Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.5291035368307225057606860365 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.35980387 \pm 9.6 \cdot 10^{-3} \) | \(a_{3}= +1.89545750 \pm 9.3 \cdot 10^{-3} \) |
\(a_{4}= +0.84906658 \pm 8.7 \cdot 10^{-3} \) | \(a_{5}= +0.24196165 \pm 8.2 \cdot 10^{-3} \) | \(a_{6}= -2.57745045 \pm 1.0 \cdot 10^{-2} \) |
\(a_{7}= -1.56763269 \pm 8.5 \cdot 10^{-3} \) | \(a_{8}= +0.20523986 \pm 7.3 \cdot 10^{-3} \) | \(a_{9}= +2.59275914 \pm 9.0 \cdot 10^{-3} \) |
\(a_{10}= -0.32902039 \pm 9.4 \cdot 10^{-3} \) | \(a_{11}= +0.24728223 \pm 7.8 \cdot 10^{-3} \) | \(a_{12}= +1.60936961 \pm 9.4 \cdot 10^{-3} \) |
\(a_{13}= -0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +2.13167300 \pm 9.2 \cdot 10^{-3} \) | \(a_{15}= +0.45862802 \pm 1.0 \cdot 10^{-2} \) |
\(a_{16}= -1.12815253 \pm 7.5 \cdot 10^{-3} \) | \(a_{17}= -0.92142361 \pm 8.5 \cdot 10^{-3} \) | \(a_{18}= -3.52564393 \pm 1.0 \cdot 10^{-2} \) |
\(a_{19}= +1.37675535 \pm 6.9 \cdot 10^{-3} \) | \(a_{20}= +0.20544155 \pm 8.5 \cdot 10^{-3} \) | \(a_{21}= -2.97138114 \pm 7.2 \cdot 10^{-3} \) |
\(a_{22}= -0.33625534 \pm 8.6 \cdot 10^{-3} \) | \(a_{23}= -0.97728476 \pm 7.1 \cdot 10^{-3} \) | \(a_{24}= +0.38902342 \pm 7.1 \cdot 10^{-3} \) |
\(a_{25}= -0.94145456 \pm 6.4 \cdot 10^{-3} \) | \(a_{26}= +0.37714174 \pm 9.6 \cdot 10^{-3} \) | \(a_{27}= +3.01900727 \pm 7.5 \cdot 10^{-3} \) |
\(a_{28}= -1.33102452 \pm 7.9 \cdot 10^{-3} \) | \(a_{29}= -0.73056686 \pm 6.3 \cdot 10^{-3} \) | \(a_{30}= -0.62364416 \pm 1.2 \cdot 10^{-2} \) |
\(a_{31}= -0.28247439 \pm 9.0 \cdot 10^{-3} \) | \(a_{32}= +1.32882632 \pm 9.8 \cdot 10^{-3} \) | \(a_{33}= +0.46871296 \pm 6.8 \cdot 10^{-3} \) |
\(a_{34}= +1.25295539 \pm 9.2 \cdot 10^{-3} \) | \(a_{35}= -0.37930699 \pm 6.8 \cdot 10^{-3} \) | \(a_{36}= +2.20142513 \pm 8.5 \cdot 10^{-3} \) |
\(a_{37}= +0.89230613 \pm 1.0 \cdot 10^{-2} \) | \(a_{38}= -1.87211726 \pm 6.6 \cdot 10^{-3} \) | \(a_{39}= -0.52570532 \pm 9.3 \cdot 10^{-3} \) |
\(a_{40}= +0.04966017 \pm 7.2 \cdot 10^{-3} \) | \(a_{41}= +0.15103577 \pm 7.6 \cdot 10^{-3} \) | \(a_{42}= +4.04049559 \pm 6.0 \cdot 10^{-3} \) |
\(a_{43}= -1.20762525 \pm 8.5 \cdot 10^{-3} \) | \(a_{44}= +0.20995908 \pm 8.1 \cdot 10^{-3} \) | \(a_{45}= +0.62734828 \pm 9.1 \cdot 10^{-3} \) |
\(a_{46}= +1.32891560 \pm 9.1 \cdot 10^{-3} \) | \(a_{47}= -0.90814642 \pm 8.8 \cdot 10^{-3} \) | \(a_{48}= -2.13836517 \pm 8.6 \cdot 10^{-3} \) |
\(a_{49}= +1.45747225 \pm 7.7 \cdot 10^{-3} \) | \(a_{50}= +1.28019356 \pm 7.6 \cdot 10^{-3} \) | \(a_{51}= -1.74651929 \pm 9.9 \cdot 10^{-3} \) |
\(a_{52}= -0.23548870 \pm 8.7 \cdot 10^{-3} \) | \(a_{53}= -0.76158617 \pm 6.4 \cdot 10^{-3} \) | \(a_{54}= -4.10525778 \pm 8.7 \cdot 10^{-3} \) |
\(a_{55}= +0.05983282 \pm 5.6 \cdot 10^{-3} \) | \(a_{56}= -0.32174071 \pm 6.4 \cdot 10^{-3} \) | \(a_{57}= +2.60958126 \pm 6.7 \cdot 10^{-3} \) |
\(a_{58}= +0.99342765 \pm 6.1 \cdot 10^{-3} \) | \(a_{59}= +0.43979777 \pm 7.8 \cdot 10^{-3} \) | \(a_{60}= +0.38940573 \pm 1.0 \cdot 10^{-2} \) |
\(a_{61}= -0.30677980 \pm 7.6 \cdot 10^{-3} \) | \(a_{62}= +0.38410977 \pm 7.9 \cdot 10^{-3} \) | \(a_{63}= -4.06449399 \pm 6.4 \cdot 10^{-3} \) |
\(a_{64}= -0.67879065 \pm 7.8 \cdot 10^{-3} \) | \(a_{65}= -0.06710809 \pm 8.2 \cdot 10^{-3} \) | \(a_{66}= -0.63735770 \pm 7.7 \cdot 10^{-3} \) |
\(a_{67}= +0.44294911 \pm 8.8 \cdot 10^{-3} \) | \(a_{68}= -0.78234999 \pm 7.5 \cdot 10^{-3} \) | \(a_{69}= -1.85240173 \pm 8.7 \cdot 10^{-3} \) |
\(a_{70}= +0.51578312 \pm 6.7 \cdot 10^{-3} \) | \(a_{71}= +0.22370844 \pm 9.0 \cdot 10^{-3} \) | \(a_{72}= +0.53213751 \pm 7.3 \cdot 10^{-3} \) |
\(a_{73}= +0.51057809 \pm 9.9 \cdot 10^{-3} \) | \(a_{74}= -1.21336133 \pm 9.7 \cdot 10^{-3} \) | \(a_{75}= -1.78448711 \pm 5.1 \cdot 10^{-3} \) |
\(a_{76}= +1.16895695 \pm 6.2 \cdot 10^{-3} \) | \(a_{77}= -0.38764771 \pm 8.0 \cdot 10^{-3} \) | \(a_{78}= +0.71485614 \pm 1.8 \cdot 10^{-2} \) |
\(a_{79}= +0.09863648 \pm 9.1 \cdot 10^{-3} \) | \(a_{80}= -0.27296965 \pm 7.1 \cdot 10^{-3} \) | \(a_{81}= +3.12964083 \pm 7.4 \cdot 10^{-3} \) |
\(a_{82}= -0.20537903 \pm 8.5 \cdot 10^{-3} \) | \(a_{83}= -1.18157434 \pm 5.5 \cdot 10^{-3} \) | \(a_{84}= -2.52290041 \pm 6.9 \cdot 10^{-3} \) |
\(a_{85}= -0.22294918 \pm 8.0 \cdot 10^{-3} \) | \(a_{86}= +1.64213349 \pm 1.0 \cdot 10^{-2} \) | \(a_{87}= -1.38475844 \pm 6.5 \cdot 10^{-3} \) |
\(a_{88}= +0.05075217 \pm 6.1 \cdot 10^{-3} \) | \(a_{89}= -0.31246391 \pm 1.0 \cdot 10^{-2} \) | \(a_{90}= -0.85307062 \pm 1.1 \cdot 10^{-2} \) |
\(a_{91}= +0.43478308 \pm 8.5 \cdot 10^{-3} \) | \(a_{92}= -0.82977982 \pm 7.8 \cdot 10^{-3} \) | \(a_{93}= -0.53541820 \pm 9.8 \cdot 10^{-3} \) |
\(a_{94}= +1.23490102 \pm 7.4 \cdot 10^{-3} \) | \(a_{95}= +0.33312200 \pm 6.1 \cdot 10^{-3} \) | \(a_{96}= +2.51873382 \pm 1.0 \cdot 10^{-2} \) |
\(a_{97}= -1.03483410 \pm 8.8 \cdot 10^{-3} \) | \(a_{98}= -1.98187641 \pm 9.1 \cdot 10^{-3} \) | \(a_{99}= +0.64114327 \pm 6.5 \cdot 10^{-3} \) |
\(a_{100}= -0.79935760 \pm 6.6 \cdot 10^{-3} \) | \(a_{101}= -1.27785752 \pm 6.5 \cdot 10^{-3} \) | \(a_{102}= +2.37492369 \pm 1.0 \cdot 10^{-2} \) |
\(a_{103}= -0.54203337 \pm 9.0 \cdot 10^{-3} \) | \(a_{104}= -0.05692329 \pm 7.3 \cdot 10^{-3} \) | \(a_{105}= -0.71896028 \pm 6.7 \cdot 10^{-3} \) |
\(a_{106}= +1.03560782 \pm 8.1 \cdot 10^{-3} \) | \(a_{107}= -1.23423835 \pm 9.6 \cdot 10^{-3} \) | \(a_{108}= +2.56333816 \pm 7.8 \cdot 10^{-3} \) |
\(a_{109}= -0.28397526 \pm 6.2 \cdot 10^{-3} \) | \(a_{110}= -0.08136090 \pm 6.3 \cdot 10^{-3} \) | \(a_{111}= +1.69132834 \pm 5.8 \cdot 10^{-3} \) |
\(a_{112}= +1.76852878 \pm 7.4 \cdot 10^{-3} \) | \(a_{113}= -1.04617094 \pm 1.0 \cdot 10^{-2} \) | \(a_{114}= -3.54851870 \pm 7.3 \cdot 10^{-3} \) |
\(a_{115}= -0.23646543 \pm 7.3 \cdot 10^{-3} \) | \(a_{116}= -0.62029990 \pm 7.0 \cdot 10^{-3} \) | \(a_{117}= -0.71910200 \pm 9.0 \cdot 10^{-3} \) |
\(a_{118}= -0.59803871 \pm 8.5 \cdot 10^{-3} \) | \(a_{119}= +1.44445377 \pm 9.3 \cdot 10^{-3} \) | \(a_{120}= +0.09412875 \pm 7.6 \cdot 10^{-3} \) |
\(a_{121}= -0.93885150 \pm 5.7 \cdot 10^{-3} \) | \(a_{122}= +0.41716036 \pm 7.1 \cdot 10^{-3} \) | \(a_{123}= +0.28628189 \pm 8.5 \cdot 10^{-3} \) |
\(a_{124}= -0.23983956 \pm 8.2 \cdot 10^{-3} \) | \(a_{125}= -0.46975755 \pm 6.8 \cdot 10^{-3} \) | \(a_{126}= +5.52691467 \pm 6.8 \cdot 10^{-3} \) |
\(a_{127}= -1.94957237 \pm 9.0 \cdot 10^{-3} \) | \(a_{128}= -0.40580416 \pm 7.6 \cdot 10^{-3} \) | \(a_{129}= -2.28900234 \pm 9.3 \cdot 10^{-3} \) |
\(a_{130}= +0.09125384 \pm 1.7 \cdot 10^{-2} \) | \(a_{131}= +0.83831658 \pm 7.3 \cdot 10^{-3} \) | \(a_{132}= +0.39796851 \pm 7.6 \cdot 10^{-3} \) |
\(a_{133}= -2.15824669 \pm 5.2 \cdot 10^{-3} \) | \(a_{134}= -0.60232392 \pm 1.0 \cdot 10^{-2} \) | \(a_{135}= +0.73048398 \pm 6.7 \cdot 10^{-3} \) |
\(a_{136}= -0.18911285 \pm 5.3 \cdot 10^{-3} \) | \(a_{137}= +1.30583796 \pm 8.7 \cdot 10^{-3} \) | \(a_{138}= +2.51890305 \pm 1.0 \cdot 10^{-2} \) |
\(a_{139}= +0.63395739 \pm 8.0 \cdot 10^{-3} \) | \(a_{140}= -0.32205689 \pm 6.6 \cdot 10^{-3} \) | \(a_{141}= -1.72135294 \pm 7.0 \cdot 10^{-3} \) |
\(a_{142}= -0.30419960 \pm 9.4 \cdot 10^{-3} \) | \(a_{143}= -0.06858375 \pm 7.8 \cdot 10^{-3} \) | \(a_{144}= -2.92502778 \pm 8.0 \cdot 10^{-3} \) |
\(a_{145}= -0.17676916 \pm 6.0 \cdot 10^{-3} \) | \(a_{146}= -0.69428607 \pm 9.3 \cdot 10^{-3} \) | \(a_{147}= +2.76257671 \pm 7.9 \cdot 10^{-3} \) |
\(a_{148}= +0.75762731 \pm 9.0 \cdot 10^{-3} \) | \(a_{149}= +1.36063154 \pm 8.2 \cdot 10^{-3} \) | \(a_{150}= +2.42655248 \pm 6.5 \cdot 10^{-3} \) |
\(a_{151}= -1.03599202 \pm 6.5 \cdot 10^{-3} \) | \(a_{152}= +0.28256507 \pm 5.9 \cdot 10^{-3} \) | \(a_{153}= -2.38902948 \pm 8.2 \cdot 10^{-3} \) |
\(a_{154}= +0.52712486 \pm 1.0 \cdot 10^{-2} \) | \(a_{155}= -0.06834797 \pm 8.6 \cdot 10^{-3} \) | \(a_{156}= -0.44635882 \pm 1.8 \cdot 10^{-2} \) |
\(a_{157}= +1.02773703 \pm 9.5 \cdot 10^{-3} \) | \(a_{158}= -0.13412627 \pm 8.2 \cdot 10^{-3} \) | \(a_{159}= -1.44355422 \pm 6.4 \cdot 10^{-3} \) |
\(a_{160}= +0.32152501 \pm 8.8 \cdot 10^{-3} \) | \(a_{161}= +1.53202354 \pm 6.3 \cdot 10^{-3} \) | \(a_{162}= -4.25569773 \pm 7.4 \cdot 10^{-3} \) |
\(a_{163}= -1.57608307 \pm 1.0 \cdot 10^{-2} \) | \(a_{164}= +0.12823943 \pm 7.9 \cdot 10^{-3} \) | \(a_{165}= +0.11341056 \pm 6.2 \cdot 10^{-3} \) |
\(a_{166}= +1.60670937 \pm 5.6 \cdot 10^{-3} \) | \(a_{167}= -1.72365646 \pm 1.0 \cdot 10^{-2} \) | \(a_{168}= -0.60984583 \pm 5.9 \cdot 10^{-3} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +0.30316715 \pm 8.7 \cdot 10^{-3} \) | \(a_{171}= +3.56959502 \pm 8.0 \cdot 10^{-3} \) |
\(a_{172}= -1.02535423 \pm 8.6 \cdot 10^{-3} \) | \(a_{173}= -0.48245922 \pm 1.0 \cdot 10^{-2} \) | \(a_{174}= +1.88299989 \pm 4.7 \cdot 10^{-3} \) |
\(a_{175}= +1.47585494 \pm 6.9 \cdot 10^{-3} \) | \(a_{176}= -0.27897207 \pm 6.4 \cdot 10^{-3} \) | \(a_{177}= +0.83361799 \pm 7.3 \cdot 10^{-3} \) |
\(a_{178}= +0.42488964 \pm 1.2 \cdot 10^{-2} \) | \(a_{179}= +1.64495459 \pm 6.6 \cdot 10^{-3} \) | \(a_{180}= +0.53266046 \pm 8.7 \cdot 10^{-3} \) |
\(a_{181}= -0.45514014 \pm 8.6 \cdot 10^{-3} \) | \(a_{182}= -0.59121972 \pm 1.8 \cdot 10^{-2} \) | \(a_{183}= -0.58148808 \pm 7.3 \cdot 10^{-3} \) |
\(a_{184}= -0.20057778 \pm 5.8 \cdot 10^{-3} \) | \(a_{185}= +0.21590386 \pm 7.5 \cdot 10^{-3} \) | \(a_{186}= +0.72806374 \pm 1.0 \cdot 10^{-2} \) |
\(a_{187}= -0.22785168 \pm 6.7 \cdot 10^{-3} \) | \(a_{188}= -0.77107677 \pm 8.1 \cdot 10^{-3} \) | \(a_{189}= -4.73269448 \pm 6.4 \cdot 10^{-3} \) |
\(a_{190}= -0.45298058 \pm 6.9 \cdot 10^{-3} \) | \(a_{191}= +0.29335091 \pm 7.8 \cdot 10^{-3} \) | \(a_{192}= -1.28661883 \pm 8.9 \cdot 10^{-3} \) |
\(a_{193}= -0.44386754 \pm 9.2 \cdot 10^{-3} \) | \(a_{194}= +1.40717142 \pm 8.5 \cdot 10^{-3} \) | \(a_{195}= -0.12720053 \pm 1.7 \cdot 10^{-2} \) |
\(a_{196}= +1.23749097 \pm 7.0 \cdot 10^{-3} \) | \(a_{197}= -0.82005208 \pm 7.9 \cdot 10^{-3} \) | \(a_{198}= -0.87182910 \pm 7.2 \cdot 10^{-3} \) |
\(a_{199}= +1.02908586 \pm 8.8 \cdot 10^{-3} \) | \(a_{200}= -0.19322400 \pm 5.1 \cdot 10^{-3} \) | \(a_{201}= +0.83959121 \pm 1.1 \cdot 10^{-2} \) |
\(a_{202}= +1.73763560 \pm 7.7 \cdot 10^{-3} \) | \(a_{203}= +1.14526049 \pm 7.2 \cdot 10^{-3} \) | \(a_{204}= -1.48291115 \pm 9.3 \cdot 10^{-3} \) |
\(a_{205}= +0.03654486 \pm 6.9 \cdot 10^{-3} \) | \(a_{206}= +0.73705907 \pm 1.0 \cdot 10^{-2} \) | \(a_{207}= -2.53386400 \pm 8.6 \cdot 10^{-3} \) |
\(a_{208}= +0.31289321 \pm 7.5 \cdot 10^{-3} \) | \(a_{209}= +0.34044713 \pm 5.8 \cdot 10^{-3} \) | \(a_{210}= +0.97764498 \pm 4.7 \cdot 10^{-3} \) |
\(a_{211}= -0.69220027 \pm 9.9 \cdot 10^{-3} \) | \(a_{212}= -0.64663736 \pm 6.9 \cdot 10^{-3} \) | \(a_{213}= +0.42402983 \pm 9.9 \cdot 10^{-3} \) |
\(a_{214}= +1.67832209 \pm 1.1 \cdot 10^{-2} \) | \(a_{215}= -0.29219900 \pm 7.8 \cdot 10^{-3} \) | \(a_{216}= +0.61962061 \pm 5.8 \cdot 10^{-3} \) |
\(a_{217}= +0.44281608 \pm 8.1 \cdot 10^{-3} \) | \(a_{218}= +0.38615065 \pm 6.8 \cdot 10^{-3} \) | \(a_{219}= +0.96777908 \pm 1.0 \cdot 10^{-2} \) |
\(a_{220}= +0.05080204 \pm 6.1 \cdot 10^{-3} \) | \(a_{221}= +0.25555693 \pm 8.5 \cdot 10^{-3} \) | \(a_{222}= -2.29987483 \pm 6.1 \cdot 10^{-3} \) |
\(a_{223}= +1.33196138 \pm 8.8 \cdot 10^{-3} \) | \(a_{224}= -2.08311158 \pm 8.7 \cdot 10^{-3} \) | \(a_{225}= -2.44096492 \pm 5.4 \cdot 10^{-3} \) |
\(a_{226}= +1.42258729 \pm 1.1 \cdot 10^{-2} \) | \(a_{227}= -0.28148330 \pm 6.6 \cdot 10^{-3} \) | \(a_{228}= +2.21570822 \pm 5.6 \cdot 10^{-3} \) |
\(a_{229}= -1.47710198 \pm 8.7 \cdot 10^{-3} \) | \(a_{230}= +0.32154661 \pm 9.1 \cdot 10^{-3} \) | \(a_{231}= -0.73476976 \pm 6.2 \cdot 10^{-3} \) |
\(a_{232}= -0.14994144 \pm 5.5 \cdot 10^{-3} \) | \(a_{233}= +1.89931994 \pm 1.0 \cdot 10^{-2} \) | \(a_{234}= +0.97783769 \pm 1.8 \cdot 10^{-2} \) |
\(a_{235}= -0.21973661 \pm 6.5 \cdot 10^{-3} \) | \(a_{236}= +0.37341759 \pm 7.8 \cdot 10^{-3} \) | \(a_{237}= +0.18696126 \pm 8.7 \cdot 10^{-3} \) |
\(a_{238}= -1.96417383 \pm 9.4 \cdot 10^{-3} \) | \(a_{239}= -1.18433606 \pm 8.0 \cdot 10^{-3} \) | \(a_{240}= -0.51740236 \pm 9.4 \cdot 10^{-3} \) |
\(a_{241}= -1.31594943 \pm 7.1 \cdot 10^{-3} \) | \(a_{242}= +1.27665390 \pm 7.0 \cdot 10^{-3} \) | \(a_{243}= +2.91309393 \pm 9.2 \cdot 10^{-3} \) |
\(a_{244}= -0.26047648 \pm 6.0 \cdot 10^{-3} \) | \(a_{245}= +0.35265239 \pm 7.3 \cdot 10^{-3} \) | \(a_{246}= -0.38928722 \pm 1.1 \cdot 10^{-2} \) |
\(a_{247}= -0.38184323 \pm 6.9 \cdot 10^{-3} \) | \(a_{248}= -0.05797500 \pm 6.9 \cdot 10^{-3} \) | \(a_{249}= -2.23962396 \pm 4.9 \cdot 10^{-3} \) |
\(a_{250}= +0.63877813 \pm 5.1 \cdot 10^{-3} \) | \(a_{251}= +0.04389168 \pm 9.7 \cdot 10^{-3} \) | \(a_{252}= -3.45102599 \pm 5.6 \cdot 10^{-3} \) |
\(a_{253}= -0.24166516 \pm 6.9 \cdot 10^{-3} \) | \(a_{254}= +2.65103606 \pm 9.9 \cdot 10^{-3} \) | \(a_{255}= -0.42259069 \pm 1.0 \cdot 10^{-2} \) |
\(a_{256}= +1.23060472 \pm 8.1 \cdot 10^{-3} \) | \(a_{257}= +0.31040678 \pm 9.9 \cdot 10^{-3} \) | \(a_{258}= +3.11259425 \pm 1.2 \cdot 10^{-2} \) |
\(a_{259}= -1.39880825 \pm 9.4 \cdot 10^{-3} \) | \(a_{260}= -0.05697923 \pm 1.7 \cdot 10^{-2} \) | \(a_{261}= -1.89418391 \pm 4.4 \cdot 10^{-3} \) |
\(a_{262}= -1.13994613 \pm 9.0 \cdot 10^{-3} \) | \(a_{263}= +0.64062079 \pm 8.7 \cdot 10^{-3} \) | \(a_{264}= +0.09619858 \pm 6.0 \cdot 10^{-3} \) |
\(a_{265}= -0.18427465 \pm 5.4 \cdot 10^{-3} \) | \(a_{266}= +2.93479221 \pm 5.9 \cdot 10^{-3} \) | \(a_{267}= -0.59226207 \pm 1.0 \cdot 10^{-2} \) |
\(a_{268}= +0.37609328 \pm 9.1 \cdot 10^{-3} \) | \(a_{269}= +1.70468987 \pm 1.0 \cdot 10^{-2} \) | \(a_{270}= -0.99331494 \pm 8.2 \cdot 10^{-3} \) |
\(a_{271}= -0.37368290 \pm 8.3 \cdot 10^{-3} \) | \(a_{272}= +1.03950637 \pm 7.7 \cdot 10^{-3} \) | \(a_{273}= +0.82411285 \pm 1.7 \cdot 10^{-2} \) |
\(a_{274}= -1.77568352 \pm 8.7 \cdot 10^{-3} \) | \(a_{275}= -0.23280498 \pm 6.4 \cdot 10^{-3} \) | \(a_{276}= -1.57281239 \pm 7.4 \cdot 10^{-3} \) |
\(a_{277}= -0.31414035 \pm 8.7 \cdot 10^{-3} \) | \(a_{278}= -0.86205771 \pm 7.6 \cdot 10^{-3} \) | \(a_{279}= -0.73238805 \pm 8.8 \cdot 10^{-3} \) |
\(a_{280}= -0.07784891 \pm 6.5 \cdot 10^{-3} \) | \(a_{281}= +0.30171974 \pm 1.2 \cdot 10^{-2} \) | \(a_{282}= +2.34070240 \pm 7.9 \cdot 10^{-3} \) |
\(a_{283}= -0.07836766 \pm 6.7 \cdot 10^{-3} \) | \(a_{284}= +0.18994336 \pm 7.9 \cdot 10^{-3} \) | \(a_{285}= +0.63141859 \pm 7.3 \cdot 10^{-3} \) |
\(a_{286}= +0.09326045 \pm 1.7 \cdot 10^{-2} \) | \(a_{287}= -0.23676861 \pm 4.2 \cdot 10^{-3} \) | \(a_{288}= +3.44532659 \pm 9.8 \cdot 10^{-3} \) |
\(a_{289}= -0.15097854 \pm 7.0 \cdot 10^{-3} \) | \(a_{290}= +0.24037139 \pm 6.4 \cdot 10^{-3} \) | \(a_{291}= -1.96148406 \pm 8.8 \cdot 10^{-3} \) |
\(a_{292}= +0.43351479 \pm 9.5 \cdot 10^{-3} \) | \(a_{293}= -0.45252031 \pm 7.5 \cdot 10^{-3} \) | \(a_{294}= -3.75656251 \pm 1.0 \cdot 10^{-2} \) |
\(a_{295}= +0.10641419 \pm 7.1 \cdot 10^{-3} \) | \(a_{296}= +0.18313678 \pm 9.5 \cdot 10^{-3} \) | \(a_{297}= +0.74654685 \pm 6.8 \cdot 10^{-3} \) |
\(a_{298}= -1.85019204 \pm 8.4 \cdot 10^{-3} \) | \(a_{299}= +0.27105002 \pm 7.1 \cdot 10^{-3} \) | \(a_{300}= -1.51514836 \pm 6.0 \cdot 10^{-3} \) |
\(a_{301}= +1.89311282 \pm 7.0 \cdot 10^{-3} \) | \(a_{302}= +1.40874596 \pm 6.3 \cdot 10^{-3} \) | \(a_{303}= -2.42212462 \pm 7.2 \cdot 10^{-3} \) |
\(a_{304}= -1.55319002 \pm 5.4 \cdot 10^{-3} \) | \(a_{305}= -0.07422895 \pm 6.1 \cdot 10^{-3} \) | \(a_{306}= +3.24861154 \pm 1.0 \cdot 10^{-2} \) |
\(a_{307}= +1.45207090 \pm 6.5 \cdot 10^{-3} \) | \(a_{308}= -0.32913871 \pm 8.6 \cdot 10^{-3} \) | \(a_{309}= -1.02740121 \pm 1.0 \cdot 10^{-2} \) |
\(a_{310}= +0.09293983 \pm 8.6 \cdot 10^{-3} \) | \(a_{311}= +1.06727591 \pm 1.1 \cdot 10^{-2} \) | \(a_{312}= -0.10789568 \pm 1.6 \cdot 10^{-2} \) |
\(a_{313}= -0.01787529 \pm 6.5 \cdot 10^{-3} \) | \(a_{314}= -1.39752079 \pm 9.0 \cdot 10^{-3} \) | \(a_{315}= -0.98345167 \pm 5.2 \cdot 10^{-3} \) |
\(a_{316}= +0.08374894 \pm 8.0 \cdot 10^{-3} \) | \(a_{317}= +0.44736541 \pm 8.2 \cdot 10^{-3} \) | \(a_{318}= +1.96295062 \pm 8.4 \cdot 10^{-3} \) |
\(a_{319}= -0.18065620 \pm 5.1 \cdot 10^{-3} \) | \(a_{320}= -0.16424131 \pm 7.8 \cdot 10^{-3} \) | \(a_{321}= -2.33944635 \pm 9.4 \cdot 10^{-3} \) |
\(a_{322}= -2.08325154 \pm 9.0 \cdot 10^{-3} \) | \(a_{323}= -1.26857488 \pm 5.1 \cdot 10^{-3} \) | \(a_{324}= +2.65727342 \pm 7.2 \cdot 10^{-3} \) |
\(a_{325}= +0.26111251 \pm 6.4 \cdot 10^{-3} \) | \(a_{326}= +2.14316387 \pm 7.5 \cdot 10^{-3} \) | \(a_{327}= -0.53826303 \pm 7.4 \cdot 10^{-3} \) |
\(a_{328}= +0.03099856 \pm 3.6 \cdot 10^{-3} \) | \(a_{329}= +1.42364001 \pm 6.5 \cdot 10^{-3} \) | \(a_{330}= -0.15421612 \pm 7.1 \cdot 10^{-3} \) |
\(a_{331}= +0.69321430 \pm 1.0 \cdot 10^{-2} \) | \(a_{332}= -1.00323528 \pm 5.1 \cdot 10^{-3} \) | \(a_{333}= +2.31353486 \pm 9.0 \cdot 10^{-3} \) |
\(a_{334}= +2.34383473 \pm 1.0 \cdot 10^{-2} \) | \(a_{335}= +0.10717670 \pm 9.3 \cdot 10^{-3} \) | \(a_{336}= +3.35217114 \pm 5.2 \cdot 10^{-3} \) |
\(a_{337}= +1.24837192 \pm 9.2 \cdot 10^{-3} \) | \(a_{338}= -0.10460030 \pm 9.6 \cdot 10^{-3} \) | \(a_{339}= -1.98297255 \pm 1.1 \cdot 10^{-2} \) |
\(a_{340}= -0.18929869 \pm 7.4 \cdot 10^{-3} \) | \(a_{341}= -0.06985090 \pm 6.5 \cdot 10^{-3} \) | \(a_{342}= -4.85394914 \pm 8.8 \cdot 10^{-3} \) |
\(a_{343}= -0.71714845 \pm 6.3 \cdot 10^{-3} \) | \(a_{344}= -0.24785283 \pm 5.0 \cdot 10^{-3} \) | \(a_{345}= -0.44821018 \pm 9.8 \cdot 10^{-3} \) |
\(a_{346}= +0.65604992 \pm 9.7 \cdot 10^{-3} \) | \(a_{347}= -0.69594233 \pm 1.1 \cdot 10^{-2} \) | \(a_{348}= -1.17575210 \pm 6.7 \cdot 10^{-3} \) |
\(a_{349}= -0.72047015 \pm 9.3 \cdot 10^{-3} \) | \(a_{350}= -2.00687327 \pm 9.0 \cdot 10^{-3} \) | \(a_{351}= -0.83732196 \pm 7.5 \cdot 10^{-3} \) |
\(a_{352}= +0.32859514 \pm 8.3 \cdot 10^{-3} \) | \(a_{353}= +0.63262358 \pm 7.5 \cdot 10^{-3} \) | \(a_{354}= -1.13355697 \pm 7.7 \cdot 10^{-3} \) |
\(a_{355}= +0.05412886 \pm 8.8 \cdot 10^{-3} \) | \(a_{356}= -0.26530266 \pm 9.7 \cdot 10^{-3} \) | \(a_{357}= +2.73790073 \pm 8.7 \cdot 10^{-3} \) |
\(a_{358}= -2.23681563 \pm 6.3 \cdot 10^{-3} \) | \(a_{359}= +0.61966795 \pm 1.2 \cdot 10^{-2} \) | \(a_{360}= +0.12875687 \pm 6.9 \cdot 10^{-3} \) |
\(a_{361}= +0.89545529 \pm 6.3 \cdot 10^{-3} \) | \(a_{362}= +0.61890132 \pm 9.4 \cdot 10^{-3} \) | \(a_{363}= -1.77955312 \pm 6.4 \cdot 10^{-3} \) |
\(a_{364}= +0.36915978 \pm 1.7 \cdot 10^{-2} \) | \(a_{365}= +0.12354032 \pm 8.1 \cdot 10^{-3} \) | \(a_{366}= +0.79070974 \pm 5.4 \cdot 10^{-3} \) |
\(a_{367}= -0.24828742 \pm 9.9 \cdot 10^{-3} \) | \(a_{368}= +1.10252627 \pm 6.4 \cdot 10^{-3} \) | \(a_{369}= +0.39159938 \pm 7.0 \cdot 10^{-3} \) |
\(a_{370}= -0.29358691 \pm 7.8 \cdot 10^{-3} \) | \(a_{371}= +1.19388738 \pm 6.6 \cdot 10^{-3} \) | \(a_{372}= -0.45460569 \pm 1.0 \cdot 10^{-2} \) |
\(a_{373}= +0.24508606 \pm 6.3 \cdot 10^{-3} \) | \(a_{374}= +0.30983360 \pm 7.2 \cdot 10^{-3} \) | \(a_{375}= -0.89040547 \pm 6.8 \cdot 10^{-3} \) |
\(a_{376}= -0.18638784 \pm 7.6 \cdot 10^{-3} \) | \(a_{377}= +0.20262279 \pm 6.3 \cdot 10^{-3} \) | \(a_{378}= +6.43553629 \pm 8.0 \cdot 10^{-3} \) |
\(a_{379}= +0.24967626 \pm 8.3 \cdot 10^{-3} \) | \(a_{380}= +0.28284275 \pm 6.4 \cdot 10^{-3} \) | \(a_{381}= -3.69533157 \pm 8.3 \cdot 10^{-3} \) |
\(a_{382}= -0.39889970 \pm 9.1 \cdot 10^{-3} \) | \(a_{383}= +1.49878276 \pm 1.2 \cdot 10^{-2} \) | \(a_{384}= -0.76918454 \pm 7.5 \cdot 10^{-3} \) |
\(a_{385}= -0.09379588 \pm 5.1 \cdot 10^{-3} \) | \(a_{386}= +0.60357280 \pm 8.6 \cdot 10^{-3} \) | \(a_{387}= -3.13108140 \pm 7.8 \cdot 10^{-3} \) |
\(a_{388}= -0.87864305 \pm 8.3 \cdot 10^{-3} \) | \(a_{389}= -0.85997386 \pm 7.9 \cdot 10^{-3} \) | \(a_{390}= +0.17296777 \pm 2.7 \cdot 10^{-2} \) |
\(a_{391}= +0.90049325 \pm 5.0 \cdot 10^{-3} \) | \(a_{392}= +0.29913139 \pm 5.8 \cdot 10^{-3} \) | \(a_{393}= +1.58899344 \pm 8.3 \cdot 10^{-3} \) |
\(a_{394}= +1.11511000 \pm 9.2 \cdot 10^{-3} \) | \(a_{395}= +0.02386625 \pm 7.3 \cdot 10^{-3} \) | \(a_{396}= +0.54437332 \pm 6.7 \cdot 10^{-3} \) |
\(a_{397}= +0.72628072 \pm 6.9 \cdot 10^{-3} \) | \(a_{398}= -1.39935493 \pm 1.0 \cdot 10^{-2} \) | \(a_{399}= -4.09086488 \pm 3.5 \cdot 10^{-3} \) |
\(a_{400}= +1.06210434 \pm 6.0 \cdot 10^{-3} \) | \(a_{401}= +0.17959588 \pm 6.6 \cdot 10^{-3} \) | \(a_{402}= -1.14167939 \pm 1.4 \cdot 10^{-2} \) |
\(a_{403}= +0.07834430 \pm 9.0 \cdot 10^{-3} \) | \(a_{404}= -1.08498611 \pm 7.5 \cdot 10^{-3} \) | \(a_{405}= +0.75725306 \pm 7.4 \cdot 10^{-3} \) |
\(a_{406}= -1.55732965 \pm 7.0 \cdot 10^{-3} \) | \(a_{407}= +0.22065145 \pm 9.0 \cdot 10^{-3} \) | \(a_{408}= -0.35845537 \pm 6.4 \cdot 10^{-3} \) |
\(a_{409}= +1.47199849 \pm 7.7 \cdot 10^{-3} \) | \(a_{410}= -0.04969385 \pm 9.4 \cdot 10^{-3} \) | \(a_{411}= +2.47516037 \pm 7.7 \cdot 10^{-3} \) |
\(a_{412}= -0.46022242 \pm 9.0 \cdot 10^{-3} \) | \(a_{413}= -0.68944136 \pm 8.1 \cdot 10^{-3} \) | \(a_{414}= +3.44555808 \pm 1.0 \cdot 10^{-2} \) |
\(a_{415}= -0.28589568 \pm 5.1 \cdot 10^{-3} \) | \(a_{416}= -0.36855011 \pm 9.8 \cdot 10^{-3} \) | \(a_{417}= +1.20163929 \pm 9.2 \cdot 10^{-3} \) |
\(a_{418}= -0.46294133 \pm 5.0 \cdot 10^{-3} \) | \(a_{419}= +0.35128423 \pm 9.7 \cdot 10^{-3} \) | \(a_{420}= -0.61044515 \pm 5.9 \cdot 10^{-3} \) |
\(a_{421}= -0.11859619 \pm 9.6 \cdot 10^{-3} \) | \(a_{422}= +0.94125661 \pm 1.1 \cdot 10^{-2} \) | \(a_{423}= -2.35460493 \pm 7.9 \cdot 10^{-3} \) |
\(a_{424}= -0.15630784 \pm 5.2 \cdot 10^{-3} \) | \(a_{425}= +0.86747846 \pm 6.0 \cdot 10^{-3} \) | \(a_{426}= -0.57659741 \pm 1.1 \cdot 10^{-2} \) |
\(a_{427}= +0.48091805 \pm 9.2 \cdot 10^{-3} \) | \(a_{428}= -1.04795053 \pm 9.7 \cdot 10^{-3} \) | \(a_{429}= -0.12999759 \pm 1.7 \cdot 10^{-2} \) |
\(a_{430}= +0.39733333 \pm 1.0 \cdot 10^{-2} \) | \(a_{431}= +0.03470243 \pm 1.0 \cdot 10^{-2} \) | \(a_{432}= -3.40590067 \pm 6.7 \cdot 10^{-3} \) |
\(a_{433}= +0.61851102 \pm 8.2 \cdot 10^{-3} \) | \(a_{434}= -0.60214303 \pm 6.2 \cdot 10^{-3} \) | \(a_{435}= -0.33505844 \pm 6.3 \cdot 10^{-3} \) |
\(a_{436}= -0.24111390 \pm 6.6 \cdot 10^{-3} \) | \(a_{437}= -1.34548202 \pm 6.5 \cdot 10^{-3} \) | \(a_{438}= -1.31598974 \pm 9.6 \cdot 10^{-3} \) |
\(a_{439}= -0.77872532 \pm 7.8 \cdot 10^{-3} \) | \(a_{440}= +0.01228008 \pm 5.6 \cdot 10^{-3} \) | \(a_{441}= +3.77887450 \pm 8.1 \cdot 10^{-3} \) |
\(a_{442}= -0.34750730 \pm 1.8 \cdot 10^{-2} \) | \(a_{443}= +0.12586422 \pm 8.9 \cdot 10^{-3} \) | \(a_{444}= +1.43605036 \pm 6.1 \cdot 10^{-3} \) |
\(a_{445}= -0.07560428 \pm 9.6 \cdot 10^{-3} \) | \(a_{446}= -1.81120624 \pm 7.7 \cdot 10^{-3} \) | \(a_{447}= +2.57901926 \pm 6.2 \cdot 10^{-3} \) |
\(a_{448}= +1.06409442 \pm 6.5 \cdot 10^{-3} \) | \(a_{449}= +0.10146820 \pm 7.0 \cdot 10^{-3} \) | \(a_{450}= +3.31923355 \pm 6.6 \cdot 10^{-3} \) |
\(a_{451}= +0.03734846 \pm 7.0 \cdot 10^{-3} \) | \(a_{452}= -0.88826878 \pm 1.0 \cdot 10^{-2} \) | \(a_{453}= -1.96367885 \pm 7.9 \cdot 10^{-3} \) |
\(a_{454}= +0.38276208 \pm 7.0 \cdot 10^{-3} \) | \(a_{455}= +0.10520083 \pm 1.6 \cdot 10^{-2} \) | \(a_{456}= +0.53559008 \pm 5.2 \cdot 10^{-3} \) |
\(a_{457}= -0.58329347 \pm 8.1 \cdot 10^{-3} \) | \(a_{458}= +2.00856900 \pm 6.8 \cdot 10^{-3} \) | \(a_{459}= -2.78178456 \pm 6.3 \cdot 10^{-3} \) |
\(a_{460}= -0.20077490 \pm 7.7 \cdot 10^{-3} \) | \(a_{461}= +0.73451648 \pm 9.6 \cdot 10^{-3} \) | \(a_{462}= +0.99914276 \pm 6.9 \cdot 10^{-3} \) |
\(a_{463}= +0.39836826 \pm 1.0 \cdot 10^{-2} \) | \(a_{464}= +0.82419085 \pm 5.1 \cdot 10^{-3} \) | \(a_{465}= -0.12955067 \pm 1.0 \cdot 10^{-2} \) |
\(a_{466}= -2.58270261 \pm 1.2 \cdot 10^{-2} \) | \(a_{467}= -0.11709044 \pm 8.2 \cdot 10^{-3} \) | \(a_{468}= -0.61056548 \pm 1.7 \cdot 10^{-2} \) |
\(a_{469}= -0.69438151 \pm 7.0 \cdot 10^{-3} \) | \(a_{470}= +0.29879869 \pm 7.3 \cdot 10^{-3} \) | \(a_{471}= +1.94803186 \pm 8.7 \cdot 10^{-3} \) |
\(a_{472}= +0.09026403 \pm 7.0 \cdot 10^{-3} \) | \(a_{473}= -0.29862427 \pm 7.5 \cdot 10^{-3} \) | \(a_{474}= -0.25423065 \pm 1.0 \cdot 10^{-2} \) |
\(a_{475}= -1.29615260 \pm 4.8 \cdot 10^{-3} \) | \(a_{476}= +1.22643741 \pm 7.2 \cdot 10^{-3} \) | \(a_{477}= -1.97460950 \pm 6.0 \cdot 10^{-3} \) |
\(a_{478}= +1.61046476 \pm 9.5 \cdot 10^{-3} \) | \(a_{479}= +1.38519639 \pm 9.9 \cdot 10^{-3} \) | \(a_{480}= +0.60943699 \pm 1.1 \cdot 10^{-2} \) |
\(a_{481}= -0.24748119 \pm 1.0 \cdot 10^{-2} \) | \(a_{482}= +1.78943313 \pm 7.0 \cdot 10^{-3} \) | \(a_{483}= +2.90388551 \pm 4.8 \cdot 10^{-3} \) |
\(a_{484}= -0.79714743 \pm 6.4 \cdot 10^{-3} \) | \(a_{485}= -0.25039017 \pm 6.2 \cdot 10^{-3} \) | \(a_{486}= -3.96123641 \pm 1.0 \cdot 10^{-2} \) |
\(a_{487}= -0.93144441 \pm 1.0 \cdot 10^{-2} \) | \(a_{488}= -0.06296344 \pm 5.4 \cdot 10^{-3} \) | \(a_{489}= -2.98739849 \pm 9.0 \cdot 10^{-3} \) |
\(a_{490}= -0.47953809 \pm 8.9 \cdot 10^{-3} \) | \(a_{491}= -1.30985925 \pm 1.0 \cdot 10^{-2} \) | \(a_{492}= +0.24307238 \pm 9.5 \cdot 10^{-3} \) |
\(a_{493}= +0.67316155 \pm 6.6 \cdot 10^{-3} \) | \(a_{494}= +0.51923191 \pm 1.6 \cdot 10^{-2} \) | \(a_{495}= +0.15513208 \pm 5.6 \cdot 10^{-3} \) |
\(a_{496}= +0.31867419 \pm 6.9 \cdot 10^{-3} \) | \(a_{497}= -0.35069266 \pm 7.1 \cdot 10^{-3} \) | \(a_{498}= +3.04544933 \pm 6.1 \cdot 10^{-3} \) |
\(a_{499}= +1.32331441 \pm 8.7 \cdot 10^{-3} \) | \(a_{500}= -0.39885543 \pm 5.4 \cdot 10^{-3} \) | \(a_{501}= -3.26711757 \pm 9.6 \cdot 10^{-3} \) |
\(a_{502}= -0.05968407 \pm 9.2 \cdot 10^{-3} \) | \(a_{503}= +1.28597481 \pm 9.0 \cdot 10^{-3} \) | \(a_{504}= -0.83419616 \pm 5.0 \cdot 10^{-3} \) |
\(a_{505}= -0.30919251 \pm 6.8 \cdot 10^{-3} \) | \(a_{506}= +0.32861721 \pm 1.0 \cdot 10^{-2} \) | \(a_{507}= +0.14580442 \pm 9.3 \cdot 10^{-3} \) |
\(a_{508}= -1.65531674 \pm 7.2 \cdot 10^{-3} \) | \(a_{509}= -0.75253533 \pm 9.2 \cdot 10^{-3} \) | \(a_{510}= +0.57464045 \pm 1.2 \cdot 10^{-2} \) |
\(a_{511}= -0.80039891 \pm 1.0 \cdot 10^{-2} \) | \(a_{512}= -1.26757691 \pm 8.2 \cdot 10^{-3} \) | \(a_{513}= +4.15643440 \pm 7.4 \cdot 10^{-3} \) |
\(a_{514}= -0.42209234 \pm 9.0 \cdot 10^{-3} \) | \(a_{515}= -0.13115129 \pm 9.0 \cdot 10^{-3} \) | \(a_{516}= -1.94351538 \pm 1.0 \cdot 10^{-2} \) |
\(a_{517}= -0.22456847 \pm 8.1 \cdot 10^{-3} \) | \(a_{518}= +1.90210488 \pm 1.1 \cdot 10^{-2} \) | \(a_{519}= -0.91448095 \pm 1.0 \cdot 10^{-2} \) |
\(a_{520}= -0.01377325 \pm 1.5 \cdot 10^{-2} \) | \(a_{521}= -0.85248759 \pm 9.2 \cdot 10^{-3} \) | \(a_{522}= +2.57571861 \pm 4.6 \cdot 10^{-3} \) |
\(a_{523}= -0.45065667 \pm 1.1 \cdot 10^{-2} \) | \(a_{524}= +0.71178658 \pm 9.2 \cdot 10^{-3} \) | \(a_{525}= +2.79742033 \pm 4.2 \cdot 10^{-3} \) |
\(a_{526}= -0.87111863 \pm 9.2 \cdot 10^{-3} \) | \(a_{527}= +0.26027857 \pm 8.8 \cdot 10^{-3} \) | \(a_{528}= -0.52877971 \pm 6.5 \cdot 10^{-3} \) |
\(a_{529}= -0.04491450 \pm 9.6 \cdot 10^{-3} \) | \(a_{530}= +0.25057738 \pm 7.5 \cdot 10^{-3} \) | \(a_{531}= +1.14028969 \pm 7.6 \cdot 10^{-3} \) |
\(a_{532}= -1.83249513 \pm 5.2 \cdot 10^{-3} \) | \(a_{533}= -0.04188979 \pm 7.6 \cdot 10^{-3} \) | \(a_{534}= +0.80536026 \pm 1.4 \cdot 10^{-2} \) |
\(a_{535}= -0.29863835 \pm 8.8 \cdot 10^{-3} \) | \(a_{536}= +0.09091081 \pm 4.5 \cdot 10^{-3} \) | \(a_{537}= +3.11794153 \pm 7.1 \cdot 10^{-3} \) |
\(a_{538}= -2.31804389 \pm 1.1 \cdot 10^{-2} \) | \(a_{539}= +0.36040699 \pm 6.4 \cdot 10^{-3} \) | \(a_{540}= +0.62022953 \pm 6.9 \cdot 10^{-3} \) |
\(a_{541}= +1.26685336 \pm 5.4 \cdot 10^{-3} \) | \(a_{542}= +0.50813546 \pm 9.4 \cdot 10^{-3} \) | \(a_{543}= -0.86269879 \pm 6.8 \cdot 10^{-3} \) |
\(a_{544}= -1.22441194 \pm 9.5 \cdot 10^{-3} \) | \(a_{545}= -0.06871112 \pm 5.8 \cdot 10^{-3} \) | \(a_{546}= -1.12063185 \pm 2.7 \cdot 10^{-2} \) |
\(a_{547}= +0.76498376 \pm 6.4 \cdot 10^{-3} \) | \(a_{548}= +1.10874337 \pm 8.0 \cdot 10^{-3} \) | \(a_{549}= -0.79540614 \pm 6.5 \cdot 10^{-3} \) |
\(a_{550}= +0.31656912 \pm 7.8 \cdot 10^{-3} \) | \(a_{551}= -1.00581183 \pm 4.3 \cdot 10^{-3} \) | \(a_{552}= -0.38018666 \pm 7.3 \cdot 10^{-3} \) |
\(a_{553}= -0.15462578 \pm 5.9 \cdot 10^{-3} \) | \(a_{554}= +0.42716926 \pm 1.0 \cdot 10^{-2} \) | \(a_{555}= +0.40923659 \pm 5.5 \cdot 10^{-3} \) |
\(a_{556}= +0.53827203 \pm 8.3 \cdot 10^{-3} \) | \(a_{557}= -0.37452751 \pm 7.5 \cdot 10^{-3} \) | \(a_{558}= +0.99590411 \pm 9.8 \cdot 10^{-3} \) |
\(a_{559}= +0.33493498 \pm 8.5 \cdot 10^{-3} \) | \(a_{560}= +0.42791614 \pm 5.3 \cdot 10^{-3} \) | \(a_{561}= -0.43188319 \pm 6.7 \cdot 10^{-3} \) |
\(a_{562}= -0.41027967 \pm 1.2 \cdot 10^{-2} \) | \(a_{563}= -1.05921929 \pm 9.7 \cdot 10^{-3} \) | \(a_{564}= -1.46154325 \pm 7.9 \cdot 10^{-3} \) |
\(a_{565}= -0.25313325 \pm 1.0 \cdot 10^{-2} \) | \(a_{566}= +0.10656465 \pm 6.6 \cdot 10^{-3} \) | \(a_{567}= -4.90612727 \pm 6.7 \cdot 10^{-3} \) |
\(a_{568}= +0.04591389 \pm 7.8 \cdot 10^{-3} \) | \(a_{569}= -1.69406828 \pm 8.1 \cdot 10^{-3} \) | \(a_{570}= -0.85860544 \pm 8.5 \cdot 10^{-3} \) |
\(a_{571}= +1.17197729 \pm 8.9 \cdot 10^{-3} \) | \(a_{572}= -0.05823217 \pm 1.6 \cdot 10^{-2} \) | \(a_{573}= +0.55603418 \pm 9.1 \cdot 10^{-3} \) |
\(a_{574}= +0.32195888 \pm 4.0 \cdot 10^{-3} \) | \(a_{575}= +0.92006919 \pm 5.2 \cdot 10^{-3} \) | \(a_{576}= -1.75994067 \pm 8.3 \cdot 10^{-3} \) |
\(a_{577}= +0.54603279 \pm 8.6 \cdot 10^{-3} \) | \(a_{578}= +0.20530120 \pm 6.6 \cdot 10^{-3} \) | \(a_{579}= -0.84133206 \pm 9.3 \cdot 10^{-3} \) |
\(a_{580}= -0.15008879 \pm 7.8 \cdot 10^{-3} \) | \(a_{581}= +1.85227457 \pm 4.5 \cdot 10^{-3} \) | \(a_{582}= +2.66723363 \pm 7.4 \cdot 10^{-3} \) |
\(a_{583}= -0.18832673 \pm 5.4 \cdot 10^{-3} \) | \(a_{584}= +0.10479097 \pm 7.7 \cdot 10^{-3} \) | \(a_{585}= -0.17399511 \pm 1.7 \cdot 10^{-2} \) |
\(a_{586}= +0.61533888 \pm 6.6 \cdot 10^{-3} \) | \(a_{587}= +1.51201337 \pm 9.0 \cdot 10^{-3} \) | \(a_{588}= +2.34561155 \pm 8.3 \cdot 10^{-3} \) |
\(a_{589}= -0.38889812 \pm 6.4 \cdot 10^{-3} \) | \(a_{590}= -0.14470243 \pm 8.1 \cdot 10^{-3} \) | \(a_{591}= -1.55437387 \pm 9.3 \cdot 10^{-3} \) |
\(a_{592}= -1.00665741 \pm 6.9 \cdot 10^{-3} \) | \(a_{593}= +1.43930670 \pm 8.8 \cdot 10^{-3} \) | \(a_{594}= -1.01515730 \pm 8.0 \cdot 10^{-3} \) |
\(a_{595}= +0.34950242 \pm 7.3 \cdot 10^{-3} \) | \(a_{596}= +1.15526676 \pm 8.6 \cdot 10^{-3} \) | \(a_{597}= +1.95058851 \pm 1.1 \cdot 10^{-2} \) |
\(a_{598}= -0.36857487 \pm 1.6 \cdot 10^{-2} \) | \(a_{599}= -0.69901705 \pm 9.1 \cdot 10^{-3} \) | \(a_{600}= -0.36624788 \pm 4.7 \cdot 10^{-3} \) |
\(a_{601}= -0.82232667 \pm 9.4 \cdot 10^{-3} \) | \(a_{602}= -2.57426214 \pm 8.2 \cdot 10^{-3} \) | \(a_{603}= +1.14846036 \pm 8.6 \cdot 10^{-3} \) |
\(a_{604}= -0.87962620 \pm 6.2 \cdot 10^{-3} \) | \(a_{605}= -0.22716606 \pm 4.8 \cdot 10^{-3} \) | \(a_{606}= +3.29361444 \pm 8.9 \cdot 10^{-3} \) |
\(a_{607}= -1.34286713 \pm 6.2 \cdot 10^{-3} \) | \(a_{608}= +1.82946874 \pm 6.0 \cdot 10^{-3} \) | \(a_{609}= +2.17079259 \pm 7.6 \cdot 10^{-3} \) |
\(a_{610}= +0.10093681 \pm 3.9 \cdot 10^{-3} \) | \(a_{611}= +0.25187450 \pm 8.8 \cdot 10^{-3} \) | \(a_{612}= -2.02844508 \pm 7.8 \cdot 10^{-3} \) |
\(a_{613}= -1.74226352 \pm 8.8 \cdot 10^{-3} \) | \(a_{614}= -1.97453163 \pm 5.5 \cdot 10^{-3} \) | \(a_{615}= +0.06926924 \pm 9.5 \cdot 10^{-3} \) |
\(a_{616}= -0.07956076 \pm 5.5 \cdot 10^{-3} \) | \(a_{617}= +0.81151818 \pm 1.0 \cdot 10^{-2} \) | \(a_{618}= +1.39706415 \pm 1.3 \cdot 10^{-2} \) |
\(a_{619}= +0.99702766 \pm 8.3 \cdot 10^{-3} \) | \(a_{620}= -0.05803198 \pm 8.5 \cdot 10^{-3} \) | \(a_{621}= -2.95042979 \pm 8.1 \cdot 10^{-3} \) |
\(a_{622}= -1.45128592 \pm 9.9 \cdot 10^{-3} \) | \(a_{623}= +0.48982864 \pm 8.5 \cdot 10^{-3} \) | \(a_{624}= +0.59307579 \pm 1.6 \cdot 10^{-2} \) |
\(a_{625}= +0.82779125 \pm 8.4 \cdot 10^{-3} \) | \(a_{626}= +0.02430689 \pm 7.8 \cdot 10^{-3} \) | \(a_{627}= +0.64530307 \pm 4.9 \cdot 10^{-3} \) |
\(a_{628}= +0.87261716 \pm 8.4 \cdot 10^{-3} \) | \(a_{629}= -0.82219193 \pm 7.4 \cdot 10^{-3} \) | \(a_{630}= +1.33730139 \pm 5.2 \cdot 10^{-3} \) |
\(a_{631}= -1.65979801 \pm 8.9 \cdot 10^{-3} \) | \(a_{632}= +0.02024414 \pm 7.2 \cdot 10^{-3} \) | \(a_{633}= -1.31203619 \pm 1.0 \cdot 10^{-2} \) |
\(a_{634}= -0.60832922 \pm 9.3 \cdot 10^{-3} \) | \(a_{635}= -0.47172175 \pm 7.1 \cdot 10^{-3} \) | \(a_{636}= -1.22567364 \pm 7.9 \cdot 10^{-3} \) |
\(a_{637}= -0.40423007 \pm 7.7 \cdot 10^{-3} \) | \(a_{638}= +0.24565700 \pm 6.0 \cdot 10^{-3} \) | \(a_{639}= +0.58002209 \pm 9.9 \cdot 10^{-3} \) |
\(a_{640}= -0.09818904 \pm 7.5 \cdot 10^{-3} \) | \(a_{641}= +0.96389068 \pm 8.1 \cdot 10^{-3} \) | \(a_{642}= +3.18118820 \pm 1.2 \cdot 10^{-2} \) |
\(a_{643}= -1.01917473 \pm 1.0 \cdot 10^{-2} \) | \(a_{644}= +1.30078998 \pm 8.3 \cdot 10^{-3} \) | \(a_{645}= -0.55385078 \pm 1.0 \cdot 10^{-2} \) |
\(a_{646}= +1.72501303 \pm 5.5 \cdot 10^{-3} \) | \(a_{647}= -1.61236597 \pm 6.6 \cdot 10^{-3} \) | \(a_{648}= +0.64232703 \pm 6.2 \cdot 10^{-3} \) |
\(a_{649}= +0.10875417 \pm 6.9 \cdot 10^{-3} \) | \(a_{650}= -0.35506181 \pm 1.6 \cdot 10^{-2} \) | \(a_{651}= +0.83933907 \pm 8.5 \cdot 10^{-3} \) |
\(a_{652}= -1.33819946 \pm 7.7 \cdot 10^{-3} \) | \(a_{653}= +1.42729308 \pm 8.7 \cdot 10^{-3} \) | \(a_{654}= +0.73193216 \pm 8.4 \cdot 10^{-3} \) |
\(a_{655}= +0.20284046 \pm 7.8 \cdot 10^{-3} \) | \(a_{656}= -0.17039139 \pm 6.8 \cdot 10^{-3} \) | \(a_{657}= +1.32380602 \pm 8.9 \cdot 10^{-3} \) |
\(a_{658}= -1.93587121 \pm 6.4 \cdot 10^{-3} \) | \(a_{659}= +1.04026910 \pm 6.6 \cdot 10^{-3} \) | \(a_{660}= +0.09629312 \pm 6.2 \cdot 10^{-3} \) |
\(a_{661}= +0.02525381 \pm 9.4 \cdot 10^{-3} \) | \(a_{662}= -0.94263549 \pm 1.1 \cdot 10^{-2} \) | \(a_{663}= +0.48439730 \pm 1.7 \cdot 10^{-2} \) |
\(a_{664}= -0.24250615 \pm 4.3 \cdot 10^{-3} \) | \(a_{665}= -0.52221293 \pm 4.4 \cdot 10^{-3} \) | \(a_{666}= -3.14595367 \pm 8.1 \cdot 10^{-3} \) |
\(a_{667}= +0.71397186 \pm 5.1 \cdot 10^{-3} \) | \(a_{668}= -1.46349909 \pm 8.9 \cdot 10^{-3} \) | \(a_{669}= +2.52467619 \pm 9.2 \cdot 10^{-3} \) |
\(a_{670}= -0.14573929 \pm 1.2 \cdot 10^{-2} \) | \(a_{671}= -0.07586119 \pm 5.9 \cdot 10^{-3} \) | \(a_{672}= -3.94844947 \pm 7.2 \cdot 10^{-3} \) |
\(a_{673}= -1.22683361 \pm 1.0 \cdot 10^{-2} \) | \(a_{674}= -1.69754098 \pm 8.9 \cdot 10^{-3} \) | \(a_{675}= -2.84225816 \pm 5.5 \cdot 10^{-3} \) |
\(a_{676}= +0.06531281 \pm 8.7 \cdot 10^{-3} \) | \(a_{677}= -0.93465789 \pm 9.6 \cdot 10^{-3} \) | \(a_{678}= +2.69645376 \pm 1.4 \cdot 10^{-2} \) |
\(a_{679}= +1.62223977 \pm 1.0 \cdot 10^{-2} \) | \(a_{680}= -0.04575806 \pm 5.7 \cdot 10^{-3} \) | \(a_{681}= -0.53353963 \pm 7.7 \cdot 10^{-3} \) |
\(a_{682}= +0.09498352 \pm 5.3 \cdot 10^{-3} \) | \(a_{683}= +1.31296266 \pm 7.9 \cdot 10^{-3} \) | \(a_{684}= +3.03082382 \pm 6.6 \cdot 10^{-3} \) |
\(a_{685}= +0.31596271 \pm 6.9 \cdot 10^{-3} \) | \(a_{686}= +0.97518125 \pm 5.0 \cdot 10^{-3} \) | \(a_{687}= -2.79978403 \pm 9.9 \cdot 10^{-3} \) |
\(a_{688}= +1.36238547 \pm 7.8 \cdot 10^{-3} \) | \(a_{689}= +0.21122600 \pm 6.4 \cdot 10^{-3} \) | \(a_{690}= +0.60947794 \pm 1.1 \cdot 10^{-2} \) |
\(a_{691}= -1.55883030 \pm 9.4 \cdot 10^{-3} \) | \(a_{692}= -0.40964000 \pm 9.9 \cdot 10^{-3} \) | \(a_{693}= -1.00507714 \pm 5.5 \cdot 10^{-3} \) |
\(a_{694}= +0.94634507 \pm 9.8 \cdot 10^{-3} \) | \(a_{695}= +0.15339338 \pm 7.4 \cdot 10^{-3} \) | \(a_{696}= -0.28420762 \pm 5.7 \cdot 10^{-3} \) |
\(a_{697}= -0.13916793 \pm 6.9 \cdot 10^{-3} \) | \(a_{698}= +0.97969809 \pm 7.0 \cdot 10^{-3} \) | \(a_{699}= +3.60008023 \pm 1.1 \cdot 10^{-2} \) |
\(a_{700}= +1.25309910 \pm 6.7 \cdot 10^{-3} \) | \(a_{701}= +0.87570117 \pm 7.6 \cdot 10^{-3} \) | \(a_{702}= +1.13859365 \pm 1.7 \cdot 10^{-2} \) |
\(a_{703}= +1.22848723 \pm 8.8 \cdot 10^{-3} \) | \(a_{704}= -0.16785287 \pm 7.5 \cdot 10^{-3} \) | \(a_{705}= -0.41650140 \pm 7.1 \cdot 10^{-3} \) |
\(a_{706}= -0.86024400 \pm 9.7 \cdot 10^{-3} \) | \(a_{707}= +2.00321122 \pm 4.7 \cdot 10^{-3} \) | \(a_{708}= +0.70779717 \pm 7.3 \cdot 10^{-3} \) |
\(a_{709}= -0.54020904 \pm 1.0 \cdot 10^{-2} \) | \(a_{710}= -0.07360464 \pm 1.0 \cdot 10^{-2} \) | \(a_{711}= +0.25574064 \pm 9.4 \cdot 10^{-3} \) |
\(a_{712}= -0.06413005 \pm 7.6 \cdot 10^{-3} \) | \(a_{713}= +0.27605791 \pm 5.2 \cdot 10^{-3} \) | \(a_{714}= -3.72300801 \pm 5.8 \cdot 10^{-3} \) |
\(a_{715}= -0.01659464 \pm 1.6 \cdot 10^{-2} \) | \(a_{716}= +1.39667596 \pm 6.2 \cdot 10^{-3} \) | \(a_{717}= -2.24485867 \pm 8.2 \cdot 10^{-3} \) |
\(a_{718}= -0.84262688 \pm 1.2 \cdot 10^{-2} \) | \(a_{719}= -1.70389680 \pm 8.4 \cdot 10^{-3} \) | \(a_{720}= -0.70774455 \pm 8.2 \cdot 10^{-3} \) |
\(a_{721}= +0.84970923 \pm 6.6 \cdot 10^{-3} \) | \(a_{722}= -1.21764357 \pm 7.3 \cdot 10^{-3} \) | \(a_{723}= -2.49432622 \pm 5.6 \cdot 10^{-3} \) |
\(a_{724}= -0.38644428 \pm 7.6 \cdot 10^{-3} \) | \(a_{725}= +0.68779550 \pm 4.2 \cdot 10^{-3} \) | \(a_{726}= +2.41984322 \pm 8.1 \cdot 10^{-3} \) |
\(a_{727}= +0.14879294 \pm 8.2 \cdot 10^{-3} \) | \(a_{728}= +0.08923482 \pm 1.5 \cdot 10^{-2} \) | \(a_{729}= +2.39200491 \pm 7.1 \cdot 10^{-3} \) |
\(a_{730}= -0.16799060 \pm 6.8 \cdot 10^{-3} \) | \(a_{731}= +1.11273441 \pm 8.3 \cdot 10^{-3} \) | \(a_{732}= -0.49372209 \pm 6.6 \cdot 10^{-3} \) |
\(a_{733}= +1.18911633 \pm 9.9 \cdot 10^{-3} \) | \(a_{734}= +0.33762220 \pm 1.2 \cdot 10^{-2} \) | \(a_{735}= +0.66843762 \pm 8.8 \cdot 10^{-3} \) |
\(a_{736}= -1.29864171 \pm 6.8 \cdot 10^{-3} \) | \(a_{737}= +0.10953344 \pm 7.0 \cdot 10^{-3} \) | \(a_{738}= -0.53249835 \pm 9.3 \cdot 10^{-3} \) |
\(a_{739}= -1.30345021 \pm 1.1 \cdot 10^{-2} \) | \(a_{740}= +0.18331675 \pm 8.5 \cdot 10^{-3} \) | \(a_{741}= -0.72376762 \pm 1.6 \cdot 10^{-2} \) |
\(a_{742}= -1.62345268 \pm 8.1 \cdot 10^{-3} \) | \(a_{743}= -0.13502197 \pm 9.0 \cdot 10^{-3} \) | \(a_{744}= -0.10988915 \pm 6.7 \cdot 10^{-3} \) |
\(a_{745}= +0.32922065 \pm 7.1 \cdot 10^{-3} \) | \(a_{746}= -0.33326897 \pm 6.6 \cdot 10^{-3} \) | \(a_{747}= -3.06353769 \pm 4.7 \cdot 10^{-3} \) |
\(a_{748}= -0.19346125 \pm 5.9 \cdot 10^{-3} \) | \(a_{749}= +1.93483239 \pm 8.4 \cdot 10^{-3} \) | \(a_{750}= +1.21077681 \pm 6.4 \cdot 10^{-3} \) |
\(a_{751}= -0.90682478 \pm 7.8 \cdot 10^{-3} \) | \(a_{752}= +1.02452768 \pm 7.6 \cdot 10^{-3} \) | \(a_{753}= +0.08319481 \pm 1.0 \cdot 10^{-2} \) |
\(a_{754}= -0.27552726 \pm 1.5 \cdot 10^{-2} \) | \(a_{755}= -0.25067034 \pm 6.5 \cdot 10^{-3} \) | \(a_{756}= -4.01837270 \pm 6.8 \cdot 10^{-3} \) |
\(a_{757}= -0.02530761 \pm 9.3 \cdot 10^{-3} \) | \(a_{758}= -0.33951075 \pm 1.0 \cdot 10^{-2} \) | \(a_{759}= -0.45806603 \pm 6.6 \cdot 10^{-3} \) |
\(a_{760}= +0.06836991 \pm 6.1 \cdot 10^{-3} \) | \(a_{761}= -0.95081315 \pm 9.1 \cdot 10^{-3} \) | \(a_{762}= +5.02492619 \pm 1.0 \cdot 10^{-2} \) |
\(a_{763}= +0.44516890 \pm 7.0 \cdot 10^{-3} \) | \(a_{764}= +0.24907445 \pm 8.3 \cdot 10^{-3} \) | \(a_{765}= -0.57805351 \pm 8.5 \cdot 10^{-3} \) |
\(a_{766}= -2.03805060 \pm 1.3 \cdot 10^{-2} \) | \(a_{767}= -0.12197796 \pm 7.8 \cdot 10^{-3} \) | \(a_{768}= +2.33255895 \pm 6.4 \cdot 10^{-3} \) |
\(a_{769}= +1.09128111 \pm 9.2 \cdot 10^{-3} \) | \(a_{770}= +0.12754400 \pm 5.4 \cdot 10^{-3} \) | \(a_{771}= +0.58836286 \pm 9.1 \cdot 10^{-3} \) |
\(a_{772}= -0.37687309 \pm 9.0 \cdot 10^{-3} \) | \(a_{773}= +0.26961748 \pm 8.9 \cdot 10^{-3} \) | \(a_{774}= +4.25765662 \pm 9.9 \cdot 10^{-3} \) |
\(a_{775}= +0.26593680 \pm 5.1 \cdot 10^{-3} \) | \(a_{776}= -0.21238920 \pm 6.6 \cdot 10^{-3} \) | \(a_{777}= -2.65138159 \pm 5.7 \cdot 10^{-3} \) |
\(a_{778}= +1.16939579 \pm 6.5 \cdot 10^{-3} \) | \(a_{779}= +0.20793931 \pm 5.4 \cdot 10^{-3} \) | \(a_{780}= -0.10800172 \pm 2.6 \cdot 10^{-2} \) |
\(a_{781}= +0.05531912 \pm 6.7 \cdot 10^{-3} \) | \(a_{782}= -1.22449421 \pm 6.4 \cdot 10^{-3} \) | \(a_{783}= -2.20558666 \pm 4.7 \cdot 10^{-3} \) |
\(a_{784}= -1.64425100 \pm 7.6 \cdot 10^{-3} \) | \(a_{785}= +0.24867295 \pm 8.4 \cdot 10^{-3} \) | \(a_{786}= -2.16071944 \pm 1.1 \cdot 10^{-2} \) |
\(a_{787}= +1.01718140 \pm 1.0 \cdot 10^{-2} \) | \(a_{788}= -0.69627881 \pm 8.8 \cdot 10^{-3} \) | \(a_{789}= +1.21426948 \pm 8.2 \cdot 10^{-3} \) |
\(a_{790}= -0.03245341 \pm 8.1 \cdot 10^{-3} \) | \(a_{791}= +1.64001176 \pm 8.9 \cdot 10^{-3} \) | \(a_{792}= +0.13158815 \pm 6.3 \cdot 10^{-3} \) |
\(a_{793}= +0.08508541 \pm 7.6 \cdot 10^{-3} \) | \(a_{794}= -0.98759933 \pm 8.1 \cdot 10^{-3} \) | \(a_{795}= -0.34928476 \pm 7.0 \cdot 10^{-3} \) |
\(a_{796}= +0.87376240 \pm 9.5 \cdot 10^{-3} \) | \(a_{797}= -1.01246308 \pm 7.0 \cdot 10^{-3} \) | \(a_{798}= +5.56277392 \pm 3.5 \cdot 10^{-3} \) |
\(a_{799}= +0.83678755 \pm 6.6 \cdot 10^{-3} \) | \(a_{800}= -1.25102960 \pm 6.8 \cdot 10^{-3} \) | \(a_{801}= -0.81014367 \pm 1.1 \cdot 10^{-2} \) |
\(a_{802}= -0.24421517 \pm 7.8 \cdot 10^{-3} \) | \(a_{803}= +0.12625689 \pm 9.1 \cdot 10^{-3} \) | \(a_{804}= +0.71286884 \pm 1.1 \cdot 10^{-2} \) |
\(a_{805}= +0.37069094 \pm 5.2 \cdot 10^{-3} \) | \(a_{806}= -0.10653288 \pm 1.8 \cdot 10^{-2} \) | \(a_{807}= +3.23116720 \pm 1.1 \cdot 10^{-2} \) |
\(a_{808}= -0.26226729 \pm 7.1 \cdot 10^{-3} \) | \(a_{809}= +1.01780797 \pm 9.2 \cdot 10^{-3} \) | \(a_{810}= -1.02971564 \pm 8.1 \cdot 10^{-3} \) |
\(a_{811}= -0.56512258 \pm 1.3 \cdot 10^{-2} \) | \(a_{812}= +0.97240240 \pm 7.6 \cdot 10^{-3} \) | \(a_{813}= -0.70830006 \pm 9.6 \cdot 10^{-3} \) |
\(a_{814}= -0.30004270 \pm 9.1 \cdot 10^{-3} \) | \(a_{815}= -0.38135166 \pm 9.2 \cdot 10^{-3} \) | \(a_{816}= +1.97034014 \pm 7.9 \cdot 10^{-3} \) |
\(a_{817}= -1.66260452 \pm 5.1 \cdot 10^{-3} \) | \(a_{818}= -2.00162925 \pm 9.1 \cdot 10^{-3} \) | \(a_{819}= +1.12728781 \pm 1.7 \cdot 10^{-2} \) |
\(a_{820}= +0.03102902 \pm 7.2 \cdot 10^{-3} \) | \(a_{821}= +0.80446279 \pm 9.1 \cdot 10^{-3} \) | \(a_{822}= -3.36573265 \pm 7.8 \cdot 10^{-3} \) |
\(a_{823}= -1.30246325 \pm 8.9 \cdot 10^{-3} \) | \(a_{824}= -0.11124685 \pm 5.5 \cdot 10^{-3} \) | \(a_{825}= -0.44127195 \pm 4.8 \cdot 10^{-3} \) |
\(a_{826}= +0.93750504 \pm 9.6 \cdot 10^{-3} \) | \(a_{827}= -0.87782724 \pm 9.5 \cdot 10^{-3} \) | \(a_{828}= -2.15141923 \pm 6.8 \cdot 10^{-3} \) |
\(a_{829}= +0.91262669 \pm 8.9 \cdot 10^{-3} \) | \(a_{830}= +0.38876205 \pm 5.2 \cdot 10^{-3} \) | \(a_{831}= -0.59543968 \pm 7.7 \cdot 10^{-3} \) |
\(a_{832}= +0.18826265 \pm 7.8 \cdot 10^{-3} \) | \(a_{833}= -1.34294934 \pm 7.5 \cdot 10^{-3} \) | \(a_{834}= -1.63399376 \pm 7.9 \cdot 10^{-3} \) |
\(a_{835}= -0.41705876 \pm 8.5 \cdot 10^{-3} \) | \(a_{836}= +0.28906228 \pm 5.4 \cdot 10^{-3} \) | \(a_{837}= -0.85279223 \pm 6.9 \cdot 10^{-3} \) |
\(a_{838}= -0.47767766 \pm 1.0 \cdot 10^{-2} \) | \(a_{839}= +1.29484260 \pm 1.1 \cdot 10^{-2} \) | \(a_{840}= -0.14755930 \pm 5.8 \cdot 10^{-3} \) |
\(a_{841}= -0.46627206 \pm 7.8 \cdot 10^{-3} \) | \(a_{842}= +0.16126756 \pm 1.0 \cdot 10^{-2} \) | \(a_{843}= +0.57189695 \pm 1.3 \cdot 10^{-2} \) |
\(a_{844}= -0.58772411 \pm 8.8 \cdot 10^{-3} \) | \(a_{845}= +0.01861243 \pm 8.2 \cdot 10^{-3} \) | \(a_{846}= +3.20180091 \pm 8.1 \cdot 10^{-3} \) |
\(a_{847}= +1.47177430 \pm 5.6 \cdot 10^{-3} \) | \(a_{848}= +0.85918536 \pm 7.0 \cdot 10^{-3} \) | \(a_{849}= -0.14854258 \pm 5.7 \cdot 10^{-3} \) |
\(a_{850}= -1.17960056 \pm 7.2 \cdot 10^{-3} \) | \(a_{851}= -0.87203718 \pm 5.5 \cdot 10^{-3} \) | \(a_{852}= +0.36002956 \pm 9.1 \cdot 10^{-3} \) |
\(a_{853}= +1.56644671 \pm 1.1 \cdot 10^{-2} \) | \(a_{854}= -0.65395422 \pm 9.6 \cdot 10^{-3} \) | \(a_{855}= +0.86370510 \pm 8.2 \cdot 10^{-3} \) |
\(a_{856}= -0.25331490 \pm 8.0 \cdot 10^{-3} \) | \(a_{857}= -0.63801982 \pm 8.3 \cdot 10^{-3} \) | \(a_{858}= +0.17677122 \pm 2.6 \cdot 10^{-2} \) |
\(a_{859}= -1.58409168 \pm 1.2 \cdot 10^{-2} \) | \(a_{860}= -0.24809640 \pm 8.2 \cdot 10^{-3} \) | \(a_{861}= -0.44878485 \pm 3.2 \cdot 10^{-3} \) |
\(a_{862}= -0.04718850 \pm 8.4 \cdot 10^{-3} \) | \(a_{863}= +0.59900212 \pm 1.0 \cdot 10^{-2} \) | \(a_{864}= +4.01173632 \pm 7.5 \cdot 10^{-3} \) |
\(a_{865}= -0.11673663 \pm 9.1 \cdot 10^{-3} \) | \(a_{866}= -0.84105368 \pm 9.7 \cdot 10^{-3} \) | \(a_{867}= -0.28617340 \pm 5.7 \cdot 10^{-3} \) |
\(a_{868}= +0.37598034 \pm 6.4 \cdot 10^{-3} \) | \(a_{869}= +0.02439105 \pm 8.3 \cdot 10^{-3} \) | \(a_{870}= +0.45561376 \pm 4.7 \cdot 10^{-3} \) |
\(a_{871}= -0.12285198 \pm 8.8 \cdot 10^{-3} \) | \(a_{872}= -0.05828304 \pm 4.4 \cdot 10^{-3} \) | \(a_{873}= -2.68307558 \pm 7.1 \cdot 10^{-3} \) |
\(a_{874}= +1.82959166 \pm 7.2 \cdot 10^{-3} \) | \(a_{875}= +0.73640729 \pm 5.5 \cdot 10^{-3} \) | \(a_{876}= +0.82170887 \pm 1.0 \cdot 10^{-2} \) |
\(a_{877}= -0.20255895 \pm 8.6 \cdot 10^{-3} \) | \(a_{878}= +1.05891371 \pm 7.3 \cdot 10^{-3} \) | \(a_{879}= -0.85773302 \pm 8.9 \cdot 10^{-3} \) |
\(a_{880}= -0.06750054 \pm 4.7 \cdot 10^{-3} \) | \(a_{881}= -0.49231059 \pm 8.9 \cdot 10^{-3} \) | \(a_{882}= -5.13852819 \pm 1.0 \cdot 10^{-2} \) |
\(a_{883}= +0.36874865 \pm 6.1 \cdot 10^{-3} \) | \(a_{884}= +0.21698485 \pm 1.7 \cdot 10^{-2} \) | \(a_{885}= +0.20170358 \pm 7.7 \cdot 10^{-3} \) |
\(a_{886}= -0.17115065 \pm 1.0 \cdot 10^{-2} \) | \(a_{887}= +0.35489346 \pm 8.4 \cdot 10^{-3} \) | \(a_{888}= +0.34712798 \pm 5.5 \cdot 10^{-3} \) |
\(a_{889}= +3.05621338 \pm 8.7 \cdot 10^{-3} \) | \(a_{890}= +0.10280700 \pm 1.2 \cdot 10^{-2} \) | \(a_{891}= +0.77390457 \pm 5.3 \cdot 10^{-3} \) |
\(a_{892}= +1.13092389 \pm 7.9 \cdot 10^{-3} \) | \(a_{893}= -1.25029544 \pm 8.0 \cdot 10^{-3} \) | \(a_{894}= -3.50696039 \pm 6.5 \cdot 10^{-3} \) |
\(a_{895}= +0.39801593 \pm 6.3 \cdot 10^{-3} \) | \(a_{896}= +0.63615187 \pm 8.1 \cdot 10^{-3} \) | \(a_{897}= +0.51376380 \pm 1.6 \cdot 10^{-2} \) |
\(a_{898}= -0.13797685 \pm 8.4 \cdot 10^{-3} \) | \(a_{899}= +0.20636643 \pm 7.0 \cdot 10^{-3} \) | \(a_{900}= -2.07254172 \pm 5.6 \cdot 10^{-3} \) |
\(a_{901}= +0.70174347 \pm 7.0 \cdot 10^{-3} \) | \(a_{902}= -0.05078658 \pm 6.3 \cdot 10^{-3} \) | \(a_{903}= +3.58831489 \pm 5.1 \cdot 10^{-3} \) |
\(a_{904}= -0.21471597 \pm 8.3 \cdot 10^{-3} \) | \(a_{905}= -0.11012646 \pm 7.0 \cdot 10^{-3} \) | \(a_{906}= +2.67021810 \pm 8.0 \cdot 10^{-3} \) |
\(a_{907}= -0.07099337 \pm 6.2 \cdot 10^{-3} \) | \(a_{908}= -0.23899806 \pm 7.1 \cdot 10^{-3} \) | \(a_{909}= -3.31317676 \pm 8.2 \cdot 10^{-3} \) |
\(a_{910}= -0.14305250 \pm 2.6 \cdot 10^{-2} \) | \(a_{911}= +1.03560324 \pm 5.2 \cdot 10^{-3} \) | \(a_{912}= -2.94400568 \pm 6.4 \cdot 10^{-3} \) |
\(a_{913}= -0.29218234 \pm 4.4 \cdot 10^{-3} \) | \(a_{914}= +0.79316472 \pm 1.0 \cdot 10^{-2} \) | \(a_{915}= -0.14069781 \pm 7.1 \cdot 10^{-3} \) |
\(a_{916}= -1.25415792 \pm 8.5 \cdot 10^{-3} \) | \(a_{917}= -1.31417247 \pm 5.9 \cdot 10^{-3} \) | \(a_{918}= +3.78268142 \pm 7.5 \cdot 10^{-3} \) |
\(a_{919}= +0.54671814 \pm 7.4 \cdot 10^{-3} \) | \(a_{920}= -0.04853213 \pm 6.7 \cdot 10^{-3} \) | \(a_{921}= +2.75233868 \pm 6.4 \cdot 10^{-3} \) |
\(a_{922}= -0.99879835 \pm 1.2 \cdot 10^{-2} \) | \(a_{923}= -0.06204556 \pm 9.0 \cdot 10^{-3} \) | \(a_{924}= -0.62386844 \pm 6.9 \cdot 10^{-3} \) |
\(a_{925}= -0.84006567 \pm 7.3 \cdot 10^{-3} \) | \(a_{926}= -0.54170270 \pm 1.3 \cdot 10^{-2} \) | \(a_{927}= -1.40536197 \pm 9.4 \cdot 10^{-3} \) |
\(a_{928}= -0.97079647 \pm 5.8 \cdot 10^{-3} \) | \(a_{929}= +0.09331032 \pm 7.9 \cdot 10^{-3} \) | \(a_{930}= +0.17616350 \pm 1.1 \cdot 10^{-2} \) |
\(a_{931}= +2.00658272 \pm 5.4 \cdot 10^{-3} \) | \(a_{932}= +1.61264908 \pm 1.1 \cdot 10^{-2} \) | \(a_{933}= +2.02297613 \pm 1.2 \cdot 10^{-2} \) |
\(a_{934}= +0.15922004 \pm 1.0 \cdot 10^{-2} \) | \(a_{935}= -0.05513137 \pm 5.3 \cdot 10^{-3} \) | \(a_{936}= -0.14758839 \pm 1.6 \cdot 10^{-2} \) |
\(a_{937}= -0.14135513 \pm 1.0 \cdot 10^{-2} \) | \(a_{938}= +0.94422266 \pm 7.2 \cdot 10^{-3} \) | \(a_{939}= -0.03388186 \pm 8.3 \cdot 10^{-3} \) |
\(a_{940}= -0.18657101 \pm 7.4 \cdot 10^{-3} \) | \(a_{941}= +0.29129554 \pm 1.0 \cdot 10^{-2} \) | \(a_{942}= -2.64894127 \pm 1.1 \cdot 10^{-2} \) |
\(a_{943}= -0.14760496 \pm 4.8 \cdot 10^{-3} \) | \(a_{944}= -0.49615897 \pm 8.0 \cdot 10^{-3} \) | \(a_{945}= -1.14513056 \pm 4.6 \cdot 10^{-3} \) |
\(a_{946}= +0.40607043 \pm 8.8 \cdot 10^{-3} \) | \(a_{947}= -0.19353232 \pm 7.2 \cdot 10^{-3} \) | \(a_{948}= +0.15874256 \pm 8.7 \cdot 10^{-3} \) |
\(a_{949}= -0.14160888 \pm 9.9 \cdot 10^{-3} \) | \(a_{950}= +1.76251333 \pm 5.0 \cdot 10^{-3} \) | \(a_{951}= +0.84796212 \pm 7.5 \cdot 10^{-3} \) |
\(a_{952}= +0.29645948 \pm 6.1 \cdot 10^{-3} \) | \(a_{953}= -0.41091077 \pm 8.1 \cdot 10^{-3} \) | \(a_{954}= +2.68508165 \pm 7.8 \cdot 10^{-3} \) |
\(a_{955}= +0.07097967 \pm 7.6 \cdot 10^{-3} \) | \(a_{956}= -1.00558016 \pm 7.8 \cdot 10^{-3} \) | \(a_{957}= -0.34242616 \pm 4.8 \cdot 10^{-3} \) |
\(a_{958}= -1.88359542 \pm 8.2 \cdot 10^{-3} \) | \(a_{959}= -2.04707428 \pm 9.3 \cdot 10^{-3} \) | \(a_{960}= -0.31131242 \pm 1.0 \cdot 10^{-2} \) |
\(a_{961}= -0.92020822 \pm 6.4 \cdot 10^{-3} \) | \(a_{962}= +0.33652588 \pm 2.0 \cdot 10^{-2} \) | \(a_{963}= -3.20008277 \pm 9.5 \cdot 10^{-3} \) |
\(a_{964}= -1.11732868 \pm 7.5 \cdot 10^{-3} \) | \(a_{965}= -0.10739892 \pm 8.7 \cdot 10^{-3} \) | \(a_{966}= -3.94871476 \pm 6.5 \cdot 10^{-3} \) |
\(a_{967}= -1.30215816 \pm 8.6 \cdot 10^{-3} \) | \(a_{968}= -0.19268975 \pm 3.9 \cdot 10^{-3} \) | \(a_{969}= -2.40452977 \pm 5.7 \cdot 10^{-3} \) |
\(a_{970}= +0.34048152 \pm 5.6 \cdot 10^{-3} \) | \(a_{971}= +1.53836203 \pm 9.5 \cdot 10^{-3} \) | \(a_{972}= +2.47341068 \pm 9.2 \cdot 10^{-3} \) |
\(a_{973}= -0.99381233 \pm 8.9 \cdot 10^{-3} \) | \(a_{974}= +1.26658172 \pm 1.1 \cdot 10^{-2} \) | \(a_{975}= +0.49492767 \pm 1.5 \cdot 10^{-2} \) |
\(a_{976}= +0.34609441 \pm 7.1 \cdot 10^{-3} \) | \(a_{977}= +0.35521716 \pm 7.2 \cdot 10^{-3} \) | \(a_{978}= +4.06227603 \pm 6.7 \cdot 10^{-3} \) |
\(a_{979}= -0.07726677 \pm 8.7 \cdot 10^{-3} \) | \(a_{980}= +0.29942536 \pm 6.5 \cdot 10^{-3} \) | \(a_{981}= -0.73627944 \pm 7.1 \cdot 10^{-3} \) |
\(a_{982}= +1.78115168 \pm 1.2 \cdot 10^{-2} \) | \(a_{983}= +0.24596951 \pm 9.5 \cdot 10^{-3} \) | \(a_{984}= +0.05875645 \pm 3.7 \cdot 10^{-3} \) |
\(a_{985}= -0.19842115 \pm 8.7 \cdot 10^{-3} \) | \(a_{986}= -0.91536768 \pm 4.7 \cdot 10^{-3} \) | \(a_{987}= +2.69844914 \pm 4.1 \cdot 10^{-3} \) |
\(a_{988}= -0.32421032 \pm 1.5 \cdot 10^{-2} \) | \(a_{989}= +1.18019375 \pm 6.0 \cdot 10^{-3} \) | \(a_{990}= -0.21094921 \pm 6.3 \cdot 10^{-3} \) |
\(a_{991}= -0.82928383 \pm 8.1 \cdot 10^{-3} \) | \(a_{992}= -0.37535940 \pm 9.6 \cdot 10^{-3} \) | \(a_{993}= +1.31395824 \pm 9.2 \cdot 10^{-3} \) |
\(a_{994}= +0.47687323 \pm 7.0 \cdot 10^{-3} \) | \(a_{995}= +0.24899931 \pm 9.2 \cdot 10^{-3} \) | \(a_{996}= -1.90158984 \pm 5.5 \cdot 10^{-3} \) |
\(a_{997}= -1.38733897 \pm 1.1 \cdot 10^{-2} \) | \(a_{998}= -1.79944806 \pm 9.6 \cdot 10^{-3} \) | \(a_{999}= +2.69387868 \pm 7.3 \cdot 10^{-3} \) |
\(a_{1000}= -0.09641297 \pm 5.7 \cdot 10^{-3} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000