Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(13.4158009597210121854598159867 \pm 2 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.88031464 \pm 2.6 \cdot 10^{-6} \) | \(a_{3}= -1.61741644 \pm 1.9 \cdot 10^{-6} \) |
\(a_{4}= +2.53558313 \pm 2.8 \cdot 10^{-6} \) | \(a_{5}= -0.24019175 \pm 2.1 \cdot 10^{-6} \) | \(a_{6}= -3.04125181 \pm 2.5 \cdot 10^{-6} \) |
\(a_{7}= -0.68390253 \pm 1.9 \cdot 10^{-6} \) | \(a_{8}= +2.88737944 \pm 2.5 \cdot 10^{-6} \) | \(a_{9}= +1.61603596 \pm 1.7 \cdot 10^{-6} \) |
\(a_{10}= -0.45163606 \pm 2.0 \cdot 10^{-6} \) | \(a_{11}= +1.18549539 \pm 1.4 \cdot 10^{-6} \) | \(a_{12}= -4.10109385 \pm 2.5 \cdot 10^{-6} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= -1.28595195 \pm 2.8 \cdot 10^{-6} \) | \(a_{15}= +0.38849009 \pm 1.6 \cdot 10^{-6} \) |
\(a_{16}= +2.89359869 \pm 1.8 \cdot 10^{-6} \) | \(a_{17}= -1.12199695 \pm 1.9 \cdot 10^{-6} \) | \(a_{18}= +3.03865606 \pm 2.0 \cdot 10^{-6} \) |
\(a_{19}= -1.83018630 \pm 2.1 \cdot 10^{-6} \) | \(a_{20}= -0.60902615 \pm 2.4 \cdot 10^{-6} \) | \(a_{21}= +1.10615521 \pm 1.6 \cdot 10^{-6} \) |
\(a_{22}= +2.22910433 \pm 1.4 \cdot 10^{-6} \) | \(a_{23}= -0.64541876 \pm 1.4 \cdot 10^{-6} \) | \(a_{24}= -4.67009499 \pm 2.3 \cdot 10^{-6} \) |
\(a_{25}= -0.94230792 \pm 2.4 \cdot 10^{-6} \) | \(a_{26}= +0.52150545 \pm 2.6 \cdot 10^{-6} \) | \(a_{27}= -0.99638669 \pm 2.1 \cdot 10^{-6} \) |
\(a_{28}= -1.73409173 \pm 3.0 \cdot 10^{-6} \) | \(a_{29}= +0.87752768 \pm 1.8 \cdot 10^{-6} \) | \(a_{30}= +0.73048360 \pm 1.3 \cdot 10^{-6} \) |
\(a_{31}= -0.60009031 \pm 1.4 \cdot 10^{-6} \) | \(a_{32}= +2.55349652 \pm 1.9 \cdot 10^{-6} \) | \(a_{33}= -1.91743974 \pm 1.7 \cdot 10^{-6} \) |
\(a_{34}= -2.10970728 \pm 2.4 \cdot 10^{-6} \) | \(a_{35}= +0.16426775 \pm 1.8 \cdot 10^{-6} \) | \(a_{36}= +4.09759351 \pm 1.7 \cdot 10^{-6} \) |
\(a_{37}= -0.64629534 \pm 1.7 \cdot 10^{-6} \) | \(a_{38}= -3.44132608 \pm 2.8 \cdot 10^{-6} \) | \(a_{39}= -0.44859061 \pm 2.0 \cdot 10^{-6} \) |
\(a_{40}= -0.69352472 \pm 2.3 \cdot 10^{-6} \) | \(a_{41}= -1.17413876 \pm 2.9 \cdot 10^{-6} \) | \(a_{42}= +2.07991982 \pm 2.3 \cdot 10^{-6} \) |
\(a_{43}= +0.27150214 \pm 1.6 \cdot 10^{-6} \) | \(a_{44}= +3.00592211 \pm 1.1 \cdot 10^{-6} \) | \(a_{45}= -0.38815850 \pm 1.5 \cdot 10^{-6} \) |
\(a_{46}= -1.21359034 \pm 1.7 \cdot 10^{-6} \) | \(a_{47}= +0.30525552 \pm 1.5 \cdot 10^{-6} \) | \(a_{48}= -4.68015410 \pm 1.6 \cdot 10^{-6} \) |
\(a_{49}= -0.53227732 \pm 1.5 \cdot 10^{-6} \) | \(a_{50}= -1.77183538 \pm 1.9 \cdot 10^{-6} \) | \(a_{51}= +1.81473631 \pm 2.1 \cdot 10^{-6} \) |
\(a_{52}= +0.70324423 \pm 2.8 \cdot 10^{-6} \) | \(a_{53}= -0.91096385 \pm 2.1 \cdot 10^{-6} \) | \(a_{54}= -1.87352047 \pm 2.2 \cdot 10^{-6} \) |
\(a_{55}= -0.28474621 \pm 1.4 \cdot 10^{-6} \) | \(a_{56}= -1.97468612 \pm 2.4 \cdot 10^{-6} \) | \(a_{57}= +2.96017341 \pm 1.1 \cdot 10^{-6} \) |
\(a_{58}= +1.65002814 \pm 3.0 \cdot 10^{-6} \) | \(a_{59}= -1.37046961 \pm 1.7 \cdot 10^{-6} \) | \(a_{60}= +0.98504891 \pm 1.5 \cdot 10^{-6} \) |
\(a_{61}= -1.04190386 \pm 1.9 \cdot 10^{-6} \) | \(a_{62}= -1.12835859 \pm 1.2 \cdot 10^{-6} \) | \(a_{63}= -1.10521109 \pm 1.4 \cdot 10^{-6} \) |
\(a_{64}= +1.90777820 \pm 2.5 \cdot 10^{-6} \) | \(a_{65}= -0.06661721 \pm 2.2 \cdot 10^{-6} \) | \(a_{66}= -3.60539001 \pm 1.8 \cdot 10^{-6} \) |
\(a_{67}= +0.81934954 \pm 1.6 \cdot 10^{-6} \) | \(a_{68}= -2.84491653 \pm 2.6 \cdot 10^{-6} \) | \(a_{69}= +1.04391091 \pm 1.3 \cdot 10^{-6} \) |
\(a_{70}= +0.30887505 \pm 2.1 \cdot 10^{-6} \) | \(a_{71}= -0.36229294 \pm 1.6 \cdot 10^{-6} \) | \(a_{72}= +4.66610899 \pm 1.9 \cdot 10^{-6} \) |
\(a_{73}= +1.16173407 \pm 1.6 \cdot 10^{-6} \) | \(a_{74}= -1.21523859 \pm 2.1 \cdot 10^{-6} \) | \(a_{75}= +1.52410433 \pm 2.1 \cdot 10^{-6} \) |
\(a_{76}= -4.64058950 \pm 2.8 \cdot 10^{-6} \) | \(a_{77}= -0.81076330 \pm 1.3 \cdot 10^{-6} \) | \(a_{78}= -0.84349149 \pm 4.6 \cdot 10^{-6} \) |
\(a_{79}= +1.37843500 \pm 1.5 \cdot 10^{-6} \) | \(a_{80}= -0.69501853 \pm 2.0 \cdot 10^{-6} \) | \(a_{81}= -0.00446374 \pm 2.1 \cdot 10^{-6} \) |
\(a_{82}= -2.20775030 \pm 3.8 \cdot 10^{-6} \) | \(a_{83}= +0.03639267 \pm 2.3 \cdot 10^{-6} \) | \(a_{84}= +2.80474848 \pm 2.5 \cdot 10^{-6} \) |
\(a_{85}= +0.26949441 \pm 1.4 \cdot 10^{-6} \) | \(a_{86}= +0.51050945 \pm 1.5 \cdot 10^{-6} \) | \(a_{87}= -1.41932770 \pm 1.9 \cdot 10^{-6} \) |
\(a_{88}= +3.42297501 \pm 1.4 \cdot 10^{-6} \) | \(a_{89}= +0.34659463 \pm 1.8 \cdot 10^{-6} \) | \(a_{90}= -0.72986012 \pm 1.6 \cdot 10^{-6} \) |
\(a_{91}= -0.18968044 \pm 2.0 \cdot 10^{-6} \) | \(a_{92}= -1.63651292 \pm 1.7 \cdot 10^{-6} \) | \(a_{93}= +0.97059593 \pm 1.4 \cdot 10^{-6} \) |
\(a_{94}= +0.57397642 \pm 2.1 \cdot 10^{-6} \) | \(a_{95}= +0.43959565 \pm 2.1 \cdot 10^{-6} \) | \(a_{96}= -4.13006727 \pm 1.3 \cdot 10^{-6} \) |
\(a_{97}= +0.08098399 \pm 2.2 \cdot 10^{-6} \) | \(a_{98}= -1.00084884 \pm 1.8 \cdot 10^{-6} \) | \(a_{99}= +1.91580318 \pm 1.9 \cdot 10^{-6} \) |
\(a_{100}= -2.38930007 \pm 2.5 \cdot 10^{-6} \) | \(a_{101}= +0.77159620 \pm 1.9 \cdot 10^{-6} \) | \(a_{102}= +3.41227525 \pm 2.8 \cdot 10^{-6} \) |
\(a_{103}= +0.78936728 \pm 2.2 \cdot 10^{-6} \) | \(a_{104}= +0.80081497 \pm 2.5 \cdot 10^{-6} \) | \(a_{105}= -0.26568936 \pm 1.2 \cdot 10^{-6} \) |
\(a_{106}= -1.71289866 \pm 1.5 \cdot 10^{-6} \) | \(a_{107}= -0.12725073 \pm 1.9 \cdot 10^{-6} \) | \(a_{108}= -2.52642127 \pm 2.1 \cdot 10^{-6} \) |
\(a_{109}= -0.22179038 \pm 2.4 \cdot 10^{-6} \) | \(a_{110}= -0.53541247 \pm 1.1 \cdot 10^{-6} \) | \(a_{111}= +1.04532871 \pm 1.9 \cdot 10^{-6} \) |
\(a_{112}= -1.97893947 \pm 1.2 \cdot 10^{-6} \) | \(a_{113}= -1.40356114 \pm 1.4 \cdot 10^{-6} \) | \(a_{114}= +5.56605740 \pm 1.1 \cdot 10^{-6} \) |
\(a_{115}= +0.15502426 \pm 1.4 \cdot 10^{-6} \) | \(a_{116}= +2.22504438 \pm 3.3 \cdot 10^{-6} \) | \(a_{117}= +0.44820773 \pm 1.7 \cdot 10^{-6} \) |
\(a_{118}= -2.57691407 \pm 1.3 \cdot 10^{-6} \) | \(a_{119}= +0.76733656 \pm 1.7 \cdot 10^{-6} \) | \(a_{120}= +1.12171829 \pm 1.5 \cdot 10^{-6} \) |
\(a_{121}= +0.40539932 \pm 1.9 \cdot 10^{-6} \) | \(a_{122}= -1.95910708 \pm 2.2 \cdot 10^{-6} \) | \(a_{123}= +1.89907135 \pm 2.9 \cdot 10^{-6} \) |
\(a_{124}= -1.52157886 \pm 1.1 \cdot 10^{-6} \) | \(a_{125}= +0.46652634 \pm 2.5 \cdot 10^{-6} \) | \(a_{126}= -2.07814458 \pm 2.0 \cdot 10^{-6} \) |
\(a_{127}= -0.17381674 \pm 2.3 \cdot 10^{-6} \) | \(a_{128}= +1.03372675 \pm 2.9 \cdot 10^{-6} \) | \(a_{129}= -0.43913203 \pm 1.4 \cdot 10^{-6} \) |
\(a_{130}= -0.12526131 \pm 4.8 \cdot 10^{-6} \) | \(a_{131}= +1.10908022 \pm 1.4 \cdot 10^{-6} \) | \(a_{132}= -4.86182786 \pm 8.5 \cdot 10^{-7} \) |
\(a_{133}= +1.25166905 \pm 2.3 \cdot 10^{-6} \) | \(a_{134}= +1.54063493 \pm 1.9 \cdot 10^{-6} \) | \(a_{135}= +0.23932386 \pm 2.0 \cdot 10^{-6} \) |
\(a_{136}= -3.23963091 \pm 2.3 \cdot 10^{-6} \) | \(a_{137}= -1.00453579 \pm 1.2 \cdot 10^{-6} \) | \(a_{138}= +1.96288097 \pm 1.5 \cdot 10^{-6} \) |
\(a_{139}= +0.45814290 \pm 1.5 \cdot 10^{-6} \) | \(a_{140}= +0.41651453 \pm 2.3 \cdot 10^{-6} \) | \(a_{141}= -0.49372529 \pm 1.7 \cdot 10^{-6} \) |
\(a_{142}= -0.68122472 \pm 1.9 \cdot 10^{-6} \) | \(a_{143}= +0.32879726 \pm 1.5 \cdot 10^{-6} \) | \(a_{144}= +4.67615952 \pm 1.8 \cdot 10^{-6} \) |
\(a_{145}= -0.21077491 \pm 1.3 \cdot 10^{-6} \) | \(a_{146}= +2.18442558 \pm 2.2 \cdot 10^{-6} \) | \(a_{147}= +0.86091410 \pm 1.2 \cdot 10^{-6} \) |
\(a_{148}= -1.63873556 \pm 1.9 \cdot 10^{-6} \) | \(a_{149}= +1.29940555 \pm 1.4 \cdot 10^{-6} \) | \(a_{150}= +2.86579568 \pm 2.1 \cdot 10^{-6} \) |
\(a_{151}= -0.71767973 \pm 1.5 \cdot 10^{-6} \) | \(a_{152}= -5.28444228 \pm 2.5 \cdot 10^{-6} \) | \(a_{153}= -1.81318741 \pm 1.4 \cdot 10^{-6} \) |
\(a_{154}= -1.52449010 \pm 1.1 \cdot 10^{-6} \) | \(a_{155}= +0.14413674 \pm 1.3 \cdot 10^{-6} \) | \(a_{156}= -1.13743878 \pm 4.8 \cdot 10^{-6} \) |
\(a_{157}= +0.59444016 \pm 1.7 \cdot 10^{-6} \) | \(a_{158}= +2.59189150 \pm 1.8 \cdot 10^{-6} \) | \(a_{159}= +1.47340791 \pm 1.7 \cdot 10^{-6} \) |
\(a_{160}= -0.61332880 \pm 2.3 \cdot 10^{-6} \) | \(a_{161}= +0.44140352 \pm 1.2 \cdot 10^{-6} \) | \(a_{162}= -0.00839324 \pm 2.9 \cdot 10^{-6} \) |
\(a_{163}= -0.87915647 \pm 1.7 \cdot 10^{-6} \) | \(a_{164}= -2.97712644 \pm 4.3 \cdot 10^{-6} \) | \(a_{165}= +0.46055321 \pm 1.2 \cdot 10^{-6} \) |
\(a_{166}= +0.06842966 \pm 3.3 \cdot 10^{-6} \) | \(a_{167}= -0.94494015 \pm 2.2 \cdot 10^{-6} \) | \(a_{168}= +3.19388980 \pm 2.1 \cdot 10^{-6} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +0.50673428 \pm 1.3 \cdot 10^{-6} \) | \(a_{171}= -2.95764686 \pm 1.8 \cdot 10^{-6} \) |
\(a_{172}= +0.68841625 \pm 1.1 \cdot 10^{-6} \) | \(a_{173}= +0.15484968 \pm 1.8 \cdot 10^{-6} \) | \(a_{174}= -2.66878265 \pm 3.1 \cdot 10^{-6} \) |
\(a_{175}= +0.64444678 \pm 1.7 \cdot 10^{-6} \) | \(a_{176}= +3.43034790 \pm 1.3 \cdot 10^{-6} \) | \(a_{177}= +2.21662009 \pm 1.4 \cdot 10^{-6} \) |
\(a_{178}= +0.65170695 \pm 2.6 \cdot 10^{-6} \) | \(a_{179}= -1.38702492 \pm 2.2 \cdot 10^{-6} \) | \(a_{180}= -0.98420816 \pm 1.7 \cdot 10^{-6} \) |
\(a_{181}= -0.28536031 \pm 1.8 \cdot 10^{-6} \) | \(a_{182}= -0.35665890 \pm 4.6 \cdot 10^{-6} \) | \(a_{183}= +1.68519244 \pm 1.7 \cdot 10^{-6} \) |
\(a_{184}= -1.86356885 \pm 1.6 \cdot 10^{-6} \) | \(a_{185}= +0.15523481 \pm 1.7 \cdot 10^{-6} \) | \(a_{186}= +1.82502574 \pm 1.3 \cdot 10^{-6} \) |
\(a_{187}= -1.33012221 \pm 1.1 \cdot 10^{-6} \) | \(a_{188}= +0.77400074 \pm 2.2 \cdot 10^{-6} \) | \(a_{189}= +0.68143138 \pm 1.4 \cdot 10^{-6} \) |
\(a_{190}= +0.82657813 \pm 2.7 \cdot 10^{-6} \) | \(a_{191}= -0.93009879 \pm 2.8 \cdot 10^{-6} \) | \(a_{192}= -3.08567183 \pm 2.1 \cdot 10^{-6} \) |
\(a_{193}= -1.36193893 \pm 1.9 \cdot 10^{-6} \) | \(a_{194}= +0.15227538 \pm 3.3 \cdot 10^{-6} \) | \(a_{195}= +0.10774776 \pm 4.2 \cdot 10^{-6} \) |
\(a_{196}= -1.34963340 \pm 1.8 \cdot 10^{-6} \) | \(a_{197}= +0.87447162 \pm 2.3 \cdot 10^{-6} \) | \(a_{198}= +3.60231275 \pm 2.0 \cdot 10^{-6} \) |
\(a_{199}= +0.72131851 \pm 2.3 \cdot 10^{-6} \) | \(a_{200}= -2.72080052 \pm 2.1 \cdot 10^{-6} \) | \(a_{201}= -1.32522941 \pm 1.1 \cdot 10^{-6} \) |
\(a_{202}= +1.45084364 \pm 1.7 \cdot 10^{-6} \) | \(a_{203}= -0.60014340 \pm 1.8 \cdot 10^{-6} \) | \(a_{204}= +4.60141478 \pm 2.8 \cdot 10^{-6} \) |
\(a_{205}= +0.28201844 \pm 3.0 \cdot 10^{-6} \) | \(a_{206}= +1.48425885 \pm 2.2 \cdot 10^{-6} \) | \(a_{207}= -1.04301992 \pm 1.1 \cdot 10^{-6} \) |
\(a_{208}= +0.80253988 \pm 1.8 \cdot 10^{-6} \) | \(a_{209}= -2.16967742 \pm 1.1 \cdot 10^{-6} \) | \(a_{210}= -0.49957958 \pm 1.2 \cdot 10^{-6} \) |
\(a_{211}= +1.83934045 \pm 2.3 \cdot 10^{-6} \) | \(a_{212}= -2.30982457 \pm 1.4 \cdot 10^{-6} \) | \(a_{213}= +0.58597856 \pm 1.0 \cdot 10^{-6} \) |
\(a_{214}= -0.23927142 \pm 2.8 \cdot 10^{-6} \) | \(a_{215}= -0.06521257 \pm 1.8 \cdot 10^{-6} \) | \(a_{216}= -2.87694643 \pm 2.3 \cdot 10^{-6} \) |
\(a_{217}= +0.41040328 \pm 1.3 \cdot 10^{-6} \) | \(a_{218}= -0.41703571 \pm 3.4 \cdot 10^{-6} \) | \(a_{219}= -1.87900779 \pm 1.6 \cdot 10^{-6} \) |
\(a_{220}= -0.72199769 \pm 1.2 \cdot 10^{-6} \) | \(a_{221}= -0.31118596 \pm 1.9 \cdot 10^{-6} \) | \(a_{222}= +1.96554687 \pm 2.3 \cdot 10^{-6} \) |
\(a_{223}= -0.64199696 \pm 2.2 \cdot 10^{-6} \) | \(a_{224}= -1.74634274 \pm 1.6 \cdot 10^{-6} \) | \(a_{225}= -1.52280349 \pm 1.6 \cdot 10^{-6} \) |
\(a_{226}= -2.63913656 \pm 1.2 \cdot 10^{-6} \) | \(a_{227}= +0.91423284 \pm 1.6 \cdot 10^{-6} \) | \(a_{228}= +7.50576578 \pm 9.5 \cdot 10^{-7} \) |
\(a_{229}= +0.51035886 \pm 1.8 \cdot 10^{-6} \) | \(a_{230}= +0.29149439 \pm 1.3 \cdot 10^{-6} \) | \(a_{231}= +1.31134190 \pm 1.0 \cdot 10^{-6} \) |
\(a_{232}= +2.53375538 \pm 3.0 \cdot 10^{-6} \) | \(a_{233}= -0.63851837 \pm 1.7 \cdot 10^{-6} \) | \(a_{234}= +0.84277156 \pm 4.4 \cdot 10^{-6} \) |
\(a_{235}= -0.07331986 \pm 1.2 \cdot 10^{-6} \) | \(a_{236}= -3.47493963 \pm 1.6 \cdot 10^{-6} \) | \(a_{237}= -2.22950343 \pm 1.1 \cdot 10^{-6} \) |
\(a_{238}= +1.44283416 \pm 2.4 \cdot 10^{-6} \) | \(a_{239}= +0.89836596 \pm 1.4 \cdot 10^{-6} \) | \(a_{240}= +1.12413440 \pm 1.3 \cdot 10^{-6} \) |
\(a_{241}= -0.78710436 \pm 2.2 \cdot 10^{-6} \) | \(a_{242}= +0.76227827 \pm 2.5 \cdot 10^{-6} \) | \(a_{243}= +1.00360642 \pm 1.7 \cdot 10^{-6} \) |
\(a_{244}= -2.64183385 \pm 2.4 \cdot 10^{-6} \) | \(a_{245}= +0.12784862 \pm 1.5 \cdot 10^{-6} \) | \(a_{246}= +3.57085165 \pm 4.2 \cdot 10^{-6} \) |
\(a_{247}= -0.50760235 \pm 2.1 \cdot 10^{-6} \) | \(a_{248}= -1.73268841 \pm 1.5 \cdot 10^{-6} \) | \(a_{249}= -0.05886210 \pm 2.4 \cdot 10^{-6} \) |
\(a_{250}= +0.87721630 \pm 2.2 \cdot 10^{-6} \) | \(a_{251}= +0.94320028 \pm 2.4 \cdot 10^{-6} \) | \(a_{252}= -2.80235459 \pm 2.1 \cdot 10^{-6} \) |
\(a_{253}= -0.76514096 \pm 1.1 \cdot 10^{-6} \) | \(a_{254}= -0.32683016 \pm 3.3 \cdot 10^{-6} \) | \(a_{255}= -0.43588469 \pm 1.1 \cdot 10^{-6} \) |
\(a_{256}= +0.03595334 \pm 2.4 \cdot 10^{-6} \) | \(a_{257}= -1.65704894 \pm 2.6 \cdot 10^{-6} \) | \(a_{258}= -0.82570638 \pm 1.3 \cdot 10^{-6} \) |
\(a_{259}= +0.44200302 \pm 1.3 \cdot 10^{-6} \) | \(a_{260}= -0.16891346 \pm 5.0 \cdot 10^{-6} \) | \(a_{261}= +1.41811628 \pm 1.1 \cdot 10^{-6} \) |
\(a_{262}= +2.08541977 \pm 1.8 \cdot 10^{-6} \) | \(a_{263}= +0.28985338 \pm 1.8 \cdot 10^{-6} \) | \(a_{264}= -5.53637608 \pm 1.6 \cdot 10^{-6} \) |
\(a_{265}= +0.21880600 \pm 2.5 \cdot 10^{-6} \) | \(a_{266}= +2.35353163 \pm 3.7 \cdot 10^{-6} \) | \(a_{267}= -0.56058785 \pm 1.5 \cdot 10^{-6} \) |
\(a_{268}= +2.07752886 \pm 2.0 \cdot 10^{-6} \) | \(a_{269}= +0.92199167 \pm 2.2 \cdot 10^{-6} \) | \(a_{270}= +0.45000416 \pm 1.3 \cdot 10^{-6} \) |
\(a_{271}= +1.16392557 \pm 2.2 \cdot 10^{-6} \) | \(a_{272}= -3.24660889 \pm 1.1 \cdot 10^{-6} \) | \(a_{273}= +0.30679225 \pm 4.0 \cdot 10^{-6} \) |
\(a_{274}= -1.88884335 \pm 1.8 \cdot 10^{-6} \) | \(a_{275}= -1.11710170 \pm 1.4 \cdot 10^{-6} \) | \(a_{276}= +2.64692290 \pm 1.4 \cdot 10^{-6} \) |
\(a_{277}= +1.25610781 \pm 1.7 \cdot 10^{-6} \) | \(a_{278}= +0.86145280 \pm 1.2 \cdot 10^{-6} \) | \(a_{279}= -0.96976751 \pm 1.4 \cdot 10^{-6} \) |
\(a_{280}= +0.47430331 \pm 1.9 \cdot 10^{-6} \) | \(a_{281}= -0.88716487 \pm 1.7 \cdot 10^{-6} \) | \(a_{282}= -0.92835890 \pm 2.0 \cdot 10^{-6} \) |
\(a_{283}= -0.56469254 \pm 1.9 \cdot 10^{-6} \) | \(a_{284}= -0.91862387 \pm 1.9 \cdot 10^{-6} \) | \(a_{285}= -0.71100923 \pm 1.1 \cdot 10^{-6} \) |
\(a_{286}= +0.61824231 \pm 4.1 \cdot 10^{-6} \) | \(a_{287}= +0.80299648 \pm 2.6 \cdot 10^{-6} \) | \(a_{288}= +4.12654219 \pm 1.4 \cdot 10^{-6} \) |
\(a_{289}= +0.25887715 \pm 1.8 \cdot 10^{-6} \) | \(a_{290}= -0.39632315 \pm 1.9 \cdot 10^{-6} \) | \(a_{291}= -0.13098484 \pm 2.4 \cdot 10^{-6} \) |
\(a_{292}= +2.94567331 \pm 2.3 \cdot 10^{-6} \) | \(a_{293}= -1.24373313 \pm 1.3 \cdot 10^{-6} \) | \(a_{294}= +1.61878938 \pm 1.1 \cdot 10^{-6} \) |
\(a_{295}= +0.32917549 \pm 2.6 \cdot 10^{-6} \) | \(a_{296}= -1.86609987 \pm 1.9 \cdot 10^{-6} \) | \(a_{297}= -1.18121182 \pm 2.0 \cdot 10^{-6} \) |
\(a_{298}= +2.44329127 \pm 1.4 \cdot 10^{-6} \) | \(a_{299}= -0.17900696 \pm 1.4 \cdot 10^{-6} \) | \(a_{300}= +3.86449323 \pm 2.3 \cdot 10^{-6} \) |
\(a_{301}= -0.18568100 \pm 1.1 \cdot 10^{-6} \) | \(a_{302}= -1.34946370 \pm 1.7 \cdot 10^{-6} \) | \(a_{303}= -1.24799239 \pm 1.6 \cdot 10^{-6} \) |
\(a_{304}= -5.29582466 \pm 1.5 \cdot 10^{-6} \) | \(a_{305}= +0.25025671 \pm 2.5 \cdot 10^{-6} \) | \(a_{306}= -3.40936282 \pm 1.6 \cdot 10^{-6} \) |
\(a_{307}= -0.95853324 \pm 2.7 \cdot 10^{-6} \) | \(a_{308}= -2.05575775 \pm 1.1 \cdot 10^{-6} \) | \(a_{309}= -1.27673562 \pm 1.8 \cdot 10^{-6} \) |
\(a_{310}= +0.27102242 \pm 1.0 \cdot 10^{-6} \) | \(a_{311}= +0.45731459 \pm 1.6 \cdot 10^{-6} \) | \(a_{312}= -1.29525130 \pm 4.5 \cdot 10^{-6} \) |
\(a_{313}= +0.35256703 \pm 2.3 \cdot 10^{-6} \) | \(a_{314}= +1.11773454 \pm 2.0 \cdot 10^{-6} \) | \(a_{315}= +0.26546259 \pm 1.4 \cdot 10^{-6} \) |
\(a_{316}= +3.49513652 \pm 1.7 \cdot 10^{-6} \) | \(a_{317}= -0.10530586 \pm 1.8 \cdot 10^{-6} \) | \(a_{318}= +2.77047047 \pm 1.3 \cdot 10^{-6} \) |
\(a_{319}= +1.04030502 \pm 7.7 \cdot 10^{-7} \) | \(a_{320}= -0.45823258 \pm 2.2 \cdot 10^{-6} \) | \(a_{321}= +0.20581743 \pm 1.7 \cdot 10^{-6} \) |
\(a_{322}= +0.82997751 \pm 1.6 \cdot 10^{-6} \) | \(a_{323}= +2.05346344 \pm 1.5 \cdot 10^{-6} \) | \(a_{324}= -0.01131819 \pm 2.8 \cdot 10^{-6} \) |
\(a_{325}= -0.26134919 \pm 2.4 \cdot 10^{-6} \) | \(a_{326}= -1.65309078 \pm 2.0 \cdot 10^{-6} \) | \(a_{327}= +0.35872741 \pm 2.2 \cdot 10^{-6} \) |
\(a_{328}= -3.39018412 \pm 3.7 \cdot 10^{-6} \) | \(a_{329}= -0.20876502 \pm 1.4 \cdot 10^{-6} \) | \(a_{330}= +0.86598494 \pm 1.2 \cdot 10^{-6} \) |
\(a_{331}= +1.45186677 \pm 2.4 \cdot 10^{-6} \) | \(a_{332}= +0.09227663 \pm 3.4 \cdot 10^{-6} \) | \(a_{333}= -1.04443651 \pm 1.6 \cdot 10^{-6} \) |
\(a_{334}= -1.77678479 \pm 2.0 \cdot 10^{-6} \) | \(a_{335}= -0.19680100 \pm 1.5 \cdot 10^{-6} \) | \(a_{336}= +3.20076925 \pm 1.0 \cdot 10^{-6} \) |
\(a_{337}= -0.38867484 \pm 2.4 \cdot 10^{-6} \) | \(a_{338}= +0.14463959 \pm 2.6 \cdot 10^{-6} \) | \(a_{339}= +2.27014287 \pm 1.4 \cdot 10^{-6} \) |
\(a_{340}= +0.68332548 \pm 1.3 \cdot 10^{-6} \) | \(a_{341}= -0.71140429 \pm 1.6 \cdot 10^{-6} \) | \(a_{342}= -5.56130669 \pm 2.6 \cdot 10^{-6} \) |
\(a_{343}= +1.04792834 \pm 1.7 \cdot 10^{-6} \) | \(a_{344}= +0.78392970 \pm 1.7 \cdot 10^{-6} \) | \(a_{345}= -0.25073879 \pm 1.1 \cdot 10^{-6} \) |
\(a_{346}= +0.29116612 \pm 2.4 \cdot 10^{-6} \) | \(a_{347}= -0.28760254 \pm 1.9 \cdot 10^{-6} \) | \(a_{348}= -3.59882337 \pm 3.4 \cdot 10^{-6} \) |
\(a_{349}= -1.81528238 \pm 2.6 \cdot 10^{-6} \) | \(a_{350}= +1.21176271 \pm 1.7 \cdot 10^{-6} \) | \(a_{351}= -0.27634795 \pm 2.1 \cdot 10^{-6} \) |
\(a_{352}= +3.02715836 \pm 1.2 \cdot 10^{-6} \) | \(a_{353}= +1.04588559 \pm 2.4 \cdot 10^{-6} \) | \(a_{354}= +4.16794319 \pm 1.2 \cdot 10^{-6} \) |
\(a_{355}= +0.08701978 \pm 1.6 \cdot 10^{-6} \) | \(a_{356}= +0.87881949 \pm 2.9 \cdot 10^{-6} \) | \(a_{357}= -1.24110276 \pm 1.7 \cdot 10^{-6} \) |
\(a_{358}= -2.60804327 \pm 2.6 \cdot 10^{-6} \) | \(a_{359}= +0.99974590 \pm 1.5 \cdot 10^{-6} \) | \(a_{360}= -1.12076089 \pm 1.8 \cdot 10^{-6} \) |
\(a_{361}= +2.34958188 \pm 2.8 \cdot 10^{-6} \) | \(a_{362}= -0.53656716 \pm 1.9 \cdot 10^{-6} \) | \(a_{363}= -0.65569953 \pm 2.0 \cdot 10^{-6} \) |
\(a_{364}= -0.48095051 \pm 4.8 \cdot 10^{-6} \) | \(a_{365}= -0.27903894 \pm 1.0 \cdot 10^{-6} \) | \(a_{366}= +3.16869200 \pm 2.0 \cdot 10^{-6} \) |
\(a_{367}= -1.01490866 \pm 2.3 \cdot 10^{-6} \) | \(a_{368}= -1.86758287 \pm 1.2 \cdot 10^{-6} \) | \(a_{369}= -1.89745046 \pm 1.4 \cdot 10^{-6} \) |
\(a_{370}= +0.29189028 \pm 1.4 \cdot 10^{-6} \) | \(a_{371}= +0.62301049 \pm 1.6 \cdot 10^{-6} \) | \(a_{372}= +2.46102667 \pm 8.6 \cdot 10^{-7} \) |
\(a_{373}= +1.03363977 \pm 1.8 \cdot 10^{-6} \) | \(a_{374}= -2.50104826 \pm 1.0 \cdot 10^{-6} \) | \(a_{375}= -0.75456737 \pm 1.9 \cdot 10^{-6} \) |
\(a_{376}= +0.88138851 \pm 2.3 \cdot 10^{-6} \) | \(a_{377}= +0.24338239 \pm 1.9 \cdot 10^{-6} \) | \(a_{378}= +1.28130540 \pm 1.7 \cdot 10^{-6} \) |
\(a_{379}= +0.34882782 \pm 2.3 \cdot 10^{-6} \) | \(a_{380}= +1.11463131 \pm 2.7 \cdot 10^{-6} \) | \(a_{381}= +0.28113405 \pm 2.4 \cdot 10^{-6} \) |
\(a_{382}= -1.74887836 \pm 4.1 \cdot 10^{-6} \) | \(a_{383}= -1.66510699 \pm 1.4 \cdot 10^{-6} \) | \(a_{384}= -1.67196664 \pm 2.7 \cdot 10^{-6} \) |
\(a_{385}= +0.19473866 \pm 1.2 \cdot 10^{-6} \) | \(a_{386}= -2.56087371 \pm 2.7 \cdot 10^{-6} \) | \(a_{387}= +0.43875722 \pm 1.5 \cdot 10^{-6} \) |
\(a_{388}= +0.20534164 \pm 3.6 \cdot 10^{-6} \) | \(a_{389}= -0.68853678 \pm 2.0 \cdot 10^{-6} \) | \(a_{390}= +0.20259970 \pm 6.8 \cdot 10^{-6} \) |
\(a_{391}= +0.72415788 \pm 1.3 \cdot 10^{-6} \) | \(a_{392}= -1.53688660 \pm 1.7 \cdot 10^{-6} \) | \(a_{393}= -1.79384458 \pm 1.3 \cdot 10^{-6} \) |
\(a_{394}= +1.64428178 \pm 3.4 \cdot 10^{-6} \) | \(a_{395}= -0.33108871 \pm 1.5 \cdot 10^{-6} \) | \(a_{396}= +4.85767822 \pm 8.1 \cdot 10^{-7} \) |
\(a_{397}= -1.15054776 \pm 2.3 \cdot 10^{-6} \) | \(a_{398}= +1.35630575 \pm 2.9 \cdot 10^{-6} \) | \(a_{399}= -2.02447010 \pm 8.0 \cdot 10^{-7} \) |
\(a_{400}= -2.72666097 \pm 1.7 \cdot 10^{-6} \) | \(a_{401}= +1.11671613 \pm 1.9 \cdot 10^{-6} \) | \(a_{402}= -2.49184826 \pm 9.5 \cdot 10^{-7} \) |
\(a_{403}= -0.16643511 \pm 1.5 \cdot 10^{-6} \) | \(a_{404}= +1.95644632 \pm 2.0 \cdot 10^{-6} \) | \(a_{405}= +0.00107215 \pm 1.2 \cdot 10^{-6} \) |
\(a_{406}= -1.12845843 \pm 3.0 \cdot 10^{-6} \) | \(a_{407}= -0.76618015 \pm 1.4 \cdot 10^{-6} \) | \(a_{408}= +5.23983232 \pm 2.5 \cdot 10^{-6} \) |
\(a_{409}= +1.42125417 \pm 1.8 \cdot 10^{-6} \) | \(a_{410}= +0.53028341 \pm 2.3 \cdot 10^{-6} \) | \(a_{411}= +1.62475270 \pm 8.7 \cdot 10^{-7} \) |
\(a_{412}= +2.00150636 \pm 2.8 \cdot 10^{-6} \) | \(a_{413}= +0.93726764 \pm 1.2 \cdot 10^{-6} \) | \(a_{414}= -1.96120562 \pm 1.3 \cdot 10^{-6} \) |
\(a_{415}= -0.00874122 \pm 1.8 \cdot 10^{-6} \) | \(a_{416}= +0.70821251 \pm 1.9 \cdot 10^{-6} \) | \(a_{417}= -0.74100786 \pm 1.3 \cdot 10^{-6} \) |
\(a_{418}= -4.07967620 \pm 1.2 \cdot 10^{-6} \) | \(a_{419}= +1.77909539 \pm 1.8 \cdot 10^{-6} \) | \(a_{420}= -0.67367745 \pm 1.3 \cdot 10^{-6} \) |
\(a_{421}= -1.16122104 \pm 2.3 \cdot 10^{-6} \) | \(a_{422}= +3.45853877 \pm 3.3 \cdot 10^{-6} \) | \(a_{423}= +0.49330389 \pm 1.9 \cdot 10^{-6} \) |
\(a_{424}= -2.63029829 \pm 1.9 \cdot 10^{-6} \) | \(a_{425}= +1.05726661 \pm 1.9 \cdot 10^{-6} \) | \(a_{426}= +1.10182406 \pm 9.2 \cdot 10^{-7} \) |
\(a_{427}= +0.71256069 \pm 1.8 \cdot 10^{-6} \) | \(a_{428}= -0.32265482 \pm 3.3 \cdot 10^{-6} \) | \(a_{429}= -0.53180210 \pm 3.5 \cdot 10^{-6} \) |
\(a_{430}= -0.12262016 \pm 1.5 \cdot 10^{-6} \) | \(a_{431}= +1.63928319 \pm 2.5 \cdot 10^{-6} \) | \(a_{432}= -2.88314321 \pm 1.9 \cdot 10^{-6} \) |
\(a_{433}= -0.35379231 \pm 2.0 \cdot 10^{-6} \) | \(a_{434}= +0.77168730 \pm 1.0 \cdot 10^{-6} \) | \(a_{435}= +0.34091080 \pm 1.1 \cdot 10^{-6} \) |
\(a_{436}= -0.56236796 \pm 3.7 \cdot 10^{-6} \) | \(a_{437}= +1.18123657 \pm 1.5 \cdot 10^{-6} \) | \(a_{438}= -3.53312585 \pm 2.2 \cdot 10^{-6} \) |
\(a_{439}= +1.71561795 \pm 1.7 \cdot 10^{-6} \) | \(a_{440}= -0.82217036 \pm 1.3 \cdot 10^{-6} \) | \(a_{441}= -0.86017929 \pm 1.6 \cdot 10^{-6} \) |
\(a_{442}= -0.58512752 \pm 4.6 \cdot 10^{-6} \) | \(a_{443}= -1.62590730 \pm 1.1 \cdot 10^{-6} \) | \(a_{444}= +2.65051784 \pm 2.1 \cdot 10^{-6} \) |
\(a_{445}= -0.08324917 \pm 1.5 \cdot 10^{-6} \) | \(a_{446}= -1.20715628 \pm 2.8 \cdot 10^{-6} \) | \(a_{447}= -2.10167990 \pm 1.4 \cdot 10^{-6} \) |
\(a_{448}= -1.30473435 \pm 2.6 \cdot 10^{-6} \) | \(a_{449}= -1.14247978 \pm 1.8 \cdot 10^{-6} \) | \(a_{450}= -2.86334968 \pm 1.5 \cdot 10^{-6} \) |
\(a_{451}= -1.39193609 \pm 1.5 \cdot 10^{-6} \) | \(a_{452}= -3.55884595 \pm 1.2 \cdot 10^{-6} \) | \(a_{453}= +1.16078700 \pm 1.6 \cdot 10^{-6} \) |
\(a_{454}= +1.71904540 \pm 2.1 \cdot 10^{-6} \) | \(a_{455}= +0.04555968 \pm 4.2 \cdot 10^{-6} \) | \(a_{456}= +8.54714385 \pm 1.3 \cdot 10^{-6} \) |
\(a_{457}= -0.02194015 \pm 2.1 \cdot 10^{-6} \) | \(a_{458}= +0.95963523 \pm 2.5 \cdot 10^{-6} \) | \(a_{459}= +1.11794282 \pm 2.1 \cdot 10^{-6} \) |
\(a_{460}= +0.39307690 \pm 1.4 \cdot 10^{-6} \) | \(a_{461}= -0.18687226 \pm 2.4 \cdot 10^{-6} \) | \(a_{462}= +2.46573536 \pm 9.9 \cdot 10^{-7} \) |
\(a_{463}= +1.14240725 \pm 2.3 \cdot 10^{-6} \) | \(a_{464}= +2.53921294 \pm 2.2 \cdot 10^{-6} \) | \(a_{465}= -0.23312914 \pm 1.0 \cdot 10^{-6} \) |
\(a_{466}= -1.20061543 \pm 2.2 \cdot 10^{-6} \) | \(a_{467}= -1.33457351 \pm 2.4 \cdot 10^{-6} \) | \(a_{468}= +1.13646796 \pm 4.6 \cdot 10^{-6} \) |
\(a_{469}= -0.56035522 \pm 1.7 \cdot 10^{-6} \) | \(a_{470}= -0.13786440 \pm 1.8 \cdot 10^{-6} \) | \(a_{471}= -0.96145729 \pm 1.6 \cdot 10^{-6} \) |
\(a_{472}= -3.95706578 \pm 1.6 \cdot 10^{-6} \) | \(a_{473}= +0.32186454 \pm 1.1 \cdot 10^{-6} \) | \(a_{474}= -4.19216793 \pm 1.2 \cdot 10^{-6} \) |
\(a_{475}= +1.72459905 \pm 1.1 \cdot 10^{-6} \) | \(a_{476}= +1.94564563 \pm 2.7 \cdot 10^{-6} \) | \(a_{477}= -1.47215034 \pm 1.6 \cdot 10^{-6} \) |
\(a_{478}= +1.68921066 \pm 1.9 \cdot 10^{-6} \) | \(a_{479}= +0.38050786 \pm 2.2 \cdot 10^{-6} \) | \(a_{480}= +0.99200809 \pm 1.4 \cdot 10^{-6} \) |
\(a_{481}= -0.17925008 \pm 1.7 \cdot 10^{-6} \) | \(a_{482}= -1.48000385 \pm 2.6 \cdot 10^{-6} \) | \(a_{483}= -0.71393332 \pm 1.0 \cdot 10^{-6} \) |
\(a_{484}= +1.02792368 \pm 2.6 \cdot 10^{-6} \) | \(a_{485}= -0.01945169 \pm 1.5 \cdot 10^{-6} \) | \(a_{486}= +1.88709584 \pm 1.9 \cdot 10^{-6} \) |
\(a_{487}= -0.33011735 \pm 2.2 \cdot 10^{-6} \) | \(a_{488}= -3.00837178 \pm 2.0 \cdot 10^{-6} \) | \(a_{489}= +1.42196214 \pm 1.7 \cdot 10^{-6} \) |
\(a_{490}= +0.24039564 \pm 1.7 \cdot 10^{-6} \) | \(a_{491}= +0.54285020 \pm 1.6 \cdot 10^{-6} \) | \(a_{492}= +4.81525327 \pm 4.5 \cdot 10^{-6} \) |
\(a_{493}= -0.98458338 \pm 2.0 \cdot 10^{-6} \) | \(a_{494}= -0.95445213 \pm 4.7 \cdot 10^{-6} \) | \(a_{495}= -0.46016012 \pm 1.0 \cdot 10^{-6} \) |
\(a_{496}= -1.73642052 \pm 1.0 \cdot 10^{-6} \) | \(a_{497}= +0.24777306 \pm 1.6 \cdot 10^{-6} \) | \(a_{498}= -0.11067926 \pm 3.3 \cdot 10^{-6} \) |
\(a_{499}= -0.09755886 \pm 1.8 \cdot 10^{-6} \) | \(a_{500}= +1.18291632 \pm 2.8 \cdot 10^{-6} \) | \(a_{501}= +1.52836173 \pm 2.0 \cdot 10^{-6} \) |
\(a_{502}= +1.77351329 \pm 3.1 \cdot 10^{-6} \) | \(a_{503}= +1.04223743 \pm 2.1 \cdot 10^{-6} \) | \(a_{504}= -3.19116376 \pm 1.6 \cdot 10^{-6} \) |
\(a_{505}= -0.18533104 \pm 2.8 \cdot 10^{-6} \) | \(a_{506}= -1.43870575 \pm 1.0 \cdot 10^{-6} \) | \(a_{507}= -0.12441665 \pm 2.0 \cdot 10^{-6} \) |
\(a_{508}= -0.44072679 \pm 3.5 \cdot 10^{-6} \) | \(a_{509}= -0.00655618 \pm 2.2 \cdot 10^{-6} \) | \(a_{510}= -0.81960036 \pm 1.1 \cdot 10^{-6} \) |
\(a_{511}= -0.79451288 \pm 1.4 \cdot 10^{-6} \) | \(a_{512}= -0.96612316 \pm 1.8 \cdot 10^{-6} \) | \(a_{513}= +1.82357326 \pm 1.5 \cdot 10^{-6} \) |
\(a_{514}= -3.11577337 \pm 3.8 \cdot 10^{-6} \) | \(a_{515}= -0.18959951 \pm 3.2 \cdot 10^{-6} \) | \(a_{516}= -1.11345576 \pm 8.7 \cdot 10^{-7} \) |
\(a_{517}= +0.36187901 \pm 1.3 \cdot 10^{-6} \) | \(a_{518}= +0.83110475 \pm 1.8 \cdot 10^{-6} \) | \(a_{519}= -0.25045642 \pm 1.9 \cdot 10^{-6} \) |
\(a_{520}= -0.19234915 \pm 4.7 \cdot 10^{-6} \) | \(a_{521}= +0.25063637 \pm 1.2 \cdot 10^{-6} \) | \(a_{522}= +2.66650480 \pm 1.5 \cdot 10^{-6} \) |
\(a_{523}= -0.32463185 \pm 1.6 \cdot 10^{-6} \) | \(a_{524}= +2.81216509 \pm 1.7 \cdot 10^{-6} \) | \(a_{525}= -1.04233881 \pm 1.5 \cdot 10^{-6} \) |
\(a_{526}= +0.54501554 \pm 2.4 \cdot 10^{-6} \) | \(a_{527}= +0.67329949 \pm 1.4 \cdot 10^{-6} \) | \(a_{528}= -5.54830111 \pm 1.8 \cdot 10^{-6} \) |
\(a_{529}= -0.58343463 \pm 1.3 \cdot 10^{-6} \) | \(a_{530}= +0.41142413 \pm 1.5 \cdot 10^{-6} \) | \(a_{531}= -2.21472817 \pm 1.2 \cdot 10^{-6} \) |
\(a_{532}= +3.17371092 \pm 3.8 \cdot 10^{-6} \) | \(a_{533}= -0.32564750 \pm 2.9 \cdot 10^{-6} \) | \(a_{534}= -1.05408154 \pm 2.2 \cdot 10^{-6} \) |
\(a_{535}= +0.03056458 \pm 2.0 \cdot 10^{-6} \) | \(a_{536}= +2.36577300 \pm 1.9 \cdot 10^{-6} \) | \(a_{537}= +2.24339692 \pm 2.3 \cdot 10^{-6} \) |
\(a_{538}= +1.73363443 \pm 2.4 \cdot 10^{-6} \) | \(a_{539}= -0.63101231 \pm 1.2 \cdot 10^{-6} \) | \(a_{540}= +0.60682555 \pm 2.0 \cdot 10^{-6} \) |
\(a_{541}= +0.35515914 \pm 1.9 \cdot 10^{-6} \) | \(a_{542}= +2.18854629 \pm 2.6 \cdot 10^{-6} \) | \(a_{543}= +0.46154645 \pm 1.5 \cdot 10^{-6} \) |
\(a_{544}= -2.86501530 \pm 1.3 \cdot 10^{-6} \) | \(a_{545}= +0.05327222 \pm 2.4 \cdot 10^{-6} \) | \(a_{546}= +0.57686597 \pm 6.6 \cdot 10^{-6} \) |
\(a_{547}= +1.13504938 \pm 2.7 \cdot 10^{-6} \) | \(a_{548}= -2.54708400 \pm 2.2 \cdot 10^{-6} \) | \(a_{549}= -1.68375410 \pm 1.4 \cdot 10^{-6} \) |
\(a_{550}= -2.10050267 \pm 1.0 \cdot 10^{-6} \) | \(a_{551}= -1.60603913 \pm 1.3 \cdot 10^{-6} \) | \(a_{552}= +3.01416691 \pm 1.4 \cdot 10^{-6} \) |
\(a_{553}= -0.94271519 \pm 1.7 \cdot 10^{-6} \) | \(a_{554}= +2.36187790 \pm 2.4 \cdot 10^{-6} \) | \(a_{555}= -0.25107933 \pm 1.6 \cdot 10^{-6} \) |
\(a_{556}= +1.16165941 \pm 1.3 \cdot 10^{-6} \) | \(a_{557}= -0.84624081 \pm 2.6 \cdot 10^{-6} \) | \(a_{558}= -1.82346805 \pm 1.4 \cdot 10^{-6} \) |
\(a_{559}= +0.07530115 \pm 1.6 \cdot 10^{-6} \) | \(a_{560}= +0.47532494 \pm 1.3 \cdot 10^{-6} \) | \(a_{561}= +2.15136153 \pm 1.5 \cdot 10^{-6} \) |
\(a_{562}= -1.66814908 \pm 2.2 \cdot 10^{-6} \) | \(a_{563}= -1.43222362 \pm 1.4 \cdot 10^{-6} \) | \(a_{564}= -1.25188153 \pm 1.6 \cdot 10^{-6} \) |
\(a_{565}= +0.33712381 \pm 2.0 \cdot 10^{-6} \) | \(a_{566}= -1.06179965 \pm 2.8 \cdot 10^{-6} \) | \(a_{567}= +0.00305277 \pm 1.9 \cdot 10^{-6} \) |
\(a_{568}= -1.04607719 \pm 1.9 \cdot 10^{-6} \) | \(a_{569}= +1.12911868 \pm 2.2 \cdot 10^{-6} \) | \(a_{570}= -1.33692107 \pm 9.8 \cdot 10^{-7} \) |
\(a_{571}= -0.28017782 \pm 2.1 \cdot 10^{-6} \) | \(a_{572}= +0.83369279 \pm 4.3 \cdot 10^{-6} \) | \(a_{573}= +1.50435707 \pm 2.6 \cdot 10^{-6} \) |
\(a_{574}= +1.50988603 \pm 3.9 \cdot 10^{-6} \) | \(a_{575}= +0.60818321 \pm 1.3 \cdot 10^{-6} \) | \(a_{576}= +3.08303817 \pm 2.0 \cdot 10^{-6} \) |
\(a_{577}= -0.95865171 \pm 1.9 \cdot 10^{-6} \) | \(a_{578}= +0.48677049 \pm 1.8 \cdot 10^{-6} \) | \(a_{579}= +2.20282242 \pm 2.0 \cdot 10^{-6} \) |
\(a_{580}= -0.53443730 \pm 2.3 \cdot 10^{-6} \) | \(a_{581}= -0.02488904 \pm 2.4 \cdot 10^{-6} \) | \(a_{582}= -0.24629271 \pm 3.7 \cdot 10^{-6} \) |
\(a_{583}= -1.07994345 \pm 1.7 \cdot 10^{-6} \) | \(a_{584}= +3.35436707 \pm 2.2 \cdot 10^{-6} \) | \(a_{585}= -0.10765580 \pm 3.9 \cdot 10^{-6} \) |
\(a_{586}= -2.33860962 \pm 1.8 \cdot 10^{-6} \) | \(a_{587}= -1.34862432 \pm 1.8 \cdot 10^{-6} \) | \(a_{588}= +2.18291926 \pm 6.8 \cdot 10^{-7} \) |
\(a_{589}= +1.09827706 \pm 1.5 \cdot 10^{-6} \) | \(a_{590}= +0.61895350 \pm 1.5 \cdot 10^{-6} \) | \(a_{591}= -1.41438478 \pm 2.6 \cdot 10^{-6} \) |
\(a_{592}= -1.87011934 \pm 1.3 \cdot 10^{-6} \) | \(a_{593}= -0.77295535 \pm 2.6 \cdot 10^{-6} \) | \(a_{594}= -2.22104988 \pm 2.0 \cdot 10^{-6} \) |
\(a_{595}= -0.18430791 \pm 1.1 \cdot 10^{-6} \) | \(a_{596}= +3.29475078 \pm 1.3 \cdot 10^{-6} \) | \(a_{597}= -1.16667242 \pm 2.1 \cdot 10^{-6} \) |
\(a_{598}= -0.33658940 \pm 4.0 \cdot 10^{-6} \) | \(a_{599}= -1.45717190 \pm 2.1 \cdot 10^{-6} \) | \(a_{600}= +4.40066751 \pm 2.0 \cdot 10^{-6} \) |
\(a_{601}= +0.91052120 \pm 1.4 \cdot 10^{-6} \) | \(a_{602}= -0.34913871 \pm 1.3 \cdot 10^{-6} \) | \(a_{603}= +1.32409831 \pm 1.2 \cdot 10^{-6} \) |
\(a_{604}= -1.81973662 \pm 1.6 \cdot 10^{-6} \) | \(a_{605}= -0.09737357 \pm 1.8 \cdot 10^{-6} \) | \(a_{606}= -2.34661836 \pm 1.5 \cdot 10^{-6} \) |
\(a_{607}= +1.25352061 \pm 2.1 \cdot 10^{-6} \) | \(a_{608}= -4.67337434 \pm 2.0 \cdot 10^{-6} \) | \(a_{609}= +0.97068181 \pm 1.9 \cdot 10^{-6} \) |
\(a_{610}= +0.47056136 \pm 1.8 \cdot 10^{-6} \) | \(a_{611}= +0.08466265 \pm 1.5 \cdot 10^{-6} \) | \(a_{612}= -4.59748741 \pm 9.6 \cdot 10^{-7} \) |
\(a_{613}= +0.56837543 \pm 1.9 \cdot 10^{-6} \) | \(a_{614}= -1.80234408 \pm 3.4 \cdot 10^{-6} \) | \(a_{615}= -0.45614127 \pm 2.3 \cdot 10^{-6} \) |
\(a_{616}= -2.34098129 \pm 1.2 \cdot 10^{-6} \) | \(a_{617}= +0.32552195 \pm 1.5 \cdot 10^{-6} \) | \(a_{618}= -2.40066467 \pm 2.1 \cdot 10^{-6} \) |
\(a_{619}= +1.08835070 \pm 2.0 \cdot 10^{-6} \) | \(a_{620}= +0.36547069 \pm 1.0 \cdot 10^{-6} \) | \(a_{621}= +0.64308666 \pm 1.4 \cdot 10^{-6} \) |
\(a_{622}= +0.85989531 \pm 2.1 \cdot 10^{-6} \) | \(a_{623}= -0.23703694 \pm 1.9 \cdot 10^{-6} \) | \(a_{624}= -1.29804120 \pm 3.8 \cdot 10^{-6} \) |
\(a_{625}= +0.83025215 \pm 2.2 \cdot 10^{-6} \) | \(a_{626}= +0.66293695 \pm 3.5 \cdot 10^{-6} \) | \(a_{627}= +3.50927194 \pm 9.2 \cdot 10^{-7} \) |
\(a_{628}= +1.50725245 \pm 2.1 \cdot 10^{-6} \) | \(a_{629}= +0.72514140 \pm 1.5 \cdot 10^{-6} \) | \(a_{630}= +0.49915318 \pm 1.9 \cdot 10^{-6} \) |
\(a_{631}= +0.39201862 \pm 1.7 \cdot 10^{-6} \) | \(a_{632}= +3.98006486 \pm 1.5 \cdot 10^{-6} \) | \(a_{633}= -2.97497949 \pm 2.6 \cdot 10^{-6} \) |
\(a_{634}= -0.19800815 \pm 2.6 \cdot 10^{-6} \) | \(a_{635}= +0.04174935 \pm 1.7 \cdot 10^{-6} \) | \(a_{636}= +3.73594825 \pm 1.1 \cdot 10^{-6} \) |
\(a_{637}= -0.14762717 \pm 1.5 \cdot 10^{-6} \) | \(a_{638}= +1.95610075 \pm 9.8 \cdot 10^{-7} \) | \(a_{639}= -0.58547842 \pm 1.3 \cdot 10^{-6} \) |
\(a_{640}= -0.24829264 \pm 2.6 \cdot 10^{-6} \) | \(a_{641}= -1.76606021 \pm 2.1 \cdot 10^{-6} \) | \(a_{642}= +0.38700153 \pm 2.5 \cdot 10^{-6} \) |
\(a_{643}= -0.41313452 \pm 2.0 \cdot 10^{-6} \) | \(a_{644}= +1.11921533 \pm 1.7 \cdot 10^{-6} \) | \(a_{645}= +0.10547589 \pm 1.5 \cdot 10^{-6} \) |
\(a_{646}= +3.86115736 \pm 1.5 \cdot 10^{-6} \) | \(a_{647}= +0.19098505 \pm 1.3 \cdot 10^{-6} \) | \(a_{648}= -0.01288852 \pm 2.5 \cdot 10^{-6} \) |
\(a_{649}= -1.62468541 \pm 1.2 \cdot 10^{-6} \) | \(a_{650}= -0.49141872 \pm 5.0 \cdot 10^{-6} \) | \(a_{651}= -0.66379302 \pm 9.5 \cdot 10^{-7} \) |
\(a_{652}= -2.22917432 \pm 2.4 \cdot 10^{-6} \) | \(a_{653}= -0.99295935 \pm 1.9 \cdot 10^{-6} \) | \(a_{654}= +0.67452041 \pm 3.3 \cdot 10^{-6} \) |
\(a_{655}= -0.26639192 \pm 1.3 \cdot 10^{-6} \) | \(a_{656}= -3.39748638 \pm 2.3 \cdot 10^{-6} \) | \(a_{657}= +1.87740403 \pm 9.9 \cdot 10^{-7} \) |
\(a_{658}= -0.39254393 \pm 2.1 \cdot 10^{-6} \) | \(a_{659}= -1.04353475 \pm 2.3 \cdot 10^{-6} \) | \(a_{660}= +1.16777094 \pm 7.6 \cdot 10^{-7} \) |
\(a_{661}= -0.35783252 \pm 1.8 \cdot 10^{-6} \) | \(a_{662}= +2.72996634 \pm 2.7 \cdot 10^{-6} \) | \(a_{663}= +0.50331729 \pm 3.9 \cdot 10^{-6} \) |
\(a_{664}= +0.10507944 \pm 2.7 \cdot 10^{-6} \) | \(a_{665}= -0.30064058 \pm 2.2 \cdot 10^{-6} \) | \(a_{666}= -1.96386925 \pm 1.7 \cdot 10^{-6} \) |
\(a_{667}= -0.56637283 \pm 1.2 \cdot 10^{-6} \) | \(a_{668}= -2.39597430 \pm 2.4 \cdot 10^{-6} \) | \(a_{669}= +1.03837644 \pm 1.9 \cdot 10^{-6} \) |
\(a_{670}= -0.37004780 \pm 1.7 \cdot 10^{-6} \) | \(a_{671}= -1.23517222 \pm 1.4 \cdot 10^{-6} \) | \(a_{672}= +2.82456347 \pm 1.0 \cdot 10^{-6} \) |
\(a_{673}= -0.05476650 \pm 2.0 \cdot 10^{-6} \) | \(a_{674}= -0.73083098 \pm 2.5 \cdot 10^{-6} \) | \(a_{675}= +0.93890307 \pm 2.7 \cdot 10^{-6} \) |
\(a_{676}= +0.19504486 \pm 2.8 \cdot 10^{-6} \) | \(a_{677}= +1.05135802 \pm 2.1 \cdot 10^{-6} \) | \(a_{678}= +4.26858287 \pm 1.3 \cdot 10^{-6} \) |
\(a_{679}= -0.05538516 \pm 2.0 \cdot 10^{-6} \) | \(a_{680}= +0.77813262 \pm 1.4 \cdot 10^{-6} \) | \(a_{681}= -1.47869524 \pm 2.0 \cdot 10^{-6} \) |
\(a_{682}= -1.33766390 \pm 1.3 \cdot 10^{-6} \) | \(a_{683}= -1.34107596 \pm 2.1 \cdot 10^{-6} \) | \(a_{684}= -7.49935949 \pm 2.6 \cdot 10^{-6} \) |
\(a_{685}= +0.24128121 \pm 1.3 \cdot 10^{-6} \) | \(a_{686}= +1.97043500 \pm 2.1 \cdot 10^{-6} \) | \(a_{687}= -0.82546281 \pm 1.8 \cdot 10^{-6} \) |
\(a_{688}= +0.78561824 \pm 1.1 \cdot 10^{-6} \) | \(a_{689}= -0.25265591 \pm 2.1 \cdot 10^{-6} \) | \(a_{690}= -0.47146782 \pm 1.0 \cdot 10^{-6} \) |
\(a_{691}= +0.92302168 \pm 2.0 \cdot 10^{-6} \) | \(a_{692}= +0.39263424 \pm 2.7 \cdot 10^{-6} \) | \(a_{693}= -1.31022265 \pm 1.1 \cdot 10^{-6} \) |
\(a_{694}= -0.54078326 \pm 2.7 \cdot 10^{-6} \) | \(a_{695}= -0.11004215 \pm 1.8 \cdot 10^{-6} \) | \(a_{696}= -4.09813762 \pm 2.7 \cdot 10^{-6} \) |
\(a_{697}= +1.31738011 \pm 3.0 \cdot 10^{-6} \) | \(a_{698}= -3.41330204 \pm 3.3 \cdot 10^{-6} \) | \(a_{699}= +1.03275011 \pm 1.1 \cdot 10^{-6} \) |
\(a_{700}= +1.63404838 \pm 2.2 \cdot 10^{-6} \) | \(a_{701}= +1.65002898 \pm 2.0 \cdot 10^{-6} \) | \(a_{702}= -0.51962109 \pm 4.8 \cdot 10^{-6} \) |
\(a_{703}= +1.18284087 \pm 1.6 \cdot 10^{-6} \) | \(a_{704}= +2.26166226 \pm 1.3 \cdot 10^{-6} \) | \(a_{705}= +0.11858874 \pm 1.0 \cdot 10^{-6} \) |
\(a_{706}= +1.96659398 \pm 2.3 \cdot 10^{-6} \) | \(a_{707}= -0.52769660 \pm 1.7 \cdot 10^{-6} \) | \(a_{708}= +5.62042450 \pm 1.1 \cdot 10^{-6} \) |
\(a_{709}= -1.47087835 \pm 2.3 \cdot 10^{-6} \) | \(a_{710}= +0.16362456 \pm 1.9 \cdot 10^{-6} \) | \(a_{711}= +2.22760052 \pm 1.6 \cdot 10^{-6} \) |
\(a_{712}= +1.00075020 \pm 2.7 \cdot 10^{-6} \) | \(a_{713}= +0.38730954 \pm 1.2 \cdot 10^{-6} \) | \(a_{714}= -2.33366369 \pm 2.6 \cdot 10^{-6} \) |
\(a_{715}= -0.07897439 \pm 3.7 \cdot 10^{-6} \) | \(a_{716}= -3.51691700 \pm 2.9 \cdot 10^{-6} \) | \(a_{717}= -1.45303187 \pm 1.1 \cdot 10^{-6} \) |
\(a_{718}= +1.87983685 \pm 1.5 \cdot 10^{-6} \) | \(a_{719}= +0.18727712 \pm 1.4 \cdot 10^{-6} \) | \(a_{720}= -1.12317494 \pm 1.5 \cdot 10^{-6} \) |
\(a_{721}= -0.53985028 \pm 2.0 \cdot 10^{-6} \) | \(a_{722}= +4.41795320 \pm 4.1 \cdot 10^{-6} \) | \(a_{723}= +1.27307554 \pm 1.7 \cdot 10^{-6} \) |
\(a_{724}= -0.72355478 \pm 1.9 \cdot 10^{-6} \) | \(a_{725}= -0.82690129 \pm 1.5 \cdot 10^{-6} \) | \(a_{726}= -1.23292142 \pm 2.6 \cdot 10^{-6} \) |
\(a_{727}= -1.20622757 \pm 2.6 \cdot 10^{-6} \) | \(a_{728}= -0.54767939 \pm 4.5 \cdot 10^{-6} \) | \(a_{729}= -1.61878578 \pm 1.6 \cdot 10^{-6} \) |
\(a_{730}= -0.52468100 \pm 1.4 \cdot 10^{-6} \) | \(a_{731}= -0.30462457 \pm 1.2 \cdot 10^{-6} \) | \(a_{732}= +4.27294552 \pm 2.0 \cdot 10^{-6} \) |
\(a_{733}= -0.15285984 \pm 2.2 \cdot 10^{-6} \) | \(a_{734}= -1.90834761 \pm 2.8 \cdot 10^{-6} \) | \(a_{735}= -0.20678446 \pm 9.2 \cdot 10^{-7} \) |
\(a_{736}= -1.64807456 \pm 1.3 \cdot 10^{-6} \) | \(a_{737}= +0.97133510 \pm 1.3 \cdot 10^{-6} \) | \(a_{738}= -3.56780387 \pm 1.7 \cdot 10^{-6} \) |
\(a_{739}= +0.24518924 \pm 2.2 \cdot 10^{-6} \) | \(a_{740}= +0.39361076 \pm 1.3 \cdot 10^{-6} \) | \(a_{741}= +0.82100439 \pm 4.1 \cdot 10^{-6} \) |
\(a_{742}= +1.17145574 \pm 1.1 \cdot 10^{-6} \) | \(a_{743}= -0.05736160 \pm 1.6 \cdot 10^{-6} \) | \(a_{744}= +2.80247874 \pm 1.3 \cdot 10^{-6} \) |
\(a_{745}= -0.31210649 \pm 1.2 \cdot 10^{-6} \) | \(a_{746}= +1.94356799 \pm 2.2 \cdot 10^{-6} \) | \(a_{747}= +0.05881186 \pm 2.4 \cdot 10^{-6} \) |
\(a_{748}= -3.37263543 \pm 8.7 \cdot 10^{-7} \) | \(a_{749}= +0.08702710 \pm 2.0 \cdot 10^{-6} \) | \(a_{750}= -1.41882408 \pm 1.8 \cdot 10^{-6} \) |
\(a_{751}= +1.26705299 \pm 2.2 \cdot 10^{-6} \) | \(a_{752}= +0.88328696 \pm 2.1 \cdot 10^{-6} \) | \(a_{753}= -1.52554764 \pm 2.3 \cdot 10^{-6} \) |
\(a_{754}= +0.45763547 \pm 4.5 \cdot 10^{-6} \) | \(a_{755}= +0.17238075 \pm 1.4 \cdot 10^{-6} \) | \(a_{756}= +1.72782591 \pm 2.0 \cdot 10^{-6} \) |
\(a_{757}= -1.75909442 \pm 1.7 \cdot 10^{-6} \) | \(a_{758}= +0.65590605 \pm 2.6 \cdot 10^{-6} \) | \(a_{759}= +1.23755158 \pm 1.2 \cdot 10^{-6} \) |
\(a_{760}= +1.26927944 \pm 2.6 \cdot 10^{-6} \) | \(a_{761}= +1.41528678 \pm 2.3 \cdot 10^{-6} \) | \(a_{762}= +0.52862047 \pm 3.7 \cdot 10^{-6} \) |
\(a_{763}= +0.15168301 \pm 2.6 \cdot 10^{-6} \) | \(a_{764}= -2.35834279 \pm 4.3 \cdot 10^{-6} \) | \(a_{765}= +0.43551266 \pm 1.0 \cdot 10^{-6} \) |
\(a_{766}= -3.13092505 \pm 1.7 \cdot 10^{-6} \) | \(a_{767}= -0.38009988 \pm 1.7 \cdot 10^{-6} \) | \(a_{768}= -0.05815152 \pm 2.4 \cdot 10^{-6} \) |
\(a_{769}= +0.82208678 \pm 2.0 \cdot 10^{-6} \) | \(a_{770}= +0.36616995 \pm 1.0 \cdot 10^{-6} \) | \(a_{771}= +2.68013820 \pm 2.6 \cdot 10^{-6} \) |
\(a_{772}= -3.45330938 \pm 2.7 \cdot 10^{-6} \) | \(a_{773}= +0.28881629 \pm 1.6 \cdot 10^{-6} \) | \(a_{774}= +0.82500163 \pm 1.4 \cdot 10^{-6} \) |
\(a_{775}= +0.56546985 \pm 1.2 \cdot 10^{-6} \) | \(a_{776}= +0.23383151 \pm 3.0 \cdot 10^{-6} \) | \(a_{777}= -0.71490295 \pm 1.5 \cdot 10^{-6} \) |
\(a_{778}= -1.29466578 \pm 2.4 \cdot 10^{-6} \) | \(a_{779}= +2.14889268 \pm 1.9 \cdot 10^{-6} \) | \(a_{780}= +0.27320341 \pm 7.0 \cdot 10^{-6} \) |
\(a_{781}= -0.42949661 \pm 1.0 \cdot 10^{-6} \) | \(a_{782}= +1.36164465 \pm 1.4 \cdot 10^{-6} \) | \(a_{783}= -0.87435690 \pm 1.5 \cdot 10^{-6} \) |
\(a_{784}= -1.54019696 \pm 1.2 \cdot 10^{-6} \) | \(a_{785}= -0.14277962 \pm 1.6 \cdot 10^{-6} \) | \(a_{786}= -3.37299223 \pm 1.7 \cdot 10^{-6} \) |
\(a_{787}= -0.89572309 \pm 2.1 \cdot 10^{-6} \) | \(a_{788}= +2.21729548 \pm 3.6 \cdot 10^{-6} \) | \(a_{789}= -0.46881362 \pm 2.0 \cdot 10^{-6} \) |
\(a_{790}= -0.62255096 \pm 1.6 \cdot 10^{-6} \) | \(a_{791}= +0.95989902 \pm 1.0 \cdot 10^{-6} \) | \(a_{792}= +5.53165070 \pm 1.8 \cdot 10^{-6} \) |
\(a_{793}= -0.28897214 \pm 1.9 \cdot 10^{-6} \) | \(a_{794}= -2.16339180 \pm 2.6 \cdot 10^{-6} \) | \(a_{795}= -0.35390043 \pm 1.8 \cdot 10^{-6} \) |
\(a_{796}= +1.82896305 \pm 3.2 \cdot 10^{-6} \) | \(a_{797}= -0.22705191 \pm 1.5 \cdot 10^{-6} \) | \(a_{798}= -3.80664076 \pm 8.6 \cdot 10^{-7} \) |
\(a_{799}= -0.34249576 \pm 1.4 \cdot 10^{-6} \) | \(a_{800}= -2.40618000 \pm 2.0 \cdot 10^{-6} \) | \(a_{801}= +0.56010938 \pm 1.5 \cdot 10^{-6} \) |
\(a_{802}= +2.09977769 \pm 2.2 \cdot 10^{-6} \) | \(a_{803}= +1.37723038 \pm 8.6 \cdot 10^{-7} \) | \(a_{804}= -3.36022935 \pm 9.2 \cdot 10^{-7} \) |
\(a_{805}= -0.10602149 \pm 1.1 \cdot 10^{-6} \) | \(a_{806}= -0.31295037 \pm 4.1 \cdot 10^{-6} \) | \(a_{807}= -1.49124449 \pm 2.0 \cdot 10^{-6} \) |
\(a_{808}= +2.22789101 \pm 1.8 \cdot 10^{-6} \) | \(a_{809}= -1.55484711 \pm 1.5 \cdot 10^{-6} \) | \(a_{810}= +0.00201599 \pm 1.6 \cdot 10^{-6} \) |
\(a_{811}= +1.32546470 \pm 1.8 \cdot 10^{-6} \) | \(a_{812}= -1.52171349 \pm 3.3 \cdot 10^{-6} \) | \(a_{813}= -1.88255236 \pm 1.4 \cdot 10^{-6} \) |
\(a_{814}= -1.44065974 \pm 1.5 \cdot 10^{-6} \) | \(a_{815}= +0.21116613 \pm 2.0 \cdot 10^{-6} \) | \(a_{816}= +5.25111861 \pm 1.4 \cdot 10^{-6} \) |
\(a_{817}= -0.49689950 \pm 2.4 \cdot 10^{-6} \) | \(a_{818}= +2.67240501 \pm 2.3 \cdot 10^{-6} \) | \(a_{819}= -0.30653040 \pm 3.7 \cdot 10^{-6} \) |
\(a_{820}= +0.71508121 \pm 3.2 \cdot 10^{-6} \) | \(a_{821}= -0.14423913 \pm 1.3 \cdot 10^{-6} \) | \(a_{822}= +3.05504629 \pm 8.8 \cdot 10^{-7} \) |
\(a_{823}= -1.78158038 \pm 2.2 \cdot 10^{-6} \) | \(a_{824}= +2.27920285 \pm 2.1 \cdot 10^{-6} \) | \(a_{825}= +1.80681866 \pm 1.5 \cdot 10^{-6} \) |
\(a_{826}= +1.76235806 \pm 1.1 \cdot 10^{-6} \) | \(a_{827}= -0.48765548 \pm 2.4 \cdot 10^{-6} \) | \(a_{828}= -2.64466372 \pm 1.1 \cdot 10^{-6} \) |
\(a_{829}= -1.87624305 \pm 2.3 \cdot 10^{-6} \) | \(a_{830}= -0.01643624 \pm 2.1 \cdot 10^{-6} \) | \(a_{831}= -2.03164942 \pm 1.5 \cdot 10^{-6} \) |
\(a_{832}= +0.52912247 \pm 2.5 \cdot 10^{-6} \) | \(a_{833}= +0.59721353 \pm 1.1 \cdot 10^{-6} \) | \(a_{834}= -1.39332793 \pm 1.1 \cdot 10^{-6} \) |
\(a_{835}= +0.22696683 \pm 3.2 \cdot 10^{-6} \) | \(a_{836}= -5.50139746 \pm 1.0 \cdot 10^{-6} \) | \(a_{837}= +0.59792199 \pm 1.7 \cdot 10^{-6} \) |
\(a_{838}= +3.34525910 \pm 2.8 \cdot 10^{-6} \) | \(a_{839}= +0.33734955 \pm 2.2 \cdot 10^{-6} \) | \(a_{840}= -0.76714598 \pm 1.2 \cdot 10^{-6} \) |
\(a_{841}= -0.22994517 \pm 1.9 \cdot 10^{-6} \) | \(a_{842}= -2.18346091 \pm 2.6 \cdot 10^{-6} \) | \(a_{843}= +1.43491504 \pm 2.1 \cdot 10^{-6} \) |
\(a_{844}= +4.66380062 \pm 3.6 \cdot 10^{-6} \) | \(a_{845}= -0.01847629 \pm 2.2 \cdot 10^{-6} \) | \(a_{846}= +0.92756653 \pm 2.2 \cdot 10^{-6} \) |
\(a_{847}= -0.27725362 \pm 2.0 \cdot 10^{-6} \) | \(a_{848}= -2.63596380 \pm 1.2 \cdot 10^{-6} \) | \(a_{849}= +0.91334300 \pm 2.0 \cdot 10^{-6} \) |
\(a_{850}= +1.98799389 \pm 2.1 \cdot 10^{-6} \) | \(a_{851}= +0.41713114 \pm 1.4 \cdot 10^{-6} \) | \(a_{852}= +1.48579735 \pm 7.2 \cdot 10^{-7} \) |
\(a_{853}= -1.16356996 \pm 2.0 \cdot 10^{-6} \) | \(a_{854}= +1.33983830 \pm 2.6 \cdot 10^{-6} \) | \(a_{855}= +0.71040238 \pm 1.8 \cdot 10^{-6} \) |
\(a_{856}= -0.36742115 \pm 2.9 \cdot 10^{-6} \) | \(a_{857}= -1.30432734 \pm 2.0 \cdot 10^{-6} \) | \(a_{858}= -0.99995527 \pm 6.1 \cdot 10^{-6} \) |
\(a_{859}= -1.36917221 \pm 1.4 \cdot 10^{-6} \) | \(a_{860}= -0.16535190 \pm 1.2 \cdot 10^{-6} \) | \(a_{861}= -1.29877971 \pm 2.7 \cdot 10^{-6} \) |
\(a_{862}= +3.08236817 \pm 3.7 \cdot 10^{-6} \) | \(a_{863}= +1.43152218 \pm 2.0 \cdot 10^{-6} \) | \(a_{864}= -2.54426994 \pm 1.6 \cdot 10^{-6} \) |
\(a_{865}= -0.03719362 \pm 1.9 \cdot 10^{-6} \) | \(a_{866}= -0.66524086 \pm 1.8 \cdot 10^{-6} \) | \(a_{867}= -0.41871216 \pm 1.6 \cdot 10^{-6} \) |
\(a_{868}= +1.04061164 \pm 1.1 \cdot 10^{-6} \) | \(a_{869}= +1.63412833 \pm 1.5 \cdot 10^{-6} \) | \(a_{870}= +0.64101958 \pm 1.5 \cdot 10^{-6} \) |
\(a_{871}= +0.22724667 \pm 1.6 \cdot 10^{-6} \) | \(a_{872}= -0.64039300 \pm 2.9 \cdot 10^{-6} \) | \(a_{873}= +0.13087304 \pm 1.4 \cdot 10^{-6} \) |
\(a_{874}= +2.22109641 \pm 1.8 \cdot 10^{-6} \) | \(a_{875}= -0.31905855 \pm 2.2 \cdot 10^{-6} \) | \(a_{876}= -4.76438046 \pm 2.3 \cdot 10^{-6} \) |
\(a_{877}= -0.58624846 \pm 2.0 \cdot 10^{-6} \) | \(a_{878}= +3.22590155 \pm 2.1 \cdot 10^{-6} \) | \(a_{879}= +2.01163442 \pm 1.4 \cdot 10^{-6} \) |
\(a_{880}= -0.82394127 \pm 1.3 \cdot 10^{-6} \) | \(a_{881}= +1.02536515 \pm 1.8 \cdot 10^{-6} \) | \(a_{882}= -1.61740772 \pm 2.0 \cdot 10^{-6} \) |
\(a_{883}= -0.83513193 \pm 2.3 \cdot 10^{-6} \) | \(a_{884}= -0.78903788 \pm 4.7 \cdot 10^{-6} \) | \(a_{885}= -0.53241386 \pm 1.9 \cdot 10^{-6} \) |
\(a_{886}= -3.05721730 \pm 1.4 \cdot 10^{-6} \) | \(a_{887}= +0.06047571 \pm 1.7 \cdot 10^{-6} \) | \(a_{888}= +3.01826062 \pm 2.1 \cdot 10^{-6} \) |
\(a_{889}= +0.11887371 \pm 2.3 \cdot 10^{-6} \) | \(a_{890}= -0.15653463 \pm 2.1 \cdot 10^{-6} \) | \(a_{891}= -0.00529175 \pm 1.8 \cdot 10^{-6} \) |
\(a_{892}= -1.62783667 \pm 3.1 \cdot 10^{-6} \) | \(a_{893}= -0.55867447 \pm 1.6 \cdot 10^{-6} \) | \(a_{894}= -3.95181947 \pm 1.5 \cdot 10^{-6} \) |
\(a_{895}= +0.33315194 \pm 2.6 \cdot 10^{-6} \) | \(a_{896}= -0.70696834 \pm 3.0 \cdot 10^{-6} \) | \(a_{897}= +0.28952879 \pm 3.4 \cdot 10^{-6} \) |
\(a_{898}= -2.14822145 \pm 2.1 \cdot 10^{-6} \) | \(a_{899}= -0.52659586 \pm 8.5 \cdot 10^{-7} \) | \(a_{900}= -3.86119483 \pm 1.1 \cdot 10^{-6} \) |
\(a_{901}= +1.02209866 \pm 2.0 \cdot 10^{-6} \) | \(a_{902}= -2.61727781 \pm 1.4 \cdot 10^{-6} \) | \(a_{903}= +0.30032351 \pm 9.7 \cdot 10^{-7} \) |
\(a_{904}= -4.05261358 \pm 1.3 \cdot 10^{-6} \) | \(a_{905}= +0.06854119 \pm 1.9 \cdot 10^{-6} \) | \(a_{906}= +2.18264478 \pm 1.7 \cdot 10^{-6} \) |
\(a_{907}= -0.25117282 \pm 1.5 \cdot 10^{-6} \) | \(a_{908}= +2.31811338 \pm 2.1 \cdot 10^{-6} \) | \(a_{909}= +1.24692721 \pm 1.4 \cdot 10^{-6} \) |
\(a_{910}= +0.08566653 \pm 6.8 \cdot 10^{-6} \) | \(a_{911}= +0.17347042 \pm 2.2 \cdot 10^{-6} \) | \(a_{912}= +8.56555390 \pm 9.2 \cdot 10^{-7} \) |
\(a_{913}= +0.04314334 \pm 1.5 \cdot 10^{-6} \) | \(a_{914}= -0.04125439 \pm 3.0 \cdot 10^{-6} \) | \(a_{915}= -0.40476932 \pm 1.9 \cdot 10^{-6} \) |
\(a_{916}= +1.29405732 \pm 2.6 \cdot 10^{-6} \) | \(a_{917}= -0.75850277 \pm 1.4 \cdot 10^{-6} \) | \(a_{918}= +2.10208425 \pm 2.3 \cdot 10^{-6} \) |
\(a_{919}= -0.40877099 \pm 2.5 \cdot 10^{-6} \) | \(a_{920}= +0.44761386 \pm 1.6 \cdot 10^{-6} \) | \(a_{921}= +1.55034742 \pm 3.0 \cdot 10^{-6} \) |
\(a_{922}= -0.35137864 \pm 3.2 \cdot 10^{-6} \) | \(a_{923}= -0.10048198 \pm 1.6 \cdot 10^{-6} \) | \(a_{924}= +3.32501639 \pm 7.7 \cdot 10^{-7} \) |
\(a_{925}= +0.60900922 \pm 1.7 \cdot 10^{-6} \) | \(a_{926}= +2.14808508 \pm 3.0 \cdot 10^{-6} \) | \(a_{927}= +1.27564591 \pm 1.2 \cdot 10^{-6} \) |
\(a_{928}= +2.24076388 \pm 2.2 \cdot 10^{-6} \) | \(a_{929}= -1.34765104 \pm 1.6 \cdot 10^{-6} \) | \(a_{930}= -0.43835613 \pm 8.8 \cdot 10^{-7} \) |
\(a_{931}= +0.97416666 \pm 2.1 \cdot 10^{-6} \) | \(a_{932}= -1.61901641 \pm 2.4 \cdot 10^{-6} \) | \(a_{933}= -0.73966813 \pm 1.6 \cdot 10^{-6} \) |
\(a_{934}= -2.50941810 \pm 2.5 \cdot 10^{-6} \) | \(a_{935}= +0.31948438 \pm 7.9 \cdot 10^{-7} \) | \(a_{936}= +1.29414579 \pm 4.3 \cdot 10^{-6} \) |
\(a_{937}= -1.13288556 \pm 1.3 \cdot 10^{-6} \) | \(a_{938}= -1.05364413 \pm 2.3 \cdot 10^{-6} \) | \(a_{939}= -0.57024771 \pm 2.4 \cdot 10^{-6} \) |
\(a_{940}= -0.18590859 \pm 2.1 \cdot 10^{-6} \) | \(a_{941}= +1.93351919 \pm 2.2 \cdot 10^{-6} \) | \(a_{942}= -1.80784222 \pm 1.7 \cdot 10^{-6} \) |
\(a_{943}= +0.75781118 \pm 1.8 \cdot 10^{-6} \) | \(a_{944}= -3.96558907 \pm 1.5 \cdot 10^{-6} \) | \(a_{945}= -0.16367420 \pm 1.4 \cdot 10^{-6} \) |
\(a_{946}= +0.60520660 \pm 1.1 \cdot 10^{-6} \) | \(a_{947}= +0.56964427 \pm 1.9 \cdot 10^{-6} \) | \(a_{948}= -5.65309129 \pm 7.7 \cdot 10^{-7} \) |
\(a_{949}= +0.32220706 \pm 1.6 \cdot 10^{-6} \) | \(a_{950}= +3.24278883 \pm 1.0 \cdot 10^{-6} \) | \(a_{951}= +0.17032343 \pm 1.9 \cdot 10^{-6} \) |
\(a_{952}= +2.21559179 \pm 2.1 \cdot 10^{-6} \) | \(a_{953}= +0.09194089 \pm 2.0 \cdot 10^{-6} \) | \(a_{954}= -2.76810583 \pm 1.3 \cdot 10^{-6} \) |
\(a_{955}= +0.22340206 \pm 2.2 \cdot 10^{-6} \) | \(a_{956}= +2.27788156 \pm 2.0 \cdot 10^{-6} \) | \(a_{957}= -1.68260645 \pm 8.1 \cdot 10^{-7} \) |
\(a_{958}= +0.71547450 \pm 2.5 \cdot 10^{-6} \) | \(a_{959}= +0.68700457 \pm 1.2 \cdot 10^{-6} \) | \(a_{960}= +0.74115292 \pm 1.2 \cdot 10^{-6} \) |
\(a_{961}= -0.63989162 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.33704654 \pm 4.3 \cdot 10^{-6} \) | \(a_{963}= -0.20564176 \pm 1.3 \cdot 10^{-6} \) |
\(a_{964}= -1.99576854 \pm 2.9 \cdot 10^{-6} \) | \(a_{965}= +0.32712650 \pm 1.5 \cdot 10^{-6} \) | \(a_{966}= -1.34241927 \pm 1.3 \cdot 10^{-6} \) |
\(a_{967}= -0.02688457 \pm 2.7 \cdot 10^{-6} \) | \(a_{968}= +1.17054166 \pm 2.3 \cdot 10^{-6} \) | \(a_{969}= -3.32130553 \pm 1.2 \cdot 10^{-6} \) |
\(a_{970}= -0.03657529 \pm 1.6 \cdot 10^{-6} \) | \(a_{971}= -1.01619071 \pm 1.7 \cdot 10^{-6} \) | \(a_{972}= +2.54472751 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -0.31332509 \pm 1.4 \cdot 10^{-6} \) | \(a_{974}= -0.62072448 \pm 3.4 \cdot 10^{-6} \) | \(a_{975}= +0.42271049 \pm 4.4 \cdot 10^{-6} \) |
\(a_{976}= -3.01485164 \pm 1.4 \cdot 10^{-6} \) | \(a_{977}= +0.03143742 \pm 2.2 \cdot 10^{-6} \) | \(a_{978}= +2.67373622 \pm 2.1 \cdot 10^{-6} \) |
\(a_{979}= +0.41088633 \pm 1.2 \cdot 10^{-6} \) | \(a_{980}= +0.32417081 \pm 1.9 \cdot 10^{-6} \) | \(a_{981}= -0.35842124 \pm 1.4 \cdot 10^{-6} \) |
\(a_{982}= +1.02072917 \pm 2.0 \cdot 10^{-6} \) | \(a_{983}= +1.22224388 \pm 2.0 \cdot 10^{-6} \) | \(a_{984}= +5.48333955 \pm 3.7 \cdot 10^{-6} \) |
\(a_{985}= -0.21004087 \pm 1.5 \cdot 10^{-6} \) | \(a_{986}= -1.85132654 \pm 3.2 \cdot 10^{-6} \) | \(a_{987}= +0.33765998 \pm 1.0 \cdot 10^{-6} \) |
\(a_{988}= -1.28706795 \pm 4.9 \cdot 10^{-6} \) | \(a_{989}= -0.17523258 \pm 1.5 \cdot 10^{-6} \) | \(a_{990}= -0.86524581 \pm 1.1 \cdot 10^{-6} \) |
\(a_{991}= -0.76422248 \pm 1.6 \cdot 10^{-6} \) | \(a_{992}= -1.53232851 \pm 1.2 \cdot 10^{-6} \) | \(a_{993}= -2.34827319 \pm 2.1 \cdot 10^{-6} \) |
\(a_{994}= +0.46589131 \pm 2.4 \cdot 10^{-6} \) | \(a_{995}= -0.17325476 \pm 2.4 \cdot 10^{-6} \) | \(a_{996}= -0.14924974 \pm 3.1 \cdot 10^{-6} \) |
\(a_{997}= -1.50375448 \pm 1.4 \cdot 10^{-6} \) | \(a_{998}= -0.18344136 \pm 2.7 \cdot 10^{-6} \) | \(a_{999}= +0.64396007 \pm 1.9 \cdot 10^{-6} \) |
\(a_{1000}= +1.34703856 \pm 2.3 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000