= -0.27796140 \pm 1.1 \cdot 10^{-4} \) |
\(a_{952}= +0.13751151 \pm 9.7 \cdot 10^{-5} \) | \(a_{953}= -0.15576333 \pm 1.2 \cdot 10^{-4} \) | \(a_{954}= +0.40512061 \pm 1.2 \cdot 10^{-4} \) |
\(a_{955}= +0.44366096 \pm 1.2 \cdot 10^{-4} \) | \(a_{956}= +0.42512651 \pm 1.2 \cdot 10^{-4} \) | \(a_{957}= -0.70086705 \pm 7.6 \cdot 10^{-5} \) |
\(a_{958}= -1.35220771 \pm 1.3 \cdot 10^{-4} \) | \(a_{959}= +1.35799571 \pm 1.4 \cdot 10^{-4} \) | \(a_{960}= +0.19822161 \pm 1.6 \cdot 10^{-4} \) |
\(a_{961}= +1.48599798 \pm 1.0 \cdot 10^{-4} \) | \(a_{962}= -0.03128044 \pm 3.1 \cdot 10^{-4} \) | \(a_{963}= +0.57373193 \pm 1.5 \cdot 10^{-4} \) |
\(a_{964}= +0.24978303 \pm 1.1 \cdot 10^{-4} \) | \(a_{965}= +0.17024473 \pm 1.3 \cdot 10^{-4} \) | \(a_{966}= -0.41557433 \pm 1.0 \cdot 10^{-4} \) |
\(a_{967}= -1.17890986 \pm 1.3 \cdot 10^{-4} \) | \(a_{968}= +0.74786917 \pm 6.2 \cdot 10^{-5} \) | \(a_{969}= -0.06604536 \pm 9.1 \cdot 10^{-5} \) |
\(a_{970}= -0.15357860 \pm 8.9 \cdot 10^{-5} \) | \(a_{971}= -0.91886558 \pm 1.5 \cdot 10^{-4} \) | \(a_{972}= -0.33113498 \pm 1.4 \cdot 10^{-4} \) |
\(a_{973}= +0.95084776 \pm 1.4 \cdot 10^{-4} \) | \(a_{974}= -1.07363759 \pm 1.8 \cdot 10^{-4} \) | \(a_{975}= -0.17228761 \pm 2.4 \cdot 10^{-4} \) |
\(a_{976}= -0.13532100 \pm 1.1 \cdot 10^{-4} \) | \(a_{977}= +1.03082785 \pm 1.1 \cdot 10^{-4} \) | \(a_{978}= +0.37229567 \pm 1.0 \cdot 10^{-4} \) |
\(a_{979}= -2.45239315 \pm 1.3 \cdot 10^{-4} \) | \(a_{980}= -0.05944759 \pm 1.0 \cdot 10^{-4} \) | \(a_{981}= -0.86679959 \pm 1.1 \cdot 10^{-4} \) |
\(a_{982}= +0.33293748 \pm 1.9 \cdot 10^{-4} \) | \(a_{983}= -0.31950516 \pm 1.5 \cdot 10^{-4} \) | \(a_{984}= -0.76280203 \pm 5.9 \cdot 10^{-5} \) |
\(a_{985}= -0.03349966 \pm 1.3 \cdot 10^{-4} \) | \(a_{986}= +0.06427948 \pm 7.4 \cdot 10^{-5} \) | \(a_{987}= -1.10632491 \pm 6.5 \cdot 10^{-5} \) |
\(a_{988}= -0.09638309 \pm 2.4 \cdot 10^{-4} \) | \(a_{989}= -0.68759067 \pm 9.4 \cdot 10^{-5} \) | \(a_{990}= -0.15874149 \pm 1.0 \cdot 10^{-4} \) |
\(a_{991}= -0.93907465 \pm 1.2 \cdot 10^{-4} \) | \(a_{992}= +1.05393458 \pm 1.5 \cdot 10^{-4} \) | \(a_{993}= +1.08701496 \pm 1.4 \cdot 10^{-4} \) |
\(a_{994}= -0.17977915 \pm 1.1 \cdot 10^{-4} \) | \(a_{995}= -0.21304722 \pm 1.4 \cdot 10^{-4} \) | \(a_{996}= -0.32224536 \pm 8.8 \cdot 10^{-5} \) |
\(a_{997}= -0.17550944 \pm 1.8 \cdot 10^{-4} \) | \(a_{998}= -0.11201214 \pm 1.5 \cdot 10^{-4} \) | \(a_{999}= -0.14602631 \pm 1.1 \cdot 10^{-4} \) |
\(a_{1000}= -0.58148979 \pm 9.1 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000