Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(13.990151114539748168779049836 \pm 6 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.98255203 \pm 1.6 \cdot 10^{-3} \) | \(a_{3}= -1.45695237 \pm 1.5 \cdot 10^{-3} \) |
\(a_{4}= -0.03459151 \pm 1.4 \cdot 10^{-3} \) | \(a_{5}= -1.49462642 \pm 1.3 \cdot 10^{-3} \) | \(a_{6}= +1.43153151 \pm 1.7 \cdot 10^{-3} \) |
\(a_{7}= +1.71204737 \pm 1.4 \cdot 10^{-3} \) | \(a_{8}= +1.01653999 \pm 1.2 \cdot 10^{-3} \) | \(a_{9}= +1.12271021 \pm 1.5 \cdot 10^{-3} \) |
\(a_{10}= +1.46854822 \pm 1.5 \cdot 10^{-3} \) | \(a_{11}= -0.83527788 \pm 1.3 \cdot 10^{-3} \) | \(a_{12}= +0.05039818 \pm 1.5 \cdot 10^{-3} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= -1.68217561 \pm 1.5 \cdot 10^{-3} \) | \(a_{15}= +2.17759950 \pm 1.6 \cdot 10^{-3} \) |
\(a_{16}= -0.96421192 \pm 1.2 \cdot 10^{-3} \) | \(a_{17}= -1.15806476 \pm 1.4 \cdot 10^{-3} \) | \(a_{18}= -1.10312119 \pm 1.7 \cdot 10^{-3} \) |
\(a_{19}= +1.00443703 \pm 1.1 \cdot 10^{-3} \) | \(a_{20}= +0.05170139 \pm 1.4 \cdot 10^{-3} \) | \(a_{21}= -2.49437147 \pm 1.2 \cdot 10^{-3} \) |
\(a_{22}= +0.82070397 \pm 1.4 \cdot 10^{-3} \) | \(a_{23}= -0.93441880 \pm 1.1 \cdot 10^{-3} \) | \(a_{24}= -1.48105034 \pm 1.1 \cdot 10^{-3} \) |
\(a_{25}= +1.23390814 \pm 1.0 \cdot 10^{-3} \) | \(a_{26}= -0.27251090 \pm 1.6 \cdot 10^{-3} \) | \(a_{27}= -0.17878293 \pm 1.2 \cdot 10^{-3} \) |
\(a_{28}= -0.05922231 \pm 1.3 \cdot 10^{-3} \) | \(a_{29}= +0.02523085 \pm 1.0 \cdot 10^{-3} \) | \(a_{30}= -2.13960481 \pm 2.0 \cdot 10^{-3} \) |
\(a_{31}= -0.96065549 \pm 1.5 \cdot 10^{-3} \) | \(a_{32}= -0.06915161 \pm 1.6 \cdot 10^{-3} \) | \(a_{33}= +1.21696008 \pm 1.1 \cdot 10^{-3} \) |
\(a_{34}= +1.13785888 \pm 1.5 \cdot 10^{-3} \) | \(a_{35}= -2.55887123 \pm 1.1 \cdot 10^{-3} \) | \(a_{36}= -0.03883624 \pm 1.4 \cdot 10^{-3} \) |
\(a_{37}= -0.16346245 \pm 1.7 \cdot 10^{-3} \) | \(a_{38}= -0.98691164 \pm 1.1 \cdot 10^{-3} \) | \(a_{39}= -0.40408588 \pm 1.5 \cdot 10^{-3} \) |
\(a_{40}= -1.51934752 \pm 1.2 \cdot 10^{-3} \) | \(a_{41}= -0.85362131 \pm 1.2 \cdot 10^{-3} \) | \(a_{42}= +2.45084974 \pm 1.0 \cdot 10^{-3} \) |
\(a_{43}= +0.31238335 \pm 1.4 \cdot 10^{-3} \) | \(a_{44}= +0.02889352 \pm 1.3 \cdot 10^{-3} \) | \(a_{45}= -1.67803234 \pm 1.5 \cdot 10^{-3} \) |
\(a_{46}= +0.91811508 \pm 1.5 \cdot 10^{-3} \) | \(a_{47}= -0.51211644 \pm 1.4 \cdot 10^{-3} \) | \(a_{48}= +1.40481084 \pm 1.4 \cdot 10^{-3} \) |
\(a_{49}= +1.93110618 \pm 1.2 \cdot 10^{-3} \) | \(a_{50}= -1.21237894 \pm 1.2 \cdot 10^{-3} \) | \(a_{51}= +1.68724519 \pm 1.6 \cdot 10^{-3} \) |
\(a_{52}= -0.00959396 \pm 1.4 \cdot 10^{-3} \) | \(a_{53}= -1.27738153 \pm 1.0 \cdot 10^{-3} \) | \(a_{54}= +0.17566353 \pm 1.4 \cdot 10^{-3} \) |
\(a_{55}= +1.24842838 \pm 9.4 \cdot 10^{-4} \) | \(a_{56}= +1.74036461 \pm 1.0 \cdot 10^{-3} \) | \(a_{57}= -1.46341691 \pm 1.1 \cdot 10^{-3} \) |
\(a_{58}= -0.02479062 \pm 1.0 \cdot 10^{-3} \) | \(a_{59}= +1.25718691 \pm 1.3 \cdot 10^{-3} \) | \(a_{60}= -0.07532646 \pm 1.6 \cdot 10^{-3} \) |
\(a_{61}= -1.29971039 \pm 1.2 \cdot 10^{-3} \) | \(a_{62}= +0.94389400 \pm 1.3 \cdot 10^{-3} \) | \(a_{63}= +1.92213305 \pm 1.0 \cdot 10^{-3} \) |
\(a_{64}= +1.03215697 \pm 1.3 \cdot 10^{-3} \) | \(a_{65}= -0.41453478 \pm 1.3 \cdot 10^{-3} \) | \(a_{66}= -1.19572660 \pm 1.2 \cdot 10^{-3} \) |
\(a_{67}= +0.60395985 \pm 1.4 \cdot 10^{-3} \) | \(a_{68}= +0.04005921 \pm 1.2 \cdot 10^{-3} \) | \(a_{69}= +1.36140368 \pm 1.4 \cdot 10^{-3} \) |
\(a_{70}= +2.51422411 \pm 1.1 \cdot 10^{-3} \) | \(a_{71}= -0.85928005 \pm 1.5 \cdot 10^{-3} \) | \(a_{72}= +1.14127982 \pm 1.2 \cdot 10^{-3} \) |
\(a_{73}= -1.25856711 \pm 1.6 \cdot 10^{-3} \) | \(a_{74}= +0.16061036 \pm 1.6 \cdot 10^{-3} \) | \(a_{75}= -1.79774538 \pm 8.5 \cdot 10^{-4} \) |
\(a_{76}= -0.03474499 \pm 1.0 \cdot 10^{-3} \) | \(a_{77}= -1.43003529 \pm 1.3 \cdot 10^{-3} \) | \(a_{78}= +0.39703540 \pm 3.1 \cdot 10^{-3} \) |
\(a_{79}= +0.15892727 \pm 1.5 \cdot 10^{-3} \) | \(a_{80}= +1.44113660 \pm 1.1 \cdot 10^{-3} \) | \(a_{81}= -0.86223200 \pm 1.2 \cdot 10^{-3} \) |
\(a_{82}= +0.83872735 \pm 1.4 \cdot 10^{-3} \) | \(a_{83}= -0.65020784 \pm 9.3 \cdot 10^{-4} \) | \(a_{84}= +0.08628408 \pm 1.1 \cdot 10^{-3} \) |
\(a_{85}= +1.73087418 \pm 1.3 \cdot 10^{-3} \) | \(a_{86}= -0.30693289 \pm 1.7 \cdot 10^{-3} \) | \(a_{87}= -0.03676014 \pm 1.0 \cdot 10^{-3} \) |
\(a_{88}= -0.84909336 \pm 1.0 \cdot 10^{-3} \) | \(a_{89}= +0.48200352 \pm 1.8 \cdot 10^{-3} \) | \(a_{90}= +1.64875408 \pm 1.8 \cdot 10^{-3} \) |
\(a_{91}= +0.47483650 \pm 1.4 \cdot 10^{-3} \) | \(a_{92}= +0.03232296 \pm 1.3 \cdot 10^{-3} \) | \(a_{93}= +1.39962930 \pm 1.6 \cdot 10^{-3} \) |
\(a_{94}= +0.50318105 \pm 1.2 \cdot 10^{-3} \) | \(a_{95}= -1.50125812 \pm 1.0 \cdot 10^{-3} \) | \(a_{96}= +0.10075061 \pm 1.7 \cdot 10^{-3} \) |
\(a_{97}= -1.65867608 \pm 1.4 \cdot 10^{-3} \) | \(a_{98}= -1.89741230 \pm 1.5 \cdot 10^{-3} \) | \(a_{99}= -0.93777500 \pm 1.1 \cdot 10^{-3} \) |
\(a_{100}= -0.04268275 \pm 1.1 \cdot 10^{-3} \) | \(a_{101}= -0.05101697 \pm 1.0 \cdot 10^{-3} \) | \(a_{102}= -1.65780619 \pm 1.7 \cdot 10^{-3} \) |
\(a_{103}= +0.88030999 \pm 1.5 \cdot 10^{-3} \) | \(a_{104}= +0.28193747 \pm 1.2 \cdot 10^{-3} \) | \(a_{105}= +3.72815349 \pm 1.1 \cdot 10^{-3} \) |
\(a_{106}= +1.25509381 \pm 1.3 \cdot 10^{-3} \) | \(a_{107}= +0.38085999 \pm 1.6 \cdot 10^{-3} \) | \(a_{108}= +0.00618437 \pm 1.3 \cdot 10^{-3} \) |
\(a_{109}= -0.57455500 \pm 1.0 \cdot 10^{-3} \) | \(a_{110}= -1.22664584 \pm 1.0 \cdot 10^{-3} \) | \(a_{111}= +0.23815700 \pm 9.7 \cdot 10^{-4} \) |
\(a_{112}= -1.65077647 \pm 1.2 \cdot 10^{-3} \) | \(a_{113}= -1.57483919 \pm 1.8 \cdot 10^{-3} \) | \(a_{114}= +1.43788325 \pm 1.2 \cdot 10^{-3} \) |
\(a_{115}= +1.39660702 \pm 1.2 \cdot 10^{-3} \) | \(a_{116}= -0.00087277 \pm 1.1 \cdot 10^{-3} \) | \(a_{117}= +0.31138379 \pm 1.5 \cdot 10^{-3} \) |
\(a_{118}= -1.23525155 \pm 1.4 \cdot 10^{-3} \) | \(a_{119}= -1.98266172 \pm 1.5 \cdot 10^{-3} \) | \(a_{120}= +2.21361697 \pm 1.2 \cdot 10^{-3} \) |
\(a_{121}= -0.30231087 \pm 9.5 \cdot 10^{-4} \) | \(a_{122}= +1.27703308 \pm 1.1 \cdot 10^{-3} \) | \(a_{123}= +1.24368559 \pm 1.4 \cdot 10^{-3} \) |
\(a_{124}= +0.03323053 \pm 1.3 \cdot 10^{-3} \) | \(a_{125}= -0.34960528 \pm 1.1 \cdot 10^{-3} \) | \(a_{126}= -1.88859573 \pm 1.1 \cdot 10^{-3} \) |
\(a_{127}= +1.34805145 \pm 1.5 \cdot 10^{-3} \) | \(a_{128}= -0.94499632 \pm 1.2 \cdot 10^{-3} \) | \(a_{129}= -0.45512766 \pm 1.5 \cdot 10^{-3} \) |
\(a_{130}= +0.40730199 \pm 2.9 \cdot 10^{-3} \) | \(a_{131}= -0.08767740 \pm 1.2 \cdot 10^{-3} \) | \(a_{132}= -0.04209649 \pm 1.2 \cdot 10^{-3} \) |
\(a_{133}= +1.71964377 \pm 8.8 \cdot 10^{-4} \) | \(a_{134}= -0.59342197 \pm 1.7 \cdot 10^{-3} \) | \(a_{135}= +0.26721368 \pm 1.1 \cdot 10^{-3} \) |
\(a_{136}= -1.17721913 \pm 8.8 \cdot 10^{-4} \) | \(a_{137}= -0.90362320 \pm 1.4 \cdot 10^{-3} \) | \(a_{138}= -1.33764995 \pm 1.7 \cdot 10^{-3} \) |
\(a_{139}= +0.51553427 \pm 1.3 \cdot 10^{-3} \) | \(a_{140}= +0.08851522 \pm 1.1 \cdot 10^{-3} \) | \(a_{141}= +0.74612926 \pm 1.1 \cdot 10^{-3} \) |
\(a_{142}= +0.84428735 \pm 1.5 \cdot 10^{-3} \) | \(a_{143}= -0.23166440 \pm 1.3 \cdot 10^{-3} \) | \(a_{144}= -1.08253056 \pm 1.3 \cdot 10^{-3} \) |
\(a_{145}= -0.03771069 \pm 1.0 \cdot 10^{-3} \) | \(a_{146}= +1.23660767 \pm 1.5 \cdot 10^{-3} \) | \(a_{147}= -2.81352973 \pm 1.3 \cdot 10^{-3} \) |
\(a_{148}= +0.00565441 \pm 1.5 \cdot 10^{-3} \) | \(a_{149}= +1.66628248 \pm 1.3 \cdot 10^{-3} \) | \(a_{150}= +1.76637837 \pm 1.0 \cdot 10^{-3} \) |
\(a_{151}= -1.39197725 \pm 1.0 \cdot 10^{-3} \) | \(a_{152}= +1.02105040 \pm 9.8 \cdot 10^{-4} \) | \(a_{153}= -1.30017112 \pm 1.3 \cdot 10^{-3} \) |
\(a_{154}= +1.40508407 \pm 1.6 \cdot 10^{-3} \) | \(a_{155}= +1.43582108 \pm 1.4 \cdot 10^{-3} \) | \(a_{156}= +0.01397794 \pm 3.0 \cdot 10^{-3} \) |
\(a_{157}= -0.08382056 \pm 1.6 \cdot 10^{-3} \) | \(a_{158}= -0.15615431 \pm 1.3 \cdot 10^{-3} \) | \(a_{159}= +1.86108404 \pm 1.0 \cdot 10^{-3} \) |
\(a_{160}= +0.10335583 \pm 1.4 \cdot 10^{-3} \) | \(a_{161}= -1.59976924 \pm 1.0 \cdot 10^{-3} \) | \(a_{162}= +0.84718780 \pm 1.2 \cdot 10^{-3} \) |
\(a_{163}= -1.73758929 \pm 1.7 \cdot 10^{-3} \) | \(a_{164}= +0.02952805 \pm 1.3 \cdot 10^{-3} \) | \(a_{165}= -1.81890069 \pm 1.0 \cdot 10^{-3} \) |
\(a_{166}= +0.63886303 \pm 9.4 \cdot 10^{-4} \) | \(a_{167}= +1.51577215 \pm 1.6 \cdot 10^{-3} \) | \(a_{168}= -2.53562834 \pm 1.0 \cdot 10^{-3} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= -1.70067394 \pm 1.4 \cdot 10^{-3} \) | \(a_{171}= +1.12769170 \pm 1.3 \cdot 10^{-3} \) |
\(a_{172}= -0.01080581 \pm 1.4 \cdot 10^{-3} \) | \(a_{173}= +0.03236480 \pm 1.7 \cdot 10^{-3} \) | \(a_{174}= +0.03611875 \pm 7.9 \cdot 10^{-4} \) |
\(a_{175}= +2.11250917 \pm 1.1 \cdot 10^{-3} \) | \(a_{176}= +0.80538488 \pm 1.0 \cdot 10^{-3} \) | \(a_{177}= -1.83166144 \pm 1.2 \cdot 10^{-3} \) |
\(a_{178}= -0.47359354 \pm 2.0 \cdot 10^{-3} \) | \(a_{179}= +0.15409917 \pm 1.1 \cdot 10^{-3} \) | \(a_{180}= +0.05804567 \pm 1.4 \cdot 10^{-3} \) |
\(a_{181}= -0.45389077 \pm 1.4 \cdot 10^{-3} \) | \(a_{182}= -0.46655157 \pm 3.0 \cdot 10^{-3} \) | \(a_{183}= +1.89361613 \pm 1.2 \cdot 10^{-3} \) |
\(a_{184}= -0.94987407 \pm 9.7 \cdot 10^{-4} \) | \(a_{185}= +0.24431530 \pm 1.2 \cdot 10^{-3} \) | \(a_{186}= -1.37520861 \pm 1.6 \cdot 10^{-3} \) |
\(a_{187}= +0.96730587 \pm 1.1 \cdot 10^{-3} \) | \(a_{188}= +0.01771488 \pm 1.3 \cdot 10^{-3} \) | \(a_{189}= -0.30608484 \pm 1.0 \cdot 10^{-3} \) |
\(a_{190}= +1.47506421 \pm 1.1 \cdot 10^{-3} \) | \(a_{191}= +0.67503504 \pm 1.3 \cdot 10^{-3} \) | \(a_{192}= -1.50380355 \pm 1.4 \cdot 10^{-3} \) |
\(a_{193}= -1.52155238 \pm 1.5 \cdot 10^{-3} \) | \(a_{194}= +1.62973554 \pm 1.4 \cdot 10^{-3} \) | \(a_{195}= +0.60395744 \pm 2.9 \cdot 10^{-3} \) |
\(a_{196}= -0.06679988 \pm 1.1 \cdot 10^{-3} \) | \(a_{197}= +1.34634682 \pm 1.3 \cdot 10^{-3} \) | \(a_{198}= +0.92141273 \pm 1.2 \cdot 10^{-3} \) |
\(a_{199}= -0.14934734 \pm 1.4 \cdot 10^{-3} \) | \(a_{200}= +1.25431696 \pm 8.6 \cdot 10^{-4} \) | \(a_{201}= -0.87994073 \pm 1.8 \cdot 10^{-3} \) |
\(a_{202}= +0.05012683 \pm 1.2 \cdot 10^{-3} \) | \(a_{203}= +0.04319640 \pm 1.2 \cdot 10^{-3} \) | \(a_{204}= -0.05836436 \pm 1.5 \cdot 10^{-3} \) |
\(a_{205}= +1.27584496 \pm 1.1 \cdot 10^{-3} \) | \(a_{206}= -0.86495037 \pm 1.7 \cdot 10^{-3} \) | \(a_{207}= -1.04908152 \pm 1.4 \cdot 10^{-3} \) |
\(a_{208}= -0.26742427 \pm 1.2 \cdot 10^{-3} \) | \(a_{209}= -0.83898403 \pm 9.7 \cdot 10^{-4} \) | \(a_{210}= -3.66310478 \pm 7.8 \cdot 10^{-4} \) |
\(a_{211}= +0.30491940 \pm 1.6 \cdot 10^{-3} \) | \(a_{212}= +0.04418656 \pm 1.1 \cdot 10^{-3} \) | \(a_{213}= +1.25193010 \pm 1.6 \cdot 10^{-3} \) |
\(a_{214}= -0.37421475 \pm 1.8 \cdot 10^{-3} \) | \(a_{215}= -0.46689640 \pm 1.3 \cdot 10^{-3} \) | \(a_{216}= -0.18173999 \pm 9.8 \cdot 10^{-4} \) |
\(a_{217}= -1.64468771 \pm 1.3 \cdot 10^{-3} \) | \(a_{218}= +0.56453018 \pm 1.1 \cdot 10^{-3} \) | \(a_{219}= +1.83367233 \pm 1.7 \cdot 10^{-3} \) |
\(a_{220}= -0.04318502 \pm 1.0 \cdot 10^{-3} \) | \(a_{221}= -0.32118937 \pm 1.4 \cdot 10^{-3} \) | \(a_{222}= -0.23400165 \pm 1.0 \cdot 10^{-3} \) |
\(a_{223}= +0.65651658 \pm 1.4 \cdot 10^{-3} \) | \(a_{224}= -0.11839084 \pm 1.4 \cdot 10^{-3} \) | \(a_{225}= +1.38532126 \pm 9.0 \cdot 10^{-4} \) |
\(a_{226}= +1.54736144 \pm 1.9 \cdot 10^{-3} \) | \(a_{227}= -1.37073382 \pm 1.1 \cdot 10^{-3} \) | \(a_{228}= +0.05062180 \pm 9.4 \cdot 10^{-4} \) |
\(a_{229}= -0.72232896 \pm 1.4 \cdot 10^{-3} \) | \(a_{230}= -1.37223906 \pm 1.5 \cdot 10^{-3} \) | \(a_{231}= +2.08349330 \pm 1.0 \cdot 10^{-3} \) |
\(a_{232}= +0.02564816 \pm 9.2 \cdot 10^{-4} \) | \(a_{233}= +0.34706725 \pm 1.8 \cdot 10^{-3} \) | \(a_{234}= -0.30595077 \pm 3.1 \cdot 10^{-3} \) |
\(a_{235}= +0.76542276 \pm 1.0 \cdot 10^{-3} \) | \(a_{236}= -0.04348799 \pm 1.3 \cdot 10^{-3} \) | \(a_{237}= -0.23154946 \pm 1.4 \cdot 10^{-3} \) |
\(a_{238}= +1.94806829 \pm 1.5 \cdot 10^{-3} \) | \(a_{239}= -0.28134110 \pm 1.3 \cdot 10^{-3} \) | \(a_{240}= -2.09966739 \pm 1.5 \cdot 10^{-3} \) |
\(a_{241}= +1.32384969 \pm 1.1 \cdot 10^{-3} \) | \(a_{242}= +0.29703616 \pm 1.1 \cdot 10^{-3} \) | \(a_{243}= +1.43501388 \pm 1.5 \cdot 10^{-3} \) |
\(a_{244}= +0.04495895 \pm 1.0 \cdot 10^{-3} \) | \(a_{245}= -2.88628232 \pm 1.2 \cdot 10^{-3} \) | \(a_{246}= -1.22198580 \pm 1.9 \cdot 10^{-3} \) |
\(a_{247}= +0.27858071 \pm 1.1 \cdot 10^{-3} \) | \(a_{248}= -0.97654472 \pm 1.1 \cdot 10^{-3} \) | \(a_{249}= +0.94732185 \pm 8.3 \cdot 10^{-4} \) |
\(a_{250}= +0.34350538 \pm 8.6 \cdot 10^{-4} \) | \(a_{251}= +1.18865581 \pm 1.6 \cdot 10^{-3} \) | \(a_{252}= -0.06648949 \pm 9.4 \cdot 10^{-4} \) |
\(a_{253}= +0.78049935 \pm 1.1 \cdot 10^{-3} \) | \(a_{254}= -1.32453069 \pm 1.6 \cdot 10^{-3} \) | \(a_{255}= -2.52180124 \pm 1.8 \cdot 10^{-3} \) |
\(a_{256}= -0.10364893 \pm 1.3 \cdot 10^{-3} \) | \(a_{257}= +1.01961306 \pm 1.6 \cdot 10^{-3} \) | \(a_{258}= +0.44718660 \pm 2.0 \cdot 10^{-3} \) |
\(a_{259}= -0.27985546 \pm 1.5 \cdot 10^{-3} \) | \(a_{260}= +0.01433938 \pm 2.8 \cdot 10^{-3} \) | \(a_{261}= +0.02832693 \pm 7.3 \cdot 10^{-4} \) |
\(a_{262}= +0.08614761 \pm 1.5 \cdot 10^{-3} \) | \(a_{263}= +1.06295074 \pm 1.4 \cdot 10^{-3} \) | \(a_{264}= +1.23708859 \pm 1.0 \cdot 10^{-3} \) |
\(a_{265}= +1.90920818 \pm 9.1 \cdot 10^{-4} \) | \(a_{266}= -1.68963947 \pm 9.9 \cdot 10^{-4} \) | \(a_{267}= -0.70225618 \pm 1.7 \cdot 10^{-3} \) |
\(a_{268}= -0.02089188 \pm 1.5 \cdot 10^{-3} \) | \(a_{269}= -0.38493707 \pm 1.6 \cdot 10^{-3} \) | \(a_{270}= -0.26255135 \pm 1.3 \cdot 10^{-3} \) |
\(a_{271}= -0.58643499 \pm 1.3 \cdot 10^{-3} \) | \(a_{272}= +1.11661984 \pm 1.2 \cdot 10^{-3} \) | \(a_{273}= -0.69181417 \pm 2.9 \cdot 10^{-3} \) |
\(a_{274}= +0.88785681 \pm 1.4 \cdot 10^{-3} \) | \(a_{275}= -1.03065617 \pm 1.0 \cdot 10^{-3} \) | \(a_{276}= -0.04709301 \pm 1.2 \cdot 10^{-3} \) |
\(a_{277}= +0.37442226 \pm 1.4 \cdot 10^{-3} \) | \(a_{278}= -0.50653924 \pm 1.2 \cdot 10^{-3} \) | \(a_{279}= -1.07853773 \pm 1.4 \cdot 10^{-3} \) |
\(a_{280}= -2.60119493 \pm 1.0 \cdot 10^{-3} \) | \(a_{281}= +0.13117634 \pm 2.1 \cdot 10^{-3} \) | \(a_{282}= -0.73311082 \pm 1.3 \cdot 10^{-3} \) |
\(a_{283}= +1.33400448 \pm 1.1 \cdot 10^{-3} \) | \(a_{284}= +0.02972380 \pm 1.3 \cdot 10^{-3} \) | \(a_{285}= +2.18726157 \pm 1.2 \cdot 10^{-3} \) |
\(a_{286}= +0.22762233 \pm 2.9 \cdot 10^{-3} \) | \(a_{287}= -1.46144011 \pm 7.0 \cdot 10^{-4} \) | \(a_{288}= -0.07763722 \pm 1.6 \cdot 10^{-3} \) |
\(a_{289}= +0.34111398 \pm 1.1 \cdot 10^{-3} \) | \(a_{290}= +0.03705271 \pm 1.0 \cdot 10^{-3} \) | \(a_{291}= +2.41661204 \pm 1.4 \cdot 10^{-3} \) |
\(a_{292}= +0.04353574 \pm 1.5 \cdot 10^{-3} \) | \(a_{293}= +0.54382006 \pm 1.2 \cdot 10^{-3} \) | \(a_{294}= +2.76443934 \pm 1.7 \cdot 10^{-3} \) |
\(a_{295}= -1.87902477 \pm 1.1 \cdot 10^{-3} \) | \(a_{296}= -0.16616612 \pm 1.5 \cdot 10^{-3} \) | \(a_{297}= +0.14933342 \pm 1.1 \cdot 10^{-3} \) |
\(a_{298}= -1.63720923 \pm 1.4 \cdot 10^{-3} \) | \(a_{299}= -0.25916114 \pm 1.1 \cdot 10^{-3} \) | \(a_{300}= +0.06218673 \pm 1.0 \cdot 10^{-3} \) |
\(a_{301}= +0.53481509 \pm 1.1 \cdot 10^{-3} \) | \(a_{302}= +1.36769007 \pm 1.0 \cdot 10^{-3} \) | \(a_{303}= +0.07432930 \pm 1.2 \cdot 10^{-3} \) |
\(a_{304}= -0.96849015 \pm 9.1 \cdot 10^{-4} \) | \(a_{305}= +1.94258149 \pm 1.0 \cdot 10^{-3} \) | \(a_{306}= +1.27748577 \pm 1.6 \cdot 10^{-3} \) |
\(a_{307}= +0.45996397 \pm 1.0 \cdot 10^{-3} \) | \(a_{308}= +0.04946708 \pm 1.4 \cdot 10^{-3} \) | \(a_{309}= -1.28256972 \pm 1.7 \cdot 10^{-3} \) |
\(a_{310}= -1.41076892 \pm 1.4 \cdot 10^{-3} \) | \(a_{311}= +0.01326491 \pm 1.8 \cdot 10^{-3} \) | \(a_{312}= -0.41076946 \pm 2.7 \cdot 10^{-3} \) |
\(a_{313}= +0.92183442 \pm 1.0 \cdot 10^{-3} \) | \(a_{314}= +0.08235807 \pm 1.5 \cdot 10^{-3} \) | \(a_{315}= -2.87287084 \pm 8.7 \cdot 10^{-4} \) |
\(a_{316}= -0.00549753 \pm 1.3 \cdot 10^{-3} \) | \(a_{317}= -0.33224440 \pm 1.3 \cdot 10^{-3} \) | \(a_{318}= -1.82861190 \pm 1.4 \cdot 10^{-3} \) |
\(a_{319}= -0.02107477 \pm 8.5 \cdot 10^{-4} \) | \(a_{320}= -1.54268908 \pm 1.3 \cdot 10^{-3} \) | \(a_{321}= -0.55489486 \pm 1.5 \cdot 10^{-3} \) |
\(a_{322}= +1.57185651 \pm 1.5 \cdot 10^{-3} \) | \(a_{323}= -1.16320312 \pm 8.5 \cdot 10^{-4} \) | \(a_{324}= +0.02982591 \pm 1.2 \cdot 10^{-3} \) |
\(a_{325}= +0.34222454 \pm 1.0 \cdot 10^{-3} \) | \(a_{326}= +1.70727188 \pm 1.2 \cdot 10^{-3} \) | \(a_{327}= +0.83709927 \pm 1.2 \cdot 10^{-3} \) |
\(a_{328}= -0.86774019 \pm 6.1 \cdot 10^{-4} \) | \(a_{329}= -0.87676760 \pm 1.0 \cdot 10^{-3} \) | \(a_{330}= +1.78716456 \pm 1.1 \cdot 10^{-3} \) |
\(a_{331}= +0.36280980 \pm 1.6 \cdot 10^{-3} \) | \(a_{332}= +0.02249167 \pm 8.6 \cdot 10^{-4} \) | \(a_{333}= -0.18352096 \pm 1.5 \cdot 10^{-3} \) |
\(a_{334}= -1.48932500 \pm 1.6 \cdot 10^{-3} \) | \(a_{335}= -0.90269434 \pm 1.5 \cdot 10^{-3} \) | \(a_{336}= +2.40510269 \pm 8.7 \cdot 10^{-4} \) |
\(a_{337}= -0.46539306 \pm 1.5 \cdot 10^{-3} \) | \(a_{338}= -0.07558093 \pm 1.6 \cdot 10^{-3} \) | \(a_{339}= +2.29446569 \pm 1.9 \cdot 10^{-3} \) |
\(a_{340}= -0.05987355 \pm 1.2 \cdot 10^{-3} \) | \(a_{341}= +0.80241428 \pm 1.0 \cdot 10^{-3} \) | \(a_{342}= -1.10801577 \pm 1.4 \cdot 10^{-3} \) |
\(a_{343}= +1.59409789 \pm 1.0 \cdot 10^{-3} \) | \(a_{344}= +0.31755016 \pm 8.4 \cdot 10^{-4} \) | \(a_{345}= -2.03478991 \pm 1.6 \cdot 10^{-3} \) |
\(a_{346}= -0.03180010 \pm 1.6 \cdot 10^{-3} \) | \(a_{347}= -0.13991677 \pm 1.8 \cdot 10^{-3} \) | \(a_{348}= +0.00127159 \pm 1.1 \cdot 10^{-3} \) |
\(a_{349}= -0.67503318 \pm 1.5 \cdot 10^{-3} \) | \(a_{350}= -2.07565018 \pm 1.5 \cdot 10^{-3} \) | \(a_{351}= -0.04958546 \pm 1.2 \cdot 10^{-3} \) |
\(a_{352}= +0.05776081 \pm 1.3 \cdot 10^{-3} \) | \(a_{353}= +0.21958812 \pm 1.2 \cdot 10^{-3} \) | \(a_{354}= +1.79970267 \pm 1.3 \cdot 10^{-3} \) |
\(a_{355}= +1.28430266 \pm 1.4 \cdot 10^{-3} \) | \(a_{356}= -0.01667323 \pm 1.6 \cdot 10^{-3} \) | \(a_{357}= +2.88864369 \pm 1.4 \cdot 10^{-3} \) |
\(a_{358}= -0.15141046 \pm 1.0 \cdot 10^{-3} \) | \(a_{359}= +0.53826530 \pm 2.0 \cdot 10^{-3} \) | \(a_{360}= -1.70578697 \pm 1.1 \cdot 10^{-3} \) |
\(a_{361}= +0.00889374 \pm 1.0 \cdot 10^{-3} \) | \(a_{362}= +0.44597130 \pm 1.5 \cdot 10^{-3} \) | \(a_{363}= +0.44045254 \pm 1.0 \cdot 10^{-3} \) |
\(a_{364}= -0.01642531 \pm 2.8 \cdot 10^{-3} \) | \(a_{365}= +1.88108765 \pm 1.3 \cdot 10^{-3} \) | \(a_{366}= -1.86057637 \pm 9.1 \cdot 10^{-4} \) |
\(a_{367}= -1.82323842 \pm 1.6 \cdot 10^{-3} \) | \(a_{368}= +0.90097774 \pm 1.0 \cdot 10^{-3} \) | \(a_{369}= -0.95836935 \pm 1.1 \cdot 10^{-3} \) |
\(a_{370}= -0.24005249 \pm 1.3 \cdot 10^{-3} \) | \(a_{371}= -2.18693768 \pm 1.1 \cdot 10^{-3} \) | \(a_{372}= -0.04841529 \pm 1.7 \cdot 10^{-3} \) |
\(a_{373}= +1.23350690 \pm 1.0 \cdot 10^{-3} \) | \(a_{374}= -0.95042835 \pm 1.2 \cdot 10^{-3} \) | \(a_{375}= +0.50935824 \pm 1.1 \cdot 10^{-3} \) |
\(a_{376}= -0.52058684 \pm 1.2 \cdot 10^{-3} \) | \(a_{377}= +0.00699778 \pm 1.0 \cdot 10^{-3} \) | \(a_{378}= +0.30074428 \pm 1.3 \cdot 10^{-3} \) |
\(a_{379}= -0.88120528 \pm 1.3 \cdot 10^{-3} \) | \(a_{380}= +0.05193079 \pm 1.0 \cdot 10^{-3} \) | \(a_{381}= -1.96404676 \pm 1.3 \cdot 10^{-3} \) |
\(a_{382}= -0.66325705 \pm 1.5 \cdot 10^{-3} \) | \(a_{383}= -1.13853342 \pm 2.0 \cdot 10^{-3} \) | \(a_{384}= +1.37681462 \pm 1.2 \cdot 10^{-3} \) |
\(a_{385}= +2.13736852 \pm 8.6 \cdot 10^{-4} \) | \(a_{386}= +1.49500438 \pm 1.4 \cdot 10^{-3} \) | \(a_{387}= +0.35071597 \pm 1.3 \cdot 10^{-3} \) |
\(a_{388}= +0.05737611 \pm 1.3 \cdot 10^{-3} \) | \(a_{389}= -1.17006622 \pm 1.3 \cdot 10^{-3} \) | \(a_{390}= -0.59341960 \pm 4.5 \cdot 10^{-3} \) |
\(a_{391}= +1.08211748 \pm 8.3 \cdot 10^{-4} \) | \(a_{392}= +1.96304666 \pm 9.6 \cdot 10^{-4} \) | \(a_{393}= +0.12774180 \pm 1.3 \cdot 10^{-3} \) |
\(a_{394}= -1.32285580 \pm 1.5 \cdot 10^{-3} \) | \(a_{395}= -0.23753689 \pm 1.2 \cdot 10^{-3} \) | \(a_{396}= +0.03243905 \pm 1.1 \cdot 10^{-3} \) |
\(a_{397}= +0.07647563 \pm 1.1 \cdot 10^{-3} \) | \(a_{398}= +0.14674153 \pm 1.7 \cdot 10^{-3} \) | \(a_{399}= -2.50543906 \pm 6.0 \cdot 10^{-4} \) |
\(a_{400}= -1.18974893 \pm 1.0 \cdot 10^{-3} \) | \(a_{401}= -1.67520811 \pm 1.1 \cdot 10^{-3} \) | \(a_{402}= +0.86458755 \pm 2.4 \cdot 10^{-3} \) |
\(a_{403}= -0.26643790 \pm 1.5 \cdot 10^{-3} \) | \(a_{404}= +0.00176475 \pm 1.2 \cdot 10^{-3} \) | \(a_{405}= +1.28871473 \pm 1.2 \cdot 10^{-3} \) |
\(a_{406}= -0.04244271 \pm 1.1 \cdot 10^{-3} \) | \(a_{407}= +0.13653657 \pm 1.5 \cdot 10^{-3} \) | \(a_{408}= +1.71515221 \pm 1.0 \cdot 10^{-3} \) |
\(a_{409}= +1.84753415 \pm 1.2 \cdot 10^{-3} \) | \(a_{410}= -1.25358405 \pm 1.5 \cdot 10^{-3} \) | \(a_{411}= +1.31653596 \pm 1.2 \cdot 10^{-3} \) |
\(a_{412}= -0.03045125 \pm 1.5 \cdot 10^{-3} \) | \(a_{413}= +2.15236353 \pm 1.3 \cdot 10^{-3} \) | \(a_{414}= +1.03077717 \pm 1.7 \cdot 10^{-3} \) |
\(a_{415}= +0.97181781 \pm 8.6 \cdot 10^{-4} \) | \(a_{416}= -0.01917921 \pm 1.6 \cdot 10^{-3} \) | \(a_{417}= -0.75110887 \pm 1.5 \cdot 10^{-3} \) |
\(a_{418}= +0.82434546 \pm 8.4 \cdot 10^{-4} \) | \(a_{419}= -0.03834457 \pm 1.6 \cdot 10^{-3} \) | \(a_{420}= -0.12896246 \pm 9.8 \cdot 10^{-4} \) |
\(a_{421}= -0.55415829 \pm 1.6 \cdot 10^{-3} \) | \(a_{422}= -0.29959917 \pm 1.8 \cdot 10^{-3} \) | \(a_{423}= -0.57495835 \pm 1.3 \cdot 10^{-3} \) |
\(a_{424}= -1.29850940 \pm 8.8 \cdot 10^{-4} \) | \(a_{425}= -1.42894553 \pm 1.0 \cdot 10^{-3} \) | \(a_{426}= -1.23008646 \pm 1.9 \cdot 10^{-3} \) |
\(a_{427}= -2.22516575 \pm 1.5 \cdot 10^{-3} \) | \(a_{428}= -0.01317452 \pm 1.6 \cdot 10^{-3} \) | \(a_{429}= +0.33752400 \pm 2.8 \cdot 10^{-3} \) |
\(a_{430}= +0.45875001 \pm 1.7 \cdot 10^{-3} \) | \(a_{431}= +0.52747924 \pm 1.7 \cdot 10^{-3} \) | \(a_{432}= +0.17238463 \pm 1.1 \cdot 10^{-3} \) |
\(a_{433}= +0.83495105 \pm 1.3 \cdot 10^{-3} \) | \(a_{434}= +1.61599124 \pm 1.0 \cdot 10^{-3} \) | \(a_{435}= +0.05494268 \pm 1.0 \cdot 10^{-3} \) |
\(a_{436}= +0.01987473 \pm 1.1 \cdot 10^{-3} \) | \(a_{437}= -0.93856484 \pm 1.0 \cdot 10^{-3} \) | \(a_{438}= -1.80167847 \pm 1.6 \cdot 10^{-3} \) |
\(a_{439}= -1.21123589 \pm 1.3 \cdot 10^{-3} \) | \(a_{440}= +1.26907737 \pm 9.4 \cdot 10^{-4} \) | \(a_{441}= +2.16807262 \pm 1.3 \cdot 10^{-3} \) |
\(a_{442}= +0.31558527 \pm 3.0 \cdot 10^{-3} \) | \(a_{443}= +0.46384804 \pm 1.4 \cdot 10^{-3} \) | \(a_{444}= -0.00823821 \pm 1.0 \cdot 10^{-3} \) |
\(a_{445}= -0.72041520 \pm 1.6 \cdot 10^{-3} \) | \(a_{446}= -0.64506170 \pm 1.2 \cdot 10^{-3} \) | \(a_{447}= -2.42769421 \pm 1.0 \cdot 10^{-3} \) |
\(a_{448}= +1.76710163 \pm 1.0 \cdot 10^{-3} \) | \(a_{449}= +0.89466187 \pm 1.1 \cdot 10^{-3} \) | \(a_{450}= -1.36115021 \pm 1.1 \cdot 10^{-3} \) |
\(a_{451}= +0.71301099 \pm 1.1 \cdot 10^{-3} \) | \(a_{452}= +0.05447607 \pm 1.6 \cdot 10^{-3} \) | \(a_{453}= +2.02804456 \pm 1.3 \cdot 10^{-3} \) |
\(a_{454}= +1.34681729 \pm 1.1 \cdot 10^{-3} \) | \(a_{455}= -0.70970319 \pm 2.8 \cdot 10^{-3} \) | \(a_{456}= -1.48762181 \pm 8.6 \cdot 10^{-4} \) |
\(a_{457}= +0.95410085 \pm 1.3 \cdot 10^{-3} \) | \(a_{458}= +0.70972578 \pm 1.1 \cdot 10^{-3} \) | \(a_{459}= +0.20704220 \pm 1.0 \cdot 10^{-3} \) |
\(a_{460}= -0.04831075 \pm 1.2 \cdot 10^{-3} \) | \(a_{461}= -1.21646050 \pm 1.6 \cdot 10^{-3} \) | \(a_{462}= -2.04714057 \pm 1.1 \cdot 10^{-3} \) |
\(a_{463}= +0.51594253 \pm 1.7 \cdot 10^{-3} \) | \(a_{464}= -0.02432788 \pm 8.5 \cdot 10^{-4} \) | \(a_{465}= -2.09192293 \pm 1.7 \cdot 10^{-3} \) |
\(a_{466}= -0.34101163 \pm 2.1 \cdot 10^{-3} \) | \(a_{467}= -1.10811739 \pm 1.3 \cdot 10^{-3} \) | \(a_{468}= -0.01077124 \pm 2.9 \cdot 10^{-3} \) |
\(a_{469}= +1.03400786 \pm 1.1 \cdot 10^{-3} \) | \(a_{470}= -0.75206769 \pm 1.2 \cdot 10^{-3} \) | \(a_{471}= +0.12212257 \pm 1.4 \cdot 10^{-3} \) |
\(a_{472}= +1.27798076 \pm 1.1 \cdot 10^{-3} \) | \(a_{473}= -0.26092690 \pm 1.2 \cdot 10^{-3} \) | \(a_{474}= +0.22750939 \pm 1.7 \cdot 10^{-3} \) |
\(a_{475}= +1.23938302 \pm 8.1 \cdot 10^{-4} \) | \(a_{476}= +0.06858326 \pm 1.2 \cdot 10^{-3} \) | \(a_{477}= -1.43412928 \pm 1.0 \cdot 10^{-3} \) |
\(a_{478}= +0.27643227 \pm 1.5 \cdot 10^{-3} \) | \(a_{479}= -1.99363626 \pm 1.6 \cdot 10^{-3} \) | \(a_{480}= -0.15058452 \pm 1.9 \cdot 10^{-3} \) |
\(a_{481}= -0.04533633 \pm 1.7 \cdot 10^{-3} \) | \(a_{482}= -1.30075119 \pm 1.1 \cdot 10^{-3} \) | \(a_{483}= +2.33078758 \pm 8.0 \cdot 10^{-4} \) |
\(a_{484}= +0.01045739 \pm 1.0 \cdot 10^{-3} \) | \(a_{485}= +2.47910109 \pm 1.0 \cdot 10^{-3} \) | \(a_{486}= -1.40997580 \pm 1.7 \cdot 10^{-3} \) |
\(a_{487}= +0.99109993 \pm 1.7 \cdot 10^{-3} \) | \(a_{488}= -1.32120758 \pm 9.1 \cdot 10^{-4} \) | \(a_{489}= +2.53158483 \pm 1.5 \cdot 10^{-3} \) |
\(a_{490}= +2.83592255 \pm 1.4 \cdot 10^{-3} \) | \(a_{491}= +0.92234766 \pm 1.8 \cdot 10^{-3} \) | \(a_{492}= -0.04302096 \pm 1.5 \cdot 10^{-3} \) |
\(a_{493}= -0.02921895 \pm 1.1 \cdot 10^{-3} \) | \(a_{494}= -0.27372004 \pm 2.7 \cdot 10^{-3} \) | \(a_{495}= +1.40162329 \pm 9.3 \cdot 10^{-4} \) |
\(a_{496}= +0.92627547 \pm 1.1 \cdot 10^{-3} \) | \(a_{497}= -1.47112814 \pm 1.1 \cdot 10^{-3} \) | \(a_{498}= -0.93079300 \pm 1.0 \cdot 10^{-3} \) |
\(a_{499}= +0.16719151 \pm 1.4 \cdot 10^{-3} \) | \(a_{500}= +0.01209337 \pm 9.1 \cdot 10^{-4} \) | \(a_{501}= -2.20840782 \pm 1.6 \cdot 10^{-3} \) |
\(a_{502}= -1.16791618 \pm 1.5 \cdot 10^{-3} \) | \(a_{503}= -0.05072281 \pm 1.5 \cdot 10^{-3} \) | \(a_{504}= +1.95392511 \pm 8.4 \cdot 10^{-4} \) |
\(a_{505}= +0.07625131 \pm 1.1 \cdot 10^{-3} \) | \(a_{506}= -0.76688122 \pm 1.6 \cdot 10^{-3} \) | \(a_{507}= -0.11207326 \pm 1.5 \cdot 10^{-3} \) |
\(a_{508}= -0.04663114 \pm 1.2 \cdot 10^{-3} \) | \(a_{509}= +0.42319426 \pm 1.5 \cdot 10^{-3} \) | \(a_{510}= +2.47780092 \pm 2.0 \cdot 10^{-3} \) |
\(a_{511}= -2.15472651 \pm 1.7 \cdot 10^{-3} \) | \(a_{512}= +1.04683678 \pm 1.3 \cdot 10^{-3} \) | \(a_{513}= -0.17957619 \pm 1.2 \cdot 10^{-3} \) |
\(a_{514}= -1.00182288 \pm 1.5 \cdot 10^{-3} \) | \(a_{515}= -1.31573457 \pm 1.5 \cdot 10^{-3} \) | \(a_{516}= +0.01574355 \pm 1.7 \cdot 10^{-3} \) |
\(a_{517}= +0.42775953 \pm 1.3 \cdot 10^{-3} \) | \(a_{518}= +0.27497255 \pm 1.8 \cdot 10^{-3} \) | \(a_{519}= -0.04715397 \pm 1.6 \cdot 10^{-3} \) |
\(a_{520}= -0.42139118 \pm 2.6 \cdot 10^{-3} \) | \(a_{521}= -0.97050547 \pm 1.5 \cdot 10^{-3} \) | \(a_{522}= -0.02783268 \pm 7.6 \cdot 10^{-4} \) |
\(a_{523}= +0.99467730 \pm 1.8 \cdot 10^{-3} \) | \(a_{524}= +0.00303289 \pm 1.5 \cdot 10^{-3} \) | \(a_{525}= -3.07782525 \pm 7.0 \cdot 10^{-4} \) |
\(a_{526}= -1.04440440 \pm 1.5 \cdot 10^{-3} \) | \(a_{527}= +1.11250127 \pm 1.4 \cdot 10^{-3} \) | \(a_{528}= -1.17340741 \pm 1.1 \cdot 10^{-3} \) |
\(a_{529}= -0.12686151 \pm 1.6 \cdot 10^{-3} \) | \(a_{530}= -1.87589637 \pm 1.2 \cdot 10^{-3} \) | \(a_{531}= +1.41145657 \pm 1.2 \cdot 10^{-3} \) |
\(a_{532}= -0.05948508 \pm 8.8 \cdot 10^{-4} \) | \(a_{533}= -0.23675195 \pm 1.2 \cdot 10^{-3} \) | \(a_{534}= +0.69000323 \pm 2.4 \cdot 10^{-3} \) |
\(a_{535}= -0.56924340 \pm 1.4 \cdot 10^{-3} \) | \(a_{536}= +0.61394933 \pm 7.5 \cdot 10^{-4} \) | \(a_{537}= -0.22451516 \pm 1.1 \cdot 10^{-3} \) |
\(a_{538}= +0.37822070 \pm 1.8 \cdot 10^{-3} \) | \(a_{539}= -1.61301027 \pm 1.0 \cdot 10^{-3} \) | \(a_{540}= -0.00924333 \pm 1.1 \cdot 10^{-3} \) |
\(a_{541}= +1.70630429 \pm 9.1 \cdot 10^{-4} \) | \(a_{542}= +0.57620289 \pm 1.5 \cdot 10^{-3} \) | \(a_{543}= +0.66129723 \pm 1.1 \cdot 10^{-3} \) |
\(a_{544}= +0.08008205 \pm 1.5 \cdot 10^{-3} \) | \(a_{545}= +0.85874508 \pm 9.7 \cdot 10^{-4} \) | \(a_{546}= +0.67974342 \pm 4.5 \cdot 10^{-3} \) |
\(a_{547}= -0.37396921 \pm 1.0 \cdot 10^{-3} \) | \(a_{548}= +0.03125769 \pm 1.3 \cdot 10^{-3} \) | \(a_{549}= -1.45919812 \pm 1.0 \cdot 10^{-3} \) |
\(a_{550}= +1.01267331 \pm 1.3 \cdot 10^{-3} \) | \(a_{551}= +0.02534280 \pm 7.2 \cdot 10^{-4} \) | \(a_{552}= +1.38392128 \pm 1.2 \cdot 10^{-3} \) |
\(a_{553}= +0.27209101 \pm 9.9 \cdot 10^{-4} \) | \(a_{554}= -0.36788935 \pm 1.8 \cdot 10^{-3} \) | \(a_{555}= -0.35595575 \pm 9.2 \cdot 10^{-4} \) |
\(a_{556}= -0.01783311 \pm 1.3 \cdot 10^{-3} \) | \(a_{557}= +1.04729386 \pm 1.2 \cdot 10^{-3} \) | \(a_{558}= +1.05971943 \pm 1.6 \cdot 10^{-3} \) |
\(a_{559}= +0.08663955 \pm 1.4 \cdot 10^{-3} \) | \(a_{560}= +2.46729413 \pm 8.9 \cdot 10^{-4} \) | \(a_{561}= -1.40931858 \pm 1.1 \cdot 10^{-3} \) |
\(a_{562}= -0.12888758 \pm 2.0 \cdot 10^{-3} \) | \(a_{563}= +0.53916676 \pm 1.6 \cdot 10^{-3} \) | \(a_{564}= -0.02580974 \pm 1.3 \cdot 10^{-3} \) |
\(a_{565}= +2.35379627 \pm 1.7 \cdot 10^{-3} \) | \(a_{566}= -1.31072881 \pm 1.1 \cdot 10^{-3} \) | \(a_{567}= -1.47618202 \pm 1.1 \cdot 10^{-3} \) |
\(a_{568}= -0.87349253 \pm 1.3 \cdot 10^{-3} \) | \(a_{569}= -1.50669439 \pm 1.3 \cdot 10^{-3} \) | \(a_{570}= -2.14909830 \pm 1.4 \cdot 10^{-3} \) |
\(a_{571}= +0.91039916 \pm 1.4 \cdot 10^{-3} \) | \(a_{572}= +0.00801362 \pm 2.7 \cdot 10^{-3} \) | \(a_{573}= -0.98349390 \pm 1.5 \cdot 10^{-3} \) |
\(a_{574}= +1.43594095 \pm 6.7 \cdot 10^{-4} \) | \(a_{575}= -1.15298695 \pm 8.8 \cdot 10^{-4} \) | \(a_{576}= +1.15881317 \pm 1.3 \cdot 10^{-3} \) |
\(a_{577}= +1.38095443 \pm 1.4 \cdot 10^{-3} \) | \(a_{578}= -0.33516223 \pm 1.1 \cdot 10^{-3} \) | \(a_{579}= +2.21682935 \pm 1.5 \cdot 10^{-3} \) |
\(a_{580}= +0.00130447 \pm 1.3 \cdot 10^{-3} \) | \(a_{581}= -1.11318662 \pm 7.6 \cdot 10^{-4} \) | \(a_{582}= -2.37444706 \pm 1.2 \cdot 10^{-3} \) |
\(a_{583}= +1.06696853 \pm 9.1 \cdot 10^{-4} \) | \(a_{584}= -1.27938379 \pm 1.2 \cdot 10^{-3} \) | \(a_{585}= -0.46540243 \pm 2.8 \cdot 10^{-3} \) |
\(a_{586}= -0.53433150 \pm 1.1 \cdot 10^{-3} \) | \(a_{587}= +1.27542308 \pm 1.5 \cdot 10^{-3} \) | \(a_{588}= +0.09732424 \pm 1.3 \cdot 10^{-3} \) |
\(a_{589}= -0.96491795 \pm 1.0 \cdot 10^{-3} \) | \(a_{590}= +1.84623960 \pm 1.3 \cdot 10^{-3} \) | \(a_{591}= -1.96156319 \pm 1.5 \cdot 10^{-3} \) |
\(a_{592}= +0.15761244 \pm 1.1 \cdot 10^{-3} \) | \(a_{593}= +1.55797369 \pm 1.4 \cdot 10^{-3} \) | \(a_{594}= -0.14672786 \pm 1.3 \cdot 10^{-3} \) |
\(a_{595}= +2.96333858 \pm 1.2 \cdot 10^{-3} \) | \(a_{596}= -0.05763923 \pm 1.4 \cdot 10^{-3} \) | \(a_{597}= +0.21759196 \pm 1.8 \cdot 10^{-3} \) |
\(a_{598}= +0.25463931 \pm 2.7 \cdot 10^{-3} \) | \(a_{599}= -0.12621193 \pm 1.5 \cdot 10^{-3} \) | \(a_{600}= -1.82748007 \pm 7.9 \cdot 10^{-4} \) |
\(a_{601}= -1.93239222 \pm 1.5 \cdot 10^{-3} \) | \(a_{602}= -0.52548365 \pm 1.3 \cdot 10^{-3} \) | \(a_{603}= +0.67807188 \pm 1.4 \cdot 10^{-3} \) |
\(a_{604}= +0.04815060 \pm 1.0 \cdot 10^{-3} \) | \(a_{605}= +0.45184181 \pm 8.0 \cdot 10^{-4} \) | \(a_{606}= -0.07303240 \pm 1.4 \cdot 10^{-3} \) |
\(a_{607}= -0.29287058 \pm 1.0 \cdot 10^{-3} \) | \(a_{608}= -0.06945844 \pm 1.0 \cdot 10^{-3} \) | \(a_{609}= -0.06293510 \pm 1.2 \cdot 10^{-3} \) |
\(a_{610}= -1.90868738 \pm 6.6 \cdot 10^{-4} \) | \(a_{611}= -0.14203555 \pm 1.4 \cdot 10^{-3} \) | \(a_{612}= +0.04497488 \pm 1.3 \cdot 10^{-3} \) |
\(a_{613}= +0.93283203 \pm 1.4 \cdot 10^{-3} \) | \(a_{614}= -0.45193853 \pm 9.1 \cdot 10^{-4} \) | \(a_{615}= -1.85884534 \pm 1.5 \cdot 10^{-3} \) |
\(a_{616}= -1.45368806 \pm 9.3 \cdot 10^{-4} \) | \(a_{617}= -0.05991698 \pm 1.7 \cdot 10^{-3} \) | \(a_{618}= +1.26019148 \pm 2.3 \cdot 10^{-3} \) |
\(a_{619}= +0.97592419 \pm 1.3 \cdot 10^{-3} \) | \(a_{620}= -0.04966722 \pm 1.4 \cdot 10^{-3} \) | \(a_{621}= +0.16705813 \pm 1.3 \cdot 10^{-3} \) |
\(a_{622}= -0.01303346 \pm 1.6 \cdot 10^{-3} \) | \(a_{623}= +0.82521286 \pm 1.4 \cdot 10^{-3} \) | \(a_{624}= +0.38962442 \pm 2.8 \cdot 10^{-3} \) |
\(a_{625}= -0.71137885 \pm 1.4 \cdot 10^{-3} \) | \(a_{626}= -0.90575028 \pm 1.3 \cdot 10^{-3} \) | \(a_{627}= +1.22235977 \pm 8.2 \cdot 10^{-4} \) |
\(a_{628}= +0.00289948 \pm 1.4 \cdot 10^{-3} \) | \(a_{629}= +0.18930010 \pm 1.2 \cdot 10^{-3} \) | \(a_{630}= +2.82274507 \pm 8.6 \cdot 10^{-4} \) |
\(a_{631}= -0.29344324 \pm 1.4 \cdot 10^{-3} \) | \(a_{632}= +0.16155592 \pm 1.2 \cdot 10^{-3} \) | \(a_{633}= -0.44425304 \pm 1.6 \cdot 10^{-3} \) |
\(a_{634}= +0.32644741 \pm 1.5 \cdot 10^{-3} \) | \(a_{635}= -2.01483332 \pm 1.1 \cdot 10^{-3} \) | \(a_{636}= -0.06437771 \pm 1.3 \cdot 10^{-3} \) |
\(a_{637}= +0.53559249 \pm 1.2 \cdot 10^{-3} \) | \(a_{638}= +0.02070706 \pm 1.0 \cdot 10^{-3} \) | \(a_{639}= -0.96472248 \pm 1.6 \cdot 10^{-3} \) |
\(a_{640}= +1.41241646 \pm 1.2 \cdot 10^{-3} \) | \(a_{641}= -0.79264148 \pm 1.3 \cdot 10^{-3} \) | \(a_{642}= +0.54521307 \pm 2.0 \cdot 10^{-3} \) |
\(a_{643}= -0.37065512 \pm 1.6 \cdot 10^{-3} \) | \(a_{644}= +0.05533844 \pm 1.3 \cdot 10^{-3} \) | \(a_{645}= +0.68024582 \pm 1.7 \cdot 10^{-3} \) |
\(a_{646}= +1.14290759 \pm 9.3 \cdot 10^{-4} \) | \(a_{647}= +0.03839410 \pm 1.1 \cdot 10^{-3} \) | \(a_{648}= -0.87649331 \pm 1.0 \cdot 10^{-3} \) |
\(a_{649}= -1.05010041 \pm 1.1 \cdot 10^{-3} \) | \(a_{650}= -0.33625342 \pm 2.6 \cdot 10^{-3} \) | \(a_{651}= +2.39623165 \pm 1.4 \cdot 10^{-3} \) |
\(a_{652}= +0.06010584 \pm 1.2 \cdot 10^{-3} \) | \(a_{653}= +1.64400754 \pm 1.4 \cdot 10^{-3} \) | \(a_{654}= -0.82249359 \pm 1.4 \cdot 10^{-3} \) |
\(a_{655}= +0.13104496 \pm 1.3 \cdot 10^{-3} \) | \(a_{656}= +0.82307184 \pm 1.1 \cdot 10^{-3} \) | \(a_{657}= -1.41300614 \pm 1.4 \cdot 10^{-3} \) |
\(a_{658}= +0.86146979 \pm 1.0 \cdot 10^{-3} \) | \(a_{659}= -0.97991438 \pm 1.1 \cdot 10^{-3} \) | \(a_{660}= +0.06291852 \pm 1.0 \cdot 10^{-3} \) |
\(a_{661}= +0.68155016 \pm 1.5 \cdot 10^{-3} \) | \(a_{662}= -0.35647951 \pm 1.9 \cdot 10^{-3} \) | \(a_{663}= +0.46795762 \pm 2.9 \cdot 10^{-3} \) |
\(a_{664}= -0.66096227 \pm 7.2 \cdot 10^{-4} \) | \(a_{665}= -2.57022501 \pm 7.5 \cdot 10^{-4} \) | \(a_{666}= +0.18031889 \pm 1.3 \cdot 10^{-3} \) |
\(a_{667}= -0.02357618 \pm 8.5 \cdot 10^{-4} \) | \(a_{668}= -0.05243285 \pm 1.4 \cdot 10^{-3} \) | \(a_{669}= -0.95651339 \pm 1.5 \cdot 10^{-3} \) |
\(a_{670}= +0.88694416 \pm 2.0 \cdot 10^{-3} \) | \(a_{671}= +1.08561933 \pm 9.8 \cdot 10^{-4} \) | \(a_{672}= +0.17248981 \pm 1.2 \cdot 10^{-3} \) |
\(a_{673}= +0.52251100 \pm 1.7 \cdot 10^{-3} \) | \(a_{674}= +0.45727289 \pm 1.4 \cdot 10^{-3} \) | \(a_{675}= -0.22060171 \pm 9.2 \cdot 10^{-4} \) |
\(a_{676}= -0.00266089 \pm 1.4 \cdot 10^{-3} \) | \(a_{677}= +1.50745729 \pm 1.6 \cdot 10^{-3} \) | \(a_{678}= -2.25443192 \pm 2.4 \cdot 10^{-3} \) |
\(a_{679}= -2.83973201 \pm 1.7 \cdot 10^{-3} \) | \(a_{680}= +1.75950282 \pm 9.6 \cdot 10^{-4} \) | \(a_{681}= +1.99709388 \pm 1.2 \cdot 10^{-3} \) |
\(a_{682}= -0.78841378 \pm 8.8 \cdot 10^{-4} \) | \(a_{683}= -1.23117991 \pm 1.3 \cdot 10^{-3} \) | \(a_{684}= -0.03900856 \pm 1.1 \cdot 10^{-3} \) |
\(a_{685}= +1.35057911 \pm 1.1 \cdot 10^{-3} \) | \(a_{686}= -1.56628411 \pm 8.4 \cdot 10^{-4} \) | \(a_{687}= +1.05239888 \pm 1.6 \cdot 10^{-3} \) |
\(a_{688}= -0.30120375 \pm 1.3 \cdot 10^{-3} \) | \(a_{689}= -0.35428189 \pm 1.0 \cdot 10^{-3} \) | \(a_{690}= +1.99928695 \pm 1.9 \cdot 10^{-3} \) |
\(a_{691}= +1.22137781 \pm 1.5 \cdot 10^{-3} \) | \(a_{692}= -0.00111955 \pm 1.6 \cdot 10^{-3} \) | \(a_{693}= -1.60551521 \pm 9.2 \cdot 10^{-4} \) |
\(a_{694}= +0.13747550 \pm 1.6 \cdot 10^{-3} \) | \(a_{695}= -0.77053114 \pm 1.2 \cdot 10^{-3} \) | \(a_{696}= -0.03736815 \pm 9.6 \cdot 10^{-4} \) |
\(a_{697}= +0.98854875 \pm 1.1 \cdot 10^{-3} \) | \(a_{698}= +0.66325522 \pm 1.1 \cdot 10^{-3} \) | \(a_{699}= -0.50566044 \pm 1.8 \cdot 10^{-3} \) |
\(a_{700}= -0.07307488 \pm 1.1 \cdot 10^{-3} \) | \(a_{701}= -1.38901801 \pm 1.2 \cdot 10^{-3} \) | \(a_{702}= +0.04872030 \pm 2.8 \cdot 10^{-3} \) |
\(a_{703}= -0.16418774 \pm 1.4 \cdot 10^{-3} \) | \(a_{704}= -0.86213789 \pm 1.2 \cdot 10^{-3} \) | \(a_{705}= -1.11518451 \pm 1.1 \cdot 10^{-3} \) |
\(a_{706}= -0.21575675 \pm 1.6 \cdot 10^{-3} \) | \(a_{707}= -0.08734347 \pm 7.9 \cdot 10^{-4} \) | \(a_{708}= +0.06335994 \pm 1.2 \cdot 10^{-3} \) |
\(a_{709}= +0.31130867 \pm 1.7 \cdot 10^{-3} \) | \(a_{710}= -1.26189419 \pm 1.6 \cdot 10^{-3} \) | \(a_{711}= +0.17842927 \pm 1.5 \cdot 10^{-3} \) |
\(a_{712}= +0.48997586 \pm 1.2 \cdot 10^{-3} \) | \(a_{713}= +0.89765455 \pm 8.7 \cdot 10^{-4} \) | \(a_{714}= -2.83824271 \pm 9.7 \cdot 10^{-4} \) |
\(a_{715}= +0.34625173 \pm 2.6 \cdot 10^{-3} \) | \(a_{716}= -0.00533052 \pm 1.0 \cdot 10^{-3} \) | \(a_{717}= +0.40990059 \pm 1.3 \cdot 10^{-3} \) |
\(a_{718}= -0.52887366 \pm 2.0 \cdot 10^{-3} \) | \(a_{719}= +0.31944832 \pm 1.4 \cdot 10^{-3} \) | \(a_{720}= +1.61797877 \pm 1.3 \cdot 10^{-3} \) |
\(a_{721}= +1.50713240 \pm 1.1 \cdot 10^{-3} \) | \(a_{722}= -0.00873857 \pm 1.2 \cdot 10^{-3} \) | \(a_{723}= -1.92878594 \pm 9.3 \cdot 10^{-4} \) |
\(a_{724}= +0.01570077 \pm 1.2 \cdot 10^{-3} \) | \(a_{725}= +0.03113255 \pm 7.0 \cdot 10^{-4} \) | \(a_{726}= -0.43276753 \pm 1.3 \cdot 10^{-3} \) |
\(a_{727}= +0.11957621 \pm 1.3 \cdot 10^{-3} \) | \(a_{728}= +0.48269029 \pm 2.6 \cdot 10^{-3} \) | \(a_{729}= -1.22851487 \pm 1.1 \cdot 10^{-3} \) |
\(a_{730}= -1.84826649 \pm 1.1 \cdot 10^{-3} \) | \(a_{731}= -0.36176015 \pm 1.3 \cdot 10^{-3} \) | \(a_{732}= -0.06550304 \pm 1.1 \cdot 10^{-3} \) |
\(a_{733}= +1.57048448 \pm 1.6 \cdot 10^{-3} \) | \(a_{734}= +1.79142661 \pm 2.1 \cdot 10^{-3} \) | \(a_{735}= +4.20517587 \pm 1.4 \cdot 10^{-3} \) |
\(a_{736}= +0.06461657 \pm 1.1 \cdot 10^{-3} \) | \(a_{737}= -0.50447430 \pm 1.1 \cdot 10^{-3} \) | \(a_{738}= +0.94164775 \pm 1.5 \cdot 10^{-3} \) |
\(a_{739}= -0.22328380 \pm 1.9 \cdot 10^{-3} \) | \(a_{740}= -0.00845124 \pm 1.4 \cdot 10^{-3} \) | \(a_{741}= -0.40587882 \pm 2.7 \cdot 10^{-3} \) |
\(a_{742}= +2.14878005 \pm 1.3 \cdot 10^{-3} \) | \(a_{743}= +0.31240544 \pm 1.5 \cdot 10^{-3} \) | \(a_{744}= +1.42277915 \pm 1.1 \cdot 10^{-3} \) |
\(a_{745}= -2.49046982 \pm 1.1 \cdot 10^{-3} \) | \(a_{746}= -1.21198470 \pm 1.1 \cdot 10^{-3} \) | \(a_{747}= -0.72999498 \pm 7.9 \cdot 10^{-4} \) |
\(a_{748}= -0.03346057 \pm 9.9 \cdot 10^{-4} \) | \(a_{749}= +0.65205033 \pm 1.4 \cdot 10^{-3} \) | \(a_{750}= -0.50047097 \pm 1.0 \cdot 10^{-3} \) |
\(a_{751}= +0.70889752 \pm 1.3 \cdot 10^{-3} \) | \(a_{752}= +0.49378877 \pm 1.2 \cdot 10^{-3} \) | \(a_{753}= -1.73181490 \pm 1.6 \cdot 10^{-3} \) |
\(a_{754}= -0.00687568 \pm 2.6 \cdot 10^{-3} \) | \(a_{755}= +2.08048598 \pm 1.0 \cdot 10^{-3} \) | \(a_{756}= +0.01058794 \pm 1.1 \cdot 10^{-3} \) |
\(a_{757}= -0.33362578 \pm 1.5 \cdot 10^{-3} \) | \(a_{758}= +0.86583004 \pm 1.7 \cdot 10^{-3} \) | \(a_{759}= -1.13715037 \pm 1.1 \cdot 10^{-3} \) |
\(a_{760}= -1.52608891 \pm 1.0 \cdot 10^{-3} \) | \(a_{761}= +1.68119119 \pm 1.5 \cdot 10^{-3} \) | \(a_{762}= +1.92977813 \pm 1.6 \cdot 10^{-3} \) |
\(a_{763}= -0.98366538 \pm 1.1 \cdot 10^{-3} \) | \(a_{764}= -0.02335048 \pm 1.3 \cdot 10^{-3} \) | \(a_{765}= +1.94327011 \pm 1.4 \cdot 10^{-3} \) |
\(a_{766}= +1.11866832 \pm 2.1 \cdot 10^{-3} \) | \(a_{767}= +0.34868091 \pm 1.3 \cdot 10^{-3} \) | \(a_{768}= +0.15101155 \pm 1.0 \cdot 10^{-3} \) |
\(a_{769}= +0.49313467 \pm 1.5 \cdot 10^{-3} \) | \(a_{770}= -2.10007578 \pm 9.1 \cdot 10^{-4} \) | \(a_{771}= -1.48552767 \pm 1.5 \cdot 10^{-3} \) |
\(a_{772}= +0.05263280 \pm 1.5 \cdot 10^{-3} \) | \(a_{773}= -1.05254228 \pm 1.4 \cdot 10^{-3} \) | \(a_{774}= -0.34459669 \pm 1.6 \cdot 10^{-3} \) |
\(a_{775}= -1.18536063 \pm 8.6 \cdot 10^{-4} \) | \(a_{776}= -1.68611056 \pm 1.1 \cdot 10^{-3} \) | \(a_{777}= +0.40773607 \pm 9.5 \cdot 10^{-4} \) |
\(a_{778}= +1.14965094 \pm 1.0 \cdot 10^{-3} \) | \(a_{779}= -0.85740885 \pm 9.1 \cdot 10^{-4} \) | \(a_{780}= -0.02089180 \pm 4.4 \cdot 10^{-3} \) |
\(a_{781}= +0.71773761 \pm 1.1 \cdot 10^{-3} \) | \(a_{782}= -1.06323672 \pm 1.0 \cdot 10^{-3} \) | \(a_{783}= -0.00451084 \pm 7.9 \cdot 10^{-4} \) |
\(a_{784}= -1.86199559 \pm 1.2 \cdot 10^{-3} \) | \(a_{785}= +0.12528043 \pm 1.4 \cdot 10^{-3} \) | \(a_{786}= -0.12551296 \pm 1.8 \cdot 10^{-3} \) |
\(a_{787}= -0.35688938 \pm 1.7 \cdot 10^{-3} \) | \(a_{788}= -0.04657217 \pm 1.4 \cdot 10^{-3} \) | \(a_{789}= -1.54866860 \pm 1.3 \cdot 10^{-3} \) |
\(a_{790}= +0.23339236 \pm 1.3 \cdot 10^{-3} \) | \(a_{791}= -2.69619929 \pm 1.4 \cdot 10^{-3} \) | \(a_{792}= -0.95328578 \pm 1.0 \cdot 10^{-3} \) |
\(a_{793}= -0.36047480 \pm 1.2 \cdot 10^{-3} \) | \(a_{794}= -0.07514129 \pm 1.3 \cdot 10^{-3} \) | \(a_{795}= -2.78162538 \pm 1.1 \cdot 10^{-3} \) |
\(a_{796}= +0.00516615 \pm 1.5 \cdot 10^{-3} \) | \(a_{797}= +1.79351046 \pm 1.1 \cdot 10^{-3} \) | \(a_{798}= +2.46172423 \pm 5.8 \cdot 10^{-4} \) |
\(a_{799}= +0.59306400 \pm 1.1 \cdot 10^{-3} \) | \(a_{800}= -0.08532674 \pm 1.1 \cdot 10^{-3} \) | \(a_{801}= +0.54115028 \pm 1.8 \cdot 10^{-3} \) |
\(a_{802}= +1.64597913 \pm 1.3 \cdot 10^{-3} \) | \(a_{803}= +1.05125326 \pm 1.5 \cdot 10^{-3} \) | \(a_{804}= +0.03043848 \pm 1.9 \cdot 10^{-3} \) |
\(a_{805}= +2.39105737 \pm 8.7 \cdot 10^{-4} \) | \(a_{806}= +0.26178909 \pm 3.1 \cdot 10^{-3} \) | \(a_{807}= +0.56083498 \pm 1.9 \cdot 10^{-3} \) |
\(a_{808}= -0.05186079 \pm 1.1 \cdot 10^{-3} \) | \(a_{809}= +1.55512436 \pm 1.5 \cdot 10^{-3} \) | \(a_{810}= -1.26622927 \pm 1.3 \cdot 10^{-3} \) |
\(a_{811}= +0.95100003 \pm 2.2 \cdot 10^{-3} \) | \(a_{812}= -0.00149423 \pm 1.2 \cdot 10^{-3} \) | \(a_{813}= +0.85440785 \pm 1.6 \cdot 10^{-3} \) |
\(a_{814}= -0.13415428 \pm 1.5 \cdot 10^{-3} \) | \(a_{815}= +2.59704686 \pm 1.5 \cdot 10^{-3} \) | \(a_{816}= -1.62686192 \pm 1.3 \cdot 10^{-3} \) |
\(a_{817}= +0.31376940 \pm 8.5 \cdot 10^{-4} \) | \(a_{818}= -1.81529843 \pm 1.5 \cdot 10^{-3} \) | \(a_{819}= +0.53310379 \pm 2.9 \cdot 10^{-3} \) |
\(a_{820}= -0.04413341 \pm 1.2 \cdot 10^{-3} \) | \(a_{821}= -1.31522251 \pm 1.5 \cdot 10^{-3} \) | \(a_{822}= -1.29356508 \pm 1.3 \cdot 10^{-3} \) |
\(a_{823}= +1.01531490 \pm 1.5 \cdot 10^{-3} \) | \(a_{824}= +0.89487031 \pm 9.2 \cdot 10^{-4} \) | \(a_{825}= +1.50161695 \pm 8.0 \cdot 10^{-4} \) |
\(a_{826}= -2.11480916 \pm 1.6 \cdot 10^{-3} \) | \(a_{827}= +1.95830326 \pm 1.5 \cdot 10^{-3} \) | \(a_{828}= +0.03628931 \pm 1.1 \cdot 10^{-3} \) |
\(a_{829}= -1.75404630 \pm 1.4 \cdot 10^{-3} \) | \(a_{830}= -0.95486156 \pm 8.8 \cdot 10^{-4} \) | \(a_{831}= -0.54551539 \pm 1.2 \cdot 10^{-3} \) |
\(a_{832}= +0.28626884 \pm 1.3 \cdot 10^{-3} \) | \(a_{833}= -2.23634601 \pm 1.2 \cdot 10^{-3} \) | \(a_{834}= +0.73800355 \pm 1.3 \cdot 10^{-3} \) |
\(a_{835}= -2.26551310 \pm 1.4 \cdot 10^{-3} \) | \(a_{836}= +0.02902173 \pm 9.0 \cdot 10^{-4} \) | \(a_{837}= +0.17174880 \pm 1.1 \cdot 10^{-3} \) |
\(a_{838}= +0.03767553 \pm 1.7 \cdot 10^{-3} \) | \(a_{839}= +0.62801125 \pm 1.8 \cdot 10^{-3} \) | \(a_{840}= +3.78981711 \pm 9.8 \cdot 10^{-4} \) |
\(a_{841}= -0.99936340 \pm 1.3 \cdot 10^{-3} \) | \(a_{842}= +0.54448936 \pm 1.7 \cdot 10^{-3} \) | \(a_{843}= -0.19111768 \pm 2.2 \cdot 10^{-3} \) |
\(a_{844}= -0.01054762 \pm 1.4 \cdot 10^{-3} \) | \(a_{845}= -0.11497126 \pm 1.3 \cdot 10^{-3} \) | \(a_{846}= +0.56492650 \pm 1.3 \cdot 10^{-3} \) |
\(a_{847}= -0.51757053 \pm 9.5 \cdot 10^{-4} \) | \(a_{848}= +1.23166649 \pm 1.1 \cdot 10^{-3} \) | \(a_{849}= -1.94358099 \pm 9.6 \cdot 10^{-4} \) |
\(a_{850}= +1.40401333 \pm 1.2 \cdot 10^{-3} \) | \(a_{851}= +0.15274239 \pm 9.1 \cdot 10^{-4} \) | \(a_{852}= -0.04330615 \pm 1.5 \cdot 10^{-3} \) |
\(a_{853}= -0.84932756 \pm 1.9 \cdot 10^{-3} \) | \(a_{854}= +2.18634112 \pm 1.6 \cdot 10^{-3} \) | \(a_{855}= -1.68547781 \pm 1.3 \cdot 10^{-3} \) |
\(a_{856}= +0.38715940 \pm 1.3 \cdot 10^{-3} \) | \(a_{857}= +0.72109426 \pm 1.3 \cdot 10^{-3} \) | \(a_{858}= -0.33163489 \pm 4.4 \cdot 10^{-3} \) |
\(a_{859}= +0.80666383 \pm 2.0 \cdot 10^{-3} \) | \(a_{860}= +0.01615065 \pm 1.3 \cdot 10^{-3} \) | \(a_{861}= +2.12924863 \pm 5.4 \cdot 10^{-4} \) |
\(a_{862}= -0.51827580 \pm 1.4 \cdot 10^{-3} \) | \(a_{863}= -1.09011532 \pm 1.8 \cdot 10^{-3} \) | \(a_{864}= +0.01236313 \pm 1.2 \cdot 10^{-3} \) |
\(a_{865}= -0.04837329 \pm 1.5 \cdot 10^{-3} \) | \(a_{866}= -0.82038285 \pm 1.6 \cdot 10^{-3} \) | \(a_{867}= -0.49698682 \pm 9.5 \cdot 10^{-4} \) |
\(a_{868}= +0.05689223 \pm 1.0 \cdot 10^{-3} \) | \(a_{869}= -0.13274843 \pm 1.3 \cdot 10^{-3} \) | \(a_{870}= -0.05398404 \pm 7.9 \cdot 10^{-4} \) |
\(a_{871}= +0.16750832 \pm 1.4 \cdot 10^{-3} \) | \(a_{872}= -0.58405813 \pm 7.3 \cdot 10^{-4} \) | \(a_{873}= -1.86221256 \pm 1.1 \cdot 10^{-3} \) |
\(a_{874}= +0.92218879 \pm 1.2 \cdot 10^{-3} \) | \(a_{875}= -0.59854080 \pm 9.2 \cdot 10^{-4} \) | \(a_{876}= -0.06342950 \pm 1.7 \cdot 10^{-3} \) |
\(a_{877}= +0.68135782 \pm 1.4 \cdot 10^{-3} \) | \(a_{878}= +1.19010228 \pm 1.2 \cdot 10^{-3} \) | \(a_{879}= -0.79231992 \pm 1.4 \cdot 10^{-3} \) |
\(a_{880}= -1.20374952 \pm 7.8 \cdot 10^{-4} \) | \(a_{881}= +0.84335568 \pm 1.4 \cdot 10^{-3} \) | \(a_{882}= -2.13024415 \pm 1.6 \cdot 10^{-3} \) |
\(a_{883}= -1.65867894 \pm 1.0 \cdot 10^{-3} \) | \(a_{884}= +0.01111043 \pm 2.8 \cdot 10^{-3} \) | \(a_{885}= +2.73764959 \pm 1.2 \cdot 10^{-3} \) |
\(a_{886}= -0.45575483 \pm 1.7 \cdot 10^{-3} \) | \(a_{887}= -1.58055131 \pm 1.4 \cdot 10^{-3} \) | \(a_{888}= +0.24209612 \pm 9.2 \cdot 10^{-4} \) |
\(a_{889}= +2.30792794 \pm 1.4 \cdot 10^{-3} \) | \(a_{890}= +0.70784542 \pm 2.0 \cdot 10^{-3} \) | \(a_{891}= +0.72020331 \pm 8.8 \cdot 10^{-4} \) |
\(a_{892}= -0.02270990 \pm 1.3 \cdot 10^{-3} \) | \(a_{893}= -0.51438872 \pm 1.3 \cdot 10^{-3} \) | \(a_{894}= +2.38533587 \pm 1.0 \cdot 10^{-3} \) |
\(a_{895}= -0.23032070 \pm 1.0 \cdot 10^{-3} \) | \(a_{896}= -1.61787845 \pm 1.3 \cdot 10^{-3} \) | \(a_{897}= +0.37758544 \pm 2.7 \cdot 10^{-3} \) |
\(a_{898}= -0.87905183 \pm 1.4 \cdot 10^{-3} \) | \(a_{899}= -0.02423815 \pm 1.1 \cdot 10^{-3} \) | \(a_{900}= -0.04792036 \pm 9.3 \cdot 10^{-4} \) |
\(a_{901}= +1.47929053 \pm 1.1 \cdot 10^{-3} \) | \(a_{902}= -0.70057040 \pm 1.0 \cdot 10^{-3} \) | \(a_{903}= -0.77920011 \pm 8.6 \cdot 10^{-4} \) |
\(a_{904}= -1.60088701 \pm 1.3 \cdot 10^{-3} \) | \(a_{905}= +0.67839714 \pm 1.1 \cdot 10^{-3} \) | \(a_{906}= -1.99265929 \pm 1.3 \cdot 10^{-3} \) |
\(a_{907}= -0.57876403 \pm 1.0 \cdot 10^{-3} \) | \(a_{908}= +0.04741575 \pm 1.1 \cdot 10^{-3} \) | \(a_{909}= -0.05727727 \pm 1.3 \cdot 10^{-3} \) |
\(a_{910}= +0.69732030 \pm 4.4 \cdot 10^{-3} \) | \(a_{911}= -0.09369495 \pm 8.8 \cdot 10^{-4} \) | \(a_{912}= +1.41104402 \pm 1.0 \cdot 10^{-3} \) |
\(a_{913}= +0.54310422 \pm 7.4 \cdot 10^{-4} \) | \(a_{914}= -0.93745373 \pm 1.7 \cdot 10^{-3} \) | \(a_{915}= -2.83024870 \pm 1.1 \cdot 10^{-3} \) |
\(a_{916}= +0.02498645 \pm 1.4 \cdot 10^{-3} \) | \(a_{917}= -0.15010786 \pm 9.9 \cdot 10^{-4} \) | \(a_{918}= -0.20342974 \pm 1.2 \cdot 10^{-3} \) |
\(a_{919}= -0.76116997 \pm 1.2 \cdot 10^{-3} \) | \(a_{920}= +1.41970688 \pm 1.1 \cdot 10^{-3} \) | \(a_{921}= -0.67014559 \pm 1.0 \cdot 10^{-3} \) |
\(a_{922}= +1.19523574 \pm 2.0 \cdot 10^{-3} \) | \(a_{923}= -0.23832141 \pm 1.5 \cdot 10^{-3} \) | \(a_{924}= -0.07207118 \pm 1.1 \cdot 10^{-3} \) |
\(a_{925}= -0.20169765 \pm 1.2 \cdot 10^{-3} \) | \(a_{926}= -0.50694038 \pm 2.2 \cdot 10^{-3} \) | \(a_{927}= +0.98833301 \pm 1.5 \cdot 10^{-3} \) |
\(a_{928}= -0.00174475 \pm 9.6 \cdot 10^{-4} \) | \(a_{929}= +1.18200411 \pm 1.3 \cdot 10^{-3} \) | \(a_{930}= +2.05542312 \pm 1.9 \cdot 10^{-3} \) |
\(a_{931}= +1.93967456 \pm 9.0 \cdot 10^{-4} \) | \(a_{932}= -0.01200558 \pm 1.8 \cdot 10^{-3} \) | \(a_{933}= -0.01932634 \pm 2.0 \cdot 10^{-3} \) |
\(a_{934}= +1.08878299 \pm 1.7 \cdot 10^{-3} \) | \(a_{935}= -1.44576091 \pm 8.8 \cdot 10^{-4} \) | \(a_{936}= +0.31653407 \pm 2.7 \cdot 10^{-3} \) |
\(a_{937}= +1.13553955 \pm 1.7 \cdot 10^{-3} \) | \(a_{938}= -1.01596652 \pm 1.2 \cdot 10^{-3} \) | \(a_{939}= -1.34306884 \pm 1.3 \cdot 10^{-3} \) |
\(a_{940}= -0.02647713 \pm 1.2 \cdot 10^{-3} \) | \(a_{941}= +1.34502370 \pm 1.6 \cdot 10^{-3} \) | \(a_{942}= -0.11999178 \pm 1.9 \cdot 10^{-3} \) |
\(a_{943}= +0.79763979 \pm 8.0 \cdot 10^{-4} \) | \(a_{944}= -1.21219460 \pm 1.3 \cdot 10^{-3} \) | \(a_{945}= +0.45748248 \pm 7.7 \cdot 10^{-4} \) |
\(a_{946}= +0.25637425 \pm 1.4 \cdot 10^{-3} \) | \(a_{947}= +0.50638159 \pm 1.2 \cdot 10^{-3} \) | \(a_{948}= +0.00800965 \pm 1.4 \cdot 10^{-3} \) |
\(a_{949}= -0.34906371 \pm 1.6 \cdot 10^{-3} \) | \(a_{950}= -1.21775830 \pm 8.4 \cdot 10^{-4} \) | \(a_{951}= +0.48406427 \pm 1.2 \cdot 10^{-3} \) |
\(a_{952}= -2.01545492 \pm 1.0 \cdot 10^{-3} \) | \(a_{953}= +0.28172268 \pm 1.3 \cdot 10^{-3} \) | \(a_{954}= +1.40910663 \pm 1.3 \cdot 10^{-3} \) |
\(a_{955}= -1.00892521 \pm 1.2 \cdot 10^{-3} \) | \(a_{956}= +0.00973201 \pm 1.3 \cdot 10^{-3} \) | \(a_{957}= +0.03070493 \pm 8.1 \cdot 10^{-4} \) |
\(a_{958}= +1.95885135 \pm 1.3 \cdot 10^{-3} \) | \(a_{959}= -1.54704572 \pm 1.5 \cdot 10^{-3} \) | \(a_{960}= +2.24762452 \pm 1.7 \cdot 10^{-3} \) |
\(a_{961}= -0.07714102 \pm 1.0 \cdot 10^{-3} \) | \(a_{962}= +0.04454530 \pm 3.3 \cdot 10^{-3} \) | \(a_{963}= +0.42759539 \pm 1.5 \cdot 10^{-3} \) |
\(a_{964}= -0.04579396 \pm 1.2 \cdot 10^{-3} \) | \(a_{965}= +2.27415239 \pm 1.4 \cdot 10^{-3} \) | \(a_{966}= -2.29012007 \pm 1.0 \cdot 10^{-3} \) |
\(a_{967}= +0.83370527 \pm 1.4 \cdot 10^{-3} \) | \(a_{968}= -0.30731109 \pm 6.5 \cdot 10^{-4} \) | \(a_{969}= +1.69473155 \pm 9.6 \cdot 10^{-4} \) |
\(a_{970}= -2.43584580 \pm 9.4 \cdot 10^{-4} \) | \(a_{971}= -1.02655548 \pm 1.5 \cdot 10^{-3} \) | \(a_{972}= -0.04963930 \pm 1.5 \cdot 10^{-3} \) |
\(a_{973}= +0.88261908 \pm 1.4 \cdot 10^{-3} \) | \(a_{974}= -0.97380725 \pm 1.9 \cdot 10^{-3} \) | \(a_{975}= -0.49860486 \pm 2.6 \cdot 10^{-3} \) |
\(a_{976}= +1.25319624 \pm 1.1 \cdot 10^{-3} \) | \(a_{977}= +0.43543479 \pm 1.2 \cdot 10^{-3} \) | \(a_{978}= -2.48741381 \pm 1.1 \cdot 10^{-3} \) |
\(a_{979}= -0.40260688 \pm 1.4 \cdot 10^{-3} \) | \(a_{980}= +0.09984087 \pm 1.0 \cdot 10^{-3} \) | \(a_{981}= -0.64505876 \pm 1.1 \cdot 10^{-3} \) |
\(a_{982}= -0.90625456 \pm 2.0 \cdot 10^{-3} \) | \(a_{983}= +0.34495898 \pm 1.5 \cdot 10^{-3} \) | \(a_{984}= +1.26425613 \pm 6.2 \cdot 10^{-4} \) |
\(a_{985}= -2.01228553 \pm 1.4 \cdot 10^{-3} \) | \(a_{986}= +0.02870914 \pm 7.9 \cdot 10^{-4} \) | \(a_{987}= +1.27740864 \pm 6.9 \cdot 10^{-4} \) |
\(a_{988}= -0.00963653 \pm 2.6 \cdot 10^{-3} \) | \(a_{989}= -0.29189687 \pm 1.0 \cdot 10^{-3} \) | \(a_{990}= -1.37716780 \pm 1.0 \cdot 10^{-3} \) |
\(a_{991}= +1.29974182 \pm 1.3 \cdot 10^{-3} \) | \(a_{992}= +0.06643088 \pm 1.6 \cdot 10^{-3} \) | \(a_{993}= -0.52859660 \pm 1.5 \cdot 10^{-3} \) |
\(a_{994}= +1.44545994 \pm 1.1 \cdot 10^{-3} \) | \(a_{995}= +0.22321848 \pm 1.5 \cdot 10^{-3} \) | \(a_{996}= -0.03276929 \pm 9.2 \cdot 10^{-4} \) |
\(a_{997}= +0.98429441 \pm 1.9 \cdot 10^{-3} \) | \(a_{998}= -0.16427435 \pm 1.6 \cdot 10^{-3} \) | \(a_{999}= +0.02922429 \pm 1.2 \cdot 10^{-3} \) |
\(a_{1000}= -0.35538775 \pm 9.6 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000