Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.2138017412218413679300317845 \pm 9 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.24750239 \pm 1.2 \cdot 10^{-5} \) | \(a_{3}= -0.95454844 \pm 9.1 \cdot 10^{-6} \) |
\(a_{4}= +0.55626221 \pm 1.3 \cdot 10^{-5} \) | \(a_{5}= -1.41742099 \pm 1.0 \cdot 10^{-5} \) | \(a_{6}= -1.19080146 \pm 1.1 \cdot 10^{-5} \) |
\(a_{7}= +0.57765953 \pm 9.2 \cdot 10^{-6} \) | \(a_{8}= -0.55356396 \pm 1.1 \cdot 10^{-5} \) | \(a_{9}= -0.08883727 \pm 8.2 \cdot 10^{-6} \) |
\(a_{10}= -1.76823607 \pm 9.2 \cdot 10^{-6} \) | \(a_{11}= -0.71121320 \pm 6.8 \cdot 10^{-6} \) | \(a_{12}= -0.53097922 \pm 1.1 \cdot 10^{-5} \) |
\(a_{13}= -0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +0.72063165 \pm 1.3 \cdot 10^{-5} \) | \(a_{15}= +1.35299700 \pm 7.5 \cdot 10^{-6} \) |
\(a_{16}= -1.24683456 \pm 8.3 \cdot 10^{-6} \) | \(a_{17}= -1.18399962 \pm 9.0 \cdot 10^{-6} \) | \(a_{18}= -0.11082471 \pm 9.6 \cdot 10^{-6} \) |
\(a_{19}= -0.05551808 \pm 9.8 \cdot 10^{-6} \) | \(a_{20}= -0.78845773 \pm 1.1 \cdot 10^{-5} \) | \(a_{21}= -0.55140401 \pm 7.5 \cdot 10^{-6} \) |
\(a_{22}= -0.88724017 \pm 6.5 \cdot 10^{-6} \) | \(a_{23}= -0.92207407 \pm 6.6 \cdot 10^{-6} \) | \(a_{24}= +0.52840361 \pm 1.0 \cdot 10^{-5} \) |
\(a_{25}= +1.00908226 \pm 1.1 \cdot 10^{-5} \) | \(a_{26}= -0.34599491 \pm 1.2 \cdot 10^{-5} \) | \(a_{27}= +1.03934792 \pm 9.9 \cdot 10^{-6} \) |
\(a_{28}= +0.32133017 \pm 1.4 \cdot 10^{-5} \) | \(a_{29}= +1.54562156 \pm 8.7 \cdot 10^{-6} \) | \(a_{30}= +1.68786699 \pm 6.2 \cdot 10^{-6} \) |
\(a_{31}= +0.70170323 \pm 6.8 \cdot 10^{-6} \) | \(a_{32}= -1.00186514 \pm 9.0 \cdot 10^{-6} \) | \(a_{33}= +0.67888746 \pm 8.1 \cdot 10^{-6} \) |
\(a_{34}= -1.47704236 \pm 1.1 \cdot 10^{-5} \) | \(a_{35}= -0.81878675 \pm 8.3 \cdot 10^{-6} \) | \(a_{36}= -0.04941682 \pm 8.0 \cdot 10^{-6} \) |
\(a_{37}= +0.78429404 \pm 8.0 \cdot 10^{-6} \) | \(a_{38}= -0.06925893 \pm 1.3 \cdot 10^{-5} \) | \(a_{39}= +0.26474410 \pm 9.2 \cdot 10^{-6} \) |
\(a_{40}= +0.78463317 \pm 1.0 \cdot 10^{-5} \) | \(a_{41}= +1.41787188 \pm 1.3 \cdot 10^{-5} \) | \(a_{42}= -0.68787782 \pm 1.0 \cdot 10^{-5} \) |
\(a_{43}= -1.26754883 \pm 7.6 \cdot 10^{-6} \) | \(a_{44}= -0.39562103 \pm 5.3 \cdot 10^{-6} \) | \(a_{45}= +0.12591981 \pm 7.0 \cdot 10^{-6} \) |
\(a_{46}= -1.15028961 \pm 7.8 \cdot 10^{-6} \) | \(a_{47}= +0.37300103 \pm 7.0 \cdot 10^{-6} \) | \(a_{48}= +1.19016399 \pm 7.4 \cdot 10^{-6} \) |
\(a_{49}= -0.66630946 \pm 7.0 \cdot 10^{-6} \) | \(a_{50}= +1.25883253 \pm 9.0 \cdot 10^{-6} \) | \(a_{51}= +1.13018499 \pm 9.8 \cdot 10^{-6} \) |
\(a_{52}= -0.15427938 \pm 1.3 \cdot 10^{-5} \) | \(a_{53}= -0.34469640 \pm 9.6 \cdot 10^{-6} \) | \(a_{54}= +1.29658901 \pm 1.0 \cdot 10^{-5} \) |
\(a_{55}= +1.00808852 \pm 6.5 \cdot 10^{-6} \) | \(a_{56}= -0.31977150 \pm 1.1 \cdot 10^{-5} \) | \(a_{57}= +0.05299469 \pm 5.5 \cdot 10^{-6} \) |
\(a_{58}= +1.92816658 \pm 1.4 \cdot 10^{-5} \) | \(a_{59}= -0.23659806 \pm 8.0 \cdot 10^{-6} \) | \(a_{60}= +0.75262110 \pm 7.2 \cdot 10^{-6} \) |
\(a_{61}= -1.46075137 \pm 8.9 \cdot 10^{-6} \) | \(a_{62}= +0.87537646 \pm 5.9 \cdot 10^{-6} \) | \(a_{63}= -0.05131770 \pm 6.8 \cdot 10^{-6} \) |
\(a_{64}= -0.00299459 \pm 1.1 \cdot 10^{-5} \) | \(a_{65}= +0.39312185 \pm 1.0 \cdot 10^{-5} \) | \(a_{66}= +0.84691372 \pm 8.4 \cdot 10^{-6} \) |
\(a_{67}= +1.23736231 \pm 7.7 \cdot 10^{-6} \) | \(a_{68}= -0.65861424 \pm 1.2 \cdot 10^{-5} \) | \(a_{69}= +0.88016437 \pm 6.1 \cdot 10^{-6} \) |
\(a_{70}= -1.02143842 \pm 9.7 \cdot 10^{-6} \) | \(a_{71}= +1.34560185 \pm 7.4 \cdot 10^{-6} \) | \(a_{72}= +0.04917711 \pm 9.1 \cdot 10^{-6} \) |
\(a_{73}= -0.66560565 \pm 7.6 \cdot 10^{-6} \) | \(a_{74}= +0.97840869 \pm 9.6 \cdot 10^{-6} \) | \(a_{75}= -0.96321790 \pm 9.7 \cdot 10^{-6} \) |
\(a_{76}= -0.03088261 \pm 1.3 \cdot 10^{-5} \) | \(a_{77}= -0.41083909 \pm 6.3 \cdot 10^{-6} \) | \(a_{78}= +0.33026890 \pm 2.1 \cdot 10^{-5} \) |
\(a_{79}= -0.17395644 \pm 7.0 \cdot 10^{-6} \) | \(a_{80}= +1.76728948 \pm 9.5 \cdot 10^{-6} \) | \(a_{81}= -0.90327067 \pm 9.8 \cdot 10^{-6} \) |
\(a_{82}= +1.76879855 \pm 1.7 \cdot 10^{-5} \) | \(a_{83}= +1.06374479 \pm 1.0 \cdot 10^{-5} \) | \(a_{84}= -0.30672521 \pm 1.1 \cdot 10^{-5} \) |
\(a_{85}= +1.67822592 \pm 6.5 \cdot 10^{-6} \) | \(a_{86}= -1.58127020 \pm 7.2 \cdot 10^{-6} \) | \(a_{87}= -1.47537065 \pm 9.0 \cdot 10^{-6} \) |
\(a_{88}= +0.39370199 \pm 6.7 \cdot 10^{-6} \) | \(a_{89}= -1.15700405 \pm 8.4 \cdot 10^{-6} \) | \(a_{90}= +0.15708527 \pm 7.6 \cdot 10^{-6} \) |
\(a_{91}= -0.16021393 \pm 9.2 \cdot 10^{-6} \) | \(a_{92}= -0.51291496 \pm 7.9 \cdot 10^{-6} \) | \(a_{93}= -0.66980973 \pm 6.6 \cdot 10^{-6} \) |
\(a_{94}= +0.46531967 \pm 9.7 \cdot 10^{-6} \) | \(a_{95}= +0.07869249 \pm 9.9 \cdot 10^{-6} \) | \(a_{96}= +0.95632881 \pm 6.1 \cdot 10^{-6} \) |
\(a_{97}= +1.41892115 \pm 1.0 \cdot 10^{-5} \) | \(a_{98}= -0.83122265 \pm 8.5 \cdot 10^{-6} \) | \(a_{99}= +0.06318224 \pm 8.9 \cdot 10^{-6} \) |
\(a_{100}= +0.56131433 \pm 1.1 \cdot 10^{-5} \) | \(a_{101}= -1.81593746 \pm 9.0 \cdot 10^{-6} \) | \(a_{102}= +1.40990848 \pm 1.2 \cdot 10^{-5} \) |
\(a_{103}= -1.19855951 \pm 1.0 \cdot 10^{-5} \) | \(a_{104}= +0.15353102 \pm 1.1 \cdot 10^{-5} \) | \(a_{105}= +0.78157161 \pm 5.8 \cdot 10^{-6} \) |
\(a_{106}= -0.43000958 \pm 7.1 \cdot 10^{-6} \) | \(a_{107}= +0.82211728 \pm 9.1 \cdot 10^{-6} \) | \(a_{108}= +0.57814997 \pm 9.8 \cdot 10^{-6} \) |
\(a_{109}= +0.49256636 \pm 1.1 \cdot 10^{-5} \) | \(a_{110}= +1.25759284 \pm 5.4 \cdot 10^{-6} \) | \(a_{111}= -0.74864665 \pm 8.9 \cdot 10^{-6} \) |
\(a_{112}= -0.72024587 \pm 5.6 \cdot 10^{-6} \) | \(a_{113}= -1.52585303 \pm 6.6 \cdot 10^{-6} \) | \(a_{114}= +0.06611101 \pm 5.2 \cdot 10^{-6} \) |
\(a_{115}= +1.30696714 \pm 6.6 \cdot 10^{-6} \) | \(a_{116}= +0.85977086 \pm 1.5 \cdot 10^{-5} \) | \(a_{117}= +0.02463903 \pm 8.2 \cdot 10^{-6} \) |
\(a_{118}= -0.29515665 \pm 6.3 \cdot 10^{-6} \) | \(a_{119}= -0.68394867 \pm 7.8 \cdot 10^{-6} \) | \(a_{120}= -0.74897037 \pm 7.1 \cdot 10^{-6} \) |
\(a_{121}= -0.49417578 \pm 9.1 \cdot 10^{-6} \) | \(a_{122}= -1.82229083 \pm 1.0 \cdot 10^{-5} \) | \(a_{123}= -1.35342739 \pm 1.3 \cdot 10^{-5} \) |
\(a_{124}= +0.39033099 \pm 5.1 \cdot 10^{-6} \) | \(a_{125}= -0.01287339 \pm 1.1 \cdot 10^{-5} \) | \(a_{126}= -0.06401895 \pm 9.5 \cdot 10^{-6} \) |
\(a_{127}= +1.05052459 \pm 1.0 \cdot 10^{-5} \) | \(a_{128}= +0.99812938 \pm 1.3 \cdot 10^{-5} \) | \(a_{129}= +1.20993677 \pm 6.7 \cdot 10^{-6} \) |
\(a_{130}= +0.49042045 \pm 2.2 \cdot 10^{-5} \) | \(a_{131}= -0.70414891 \pm 6.8 \cdot 10^{-6} \) | \(a_{132}= +0.37763944 \pm 3.9 \cdot 10^{-6} \) |
\(a_{133}= -0.03207055 \pm 1.1 \cdot 10^{-5} \) | \(a_{134}= +1.54361243 \pm 8.9 \cdot 10^{-6} \) | \(a_{135}= -1.47319356 \pm 9.5 \cdot 10^{-6} \) |
\(a_{136}= +0.65541951 \pm 1.0 \cdot 10^{-5} \) | \(a_{137}= -0.05814642 \pm 5.6 \cdot 10^{-6} \) | \(a_{138}= +1.09800715 \pm 7.2 \cdot 10^{-6} \) |
\(a_{139}= -0.20569438 \pm 7.1 \cdot 10^{-6} \) | \(a_{140}= -0.45546012 \pm 1.0 \cdot 10^{-5} \) | \(a_{141}= -0.35604755 \pm 7.9 \cdot 10^{-6} \) |
\(a_{142}= +1.67864152 \pm 9.0 \cdot 10^{-6} \) | \(a_{143}= +0.19725505 \pm 6.8 \cdot 10^{-6} \) | \(a_{144}= +0.11076538 \pm 8.3 \cdot 10^{-6} \) |
\(a_{145}= -2.19079644 \pm 6.1 \cdot 10^{-6} \) | \(a_{146}= -0.83034463 \pm 1.0 \cdot 10^{-5} \) | \(a_{147}= +0.63602466 \pm 5.5 \cdot 10^{-6} \) |
\(a_{148}= +0.43627313 \pm 9.1 \cdot 10^{-6} \) | \(a_{149}= -1.66985262 \pm 6.4 \cdot 10^{-6} \) | \(a_{150}= -1.20161663 \pm 9.8 \cdot 10^{-6} \) |
\(a_{151}= +0.51544768 \pm 7.0 \cdot 10^{-6} \) | \(a_{152}= +0.03073281 \pm 1.1 \cdot 10^{-5} \) | \(a_{153}= +0.10518330 \pm 6.8 \cdot 10^{-6} \) |
\(a_{154}= -0.51252274 \pm 5.2 \cdot 10^{-6} \) | \(a_{155}= -0.99460889 \pm 6.0 \cdot 10^{-6} \) | \(a_{156}= +0.14726714 \pm 2.2 \cdot 10^{-5} \) |
\(a_{157}= +1.92148662 \pm 8.0 \cdot 10^{-6} \) | \(a_{158}= -0.21701107 \pm 8.4 \cdot 10^{-6} \) | \(a_{159}= +0.32902941 \pm 7.9 \cdot 10^{-6} \) |
\(a_{160}= +1.42006468 \pm 1.0 \cdot 10^{-5} \) | \(a_{161}= -0.53264488 \pm 5.7 \cdot 10^{-6} \) | \(a_{162}= -1.12683231 \pm 1.3 \cdot 10^{-5} \) |
\(a_{163}= -0.19591749 \pm 8.1 \cdot 10^{-6} \) | \(a_{164}= +0.78870854 \pm 2.0 \cdot 10^{-5} \) | \(a_{165}= -0.96226933 \pm 5.9 \cdot 10^{-6} \) |
\(a_{166}= +1.32702416 \pm 1.5 \cdot 10^{-5} \) | \(a_{167}= -0.19746298 \pm 1.0 \cdot 10^{-5} \) | \(a_{168}= +0.30523738 \pm 9.6 \cdot 10^{-6} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +2.09359084 \pm 6.2 \cdot 10^{-6} \) | \(a_{171}= +0.00493207 \pm 8.4 \cdot 10^{-6} \) |
\(a_{172}= -0.70508951 \pm 5.4 \cdot 10^{-6} \) | \(a_{173}= -0.03009369 \pm 8.6 \cdot 10^{-6} \) | \(a_{174}= -1.84052841 \pm 1.4 \cdot 10^{-5} \) |
\(a_{175}= +0.58290599 \pm 8.1 \cdot 10^{-6} \) | \(a_{176}= +0.88676521 \pm 6.3 \cdot 10^{-6} \) | \(a_{177}= +0.22584431 \pm 6.9 \cdot 10^{-6} \) |
\(a_{178}= -1.44336531 \pm 1.2 \cdot 10^{-5} \) | \(a_{179}= -1.05703765 \pm 1.0 \cdot 10^{-5} \) | \(a_{180}= +0.07004443 \pm 8.2 \cdot 10^{-6} \) |
\(a_{181}= -0.01738124 \pm 8.5 \cdot 10^{-6} \) | \(a_{182}= -0.19986726 \pm 2.1 \cdot 10^{-5} \) | \(a_{183}= +1.39435795 \pm 7.9 \cdot 10^{-6} \) |
\(a_{184}= +0.51042697 \pm 7.7 \cdot 10^{-6} \) | \(a_{185}= -1.11167483 \pm 7.9 \cdot 10^{-6} \) | \(a_{186}= -0.83558923 \pm 6.2 \cdot 10^{-6} \) |
\(a_{187}= +0.84207617 \pm 5.4 \cdot 10^{-6} \) | \(a_{188}= +0.20748637 \pm 1.0 \cdot 10^{-5} \) | \(a_{189}= +0.60038924 \pm 6.7 \cdot 10^{-6} \) |
\(a_{190}= +0.09816906 \pm 1.2 \cdot 10^{-5} \) | \(a_{191}= -0.30535334 \pm 1.3 \cdot 10^{-5} \) | \(a_{192}= +0.00285848 \pm 9.8 \cdot 10^{-6} \) |
\(a_{193}= -0.01996166 \pm 8.8 \cdot 10^{-6} \) | \(a_{194}= +1.77010752 \pm 1.5 \cdot 10^{-5} \) | \(a_{195}= -0.37525385 \pm 1.9 \cdot 10^{-5} \) |
\(a_{196}= -0.37064277 \pm 8.6 \cdot 10^{-6} \) | \(a_{197}= -0.96753440 \pm 1.0 \cdot 10^{-5} \) | \(a_{198}= +0.07882000 \pm 9.3 \cdot 10^{-6} \) |
\(a_{199}= +1.73210318 \pm 1.0 \cdot 10^{-5} \) | \(a_{200}= -0.55859157 \pm 1.0 \cdot 10^{-5} \) | \(a_{201}= -1.18112226 \pm 5.4 \cdot 10^{-6} \) |
\(a_{202}= -2.26538632 \pm 7.9 \cdot 10^{-6} \) | \(a_{203}= +0.89284303 \pm 8.6 \cdot 10^{-6} \) | \(a_{204}= +0.62867920 \pm 1.3 \cdot 10^{-5} \) |
\(a_{205}= -2.00972136 \pm 1.3 \cdot 10^{-5} \) | \(a_{206}= -1.49520585 \pm 1.0 \cdot 10^{-5} \) | \(a_{207}= +0.08191454 \pm 5.4 \cdot 10^{-6} \) |
\(a_{208}= +0.34580969 \pm 8.3 \cdot 10^{-6} \) | \(a_{209}= +0.03948519 \pm 5.2 \cdot 10^{-6} \) | \(a_{210}= +0.97501246 \pm 5.6 \cdot 10^{-6} \) |
\(a_{211}= +1.94778051 \pm 1.0 \cdot 10^{-5} \) | \(a_{212}= -0.19174158 \pm 6.4 \cdot 10^{-6} \) | \(a_{213}= -1.28444215 \pm 4.9 \cdot 10^{-6} \) |
\(a_{214}= +1.02559327 \pm 1.3 \cdot 10^{-5} \) | \(a_{215}= +1.79665032 \pm 8.3 \cdot 10^{-6} \) | \(a_{216}= -0.57534555 \pm 1.0 \cdot 10^{-5} \) |
\(a_{217}= +0.40534556 \pm 6.3 \cdot 10^{-6} \) | \(a_{218}= +0.61447771 \pm 1.5 \cdot 10^{-5} \) | \(a_{219}= +0.63535283 \pm 7.7 \cdot 10^{-6} \) |
\(a_{220}= +0.56076155 \pm 5.7 \cdot 10^{-6} \) | \(a_{221}= +0.32838241 \pm 9.0 \cdot 10^{-6} \) | \(a_{222}= -0.93393849 \pm 1.1 \cdot 10^{-5} \) |
\(a_{223}= +0.01830413 \pm 1.0 \cdot 10^{-5} \) | \(a_{224}= -0.57873695 \pm 7.5 \cdot 10^{-6} \) | \(a_{225}= -0.08964412 \pm 7.7 \cdot 10^{-6} \) |
\(a_{226}= -1.90350529 \pm 5.5 \cdot 10^{-6} \) | \(a_{227}= +0.80655299 \pm 7.7 \cdot 10^{-6} \) | \(a_{228}= +0.02947894 \pm 4.4 \cdot 10^{-6} \) |
\(a_{229}= +0.62479129 \pm 8.5 \cdot 10^{-6} \) | \(a_{230}= +1.63044463 \pm 6.2 \cdot 10^{-6} \) | \(a_{231}= +0.39216581 \pm 4.7 \cdot 10^{-6} \) |
\(a_{232}= -0.85560038 \pm 1.3 \cdot 10^{-5} \) | \(a_{233}= -0.03797262 \pm 7.8 \cdot 10^{-6} \) | \(a_{234}= +0.03073724 \pm 2.0 \cdot 10^{-5} \) |
\(a_{235}= -0.52869948 \pm 5.8 \cdot 10^{-6} \) | \(a_{236}= -0.13161056 \pm 7.6 \cdot 10^{-6} \) | \(a_{237}= +0.16604985 \pm 5.5 \cdot 10^{-6} \) |
\(a_{238}= -0.85322760 \pm 1.1 \cdot 10^{-5} \) | \(a_{239}= -0.75693755 \pm 6.7 \cdot 10^{-6} \) | \(a_{240}= -1.68696342 \pm 6.1 \cdot 10^{-6} \) |
\(a_{241}= +1.58289882 \pm 1.0 \cdot 10^{-5} \) | \(a_{242}= -0.61648546 \pm 1.1 \cdot 10^{-5} \) | \(a_{243}= -0.17713231 \pm 8.0 \cdot 10^{-6} \) |
\(a_{244}= -0.81256078 \pm 1.1 \cdot 10^{-5} \) | \(a_{245}= +0.94444102 \pm 7.1 \cdot 10^{-6} \) | \(a_{246}= -1.68840390 \pm 1.9 \cdot 10^{-5} \) |
\(a_{247}= +0.01539794 \pm 9.8 \cdot 10^{-6} \) | \(a_{248}= -0.38843762 \pm 6.9 \cdot 10^{-6} \) | \(a_{249}= -1.01539593 \pm 1.1 \cdot 10^{-5} \) |
\(a_{250}= -0.01605958 \pm 1.0 \cdot 10^{-5} \) | \(a_{251}= +1.13057836 \pm 1.1 \cdot 10^{-5} \) | \(a_{252}= -0.02854610 \pm 9.8 \cdot 10^{-6} \) |
\(a_{253}= +0.65579126 \pm 5.1 \cdot 10^{-6} \) | \(a_{254}= +1.31053193 \pm 1.5 \cdot 10^{-5} \) | \(a_{255}= -1.60194793 \pm 5.0 \cdot 10^{-6} \) |
\(a_{256}= +1.24816338 \pm 1.1 \cdot 10^{-5} \) | \(a_{257}= +1.19060483 \pm 1.2 \cdot 10^{-5} \) | \(a_{258}= +1.50939900 \pm 6.2 \cdot 10^{-6} \) |
\(a_{259}= +0.45305493 \pm 6.1 \cdot 10^{-6} \) | \(a_{260}= +0.21867883 \pm 2.3 \cdot 10^{-5} \) | \(a_{261}= -0.13730880 \pm 5.1 \cdot 10^{-6} \) |
\(a_{262}= -0.87842745 \pm 8.5 \cdot 10^{-6} \) | \(a_{263}= -1.56592718 \pm 8.5 \cdot 10^{-6} \) | \(a_{264}= -0.37580763 \pm 7.4 \cdot 10^{-6} \) |
\(a_{265}= +0.48857991 \pm 1.1 \cdot 10^{-5} \) | \(a_{266}= -0.04000808 \pm 1.7 \cdot 10^{-5} \) | \(a_{267}= +1.10441641 \pm 7.2 \cdot 10^{-6} \) |
\(a_{268}= +0.68829789 \pm 9.3 \cdot 10^{-6} \) | \(a_{269}= +1.56101859 \pm 1.0 \cdot 10^{-5} \) | \(a_{270}= -1.83781248 \pm 6.2 \cdot 10^{-6} \) |
\(a_{271}= -0.24786451 \pm 1.0 \cdot 10^{-5} \) | \(a_{272}= +1.47625165 \pm 5.5 \cdot 10^{-6} \) | \(a_{273}= +0.15293196 \pm 1.8 \cdot 10^{-5} \) |
\(a_{274}= -0.07253780 \pm 8.6 \cdot 10^{-6} \) | \(a_{275}= -0.71767263 \pm 6.7 \cdot 10^{-6} \) | \(a_{276}= +0.48960217 \pm 6.7 \cdot 10^{-6} \) |
\(a_{277}= -1.56838827 \pm 7.8 \cdot 10^{-6} \) | \(a_{278}= -0.25660423 \pm 5.9 \cdot 10^{-6} \) | \(a_{279}= -0.06233740 \pm 6.8 \cdot 10^{-6} \) |
\(a_{280}= +0.45325083 \pm 8.8 \cdot 10^{-6} \) | \(a_{281}= +0.50178544 \pm 8.2 \cdot 10^{-6} \) | \(a_{282}= -0.44417017 \pm 9.3 \cdot 10^{-6} \) |
\(a_{283}= -0.30907429 \pm 8.8 \cdot 10^{-6} \) | \(a_{284}= +0.74850746 \pm 8.8 \cdot 10^{-6} \) | \(a_{285}= -0.07511579 \pm 5.2 \cdot 10^{-6} \) |
\(a_{286}= +0.24607615 \pm 1.9 \cdot 10^{-5} \) | \(a_{287}= +0.81904721 \pm 1.2 \cdot 10^{-5} \) | \(a_{288}= +0.08900297 \pm 6.8 \cdot 10^{-6} \) |
\(a_{289}= +0.40185511 \pm 8.5 \cdot 10^{-6} \) | \(a_{290}= -2.73302379 \pm 9.1 \cdot 10^{-6} \) | \(a_{291}= -1.35442897 \pm 1.1 \cdot 10^{-5} \) |
\(a_{292}= -0.37025127 \pm 1.1 \cdot 10^{-5} \) | \(a_{293}= -0.39914881 \pm 6.1 \cdot 10^{-6} \) | \(a_{294}= +0.79344228 \pm 5.4 \cdot 10^{-6} \) |
\(a_{295}= +0.33535906 \pm 1.2 \cdot 10^{-5} \) | \(a_{296}= -0.43415691 \pm 9.1 \cdot 10^{-6} \) | \(a_{297}= -0.73919797 \pm 9.5 \cdot 10^{-6} \) |
\(a_{298}= -2.08314513 \pm 6.7 \cdot 10^{-6} \) | \(a_{299}= +0.25573733 \pm 6.6 \cdot 10^{-6} \) | \(a_{300}= -0.53580172 \pm 1.0 \cdot 10^{-5} \) |
\(a_{301}= -0.73221167 \pm 5.1 \cdot 10^{-6} \) | \(a_{302}= +0.64302221 \pm 7.9 \cdot 10^{-6} \) | \(a_{303}= +1.73340027 \pm 7.4 \cdot 10^{-6} \) |
\(a_{304}= +0.06922186 \pm 7.2 \cdot 10^{-6} \) | \(a_{305}= +2.07049966 \pm 1.1 \cdot 10^{-5} \) | \(a_{306}= +0.13121641 \pm 7.3 \cdot 10^{-6} \) |
\(a_{307}= +0.76185612 \pm 1.2 \cdot 10^{-5} \) | \(a_{308}= -0.22853426 \pm 5.5 \cdot 10^{-6} \) | \(a_{309}= +1.14408312 \pm 8.5 \cdot 10^{-6} \) |
\(a_{310}= -1.24077697 \pm 4.8 \cdot 10^{-6} \) | \(a_{311}= +0.75053616 \pm 7.6 \cdot 10^{-6} \) | \(a_{312}= -0.14655279 \pm 2.1 \cdot 10^{-5} \) |
\(a_{313}= -0.31149671 \pm 1.0 \cdot 10^{-5} \) | \(a_{314}= +2.39705915 \pm 9.2 \cdot 10^{-6} \) | \(a_{315}= +0.07273878 \pm 6.7 \cdot 10^{-6} \) |
\(a_{316}= -0.09676539 \pm 7.9 \cdot 10^{-6} \) | \(a_{317}= +0.65722051 \pm 8.5 \cdot 10^{-6} \) | \(a_{318}= +0.41046497 \pm 6.2 \cdot 10^{-6} \) |
\(a_{319}= -1.09926646 \pm 3.5 \cdot 10^{-6} \) | \(a_{320}= +0.00424460 \pm 1.0 \cdot 10^{-5} \) | \(a_{321}= -0.78475077 \pm 7.9 \cdot 10^{-6} \) |
\(a_{322}= -0.66447576 \pm 7.5 \cdot 10^{-6} \) | \(a_{323}= +0.06573338 \pm 7.1 \cdot 10^{-6} \) | \(a_{324}= -0.50245534 \pm 1.3 \cdot 10^{-5} \) |
\(a_{325}= -0.27986906 \pm 1.1 \cdot 10^{-5} \) | \(a_{326}= -0.24440754 \pm 9.6 \cdot 10^{-6} \) | \(a_{327}= -0.47017845 \pm 1.0 \cdot 10^{-5} \) |
\(a_{328}= -0.78488276 \pm 1.7 \cdot 10^{-5} \) | \(a_{329}= +0.21546760 \pm 6.5 \cdot 10^{-6} \) | \(a_{330}= -1.20043329 \pm 5.5 \cdot 10^{-6} \) |
\(a_{331}= +1.75761922 \pm 1.1 \cdot 10^{-5} \) | \(a_{332}= +0.59172102 \pm 1.5 \cdot 10^{-5} \) | \(a_{333}= -0.06967454 \pm 7.7 \cdot 10^{-6} \) |
\(a_{334}= -0.24633554 \pm 9.4 \cdot 10^{-6} \) | \(a_{335}= -1.75386331 \pm 7.0 \cdot 10^{-6} \) | \(a_{336}= +0.68750958 \pm 4.9 \cdot 10^{-6} \) |
\(a_{337}= +0.88007742 \pm 1.1 \cdot 10^{-5} \) | \(a_{338}= +0.09596172 \pm 1.2 \cdot 10^{-5} \) | \(a_{339}= +1.45650063 \pm 6.6 \cdot 10^{-6} \) |
\(a_{340}= +0.93353365 \pm 6.3 \cdot 10^{-6} \) | \(a_{341}= -0.49906060 \pm 7.6 \cdot 10^{-6} \) | \(a_{342}= +0.00615277 \pm 1.2 \cdot 10^{-5} \) |
\(a_{343}= -0.96255955 \pm 8.1 \cdot 10^{-6} \) | \(a_{344}= +0.70166935 \pm 8.1 \cdot 10^{-6} \) | \(a_{345}= -1.24756345 \pm 5.4 \cdot 10^{-6} \) |
\(a_{346}= -0.03754195 \pm 1.1 \cdot 10^{-5} \) | \(a_{347}= -0.14433531 \pm 8.7 \cdot 10^{-6} \) | \(a_{348}= -0.82069293 \pm 1.5 \cdot 10^{-5} \) |
\(a_{349}= +1.47567840 \pm 1.2 \cdot 10^{-5} \) | \(a_{350}= +0.72717661 \pm 8.2 \cdot 10^{-6} \) | \(a_{351}= -0.28826325 \pm 9.9 \cdot 10^{-6} \) |
\(a_{352}= +0.71253972 \pm 5.5 \cdot 10^{-6} \) | \(a_{353}= +0.71995283 \pm 1.1 \cdot 10^{-5} \) | \(a_{354}= +0.28174132 \pm 5.6 \cdot 10^{-6} \) |
\(a_{355}= -1.90728431 \pm 7.7 \cdot 10^{-6} \) | \(a_{356}= -0.64359763 \pm 1.3 \cdot 10^{-5} \) | \(a_{357}= +0.65286214 \pm 8.2 \cdot 10^{-6} \) |
\(a_{358}= -1.31865699 \pm 1.2 \cdot 10^{-5} \) | \(a_{359}= -1.55130598 \pm 7.1 \cdot 10^{-6} \) | \(a_{360}= -0.06970467 \pm 8.4 \cdot 10^{-6} \) |
\(a_{361}= -0.99691774 \pm 1.3 \cdot 10^{-5} \) | \(a_{362}= -0.02168314 \pm 8.8 \cdot 10^{-6} \) | \(a_{363}= +0.47171472 \pm 9.4 \cdot 10^{-6} \) |
\(a_{364}= -0.08912095 \pm 2.2 \cdot 10^{-5} \) | \(a_{365}= +0.94344341 \pm 4.9 \cdot 10^{-6} \) | \(a_{366}= +1.73946487 \pm 9.3 \cdot 10^{-6} \) |
\(a_{367}= -0.23392786 \pm 1.0 \cdot 10^{-5} \) | \(a_{368}= +1.14967382 \pm 5.9 \cdot 10^{-6} \) | \(a_{369}= -0.12595987 \pm 6.7 \cdot 10^{-6} \) |
\(a_{370}= -1.38681701 \pm 6.7 \cdot 10^{-6} \) | \(a_{371}= -0.19911716 \pm 7.5 \cdot 10^{-6} \) | \(a_{372}= -0.37258984 \pm 3.9 \cdot 10^{-6} \) |
\(a_{373}= -1.51529362 \pm 8.7 \cdot 10^{-6} \) | \(a_{374}= +1.05049203 \pm 5.0 \cdot 10^{-6} \) | \(a_{375}= +0.01228827 \pm 8.9 \cdot 10^{-6} \) |
\(a_{376}= -0.20647992 \pm 1.0 \cdot 10^{-5} \) | \(a_{377}= -0.42867829 \pm 8.7 \cdot 10^{-6} \) | \(a_{378}= +0.74898700 \pm 8.1 \cdot 10^{-6} \) |
\(a_{379}= +1.01786111 \pm 1.0 \cdot 10^{-5} \) | \(a_{380}= +0.04377366 \pm 1.2 \cdot 10^{-5} \) | \(a_{381}= -1.00277661 \pm 1.1 \cdot 10^{-5} \) |
\(a_{382}= -0.38092902 \pm 1.9 \cdot 10^{-5} \) | \(a_{383}= +0.81338640 \pm 6.8 \cdot 10^{-6} \) | \(a_{384}= -0.95276285 \pm 1.2 \cdot 10^{-5} \) |
\(a_{385}= +0.58233195 \pm 5.6 \cdot 10^{-6} \) | \(a_{386}= -0.02490222 \pm 1.2 \cdot 10^{-5} \) | \(a_{387}= +0.11260558 \pm 7.0 \cdot 10^{-6} \) |
\(a_{388}= +0.78929221 \pm 1.6 \cdot 10^{-5} \) | \(a_{389}= +1.98182784 \pm 9.4 \cdot 10^{-6} \) | \(a_{390}= -0.46813007 \pm 3.1 \cdot 10^{-5} \) |
\(a_{391}= +1.09173535 \pm 5.9 \cdot 10^{-6} \) | \(a_{392}= +0.36884490 \pm 7.8 \cdot 10^{-6} \) | \(a_{393}= +0.67214425 \pm 6.4 \cdot 10^{-6} \) |
\(a_{394}= -1.20700148 \pm 1.5 \cdot 10^{-5} \) | \(a_{395}= +0.24656951 \pm 7.0 \cdot 10^{-6} \) | \(a_{396}= +0.03514589 \pm 3.7 \cdot 10^{-6} \) |
\(a_{397}= +0.88003767 \pm 1.0 \cdot 10^{-5} \) | \(a_{398}= +2.16080285 \pm 1.3 \cdot 10^{-5} \) | \(a_{399}= +0.03061289 \pm 3.7 \cdot 10^{-6} \) |
\(a_{400}= -1.25815864 \pm 7.9 \cdot 10^{-6} \) | \(a_{401}= -0.02728327 \pm 8.8 \cdot 10^{-6} \) | \(a_{402}= -1.47345284 \pm 4.4 \cdot 10^{-6} \) |
\(a_{403}= -0.19461746 \pm 6.8 \cdot 10^{-6} \) | \(a_{404}= -1.01013738 \pm 9.6 \cdot 10^{-6} \) | \(a_{405}= +1.28031480 \pm 5.8 \cdot 10^{-6} \) |
\(a_{406}= +1.11382381 \pm 1.4 \cdot 10^{-5} \) | \(a_{407}= -0.55780028 \pm 6.7 \cdot 10^{-6} \) | \(a_{408}= -0.62562968 \pm 1.1 \cdot 10^{-5} \) |
\(a_{409}= +0.48204773 \pm 8.6 \cdot 10^{-6} \) | \(a_{410}= -2.50713219 \pm 1.0 \cdot 10^{-5} \) | \(a_{411}= +0.05550358 \pm 4.0 \cdot 10^{-6} \) |
\(a_{412}= -0.66671336 \pm 1.2 \cdot 10^{-5} \) | \(a_{413}= -0.13667313 \pm 5.6 \cdot 10^{-6} \) | \(a_{414}= +0.10218859 \pm 6.1 \cdot 10^{-6} \) |
\(a_{415}= -1.50777419 \pm 8.4 \cdot 10^{-6} \) | \(a_{416}= +0.27786739 \pm 9.0 \cdot 10^{-6} \) | \(a_{417}= +0.19634525 \pm 6.1 \cdot 10^{-6} \) |
\(a_{418}= +0.04925787 \pm 5.6 \cdot 10^{-6} \) | \(a_{419}= -1.91899690 \pm 8.5 \cdot 10^{-6} \) | \(a_{420}= +0.43475875 \pm 6.2 \cdot 10^{-6} \) |
\(a_{421}= -1.25917833 \pm 1.0 \cdot 10^{-5} \) | \(a_{422}= +2.42986084 \pm 1.5 \cdot 10^{-5} \) | \(a_{423}= -0.03313639 \pm 8.7 \cdot 10^{-6} \) |
\(a_{424}= +0.19081150 \pm 9.1 \cdot 10^{-6} \) | \(a_{425}= -1.19475302 \pm 9.0 \cdot 10^{-6} \) | \(a_{426}= -1.60234465 \pm 4.2 \cdot 10^{-6} \) |
\(a_{427}= -0.84381696 \pm 8.5 \cdot 10^{-6} \) | \(a_{428}= +0.45731277 \pm 1.5 \cdot 10^{-5} \) | \(a_{429}= -0.18828950 \pm 1.6 \cdot 10^{-5} \) |
\(a_{430}= +2.24132557 \pm 7.2 \cdot 10^{-6} \) | \(a_{431}= -0.89889049 \pm 1.1 \cdot 10^{-5} \) | \(a_{432}= -1.29589491 \pm 9.0 \cdot 10^{-6} \) |
\(a_{433}= +0.80750341 \pm 9.3 \cdot 10^{-6} \) | \(a_{434}= +0.50566956 \pm 4.9 \cdot 10^{-6} \) | \(a_{435}= +2.09122133 \pm 5.1 \cdot 10^{-6} \) |
\(a_{436}= +0.27399605 \pm 1.7 \cdot 10^{-5} \) | \(a_{437}= +0.05119178 \pm 7.3 \cdot 10^{-6} \) | \(a_{438}= +0.79260417 \pm 1.0 \cdot 10^{-5} \) |
\(a_{439}= +0.57994454 \pm 8.2 \cdot 10^{-6} \) | \(a_{440}= -0.55804147 \pm 6.3 \cdot 10^{-6} \) | \(a_{441}= +0.05919311 \pm 7.6 \cdot 10^{-6} \) |
\(a_{442}= +0.40965784 \pm 2.1 \cdot 10^{-5} \) | \(a_{443}= +0.22408179 \pm 5.2 \cdot 10^{-6} \) | \(a_{444}= -0.41644384 \pm 9.7 \cdot 10^{-6} \) |
\(a_{445}= +1.63996183 \pm 7.1 \cdot 10^{-6} \) | \(a_{446}= +0.02283445 \pm 1.3 \cdot 10^{-5} \) | \(a_{447}= +1.59395522 \pm 6.7 \cdot 10^{-6} \) |
\(a_{448}= -0.00172985 \pm 1.2 \cdot 10^{-5} \) | \(a_{449}= -1.30840797 \pm 8.4 \cdot 10^{-6} \) | \(a_{450}= -0.11183125 \pm 7.0 \cdot 10^{-6} \) |
\(a_{451}= -1.00840920 \pm 7.2 \cdot 10^{-6} \) | \(a_{452}= -0.84877437 \pm 5.6 \cdot 10^{-6} \) | \(a_{453}= -0.49201978 \pm 7.4 \cdot 10^{-6} \) |
\(a_{454}= +1.00617678 \pm 9.9 \cdot 10^{-6} \) | \(a_{455}= +0.22709058 \pm 1.9 \cdot 10^{-5} \) | \(a_{456}= -0.02933595 \pm 6.1 \cdot 10^{-6} \) |
\(a_{457}= +0.97431698 \pm 9.8 \cdot 10^{-6} \) | \(a_{458}= +0.77942862 \pm 1.1 \cdot 10^{-5} \) | \(a_{459}= -1.23058755 \pm 9.7 \cdot 10^{-6} \) |
\(a_{460}= +0.72701643 \pm 6.7 \cdot 10^{-6} \) | \(a_{461}= -0.42595987 \pm 1.1 \cdot 10^{-5} \) | \(a_{462}= +0.48922779 \pm 4.5 \cdot 10^{-6} \) |
\(a_{463}= +0.68428998 \pm 1.0 \cdot 10^{-5} \) | \(a_{464}= -1.92713438 \pm 1.0 \cdot 10^{-5} \) | \(a_{465}= +0.94940237 \pm 4.9 \cdot 10^{-6} \) |
\(a_{466}= -0.04737093 \pm 1.0 \cdot 10^{-5} \) | \(a_{467}= -0.37144599 \pm 1.1 \cdot 10^{-5} \) | \(a_{468}= +0.01370576 \pm 2.1 \cdot 10^{-5} \) |
\(a_{469}= +0.71477413 \pm 8.2 \cdot 10^{-6} \) | \(a_{470}= -0.65955387 \pm 8.3 \cdot 10^{-6} \) | \(a_{471}= -1.83415206 \pm 7.6 \cdot 10^{-6} \) |
\(a_{472}= +0.13097216 \pm 7.8 \cdot 10^{-6} \) | \(a_{473}= +0.90149747 \pm 5.4 \cdot 10^{-6} \) | \(a_{474}= +0.20714758 \pm 5.8 \cdot 10^{-6} \) |
\(a_{475}= -0.05602231 \pm 5.5 \cdot 10^{-6} \) | \(a_{476}= -0.38045480 \pm 1.2 \cdot 10^{-5} \) | \(a_{477}= +0.03062189 \pm 7.5 \cdot 10^{-6} \) |
\(a_{478}= -0.94428140 \pm 8.8 \cdot 10^{-6} \) | \(a_{479}= +0.24175926 \pm 1.0 \cdot 10^{-5} \) | \(a_{480}= -1.35552053 \pm 6.7 \cdot 10^{-6} \) |
\(a_{481}= -0.21752403 \pm 8.0 \cdot 10^{-6} \) | \(a_{482}= +1.97467005 \pm 1.1 \cdot 10^{-5} \) | \(a_{483}= +0.50843534 \pm 4.9 \cdot 10^{-6} \) |
\(a_{484}= -0.27489131 \pm 1.1 \cdot 10^{-5} \) | \(a_{485}= -2.01120862 \pm 7.2 \cdot 10^{-6} \) | \(a_{486}= -0.22097298 \pm 8.7 \cdot 10^{-6} \) |
\(a_{487}= +0.81504636 \pm 1.0 \cdot 10^{-5} \) | \(a_{488}= +0.80861931 \pm 9.3 \cdot 10^{-6} \) | \(a_{489}= +0.18701274 \pm 7.9 \cdot 10^{-6} \) |
\(a_{490}= +1.17819243 \pm 7.9 \cdot 10^{-6} \) | \(a_{491}= -0.11699908 \pm 7.7 \cdot 10^{-6} \) | \(a_{492}= -0.75286051 \pm 2.1 \cdot 10^{-5} \) |
\(a_{493}= -1.83001534 \pm 9.3 \cdot 10^{-6} \) | \(a_{494}= +0.01920897 \pm 2.1 \cdot 10^{-5} \) | \(a_{495}= -0.08955583 \pm 4.9 \cdot 10^{-6} \) |
\(a_{496}= -0.87490784 \pm 4.8 \cdot 10^{-6} \) | \(a_{497}= +0.77729974 \pm 7.5 \cdot 10^{-6} \) | \(a_{498}= -1.26670885 \pm 1.5 \cdot 10^{-5} \) |
\(a_{499}= -0.80729154 \pm 8.5 \cdot 10^{-6} \) | \(a_{500}= -0.00716098 \pm 1.3 \cdot 10^{-5} \) | \(a_{501}= +0.18848798 \pm 9.6 \cdot 10^{-6} \) |
\(a_{502}= +1.41039920 \pm 1.4 \cdot 10^{-5} \) | \(a_{503}= -1.46690441 \pm 9.9 \cdot 10^{-6} \) | \(a_{504}= +0.02840763 \pm 7.7 \cdot 10^{-6} \) |
\(a_{505}= +2.57394787 \pm 1.3 \cdot 10^{-5} \) | \(a_{506}= +0.81810116 \pm 4.9 \cdot 10^{-6} \) | \(a_{507}= -0.07342680 \pm 9.2 \cdot 10^{-6} \) |
\(a_{508}= +0.58436713 \pm 1.6 \cdot 10^{-5} \) | \(a_{509}= -0.16839162 \pm 1.0 \cdot 10^{-5} \) | \(a_{510}= -1.99843387 \pm 5.3 \cdot 10^{-6} \) |
\(a_{511}= -0.38449345 \pm 6.6 \cdot 10^{-6} \) | \(a_{512}= +0.55895741 \pm 8.5 \cdot 10^{-6} \) | \(a_{513}= -0.05770260 \pm 7.0 \cdot 10^{-6} \) |
\(a_{514}= +1.48528237 \pm 1.7 \cdot 10^{-5} \) | \(a_{515}= +1.69886341 \pm 1.4 \cdot 10^{-5} \) | \(a_{516}= +0.67304210 \pm 4.0 \cdot 10^{-6} \) |
\(a_{517}= -0.26528326 \pm 6.2 \cdot 10^{-6} \) | \(a_{518}= +0.56518711 \pm 8.5 \cdot 10^{-6} \) | \(a_{519}= +0.02872589 \pm 8.8 \cdot 10^{-6} \) |
\(a_{520}= -0.21761809 \pm 2.1 \cdot 10^{-5} \) | \(a_{521}= -0.10469438 \pm 5.8 \cdot 10^{-6} \) | \(a_{522}= -0.17129306 \pm 7.1 \cdot 10^{-6} \) |
\(a_{523}= +1.07982889 \pm 7.3 \cdot 10^{-6} \) | \(a_{524}= -0.39169143 \pm 8.2 \cdot 10^{-6} \) | \(a_{525}= -0.55641200 \pm 7.1 \cdot 10^{-6} \) |
\(a_{526}= -1.95349789 \pm 1.1 \cdot 10^{-5} \) | \(a_{527}= -0.83081636 \pm 6.6 \cdot 10^{-6} \) | \(a_{528}= -0.84646035 \pm 8.4 \cdot 10^{-6} \) |
\(a_{529}= -0.14977941 \pm 6.4 \cdot 10^{-6} \) | \(a_{530}= +0.60950460 \pm 7.1 \cdot 10^{-6} \) | \(a_{531}= +0.02101873 \pm 5.6 \cdot 10^{-6} \) |
\(a_{532}= -0.01783963 \pm 1.7 \cdot 10^{-5} \) | \(a_{533}= -0.39324690 \pm 1.3 \cdot 10^{-5} \) | \(a_{534}= +1.37776211 \pm 1.0 \cdot 10^{-5} \) |
\(a_{535}= -1.16528629 \pm 9.6 \cdot 10^{-6} \) | \(a_{536}= -0.68495917 \pm 9.1 \cdot 10^{-6} \) | \(a_{537}= +1.00899364 \pm 1.1 \cdot 10^{-5} \) |
\(a_{538}= +1.94737442 \pm 1.1 \cdot 10^{-5} \) | \(a_{539}= +0.47388809 \pm 5.9 \cdot 10^{-6} \) | \(a_{540}= -0.81948190 \pm 9.2 \cdot 10^{-6} \) |
\(a_{541}= +1.01813225 \pm 9.2 \cdot 10^{-6} \) | \(a_{542}= -0.30921157 \pm 1.2 \cdot 10^{-5} \) | \(a_{543}= +0.01659124 \pm 7.0 \cdot 10^{-6} \) |
\(a_{544}= +1.18620795 \pm 6.1 \cdot 10^{-6} \) | \(a_{545}= -0.69817390 \pm 1.1 \cdot 10^{-5} \) | \(a_{546}= +0.19078298 \pm 3.0 \cdot 10^{-5} \) |
\(a_{547}= +0.57308515 \pm 1.2 \cdot 10^{-5} \) | \(a_{548}= -0.03234466 \pm 1.0 \cdot 10^{-5} \) | \(a_{549}= +0.12976917 \pm 6.7 \cdot 10^{-6} \) |
\(a_{550}= -0.89529832 \pm 4.9 \cdot 10^{-6} \) | \(a_{551}= -0.08580994 \pm 6.4 \cdot 10^{-6} \) | \(a_{552}= -0.48722727 \pm 6.7 \cdot 10^{-6} \) |
\(a_{553}= -0.10048759 \pm 8.1 \cdot 10^{-6} \) | \(a_{554}= -1.95656811 \pm 1.1 \cdot 10^{-5} \) | \(a_{555}= +1.06114748 \pm 7.4 \cdot 10^{-6} \) |
\(a_{556}= -0.11442001 \pm 6.1 \cdot 10^{-6} \) | \(a_{557}= -1.80337080 \pm 1.2 \cdot 10^{-5} \) | \(a_{558}= -0.07776606 \pm 6.6 \cdot 10^{-6} \) |
\(a_{559}= +0.35155479 \pm 7.6 \cdot 10^{-6} \) | \(a_{560}= +1.02089162 \pm 6.0 \cdot 10^{-6} \) | \(a_{561}= -0.80380249 \pm 7.1 \cdot 10^{-6} \) |
\(a_{562}= +0.62597853 \pm 1.0 \cdot 10^{-5} \) | \(a_{563}= +0.62640873 \pm 6.6 \cdot 10^{-6} \) | \(a_{564}= -0.19805580 \pm 7.3 \cdot 10^{-6} \) |
\(a_{565}= +2.16277611 \pm 9.3 \cdot 10^{-6} \) | \(a_{566}= -0.38557091 \pm 1.3 \cdot 10^{-5} \) | \(a_{567}= -0.52178291 \pm 8.8 \cdot 10^{-6} \) |
\(a_{568}= -0.74487668 \pm 8.8 \cdot 10^{-6} \) | \(a_{569}= +0.50281102 \pm 1.0 \cdot 10^{-5} \) | \(a_{570}= -0.09370713 \pm 4.5 \cdot 10^{-6} \) |
\(a_{571}= -0.78637306 \pm 9.8 \cdot 10^{-6} \) | \(a_{572}= +0.10972553 \pm 1.9 \cdot 10^{-5} \) | \(a_{573}= +0.29147456 \pm 1.2 \cdot 10^{-5} \) |
\(a_{574}= +1.02176335 \pm 1.8 \cdot 10^{-5} \) | \(a_{575}= -0.93044859 \pm 6.2 \cdot 10^{-6} \) | \(a_{576}= +0.00026603 \pm 9.3 \cdot 10^{-6} \) |
\(a_{577}= -1.05576070 \pm 8.9 \cdot 10^{-6} \) | \(a_{578}= +0.50131520 \pm 8.6 \cdot 10^{-6} \) | \(a_{579}= +0.01905437 \pm 9.4 \cdot 10^{-6} \) |
\(a_{580}= -1.21865726 \pm 1.0 \cdot 10^{-5} \) | \(a_{581}= +0.61448232 \pm 1.1 \cdot 10^{-5} \) | \(a_{582}= -1.68965338 \pm 1.7 \cdot 10^{-5} \) |
\(a_{583}= +0.24515263 \pm 8.2 \cdot 10^{-6} \) | \(a_{584}= +0.36845529 \pm 1.0 \cdot 10^{-5} \) | \(a_{585}= -0.03492387 \pm 1.8 \cdot 10^{-5} \) |
\(a_{586}= -0.49793909 \pm 8.3 \cdot 10^{-6} \) | \(a_{587}= +0.17399365 \pm 8.3 \cdot 10^{-6} \) | \(a_{588}= +0.35379648 \pm 3.1 \cdot 10^{-6} \) |
\(a_{589}= -0.03895721 \pm 6.9 \cdot 10^{-6} \) | \(a_{590}= +0.41836123 \pm 6.9 \cdot 10^{-6} \) | \(a_{591}= +0.92355846 \pm 1.2 \cdot 10^{-5} \) |
\(a_{592}= -0.97788492 \pm 6.3 \cdot 10^{-6} \) | \(a_{593}= -0.41306583 \pm 1.2 \cdot 10^{-5} \) | \(a_{594}= -0.92215123 \pm 9.3 \cdot 10^{-6} \) |
\(a_{595}= +0.96944320 \pm 5.0 \cdot 10^{-6} \) | \(a_{596}= -0.92887591 \pm 6.3 \cdot 10^{-6} \) | \(a_{597}= -1.65337639 \pm 1.0 \cdot 10^{-5} \) |
\(a_{598}= +0.31903294 \pm 1.8 \cdot 10^{-5} \) | \(a_{599}= -0.98840995 \pm 9.9 \cdot 10^{-6} \) | \(a_{600}= +0.53320271 \pm 9.6 \cdot 10^{-6} \) |
\(a_{601}= +0.14168767 \pm 6.4 \cdot 10^{-6} \) | \(a_{602}= -0.91343581 \pm 6.2 \cdot 10^{-6} \) | \(a_{603}= -0.10992389 \pm 5.7 \cdot 10^{-6} \) |
\(a_{604}= +0.28672406 \pm 7.7 \cdot 10^{-6} \) | \(a_{605}= +0.70045512 \pm 8.6 \cdot 10^{-6} \) | \(a_{606}= +2.16242098 \pm 7.1 \cdot 10^{-6} \) |
\(a_{607}= +0.99970531 \pm 1.0 \cdot 10^{-5} \) | \(a_{608}= +0.05562163 \pm 9.5 \cdot 10^{-6} \) | \(a_{609}= -0.85226192 \pm 9.1 \cdot 10^{-6} \) |
\(a_{610}= +2.58295327 \pm 8.6 \cdot 10^{-6} \) | \(a_{611}= -0.10345187 \pm 7.0 \cdot 10^{-6} \) | \(a_{612}= +0.05850949 \pm 4.4 \cdot 10^{-6} \) |
\(a_{613}= +1.85473459 \pm 9.1 \cdot 10^{-6} \) | \(a_{614}= +0.95041733 \pm 1.5 \cdot 10^{-5} \) | \(a_{615}= +1.91837639 \pm 1.0 \cdot 10^{-5} \) |
\(a_{616}= +0.22742571 \pm 5.9 \cdot 10^{-6} \) | \(a_{617}= -1.33579801 \pm 7.1 \cdot 10^{-6} \) | \(a_{618}= +1.42724642 \pm 9.8 \cdot 10^{-6} \) |
\(a_{619}= +1.66679470 \pm 9.4 \cdot 10^{-6} \) | \(a_{620}= -0.55326334 \pm 4.9 \cdot 10^{-6} \) | \(a_{621}= -0.95835577 \pm 6.6 \cdot 10^{-6} \) |
\(a_{622}= +0.93629565 \pm 9.7 \cdot 10^{-6} \) | \(a_{623}= -0.66835442 \pm 9.1 \cdot 10^{-6} \) | \(a_{624}= -0.33009210 \pm 1.7 \cdot 10^{-5} \) |
\(a_{625}= -0.99083525 \pm 1.0 \cdot 10^{-5} \) | \(a_{626}= -0.38859289 \pm 1.6 \cdot 10^{-5} \) | \(a_{627}= -0.03769053 \pm 4.2 \cdot 10^{-6} \) |
\(a_{628}= +1.06885039 \pm 9.7 \cdot 10^{-6} \) | \(a_{629}= -0.92860385 \pm 7.2 \cdot 10^{-6} \) | \(a_{630}= +0.09074180 \pm 8.8 \cdot 10^{-6} \) |
\(a_{631}= -1.57427923 \pm 8.0 \cdot 10^{-6} \) | \(a_{632}= +0.09629601 \pm 7.0 \cdot 10^{-6} \) | \(a_{633}= -1.85925085 \pm 1.2 \cdot 10^{-5} \) |
\(a_{634}= +0.81988416 \pm 1.2 \cdot 10^{-5} \) | \(a_{635}= -1.48903560 \pm 7.9 \cdot 10^{-6} \) | \(a_{636}= +0.18302663 \pm 5.3 \cdot 10^{-6} \) |
\(a_{637}= +0.18480099 \pm 7.0 \cdot 10^{-6} \) | \(a_{638}= -1.37133753 \pm 4.5 \cdot 10^{-6} \) | \(a_{639}= -0.11953960 \pm 6.0 \cdot 10^{-6} \) |
\(a_{640}= -1.41476954 \pm 1.2 \cdot 10^{-5} \) | \(a_{641}= +0.83870628 \pm 1.0 \cdot 10^{-5} \) | \(a_{642}= -0.97897846 \pm 1.1 \cdot 10^{-5} \) |
\(a_{643}= +1.27719386 \pm 9.5 \cdot 10^{-6} \) | \(a_{644}= -0.29629022 \pm 8.1 \cdot 10^{-6} \) | \(a_{645}= -1.71498977 \pm 6.9 \cdot 10^{-6} \) |
\(a_{646}= +0.08200255 \pm 6.9 \cdot 10^{-6} \) | \(a_{647}= +0.24247693 \pm 6.3 \cdot 10^{-6} \) | \(a_{648}= +0.50001808 \pm 1.1 \cdot 10^{-5} \) |
\(a_{649}= +0.16827167 \pm 5.8 \cdot 10^{-6} \) | \(a_{650}= -0.34913733 \pm 2.3 \cdot 10^{-5} \) | \(a_{651}= -0.38692197 \pm 4.4 \cdot 10^{-6} \) |
\(a_{652}= -0.10898150 \pm 1.1 \cdot 10^{-5} \) | \(a_{653}= +1.50445100 \pm 8.8 \cdot 10^{-6} \) | \(a_{654}= -0.58654874 \pm 1.5 \cdot 10^{-5} \) |
\(a_{655}= +0.99807545 \pm 6.4 \cdot 10^{-6} \) | \(a_{656}= -1.76785166 \pm 1.0 \cdot 10^{-5} \) | \(a_{657}= +0.05913059 \pm 4.5 \cdot 10^{-6} \) |
\(a_{658}= +0.26879634 \pm 9.8 \cdot 10^{-6} \) | \(a_{659}= -0.18696139 \pm 1.0 \cdot 10^{-5} \) | \(a_{660}= -0.53527406 \pm 3.5 \cdot 10^{-6} \) |
\(a_{661}= +0.31364783 \pm 8.6 \cdot 10^{-6} \) | \(a_{662}= +2.19263417 \pm 1.2 \cdot 10^{-5} \) | \(a_{663}= -0.31345692 \pm 1.8 \cdot 10^{-5} \) |
\(a_{664}= -0.58885077 \pm 1.2 \cdot 10^{-5} \) | \(a_{665}= +0.04545746 \pm 1.0 \cdot 10^{-5} \) | \(a_{666}= -0.08691916 \pm 7.8 \cdot 10^{-6} \) |
\(a_{667}= -1.42517756 \pm 5.8 \cdot 10^{-6} \) | \(a_{668}= -0.10984119 \pm 1.1 \cdot 10^{-5} \) | \(a_{669}= -0.01747218 \pm 8.8 \cdot 10^{-6} \) |
\(a_{670}= -2.18794866 \pm 8.2 \cdot 10^{-6} \) | \(a_{671}= +1.03890567 \pm 6.4 \cdot 10^{-6} \) | \(a_{672}= +0.55243245 \pm 4.7 \cdot 10^{-6} \) |
\(a_{673}= -0.47607611 \pm 9.6 \cdot 10^{-6} \) | \(a_{674}= +1.09789868 \pm 1.1 \cdot 10^{-5} \) | \(a_{675}= +1.04878755 \pm 1.2 \cdot 10^{-5} \) |
\(a_{676}= +0.04278940 \pm 1.3 \cdot 10^{-5} \) | \(a_{677}= +1.32394437 \pm 9.7 \cdot 10^{-6} \) | \(a_{678}= +1.81698801 \pm 6.0 \cdot 10^{-6} \) |
\(a_{679}= +0.81965333 \pm 9.5 \cdot 10^{-6} \) | \(a_{680}= -0.92900538 \pm 6.4 \cdot 10^{-6} \) | \(a_{681}= -0.76989390 \pm 9.4 \cdot 10^{-6} \) |
\(a_{682}= -0.62257930 \pm 6.3 \cdot 10^{-6} \) | \(a_{683}= +1.56183785 \pm 1.0 \cdot 10^{-5} \) | \(a_{684}= +0.00274353 \pm 1.2 \cdot 10^{-5} \) |
\(a_{685}= +0.08241796 \pm 6.2 \cdot 10^{-6} \) | \(a_{686}= -1.20079533 \pm 9.8 \cdot 10^{-6} \) | \(a_{687}= -0.59639355 \pm 8.6 \cdot 10^{-6} \) |
\(a_{688}= +1.58042370 \pm 5.1 \cdot 10^{-6} \) | \(a_{689}= +0.09560158 \pm 9.6 \cdot 10^{-6} \) | \(a_{690}= -1.55633838 \pm 4.8 \cdot 10^{-6} \) |
\(a_{691}= +1.11140221 \pm 9.4 \cdot 10^{-6} \) | \(a_{692}= -0.01673998 \pm 1.2 \cdot 10^{-5} \) | \(a_{693}= +0.03649782 \pm 5.0 \cdot 10^{-6} \) |
\(a_{694}= -0.18005865 \pm 1.2 \cdot 10^{-5} \) | \(a_{695}= +0.29155554 \pm 8.3 \cdot 10^{-6} \) | \(a_{696}= +0.81671201 \pm 1.2 \cdot 10^{-5} \) |
\(a_{697}= -1.67875977 \pm 1.3 \cdot 10^{-5} \) | \(a_{698}= +1.84091232 \pm 1.5 \cdot 10^{-5} \) | \(a_{699}= +0.03624670 \pm 5.1 \cdot 10^{-6} \) |
\(a_{700}= +0.32424857 \pm 1.0 \cdot 10^{-5} \) | \(a_{701}= +1.44156945 \pm 9.2 \cdot 10^{-6} \) | \(a_{702}= -0.35960909 \pm 2.2 \cdot 10^{-5} \) |
\(a_{703}= -0.04354250 \pm 7.7 \cdot 10^{-6} \) | \(a_{704}= +0.00212979 \pm 6.1 \cdot 10^{-6} \) | \(a_{705}= +0.50466927 \pm 4.7 \cdot 10^{-6} \) |
\(a_{706}= +0.89814287 \pm 1.0 \cdot 10^{-5} \) | \(a_{707}= -1.04899359 \pm 8.0 \cdot 10^{-6} \) | \(a_{708}= +0.12562866 \pm 5.3 \cdot 10^{-6} \) |
\(a_{709}= -1.09686408 \pm 1.0 \cdot 10^{-5} \) | \(a_{710}= -2.37934173 \pm 9.0 \cdot 10^{-6} \) | \(a_{711}= +0.01545382 \pm 7.5 \cdot 10^{-6} \) |
\(a_{712}= +0.64047574 \pm 1.2 \cdot 10^{-5} \) | \(a_{713}= -0.64702236 \pm 5.6 \cdot 10^{-6} \) | \(a_{714}= +0.81444707 \pm 1.2 \cdot 10^{-5} \) |
\(a_{715}= -0.27959345 \pm 1.7 \cdot 10^{-5} \) | \(a_{716}= -0.58799009 \pm 1.3 \cdot 10^{-5} \) | \(a_{717}= +0.72253356 \pm 5.1 \cdot 10^{-6} \) |
\(a_{718}= -1.93525792 \pm 6.9 \cdot 10^{-6} \) | \(a_{719}= +1.12488771 \pm 6.7 \cdot 10^{-6} \) | \(a_{720}= -0.15700118 \pm 7.2 \cdot 10^{-6} \) |
\(a_{721}= -0.69235933 \pm 9.5 \cdot 10^{-6} \) | \(a_{722}= -1.24365727 \pm 1.8 \cdot 10^{-5} \) | \(a_{723}= -1.51095360 \pm 7.8 \cdot 10^{-6} \) |
\(a_{724}= -0.00966853 \pm 9.0 \cdot 10^{-6} \) | \(a_{725}= +1.55965930 \pm 6.9 \cdot 10^{-6} \) | \(a_{726}= +0.58846524 \pm 1.2 \cdot 10^{-5} \) |
\(a_{727}= -1.63430073 \pm 1.2 \cdot 10^{-5} \) | \(a_{728}= +0.08868866 \pm 2.1 \cdot 10^{-5} \) | \(a_{729}= +1.07235204 \pm 7.6 \cdot 10^{-6} \) |
\(a_{730}= +1.17694791 \pm 6.6 \cdot 10^{-6} \) | \(a_{731}= +1.50077734 \pm 5.6 \cdot 10^{-6} \) | \(a_{732}= +0.77562863 \pm 9.3 \cdot 10^{-6} \) |
\(a_{733}= -0.33223507 \pm 1.0 \cdot 10^{-5} \) | \(a_{734}= -0.29182557 \pm 1.3 \cdot 10^{-5} \) | \(a_{735}= -0.90151470 \pm 4.2 \cdot 10^{-6} \) |
\(a_{736}= +0.92379387 \pm 6.3 \cdot 10^{-6} \) | \(a_{737}= -0.88002841 \pm 6.1 \cdot 10^{-6} \) | \(a_{738}= -0.15713524 \pm 7.9 \cdot 10^{-6} \) |
\(a_{739}= +0.49507494 \pm 1.0 \cdot 10^{-5} \) | \(a_{740}= -0.61838270 \pm 6.3 \cdot 10^{-6} \) | \(a_{741}= -0.01469808 \pm 1.9 \cdot 10^{-5} \) |
\(a_{742}= -0.24839913 \pm 5.0 \cdot 10^{-6} \) | \(a_{743}= +0.14443186 \pm 7.6 \cdot 10^{-6} \) | \(a_{744}= +0.37078252 \pm 6.3 \cdot 10^{-6} \) |
\(a_{745}= +2.36688416 \pm 5.7 \cdot 10^{-6} \) | \(a_{746}= -1.89033240 \pm 1.0 \cdot 10^{-5} \) | \(a_{747}= -0.09450018 \pm 1.1 \cdot 10^{-5} \) |
\(a_{748}= +0.46841515 \pm 4.0 \cdot 10^{-6} \) | \(a_{749}= +0.47490388 \pm 9.4 \cdot 10^{-6} \) | \(a_{750}= +0.01532965 \pm 8.5 \cdot 10^{-6} \) |
\(a_{751}= -0.27401580 \pm 1.0 \cdot 10^{-5} \) | \(a_{752}= -0.46507057 \pm 9.8 \cdot 10^{-6} \) | \(a_{753}= -1.07919181 \pm 1.0 \cdot 10^{-5} \) |
\(a_{754}= -0.53477719 \pm 2.0 \cdot 10^{-5} \) | \(a_{755}= -0.73060636 \pm 6.5 \cdot 10^{-6} \) | \(a_{756}= +0.33397384 \pm 9.3 \cdot 10^{-6} \) |
\(a_{757}= -1.27536210 \pm 8.2 \cdot 10^{-6} \) | \(a_{758}= +1.26978417 \pm 1.2 \cdot 10^{-5} \) | \(a_{759}= -0.62598452 \pm 5.9 \cdot 10^{-6} \) |
\(a_{760}= -0.04356132 \pm 1.2 \cdot 10^{-5} \) | \(a_{761}= -0.23647584 \pm 1.0 \cdot 10^{-5} \) | \(a_{762}= -1.25096621 \pm 1.7 \cdot 10^{-5} \) |
\(a_{763}= +0.28453565 \pm 1.2 \cdot 10^{-5} \) | \(a_{764}= -0.16985652 \pm 2.0 \cdot 10^{-5} \) | \(a_{765}= -0.14908901 \pm 4.9 \cdot 10^{-6} \) |
\(a_{766}= +1.01470147 \pm 7.9 \cdot 10^{-6} \) | \(a_{767}= +0.06562050 \pm 8.0 \cdot 10^{-6} \) | \(a_{768}= -1.19143241 \pm 1.1 \cdot 10^{-5} \) |
\(a_{769}= +1.34968652 \pm 9.3 \cdot 10^{-6} \) | \(a_{770}= +0.72646049 \pm 4.6 \cdot 10^{-6} \) | \(a_{771}= -1.13648998 \pm 1.2 \cdot 10^{-5} \) |
\(a_{772}= -0.01110392 \pm 1.2 \cdot 10^{-5} \) | \(a_{773}= +0.58434455 \pm 7.4 \cdot 10^{-6} \) | \(a_{774}= +0.14047573 \pm 6.8 \cdot 10^{-6} \) |
\(a_{775}= +0.70807629 \pm 5.7 \cdot 10^{-6} \) | \(a_{776}= -0.78546360 \pm 1.3 \cdot 10^{-5} \) | \(a_{777}= -0.43246288 \pm 7.0 \cdot 10^{-6} \) |
\(a_{778}= +2.47233496 \pm 1.1 \cdot 10^{-5} \) | \(a_{779}= -0.07871752 \pm 8.8 \cdot 10^{-6} \) | \(a_{780}= -0.20873954 \pm 3.2 \cdot 10^{-5} \) |
\(a_{781}= -0.95700980 \pm 4.6 \cdot 10^{-6} \) | \(a_{782}= +1.36194246 \pm 6.8 \cdot 10^{-6} \) | \(a_{783}= +1.60643855 \pm 7.3 \cdot 10^{-6} \) |
\(a_{784}= +0.83077767 \pm 5.6 \cdot 10^{-6} \) | \(a_{785}= -2.72355547 \pm 7.6 \cdot 10^{-6} \) | \(a_{786}= +0.83850155 \pm 7.8 \cdot 10^{-6} \) |
\(a_{787}= -1.34175317 \pm 9.9 \cdot 10^{-6} \) | \(a_{788}= -0.53820282 \pm 1.6 \cdot 10^{-5} \) | \(a_{789}= +1.49475335 \pm 9.4 \cdot 10^{-6} \) |
\(a_{790}= +0.30759605 \pm 7.7 \cdot 10^{-6} \) | \(a_{791}= -0.88142355 \pm 5.0 \cdot 10^{-6} \) | \(a_{792}= -0.03497541 \pm 8.7 \cdot 10^{-6} \) |
\(a_{793}= +0.40513954 \pm 8.9 \cdot 10^{-6} \) | \(a_{794}= +1.09784910 \pm 1.2 \cdot 10^{-5} \) | \(a_{795}= -0.46637319 \pm 8.2 \cdot 10^{-6} \) |
\(a_{796}= +0.96350354 \pm 1.4 \cdot 10^{-5} \) | \(a_{797}= +0.38529266 \pm 7.1 \cdot 10^{-6} \) | \(a_{798}= +0.03818965 \pm 3.9 \cdot 10^{-6} \) |
\(a_{799}= -0.44163307 \pm 6.7 \cdot 10^{-6} \) | \(a_{800}= -1.01096434 \pm 9.6 \cdot 10^{-6} \) | \(a_{801}= +0.10278508 \pm 7.1 \cdot 10^{-6} \) |
\(a_{802}= -0.03403594 \pm 1.0 \cdot 10^{-5} \) | \(a_{803}= +0.47338752 \pm 3.9 \cdot 10^{-6} \) | \(a_{804}= -0.65701368 \pm 4.2 \cdot 10^{-6} \) |
\(a_{805}= +0.75498203 \pm 5.2 \cdot 10^{-6} \) | \(a_{806}= -0.24278575 \pm 1.9 \cdot 10^{-5} \) | \(a_{807}= -1.49006786 \pm 9.4 \cdot 10^{-6} \) |
\(a_{808}= +1.00523752 \pm 8.4 \cdot 10^{-6} \) | \(a_{809}= -0.10648677 \pm 6.9 \cdot 10^{-6} \) | \(a_{810}= +1.59719577 \pm 7.8 \cdot 10^{-6} \) |
\(a_{811}= -0.05282021 \pm 8.6 \cdot 10^{-6} \) | \(a_{812}= +0.49665483 \pm 1.5 \cdot 10^{-5} \) | \(a_{813}= +0.23659868 \pm 6.8 \cdot 10^{-6} \) |
\(a_{814}= -0.69585718 \pm 7.2 \cdot 10^{-6} \) | \(a_{815}= +0.27769757 \pm 9.5 \cdot 10^{-6} \) | \(a_{816}= -1.40915372 \pm 6.5 \cdot 10^{-6} \) |
\(a_{817}= +0.07037187 \pm 1.1 \cdot 10^{-5} \) | \(a_{818}= +0.60135570 \pm 1.0 \cdot 10^{-5} \) | \(a_{819}= +0.01423297 \pm 1.7 \cdot 10^{-5} \) |
\(a_{820}= -1.11793204 \pm 1.4 \cdot 10^{-5} \) | \(a_{821}= +0.73261075 \pm 6.3 \cdot 10^{-6} \) | \(a_{822}= +0.06924085 \pm 4.0 \cdot 10^{-6} \) |
\(a_{823}= -1.13620470 \pm 1.0 \cdot 10^{-5} \) | \(a_{824}= +0.66347935 \pm 9.9 \cdot 10^{-6} \) | \(a_{825}= +0.68505329 \pm 7.3 \cdot 10^{-6} \) |
\(a_{826}= -0.17050005 \pm 5.2 \cdot 10^{-6} \) | \(a_{827}= -1.09499996 \pm 1.1 \cdot 10^{-5} \) | \(a_{828}= +0.04556597 \pm 5.1 \cdot 10^{-6} \) |
\(a_{829}= +1.51048856 \pm 1.1 \cdot 10^{-5} \) | \(a_{830}= -1.88095190 \pm 9.8 \cdot 10^{-6} \) | \(a_{831}= +1.49710258 \pm 6.9 \cdot 10^{-6} \) |
\(a_{832}= +0.00083055 \pm 1.1 \cdot 10^{-5} \) | \(a_{833}= +0.78891015 \pm 5.2 \cdot 10^{-6} \) | \(a_{834}= +0.24494117 \pm 5.4 \cdot 10^{-6} \) |
\(a_{835}= +0.27988817 \pm 1.4 \cdot 10^{-5} \) | \(a_{836}= +0.02196412 \pm 5.0 \cdot 10^{-6} \) | \(a_{837}= +0.72931380 \pm 8.1 \cdot 10^{-6} \) |
\(a_{838}= -2.39395321 \pm 1.3 \cdot 10^{-5} \) | \(a_{839}= -1.24650640 \pm 1.0 \cdot 10^{-5} \) | \(a_{840}= -0.43264987 \pm 5.8 \cdot 10^{-6} \) |
\(a_{841}= +1.38894600 \pm 8.8 \cdot 10^{-6} \) | \(a_{842}= -1.57082798 \pm 1.2 \cdot 10^{-5} \) | \(a_{843}= -0.47897851 \pm 9.9 \cdot 10^{-6} \) |
\(a_{844}= +1.08347669 \pm 1.6 \cdot 10^{-5} \) | \(a_{845}= -0.10903238 \pm 1.0 \cdot 10^{-5} \) | \(a_{846}= -0.04133773 \pm 1.0 \cdot 10^{-5} \) |
\(a_{847}= -0.28546535 \pm 9.3 \cdot 10^{-6} \) | \(a_{848}= +0.42977938 \pm 5.6 \cdot 10^{-6} \) | \(a_{849}= +0.29502638 \pm 9.3 \cdot 10^{-6} \) |
\(a_{850}= -1.49045724 \pm 9.9 \cdot 10^{-6} \) | \(a_{851}= -0.72317720 \pm 6.7 \cdot 10^{-6} \) | \(a_{852}= -0.71448663 \pm 3.3 \cdot 10^{-6} \) |
\(a_{853}= +0.79073240 \pm 9.2 \cdot 10^{-6} \) | \(a_{854}= -1.05266367 \pm 1.1 \cdot 10^{-5} \) | \(a_{855}= -0.00699083 \pm 8.5 \cdot 10^{-6} \) |
\(a_{856}= -0.45509449 \pm 1.3 \cdot 10^{-5} \) | \(a_{857}= +0.77584975 \pm 9.5 \cdot 10^{-6} \) | \(a_{858}= -0.23489160 \pm 2.8 \cdot 10^{-5} \) |
\(a_{859}= -1.25901010 \pm 6.7 \cdot 10^{-6} \) | \(a_{860}= +0.99940868 \pm 5.6 \cdot 10^{-6} \) | \(a_{861}= -0.78182024 \pm 1.2 \cdot 10^{-5} \) |
\(a_{862}= -1.12136803 \pm 1.7 \cdot 10^{-5} \) | \(a_{863}= +0.75895579 \pm 9.4 \cdot 10^{-6} \) | \(a_{864}= -1.04128645 \pm 7.7 \cdot 10^{-6} \) |
\(a_{865}= +0.04265543 \pm 8.9 \cdot 10^{-6} \) | \(a_{866}= +1.00736243 \pm 8.7 \cdot 10^{-6} \) | \(a_{867}= -0.38359016 \pm 7.3 \cdot 10^{-6} \) |
\(a_{868}= +0.22547842 \pm 5.3 \cdot 10^{-6} \) | \(a_{869}= +0.12372012 \pm 7.3 \cdot 10^{-6} \) | \(a_{870}= +2.60880360 \pm 7.0 \cdot 10^{-6} \) |
\(a_{871}= -0.34318256 \pm 7.7 \cdot 10^{-6} \) | \(a_{872}= -0.27266698 \pm 1.3 \cdot 10^{-5} \) | \(a_{873}= -0.12605308 \pm 6.8 \cdot 10^{-6} \) |
\(a_{874}= +0.06386187 \pm 8.4 \cdot 10^{-6} \) | \(a_{875}= -0.00743644 \pm 1.0 \cdot 10^{-5} \) | \(a_{876}= +0.35342277 \pm 1.0 \cdot 10^{-5} \) |
\(a_{877}= +0.82891991 \pm 9.5 \cdot 10^{-6} \) | \(a_{878}= +0.72348219 \pm 1.0 \cdot 10^{-5} \) | \(a_{879}= +0.38100687 \pm 6.8 \cdot 10^{-6} \) |
\(a_{880}= -1.25691962 \pm 6.2 \cdot 10^{-6} \) | \(a_{881}= -1.29151515 \pm 8.5 \cdot 10^{-6} \) | \(a_{882}= +0.07384355 \pm 9.5 \cdot 10^{-6} \) |
\(a_{883}= +0.61638305 \pm 1.1 \cdot 10^{-5} \) | \(a_{884}= +0.18266673 \pm 2.2 \cdot 10^{-5} \) | \(a_{885}= -0.32011647 \pm 9.1 \cdot 10^{-6} \) |
\(a_{886}= +0.27954256 \pm 6.6 \cdot 10^{-6} \) | \(a_{887}= -0.16337804 \pm 8.0 \cdot 10^{-6} \) | \(a_{888}= +0.41442380 \pm 9.8 \cdot 10^{-6} \) |
\(a_{889}= +0.60684554 \pm 1.0 \cdot 10^{-5} \) | \(a_{890}= +2.04585629 \pm 1.0 \cdot 10^{-5} \) | \(a_{891}= +0.64241803 \pm 8.7 \cdot 10^{-6} \) |
\(a_{892}= +0.01018190 \pm 1.4 \cdot 10^{-5} \) | \(a_{893}= -0.02070830 \pm 7.6 \cdot 10^{-6} \) | \(a_{894}= +1.98846294 \pm 7.3 \cdot 10^{-6} \) |
\(a_{895}= +1.49826735 \pm 1.2 \cdot 10^{-5} \) | \(a_{896}= +0.57657895 \pm 1.4 \cdot 10^{-5} \) | \(a_{897}= -0.24411367 \pm 1.5 \cdot 10^{-5} \) |
\(a_{898}= -1.63224207 \pm 9.7 \cdot 10^{-6} \) | \(a_{899}= +1.08456764 \pm 3.9 \cdot 10^{-6} \) | \(a_{900}= -0.04986563 \pm 5.3 \cdot 10^{-6} \) |
\(a_{901}= +0.40812040 \pm 9.4 \cdot 10^{-6} \) | \(a_{902}= -1.25799289 \pm 6.6 \cdot 10^{-6} \) | \(a_{903}= +0.69893151 \pm 4.4 \cdot 10^{-6} \) |
\(a_{904}= +0.84465724 \pm 6.3 \cdot 10^{-6} \) | \(a_{905}= +0.02463654 \pm 9.1 \cdot 10^{-6} \) | \(a_{906}= -0.61379585 \pm 7.9 \cdot 10^{-6} \) |
\(a_{907}= -0.50663311 \pm 6.9 \cdot 10^{-6} \) | \(a_{908}= +0.44865495 \pm 9.9 \cdot 10^{-6} \) | \(a_{909}= +0.16132293 \pm 6.4 \cdot 10^{-6} \) |
\(a_{910}= +0.28329605 \pm 3.1 \cdot 10^{-5} \) | \(a_{911}= -1.02627652 \pm 1.0 \cdot 10^{-5} \) | \(a_{912}= -0.06607561 \pm 4.2 \cdot 10^{-6} \) |
\(a_{913}= -0.75654934 \pm 7.1 \cdot 10^{-6} \) | \(a_{914}= +1.21546276 \pm 1.3 \cdot 10^{-5} \) | \(a_{915}= -1.97639222 \pm 8.8 \cdot 10^{-6} \) |
\(a_{916}= +0.34754778 \pm 1.2 \cdot 10^{-5} \) | \(a_{917}= -0.40675833 \pm 6.4 \cdot 10^{-6} \) | \(a_{918}= -1.53516090 \pm 1.0 \cdot 10^{-5} \) |
\(a_{919}= +0.31557197 \pm 1.1 \cdot 10^{-5} \) | \(a_{920}= -0.72348990 \pm 7.3 \cdot 10^{-6} \) | \(a_{921}= -0.72722858 \pm 1.4 \cdot 10^{-5} \) |
\(a_{922}= -0.53138596 \pm 1.4 \cdot 10^{-5} \) | \(a_{923}= -0.37320281 \pm 7.4 \cdot 10^{-6} \) | \(a_{924}= +0.21814702 \pm 3.5 \cdot 10^{-6} \) |
\(a_{925}= +0.79141720 \pm 7.8 \cdot 10^{-6} \) | \(a_{926}= +0.85365339 \pm 1.3 \cdot 10^{-5} \) | \(a_{927}= +0.10647676 \pm 5.7 \cdot 10^{-6} \) |
\(a_{928}= -1.54850436 \pm 1.0 \cdot 10^{-5} \) | \(a_{929}= -0.94595984 \pm 7.4 \cdot 10^{-6} \) | \(a_{930}= +1.18438172 \pm 4.0 \cdot 10^{-6} \) |
\(a_{931}= +0.03699222 \pm 9.8 \cdot 10^{-6} \) | \(a_{932}= -0.02112273 \pm 1.1 \cdot 10^{-5} \) | \(a_{933}= -0.71642312 \pm 7.6 \cdot 10^{-6} \) |
\(a_{934}= -0.46337976 \pm 1.1 \cdot 10^{-5} \) | \(a_{935}= -1.19357643 \pm 3.6 \cdot 10^{-6} \) | \(a_{936}= -0.01363928 \pm 2.0 \cdot 10^{-5} \) |
\(a_{937}= -0.77239832 \pm 6.0 \cdot 10^{-6} \) | \(a_{938}= +0.89168244 \pm 1.0 \cdot 10^{-5} \) | \(a_{939}= +0.29733870 \pm 1.1 \cdot 10^{-5} \) |
\(a_{940}= -0.29409554 \pm 9.9 \cdot 10^{-6} \) | \(a_{941}= +1.35149450 \pm 1.0 \cdot 10^{-5} \) | \(a_{942}= -2.28810908 \pm 8.0 \cdot 10^{-6} \) |
\(a_{943}= -1.30738289 \pm 8.4 \cdot 10^{-6} \) | \(a_{944}= +0.29499864 \pm 7.1 \cdot 10^{-6} \) | \(a_{945}= -0.85100430 \pm 6.7 \cdot 10^{-6} \) |
\(a_{946}= +1.12462024 \pm 5.4 \cdot 10^{-6} \) | \(a_{947}= +0.92825727 \pm 9.0 \cdot 10^{-6} \) | \(a_{948}= +0.09236725 \pm 3.5 \cdot 10^{-6} \) |
\(a_{949}= +0.18460579 \pm 7.6 \cdot 10^{-6} \) | \(a_{950}= -0.06988796 \pm 4.7 \cdot 10^{-6} \) | \(a_{951}= -0.62734881 \pm 8.8 \cdot 10^{-6} \) |
\(a_{952}= +0.37860933 \pm 1.0 \cdot 10^{-5} \) | \(a_{953}= +0.45877158 \pm 9.5 \cdot 10^{-6} \) | \(a_{954}= +0.03820088 \pm 6.2 \cdot 10^{-6} \) |
\(a_{955}= +0.43281423 \pm 1.0 \cdot 10^{-5} \) | \(a_{956}= -0.42105575 \pm 9.4 \cdot 10^{-6} \) | \(a_{957}= +1.04930309 \pm 3.7 \cdot 10^{-6} \) |
\(a_{958}= +0.30159525 \pm 1.1 \cdot 10^{-5} \) | \(a_{959}= -0.03358884 \pm 5.9 \cdot 10^{-6} \) | \(a_{960}= -0.00405167 \pm 5.8 \cdot 10^{-6} \) |
\(a_{961}= -0.50761257 \pm 8.2 \cdot 10^{-6} \) | \(a_{962}= -0.27136175 \pm 2.0 \cdot 10^{-5} \) | \(a_{963}= -0.07303466 \pm 6.0 \cdot 10^{-6} \) |
\(a_{964}= +0.88050679 \pm 1.3 \cdot 10^{-5} \) | \(a_{965}= +0.02829407 \pm 6.9 \cdot 10^{-6} \) | \(a_{966}= +0.63427430 \pm 6.3 \cdot 10^{-6} \) |
\(a_{967}= +1.19661214 \pm 1.2 \cdot 10^{-5} \) | \(a_{968}= +0.27355790 \pm 1.1 \cdot 10^{-5} \) | \(a_{969}= -0.06274570 \pm 5.7 \cdot 10^{-6} \) |
\(a_{970}= -2.50898756 \pm 7.7 \cdot 10^{-6} \) | \(a_{971}= -0.29270059 \pm 7.8 \cdot 10^{-6} \) | \(a_{972}= -0.09853201 \pm 8.2 \cdot 10^{-6} \) |
\(a_{973}= -0.11882132 \pm 6.7 \cdot 10^{-6} \) | \(a_{974}= +1.01677228 \pm 1.5 \cdot 10^{-5} \) | \(a_{975}= +0.26714858 \pm 2.0 \cdot 10^{-5} \) |
\(a_{976}= +1.82131530 \pm 6.4 \cdot 10^{-6} \) | \(a_{977}= +0.96398067 \pm 1.0 \cdot 10^{-5} \) | \(a_{978}= +0.23329884 \pm 1.0 \cdot 10^{-5} \) |
\(a_{979}= +0.82287656 \pm 5.5 \cdot 10^{-6} \) | \(a_{980}= +0.52535685 \pm 8.8 \cdot 10^{-6} \) | \(a_{981}= -0.04375825 \pm 6.8 \cdot 10^{-6} \) |
\(a_{982}= -0.14595663 \pm 9.6 \cdot 10^{-6} \) | \(a_{983}= -1.01215835 \pm 9.5 \cdot 10^{-6} \) | \(a_{984}= +0.74920862 \pm 1.7 \cdot 10^{-5} \) |
\(a_{985}= +1.37140357 \pm 7.1 \cdot 10^{-6} \) | \(a_{986}= -2.28294851 \pm 1.4 \cdot 10^{-5} \) | \(a_{987}= -0.20567426 \pm 4.9 \cdot 10^{-6} \) |
\(a_{988}= +0.00856529 \pm 2.2 \cdot 10^{-5} \) | \(a_{989}= +1.16877391 \pm 7.1 \cdot 10^{-6} \) | \(a_{990}= -0.11172112 \pm 5.1 \cdot 10^{-6} \) |
\(a_{991}= -0.55216286 \pm 7.5 \cdot 10^{-6} \) | \(a_{992}= -0.70301201 \pm 5.9 \cdot 10^{-6} \) | \(a_{993}= -1.67773268 \pm 9.9 \cdot 10^{-6} \) |
\(a_{994}= +0.96968328 \pm 1.1 \cdot 10^{-5} \) | \(a_{995}= -2.45511940 \pm 1.1 \cdot 10^{-5} \) | \(a_{996}= -0.56482638 \pm 1.4 \cdot 10^{-5} \) |
\(a_{997}= +0.32483797 \pm 6.8 \cdot 10^{-6} \) | \(a_{998}= -1.00709812 \pm 1.2 \cdot 10^{-5} \) | \(a_{999}= +0.81515438 \pm 9.0 \cdot 10^{-6} \) |
\(a_{1000}= +0.00712624 \pm 1.0 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000