Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.3949315595531201586695527513 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.25797981 \pm 8.2 \cdot 10^{-6} \) | \(a_{3}= +0.04706666 \pm 6.2 \cdot 10^{-6} \) |
\(a_{4}= +0.58251320 \pm 8.8 \cdot 10^{-6} \) | \(a_{5}= -0.93246427 \pm 6.8 \cdot 10^{-6} \) | \(a_{6}= -0.05920891 \pm 7.9 \cdot 10^{-6} \) |
\(a_{7}= +0.28929489 \pm 6.2 \cdot 10^{-6} \) | \(a_{8}= +0.52518997 \pm 8.0 \cdot 10^{-6} \) | \(a_{9}= -0.99778473 \pm 5.5 \cdot 10^{-6} \) |
\(a_{10}= +1.17302123 \pm 6.2 \cdot 10^{-6} \) | \(a_{11}= -0.96241305 \pm 4.6 \cdot 10^{-6} \) | \(a_{12}= +0.02741695 \pm 7.8 \cdot 10^{-6} \) |
\(a_{13}= -0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= -0.36392712 \pm 8.8 \cdot 10^{-6} \) | \(a_{15}= -0.04388798 \pm 5.1 \cdot 10^{-6} \) |
\(a_{16}= -1.24319157 \pm 5.6 \cdot 10^{-6} \) | \(a_{17}= +1.49466949 \pm 6.1 \cdot 10^{-6} \) | \(a_{18}= +1.25519304 \pm 6.5 \cdot 10^{-6} \) |
\(a_{19}= +0.37181090 \pm 6.6 \cdot 10^{-6} \) | \(a_{20}= -0.54317275 \pm 7.6 \cdot 10^{-6} \) | \(a_{21}= +0.01361614 \pm 5.1 \cdot 10^{-6} \) |
\(a_{22}= +1.21069618 \pm 4.4 \cdot 10^{-6} \) | \(a_{23}= -1.89419078 \pm 4.5 \cdot 10^{-6} \) | \(a_{24}= +0.02471894 \pm 7.3 \cdot 10^{-6} \) |
\(a_{25}= -0.13051038 \pm 7.6 \cdot 10^{-6} \) | \(a_{26}= +0.34890082 \pm 8.2 \cdot 10^{-6} \) | \(a_{27}= -0.09402906 \pm 6.7 \cdot 10^{-6} \) |
\(a_{28}= +0.16851809 \pm 9.6 \cdot 10^{-6} \) | \(a_{29}= -1.79976694 \pm 5.9 \cdot 10^{-6} \) | \(a_{30}= +0.05521019 \pm 4.2 \cdot 10^{-6} \) |
\(a_{31}= -0.29299591 \pm 4.6 \cdot 10^{-6} \) | \(a_{32}= +1.03871993 \pm 6.1 \cdot 10^{-6} \) | \(a_{33}= -0.04529757 \pm 5.5 \cdot 10^{-6} \) |
\(a_{34}= -1.88026404 \pm 7.7 \cdot 10^{-6} \) | \(a_{35}= -0.26975715 \pm 5.6 \cdot 10^{-6} \) | \(a_{36}= -0.58122278 \pm 5.4 \cdot 10^{-6} \) |
\(a_{37}= -1.03786007 \pm 5.4 \cdot 10^{-6} \) | \(a_{38}= -0.46773060 \pm 8.8 \cdot 10^{-6} \) | \(a_{39}= -0.01305394 \pm 6.2 \cdot 10^{-6} \) |
\(a_{40}= -0.48972088 \pm 7.3 \cdot 10^{-6} \) | \(a_{41}= -0.11879255 \pm 9.1 \cdot 10^{-6} \) | \(a_{42}= -0.01712883 \pm 7.3 \cdot 10^{-6} \) |
\(a_{43}= -0.99232059 \pm 5.1 \cdot 10^{-6} \) | \(a_{44}= -0.56061831 \pm 3.6 \cdot 10^{-6} \) | \(a_{45}= +0.93039861 \pm 4.7 \cdot 10^{-6} \) |
\(a_{46}= +2.38285375 \pm 5.3 \cdot 10^{-6} \) | \(a_{47}= -1.40125276 \pm 4.7 \cdot 10^{-6} \) | \(a_{48}= -0.05851288 \pm 5.0 \cdot 10^{-6} \) |
\(a_{49}= -0.91630847 \pm 4.7 \cdot 10^{-6} \) | \(a_{50}= +0.16417942 \pm 6.1 \cdot 10^{-6} \) | \(a_{51}= +0.07034910 \pm 6.6 \cdot 10^{-6} \) |
\(a_{52}= -0.16156009 \pm 8.8 \cdot 10^{-6} \) | \(a_{53}= +0.57104359 \pm 6.5 \cdot 10^{-6} \) | \(a_{54}= +0.11828666 \pm 7.1 \cdot 10^{-6} \) |
\(a_{55}= +0.89741579 \pm 4.4 \cdot 10^{-6} \) | \(a_{56}= +0.15193477 \pm 7.5 \cdot 10^{-6} \) | \(a_{57}= +0.01749990 \pm 3.7 \cdot 10^{-6} \) |
\(a_{58}= +2.26407047 \pm 9.5 \cdot 10^{-6} \) | \(a_{59}= +0.75117561 \pm 5.4 \cdot 10^{-6} \) | \(a_{60}= -0.02556533 \pm 4.9 \cdot 10^{-6} \) |
\(a_{61}= +1.20143971 \pm 6.0 \cdot 10^{-6} \) | \(a_{62}= +0.36858294 \pm 4.0 \cdot 10^{-6} \) | \(a_{63}= -0.28865402 \pm 4.6 \cdot 10^{-6} \) |
\(a_{64}= -0.06349713 \pm 7.9 \cdot 10^{-6} \) | \(a_{65}= +0.25861906 \pm 6.8 \cdot 10^{-6} \) | \(a_{66}= +0.05698343 \pm 5.7 \cdot 10^{-6} \) |
\(a_{67}= -0.84714102 \pm 5.2 \cdot 10^{-6} \) | \(a_{68}= +0.87066471 \pm 8.1 \cdot 10^{-6} \) | \(a_{69}= -0.08915324 \pm 4.1 \cdot 10^{-6} \) |
\(a_{70}= +0.33934904 \pm 6.6 \cdot 10^{-6} \) | \(a_{71}= -0.94401422 \pm 5.0 \cdot 10^{-6} \) | \(a_{72}= -0.52402653 \pm 6.2 \cdot 10^{-6} \) |
\(a_{73}= +1.36316289 \pm 5.1 \cdot 10^{-6} \) | \(a_{74}= +1.30560701 \pm 6.5 \cdot 10^{-6} \) | \(a_{75}= -0.00614269 \pm 6.6 \cdot 10^{-6} \) |
\(a_{76}= +0.21658475 \pm 8.8 \cdot 10^{-6} \) | \(a_{77}= -0.27842117 \pm 4.2 \cdot 10^{-6} \) | \(a_{78}= +0.01642160 \pm 1.4 \cdot 10^{-5} \) |
\(a_{79}= +0.99204991 \pm 4.7 \cdot 10^{-6} \) | \(a_{80}= +1.15923173 \pm 6.4 \cdot 10^{-6} \) | \(a_{81}= +0.99335910 \pm 6.6 \cdot 10^{-6} \) |
\(a_{82}= +0.14943862 \pm 1.2 \cdot 10^{-5} \) | \(a_{83}= -0.89015925 \pm 7.2 \cdot 10^{-6} \) | \(a_{84}= +0.00793158 \pm 7.9 \cdot 10^{-6} \) |
\(a_{85}= -1.39372590 \pm 4.4 \cdot 10^{-6} \) | \(a_{86}= +1.24831926 \pm 4.9 \cdot 10^{-6} \) | \(a_{87}= -0.08470902 \pm 6.1 \cdot 10^{-6} \) |
\(a_{88}= -0.50544968 \pm 4.5 \cdot 10^{-6} \) | \(a_{89}= -0.26907877 \pm 5.7 \cdot 10^{-6} \) | \(a_{90}= -1.17042267 \pm 5.1 \cdot 10^{-6} \) |
\(a_{91}= -0.08023596 \pm 6.2 \cdot 10^{-6} \) | \(a_{92}= -1.10339113 \pm 5.3 \cdot 10^{-6} \) | \(a_{93}= -0.01379034 \pm 4.5 \cdot 10^{-6} \) |
\(a_{94}= +1.76274768 \pm 6.5 \cdot 10^{-6} \) | \(a_{95}= -0.34670038 \pm 6.7 \cdot 10^{-6} \) | \(a_{96}= +0.04888908 \pm 4.1 \cdot 10^{-6} \) |
\(a_{97}= +0.13106701 \pm 6.9 \cdot 10^{-6} \) | \(a_{98}= +1.15269755 \pm 5.8 \cdot 10^{-6} \) | \(a_{99}= +0.96028104 \pm 6.1 \cdot 10^{-6} \) |
\(a_{100}= -0.07602402 \pm 8.0 \cdot 10^{-6} \) | \(a_{101}= +0.00233221 \pm 6.1 \cdot 10^{-6} \) | \(a_{102}= -0.08849775 \pm 8.7 \cdot 10^{-6} \) |
\(a_{103}= -0.08920614 \pm 7.1 \cdot 10^{-6} \) | \(a_{104}= -0.14566149 \pm 8.0 \cdot 10^{-6} \) | \(a_{105}= -0.01269657 \pm 4.0 \cdot 10^{-6} \) |
\(a_{106}= -0.71836130 \pm 4.8 \cdot 10^{-6} \) | \(a_{107}= -0.00123214 \pm 6.1 \cdot 10^{-6} \) | \(a_{108}= -0.05477317 \pm 6.6 \cdot 10^{-6} \) |
\(a_{109}= +1.30503294 \pm 7.7 \cdot 10^{-6} \) | \(a_{110}= -1.12893094 \pm 3.6 \cdot 10^{-6} \) | \(a_{111}= -0.04884861 \pm 6.0 \cdot 10^{-6} \) |
\(a_{112}= -0.35964896 \pm 3.8 \cdot 10^{-6} \) | \(a_{113}= +0.26456338 \pm 4.4 \cdot 10^{-6} \) | \(a_{114}= -0.02201452 \pm 3.5 \cdot 10^{-6} \) |
\(a_{115}= +1.76626523 \pm 4.5 \cdot 10^{-6} \) | \(a_{116}= -1.04838800 \pm 1.0 \cdot 10^{-5} \) | \(a_{117}= +0.27673569 \pm 5.5 \cdot 10^{-6} \) |
\(a_{118}= -0.94496375 \pm 4.2 \cdot 10^{-6} \) | \(a_{119}= +0.43240024 \pm 5.3 \cdot 10^{-6} \) | \(a_{120}= -0.02304953 \pm 4.8 \cdot 10^{-6} \) |
\(a_{121}= -0.07376112 \pm 6.2 \cdot 10^{-6} \) | \(a_{122}= -1.51138689 \pm 7.0 \cdot 10^{-6} \) | \(a_{123}= -0.00559117 \pm 9.0 \cdot 10^{-6} \) |
\(a_{124}= -0.17067399 \pm 3.5 \cdot 10^{-6} \) | \(a_{125}= +1.05416054 \pm 8.0 \cdot 10^{-6} \) | \(a_{126}= +0.36312093 \pm 6.4 \cdot 10^{-6} \) |
\(a_{127}= +0.68098505 \pm 7.2 \cdot 10^{-6} \) | \(a_{128}= -0.95884183 \pm 9.0 \cdot 10^{-6} \) | \(a_{129}= -0.04670522 \pm 4.6 \cdot 10^{-6} \) |
\(a_{130}= -0.32533755 \pm 1.5 \cdot 10^{-5} \) | \(a_{131}= +0.12960790 \pm 4.6 \cdot 10^{-6} \) | \(a_{132}= -0.02638643 \pm 2.6 \cdot 10^{-6} \) |
\(a_{133}= +0.10756299 \pm 7.4 \cdot 10^{-6} \) | \(a_{134}= +1.06568630 \pm 6.0 \cdot 10^{-6} \) | \(a_{135}= +0.08767874 \pm 6.4 \cdot 10^{-6} \) |
\(a_{136}= +0.78498542 \pm 7.3 \cdot 10^{-6} \) | \(a_{137}= -1.44017317 \pm 3.8 \cdot 10^{-6} \) | \(a_{138}= +0.11215297 \pm 4.9 \cdot 10^{-6} \) |
\(a_{139}= -1.21069642 \pm 4.8 \cdot 10^{-6} \) | \(a_{140}= -0.15713710 \pm 7.4 \cdot 10^{-6} \) | \(a_{141}= -0.06595229 \pm 5.3 \cdot 10^{-6} \) |
\(a_{142}= +1.18755082 \pm 6.1 \cdot 10^{-6} \) | \(a_{143}= +0.26692535 \pm 4.6 \cdot 10^{-6} \) | \(a_{144}= +1.24043757 \pm 5.6 \cdot 10^{-6} \) |
\(a_{145}= +1.67821837 \pm 4.1 \cdot 10^{-6} \) | \(a_{146}= -1.71483139 \pm 6.9 \cdot 10^{-6} \) | \(a_{147}= -0.04312758 \pm 3.7 \cdot 10^{-6} \) |
\(a_{148}= -0.60456719 \pm 6.1 \cdot 10^{-6} \) | \(a_{149}= -0.34960824 \pm 4.3 \cdot 10^{-6} \) | \(a_{150}= +0.00772738 \pm 6.6 \cdot 10^{-6} \) |
\(a_{151}= +1.42264714 \pm 4.8 \cdot 10^{-6} \) | \(a_{152}= +0.19527135 \pm 8.0 \cdot 10^{-6} \) | \(a_{153}= -1.49135839 \pm 4.6 \cdot 10^{-6} \) |
\(a_{154}= +0.35024821 \pm 3.5 \cdot 10^{-6} \) | \(a_{155}= +0.27320822 \pm 4.1 \cdot 10^{-6} \) | \(a_{156}= -0.00760409 \pm 1.5 \cdot 10^{-5} \) |
\(a_{157}= -0.36992072 \pm 5.4 \cdot 10^{-6} \) | \(a_{158}= -1.24797876 \pm 5.7 \cdot 10^{-6} \) | \(a_{159}= +0.02687712 \pm 5.3 \cdot 10^{-6} \) |
\(a_{160}= -0.96856923 \pm 7.2 \cdot 10^{-6} \) | \(a_{161}= -0.54797970 \pm 3.9 \cdot 10^{-6} \) | \(a_{162}= -1.24962569 \pm 9.2 \cdot 10^{-6} \) |
\(a_{163}= +0.89322286 \pm 5.5 \cdot 10^{-6} \) | \(a_{164}= -0.06919823 \pm 1.3 \cdot 10^{-5} \) | \(a_{165}= +0.04223836 \pm 4.0 \cdot 10^{-6} \) |
\(a_{166}= +1.11980237 \pm 1.0 \cdot 10^{-5} \) | \(a_{167}= -0.62335537 \pm 6.9 \cdot 10^{-6} \) | \(a_{168}= +0.00715106 \pm 6.5 \cdot 10^{-6} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +1.75327904 \pm 4.2 \cdot 10^{-6} \) | \(a_{171}= -0.37098723 \pm 5.7 \cdot 10^{-6} \) |
\(a_{172}= -0.57803984 \pm 3.6 \cdot 10^{-6} \) | \(a_{173}= +1.72982668 \pm 5.8 \cdot 10^{-6} \) | \(a_{174}= +0.10656224 \pm 9.8 \cdot 10^{-6} \) |
\(a_{175}= -0.03775599 \pm 5.5 \cdot 10^{-6} \) | \(a_{176}= +1.19646379 \pm 4.3 \cdot 10^{-6} \) | \(a_{177}= +0.03535533 \pm 4.6 \cdot 10^{-6} \) |
\(a_{178}= +0.33849566 \pm 8.2 \cdot 10^{-6} \) | \(a_{179}= -0.00399048 \pm 7.1 \cdot 10^{-6} \) | \(a_{180}= +0.54196947 \pm 5.5 \cdot 10^{-6} \) |
\(a_{181}= -1.00876737 \pm 5.7 \cdot 10^{-6} \) | \(a_{182}= +0.10093522 \pm 1.4 \cdot 10^{-5} \) | \(a_{183}= +0.05654776 \pm 5.3 \cdot 10^{-6} \) |
\(a_{184}= -0.99480999 \pm 5.2 \cdot 10^{-6} \) | \(a_{185}= +0.96776743 \pm 5.4 \cdot 10^{-6} \) | \(a_{186}= +0.01734797 \pm 4.2 \cdot 10^{-6} \) |
\(a_{187}= -1.43848942 \pm 3.6 \cdot 10^{-6} \) | \(a_{188}= -0.81624823 \pm 7.0 \cdot 10^{-6} \) | \(a_{189}= -0.02720213 \pm 4.5 \cdot 10^{-6} \) |
\(a_{190}= +0.43614207 \pm 8.6 \cdot 10^{-6} \) | \(a_{191}= +1.22820363 \pm 9.0 \cdot 10^{-6} \) | \(a_{192}= -0.00298860 \pm 6.6 \cdot 10^{-6} \) |
\(a_{193}= -1.97654516 \pm 6.0 \cdot 10^{-6} \) | \(a_{194}= -0.16487965 \pm 1.0 \cdot 10^{-5} \) | \(a_{195}= +0.01217234 \pm 1.3 \cdot 10^{-5} \) |
\(a_{196}= -0.53376178 \pm 5.8 \cdot 10^{-6} \) | \(a_{197}= -0.33141889 \pm 7.3 \cdot 10^{-6} \) | \(a_{198}= -1.20801417 \pm 6.3 \cdot 10^{-6} \) |
\(a_{199}= +0.90606991 \pm 7.4 \cdot 10^{-6} \) | \(a_{200}= -0.06854274 \pm 6.8 \cdot 10^{-6} \) | \(a_{201}= -0.03987210 \pm 3.6 \cdot 10^{-6} \) |
\(a_{202}= -0.00293387 \pm 5.4 \cdot 10^{-6} \) | \(a_{203}= -0.52066337 \pm 5.8 \cdot 10^{-6} \) | \(a_{204}= +0.04097928 \pm 8.9 \cdot 10^{-6} \) |
\(a_{205}= +0.11076980 \pm 9.4 \cdot 10^{-6} \) | \(a_{206}= +0.11221952 \pm 7.1 \cdot 10^{-6} \) | \(a_{207}= +1.88999463 \pm 3.7 \cdot 10^{-6} \) |
\(a_{208}= +0.34479930 \pm 5.6 \cdot 10^{-6} \) | \(a_{209}= -0.35783566 \pm 3.5 \cdot 10^{-6} \) | \(a_{210}= +0.01597203 \pm 3.8 \cdot 10^{-6} \) |
\(a_{211}= +1.23550725 \pm 7.2 \cdot 10^{-6} \) | \(a_{212}= +0.33264043 \pm 4.3 \cdot 10^{-6} \) | \(a_{213}= -0.04443160 \pm 3.3 \cdot 10^{-6} \) |
\(a_{214}= +0.00155001 \pm 8.9 \cdot 10^{-6} \) | \(a_{215}= +0.92530349 \pm 5.6 \cdot 10^{-6} \) | \(a_{216}= -0.04938312 \pm 7.3 \cdot 10^{-6} \) |
\(a_{217}= -0.08476222 \pm 4.3 \cdot 10^{-6} \) | \(a_{218}= -1.64170508 \pm 1.0 \cdot 10^{-5} \) | \(a_{219}= +0.06415953 \pm 5.2 \cdot 10^{-6} \) |
\(a_{220}= +0.52275654 \pm 3.8 \cdot 10^{-6} \) | \(a_{221}= -0.41454673 \pm 6.1 \cdot 10^{-6} \) | \(a_{222}= +0.06145056 \pm 7.5 \cdot 10^{-6} \) |
\(a_{223}= +1.20960010 \pm 7.0 \cdot 10^{-6} \) | \(a_{224}= +0.30049636 \pm 5.1 \cdot 10^{-6} \) | \(a_{225}= +0.13022126 \pm 5.2 \cdot 10^{-6} \) |
\(a_{226}= -0.33281538 \pm 3.7 \cdot 10^{-6} \) | \(a_{227}= -0.55847120 \pm 5.2 \cdot 10^{-6} \) | \(a_{228}= +0.01019392 \pm 3.0 \cdot 10^{-6} \) |
\(a_{229}= +0.70477462 \pm 5.7 \cdot 10^{-6} \) | \(a_{230}= -2.22192599 \pm 4.2 \cdot 10^{-6} \) | \(a_{231}= -0.01310436 \pm 3.2 \cdot 10^{-6} \) |
\(a_{232}= -0.94521954 \pm 9.4 \cdot 10^{-6} \) | \(a_{233}= +0.04001805 \pm 5.3 \cdot 10^{-6} \) | \(a_{234}= -0.34812791 \pm 1.3 \cdot 10^{-5} \) |
\(a_{235}= +1.30661813 \pm 3.9 \cdot 10^{-6} \) | \(a_{236}= +0.43756971 \pm 5.2 \cdot 10^{-6} \) | \(a_{237}= +0.04669248 \pm 3.7 \cdot 10^{-6} \) |
\(a_{238}= -0.54395077 \pm 7.7 \cdot 10^{-6} \) | \(a_{239}= -0.65842572 \pm 4.5 \cdot 10^{-6} \) | \(a_{240}= +0.05456117 \pm 4.1 \cdot 10^{-6} \) |
\(a_{241}= -0.48116666 \pm 7.1 \cdot 10^{-6} \) | \(a_{242}= +0.09279000 \pm 7.9 \cdot 10^{-6} \) | \(a_{243}= +0.14078315 \pm 5.4 \cdot 10^{-6} \) |
\(a_{244}= +0.69985449 \pm 7.7 \cdot 10^{-6} \) | \(a_{245}= +0.85442491 \pm 4.8 \cdot 10^{-6} \) | \(a_{246}= +0.00703358 \pm 1.3 \cdot 10^{-5} \) |
\(a_{247}= -0.10312179 \pm 6.6 \cdot 10^{-6} \) | \(a_{248}= -0.15387851 \pm 4.7 \cdot 10^{-6} \) | \(a_{249}= -0.04189682 \pm 7.7 \cdot 10^{-6} \) |
\(a_{250}= -1.32611267 \pm 7.1 \cdot 10^{-6} \) | \(a_{251}= -0.48073246 \pm 7.7 \cdot 10^{-6} \) | \(a_{252}= -0.16814478 \pm 6.7 \cdot 10^{-6} \) |
\(a_{253}= +1.82299392 \pm 3.5 \cdot 10^{-6} \) | \(a_{254}= -0.85666544 \pm 1.0 \cdot 10^{-5} \) | \(a_{255}= -0.06559803 \pm 3.4 \cdot 10^{-6} \) |
\(a_{256}= +1.26970078 \pm 7.7 \cdot 10^{-6} \) | \(a_{257}= -1.12142281 \pm 8.1 \cdot 10^{-6} \) | \(a_{258}= +0.05875422 \pm 4.2 \cdot 10^{-6} \) |
\(a_{259}= -0.30024761 \pm 4.1 \cdot 10^{-6} \) | \(a_{260}= +0.15064901 \pm 1.5 \cdot 10^{-5} \) | \(a_{261}= +1.79577997 \pm 3.5 \cdot 10^{-6} \) |
\(a_{262}= -0.16304412 \pm 5.8 \cdot 10^{-6} \) | \(a_{263}= +0.71471930 \pm 5.7 \cdot 10^{-6} \) | \(a_{264}= -0.02378983 \pm 5.0 \cdot 10^{-6} \) |
\(a_{265}= -0.53247774 \pm 7.8 \cdot 10^{-6} \) | \(a_{266}= -0.13531207 \pm 1.1 \cdot 10^{-5} \) | \(a_{267}= -0.01266464 \pm 4.9 \cdot 10^{-6} \) |
\(a_{268}= -0.49347083 \pm 6.3 \cdot 10^{-6} \) | \(a_{269}= -1.13045735 \pm 7.0 \cdot 10^{-6} \) | \(a_{270}= -0.11029808 \pm 4.2 \cdot 10^{-6} \) |
\(a_{271}= -0.06469777 \pm 7.1 \cdot 10^{-6} \) | \(a_{272}= -1.85816051 \pm 3.7 \cdot 10^{-6} \) | \(a_{273}= -0.00377644 \pm 1.2 \cdot 10^{-5} \) |
\(a_{274}= +1.81170877 \pm 5.8 \cdot 10^{-6} \) | \(a_{275}= +0.12560489 \pm 4.5 \cdot 10^{-6} \) | \(a_{276}= -0.05193294 \pm 4.5 \cdot 10^{-6} \) |
\(a_{277}= +1.30791868 \pm 5.3 \cdot 10^{-6} \) | \(a_{278}= +1.52303166 \pm 4.0 \cdot 10^{-6} \) | \(a_{279}= +0.29234685 \pm 4.6 \cdot 10^{-6} \) |
\(a_{280}= -0.14167375 \pm 5.9 \cdot 10^{-6} \) | \(a_{281}= +0.94301007 \pm 5.5 \cdot 10^{-6} \) | \(a_{282}= +0.08296665 \pm 6.3 \cdot 10^{-6} \) |
\(a_{283}= +0.09661707 \pm 5.9 \cdot 10^{-6} \) | \(a_{284}= -0.54990074 \pm 6.0 \cdot 10^{-6} \) | \(a_{285}= -0.01631803 \pm 3.5 \cdot 10^{-6} \) |
\(a_{286}= -0.33578671 \pm 1.2 \cdot 10^{-5} \) | \(a_{287}= -0.03436608 \pm 8.3 \cdot 10^{-6} \) | \(a_{288}= -1.03641889 \pm 4.6 \cdot 10^{-6} \) |
\(a_{289}= +1.23403689 \pm 5.8 \cdot 10^{-6} \) | \(a_{290}= -2.11116483 \pm 6.1 \cdot 10^{-6} \) | \(a_{291}= +0.00616889 \pm 7.6 \cdot 10^{-6} \) |
\(a_{292}= +0.79406038 \pm 7.4 \cdot 10^{-6} \) | \(a_{293}= -1.02815093 \pm 4.1 \cdot 10^{-6} \) | \(a_{294}= +0.05425363 \pm 3.6 \cdot 10^{-6} \) |
\(a_{295}= -0.70044442 \pm 8.1 \cdot 10^{-6} \) | \(a_{296}= -0.54507369 \pm 6.1 \cdot 10^{-6} \) | \(a_{297}= +0.09049479 \pm 6.4 \cdot 10^{-6} \) |
\(a_{298}= +0.43980011 \pm 4.5 \cdot 10^{-6} \) | \(a_{299}= +0.52535400 \pm 4.5 \cdot 10^{-6} \) | \(a_{300}= -0.00357820 \pm 7.4 \cdot 10^{-6} \) |
\(a_{301}= -0.28707327 \pm 3.4 \cdot 10^{-6} \) | \(a_{302}= -1.78966138 \pm 5.3 \cdot 10^{-6} \) | \(a_{303}= +0.00010977 \pm 5.0 \cdot 10^{-6} \) |
\(a_{304}= -0.46223217 \pm 4.9 \cdot 10^{-6} \) | \(a_{305}= -1.12029960 \pm 7.8 \cdot 10^{-6} \) | \(a_{306}= +1.87609875 \pm 5.0 \cdot 10^{-6} \) |
\(a_{307}= +0.50578226 \pm 8.6 \cdot 10^{-6} \) | \(a_{308}= -0.16218401 \pm 3.7 \cdot 10^{-6} \) | \(a_{309}= -0.00419863 \pm 5.7 \cdot 10^{-6} \) |
\(a_{310}= -0.34369043 \pm 3.3 \cdot 10^{-6} \) | \(a_{311}= -0.16190529 \pm 5.2 \cdot 10^{-6} \) | \(a_{312}= -0.00685580 \pm 1.4 \cdot 10^{-5} \) |
\(a_{313}= -1.32102851 \pm 7.3 \cdot 10^{-6} \) | \(a_{314}= +0.46535280 \pm 6.3 \cdot 10^{-6} \) | \(a_{315}= +0.26915956 \pm 4.5 \cdot 10^{-6} \) |
\(a_{316}= +0.57788217 \pm 5.3 \cdot 10^{-6} \) | \(a_{317}= +1.11174756 \pm 5.8 \cdot 10^{-6} \) | \(a_{318}= -0.03381087 \pm 4.2 \cdot 10^{-6} \) |
\(a_{319}= +1.73211919 \pm 2.4 \cdot 10^{-6} \) | \(a_{320}= +0.05920880 \pm 6.9 \cdot 10^{-6} \) | \(a_{321}= -0.00005799 \pm 5.4 \cdot 10^{-6} \) |
\(a_{322}= +0.68934740 \pm 5.1 \cdot 10^{-6} \) | \(a_{323}= +0.55573440 \pm 4.8 \cdot 10^{-6} \) | \(a_{324}= +0.57864479 \pm 8.9 \cdot 10^{-6} \) |
\(a_{325}= +0.03619707 \pm 7.6 \cdot 10^{-6} \) | \(a_{326}= -1.12365633 \pm 6.5 \cdot 10^{-6} \) | \(a_{327}= +0.06142354 \pm 6.9 \cdot 10^{-6} \) |
\(a_{328}= -0.06238865 \pm 1.1 \cdot 10^{-5} \) | \(a_{329}= -0.40537526 \pm 4.4 \cdot 10^{-6} \) | \(a_{330}= -0.05313501 \pm 3.8 \cdot 10^{-6} \) |
\(a_{331}= -0.94083398 \pm 7.6 \cdot 10^{-6} \) | \(a_{332}= -0.51852951 \pm 1.0 \cdot 10^{-5} \) | \(a_{333}= +1.03556093 \pm 5.2 \cdot 10^{-6} \) |
\(a_{334}= +0.78416847 \pm 6.4 \cdot 10^{-6} \) | \(a_{335}= +0.78992873 \pm 4.7 \cdot 10^{-6} \) | \(a_{336}= -0.01692748 \pm 3.3 \cdot 10^{-6} \) |
\(a_{337}= +1.33153495 \pm 7.5 \cdot 10^{-6} \) | \(a_{338}= -0.09676768 \pm 8.2 \cdot 10^{-6} \) | \(a_{339}= +0.01245211 \pm 4.4 \cdot 10^{-6} \) |
\(a_{340}= -0.81186373 \pm 4.3 \cdot 10^{-6} \) | \(a_{341}= +0.28198309 \pm 5.1 \cdot 10^{-6} \) | \(a_{342}= +0.46669445 \pm 8.2 \cdot 10^{-6} \) |
\(a_{343}= -0.55437824 \pm 5.5 \cdot 10^{-6} \) | \(a_{344}= -0.52115681 \pm 5.5 \cdot 10^{-6} \) | \(a_{345}= +0.08313221 \pm 3.6 \cdot 10^{-6} \) |
\(a_{346}= -2.17608704 \pm 7.6 \cdot 10^{-6} \) | \(a_{347}= +0.67550509 \pm 5.9 \cdot 10^{-6} \) | \(a_{348}= -0.04934412 \pm 1.0 \cdot 10^{-5} \) |
\(a_{349}= -1.83123311 \pm 8.4 \cdot 10^{-6} \) | \(a_{350}= +0.04749627 \pm 5.6 \cdot 10^{-6} \) | \(a_{351}= +0.02607897 \pm 6.7 \cdot 10^{-6} \) |
\(a_{352}= -0.99967762 \pm 3.8 \cdot 10^{-6} \) | \(a_{353}= -0.92403089 \pm 7.5 \cdot 10^{-6} \) | \(a_{354}= -0.04447629 \pm 3.8 \cdot 10^{-6} \) |
\(a_{355}= +0.88025953 \pm 5.2 \cdot 10^{-6} \) | \(a_{356}= -0.15674194 \pm 9.1 \cdot 10^{-6} \) | \(a_{357}= +0.02035164 \pm 5.5 \cdot 10^{-6} \) |
\(a_{358}= +0.00501994 \pm 8.3 \cdot 10^{-6} \) | \(a_{359}= -1.61005325 \pm 4.8 \cdot 10^{-6} \) | \(a_{360}= +0.48863601 \pm 5.7 \cdot 10^{-6} \) |
\(a_{361}= -0.86175666 \pm 9.0 \cdot 10^{-6} \) | \(a_{362}= +1.26900898 \pm 6.0 \cdot 10^{-6} \) | \(a_{363}= -0.00347169 \pm 6.3 \cdot 10^{-6} \) |
\(a_{364}= -0.04673851 \pm 1.5 \cdot 10^{-5} \) | \(a_{365}= -1.27110069 \pm 3.3 \cdot 10^{-6} \) | \(a_{366}= -0.07113594 \pm 6.3 \cdot 10^{-6} \) |
\(a_{367}= +1.67039162 \pm 7.4 \cdot 10^{-6} \) | \(a_{368}= +2.35484201 \pm 4.0 \cdot 10^{-6} \) | \(a_{369}= +0.11852939 \pm 4.5 \cdot 10^{-6} \) |
\(a_{370}= -1.21743189 \pm 4.6 \cdot 10^{-6} \) | \(a_{371}= +0.16519999 \pm 5.1 \cdot 10^{-6} \) | \(a_{372}= -0.00803305 \pm 2.6 \cdot 10^{-6} \) |
\(a_{373}= +1.13414824 \pm 5.9 \cdot 10^{-6} \) | \(a_{374}= +1.80959065 \pm 3.4 \cdot 10^{-6} \) | \(a_{375}= +0.04961582 \pm 6.0 \cdot 10^{-6} \) |
\(a_{376}= -0.73592389 \pm 7.3 \cdot 10^{-6} \) | \(a_{377}= +0.49916554 \pm 5.9 \cdot 10^{-6} \) | \(a_{378}= +0.03421972 \pm 5.5 \cdot 10^{-6} \) |
\(a_{379}= +1.37109030 \pm 7.2 \cdot 10^{-6} \) | \(a_{380}= -0.20195755 \pm 8.5 \cdot 10^{-6} \) | \(a_{381}= +0.03205169 \pm 7.7 \cdot 10^{-6} \) |
\(a_{382}= -1.54505537 \pm 1.2 \cdot 10^{-5} \) | \(a_{383}= -1.65918790 \pm 4.6 \cdot 10^{-6} \) | \(a_{384}= -0.04512948 \pm 8.6 \cdot 10^{-6} \) |
\(a_{385}= +0.25961780 \pm 3.8 \cdot 10^{-6} \) | \(a_{386}= +2.48645390 \pm 8.6 \cdot 10^{-6} \) | \(a_{387}= +0.99012233 \pm 4.8 \cdot 10^{-6} \) |
\(a_{388}= +0.07634826 \pm 1.1 \cdot 10^{-5} \) | \(a_{389}= -0.36292593 \pm 6.4 \cdot 10^{-6} \) | \(a_{390}= -0.01531255 \pm 2.1 \cdot 10^{-5} \) |
\(a_{391}= -2.83118916 \pm 4.0 \cdot 10^{-6} \) | \(a_{392}= -0.48123601 \pm 5.3 \cdot 10^{-6} \) | \(a_{393}= +0.00610021 \pm 4.3 \cdot 10^{-6} \) |
\(a_{394}= +0.41691827 \pm 1.0 \cdot 10^{-5} \) | \(a_{395}= -0.92505110 \pm 4.8 \cdot 10^{-6} \) | \(a_{396}= +0.55937638 \pm 2.5 \cdot 10^{-6} \) |
\(a_{397}= +0.81352169 \pm 7.2 \cdot 10^{-6} \) | \(a_{398}= -1.13981765 \pm 9.1 \cdot 10^{-6} \) | \(a_{399}= +0.00506263 \pm 2.5 \cdot 10^{-6} \) |
\(a_{400}= +0.16224940 \pm 5.4 \cdot 10^{-6} \) | \(a_{401}= +1.25716022 \pm 5.9 \cdot 10^{-6} \) | \(a_{402}= +0.05015830 \pm 2.9 \cdot 10^{-6} \) |
\(a_{403}= +0.08126245 \pm 4.6 \cdot 10^{-6} \) | \(a_{404}= +0.00135854 \pm 6.5 \cdot 10^{-6} \) | \(a_{405}= -0.92627187 \pm 3.9 \cdot 10^{-6} \) |
\(a_{406}= +0.65498401 \pm 9.5 \cdot 10^{-6} \) | \(a_{407}= +0.99885007 \pm 4.5 \cdot 10^{-6} \) | \(a_{408}= +0.03694664 \pm 8.0 \cdot 10^{-6} \) |
\(a_{409}= -1.11901382 \pm 5.8 \cdot 10^{-6} \) | \(a_{410}= -0.13934618 \pm 7.2 \cdot 10^{-6} \) | \(a_{411}= -0.06778414 \pm 2.7 \cdot 10^{-6} \) |
\(a_{412}= -0.05196375 \pm 8.7 \cdot 10^{-6} \) | \(a_{413}= +0.21731126 \pm 3.8 \cdot 10^{-6} \) | \(a_{414}= -2.37757508 \pm 4.1 \cdot 10^{-6} \) |
\(a_{415}= +0.83004170 \pm 5.7 \cdot 10^{-6} \) | \(a_{416}= -0.28808907 \pm 6.1 \cdot 10^{-6} \) | \(a_{417}= -0.05698344 \pm 4.1 \cdot 10^{-6} \) |
\(a_{418}= +0.45015003 \pm 3.8 \cdot 10^{-6} \) | \(a_{419}= -0.48602617 \pm 5.8 \cdot 10^{-6} \) | \(a_{420}= -0.00739592 \pm 4.2 \cdot 10^{-6} \) |
\(a_{421}= +1.34577355 \pm 7.4 \cdot 10^{-6} \) | \(a_{422}= -1.55424317 \pm 1.0 \cdot 10^{-5} \) | \(a_{423}= +1.39814860 \pm 5.9 \cdot 10^{-6} \) |
\(a_{424}= +0.29990636 \pm 6.2 \cdot 10^{-6} \) | \(a_{425}= -0.19506988 \pm 6.1 \cdot 10^{-6} \) | \(a_{426}= +0.05589405 \pm 2.8 \cdot 10^{-6} \) |
\(a_{427}= +0.34757036 \pm 5.7 \cdot 10^{-6} \) | \(a_{428}= -0.00071774 \pm 1.0 \cdot 10^{-5} \) | \(a_{429}= +0.01256329 \pm 1.0 \cdot 10^{-5} \) |
\(a_{430}= -1.16401311 \pm 4.9 \cdot 10^{-6} \) | \(a_{431}= -1.22893491 \pm 7.9 \cdot 10^{-6} \) | \(a_{432}= +0.11689613 \pm 6.1 \cdot 10^{-6} \) |
\(a_{433}= +0.64797817 \pm 6.3 \cdot 10^{-6} \) | \(a_{434}= +0.10662916 \pm 3.3 \cdot 10^{-6} \) | \(a_{435}= +0.07898814 \pm 3.4 \cdot 10^{-6} \) |
\(a_{436}= +0.76019891 \pm 1.1 \cdot 10^{-5} \) | \(a_{437}= -0.70428077 \pm 4.9 \cdot 10^{-6} \) | \(a_{438}= -0.08071139 \pm 6.9 \cdot 10^{-6} \) |
\(a_{439}= +0.24663573 \pm 5.6 \cdot 10^{-6} \) | \(a_{440}= +0.47131377 \pm 4.3 \cdot 10^{-6} \) | \(a_{441}= +0.91427860 \pm 5.1 \cdot 10^{-6} \) |
\(a_{442}= +0.52149142 \pm 1.4 \cdot 10^{-5} \) | \(a_{443}= -1.56486755 \pm 3.5 \cdot 10^{-6} \) | \(a_{444}= -0.02845496 \pm 6.6 \cdot 10^{-6} \) |
\(a_{445}= +0.25090634 \pm 4.8 \cdot 10^{-6} \) | \(a_{446}= -1.52165251 \pm 8.9 \cdot 10^{-6} \) | \(a_{447}= -0.01645489 \pm 4.6 \cdot 10^{-6} \) |
\(a_{448}= -0.01836939 \pm 8.1 \cdot 10^{-6} \) | \(a_{449}= +1.50326967 \pm 5.7 \cdot 10^{-6} \) | \(a_{450}= -0.16381572 \pm 4.7 \cdot 10^{-6} \) |
\(a_{451}= +0.11432750 \pm 4.9 \cdot 10^{-6} \) | \(a_{452}= +0.15411166 \pm 3.8 \cdot 10^{-6} \) | \(a_{453}= +0.06695925 \pm 5.0 \cdot 10^{-6} \) |
\(a_{454}= +0.70254549 \pm 6.7 \cdot 10^{-6} \) | \(a_{455}= +0.07481717 \pm 1.3 \cdot 10^{-5} \) | \(a_{456}= +0.00919077 \pm 4.1 \cdot 10^{-6} \) |
\(a_{457}= -1.21813188 \pm 6.6 \cdot 10^{-6} \) | \(a_{458}= -0.88659224 \pm 7.9 \cdot 10^{-6} \) | \(a_{459}= -0.14054236 \pm 6.6 \cdot 10^{-6} \) |
\(a_{460}= +1.02887281 \pm 4.5 \cdot 10^{-6} \) | \(a_{461}= -0.28308734 \pm 7.5 \cdot 10^{-6} \) | \(a_{462}= +0.01648501 \pm 3.0 \cdot 10^{-6} \) |
\(a_{463}= +0.75328246 \pm 7.2 \cdot 10^{-6} \) | \(a_{464}= +2.23745509 \pm 7.0 \cdot 10^{-6} \) | \(a_{465}= +0.01285900 \pm 3.3 \cdot 10^{-6} \) |
\(a_{466}= -0.05034190 \pm 7.1 \cdot 10^{-6} \) | \(a_{467}= +0.61264015 \pm 7.7 \cdot 10^{-6} \) | \(a_{468}= +0.16120219 \pm 1.4 \cdot 10^{-5} \) |
\(a_{469}= -0.24507356 \pm 5.6 \cdot 10^{-6} \) | \(a_{470}= -1.64369923 \pm 5.6 \cdot 10^{-6} \) | \(a_{471}= -0.01741093 \pm 5.1 \cdot 10^{-6} \) |
\(a_{472}= +0.39450989 \pm 5.3 \cdot 10^{-6} \) | \(a_{473}= +0.95502228 \pm 3.6 \cdot 10^{-6} \) | \(a_{474}= -0.05873819 \pm 3.9 \cdot 10^{-6} \) |
\(a_{475}= -0.04852518 \pm 3.7 \cdot 10^{-6} \) | \(a_{476}= +0.25187885 \pm 8.5 \cdot 10^{-6} \) | \(a_{477}= -0.56977857 \pm 5.1 \cdot 10^{-6} \) |
\(a_{478}= +0.82828626 \pm 6.0 \cdot 10^{-6} \) | \(a_{479}= -1.11143223 \pm 6.9 \cdot 10^{-6} \) | \(a_{480}= -0.04558732 \pm 4.5 \cdot 10^{-6} \) |
\(a_{481}= +0.28785059 \pm 5.4 \cdot 10^{-6} \) | \(a_{482}= +0.60529795 \pm 8.1 \cdot 10^{-6} \) | \(a_{483}= -0.02579158 \pm 3.3 \cdot 10^{-6} \) |
\(a_{484}= -0.04296683 \pm 8.1 \cdot 10^{-6} \) | \(a_{485}= -0.12221531 \pm 4.9 \cdot 10^{-6} \) | \(a_{486}= -0.17710237 \pm 5.9 \cdot 10^{-6} \) |
\(a_{487}= -0.98847142 \pm 7.0 \cdot 10^{-6} \) | \(a_{488}= +0.63098408 \pm 6.3 \cdot 10^{-6} \) | \(a_{489}= +0.04204102 \pm 5.4 \cdot 10^{-6} \) |
\(a_{490}= -1.07484929 \pm 5.4 \cdot 10^{-6} \) | \(a_{491}= -0.53083243 \pm 5.2 \cdot 10^{-6} \) | \(a_{492}= -0.00325693 \pm 1.4 \cdot 10^{-5} \) |
\(a_{493}= -2.69005674 \pm 6.3 \cdot 10^{-6} \) | \(a_{494}= +0.12972513 \pm 1.4 \cdot 10^{-5} \) | \(a_{495}= -0.89542777 \pm 3.3 \cdot 10^{-6} \) |
\(a_{496}= +0.36425005 \pm 3.2 \cdot 10^{-6} \) | \(a_{497}= -0.27309848 \pm 5.1 \cdot 10^{-6} \) | \(a_{498}= +0.05270536 \pm 1.0 \cdot 10^{-5} \) |
\(a_{499}= +0.48638952 \pm 5.7 \cdot 10^{-6} \) | \(a_{500}= +0.61406243 \pm 8.9 \cdot 10^{-6} \) | \(a_{501}= -0.02933926 \pm 6.5 \cdot 10^{-6} \) |
\(a_{502}= +0.60475173 \pm 9.7 \cdot 10^{-6} \) | \(a_{503}= +0.28298425 \pm 6.7 \cdot 10^{-6} \) | \(a_{504}= -0.15159819 \pm 5.2 \cdot 10^{-6} \) |
\(a_{505}= -0.00217470 \pm 9.0 \cdot 10^{-6} \) | \(a_{506}= -2.29328954 \pm 3.3 \cdot 10^{-6} \) | \(a_{507}= +0.00362051 \pm 6.2 \cdot 10^{-6} \) |
\(a_{508}= +0.39668278 \pm 1.1 \cdot 10^{-5} \) | \(a_{509}= -0.41852900 \pm 6.9 \cdot 10^{-6} \) | \(a_{510}= +0.08252099 \pm 3.6 \cdot 10^{-6} \) |
\(a_{511}= +0.39435605 \pm 4.4 \cdot 10^{-6} \) | \(a_{512}= -0.63841613 \pm 5.7 \cdot 10^{-6} \) | \(a_{513}= -0.03496103 \pm 4.8 \cdot 10^{-6} \) |
\(a_{514}= +1.41072725 \pm 1.1 \cdot 10^{-5} \) | \(a_{515}= +0.08318153 \pm 1.0 \cdot 10^{-5} \) | \(a_{516}= -0.02720641 \pm 2.7 \cdot 10^{-6} \) |
\(a_{517}= +1.34858394 \pm 4.2 \cdot 10^{-6} \) | \(a_{518}= +0.37770543 \pm 5.8 \cdot 10^{-6} \) | \(a_{519}= +0.08141717 \pm 6.0 \cdot 10^{-6} \) |
\(a_{520}= +0.13582413 \pm 1.4 \cdot 10^{-5} \) | \(a_{521}= +1.55182314 \pm 3.9 \cdot 10^{-6} \) | \(a_{522}= -2.25905494 \pm 4.8 \cdot 10^{-6} \) |
\(a_{523}= +1.92589492 \pm 5.0 \cdot 10^{-6} \) | \(a_{524}= +0.07549831 \pm 5.6 \cdot 10^{-6} \) | \(a_{525}= -0.00177705 \pm 4.8 \cdot 10^{-6} \) |
\(a_{526}= -0.89910245 \pm 7.6 \cdot 10^{-6} \) | \(a_{527}= -0.43793205 \pm 4.5 \cdot 10^{-6} \) | \(a_{528}= +0.05631356 \pm 5.7 \cdot 10^{-6} \) |
\(a_{529}= +2.58795869 \pm 4.3 \cdot 10^{-6} \) | \(a_{530}= +0.66984625 \pm 4.8 \cdot 10^{-6} \) | \(a_{531}= -0.74951155 \pm 3.8 \cdot 10^{-6} \) |
\(a_{532}= +0.06265686 \pm 1.2 \cdot 10^{-5} \) | \(a_{533}= +0.03294712 \pm 9.1 \cdot 10^{-6} \) | \(a_{534}= +0.01593186 \pm 6.9 \cdot 10^{-6} \) |
\(a_{535}= +0.00114893 \pm 6.5 \cdot 10^{-6} \) | \(a_{536}= -0.44490996 \pm 6.1 \cdot 10^{-6} \) | \(a_{537}= -0.00018782 \pm 7.4 \cdot 10^{-6} \) |
\(a_{538}= +1.42209252 \pm 7.7 \cdot 10^{-6} \) | \(a_{539}= +0.88186723 \pm 4.0 \cdot 10^{-6} \) | \(a_{540}= +0.05107402 \pm 6.2 \cdot 10^{-6} \) |
\(a_{541}= -0.21595848 \pm 6.2 \cdot 10^{-6} \) | \(a_{542}= +0.08138849 \pm 8.1 \cdot 10^{-6} \) | \(a_{543}= -0.04747931 \pm 4.7 \cdot 10^{-6} \) |
\(a_{544}= +1.55254299 \pm 4.1 \cdot 10^{-6} \) | \(a_{545}= -1.21689659 \pm 7.6 \cdot 10^{-6} \) | \(a_{546}= +0.00475068 \pm 2.0 \cdot 10^{-5} \) |
\(a_{547}= -0.43340127 \pm 8.6 \cdot 10^{-6} \) | \(a_{548}= -0.83891988 \pm 7.0 \cdot 10^{-6} \) | \(a_{549}= -1.19877819 \pm 4.5 \cdot 10^{-6} \) |
\(a_{550}= -0.15800842 \pm 3.3 \cdot 10^{-6} \) | \(a_{551}= -0.66917296 \pm 4.3 \cdot 10^{-6} \) | \(a_{552}= -0.04682238 \pm 4.5 \cdot 10^{-6} \) |
\(a_{553}= +0.28699496 \pm 5.5 \cdot 10^{-6} \) | \(a_{554}= -1.64533529 \pm 7.6 \cdot 10^{-6} \) | \(a_{555}= +0.04554958 \pm 5.0 \cdot 10^{-6} \) |
\(a_{556}= -0.70524665 \pm 4.1 \cdot 10^{-6} \) | \(a_{557}= +0.72547139 \pm 8.3 \cdot 10^{-6} \) | \(a_{558}= -0.36776643 \pm 4.5 \cdot 10^{-6} \) |
\(a_{559}= +0.27522021 \pm 5.1 \cdot 10^{-6} \) | \(a_{560}= +0.33535981 \pm 4.1 \cdot 10^{-6} \) | \(a_{561}= -0.06770489 \pm 4.8 \cdot 10^{-6} \) |
\(a_{562}= -1.18628763 \pm 7.0 \cdot 10^{-6} \) | \(a_{563}= -1.11706389 \pm 4.4 \cdot 10^{-6} \) | \(a_{564}= -0.03841808 \pm 5.0 \cdot 10^{-6} \) |
\(a_{565}= -0.24669590 \pm 6.3 \cdot 10^{-6} \) | \(a_{566}= -0.12154232 \pm 8.9 \cdot 10^{-6} \) | \(a_{567}= +0.28737371 \pm 5.9 \cdot 10^{-6} \) |
\(a_{568}= -0.49578679 \pm 6.0 \cdot 10^{-6} \) | \(a_{569}= +0.58638044 \pm 7.0 \cdot 10^{-6} \) | \(a_{570}= +0.02052775 \pm 3.0 \cdot 10^{-6} \) |
\(a_{571}= +0.95628595 \pm 6.7 \cdot 10^{-6} \) | \(a_{572}= +0.15548754 \pm 1.3 \cdot 10^{-5} \) | \(a_{573}= +0.05780744 \pm 8.3 \cdot 10^{-6} \) |
\(a_{574}= +0.04323183 \pm 1.2 \cdot 10^{-5} \) | \(a_{575}= +0.24721156 \pm 4.2 \cdot 10^{-6} \) | \(a_{576}= +0.06335647 \pm 6.3 \cdot 10^{-6} \) |
\(a_{577}= +0.04984762 \pm 6.0 \cdot 10^{-6} \) | \(a_{578}= -1.55239349 \pm 5.9 \cdot 10^{-6} \) | \(a_{579}= -0.09302938 \pm 6.4 \cdot 10^{-6} \) |
\(a_{580}= +0.97758435 \pm 7.2 \cdot 10^{-6} \) | \(a_{581}= -0.25751852 \pm 7.6 \cdot 10^{-6} \) | \(a_{582}= -0.00776033 \pm 1.1 \cdot 10^{-5} \) |
\(a_{583}= -0.54957980 \pm 5.6 \cdot 10^{-6} \) | \(a_{584}= +0.71591947 \pm 7.1 \cdot 10^{-6} \) | \(a_{585}= -0.25804615 \pm 1.2 \cdot 10^{-5} \) |
\(a_{586}= +1.29339311 \pm 5.6 \cdot 10^{-6} \) | \(a_{587}= -0.13079214 \pm 5.6 \cdot 10^{-6} \) | \(a_{588}= -0.02512238 \pm 2.1 \cdot 10^{-6} \) |
\(a_{589}= -0.10893907 \pm 4.7 \cdot 10^{-6} \) | \(a_{590}= +0.88114494 \pm 4.6 \cdot 10^{-6} \) | \(a_{591}= -0.01559878 \pm 8.1 \cdot 10^{-6} \) |
\(a_{592}= +1.29025889 \pm 4.2 \cdot 10^{-6} \) | \(a_{593}= -0.77610459 \pm 8.4 \cdot 10^{-6} \) | \(a_{594}= -0.11384062 \pm 6.3 \cdot 10^{-6} \) |
\(a_{595}= -0.40319778 \pm 3.4 \cdot 10^{-6} \) | \(a_{596}= -0.20365142 \pm 4.3 \cdot 10^{-6} \) | \(a_{597}= +0.04264569 \pm 6.7 \cdot 10^{-6} \) |
\(a_{598}= -0.66088472 \pm 1.2 \cdot 10^{-5} \) | \(a_{599}= -0.44896257 \pm 6.7 \cdot 10^{-6} \) | \(a_{600}= -0.00322608 \pm 6.5 \cdot 10^{-6} \) |
\(a_{601}= +0.70507457 \pm 4.3 \cdot 10^{-6} \) | \(a_{602}= +0.36113238 \pm 4.2 \cdot 10^{-6} \) | \(a_{603}= +0.84526437 \pm 3.9 \cdot 10^{-6} \) |
\(a_{604}= +0.82871074 \pm 5.2 \cdot 10^{-6} \) | \(a_{605}= +0.06877961 \pm 5.8 \cdot 10^{-6} \) | \(a_{606}= -0.00013809 \pm 4.8 \cdot 10^{-6} \) |
\(a_{607}= -0.14537704 \pm 6.8 \cdot 10^{-6} \) | \(a_{608}= +0.38620739 \pm 6.4 \cdot 10^{-6} \) | \(a_{609}= -0.02450589 \pm 6.1 \cdot 10^{-6} \) |
\(a_{610}= +1.40931428 \pm 5.8 \cdot 10^{-6} \) | \(a_{611}= +0.38863759 \pm 4.8 \cdot 10^{-6} \) | \(a_{612}= -0.86873595 \pm 3.0 \cdot 10^{-6} \) |
\(a_{613}= -0.93755636 \pm 6.1 \cdot 10^{-6} \) | \(a_{614}= -0.63626387 \pm 1.0 \cdot 10^{-5} \) | \(a_{615}= +0.00521356 \pm 7.4 \cdot 10^{-6} \) |
\(a_{616}= -0.14622401 \pm 4.0 \cdot 10^{-6} \) | \(a_{617}= -0.93439686 \pm 4.8 \cdot 10^{-6} \) | \(a_{618}= +0.00528180 \pm 6.6 \cdot 10^{-6} \) |
\(a_{619}= +0.64844281 \pm 6.4 \cdot 10^{-6} \) | \(a_{620}= +0.15914740 \pm 3.3 \cdot 10^{-6} \) | \(a_{621}= +0.17810897 \pm 4.5 \cdot 10^{-6} \) |
\(a_{622}= +0.20367359 \pm 6.6 \cdot 10^{-6} \) | \(a_{623}= -0.07784311 \pm 6.2 \cdot 10^{-6} \) | \(a_{624}= +0.01622855 \pm 1.1 \cdot 10^{-5} \) |
\(a_{625}= -0.85245666 \pm 7.0 \cdot 10^{-6} \) | \(a_{626}= +1.66182720 \pm 1.0 \cdot 10^{-5} \) | \(a_{627}= -0.01684213 \pm 2.9 \cdot 10^{-6} \) |
\(a_{628}= -0.21548370 \pm 6.6 \cdot 10^{-6} \) | \(a_{629}= -1.55125778 \pm 4.8 \cdot 10^{-6} \) | \(a_{630}= -0.33859729 \pm 5.9 \cdot 10^{-6} \) |
\(a_{631}= +1.32708403 \pm 5.4 \cdot 10^{-6} \) | \(a_{632}= +0.52101466 \pm 4.8 \cdot 10^{-6} \) | \(a_{633}= +0.05815120 \pm 8.3 \cdot 10^{-6} \) |
\(a_{634}= -1.39855598 \pm 8.2 \cdot 10^{-6} \) | \(a_{635}= -0.63499423 \pm 5.3 \cdot 10^{-6} \) | \(a_{636}= +0.01565627 \pm 3.6 \cdot 10^{-6} \) |
\(a_{637}= +0.25413824 \pm 4.7 \cdot 10^{-6} \) | \(a_{638}= -2.17897097 \pm 3.0 \cdot 10^{-6} \) | \(a_{639}= +0.94192297 \pm 4.0 \cdot 10^{-6} \) |
\(a_{640}= +0.89408575 \pm 8.1 \cdot 10^{-6} \) | \(a_{641}= -0.51644264 \pm 6.8 \cdot 10^{-6} \) | \(a_{642}= +0.00007295 \pm 8.0 \cdot 10^{-6} \) |
\(a_{643}= +1.12452889 \pm 6.4 \cdot 10^{-6} \) | \(a_{644}= -0.31920541 \pm 5.5 \cdot 10^{-6} \) | \(a_{645}= +0.04355095 \pm 4.7 \cdot 10^{-6} \) |
\(a_{646}= -0.69910266 \pm 4.7 \cdot 10^{-6} \) | \(a_{647}= +1.07067752 \pm 4.2 \cdot 10^{-6} \) | \(a_{648}= +0.52170223 \pm 8.0 \cdot 10^{-6} \) |
\(a_{649}= -0.72294121 \pm 3.9 \cdot 10^{-6} \) | \(a_{650}= -0.04553518 \pm 1.5 \cdot 10^{-5} \) | \(a_{651}= -0.00398947 \pm 2.9 \cdot 10^{-6} \) |
\(a_{652}= +0.52031411 \pm 7.5 \cdot 10^{-6} \) | \(a_{653}= +1.30042832 \pm 6.0 \cdot 10^{-6} \) | \(a_{654}= -0.07726958 \pm 1.0 \cdot 10^{-5} \) |
\(a_{655}= -0.12085473 \pm 4.3 \cdot 10^{-6} \) | \(a_{656}= +0.14768189 \pm 7.3 \cdot 10^{-6} \) | \(a_{657}= -1.36014312 \pm 3.1 \cdot 10^{-6} \) |
\(a_{658}= +0.50995389 \pm 6.6 \cdot 10^{-6} \) | \(a_{659}= -1.07646920 \pm 7.3 \cdot 10^{-6} \) | \(a_{660}= +0.02460441 \pm 2.3 \cdot 10^{-6} \) |
\(a_{661}= -0.61267040 \pm 5.8 \cdot 10^{-6} \) | \(a_{662}= +1.18355015 \pm 8.6 \cdot 10^{-6} \) | \(a_{663}= -0.01951133 \pm 1.2 \cdot 10^{-5} \) |
\(a_{664}= -0.46750271 \pm 8.7 \cdot 10^{-6} \) | \(a_{665}= -0.10029865 \pm 7.0 \cdot 10^{-6} \) | \(a_{666}= -1.30271474 \pm 5.3 \cdot 10^{-6} \) |
\(a_{667}= +3.40910194 \pm 3.9 \cdot 10^{-6} \) | \(a_{668}= -0.36311273 \pm 7.5 \cdot 10^{-6} \) | \(a_{669}= +0.05693184 \pm 5.9 \cdot 10^{-6} \) |
\(a_{670}= -0.99371440 \pm 5.6 \cdot 10^{-6} \) | \(a_{671}= -1.15628125 \pm 4.3 \cdot 10^{-6} \) | \(a_{672}= +0.01414336 \pm 3.2 \cdot 10^{-6} \) |
\(a_{673}= -1.06584543 \pm 6.5 \cdot 10^{-6} \) | \(a_{674}= -1.67504408 \pm 8.0 \cdot 10^{-6} \) | \(a_{675}= +0.01227177 \pm 8.4 \cdot 10^{-6} \) |
\(a_{676}= +0.04480871 \pm 8.8 \cdot 10^{-6} \) | \(a_{677}= +0.46048245 \pm 6.6 \cdot 10^{-6} \) | \(a_{678}= -0.01566451 \pm 4.1 \cdot 10^{-6} \) |
\(a_{679}= +0.03791702 \pm 6.5 \cdot 10^{-6} \) | \(a_{680}= -0.73197086 \pm 4.3 \cdot 10^{-6} \) | \(a_{681}= -0.02628537 \pm 6.4 \cdot 10^{-6} \) |
\(a_{682}= -0.35472904 \pm 4.3 \cdot 10^{-6} \) | \(a_{683}= -1.74028673 \pm 6.7 \cdot 10^{-6} \) | \(a_{684}= -0.21610496 \pm 8.3 \cdot 10^{-6} \) |
\(a_{685}= +1.34291003 \pm 4.2 \cdot 10^{-6} \) | \(a_{686}= +0.69739663 \pm 6.6 \cdot 10^{-6} \) | \(a_{687}= +0.03317139 \pm 5.8 \cdot 10^{-6} \) |
\(a_{688}= +1.23364459 \pm 3.4 \cdot 10^{-6} \) | \(a_{689}= -0.15837899 \pm 6.5 \cdot 10^{-6} \) | \(a_{690}= -0.10457864 \pm 3.2 \cdot 10^{-6} \) |
\(a_{691}= +1.17735734 \pm 6.4 \cdot 10^{-6} \) | \(a_{692}= +1.00764688 \pm 8.5 \cdot 10^{-6} \) | \(a_{693}= +0.27780439 \pm 3.4 \cdot 10^{-6} \) |
\(a_{694}= -0.84977176 \pm 8.6 \cdot 10^{-6} \) | \(a_{695}= +1.12893116 \pm 5.6 \cdot 10^{-6} \) | \(a_{696}= -0.04448833 \pm 8.7 \cdot 10^{-6} \) |
\(a_{697}= -0.17755559 \pm 9.3 \cdot 10^{-6} \) | \(a_{698}= +2.30365428 \pm 1.0 \cdot 10^{-5} \) | \(a_{699}= +0.00188352 \pm 3.5 \cdot 10^{-6} \) |
\(a_{700}= -0.02199336 \pm 6.9 \cdot 10^{-6} \) | \(a_{701}= +0.41906365 \pm 6.2 \cdot 10^{-6} \) | \(a_{702}= -0.03280682 \pm 1.4 \cdot 10^{-5} \) |
\(a_{703}= -0.38588768 \pm 5.2 \cdot 10^{-6} \) | \(a_{704}= +0.06111047 \pm 4.2 \cdot 10^{-6} \) | \(a_{705}= +0.06149815 \pm 3.2 \cdot 10^{-6} \) |
\(a_{706}= +1.16241221 \pm 7.2 \cdot 10^{-6} \) | \(a_{707}= +0.00067470 \pm 5.4 \cdot 10^{-6} \) | \(a_{708}= +0.02059495 \pm 3.5 \cdot 10^{-6} \) |
\(a_{709}= -0.46755598 \pm 7.2 \cdot 10^{-6} \) | \(a_{710}= -1.10734872 \pm 6.1 \cdot 10^{-6} \) | \(a_{711}= -0.98985225 \pm 5.1 \cdot 10^{-6} \) |
\(a_{712}= -0.14131747 \pm 8.6 \cdot 10^{-6} \) | \(a_{713}= +0.55499016 \pm 3.8 \cdot 10^{-6} \) | \(a_{714}= -0.02560195 \pm 8.4 \cdot 10^{-6} \) |
\(a_{715}= -0.24889836 \pm 1.1 \cdot 10^{-5} \) | \(a_{716}= -0.00232450 \pm 9.2 \cdot 10^{-6} \) | \(a_{717}= -0.03098990 \pm 3.4 \cdot 10^{-6} \) |
\(a_{718}= +2.02541449 \pm 4.7 \cdot 10^{-6} \) | \(a_{719}= +1.28641267 \pm 4.5 \cdot 10^{-6} \) | \(a_{720}= -1.15666371 \pm 4.9 \cdot 10^{-6} \) |
\(a_{721}= -0.02580688 \pm 6.5 \cdot 10^{-6} \) | \(a_{722}= +1.08407248 \pm 1.2 \cdot 10^{-5} \) | \(a_{723}= -0.02264691 \pm 5.3 \cdot 10^{-6} \) |
\(a_{724}= -0.58762031 \pm 6.1 \cdot 10^{-6} \) | \(a_{725}= +0.23488827 \pm 4.7 \cdot 10^{-6} \) | \(a_{726}= +0.00436732 \pm 8.1 \cdot 10^{-6} \) |
\(a_{727}= -0.29165358 \pm 8.1 \cdot 10^{-6} \) | \(a_{728}= -0.04213912 \pm 1.4 \cdot 10^{-5} \) | \(a_{729}= -0.98673290 \pm 5.2 \cdot 10^{-6} \) |
\(a_{730}= +1.59901901 \pm 4.5 \cdot 10^{-6} \) | \(a_{731}= -1.48319130 \pm 3.8 \cdot 10^{-6} \) | \(a_{732}= +0.03293981 \pm 6.3 \cdot 10^{-6} \) |
\(a_{733}= -0.73045211 \pm 6.8 \cdot 10^{-6} \) | \(a_{734}= -2.10131893 \pm 9.0 \cdot 10^{-6} \) | \(a_{735}= +0.04021493 \pm 2.8 \cdot 10^{-6} \) |
\(a_{736}= -1.96753371 \pm 4.3 \cdot 10^{-6} \) | \(a_{737}= +0.81529957 \pm 4.1 \cdot 10^{-6} \) | \(a_{738}= -0.14910758 \pm 5.3 \cdot 10^{-6} \) |
\(a_{739}= -0.69459655 \pm 7.1 \cdot 10^{-6} \) | \(a_{740}= +0.56373730 \pm 4.3 \cdot 10^{-6} \) | \(a_{741}= -0.00485360 \pm 1.2 \cdot 10^{-5} \) |
\(a_{742}= -0.20781825 \pm 3.4 \cdot 10^{-6} \) | \(a_{743}= +1.04295288 \pm 5.2 \cdot 10^{-6} \) | \(a_{744}= -0.00724255 \pm 4.3 \cdot 10^{-6} \) |
\(a_{745}= +0.32599720 \pm 3.8 \cdot 10^{-6} \) | \(a_{746}= -1.42673558 \pm 7.0 \cdot 10^{-6} \) | \(a_{747}= +0.88818731 \pm 7.6 \cdot 10^{-6} \) |
\(a_{748}= -0.83793908 \pm 2.7 \cdot 10^{-6} \) | \(a_{749}= -0.00035645 \pm 6.3 \cdot 10^{-6} \) | \(a_{750}= -0.06241570 \pm 5.8 \cdot 10^{-6} \) |
\(a_{751}= -0.26868568 \pm 6.9 \cdot 10^{-6} \) | \(a_{752}= +1.74202562 \pm 6.6 \cdot 10^{-6} \) | \(a_{753}= -0.02262647 \pm 7.4 \cdot 10^{-6} \) |
\(a_{754}= -0.62794017 \pm 1.4 \cdot 10^{-5} \) | \(a_{755}= -1.32656763 \pm 4.4 \cdot 10^{-6} \) | \(a_{756}= -0.01584560 \pm 6.3 \cdot 10^{-6} \) |
\(a_{757}= +0.22804338 \pm 5.5 \cdot 10^{-6} \) | \(a_{758}= -1.72480391 \pm 8.2 \cdot 10^{-6} \) | \(a_{759}= +0.08580224 \pm 4.0 \cdot 10^{-6} \) |
\(a_{760}= -0.18208356 \pm 8.3 \cdot 10^{-6} \) | \(a_{761}= -0.98840892 \pm 7.2 \cdot 10^{-6} \) | \(a_{762}= -0.04032038 \pm 1.1 \cdot 10^{-5} \) |
\(a_{763}= +0.37753935 \pm 8.2 \cdot 10^{-6} \) | \(a_{764}= +0.71544483 \pm 1.3 \cdot 10^{-5} \) | \(a_{765}= +1.39063842 \pm 3.3 \cdot 10^{-6} \) |
\(a_{766}= +2.08722488 \pm 5.3 \cdot 10^{-6} \) | \(a_{767}= -0.20833863 \pm 5.4 \cdot 10^{-6} \) | \(a_{768}= +0.05976058 \pm 7.5 \cdot 10^{-6} \) |
\(a_{769}= -0.38445724 \pm 6.3 \cdot 10^{-6} \) | \(a_{770}= -0.32659395 \pm 3.1 \cdot 10^{-6} \) | \(a_{771}= -0.05278163 \pm 8.4 \cdot 10^{-6} \) |
\(a_{772}= -1.15136365 \pm 8.5 \cdot 10^{-6} \) | \(a_{773}= -0.94620163 \pm 5.0 \cdot 10^{-6} \) | \(a_{774}= -1.24555390 \pm 4.6 \cdot 10^{-6} \) |
\(a_{775}= +0.03823901 \pm 3.9 \cdot 10^{-6} \) | \(a_{776}= +0.06883508 \pm 9.4 \cdot 10^{-6} \) | \(a_{777}= -0.01413165 \pm 4.7 \cdot 10^{-6} \) |
\(a_{778}= +0.45655349 \pm 7.6 \cdot 10^{-6} \) | \(a_{779}= -0.04416836 \pm 6.0 \cdot 10^{-6} \) | \(a_{780}= +0.00709055 \pm 2.1 \cdot 10^{-5} \) |
\(a_{781}= +0.90853160 \pm 3.1 \cdot 10^{-6} \) | \(a_{782}= +3.56157880 \pm 4.6 \cdot 10^{-6} \) | \(a_{783}= +0.16923039 \pm 4.9 \cdot 10^{-6} \) |
\(a_{784}= +1.13914697 \pm 3.8 \cdot 10^{-6} \) | \(a_{785}= +0.34493786 \pm 5.1 \cdot 10^{-6} \) | \(a_{786}= -0.00767394 \pm 5.3 \cdot 10^{-6} \) |
\(a_{787}= +1.99365114 \pm 6.7 \cdot 10^{-6} \) | \(a_{788}= -0.19305588 \pm 1.1 \cdot 10^{-5} \) | \(a_{789}= +0.03363945 \pm 6.4 \cdot 10^{-6} \) |
\(a_{790}= +1.16369560 \pm 5.2 \cdot 10^{-6} \) | \(a_{791}= +0.07653683 \pm 3.4 \cdot 10^{-6} \) | \(a_{792}= +0.50432997 \pm 5.9 \cdot 10^{-6} \) |
\(a_{793}= -0.33321942 \pm 6.0 \cdot 10^{-6} \) | \(a_{794}= -1.02339386 \pm 8.1 \cdot 10^{-6} \) | \(a_{795}= -0.02506195 \pm 5.6 \cdot 10^{-6} \) |
\(a_{796}= +0.52779768 \pm 1.0 \cdot 10^{-5} \) | \(a_{797}= +1.37442878 \pm 4.8 \cdot 10^{-6} \) | \(a_{798}= -0.00636869 \pm 2.6 \cdot 10^{-6} \) |
\(a_{799}= -2.09440975 \pm 4.5 \cdot 10^{-6} \) | \(a_{800}= -0.13556373 \pm 6.5 \cdot 10^{-6} \) | \(a_{801}= +0.26848269 \pm 4.8 \cdot 10^{-6} \) |
\(a_{802}= -1.58148218 \pm 7.1 \cdot 10^{-6} \) | \(a_{803}= -1.31192576 \pm 2.7 \cdot 10^{-6} \) | \(a_{804}= -0.02322602 \pm 2.8 \cdot 10^{-6} \) |
\(a_{805}= +0.51097150 \pm 3.5 \cdot 10^{-6} \) | \(a_{806}= -0.10222652 \pm 1.2 \cdot 10^{-5} \) | \(a_{807}= -0.05320685 \pm 6.3 \cdot 10^{-6} \) |
\(a_{808}= +0.00122485 \pm 5.7 \cdot 10^{-6} \) | \(a_{809}= +0.45979160 \pm 4.7 \cdot 10^{-6} \) | \(a_{810}= +1.16523131 \pm 5.3 \cdot 10^{-6} \) |
\(a_{811}= -1.48373376 \pm 5.8 \cdot 10^{-6} \) | \(a_{812}= -0.30329329 \pm 1.0 \cdot 10^{-5} \) | \(a_{813}= -0.00304511 \pm 4.6 \cdot 10^{-6} \) |
\(a_{814}= -1.25653322 \pm 4.9 \cdot 10^{-6} \) | \(a_{815}= -0.83289841 \pm 6.4 \cdot 10^{-6} \) | \(a_{816}= -0.08745741 \pm 4.4 \cdot 10^{-6} \) |
\(a_{817}= -0.36895561 \pm 7.6 \cdot 10^{-6} \) | \(a_{818}= +1.40769679 \pm 7.3 \cdot 10^{-6} \) | \(a_{819}= +0.08005822 \pm 1.1 \cdot 10^{-5} \) |
\(a_{820}= +0.06452487 \pm 1.0 \cdot 10^{-5} \) | \(a_{821}= +0.93877184 \pm 4.3 \cdot 10^{-6} \) | \(a_{822}= +0.08527108 \pm 2.7 \cdot 10^{-6} \) |
\(a_{823}= -0.86682589 \pm 7.0 \cdot 10^{-6} \) | \(a_{824}= -0.04685017 \pm 6.7 \cdot 10^{-6} \) | \(a_{825}= +0.00591180 \pm 4.9 \cdot 10^{-6} \) |
\(a_{826}= -0.27337318 \pm 3.5 \cdot 10^{-6} \) | \(a_{827}= -0.95192210 \pm 7.5 \cdot 10^{-6} \) | \(a_{828}= +1.10094682 \pm 3.4 \cdot 10^{-6} \) |
\(a_{829}= -0.17365563 \pm 7.4 \cdot 10^{-6} \) | \(a_{830}= -1.04417570 \pm 6.7 \cdot 10^{-6} \) | \(a_{831}= +0.06155937 \pm 4.7 \cdot 10^{-6} \) |
\(a_{832}= +0.01761093 \pm 7.9 \cdot 10^{-6} \) | \(a_{833}= -1.36957831 \pm 3.5 \cdot 10^{-6} \) | \(a_{834}= +0.07168402 \pm 3.6 \cdot 10^{-6} \) |
\(a_{835}= +0.58125661 \pm 1.0 \cdot 10^{-5} \) | \(a_{836}= -0.20844399 \pm 3.4 \cdot 10^{-6} \) | \(a_{837}= +0.02755013 \pm 5.5 \cdot 10^{-6} \) |
\(a_{838}= +0.61141111 \pm 8.8 \cdot 10^{-6} \) | \(a_{839}= -0.97059678 \pm 6.9 \cdot 10^{-6} \) | \(a_{840}= -0.00666811 \pm 3.9 \cdot 10^{-6} \) |
\(a_{841}= +2.23916104 \pm 6.0 \cdot 10^{-6} \) | \(a_{842}= -1.69295595 \pm 8.1 \cdot 10^{-6} \) | \(a_{843}= +0.04438434 \pm 6.7 \cdot 10^{-6} \) |
\(a_{844}= +0.71969928 \pm 1.1 \cdot 10^{-5} \) | \(a_{845}= -0.07172802 \pm 6.8 \cdot 10^{-6} \) | \(a_{846}= -1.75884271 \pm 7.0 \cdot 10^{-6} \) |
\(a_{847}= -0.02133872 \pm 6.3 \cdot 10^{-6} \) | \(a_{848}= -0.70991657 \pm 3.8 \cdot 10^{-6} \) | \(a_{849}= +0.00454744 \pm 6.3 \cdot 10^{-6} \) |
\(a_{850}= +0.24539397 \pm 6.7 \cdot 10^{-6} \) | \(a_{851}= +1.96590497 \pm 4.5 \cdot 10^{-6} \) | \(a_{852}= -0.02588199 \pm 2.2 \cdot 10^{-6} \) |
\(a_{853}= +0.45036895 \pm 6.2 \cdot 10^{-6} \) | \(a_{854}= -0.43723650 \pm 8.1 \cdot 10^{-6} \) | \(a_{855}= +0.34593234 \pm 5.7 \cdot 10^{-6} \) |
\(a_{856}= -0.00064711 \pm 9.2 \cdot 10^{-6} \) | \(a_{857}= +1.69589100 \pm 6.4 \cdot 10^{-6} \) | \(a_{858}= -0.01580436 \pm 1.9 \cdot 10^{-5} \) |
\(a_{859}= -0.46589578 \pm 4.6 \cdot 10^{-6} \) | \(a_{860}= +0.53900150 \pm 3.8 \cdot 10^{-6} \) | \(a_{861}= -0.00161750 \pm 8.6 \cdot 10^{-6} \) |
\(a_{862}= +1.54597531 \pm 1.1 \cdot 10^{-5} \) | \(a_{863}= -1.47341418 \pm 6.4 \cdot 10^{-6} \) | \(a_{864}= -0.09766986 \pm 5.2 \cdot 10^{-6} \) |
\(a_{865}= -1.61300158 \pm 6.0 \cdot 10^{-6} \) | \(a_{866}= -0.81514346 \pm 5.9 \cdot 10^{-6} \) | \(a_{867}= +0.05808200 \pm 5.0 \cdot 10^{-6} \) |
\(a_{868}= -0.04937511 \pm 3.6 \cdot 10^{-6} \) | \(a_{869}= -0.95476178 \pm 5.0 \cdot 10^{-6} \) | \(a_{870}= -0.09936548 \pm 4.7 \cdot 10^{-6} \) |
\(a_{871}= +0.23495464 \pm 5.2 \cdot 10^{-6} \) | \(a_{872}= +0.68539020 \pm 9.3 \cdot 10^{-6} \) | \(a_{873}= -0.13077666 \pm 4.6 \cdot 10^{-6} \) |
\(a_{874}= +0.88597099 \pm 5.7 \cdot 10^{-6} \) | \(a_{875}= +0.30496325 \pm 6.9 \cdot 10^{-6} \) | \(a_{876}= +0.03737377 \pm 7.2 \cdot 10^{-6} \) |
\(a_{877}= +1.10434712 \pm 6.4 \cdot 10^{-6} \) | \(a_{878}= -0.31026277 \pm 6.8 \cdot 10^{-6} \) | \(a_{879}= -0.04839163 \pm 4.6 \cdot 10^{-6} \) |
\(a_{880}= -1.11565974 \pm 4.2 \cdot 10^{-6} \) | \(a_{881}= +1.41161449 \pm 5.7 \cdot 10^{-6} \) | \(a_{882}= -1.15014402 \pm 6.4 \cdot 10^{-6} \) |
\(a_{883}= -0.32547403 \pm 7.4 \cdot 10^{-6} \) | \(a_{884}= -0.24147894 \pm 1.4 \cdot 10^{-5} \) | \(a_{885}= -0.03296758 \pm 6.1 \cdot 10^{-6} \) |
\(a_{886}= +1.96857178 \pm 4.5 \cdot 10^{-6} \) | \(a_{887}= +0.77337211 \pm 5.4 \cdot 10^{-6} \) | \(a_{888}= -0.02565480 \pm 6.7 \cdot 10^{-6} \) |
\(a_{889}= +0.19700549 \pm 7.2 \cdot 10^{-6} \) | \(a_{890}= -0.31563511 \pm 6.8 \cdot 10^{-6} \) | \(a_{891}= -0.95602176 \pm 5.9 \cdot 10^{-6} \) |
\(a_{892}= +0.70460803 \pm 9.8 \cdot 10^{-6} \) | \(a_{893}= -0.52100104 \pm 5.1 \cdot 10^{-6} \) | \(a_{894}= +0.02069992 \pm 4.9 \cdot 10^{-6} \) |
\(a_{895}= +0.00372098 \pm 8.3 \cdot 10^{-6} \) | \(a_{896}= -0.27738804 \pm 9.6 \cdot 10^{-6} \) | \(a_{897}= +0.02472666 \pm 1.0 \cdot 10^{-5} \) |
\(a_{898}= -1.89108289 \pm 6.6 \cdot 10^{-6} \) | \(a_{899}= +0.52732436 \pm 2.6 \cdot 10^{-6} \) | \(a_{900}= +0.07585560 \pm 3.6 \cdot 10^{-6} \) |
\(a_{901}= +0.85352143 \pm 6.4 \cdot 10^{-6} \) | \(a_{902}= -0.14382168 \pm 4.5 \cdot 10^{-6} \) | \(a_{903}= -0.01351158 \pm 3.0 \cdot 10^{-6} \) |
\(a_{904}= +0.13894603 \pm 4.2 \cdot 10^{-6} \) | \(a_{905}= +0.94063953 \pm 6.2 \cdot 10^{-6} \) | \(a_{906}= -0.08423339 \pm 5.4 \cdot 10^{-6} \) |
\(a_{907}= -0.55261697 \pm 4.7 \cdot 10^{-6} \) | \(a_{908}= -0.32531684 \pm 6.7 \cdot 10^{-6} \) | \(a_{909}= -0.00232704 \pm 4.3 \cdot 10^{-6} \) |
\(a_{910}= -0.09411849 \pm 2.1 \cdot 10^{-5} \) | \(a_{911}= -0.67948204 \pm 6.9 \cdot 10^{-6} \) | \(a_{912}= -0.02175573 \pm 2.8 \cdot 10^{-6} \) |
\(a_{913}= +0.85670088 \pm 4.8 \cdot 10^{-6} \) | \(a_{914}= +1.53238531 \pm 9.4 \cdot 10^{-6} \) | \(a_{915}= -0.05272876 \pm 6.0 \cdot 10^{-6} \) |
\(a_{916}= +0.41054052 \pm 8.3 \cdot 10^{-6} \) | \(a_{917}= +0.03749490 \pm 4.3 \cdot 10^{-6} \) | \(a_{918}= +0.17679946 \pm 7.4 \cdot 10^{-6} \) |
\(a_{919}= +0.20829556 \pm 7.9 \cdot 10^{-6} \) | \(a_{920}= +0.92762477 \pm 5.0 \cdot 10^{-6} \) | \(a_{921}= +0.02380548 \pm 9.6 \cdot 10^{-6} \) |
\(a_{922}= +0.35611816 \pm 1.0 \cdot 10^{-5} \) | \(a_{923}= +0.26182244 \pm 5.0 \cdot 10^{-6} \) | \(a_{924}= -0.00763346 \pm 2.4 \cdot 10^{-6} \) |
\(a_{925}= +0.13545151 \pm 5.3 \cdot 10^{-6} \) | \(a_{926}= -0.94761413 \pm 9.4 \cdot 10^{-6} \) | \(a_{927}= +0.08900852 \pm 3.9 \cdot 10^{-6} \) |
\(a_{928}= -1.86945379 \pm 6.9 \cdot 10^{-6} \) | \(a_{929}= -0.12456043 \pm 5.0 \cdot 10^{-6} \) | \(a_{930}= -0.01617636 \pm 2.7 \cdot 10^{-6} \) |
\(a_{931}= -0.34069347 \pm 6.6 \cdot 10^{-6} \) | \(a_{932}= +0.02331104 \pm 7.6 \cdot 10^{-6} \) | \(a_{933}= -0.00762034 \pm 5.1 \cdot 10^{-6} \) |
\(a_{934}= -0.77068893 \pm 7.8 \cdot 10^{-6} \) | \(a_{935}= +1.34134000 \pm 2.4 \cdot 10^{-6} \) | \(a_{936}= +0.14533881 \pm 1.3 \cdot 10^{-5} \) |
\(a_{937}= -0.37708193 \pm 4.0 \cdot 10^{-6} \) | \(a_{938}= +0.30829760 \pm 7.3 \cdot 10^{-6} \) | \(a_{939}= -0.06217640 \pm 7.8 \cdot 10^{-6} \) |
\(a_{940}= +0.76112231 \pm 6.7 \cdot 10^{-6} \) | \(a_{941}= -0.28973967 \pm 6.9 \cdot 10^{-6} \) | \(a_{942}= +0.02190260 \pm 5.4 \cdot 10^{-6} \) |
\(a_{943}= +0.22501574 \pm 5.7 \cdot 10^{-6} \) | \(a_{944}= -0.93385519 \pm 4.8 \cdot 10^{-6} \) | \(a_{945}= +0.02536501 \pm 4.6 \cdot 10^{-6} \) |
\(a_{946}= -1.20139875 \pm 3.6 \cdot 10^{-6} \) | \(a_{947}= -0.06358381 \pm 6.1 \cdot 10^{-6} \) | \(a_{948}= +0.02719898 \pm 2.4 \cdot 10^{-6} \) |
\(a_{949}= -0.37807336 \pm 5.2 \cdot 10^{-6} \) | \(a_{950}= +0.06104370 \pm 3.2 \cdot 10^{-6} \) | \(a_{951}= +0.05232625 \pm 6.0 \cdot 10^{-6} \) |
\(a_{952}= +0.22709227 \pm 6.8 \cdot 10^{-6} \) | \(a_{953}= -1.72486827 \pm 6.4 \cdot 10^{-6} \) | \(a_{954}= +0.71676994 \pm 4.2 \cdot 10^{-6} \) |
\(a_{955}= -1.14525601 \pm 7.0 \cdot 10^{-6} \) | \(a_{956}= -0.38354167 \pm 6.4 \cdot 10^{-6} \) | \(a_{957}= +0.08152507 \pm 2.5 \cdot 10^{-6} \) |
\(a_{958}= +1.39815930 \pm 7.9 \cdot 10^{-6} \) | \(a_{959}= -0.41663473 \pm 4.0 \cdot 10^{-6} \) | \(a_{960}= +0.00278676 \pm 3.9 \cdot 10^{-6} \) |
\(a_{961}= -0.91415339 \pm 5.5 \cdot 10^{-6} \) | \(a_{962}= -0.36211023 \pm 1.3 \cdot 10^{-5} \) | \(a_{963}= +0.00122941 \pm 4.0 \cdot 10^{-6} \) |
\(a_{964}= -0.28028593 \pm 9.1 \cdot 10^{-6} \) | \(a_{965}= +1.84305775 \pm 4.7 \cdot 10^{-6} \) | \(a_{966}= +0.03244528 \pm 4.3 \cdot 10^{-6} \) |
\(a_{967}= -1.39454286 \pm 8.6 \cdot 10^{-6} \) | \(a_{968}= -0.03873860 \pm 7.4 \cdot 10^{-6} \) | \(a_{969}= +0.02615656 \pm 3.9 \cdot 10^{-6} \) |
\(a_{970}= +0.15374439 \pm 5.2 \cdot 10^{-6} \) | \(a_{971}= -1.58284928 \pm 5.3 \cdot 10^{-6} \) | \(a_{972}= +0.08200805 \pm 5.6 \cdot 10^{-6} \) |
\(a_{973}= -0.35024828 \pm 4.5 \cdot 10^{-6} \) | \(a_{974}= +1.24347709 \pm 1.0 \cdot 10^{-5} \) | \(a_{975}= +0.00170368 \pm 1.3 \cdot 10^{-5} \) |
\(a_{976}= -1.49361972 \pm 4.4 \cdot 10^{-6} \) | \(a_{977}= +0.80980707 \pm 7.0 \cdot 10^{-6} \) | \(a_{978}= -0.05288675 \pm 6.8 \cdot 10^{-6} \) |
\(a_{979}= +0.25896492 \pm 3.7 \cdot 10^{-6} \) | \(a_{980}= +0.49771379 \pm 6.0 \cdot 10^{-6} \) | \(a_{981}= -1.30214194 \pm 4.6 \cdot 10^{-6} \) |
\(a_{982}= +0.66777648 \pm 6.5 \cdot 10^{-6} \) | \(a_{983}= -0.77771363 \pm 6.4 \cdot 10^{-6} \) | \(a_{984}= -0.00293643 \pm 1.1 \cdot 10^{-5} \) |
\(a_{985}= +0.30903628 \pm 4.8 \cdot 10^{-6} \) | \(a_{986}= +3.38403706 \pm 1.0 \cdot 10^{-5} \) | \(a_{987}= -0.01907966 \pm 3.3 \cdot 10^{-6} \) |
\(a_{988}= -0.06006980 \pm 1.5 \cdot 10^{-5} \) | \(a_{989}= +1.87964450 \pm 4.8 \cdot 10^{-6} \) | \(a_{990}= +1.12643005 \pm 3.4 \cdot 10^{-6} \) |
\(a_{991}= -1.49066842 \pm 5.1 \cdot 10^{-6} \) | \(a_{992}= -0.30434070 \pm 4.0 \cdot 10^{-6} \) | \(a_{993}= -0.04428191 \pm 6.7 \cdot 10^{-6} \) |
\(a_{994}= +0.34355238 \pm 7.5 \cdot 10^{-6} \) | \(a_{995}= -0.84487782 \pm 7.7 \cdot 10^{-6} \) | \(a_{996}= -0.02440545 \pm 9.9 \cdot 10^{-6} \) |
\(a_{997}= +1.11672616 \pm 4.6 \cdot 10^{-6} \) | \(a_{998}= -0.61186820 \pm 8.6 \cdot 10^{-6} \) | \(a_{999}= +0.09758900 \pm 6.1 \cdot 10^{-6} \) |
\(a_{1000}= +0.55363454 \pm 7.4 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000