Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.4583560141038604331992208333 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.63993643 \pm 5.9 \cdot 10^{-3} \) | \(a_{3}= -1.02336159 \pm 5.7 \cdot 10^{-3} \) |
\(a_{4}= -0.59048137 \pm 5.4 \cdot 10^{-3} \) | \(a_{5}= +0.55557033 \pm 5.1 \cdot 10^{-3} \) | \(a_{6}= +0.65488636 \pm 6.6 \cdot 10^{-3} \) |
\(a_{7}= -0.76492561 \pm 5.2 \cdot 10^{-3} \) | \(a_{8}= +1.01780697 \pm 4.5 \cdot 10^{-3} \) | \(a_{9}= +0.04726894 \pm 5.6 \cdot 10^{-3} \) |
\(a_{10}= -0.35552970 \pm 5.8 \cdot 10^{-3} \) | \(a_{11}= -1.72927124 \pm 4.8 \cdot 10^{-3} \) | \(a_{12}= +0.60427595 \pm 5.8 \cdot 10^{-3} \) |
\(a_{13}= -0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +0.48950376 \pm 5.7 \cdot 10^{-3} \) | \(a_{15}= -0.56854934 \pm 6.2 \cdot 10^{-3} \) |
\(a_{16}= -0.06085039 \pm 4.7 \cdot 10^{-3} \) | \(a_{17}= +1.06973512 \pm 5.2 \cdot 10^{-3} \) | \(a_{18}= -0.03024912 \pm 6.4 \cdot 10^{-3} \) |
\(a_{19}= +0.01906219 \pm 4.3 \cdot 10^{-3} \) | \(a_{20}= -0.32805393 \pm 5.3 \cdot 10^{-3} \) | \(a_{21}= +0.78279548 \pm 4.5 \cdot 10^{-3} \) |
\(a_{22}= +1.10662367 \pm 5.3 \cdot 10^{-3} \) | \(a_{23}= +1.87897865 \pm 4.3 \cdot 10^{-3} \) | \(a_{24}= -1.04158456 \pm 4.4 \cdot 10^{-3} \) |
\(a_{25}= -0.69134160 \pm 3.9 \cdot 10^{-3} \) | \(a_{26}= +0.17748643 \pm 5.9 \cdot 10^{-3} \) | \(a_{27}= +0.97498837 \pm 4.6 \cdot 10^{-3} \) |
\(a_{28}= +0.45167432 \pm 4.9 \cdot 10^{-3} \) | \(a_{29}= -0.67032694 \pm 3.9 \cdot 10^{-3} \) | \(a_{30}= +0.36383544 \pm 7.5 \cdot 10^{-3} \) |
\(a_{31}= +0.83009116 \pm 5.6 \cdot 10^{-3} \) | \(a_{32}= -0.97886658 \pm 6.0 \cdot 10^{-3} \) | \(a_{33}= +1.76966977 \pm 4.2 \cdot 10^{-3} \) |
\(a_{34}= -0.68456248 \pm 5.7 \cdot 10^{-3} \) | \(a_{35}= -0.42496997 \pm 4.2 \cdot 10^{-3} \) | \(a_{36}= -0.02791143 \pm 5.2 \cdot 10^{-3} \) |
\(a_{37}= +1.35864801 \pm 6.5 \cdot 10^{-3} \) | \(a_{38}= -0.01219859 \pm 4.1 \cdot 10^{-3} \) | \(a_{39}= +0.28382944 \pm 5.7 \cdot 10^{-3} \) |
\(a_{40}= +0.56546336 \pm 4.5 \cdot 10^{-3} \) | \(a_{41}= +1.16657830 \pm 4.7 \cdot 10^{-3} \) | \(a_{42}= -0.50093935 \pm 3.7 \cdot 10^{-3} \) |
\(a_{43}= +0.81083656 \pm 5.2 \cdot 10^{-3} \) | \(a_{44}= +1.02110244 \pm 5.0 \cdot 10^{-3} \) | \(a_{45}= +0.02626122 \pm 5.6 \cdot 10^{-3} \) |
\(a_{46}= -1.20242689 \pm 5.6 \cdot 10^{-3} \) | \(a_{47}= -0.44118848 \pm 5.4 \cdot 10^{-3} \) | \(a_{48}= +0.06227195 \pm 5.3 \cdot 10^{-3} \) |
\(a_{49}= -0.41488882 \pm 4.7 \cdot 10^{-3} \) | \(a_{50}= +0.44241468 \pm 4.7 \cdot 10^{-3} \) | \(a_{51}= -1.09472584 \pm 6.1 \cdot 10^{-3} \) |
\(a_{52}= +0.16377006 \pm 5.4 \cdot 10^{-3} \) | \(a_{53}= -0.03535638 \pm 4.0 \cdot 10^{-3} \) | \(a_{54}= -0.62393058 \pm 5.4 \cdot 10^{-3} \) |
\(a_{55}= -0.96073180 \pm 3.4 \cdot 10^{-3} \) | \(a_{56}= -0.77854661 \pm 3.9 \cdot 10^{-3} \) | \(a_{57}= -0.01950752 \pm 4.1 \cdot 10^{-3} \) |
\(a_{58}= +0.42896663 \pm 3.8 \cdot 10^{-3} \) | \(a_{59}= +0.24168906 \pm 4.8 \cdot 10^{-3} \) | \(a_{60}= +0.33571779 \pm 6.2 \cdot 10^{-3} \) |
\(a_{61}= -1.76745942 \pm 4.7 \cdot 10^{-3} \) | \(a_{62}= -0.53120558 \pm 4.9 \cdot 10^{-3} \) | \(a_{63}= -0.03615723 \pm 3.9 \cdot 10^{-3} \) |
\(a_{64}= +0.68726278 \pm 4.8 \cdot 10^{-3} \) | \(a_{65}= -0.15408749 \pm 5.1 \cdot 10^{-3} \) | \(a_{66}= -1.13247616 \pm 4.7 \cdot 10^{-3} \) |
\(a_{67}= +0.25910436 \pm 5.5 \cdot 10^{-3} \) | \(a_{68}= -0.63165866 \pm 4.6 \cdot 10^{-3} \) | \(a_{69}= -1.92287458 \pm 5.3 \cdot 10^{-3} \) |
\(a_{70}= +0.27195377 \pm 4.1 \cdot 10^{-3} \) | \(a_{71}= -1.76737049 \pm 5.5 \cdot 10^{-3} \) | \(a_{72}= +0.04811066 \pm 4.5 \cdot 10^{-3} \) |
\(a_{73}= +0.40960465 \pm 6.1 \cdot 10^{-3} \) | \(a_{74}= -0.86944836 \pm 6.0 \cdot 10^{-3} \) | \(a_{75}= +0.70749244 \pm 3.1 \cdot 10^{-3} \) |
\(a_{76}= -0.01125587 \pm 3.8 \cdot 10^{-3} \) | \(a_{77}= +1.32276385 \pm 4.9 \cdot 10^{-3} \) | \(a_{78}= -0.18163280 \pm 1.1 \cdot 10^{-2} \) |
\(a_{79}= +1.03839456 \pm 5.6 \cdot 10^{-3} \) | \(a_{80}= -0.03380667 \pm 4.4 \cdot 10^{-3} \) | \(a_{81}= -1.04503459 \pm 4.6 \cdot 10^{-3} \) |
\(a_{82}= -0.74653595 \pm 5.2 \cdot 10^{-3} \) | \(a_{83}= +0.67835252 \pm 3.4 \cdot 10^{-3} \) | \(a_{84}= -0.46222615 \pm 4.3 \cdot 10^{-3} \) |
\(a_{85}= +0.59431310 \pm 4.9 \cdot 10^{-3} \) | \(a_{86}= -0.51888386 \pm 6.3 \cdot 10^{-3} \) | \(a_{87}= +0.68598685 \pm 4.0 \cdot 10^{-3} \) |
\(a_{88}= -1.76006432 \pm 3.8 \cdot 10^{-3} \) | \(a_{89}= -0.12312241 \pm 6.7 \cdot 10^{-3} \) | \(a_{90}= -0.01680551 \pm 6.9 \cdot 10^{-3} \) |
\(a_{91}= +0.21215219 \pm 5.2 \cdot 10^{-3} \) | \(a_{92}= -1.10950188 \pm 4.8 \cdot 10^{-3} \) | \(a_{93}= -0.84948341 \pm 6.1 \cdot 10^{-3} \) |
\(a_{94}= +0.28233258 \pm 4.6 \cdot 10^{-3} \) | \(a_{95}= +0.01059039 \pm 3.8 \cdot 10^{-3} \) | \(a_{96}= +1.00173446 \pm 6.5 \cdot 10^{-3} \) |
\(a_{97}= +0.07265411 \pm 5.4 \cdot 10^{-3} \) | \(a_{98}= +0.26550247 \pm 5.6 \cdot 10^{-3} \) | \(a_{99}= -0.08174083 \pm 4.0 \cdot 10^{-3} \) |
\(a_{100}= +0.40822433 \pm 4.1 \cdot 10^{-3} \) | \(a_{101}= -1.46257400 \pm 4.0 \cdot 10^{-3} \) | \(a_{102}= +0.70055494 \pm 6.5 \cdot 10^{-3} \) |
\(a_{103}= +1.58999888 \pm 5.6 \cdot 10^{-3} \) | \(a_{104}= -0.28228886 \pm 4.5 \cdot 10^{-3} \) | \(a_{105}= +0.43489795 \pm 4.1 \cdot 10^{-3} \) |
\(a_{106}= +0.02262584 \pm 5.0 \cdot 10^{-3} \) | \(a_{107}= +0.38584445 \pm 5.9 \cdot 10^{-3} \) | \(a_{108}= -0.57571246 \pm 4.8 \cdot 10^{-3} \) |
\(a_{109}= -0.63258966 \pm 3.8 \cdot 10^{-3} \) | \(a_{110}= +0.61480728 \pm 3.9 \cdot 10^{-3} \) | \(a_{111}= -1.39038819 \pm 3.6 \cdot 10^{-3} \) |
\(a_{112}= +0.04654602 \pm 4.6 \cdot 10^{-3} \) | \(a_{113}= -0.80043261 \pm 6.7 \cdot 10^{-3} \) | \(a_{114}= +0.01248357 \pm 4.5 \cdot 10^{-3} \) |
\(a_{115}= +1.04390480 \pm 4.5 \cdot 10^{-3} \) | \(a_{116}= +0.39581557 \pm 4.3 \cdot 10^{-3} \) | \(a_{117}= -0.01311005 \pm 5.6 \cdot 10^{-3} \) |
\(a_{118}= -0.15466563 \pm 5.2 \cdot 10^{-3} \) | \(a_{119}= -0.81826779 \pm 5.8 \cdot 10^{-3} \) | \(a_{120}= -0.57867348 \pm 4.7 \cdot 10^{-3} \) |
\(a_{121}= +1.99037903 \pm 3.5 \cdot 10^{-3} \) | \(a_{122}= +1.13106167 \pm 4.4 \cdot 10^{-3} \) | \(a_{123}= -1.19383143 \pm 5.3 \cdot 10^{-3} \) |
\(a_{124}= -0.49015336 \pm 5.0 \cdot 10^{-3} \) | \(a_{125}= -0.93965922 \pm 4.2 \cdot 10^{-3} \) | \(a_{126}= +0.02313833 \pm 4.2 \cdot 10^{-3} \) |
\(a_{127}= -0.09649859 \pm 5.6 \cdot 10^{-3} \) | \(a_{128}= +0.53906209 \pm 4.7 \cdot 10^{-3} \) | \(a_{129}= -0.82977900 \pm 5.7 \cdot 10^{-3} \) |
\(a_{130}= +0.09860620 \pm 1.1 \cdot 10^{-2} \) | \(a_{131}= +0.28989804 \pm 4.5 \cdot 10^{-3} \) | \(a_{132}= -1.04495702 \pm 4.7 \cdot 10^{-3} \) |
\(a_{133}= -0.01458116 \pm 3.2 \cdot 10^{-3} \) | \(a_{134}= -0.16581032 \pm 6.6 \cdot 10^{-3} \) | \(a_{135}= +0.54167461 \pm 4.1 \cdot 10^{-3} \) |
\(a_{136}= +1.08878386 \pm 3.2 \cdot 10^{-3} \) | \(a_{137}= -0.09996487 \pm 5.4 \cdot 10^{-3} \) | \(a_{138}= +1.23051750 \pm 6.5 \cdot 10^{-3} \) |
\(a_{139}= -0.85607885 \pm 4.9 \cdot 10^{-3} \) | \(a_{140}= +0.25093685 \pm 4.1 \cdot 10^{-3} \) | \(a_{141}= +0.45149534 \pm 4.3 \cdot 10^{-3} \) |
\(a_{142}= +1.13100476 \pm 5.8 \cdot 10^{-3} \) | \(a_{143}= +0.47961355 \pm 4.8 \cdot 10^{-3} \) | \(a_{144}= -0.00287633 \pm 4.9 \cdot 10^{-3} \) |
\(a_{145}= -0.37241376 \pm 3.7 \cdot 10^{-3} \) | \(a_{146}= -0.26212093 \pm 5.8 \cdot 10^{-3} \) | \(a_{147}= +0.42458128 \pm 4.9 \cdot 10^{-3} \) |
\(a_{148}= -0.80225633 \pm 5.6 \cdot 10^{-3} \) | \(a_{149}= -1.60242710 \pm 5.0 \cdot 10^{-3} \) | \(a_{150}= -0.45275019 \pm 4.0 \cdot 10^{-3} \) |
\(a_{151}= +0.90097011 \pm 4.0 \cdot 10^{-3} \) | \(a_{152}= +0.01940163 \pm 3.6 \cdot 10^{-3} \) | \(a_{153}= +0.05056525 \pm 5.1 \cdot 10^{-3} \) |
\(a_{154}= -0.84648478 \pm 6.2 \cdot 10^{-3} \) | \(a_{155}= +0.46117402 \pm 5.3 \cdot 10^{-3} \) | \(a_{156}= -0.16759599 \pm 1.1 \cdot 10^{-2} \) |
\(a_{157}= -0.08134264 \pm 5.9 \cdot 10^{-3} \) | \(a_{158}= -0.66450651 \pm 5.0 \cdot 10^{-3} \) | \(a_{159}= +0.03618236 \pm 4.0 \cdot 10^{-3} \) |
\(a_{160}= -0.54382923 \pm 5.5 \cdot 10^{-3} \) | \(a_{161}= -1.43727888 \pm 3.9 \cdot 10^{-3} \) | \(a_{162}= +0.66875571 \pm 4.6 \cdot 10^{-3} \) |
\(a_{163}= +1.00346023 \pm 6.5 \cdot 10^{-3} \) | \(a_{164}= -0.68884275 \pm 4.8 \cdot 10^{-3} \) | \(a_{165}= +0.98317602 \pm 3.8 \cdot 10^{-3} \) |
\(a_{166}= -0.43410249 \pm 3.5 \cdot 10^{-3} \) | \(a_{167}= +1.41901836 \pm 6.2 \cdot 10^{-3} \) | \(a_{168}= +0.79673470 \pm 3.7 \cdot 10^{-3} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= -0.38032260 \pm 5.4 \cdot 10^{-3} \) | \(a_{171}= +0.00090105 \pm 4.9 \cdot 10^{-3} \) |
\(a_{172}= -0.47878388 \pm 5.3 \cdot 10^{-3} \) | \(a_{173}= +0.56605794 \pm 6.3 \cdot 10^{-3} \) | \(a_{174}= -0.43898797 \pm 2.9 \cdot 10^{-3} \) |
\(a_{175}= +0.52882490 \pm 4.3 \cdot 10^{-3} \) | \(a_{176}= +0.10522683 \pm 4.0 \cdot 10^{-3} \) | \(a_{177}= -0.24733530 \pm 4.5 \cdot 10^{-3} \) |
\(a_{178}= +0.07879052 \pm 7.7 \cdot 10^{-3} \) | \(a_{179}= -1.24509788 \pm 4.1 \cdot 10^{-3} \) | \(a_{180}= -0.01550676 \pm 5.3 \cdot 10^{-3} \) |
\(a_{181}= -0.27786666 \pm 5.3 \cdot 10^{-3} \) | \(a_{182}= -0.13576392 \pm 1.1 \cdot 10^{-2} \) | \(a_{183}= +1.80875008 \pm 4.5 \cdot 10^{-3} \) |
\(a_{184}= +1.91243757 \pm 3.6 \cdot 10^{-3} \) | \(a_{185}= +0.75482453 \pm 4.6 \cdot 10^{-3} \) | \(a_{186}= +0.54361538 \pm 6.2 \cdot 10^{-3} \) |
\(a_{187}= -1.84986219 \pm 4.1 \cdot 10^{-3} \) | \(a_{188}= +0.26051357 \pm 5.0 \cdot 10^{-3} \) | \(a_{189}= -0.74579357 \pm 3.9 \cdot 10^{-3} \) |
\(a_{190}= -0.00677718 \pm 4.3 \cdot 10^{-3} \) | \(a_{191}= -1.06568002 \pm 4.8 \cdot 10^{-3} \) | \(a_{192}= -0.70331833 \pm 5.5 \cdot 10^{-3} \) |
\(a_{193}= -0.30215599 \pm 5.7 \cdot 10^{-3} \) | \(a_{194}= -0.04649401 \pm 5.2 \cdot 10^{-3} \) | \(a_{195}= +0.15768722 \pm 1.0 \cdot 10^{-2} \) |
\(a_{196}= +0.24498412 \pm 4.3 \cdot 10^{-3} \) | \(a_{197}= -1.53205464 \pm 4.9 \cdot 10^{-3} \) | \(a_{198}= +0.05230893 \pm 4.5 \cdot 10^{-3} \) |
\(a_{199}= -0.40076558 \pm 5.5 \cdot 10^{-3} \) | \(a_{200}= -0.70365230 \pm 3.2 \cdot 10^{-3} \) | \(a_{201}= -0.26515745 \pm 6.9 \cdot 10^{-3} \) |
\(a_{202}= +0.93595438 \pm 4.8 \cdot 10^{-3} \) | \(a_{203}= +0.51275024 \pm 4.4 \cdot 10^{-3} \) | \(a_{204}= +0.64641521 \pm 5.8 \cdot 10^{-3} \) |
\(a_{205}= +0.64811630 \pm 4.2 \cdot 10^{-3} \) | \(a_{206}= -1.01749821 \pm 6.5 \cdot 10^{-3} \) | \(a_{207}= +0.08881734 \pm 5.3 \cdot 10^{-3} \) |
\(a_{208}= +0.01687686 \pm 4.7 \cdot 10^{-3} \) | \(a_{209}= -0.03296370 \pm 3.6 \cdot 10^{-3} \) | \(a_{210}= -0.27830704 \pm 2.9 \cdot 10^{-3} \) |
\(a_{211}= -0.01296601 \pm 6.1 \cdot 10^{-3} \) | \(a_{212}= +0.02087729 \pm 4.3 \cdot 10^{-3} \) | \(a_{213}= +1.80865907 \pm 6.1 \cdot 10^{-3} \) |
\(a_{214}= -0.24691592 \pm 7.0 \cdot 10^{-3} \) | \(a_{215}= +0.45047674 \pm 4.8 \cdot 10^{-3} \) | \(a_{216}= +0.99234995 \pm 3.6 \cdot 10^{-3} \) |
\(a_{217}= -0.63495799 \pm 5.0 \cdot 10^{-3} \) | \(a_{218}= +0.40481717 \pm 4.2 \cdot 10^{-3} \) | \(a_{219}= -0.41917366 \pm 6.3 \cdot 10^{-3} \) |
\(a_{220}= +0.56729423 \pm 3.7 \cdot 10^{-3} \) | \(a_{221}= -0.29669114 \pm 5.2 \cdot 10^{-3} \) | \(a_{222}= +0.88976005 \pm 3.8 \cdot 10^{-3} \) |
\(a_{223}= -1.04756521 \pm 5.4 \cdot 10^{-3} \) | \(a_{224}= +0.74876011 \pm 5.4 \cdot 10^{-3} \) | \(a_{225}= -0.03267899 \pm 3.3 \cdot 10^{-3} \) |
\(a_{226}= +0.51222599 \pm 7.1 \cdot 10^{-3} \) | \(a_{227}= -0.07618402 \pm 4.1 \cdot 10^{-3} \) | \(a_{228}= +0.01151882 \pm 3.5 \cdot 10^{-3} \) |
\(a_{229}= +0.51881975 \pm 5.4 \cdot 10^{-3} \) | \(a_{230}= -0.66803271 \pm 5.6 \cdot 10^{-3} \) | \(a_{231}= -1.35366572 \pm 3.8 \cdot 10^{-3} \) |
\(a_{232}= -0.68226343 \pm 3.4 \cdot 10^{-3} \) | \(a_{233}= -0.83787600 \pm 6.8 \cdot 10^{-3} \) | \(a_{234}= +0.00838960 \pm 1.1 \cdot 10^{-2} \) |
\(a_{235}= -0.24511123 \pm 4.0 \cdot 10^{-3} \) | \(a_{236}= -0.14271289 \pm 4.8 \cdot 10^{-3} \) | \(a_{237}= -1.06265311 \pm 5.4 \cdot 10^{-3} \) |
\(a_{238}= +0.52363937 \pm 5.8 \cdot 10^{-3} \) | \(a_{239}= +0.87085321 \pm 4.9 \cdot 10^{-3} \) | \(a_{240}= +0.03459645 \pm 5.8 \cdot 10^{-3} \) |
\(a_{241}= +0.34177068 \pm 4.4 \cdot 10^{-3} \) | \(a_{242}= -1.27371605 \pm 4.3 \cdot 10^{-3} \) | \(a_{243}= +0.09445989 \pm 5.7 \cdot 10^{-3} \) |
\(a_{244}= +1.04365185 \pm 3.7 \cdot 10^{-3} \) | \(a_{245}= -0.23049992 \pm 4.5 \cdot 10^{-3} \) | \(a_{246}= +0.76397622 \pm 7.0 \cdot 10^{-3} \) |
\(a_{247}= -0.00528690 \pm 4.3 \cdot 10^{-3} \) | \(a_{248}= +0.84487257 \pm 4.3 \cdot 10^{-3} \) | \(a_{249}= -0.69419991 \pm 3.0 \cdot 10^{-3} \) |
\(a_{250}= +0.60132217 \pm 3.2 \cdot 10^{-3} \) | \(a_{251}= +1.49163113 \pm 6.0 \cdot 10^{-3} \) | \(a_{252}= +0.02135017 \pm 3.4 \cdot 10^{-3} \) |
\(a_{253}= -3.24926375 \pm 4.2 \cdot 10^{-3} \) | \(a_{254}= +0.06175296 \pm 6.1 \cdot 10^{-3} \) | \(a_{255}= -0.60819720 \pm 6.7 \cdot 10^{-3} \) |
\(a_{256}= -1.03222825 \pm 5.0 \cdot 10^{-3} \) | \(a_{257}= +1.85550125 \pm 6.1 \cdot 10^{-3} \) | \(a_{258}= +0.53100581 \pm 7.6 \cdot 10^{-3} \) |
\(a_{259}= -1.03926465 \pm 5.8 \cdot 10^{-3} \) | \(a_{260}= +0.09098579 \pm 1.0 \cdot 10^{-2} \) | \(a_{261}= -0.03168565 \pm 2.7 \cdot 10^{-3} \) |
\(a_{262}= -0.18551632 \pm 5.5 \cdot 10^{-3} \) | \(a_{263}= +0.18916831 \pm 5.3 \cdot 10^{-3} \) | \(a_{264}= +1.80118222 \pm 3.7 \cdot 10^{-3} \) |
\(a_{265}= -0.01964296 \pm 3.3 \cdot 10^{-3} \) | \(a_{266}= +0.00933101 \pm 3.7 \cdot 10^{-3} \) | \(a_{267}= +0.12599875 \pm 6.6 \cdot 10^{-3} \) |
\(a_{268}= -0.15299629 \pm 5.6 \cdot 10^{-3} \) | \(a_{269}= +0.72853516 \pm 6.2 \cdot 10^{-3} \) | \(a_{270}= -0.34663732 \pm 5.1 \cdot 10^{-3} \) |
\(a_{271}= -1.64507865 \pm 5.1 \cdot 10^{-3} \) | \(a_{272}= -0.06509380 \pm 4.8 \cdot 10^{-3} \) | \(a_{273}= -0.21710840 \pm 1.1 \cdot 10^{-2} \) |
\(a_{274}= +0.06397116 \pm 5.4 \cdot 10^{-3} \) | \(a_{275}= +1.19551716 \pm 3.9 \cdot 10^{-3} \) | \(a_{276}= +1.13542161 \pm 4.6 \cdot 10^{-3} \) |
\(a_{277}= +0.04159173 \pm 5.4 \cdot 10^{-3} \) | \(a_{278}= +0.54783604 \pm 4.7 \cdot 10^{-3} \) | \(a_{279}= +0.03923753 \pm 5.4 \cdot 10^{-3} \) |
\(a_{280}= -0.43253740 \pm 4.0 \cdot 10^{-3} \) | \(a_{281}= -0.14480302 \pm 7.9 \cdot 10^{-3} \) | \(a_{282}= -0.28892832 \pm 4.9 \cdot 10^{-3} \) |
\(a_{283}= +0.16965646 \pm 4.1 \cdot 10^{-3} \) | \(a_{284}= +1.04359934 \pm 4.9 \cdot 10^{-3} \) | \(a_{285}= -0.01083780 \pm 4.5 \cdot 10^{-3} \) |
\(a_{286}= -0.30692218 \pm 1.0 \cdot 10^{-2} \) | \(a_{287}= -0.89234561 \pm 2.6 \cdot 10^{-3} \) | \(a_{288}= -0.04626999 \pm 6.1 \cdot 10^{-3} \) |
\(a_{289}= +0.14433323 \pm 4.3 \cdot 10^{-3} \) | \(a_{290}= +0.23832113 \pm 3.9 \cdot 10^{-3} \) | \(a_{291}= -0.07435142 \pm 5.4 \cdot 10^{-3} \) |
\(a_{292}= -0.24186391 \pm 5.9 \cdot 10^{-3} \) | \(a_{293}= -1.88312083 \pm 4.6 \cdot 10^{-3} \) | \(a_{294}= -0.27170503 \pm 6.3 \cdot 10^{-3} \) |
\(a_{295}= +0.13427527 \pm 4.4 \cdot 10^{-3} \) | \(a_{296}= +1.38284141 \pm 5.9 \cdot 10^{-3} \) | \(a_{297}= -1.68601935 \pm 4.2 \cdot 10^{-3} \) |
\(a_{298}= +1.02545148 \pm 5.2 \cdot 10^{-3} \) | \(a_{299}= -0.52113491 \pm 4.3 \cdot 10^{-3} \) | \(a_{300}= -0.41776110 \pm 3.7 \cdot 10^{-3} \) |
\(a_{301}= -0.62022965 \pm 4.3 \cdot 10^{-3} \) | \(a_{302}= -0.57656360 \pm 3.9 \cdot 10^{-3} \) | \(a_{303}= +1.49674205 \pm 4.5 \cdot 10^{-3} \) |
\(a_{304}= -0.00115994 \pm 3.4 \cdot 10^{-3} \) | \(a_{305}= -0.98194802 \pm 3.7 \cdot 10^{-3} \) | \(a_{306}= -0.03235855 \pm 6.2 \cdot 10^{-3} \) |
\(a_{307}= +0.53635242 \pm 4.0 \cdot 10^{-3} \) | \(a_{308}= -0.78106741 \pm 5.3 \cdot 10^{-3} \) | \(a_{309}= -1.62714379 \pm 6.3 \cdot 10^{-3} \) |
\(a_{310}= -0.29512206 \pm 5.3 \cdot 10^{-3} \) | \(a_{311}= +1.10872199 \pm 6.8 \cdot 10^{-3} \) | \(a_{312}= +0.28888358 \pm 1.0 \cdot 10^{-2} \) |
\(a_{313}= +0.79935843 \pm 4.0 \cdot 10^{-3} \) | \(a_{314}= +0.05205412 \pm 5.5 \cdot 10^{-3} \) | \(a_{315}= -0.02008788 \pm 3.2 \cdot 10^{-3} \) |
\(a_{316}= -0.61315264 \pm 5.0 \cdot 10^{-3} \) | \(a_{317}= +1.59517147 \pm 5.1 \cdot 10^{-3} \) | \(a_{318}= -0.02315441 \pm 5.2 \cdot 10^{-3} \) |
\(a_{319}= +1.15917710 \pm 3.1 \cdot 10^{-3} \) | \(a_{320}= +0.38182281 \pm 4.8 \cdot 10^{-3} \) | \(a_{321}= -0.39485839 \pm 5.8 \cdot 10^{-3} \) |
\(a_{322}= +0.91976712 \pm 5.6 \cdot 10^{-3} \) | \(a_{323}= +0.02039150 \pm 3.1 \cdot 10^{-3} \) | \(a_{324}= +0.61707345 \pm 4.5 \cdot 10^{-3} \) |
\(a_{325}= +0.19174366 \pm 3.9 \cdot 10^{-3} \) | \(a_{326}= -0.64215076 \pm 4.6 \cdot 10^{-3} \) | \(a_{327}= +0.64736796 \pm 4.5 \cdot 10^{-3} \) |
\(a_{328}= +1.18735152 \pm 2.2 \cdot 10^{-3} \) | \(a_{329}= +0.33747636 \pm 4.0 \cdot 10^{-3} \) | \(a_{330}= -0.62917016 \pm 4.3 \cdot 10^{-3} \) |
\(a_{331}= -0.23049633 \pm 6.2 \cdot 10^{-3} \) | \(a_{332}= -0.40055452 \pm 3.2 \cdot 10^{-3} \) | \(a_{333}= +0.06422186 \pm 5.6 \cdot 10^{-3} \) |
\(a_{334}= -0.90808154 \pm 6.2 \cdot 10^{-3} \) | \(a_{335}= +0.14395069 \pm 5.8 \cdot 10^{-3} \) | \(a_{336}= -0.04763341 \pm 3.2 \cdot 10^{-3} \) |
\(a_{337}= -0.76850951 \pm 5.7 \cdot 10^{-3} \) | \(a_{338}= -0.04922588 \pm 5.9 \cdot 10^{-3} \) | \(a_{339}= +0.81913199 \pm 7.2 \cdot 10^{-3} \) |
\(a_{340}= -0.35093081 \pm 4.5 \cdot 10^{-3} \) | \(a_{341}= -1.43545278 \pm 4.0 \cdot 10^{-3} \) | \(a_{342}= -0.00057661 \pm 5.4 \cdot 10^{-3} \) |
\(a_{343}= +1.08228469 \pm 3.9 \cdot 10^{-3} \) | \(a_{344}= +0.82527510 \pm 3.1 \cdot 10^{-3} \) | \(a_{345}= -1.06829207 \pm 6.0 \cdot 10^{-3} \) |
\(a_{346}= -0.36224110 \pm 6.0 \cdot 10^{-3} \) | \(a_{347}= -1.87240902 \pm 6.9 \cdot 10^{-3} \) | \(a_{348}= -0.40506245 \pm 4.1 \cdot 10^{-3} \) |
\(a_{349}= -0.39098913 \pm 5.7 \cdot 10^{-3} \) | \(a_{350}= -0.33841432 \pm 5.5 \cdot 10^{-3} \) | \(a_{351}= -0.27041312 \pm 4.6 \cdot 10^{-3} \) |
\(a_{352}= +1.69272584 \pm 5.1 \cdot 10^{-3} \) | \(a_{353}= +1.61348362 \pm 4.6 \cdot 10^{-3} \) | \(a_{354}= +0.15827887 \pm 4.8 \cdot 10^{-3} \) |
\(a_{355}= -0.98189861 \pm 5.4 \cdot 10^{-3} \) | \(a_{356}= +0.07270149 \pm 6.0 \cdot 10^{-3} \) | \(a_{357}= +0.83738382 \pm 5.4 \cdot 10^{-3} \) |
\(a_{358}= +0.79678349 \pm 3.9 \cdot 10^{-3} \) | \(a_{359}= +0.01095592 \pm 7.4 \cdot 10^{-3} \) | \(a_{360}= +0.02672886 \pm 4.2 \cdot 10^{-3} \) |
\(a_{361}= -0.99963663 \pm 3.9 \cdot 10^{-3} \) | \(a_{362}= +0.17781700 \pm 5.8 \cdot 10^{-3} \) | \(a_{363}= -2.03687745 \pm 3.9 \cdot 10^{-3} \) |
\(a_{364}= -0.12527192 \pm 1.0 \cdot 10^{-2} \) | \(a_{365}= +0.22756419 \pm 5.0 \cdot 10^{-3} \) | \(a_{366}= -1.15748507 \pm 3.3 \cdot 10^{-3} \) |
\(a_{367}= -0.19724200 \pm 6.1 \cdot 10^{-3} \) | \(a_{368}= -0.11433659 \pm 4.0 \cdot 10^{-3} \) | \(a_{369}= +0.05514293 \pm 4.3 \cdot 10^{-3} \) |
\(a_{370}= -0.48303971 \pm 4.8 \cdot 10^{-3} \) | \(a_{371}= +0.02704500 \pm 4.1 \cdot 10^{-3} \) | \(a_{372}= +0.50160413 \pm 6.3 \cdot 10^{-3} \) |
\(a_{373}= +0.92640876 \pm 3.9 \cdot 10^{-3} \) | \(a_{374}= +1.18379420 \pm 4.4 \cdot 10^{-3} \) | \(a_{375}= +0.96161115 \pm 4.2 \cdot 10^{-3} \) |
\(a_{376}= -0.44904470 \pm 4.7 \cdot 10^{-3} \) | \(a_{377}= +0.18591524 \pm 3.9 \cdot 10^{-3} \) | \(a_{378}= +0.47726047 \pm 4.9 \cdot 10^{-3} \) |
\(a_{379}= -0.90843659 \pm 5.1 \cdot 10^{-3} \) | \(a_{380}= -0.00625343 \pm 4.0 \cdot 10^{-3} \) | \(a_{381}= +0.09875295 \pm 5.1 \cdot 10^{-3} \) |
\(a_{382}= +0.68196747 \pm 5.6 \cdot 10^{-3} \) | \(a_{383}= +0.28708306 \pm 7.6 \cdot 10^{-3} \) | \(a_{384}= -0.55165544 \pm 4.6 \cdot 10^{-3} \) |
\(a_{385}= +0.73488835 \pm 3.1 \cdot 10^{-3} \) | \(a_{386}= +0.19336063 \pm 5.3 \cdot 10^{-3} \) | \(a_{387}= +0.03832739 \pm 4.8 \cdot 10^{-3} \) |
\(a_{388}= -0.04290090 \pm 5.1 \cdot 10^{-3} \) | \(a_{389}= -0.31465345 \pm 4.9 \cdot 10^{-3} \) | \(a_{390}= -0.10090979 \pm 1.6 \cdot 10^{-2} \) |
\(a_{391}= +2.01000946 \pm 3.1 \cdot 10^{-3} \) | \(a_{392}= -0.42227673 \pm 3.5 \cdot 10^{-3} \) | \(a_{393}= -0.29667052 \pm 5.1 \cdot 10^{-3} \) |
\(a_{394}= +0.98041758 \pm 5.7 \cdot 10^{-3} \) | \(a_{395}= +0.57690121 \pm 4.5 \cdot 10^{-3} \) | \(a_{396}= +0.04826644 \pm 4.2 \cdot 10^{-3} \) |
\(a_{397}= -1.27957736 \pm 4.2 \cdot 10^{-3} \) | \(a_{398}= +0.25646450 \pm 6.3 \cdot 10^{-3} \) | \(a_{399}= +0.01492180 \pm 2.2 \cdot 10^{-3} \) |
\(a_{400}= +0.04206841 \pm 3.7 \cdot 10^{-3} \) | \(a_{401}= -0.59324595 \pm 4.1 \cdot 10^{-3} \) | \(a_{402}= +0.16968391 \pm 8.9 \cdot 10^{-3} \) |
\(a_{403}= -0.23022587 \pm 5.6 \cdot 10^{-3} \) | \(a_{404}= +0.86362269 \pm 4.6 \cdot 10^{-3} \) | \(a_{405}= -0.58059022 \pm 4.6 \cdot 10^{-3} \) |
\(a_{406}= -0.32812756 \pm 4.3 \cdot 10^{-3} \) | \(a_{407}= -2.34947093 \pm 5.5 \cdot 10^{-3} \) | \(a_{408}= -1.11421958 \pm 3.9 \cdot 10^{-3} \) |
\(a_{409}= +0.87813178 \pm 4.8 \cdot 10^{-3} \) | \(a_{410}= -0.41475323 \pm 5.8 \cdot 10^{-3} \) | \(a_{411}= +0.10230020 \pm 4.8 \cdot 10^{-3} \) |
\(a_{412}= -0.93886471 \pm 5.6 \cdot 10^{-3} \) | \(a_{413}= -0.18487415 \pm 5.0 \cdot 10^{-3} \) | \(a_{414}= -0.05683745 \pm 6.5 \cdot 10^{-3} \) |
\(a_{415}= +0.37687253 \pm 3.2 \cdot 10^{-3} \) | \(a_{416}= +0.27148874 \pm 6.0 \cdot 10^{-3} \) | \(a_{417}= +0.87607822 \pm 5.7 \cdot 10^{-3} \) |
\(a_{418}= +0.02109467 \pm 3.1 \cdot 10^{-3} \) | \(a_{419}= +0.55020800 \pm 6.0 \cdot 10^{-3} \) | \(a_{420}= -0.25679913 \pm 3.6 \cdot 10^{-3} \) |
\(a_{421}= +0.22145032 \pm 5.9 \cdot 10^{-3} \) | \(a_{422}= +0.00829742 \pm 6.8 \cdot 10^{-3} \) | \(a_{423}= -0.02085451 \pm 4.9 \cdot 10^{-3} \) |
\(a_{424}= -0.03598597 \pm 3.2 \cdot 10^{-3} \) | \(a_{425}= -0.73955240 \pm 3.7 \cdot 10^{-3} \) | \(a_{426}= -1.15742683 \pm 7.1 \cdot 10^{-3} \) |
\(a_{427}= +1.35197497 \pm 5.7 \cdot 10^{-3} \) | \(a_{428}= -0.22783396 \pm 6.0 \cdot 10^{-3} \) | \(a_{429}= -0.49081808 \pm 1.0 \cdot 10^{-2} \) |
\(a_{430}= -0.28827648 \pm 6.4 \cdot 10^{-3} \) | \(a_{431}= +1.68341630 \pm 6.4 \cdot 10^{-3} \) | \(a_{432}= -0.05932842 \pm 4.1 \cdot 10^{-3} \) |
\(a_{433}= -0.89227893 \pm 5.1 \cdot 10^{-3} \) | \(a_{434}= +0.40633275 \pm 3.8 \cdot 10^{-3} \) | \(a_{435}= +0.38111394 \pm 3.9 \cdot 10^{-3} \) |
\(a_{436}= +0.37353241 \pm 4.1 \cdot 10^{-3} \) | \(a_{437}= +0.03581745 \pm 4.0 \cdot 10^{-3} \) | \(a_{438}= +0.26824450 \pm 5.9 \cdot 10^{-3} \) |
\(a_{439}= -0.11183279 \pm 4.8 \cdot 10^{-3} \) | \(a_{440}= -0.97783952 \pm 3.5 \cdot 10^{-3} \) | \(a_{441}= -0.01961136 \pm 5.0 \cdot 10^{-3} \) |
\(a_{442}= +0.18986347 \pm 1.1 \cdot 10^{-2} \) | \(a_{443}= -1.04719728 \pm 5.5 \cdot 10^{-3} \) | \(a_{444}= +0.82099831 \pm 3.8 \cdot 10^{-3} \) |
\(a_{445}= -0.06840316 \pm 5.9 \cdot 10^{-3} \) | \(a_{446}= +0.67037514 \pm 4.8 \cdot 10^{-3} \) | \(a_{447}= +1.63986235 \pm 3.8 \cdot 10^{-3} \) |
\(a_{448}= -0.52570490 \pm 4.0 \cdot 10^{-3} \) | \(a_{449}= +0.07437836 \pm 4.3 \cdot 10^{-3} \) | \(a_{450}= +0.02091248 \pm 4.1 \cdot 10^{-3} \) |
\(a_{451}= -2.01733031 \pm 4.3 \cdot 10^{-3} \) | \(a_{452}= +0.47264054 \pm 6.2 \cdot 10^{-3} \) | \(a_{453}= -0.92201821 \pm 4.9 \cdot 10^{-3} \) |
\(a_{454}= +0.04875293 \pm 4.3 \cdot 10^{-3} \) | \(a_{455}= +0.11786546 \pm 1.0 \cdot 10^{-2} \) | \(a_{456}= -0.01985488 \pm 3.2 \cdot 10^{-3} \) |
\(a_{457}= -0.02052579 \pm 5.0 \cdot 10^{-3} \) | \(a_{458}= -0.33201166 \pm 4.2 \cdot 10^{-3} \) | \(a_{459}= +1.04297930 \pm 3.9 \cdot 10^{-3} \) |
\(a_{460}= -0.61640633 \pm 4.7 \cdot 10^{-3} \) | \(a_{461}= +0.81287491 \pm 5.9 \cdot 10^{-3} \) | \(a_{462}= +0.86626001 \pm 4.3 \cdot 10^{-3} \) |
\(a_{463}= +0.65029190 \pm 6.4 \cdot 10^{-3} \) | \(a_{464}= +0.04078966 \pm 3.1 \cdot 10^{-3} \) | \(a_{465}= -0.47194778 \pm 6.5 \cdot 10^{-3} \) |
\(a_{466}= +0.53618738 \pm 7.7 \cdot 10^{-3} \) | \(a_{467}= +1.46530951 \pm 5.1 \cdot 10^{-3} \) | \(a_{468}= +0.00774124 \pm 1.1 \cdot 10^{-2} \) |
\(a_{469}= -0.19819556 \pm 4.3 \cdot 10^{-3} \) | \(a_{470}= +0.15685560 \pm 4.5 \cdot 10^{-3} \) | \(a_{471}= +0.08324293 \pm 5.4 \cdot 10^{-3} \) |
\(a_{472}= +0.24599281 \pm 4.3 \cdot 10^{-3} \) | \(a_{473}= -1.40215635 \pm 4.7 \cdot 10^{-3} \) | \(a_{474}= +0.68003044 \pm 6.4 \cdot 10^{-3} \) |
\(a_{475}= -0.01317849 \pm 3.0 \cdot 10^{-3} \) | \(a_{476}= +0.48317188 \pm 4.4 \cdot 10^{-3} \) | \(a_{477}= -0.00167126 \pm 3.7 \cdot 10^{-3} \) |
\(a_{478}= -0.55729069 \pm 5.9 \cdot 10^{-3} \) | \(a_{479}= -0.60140964 \pm 6.1 \cdot 10^{-3} \) | \(a_{480}= +0.55653395 \pm 7.3 \cdot 10^{-3} \) |
\(a_{481}= -0.37682116 \pm 6.5 \cdot 10^{-3} \) | \(a_{482}= -0.21871151 \pm 4.3 \cdot 10^{-3} \) | \(a_{483}= +1.47085601 \pm 2.9 \cdot 10^{-3} \) |
\(a_{484}= -1.17528173 \pm 3.9 \cdot 10^{-3} \) | \(a_{485}= +0.04036447 \pm 3.8 \cdot 10^{-3} \) | \(a_{486}= -0.06044833 \pm 6.4 \cdot 10^{-3} \) |
\(a_{487}= -0.37386728 \pm 6.3 \cdot 10^{-3} \) | \(a_{488}= -1.79893251 \pm 3.3 \cdot 10^{-3} \) | \(a_{489}= -1.02690266 \pm 5.6 \cdot 10^{-3} \) |
\(a_{490}= +0.14750530 \pm 5.5 \cdot 10^{-3} \) | \(a_{491}= -0.40738471 \pm 6.7 \cdot 10^{-3} \) | \(a_{492}= +0.70493521 \pm 5.8 \cdot 10^{-3} \) |
\(a_{493}= -0.71707227 \pm 4.1 \cdot 10^{-3} \) | \(a_{494}= +0.00338328 \pm 1.0 \cdot 10^{-2} \) | \(a_{495}= -0.04541278 \pm 3.4 \cdot 10^{-3} \) |
\(a_{496}= -0.05051137 \pm 4.3 \cdot 10^{-3} \) | \(a_{497}= +1.35190694 \pm 4.4 \cdot 10^{-3} \) | \(a_{498}= +0.44424381 \pm 3.7 \cdot 10^{-3} \) |
\(a_{499}= -1.08666279 \pm 5.4 \cdot 10^{-3} \) | \(a_{500}= +0.55485126 \pm 3.3 \cdot 10^{-3} \) | \(a_{501}= -1.45216889 \pm 5.9 \cdot 10^{-3} \) |
\(a_{502}= -0.95454910 \pm 5.7 \cdot 10^{-3} \) | \(a_{503}= -1.24345730 \pm 5.6 \cdot 10^{-3} \) | \(a_{504}= -0.03680108 \pm 3.1 \cdot 10^{-3} \) |
\(a_{505}= -0.81256272 \pm 4.2 \cdot 10^{-3} \) | \(a_{506}= +2.07932225 \pm 6.2 \cdot 10^{-3} \) | \(a_{507}= -0.07872012 \pm 5.7 \cdot 10^{-3} \) |
\(a_{508}= +0.05698062 \pm 4.4 \cdot 10^{-3} \) | \(a_{509}= +0.72844928 \pm 5.7 \cdot 10^{-3} \) | \(a_{510}= +0.38920754 \pm 7.7 \cdot 10^{-3} \) |
\(a_{511}= -0.31331708 \pm 6.4 \cdot 10^{-3} \) | \(a_{512}= +0.12149837 \pm 5.1 \cdot 10^{-3} \) | \(a_{513}= +0.01858542 \pm 4.6 \cdot 10^{-3} \) |
\(a_{514}= -1.18740284 \pm 5.5 \cdot 10^{-3} \) | \(a_{515}= +0.88335621 \pm 5.5 \cdot 10^{-3} \) | \(a_{516}= +0.48996903 \pm 6.4 \cdot 10^{-3} \) |
\(a_{517}= +0.76293454 \pm 5.0 \cdot 10^{-3} \) | \(a_{518}= +0.66506331 \pm 6.8 \cdot 10^{-3} \) | \(a_{519}= -0.57928195 \pm 6.2 \cdot 10^{-3} \) |
\(a_{520}= -0.15683132 \pm 9.6 \cdot 10^{-3} \) | \(a_{521}= +0.43445247 \pm 5.7 \cdot 10^{-3} \) | \(a_{522}= +0.02027680 \pm 2.8 \cdot 10^{-3} \) |
\(a_{523}= +1.03871050 \pm 7.0 \cdot 10^{-3} \) | \(a_{524}= -0.17117939 \pm 5.7 \cdot 10^{-3} \) | \(a_{525}= -0.54117909 \pm 2.6 \cdot 10^{-3} \) |
\(a_{526}= -0.12105570 \pm 5.7 \cdot 10^{-3} \) | \(a_{527}= +0.88797767 \pm 5.4 \cdot 10^{-3} \) | \(a_{528}= -0.10768510 \pm 4.0 \cdot 10^{-3} \) |
\(a_{529}= +2.53056078 \pm 6.0 \cdot 10^{-3} \) | \(a_{530}= +0.01257024 \pm 4.6 \cdot 10^{-3} \) | \(a_{531}= +0.01142439 \pm 4.7 \cdot 10^{-3} \) |
\(a_{532}= +0.00860990 \pm 3.2 \cdot 10^{-3} \) | \(a_{533}= -0.32355061 \pm 4.7 \cdot 10^{-3} \) | \(a_{534}= -0.08063119 \pm 8.9 \cdot 10^{-3} \) |
\(a_{535}= +0.21436373 \pm 5.5 \cdot 10^{-3} \) | \(a_{536}= +0.26371822 \pm 2.8 \cdot 10^{-3} \) | \(a_{537}= +1.27418535 \pm 4.4 \cdot 10^{-3} \) |
\(a_{538}= -0.46621619 \pm 6.9 \cdot 10^{-3} \) | \(a_{539}= +0.71745530 \pm 4.0 \cdot 10^{-3} \) | \(a_{540}= -0.31984876 \pm 4.3 \cdot 10^{-3} \) |
\(a_{541}= -1.79613743 \pm 3.3 \cdot 10^{-3} \) | \(a_{542}= +1.05274576 \pm 5.8 \cdot 10^{-3} \) | \(a_{543}= +0.28435807 \pm 4.2 \cdot 10^{-3} \) |
\(a_{544}= -1.04712797 \pm 5.9 \cdot 10^{-3} \) | \(a_{545}= -0.35144805 \pm 3.6 \cdot 10^{-3} \) | \(a_{546}= +0.13893558 \pm 1.7 \cdot 10^{-2} \) |
\(a_{547}= -1.17437528 \pm 4.0 \cdot 10^{-3} \) | \(a_{548}= +0.05902739 \pm 4.9 \cdot 10^{-3} \) | \(a_{549}= -0.08354594 \pm 4.0 \cdot 10^{-3} \) |
\(a_{550}= -0.76505498 \pm 4.8 \cdot 10^{-3} \) | \(a_{551}= -0.01277790 \pm 2.6 \cdot 10^{-3} \) | \(a_{552}= -1.95711515 \pm 4.5 \cdot 10^{-3} \) |
\(a_{553}= -0.79429459 \pm 3.6 \cdot 10^{-3} \) | \(a_{554}= -0.02661606 \pm 6.7 \cdot 10^{-3} \) | \(a_{555}= -0.77245843 \pm 3.4 \cdot 10^{-3} \) |
\(a_{556}= +0.50549861 \pm 5.1 \cdot 10^{-3} \) | \(a_{557}= +1.91774183 \pm 4.6 \cdot 10^{-3} \) | \(a_{558}= -0.02510953 \pm 6.1 \cdot 10^{-3} \) |
\(a_{559}= -0.22488560 \pm 5.2 \cdot 10^{-3} \) | \(a_{560}= +0.02585959 \pm 3.3 \cdot 10^{-3} \) | \(a_{561}= +1.89307791 \pm 4.1 \cdot 10^{-3} \) |
\(a_{562}= +0.09266473 \pm 7.4 \cdot 10^{-3} \) | \(a_{563}= +0.91765796 \pm 6.0 \cdot 10^{-3} \) | \(a_{564}= -0.26659959 \pm 4.8 \cdot 10^{-3} \) |
\(a_{565}= -0.44469661 \pm 6.6 \cdot 10^{-3} \) | \(a_{566}= -0.10856935 \pm 4.1 \cdot 10^{-3} \) | \(a_{567}= +0.79937372 \pm 4.1 \cdot 10^{-3} \) |
\(a_{568}= -1.79884200 \pm 4.8 \cdot 10^{-3} \) | \(a_{569}= -1.47249165 \pm 5.0 \cdot 10^{-3} \) | \(a_{570}= +0.00693550 \pm 5.2 \cdot 10^{-3} \) |
\(a_{571}= -0.26840754 \pm 5.5 \cdot 10^{-3} \) | \(a_{572}= -0.28320286 \pm 1.0 \cdot 10^{-2} \) | \(a_{573}= +1.09057600 \pm 5.6 \cdot 10^{-3} \) |
\(a_{574}= +0.57104447 \pm 2.4 \cdot 10^{-3} \) | \(a_{575}= -1.29901612 \pm 3.2 \cdot 10^{-3} \) | \(a_{576}= +0.03248619 \pm 5.1 \cdot 10^{-3} \) |
\(a_{577}= -1.31037835 \pm 5.3 \cdot 10^{-3} \) | \(a_{578}= -0.09236409 \pm 4.1 \cdot 10^{-3} \) | \(a_{579}= +0.30921483 \pm 5.7 \cdot 10^{-3} \) |
\(a_{580}= +0.21990339 \pm 4.8 \cdot 10^{-3} \) | \(a_{581}= -0.51888921 \pm 2.8 \cdot 10^{-3} \) | \(a_{582}= +0.04758019 \pm 4.5 \cdot 10^{-3} \) |
\(a_{583}= +0.06114078 \pm 3.3 \cdot 10^{-3} \) | \(a_{584}= +0.41689846 \pm 4.8 \cdot 10^{-3} \) | \(a_{585}= -0.00728355 \pm 1.0 \cdot 10^{-2} \) |
\(a_{586}= +1.20507762 \pm 4.0 \cdot 10^{-3} \) | \(a_{587}= -0.69935766 \pm 5.6 \cdot 10^{-3} \) | \(a_{588}= -0.25070733 \pm 5.1 \cdot 10^{-3} \) |
\(a_{589}= +0.01582336 \pm 3.9 \cdot 10^{-3} \) | \(a_{590}= -0.08592764 \pm 5.0 \cdot 10^{-3} \) | \(a_{591}= +1.56784587 \pm 5.8 \cdot 10^{-3} \) |
\(a_{592}= -0.08267426 \pm 4.2 \cdot 10^{-3} \) | \(a_{593}= -0.36130079 \pm 5.4 \cdot 10^{-3} \) | \(a_{594}= +1.07894520 \pm 4.9 \cdot 10^{-3} \) |
\(a_{595}= -0.45460531 \pm 4.5 \cdot 10^{-3} \) | \(a_{596}= +0.94620334 \pm 5.3 \cdot 10^{-3} \) | \(a_{597}= +0.41012811 \pm 6.9 \cdot 10^{-3} \) |
\(a_{598}= +0.33349322 \pm 1.0 \cdot 10^{-2} \) | \(a_{599}= -1.79452622 \pm 5.6 \cdot 10^{-3} \) | \(a_{600}= +0.72009074 \pm 2.9 \cdot 10^{-3} \) |
\(a_{601}= +0.66282520 \pm 5.8 \cdot 10^{-3} \) | \(a_{602}= +0.39690755 \pm 5.1 \cdot 10^{-3} \) | \(a_{603}= +0.01224759 \pm 5.3 \cdot 10^{-3} \) |
\(a_{604}= -0.53200606 \pm 3.8 \cdot 10^{-3} \) | \(a_{605}= +1.10579554 \pm 3.0 \cdot 10^{-3} \) | \(a_{606}= -0.95781977 \pm 5.5 \cdot 10^{-3} \) |
\(a_{607}= -1.25785977 \pm 3.8 \cdot 10^{-3} \) | \(a_{608}= -0.01865934 \pm 3.7 \cdot 10^{-3} \) | \(a_{609}= -0.52472890 \pm 4.7 \cdot 10^{-3} \) |
\(a_{610}= +0.62838431 \pm 2.4 \cdot 10^{-3} \) | \(a_{611}= +0.12236367 \pm 5.4 \cdot 10^{-3} \) | \(a_{612}= -0.02985784 \pm 4.8 \cdot 10^{-3} \) |
\(a_{613}= -0.95467504 \pm 5.4 \cdot 10^{-3} \) | \(a_{614}= -0.34323145 \pm 3.4 \cdot 10^{-3} \) | \(a_{615}= -0.66325732 \pm 5.8 \cdot 10^{-3} \) |
\(a_{616}= +1.34631827 \pm 3.4 \cdot 10^{-3} \) | \(a_{617}= +0.90854833 \pm 6.6 \cdot 10^{-3} \) | \(a_{618}= +1.04126859 \pm 8.6 \cdot 10^{-3} \) |
\(a_{619}= +0.07050082 \pm 5.1 \cdot 10^{-3} \) | \(a_{620}= -0.27231467 \pm 5.2 \cdot 10^{-3} \) | \(a_{621}= +1.83198233 \pm 5.0 \cdot 10^{-3} \) |
\(a_{622}= -0.70951159 \pm 6.1 \cdot 10^{-3} \) | \(a_{623}= +0.09417949 \pm 5.3 \cdot 10^{-3} \) | \(a_{624}= -0.01727113 \pm 1.0 \cdot 10^{-2} \) |
\(a_{625}= +0.16929482 \pm 5.2 \cdot 10^{-3} \) | \(a_{626}= -0.51153858 \pm 4.8 \cdot 10^{-3} \) | \(a_{627}= +0.03373379 \pm 3.0 \cdot 10^{-3} \) |
\(a_{628}= +0.04803131 \pm 5.2 \cdot 10^{-3} \) | \(a_{629}= +1.45339349 \pm 4.6 \cdot 10^{-3} \) | \(a_{630}= +0.01285497 \pm 3.2 \cdot 10^{-3} \) |
\(a_{631}= -1.50513386 \pm 5.5 \cdot 10^{-3} \) | \(a_{632}= +1.05688522 \pm 4.4 \cdot 10^{-3} \) | \(a_{633}= +0.01326892 \pm 6.2 \cdot 10^{-3} \) |
\(a_{634}= -1.02080834 \pm 5.8 \cdot 10^{-3} \) | \(a_{635}= -0.05361175 \pm 4.4 \cdot 10^{-3} \) | \(a_{636}= -0.02136501 \pm 4.9 \cdot 10^{-3} \) |
\(a_{637}= +0.11506945 \pm 4.7 \cdot 10^{-3} \) | \(a_{638}= -0.74179966 \pm 3.7 \cdot 10^{-3} \) | \(a_{639}= -0.08354174 \pm 6.1 \cdot 10^{-3} \) |
\(a_{640}= +0.29948691 \pm 4.6 \cdot 10^{-3} \) | \(a_{641}= -0.78827602 \pm 5.0 \cdot 10^{-3} \) | \(a_{642}= +0.25268427 \pm 7.6 \cdot 10^{-3} \) |
\(a_{643}= -0.55577841 \pm 6.2 \cdot 10^{-3} \) | \(a_{644}= +0.84868640 \pm 5.1 \cdot 10^{-3} \) | \(a_{645}= -0.46100059 \pm 6.4 \cdot 10^{-3} \) |
\(a_{646}= -0.01304926 \pm 3.4 \cdot 10^{-3} \) | \(a_{647}= -0.41868046 \pm 4.1 \cdot 10^{-3} \) | \(a_{648}= -1.06364349 \pm 3.8 \cdot 10^{-3} \) |
\(a_{649}= -0.41794594 \pm 4.3 \cdot 10^{-3} \) | \(a_{650}= -0.12270375 \pm 9.9 \cdot 10^{-3} \) | \(a_{651}= +0.64979161 \pm 5.3 \cdot 10^{-3} \) |
\(a_{652}= -0.59252457 \pm 4.7 \cdot 10^{-3} \) | \(a_{653}= -0.45026495 \pm 5.4 \cdot 10^{-3} \) | \(a_{654}= -0.41427434 \pm 5.2 \cdot 10^{-3} \) |
\(a_{655}= +0.16105875 \pm 4.8 \cdot 10^{-3} \) | \(a_{656}= -0.07098675 \pm 4.2 \cdot 10^{-3} \) | \(a_{657}= +0.01936158 \pm 5.5 \cdot 10^{-3} \) |
\(a_{658}= -0.21596342 \pm 3.9 \cdot 10^{-3} \) | \(a_{659}= +1.11812838 \pm 4.1 \cdot 10^{-3} \) | \(a_{660}= -0.58054712 \pm 3.8 \cdot 10^{-3} \) |
\(a_{661}= -1.01719502 \pm 5.8 \cdot 10^{-3} \) | \(a_{662}= +0.14750300 \pm 7.3 \cdot 10^{-3} \) | \(a_{663}= +0.30362232 \pm 1.1 \cdot 10^{-2} \) |
\(a_{664}= +0.69043192 \pm 2.6 \cdot 10^{-3} \) | \(a_{665}= -0.00810086 \pm 2.7 \cdot 10^{-3} \) | \(a_{666}= -0.04109791 \pm 5.0 \cdot 10^{-3} \) |
\(a_{667}= -1.25953002 \pm 3.1 \cdot 10^{-3} \) | \(a_{668}= -0.83790390 \pm 5.5 \cdot 10^{-3} \) | \(a_{669}= +1.07203799 \pm 5.7 \cdot 10^{-3} \) |
\(a_{670}= -0.09211929 \pm 7.4 \cdot 10^{-3} \) | \(a_{671}= +3.05641675 \pm 3.6 \cdot 10^{-3} \) | \(a_{672}= -0.76625234 \pm 4.4 \cdot 10^{-3} \) |
\(a_{673}= +0.80453448 \pm 6.4 \cdot 10^{-3} \) | \(a_{674}= +0.49179723 \pm 5.5 \cdot 10^{-3} \) | \(a_{675}= -0.67405002 \pm 3.4 \cdot 10^{-3} \) |
\(a_{676}= -0.04542164 \pm 5.4 \cdot 10^{-3} \) | \(a_{677}= +0.04635719 \pm 5.9 \cdot 10^{-3} \) | \(a_{678}= -0.52419240 \pm 8.9 \cdot 10^{-3} \) |
\(a_{679}= -0.05557499 \pm 6.3 \cdot 10^{-3} \) | \(a_{680}= +0.60489601 \pm 3.5 \cdot 10^{-3} \) | \(a_{681}= +0.07796380 \pm 4.7 \cdot 10^{-3} \) |
\(a_{682}= +0.91859853 \pm 3.2 \cdot 10^{-3} \) | \(a_{683}= -1.46440793 \pm 4.9 \cdot 10^{-3} \) | \(a_{684}= -0.00053205 \pm 4.1 \cdot 10^{-3} \) |
\(a_{685}= -0.05553751 \pm 4.3 \cdot 10^{-3} \) | \(a_{686}= -0.69259340 \pm 3.1 \cdot 10^{-3} \) | \(a_{687}= -0.53094020 \pm 6.1 \cdot 10^{-3} \) |
\(a_{688}= -0.04933972 \pm 4.8 \cdot 10^{-3} \) | \(a_{689}= +0.00980610 \pm 4.0 \cdot 10^{-3} \) | \(a_{690}= +0.68363902 \pm 7.1 \cdot 10^{-3} \) |
\(a_{691}= -0.64513038 \pm 5.8 \cdot 10^{-3} \) | \(a_{692}= -0.33424666 \pm 6.1 \cdot 10^{-3} \) | \(a_{693}= +0.06252565 \pm 3.4 \cdot 10^{-3} \) |
\(a_{694}= +1.19822275 \pm 6.1 \cdot 10^{-3} \) | \(a_{695}= -0.47561201 \pm 4.6 \cdot 10^{-3} \) | \(a_{696}= +0.69820219 \pm 3.5 \cdot 10^{-3} \) |
\(a_{697}= +1.24792978 \pm 4.3 \cdot 10^{-3} \) | \(a_{698}= +0.25020819 \pm 4.3 \cdot 10^{-3} \) | \(a_{699}= +0.85745012 \pm 6.9 \cdot 10^{-3} \) |
\(a_{700}= -0.31226125 \pm 4.1 \cdot 10^{-3} \) | \(a_{701}= -1.96675165 \pm 4.7 \cdot 10^{-3} \) | \(a_{702}= +0.17304721 \pm 1.0 \cdot 10^{-2} \) |
\(a_{703}= +0.02589881 \pm 5.4 \cdot 10^{-3} \) | \(a_{704}= -1.18846376 \pm 4.6 \cdot 10^{-3} \) | \(a_{705}= +0.25083742 \pm 4.4 \cdot 10^{-3} \) |
\(a_{706}= -1.03252695 \pm 6.0 \cdot 10^{-3} \) | \(a_{707}= +1.11876030 \pm 2.9 \cdot 10^{-3} \) | \(a_{708}= +0.14604689 \pm 4.5 \cdot 10^{-3} \) |
\(a_{709}= +1.18205154 \pm 6.6 \cdot 10^{-3} \) | \(a_{710}= +0.62835269 \pm 6.2 \cdot 10^{-3} \) | \(a_{711}= +0.04908382 \pm 5.8 \cdot 10^{-3} \) |
\(a_{712}= -0.12531485 \pm 4.7 \cdot 10^{-3} \) | \(a_{713}= +1.55972358 \pm 3.2 \cdot 10^{-3} \) | \(a_{714}= -0.53587241 \pm 3.6 \cdot 10^{-3} \) |
\(a_{715}= +0.26645906 \pm 9.9 \cdot 10^{-3} \) | \(a_{716}= +0.73520710 \pm 3.8 \cdot 10^{-3} \) | \(a_{717}= -0.89119773 \pm 5.1 \cdot 10^{-3} \) |
\(a_{718}= -0.00701109 \pm 7.7 \cdot 10^{-3} \) | \(a_{719}= +1.08281944 \pm 5.2 \cdot 10^{-3} \) | \(a_{720}= -0.00159801 \pm 5.1 \cdot 10^{-3} \) |
\(a_{721}= -1.21623086 \pm 4.1 \cdot 10^{-3} \) | \(a_{722}= +0.63970390 \pm 4.5 \cdot 10^{-3} \) | \(a_{723}= -0.34975499 \pm 3.4 \cdot 10^{-3} \) |
\(a_{724}= +0.16407508 \pm 4.7 \cdot 10^{-3} \) | \(a_{725}= +0.46342490 \pm 2.6 \cdot 10^{-3} \) | \(a_{726}= +1.30347209 \pm 5.0 \cdot 10^{-3} \) |
\(a_{727}= -1.01211376 \pm 5.1 \cdot 10^{-3} \) | \(a_{728}= +0.21592998 \pm 9.8 \cdot 10^{-3} \) | \(a_{729}= +0.94836796 \pm 4.4 \cdot 10^{-3} \) |
\(a_{730}= -0.14562662 \pm 4.2 \cdot 10^{-3} \) | \(a_{731}= +0.86738035 \pm 5.1 \cdot 10^{-3} \) | \(a_{732}= -1.06803322 \pm 4.1 \cdot 10^{-3} \) |
\(a_{733}= -0.54203298 \pm 6.1 \cdot 10^{-3} \) | \(a_{734}= +0.12622234 \pm 7.9 \cdot 10^{-3} \) | \(a_{735}= +0.23588476 \pm 5.5 \cdot 10^{-3} \) |
\(a_{736}= -1.83926942 \pm 4.2 \cdot 10^{-3} \) | \(a_{737}= -0.44806171 \pm 4.3 \cdot 10^{-3} \) | \(a_{738}= -0.03528797 \pm 5.8 \cdot 10^{-3} \) |
\(a_{739}= -0.31862907 \pm 7.3 \cdot 10^{-3} \) | \(a_{740}= -0.44570982 \pm 5.3 \cdot 10^{-3} \) | \(a_{741}= +0.00541041 \pm 1.0 \cdot 10^{-2} \) |
\(a_{742}= -0.01730708 \pm 5.0 \cdot 10^{-3} \) | \(a_{743}= -1.67967135 \pm 5.5 \cdot 10^{-3} \) | \(a_{744}= -0.86461014 \pm 4.1 \cdot 10^{-3} \) |
\(a_{745}= -0.89026096 \pm 4.4 \cdot 10^{-3} \) | \(a_{746}= -0.59284272 \pm 4.1 \cdot 10^{-3} \) | \(a_{747}= +0.03206501 \pm 2.9 \cdot 10^{-3} \) |
\(a_{748}= +1.09230915 \pm 3.6 \cdot 10^{-3} \) | \(a_{749}= -0.29514230 \pm 5.2 \cdot 10^{-3} \) | \(a_{750}= -0.61537001 \pm 3.9 \cdot 10^{-3} \) |
\(a_{751}= -0.90031855 \pm 4.8 \cdot 10^{-3} \) | \(a_{752}= +0.02684649 \pm 4.7 \cdot 10^{-3} \) | \(a_{753}= -1.52647800 \pm 6.2 \cdot 10^{-3} \) |
\(a_{754}= -0.11897394 \pm 9.9 \cdot 10^{-3} \) | \(a_{755}= +0.50055227 \pm 4.0 \cdot 10^{-3} \) | \(a_{756}= +0.44037720 \pm 4.2 \cdot 10^{-3} \) |
\(a_{757}= -1.57833766 \pm 5.7 \cdot 10^{-3} \) | \(a_{758}= +0.58134167 \pm 6.6 \cdot 10^{-3} \) | \(a_{759}= +3.32517172 \pm 4.1 \cdot 10^{-3} \) |
\(a_{760}= +0.01077897 \pm 3.7 \cdot 10^{-3} \) | \(a_{761}= -0.44323692 \pm 5.6 \cdot 10^{-3} \) | \(a_{762}= -0.06319561 \pm 6.2 \cdot 10^{-3} \) |
\(a_{763}= +0.48388403 \pm 4.3 \cdot 10^{-3} \) | \(a_{764}= +0.62926419 \pm 5.1 \cdot 10^{-3} \) | \(a_{765}= +0.02809255 \pm 5.2 \cdot 10^{-3} \) |
\(a_{766}= -0.18371491 \pm 8.1 \cdot 10^{-3} \) | \(a_{767}= -0.06703248 \pm 4.8 \cdot 10^{-3} \) | \(a_{768}= +1.05634275 \pm 3.9 \cdot 10^{-3} \) |
\(a_{769}= +0.47341765 \pm 5.7 \cdot 10^{-3} \) | \(a_{770}= -0.47028183 \pm 3.3 \cdot 10^{-3} \) | \(a_{771}= -1.89884871 \pm 5.6 \cdot 10^{-3} \) |
\(a_{772}= +0.17841748 \pm 5.5 \cdot 10^{-3} \) | \(a_{773}= +1.06477864 \pm 5.5 \cdot 10^{-3} \) | \(a_{774}= -0.02452709 \pm 6.1 \cdot 10^{-3} \) |
\(a_{775}= -0.57387656 \pm 3.2 \cdot 10^{-3} \) | \(a_{776}= +0.07394786 \pm 4.1 \cdot 10^{-3} \) | \(a_{777}= +1.06354353 \pm 3.5 \cdot 10^{-3} \) |
\(a_{778}= +0.20135820 \pm 4.0 \cdot 10^{-3} \) | \(a_{779}= +0.02223754 \pm 3.3 \cdot 10^{-3} \) | \(a_{780}= -0.09311136 \pm 1.6 \cdot 10^{-2} \) |
\(a_{781}= +3.05626296 \pm 4.1 \cdot 10^{-3} \) | \(a_{782}= -1.28627828 \pm 3.9 \cdot 10^{-3} \) | \(a_{783}= -0.65356097 \pm 2.9 \cdot 10^{-3} \) |
\(a_{784}= +0.02524615 \pm 4.7 \cdot 10^{-3} \) | \(a_{785}= -0.04519156 \pm 5.2 \cdot 10^{-3} \) | \(a_{786}= +0.18985027 \pm 6.8 \cdot 10^{-3} \) |
\(a_{787}= +0.94054586 \pm 6.6 \cdot 10^{-3} \) | \(a_{788}= +0.90464971 \pm 5.4 \cdot 10^{-3} \) | \(a_{789}= -0.19358759 \pm 5.1 \cdot 10^{-3} \) |
\(a_{790}= -0.36918010 \pm 5.0 \cdot 10^{-3} \) | \(a_{791}= +0.61227140 \pm 5.5 \cdot 10^{-3} \) | \(a_{792}= -0.08319638 \pm 3.9 \cdot 10^{-3} \) |
\(a_{793}= +0.49020504 \pm 4.7 \cdot 10^{-3} \) | \(a_{794}= +0.81884817 \pm 5.0 \cdot 10^{-3} \) | \(a_{795}= +0.02010185 \pm 4.3 \cdot 10^{-3} \) |
\(a_{796}= +0.23664461 \pm 5.8 \cdot 10^{-3} \) | \(a_{797}= -0.42108866 \pm 4.3 \cdot 10^{-3} \) | \(a_{798}= -0.00954900 \pm 2.1 \cdot 10^{-3} \) |
\(a_{799}= -0.47195481 \pm 4.1 \cdot 10^{-3} \) | \(a_{800}= +0.67673120 \pm 4.2 \cdot 10^{-3} \) | \(a_{801}= -0.00581987 \pm 6.8 \cdot 10^{-3} \) |
\(a_{802}= +0.37963970 \pm 4.8 \cdot 10^{-3} \) | \(a_{803}= -0.70831754 \pm 5.6 \cdot 10^{-3} \) | \(a_{804}= +0.15657053 \pm 7.3 \cdot 10^{-3} \) |
\(a_{805}= -0.79850951 \pm 3.2 \cdot 10^{-3} \) | \(a_{806}= +0.14732992 \pm 1.1 \cdot 10^{-2} \) | \(a_{807}= -0.74555490 \pm 7.1 \cdot 10^{-3} \) |
\(a_{808}= -1.48861801 \pm 4.4 \cdot 10^{-3} \) | \(a_{809}= -1.32421183 \pm 5.7 \cdot 10^{-3} \) | \(a_{810}= +0.37154083 \pm 5.0 \cdot 10^{-3} \) |
\(a_{811}= -0.63770225 \pm 8.3 \cdot 10^{-3} \) | \(a_{812}= -0.30276946 \pm 4.7 \cdot 10^{-3} \) | \(a_{813}= +1.68351030 \pm 5.9 \cdot 10^{-3} \) |
\(a_{814}= +1.50351204 \pm 5.6 \cdot 10^{-3} \) | \(a_{815}= +0.55749274 \pm 5.7 \cdot 10^{-3} \) | \(a_{816}= +0.06661450 \pm 4.9 \cdot 10^{-3} \) |
\(a_{817}= +0.01545632 \pm 3.1 \cdot 10^{-3} \) | \(a_{818}= -0.56194852 \pm 5.6 \cdot 10^{-3} \) | \(a_{819}= +0.01002821 \pm 1.0 \cdot 10^{-2} \) |
\(a_{820}= -0.38270060 \pm 4.4 \cdot 10^{-3} \) | \(a_{821}= -1.32056032 \pm 5.6 \cdot 10^{-3} \) | \(a_{822}= -0.06546563 \pm 4.8 \cdot 10^{-3} \) |
\(a_{823}= -1.73192885 \pm 5.5 \cdot 10^{-3} \) | \(a_{824}= +1.61831194 \pm 3.4 \cdot 10^{-3} \) | \(a_{825}= -1.22344634 \pm 3.0 \cdot 10^{-3} \) |
\(a_{826}= +0.11830770 \pm 5.9 \cdot 10^{-3} \) | \(a_{827}= +0.45174305 \pm 5.8 \cdot 10^{-3} \) | \(a_{828}= -0.05244498 \pm 4.2 \cdot 10^{-3} \) |
\(a_{829}= +1.18299213 \pm 5.5 \cdot 10^{-3} \) | \(a_{830}= -0.24117446 \pm 3.2 \cdot 10^{-3} \) | \(a_{831}= -0.04256338 \pm 4.8 \cdot 10^{-3} \) |
\(a_{832}= -0.19061240 \pm 4.8 \cdot 10^{-3} \) | \(a_{833}= -0.44382114 \pm 4.6 \cdot 10^{-3} \) | \(a_{834}= -0.56063437 \pm 4.9 \cdot 10^{-3} \) |
\(a_{835}= +0.78836450 \pm 5.3 \cdot 10^{-3} \) | \(a_{836}= +0.01946445 \pm 3.3 \cdot 10^{-3} \) | \(a_{837}= +0.80932923 \pm 4.2 \cdot 10^{-3} \) |
\(a_{838}= -0.35209815 \pm 6.5 \cdot 10^{-3} \) | \(a_{839}= -0.80712642 \pm 7.0 \cdot 10^{-3} \) | \(a_{840}= +0.44264216 \pm 3.6 \cdot 10^{-3} \) |
\(a_{841}= -0.55066179 \pm 4.8 \cdot 10^{-3} \) | \(a_{842}= -0.14171413 \pm 6.5 \cdot 10^{-3} \) | \(a_{843}= +0.14818585 \pm 8.3 \cdot 10^{-3} \) |
\(a_{844}= +0.00765619 \pm 5.5 \cdot 10^{-3} \) | \(a_{845}= +0.04273618 \pm 5.1 \cdot 10^{-3} \) | \(a_{846}= +0.01334556 \pm 5.0 \cdot 10^{-3} \) |
\(a_{847}= -1.52249189 \pm 3.5 \cdot 10^{-3} \) | \(a_{848}= +0.00215145 \pm 4.3 \cdot 10^{-3} \) | \(a_{849}= -0.17361991 \pm 3.5 \cdot 10^{-3} \) |
\(a_{850}= +0.47326652 \pm 4.4 \cdot 10^{-3} \) | \(a_{851}= +2.55287061 \pm 3.4 \cdot 10^{-3} \) | \(a_{852}= -1.06797948 \pm 5.6 \cdot 10^{-3} \) |
\(a_{853}= +0.40975764 \pm 7.2 \cdot 10^{-3} \) | \(a_{854}= -0.86517803 \pm 5.9 \cdot 10^{-3} \) | \(a_{855}= +0.00050060 \pm 5.1 \cdot 10^{-3} \) |
\(a_{856}= +0.39271517 \pm 4.9 \cdot 10^{-3} \) | \(a_{857}= -1.66589802 \pm 5.1 \cdot 10^{-3} \) | \(a_{858}= +0.31409237 \pm 1.6 \cdot 10^{-2} \) |
\(a_{859}= +1.33459167 \pm 7.4 \cdot 10^{-3} \) | \(a_{860}= -0.26599812 \pm 5.1 \cdot 10^{-3} \) | \(a_{861}= +0.91319223 \pm 2.0 \cdot 10^{-3} \) |
\(a_{862}= -1.07727942 \pm 5.2 \cdot 10^{-3} \) | \(a_{863}= +0.19029416 \pm 6.7 \cdot 10^{-3} \) | \(a_{864}= -0.95438353 \pm 4.6 \cdot 10^{-3} \) |
\(a_{865}= +0.31448500 \pm 5.6 \cdot 10^{-3} \) | \(a_{866}= +0.57100179 \pm 6.0 \cdot 10^{-3} \) | \(a_{867}= -0.14770509 \pm 3.5 \cdot 10^{-3} \) |
\(a_{868}= +0.37493086 \pm 4.0 \cdot 10^{-3} \) | \(a_{869}= -1.79566586 \pm 5.1 \cdot 10^{-3} \) | \(a_{870}= -0.24388869 \pm 2.9 \cdot 10^{-3} \) |
\(a_{871}= -0.07186262 \pm 5.5 \cdot 10^{-3} \) | \(a_{872}= -0.64385417 \pm 2.7 \cdot 10^{-3} \) | \(a_{873}= +0.00343428 \pm 4.4 \cdot 10^{-3} \) |
\(a_{874}= -0.02292089 \pm 4.4 \cdot 10^{-3} \) | \(a_{875}= +0.71876940 \pm 3.4 \cdot 10^{-3} \) | \(a_{876}= +0.24751424 \pm 6.4 \cdot 10^{-3} \) |
\(a_{877}= +1.16116854 \pm 5.3 \cdot 10^{-3} \) | \(a_{878}= +0.07156588 \pm 4.5 \cdot 10^{-3} \) | \(a_{879}= +1.92711352 \pm 5.5 \cdot 10^{-3} \) |
\(a_{880}= +0.05846091 \pm 2.9 \cdot 10^{-3} \) | \(a_{881}= -1.61771454 \pm 5.5 \cdot 10^{-3} \) | \(a_{882}= +0.01255002 \pm 6.2 \cdot 10^{-3} \) |
\(a_{883}= +0.36589479 \pm 3.8 \cdot 10^{-3} \) | \(a_{884}= +0.17519059 \pm 1.0 \cdot 10^{-2} \) | \(a_{885}= -0.13741216 \pm 4.8 \cdot 10^{-3} \) |
\(a_{886}= +0.67013969 \pm 6.3 \cdot 10^{-3} \) | \(a_{887}= +0.37589556 \pm 5.2 \cdot 10^{-3} \) | \(a_{888}= -1.41514678 \pm 3.4 \cdot 10^{-3} \) |
\(a_{889}= +0.07381424 \pm 5.4 \cdot 10^{-3} \) | \(a_{890}= +0.04377367 \pm 7.5 \cdot 10^{-3} \) | \(a_{891}= +1.80714827 \pm 3.2 \cdot 10^{-3} \) |
\(a_{892}= +0.61856773 \pm 4.9 \cdot 10^{-3} \) | \(a_{893}= -0.00841002 \pm 4.9 \cdot 10^{-3} \) | \(a_{894}= -1.04940766 \pm 4.0 \cdot 10^{-3} \) |
\(a_{895}= -0.69173944 \pm 3.9 \cdot 10^{-3} \) | \(a_{896}= -0.41234240 \pm 5.0 \cdot 10^{-3} \) | \(a_{897}= +0.53330945 \pm 1.0 \cdot 10^{-2} \) |
\(a_{898}= -0.04759742 \pm 5.2 \cdot 10^{-3} \) | \(a_{899}= -0.55643247 \pm 4.3 \cdot 10^{-3} \) | \(a_{900}= +0.01929633 \pm 3.4 \cdot 10^{-3} \) |
\(a_{901}= -0.03782197 \pm 4.3 \cdot 10^{-3} \) | \(a_{902}= +1.29096316 \pm 3.9 \cdot 10^{-3} \) | \(a_{903}= +0.63471920 \pm 3.2 \cdot 10^{-3} \) |
\(a_{904}= -0.81468589 \pm 5.1 \cdot 10^{-3} \) | \(a_{905}= -0.15437447 \pm 4.3 \cdot 10^{-3} \) | \(a_{906}= +0.59003304 \pm 4.9 \cdot 10^{-3} \) |
\(a_{907}= +0.94947421 \pm 3.8 \cdot 10^{-3} \) | \(a_{908}= +0.04498525 \pm 4.4 \cdot 10^{-3} \) | \(a_{909}= -0.06913433 \pm 5.0 \cdot 10^{-3} \) |
\(a_{910}= -0.07542640 \pm 1.6 \cdot 10^{-2} \) | \(a_{911}= +1.86849901 \pm 3.2 \cdot 10^{-3} \) | \(a_{912}= +0.00118704 \pm 4.0 \cdot 10^{-3} \) |
\(a_{913}= -1.17305550 \pm 2.7 \cdot 10^{-3} \) | \(a_{914}= +0.01313520 \pm 6.3 \cdot 10^{-3} \) | \(a_{915}= +1.00488789 \pm 4.4 \cdot 10^{-3} \) |
\(a_{916}= -0.30635339 \pm 5.2 \cdot 10^{-3} \) | \(a_{917}= -0.22175043 \pm 3.7 \cdot 10^{-3} \) | \(a_{918}= -0.66744045 \pm 4.7 \cdot 10^{-3} \) |
\(a_{919}= -0.99106036 \pm 4.6 \cdot 10^{-3} \) | \(a_{920}= +1.06249358 \pm 4.1 \cdot 10^{-3} \) | \(a_{921}= -0.54888247 \pm 4.0 \cdot 10^{-3} \) |
\(a_{922}= -0.52018827 \pm 7.6 \cdot 10^{-3} \) | \(a_{923}= +0.49018038 \pm 5.5 \cdot 10^{-3} \) | \(a_{924}= +0.79931438 \pm 4.2 \cdot 10^{-3} \) |
\(a_{925}= -0.93928989 \pm 4.5 \cdot 10^{-3} \) | \(a_{926}= -0.41614548 \pm 8.2 \cdot 10^{-3} \) | \(a_{927}= +0.07515757 \pm 5.8 \cdot 10^{-3} \) |
\(a_{928}= +0.65616064 \pm 3.5 \cdot 10^{-3} \) | \(a_{929}= +0.04963785 \pm 4.9 \cdot 10^{-3} \) | \(a_{930}= +0.30201658 \pm 7.4 \cdot 10^{-3} \) |
\(a_{931}= -0.00790869 \pm 3.3 \cdot 10^{-3} \) | \(a_{932}= +0.49475017 \pm 6.8 \cdot 10^{-3} \) | \(a_{933}= -1.13462350 \pm 7.7 \cdot 10^{-3} \) |
\(a_{934}= -0.93770494 \pm 6.5 \cdot 10^{-3} \) | \(a_{935}= -1.02772855 \pm 3.2 \cdot 10^{-3} \) | \(a_{936}= -0.01334350 \pm 1.0 \cdot 10^{-2} \) |
\(a_{937}= -1.39347737 \pm 6.3 \cdot 10^{-3} \) | \(a_{938}= +0.12683256 \pm 4.5 \cdot 10^{-3} \) | \(a_{939}= -0.81803271 \pm 5.1 \cdot 10^{-3} \) |
\(a_{940}= +0.14473361 \pm 4.5 \cdot 10^{-3} \) | \(a_{941}= -0.89423871 \pm 6.2 \cdot 10^{-3} \) | \(a_{942}= -0.05327019 \pm 7.2 \cdot 10^{-3} \) |
\(a_{943}= +2.19197573 \pm 2.9 \cdot 10^{-3} \) | \(a_{944}= -0.01470687 \pm 4.9 \cdot 10^{-3} \) | \(a_{945}= -0.41434078 \pm 2.8 \cdot 10^{-3} \) |
\(a_{946}= +0.89729093 \pm 5.4 \cdot 10^{-3} \) | \(a_{947}= +0.80798481 \pm 4.4 \cdot 10^{-3} \) | \(a_{948}= +0.62747686 \pm 5.4 \cdot 10^{-3} \) |
\(a_{949}= -0.11360389 \pm 6.1 \cdot 10^{-3} \) | \(a_{950}= +0.00843339 \pm 3.1 \cdot 10^{-3} \) | \(a_{951}= -1.63243722 \pm 4.6 \cdot 10^{-3} \) |
\(a_{952}= -0.83283865 \pm 3.8 \cdot 10^{-3} \) | \(a_{953}= +0.85078175 \pm 5.0 \cdot 10^{-3} \) | \(a_{954}= +0.00106950 \pm 4.8 \cdot 10^{-3} \) |
\(a_{955}= -0.59206020 \pm 4.7 \cdot 10^{-3} \) | \(a_{956}= -0.51422259 \pm 4.8 \cdot 10^{-3} \) | \(a_{957}= -1.18625733 \pm 3.0 \cdot 10^{-3} \) |
\(a_{958}= +0.38486394 \pm 5.1 \cdot 10^{-3} \) | \(a_{959}= +0.07646569 \pm 5.7 \cdot 10^{-3} \) | \(a_{960}= -0.39074280 \pm 6.3 \cdot 10^{-3} \) |
\(a_{961}= -0.31094866 \pm 3.9 \cdot 10^{-3} \) | \(a_{962}= +0.24114159 \pm 1.2 \cdot 10^{-2} \) | \(a_{963}= +0.01823846 \pm 5.8 \cdot 10^{-3} \) |
\(a_{964}= -0.20180922 \pm 4.6 \cdot 10^{-3} \) | \(a_{965}= -0.16786890 \pm 5.4 \cdot 10^{-3} \) | \(a_{966}= -0.94125434 \pm 4.0 \cdot 10^{-3} \) |
\(a_{967}= +0.05871748 \pm 5.3 \cdot 10^{-3} \) | \(a_{968}= +2.02582165 \pm 2.4 \cdot 10^{-3} \) | \(a_{969}= -0.02086787 \pm 3.5 \cdot 10^{-3} \) |
\(a_{970}= -0.02583069 \pm 3.5 \cdot 10^{-3} \) | \(a_{971}= -0.00525194 \pm 5.9 \cdot 10^{-3} \) | \(a_{972}= -0.05577681 \pm 5.7 \cdot 10^{-3} \) |
\(a_{973}= +0.65483663 \pm 5.5 \cdot 10^{-3} \) | \(a_{974}= +0.23925129 \pm 7.2 \cdot 10^{-3} \) | \(a_{975}= -0.19622310 \pm 9.7 \cdot 10^{-3} \) |
\(a_{976}= +0.10755060 \pm 4.4 \cdot 10^{-3} \) | \(a_{977}= -0.11065998 \pm 4.5 \cdot 10^{-3} \) | \(a_{978}= +0.65715242 \pm 4.1 \cdot 10^{-3} \) |
\(a_{979}= +0.21291205 \pm 5.4 \cdot 10^{-3} \) | \(a_{980}= +0.13610591 \pm 4.0 \cdot 10^{-3} \) | \(a_{981}= -0.02990185 \pm 4.4 \cdot 10^{-3} \) |
\(a_{982}= +0.26070032 \pm 7.6 \cdot 10^{-3} \) | \(a_{983}= +0.80013167 \pm 5.9 \cdot 10^{-3} \) | \(a_{984}= -1.21508994 \pm 2.3 \cdot 10^{-3} \) |
\(a_{985}= -0.85116411 \pm 5.4 \cdot 10^{-3} \) | \(a_{986}= +0.45888067 \pm 2.9 \cdot 10^{-3} \) | \(a_{987}= -0.34536035 \pm 2.5 \cdot 10^{-3} \) |
\(a_{988}= +0.00312182 \pm 9.7 \cdot 10^{-3} \) | \(a_{989}= +1.52354459 \pm 3.7 \cdot 10^{-3} \) | \(a_{990}= +0.02906129 \pm 3.9 \cdot 10^{-3} \) |
\(a_{991}= +0.89356922 \pm 5.0 \cdot 10^{-3} \) | \(a_{992}= -0.81254850 \pm 5.9 \cdot 10^{-3} \) | \(a_{993}= +0.23588109 \pm 5.7 \cdot 10^{-3} \) |
\(a_{994}= -0.86513450 \pm 4.3 \cdot 10^{-3} \) | \(a_{995}= -0.22265347 \pm 5.7 \cdot 10^{-3} \) | \(a_{996}= +0.40991211 \pm 3.4 \cdot 10^{-3} \) |
\(a_{997}= -1.37981673 \pm 7.2 \cdot 10^{-3} \) | \(a_{998}= +0.69539511 \pm 5.9 \cdot 10^{-3} \) | \(a_{999}= +1.32466600 \pm 4.5 \cdot 10^{-3} \) |
\(a_{1000}= -0.95639170 \pm 3.5 \cdot 10^{-3} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000