Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(8.32257722261542143711892684188 \pm 5 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.70965539 \pm 2.3 \cdot 10^{-8} \) | \(a_{3}= -0.51125795 \pm 1.7 \cdot 10^{-8} \) |
\(a_{4}= +1.92292157 \pm 2.5 \cdot 10^{-8} \) | \(a_{5}= +1.36477620 \pm 1.9 \cdot 10^{-8} \) | \(a_{6}= +0.87407492 \pm 2.2 \cdot 10^{-8} \) |
\(a_{7}= +0.48375874 \pm 1.7 \cdot 10^{-8} \) | \(a_{8}= -1.57787783 \pm 2.2 \cdot 10^{-8} \) | \(a_{9}= -0.73861530 \pm 1.5 \cdot 10^{-8} \) |
\(a_{10}= -2.33329699 \pm 1.7 \cdot 10^{-8} \) | \(a_{11}= +1.17444023 \pm 1.3 \cdot 10^{-8} \) | \(a_{12}= -0.98310895 \pm 2.2 \cdot 10^{-8} \) |
\(a_{13}= -0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= -0.82706074 \pm 2.5 \cdot 10^{-8} \) | \(a_{15}= -0.69775269 \pm 1.4 \cdot 10^{-8} \) |
\(a_{16}= +0.77470578 \pm 1.6 \cdot 10^{-8} \) | \(a_{17}= +0.96804829 \pm 1.7 \cdot 10^{-8} \) | \(a_{18}= +1.26277764 \pm 1.8 \cdot 10^{-8} \) |
\(a_{19}= +0.00002203 \pm 1.8 \cdot 10^{-8} \) | \(a_{20}= +2.62435758 \pm 2.1 \cdot 10^{-8} \) | \(a_{21}= -0.24732551 \pm 1.4 \cdot 10^{-8} \) |
\(a_{22}= -2.00788807 \pm 1.2 \cdot 10^{-8} \) | \(a_{23}= -1.27765062 \pm 1.2 \cdot 10^{-8} \) | \(a_{24}= +0.80670259 \pm 2.0 \cdot 10^{-8} \) |
\(a_{25}= +0.86261407 \pm 2.1 \cdot 10^{-8} \) | \(a_{26}= +0.47417309 \pm 3.3 \cdot 10^{-8} \) | \(a_{27}= +0.88888090 \pm 1.9 \cdot 10^{-8} \) |
\(a_{28}= +0.93023012 \pm 2.7 \cdot 10^{-8} \) | \(a_{29}= -1.69047324 \pm 1.6 \cdot 10^{-8} \) | \(a_{30}= +1.19291665 \pm 1.2 \cdot 10^{-8} \) |
\(a_{31}= +1.61060473 \pm 1.3 \cdot 10^{-8} \) | \(a_{32}= +0.25339792 \pm 1.7 \cdot 10^{-8} \) | \(a_{33}= -0.60044191 \pm 1.5 \cdot 10^{-8} \) |
\(a_{34}= -1.65502898 \pm 2.2 \cdot 10^{-8} \) | \(a_{35}= +0.66022242 \pm 1.6 \cdot 10^{-8} \) | \(a_{36}= -1.42029930 \pm 1.5 \cdot 10^{-8} \) |
\(a_{37}= +1.07027123 \pm 1.5 \cdot 10^{-8} \) | \(a_{38}= -0.00003766 \pm 2.5 \cdot 10^{-8} \) | \(a_{39}= +0.14179744 \pm 2.8 \cdot 10^{-8} \) |
\(a_{40}= -2.15345011 \pm 2.0 \cdot 10^{-8} \) | \(a_{41}= +0.52270619 \pm 2.5 \cdot 10^{-8} \) | \(a_{42}= +0.42284138 \pm 2.0 \cdot 10^{-8} \) |
\(a_{43}= +0.43744289 \pm 1.4 \cdot 10^{-8} \) | \(a_{44}= +2.25835644 \pm 1.0 \cdot 10^{-8} \) | \(a_{45}= -1.00804458 \pm 1.3 \cdot 10^{-8} \) |
\(a_{46}= +2.18434227 \pm 1.5 \cdot 10^{-8} \) | \(a_{47}= -0.44286120 \pm 1.3 \cdot 10^{-8} \) | \(a_{48}= -0.39607449 \pm 1.4 \cdot 10^{-8} \) |
\(a_{49}= -0.76597748 \pm 1.3 \cdot 10^{-8} \) | \(a_{50}= -1.47477279 \pm 1.7 \cdot 10^{-8} \) | \(a_{51}= -0.49492239 \pm 1.8 \cdot 10^{-8} \) |
\(a_{52}= -0.53332248 \pm 3.5 \cdot 10^{-8} \) | \(a_{53}= +1.62729118 \pm 1.8 \cdot 10^{-8} \) | \(a_{54}= -1.51968003 \pm 2.0 \cdot 10^{-8} \) |
\(a_{55}= +1.60284807 \pm 1.2 \cdot 10^{-8} \) | \(a_{56}= -0.76331220 \pm 2.1 \cdot 10^{-8} \) | \(a_{57}= -0.00001126 \pm 1.0 \cdot 10^{-8} \) |
\(a_{58}= +2.89012670 \pm 2.7 \cdot 10^{-8} \) | \(a_{59}= -0.00812788 \pm 1.5 \cdot 10^{-8} \) | \(a_{60}= -1.34172369 \pm 1.4 \cdot 10^{-8} \) |
\(a_{61}= +0.96538708 \pm 1.7 \cdot 10^{-8} \) | \(a_{62}= -2.75357906 \pm 1.1 \cdot 10^{-8} \) | \(a_{63}= -0.35731161 \pm 1.3 \cdot 10^{-8} \) |
\(a_{64}= -1.20792889 \pm 2.2 \cdot 10^{-8} \) | \(a_{65}= -0.37852081 \pm 3.0 \cdot 10^{-8} \) | \(a_{66}= +1.02654875 \pm 1.6 \cdot 10^{-8} \) |
\(a_{67}= +0.61647112 \pm 1.4 \cdot 10^{-8} \) | \(a_{68}= +1.86148094 \pm 2.3 \cdot 10^{-8} \) | \(a_{69}= +0.65320904 \pm 1.1 \cdot 10^{-8} \) |
\(a_{70}= -1.12875282 \pm 1.8 \cdot 10^{-8} \) | \(a_{71}= -0.05511562 \pm 1.4 \cdot 10^{-8} \) | \(a_{72}= +1.16544471 \pm 1.7 \cdot 10^{-8} \) |
\(a_{73}= +0.60833986 \pm 1.4 \cdot 10^{-8} \) | \(a_{74}= -1.82979498 \pm 1.8 \cdot 10^{-8} \) | \(a_{75}= -0.44101830 \pm 1.8 \cdot 10^{-8} \) |
\(a_{76}= +0.00004236 \pm 2.5 \cdot 10^{-8} \) | \(a_{77}= +0.56814573 \pm 1.2 \cdot 10^{-8} \) | \(a_{78}= -0.24242476 \pm 5.1 \cdot 10^{-8} \) |
\(a_{79}= +0.67266859 \pm 1.3 \cdot 10^{-8} \) | \(a_{80}= +1.05730001 \pm 1.8 \cdot 10^{-8} \) | \(a_{81}= +0.28416787 \pm 1.8 \cdot 10^{-8} \) |
\(a_{82}= -0.89364746 \pm 3.4 \cdot 10^{-8} \) | \(a_{83}= -0.83654238 \pm 2.0 \cdot 10^{-8} \) | \(a_{84}= -0.47558755 \pm 2.2 \cdot 10^{-8} \) |
\(a_{85}= +1.32116927 \pm 1.2 \cdot 10^{-8} \) | \(a_{86}= -0.74787659 \pm 1.3 \cdot 10^{-8} \) | \(a_{87}= +0.86426789 \pm 1.7 \cdot 10^{-8} \) |
\(a_{88}= -1.85312320 \pm 1.2 \cdot 10^{-8} \) | \(a_{89}= -1.31525476 \pm 1.6 \cdot 10^{-8} \) | \(a_{90}= +1.72340886 \pm 1.4 \cdot 10^{-8} \) |
\(a_{91}= -0.13417053 \pm 2.8 \cdot 10^{-8} \) | \(a_{92}= -2.45682193 \pm 1.5 \cdot 10^{-8} \) | \(a_{93}= -0.82343448 \pm 1.2 \cdot 10^{-8} \) |
\(a_{94}= +0.75714004 \pm 1.8 \cdot 10^{-8} \) | \(a_{95}= +0.00003006 \pm 1.9 \cdot 10^{-8} \) | \(a_{96}= -0.12955170 \pm 1.1 \cdot 10^{-8} \) |
\(a_{97}= +1.61711955 \pm 1.9 \cdot 10^{-8} \) | \(a_{98}= +1.30955753 \pm 1.6 \cdot 10^{-8} \) | \(a_{99}= -0.86745952 \pm 1.7 \cdot 10^{-8} \) |
\(a_{100}= +1.65873919 \pm 2.2 \cdot 10^{-8} \) | \(a_{101}= +1.67684499 \pm 1.7 \cdot 10^{-8} \) | \(a_{102}= +0.84614673 \pm 2.4 \cdot 10^{-8} \) |
\(a_{103}= +0.35947237 \pm 2.0 \cdot 10^{-8} \) | \(a_{104}= +0.43762457 \pm 3.3 \cdot 10^{-8} \) | \(a_{105}= -0.33754396 \pm 1.1 \cdot 10^{-8} \) |
\(a_{106}= -2.78210715 \pm 1.3 \cdot 10^{-8} \) | \(a_{107}= -0.10343607 \pm 1.7 \cdot 10^{-8} \) | \(a_{108}= +1.70924826 \pm 1.9 \cdot 10^{-8} \) |
\(a_{109}= +0.56685489 \pm 2.2 \cdot 10^{-8} \) | \(a_{110}= -2.74031784 \pm 1.0 \cdot 10^{-8} \) | \(a_{111}= -0.54718468 \pm 1.7 \cdot 10^{-8} \) |
\(a_{112}= +0.37477069 \pm 1.0 \cdot 10^{-8} \) | \(a_{113}= +1.20192480 \pm 1.2 \cdot 10^{-8} \) | \(a_{114}= +0.00001925 \pm 1.0 \cdot 10^{-8} \) |
\(a_{115}= -1.74370715 \pm 1.2 \cdot 10^{-8} \) | \(a_{116}= -3.25064745 \pm 3.0 \cdot 10^{-8} \) | \(a_{117}= +0.20485503 \pm 2.6 \cdot 10^{-8} \) |
\(a_{118}= +0.01389588 \pm 1.2 \cdot 10^{-8} \) | \(a_{119}= +0.46830182 \pm 1.5 \cdot 10^{-8} \) | \(a_{120}= +1.10096850 \pm 1.3 \cdot 10^{-8} \) |
\(a_{121}= +0.37930984 \pm 1.7 \cdot 10^{-8} \) | \(a_{122}= -1.65047922 \pm 2.0 \cdot 10^{-8} \) | \(a_{123}= -0.26723770 \pm 2.5 \cdot 10^{-8} \) |
\(a_{124}= +3.09706657 \pm 1.0 \cdot 10^{-8} \) | \(a_{125}= -0.18750105 \pm 2.2 \cdot 10^{-8} \) | \(a_{126}= +0.61087972 \pm 1.8 \cdot 10^{-8} \) |
\(a_{127}= +0.56143915 \pm 2.0 \cdot 10^{-8} \) | \(a_{128}= +1.81174423 \pm 2.5 \cdot 10^{-8} \) | \(a_{129}= -0.22364616 \pm 1.3 \cdot 10^{-8} \) |
\(a_{130}= +0.64714015 \pm 5.3 \cdot 10^{-8} \) | \(a_{131}= -1.63451617 \pm 1.3 \cdot 10^{-8} \) | \(a_{132}= -1.15460269 \pm 1 \cdot 10^{-8} \) |
\(a_{133}= +0.00001066 \pm 2.1 \cdot 10^{-8} \) | \(a_{134}= -1.05395317 \pm 1.7 \cdot 10^{-8} \) | \(a_{135}= +1.21312350 \pm 1.8 \cdot 10^{-8} \) |
\(a_{136}= -1.52746194 \pm 2.0 \cdot 10^{-8} \) | \(a_{137}= +1.36805654 \pm 1.0 \cdot 10^{-8} \) | \(a_{138}= -1.11676236 \pm 1.4 \cdot 10^{-8} \) |
\(a_{139}= +1.66540145 \pm 1.3 \cdot 10^{-8} \) | \(a_{140}= +1.26955592 \pm 2.1 \cdot 10^{-8} \) | \(a_{141}= +0.22641631 \pm 1.5 \cdot 10^{-8} \) |
\(a_{142}= +0.09422872 \pm 1.7 \cdot 10^{-8} \) | \(a_{143}= -0.32573111 \pm 2.3 \cdot 10^{-8} \) | \(a_{144}= -0.57220955 \pm 1.6 \cdot 10^{-8} \) |
\(a_{145}= -2.30711764 \pm 1.1 \cdot 10^{-8} \) | \(a_{146}= -1.04005153 \pm 1.9 \cdot 10^{-8} \) | \(a_{147}= +0.39161208 \pm 1.0 \cdot 10^{-8} \) |
\(a_{148}= +2.05804763 \pm 1.7 \cdot 10^{-8} \) | \(a_{149}= -0.55208681 \pm 1.2 \cdot 10^{-8} \) | \(a_{150}= +0.75398932 \pm 1.9 \cdot 10^{-8} \) |
\(a_{151}= -0.38823036 \pm 1.3 \cdot 10^{-8} \) | \(a_{152}= -0.00003476 \pm 2.2 \cdot 10^{-8} \) | \(a_{153}= -0.71501528 \pm 1.3 \cdot 10^{-8} \) |
\(a_{154}= -0.97133341 \pm 1.0 \cdot 10^{-8} \) | \(a_{155}= +2.19811500 \pm 1.1 \cdot 10^{-8} \) | \(a_{156}= +0.27266536 \pm 5.3 \cdot 10^{-8} \) |
\(a_{157}= +0.23622771 \pm 1.5 \cdot 10^{-8} \) | \(a_{158}= -1.15003149 \pm 1.6 \cdot 10^{-8} \) | \(a_{159}= -0.83196556 \pm 1.5 \cdot 10^{-8} \) |
\(a_{160}= +0.34583144 \pm 2.0 \cdot 10^{-8} \) | \(a_{161}= -0.61807466 \pm 1.1 \cdot 10^{-8} \) | \(a_{162}= -0.48582913 \pm 2.6 \cdot 10^{-8} \) |
\(a_{163}= +0.05083240 \pm 1.5 \cdot 10^{-8} \) | \(a_{164}= +1.00512301 \pm 3.8 \cdot 10^{-8} \) | \(a_{165}= -0.81946882 \pm 1.1 \cdot 10^{-8} \) |
\(a_{166}= +1.43019919 \pm 2.9 \cdot 10^{-8} \) | \(a_{167}= +0.28586124 \pm 1.9 \cdot 10^{-8} \) | \(a_{168}= +0.39024943 \pm 1.8 \cdot 10^{-8} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= -2.25874416 \pm 1.2 \cdot 10^{-8} \) | \(a_{171}= -0.00001627 \pm 1.6 \cdot 10^{-8} \) |
\(a_{172}= +0.84116836 \pm 1.0 \cdot 10^{-8} \) | \(a_{173}= -0.43715204 \pm 1.6 \cdot 10^{-8} \) | \(a_{174}= -1.47760026 \pm 2.7 \cdot 10^{-8} \) |
\(a_{175}= +0.41729710 \pm 1.5 \cdot 10^{-8} \) | \(a_{176}= +0.90984563 \pm 1.2 \cdot 10^{-8} \) | \(a_{177}= +0.00415544 \pm 1.3 \cdot 10^{-8} \) |
\(a_{178}= +2.24863240 \pm 2.3 \cdot 10^{-8} \) | \(a_{179}= -1.03723345 \pm 2.0 \cdot 10^{-8} \) | \(a_{180}= -1.93839067 \pm 1.5 \cdot 10^{-8} \) |
\(a_{181}= -0.36897189 \pm 1.6 \cdot 10^{-8} \) | \(a_{182}= +0.22938538 \pm 5.1 \cdot 10^{-8} \) | \(a_{183}= -0.49356182 \pm 1.5 \cdot 10^{-8} \) |
\(a_{184}= +2.01597659 \pm 1.4 \cdot 10^{-8} \) | \(a_{185}= +1.46068070 \pm 1.5 \cdot 10^{-8} \) | \(a_{186}= +1.40778920 \pm 1.2 \cdot 10^{-8} \) |
\(a_{187}= +1.13691485 \pm 1.0 \cdot 10^{-8} \) | \(a_{188}= -0.85158735 \pm 2.0 \cdot 10^{-8} \) | \(a_{189}= +0.43000391 \pm 1.3 \cdot 10^{-8} \) |
\(a_{190}= -0.00005140 \pm 2.4 \cdot 10^{-8} \) | \(a_{191}= -0.25563208 \pm 2.5 \cdot 10^{-8} \) | \(a_{192}= +0.61756326 \pm 1.8 \cdot 10^{-8} \) |
\(a_{193}= +1.26876880 \pm 1.7 \cdot 10^{-8} \) | \(a_{194}= -2.76471716 \pm 2.9 \cdot 10^{-8} \) | \(a_{195}= +0.19352178 \pm 4.7 \cdot 10^{-8} \) |
\(a_{196}= -1.47291461 \pm 1.6 \cdot 10^{-8} \) | \(a_{197}= -0.15124417 \pm 2.0 \cdot 10^{-8} \) | \(a_{198}= +1.48305685 \pm 1.8 \cdot 10^{-8} \) |
\(a_{199}= +0.18615164 \pm 2.1 \cdot 10^{-8} \) | \(a_{200}= -1.36109962 \pm 1.9 \cdot 10^{-8} \) | \(a_{201}= -0.31517576 \pm 1.0 \cdot 10^{-8} \) |
\(a_{202}= -2.86682708 \pm 1.5 \cdot 10^{-8} \) | \(a_{203}= -0.81778121 \pm 1.6 \cdot 10^{-8} \) | \(a_{204}= -0.95169694 \pm 2.5 \cdot 10^{-8} \) |
\(a_{205}= +0.71337697 \pm 2.6 \cdot 10^{-8} \) | \(a_{206}= -0.61457388 \pm 2.0 \cdot 10^{-8} \) | \(a_{207}= +0.94369230 \pm 1.0 \cdot 10^{-8} \) |
\(a_{208}= -0.21486472 \pm 2.6 \cdot 10^{-8} \) | \(a_{209}= +0.00002587 \pm 1.0 \cdot 10^{-8} \) | \(a_{210}= +0.57708386 \pm 1.0 \cdot 10^{-8} \) |
\(a_{211}= -1.62253574 \pm 2.0 \cdot 10^{-8} \) | \(a_{212}= +3.12915331 \pm 1.2 \cdot 10^{-8} \) | \(a_{213}= +0.02817830 \pm 1 \cdot 10^{-8} \) |
\(a_{214}= +0.17684004 \pm 2.5 \cdot 10^{-8} \) | \(a_{215}= +0.59701164 \pm 1.6 \cdot 10^{-8} \) | \(a_{216}= -1.40254547 \pm 2.0 \cdot 10^{-8} \) |
\(a_{217}= +0.77914412 \pm 1.2 \cdot 10^{-8} \) | \(a_{218}= -0.96912652 \pm 3.0 \cdot 10^{-8} \) | \(a_{219}= -0.31101859 \pm 1.4 \cdot 10^{-8} \) |
\(a_{220}= +3.08215111 \pm 1.1 \cdot 10^{-8} \) | \(a_{221}= -0.26848829 \pm 2.7 \cdot 10^{-8} \) | \(a_{222}= +0.93549724 \pm 2.1 \cdot 10^{-8} \) |
\(a_{223}= +0.21142531 \pm 2.0 \cdot 10^{-8} \) | \(a_{224}= +0.12258346 \pm 1.4 \cdot 10^{-8} \) | \(a_{225}= -0.63713995 \pm 1.4 \cdot 10^{-8} \) |
\(a_{226}= -2.05487722 \pm 1.0 \cdot 10^{-8} \) | \(a_{227}= -0.05754924 \pm 1.4 \cdot 10^{-8} \) | \(a_{228}= -0.00002166 \pm 1 \cdot 10^{-8} \) |
\(a_{229}= -0.97332359 \pm 1.6 \cdot 10^{-8} \) | \(a_{230}= +2.98113834 \pm 1.2 \cdot 10^{-8} \) | \(a_{231}= -0.29046902 \pm 1 \cdot 10^{-8} \) |
\(a_{232}= +2.66736025 \pm 2.6 \cdot 10^{-8} \) | \(a_{233}= +0.65951361 \pm 1.5 \cdot 10^{-8} \) | \(a_{234}= -0.35023150 \pm 4.9 \cdot 10^{-8} \) |
\(a_{235}= -0.60440642 \pm 1.1 \cdot 10^{-8} \) | \(a_{236}= -0.01562928 \pm 1.4 \cdot 10^{-8} \) | \(a_{237}= -0.34390717 \pm 1.0 \cdot 10^{-8} \) |
\(a_{238}= -0.80063474 \pm 2.1 \cdot 10^{-8} \) | \(a_{239}= -0.31987927 \pm 1.2 \cdot 10^{-8} \) | \(a_{240}= -0.54055304 \pm 1.1 \cdot 10^{-8} \) |
\(a_{241}= +0.76537317 \pm 2.0 \cdot 10^{-8} \) | \(a_{242}= -0.64848912 \pm 2.2 \cdot 10^{-8} \) | \(a_{243}= -1.03416399 \pm 1.5 \cdot 10^{-8} \) |
\(a_{244}= +1.85636363 \pm 2.2 \cdot 10^{-8} \) | \(a_{245}= -1.04538783 \pm 1.3 \cdot 10^{-8} \) | \(a_{246}= +0.45688437 \pm 3.7 \cdot 10^{-8} \) |
\(a_{247}= -0.00000611 \pm 2.9 \cdot 10^{-8} \) | \(a_{248}= -2.54133750 \pm 1.3 \cdot 10^{-8} \) | \(a_{249}= +0.42768894 \pm 2.1 \cdot 10^{-8} \) |
\(a_{250}= +0.32056218 \pm 2.0 \cdot 10^{-8} \) | \(a_{251}= -0.29656725 \pm 2.1 \cdot 10^{-8} \) | \(a_{252}= -0.68708220 \pm 1.9 \cdot 10^{-8} \) |
\(a_{253}= -1.50052428 \pm 1.0 \cdot 10^{-8} \) | \(a_{254}= -0.95986748 \pm 2.9 \cdot 10^{-8} \) | \(a_{255}= -0.67545830 \pm 1 \cdot 10^{-8} \) |
\(a_{256}= -1.88952941 \pm 2.2 \cdot 10^{-8} \) | \(a_{257}= +0.49978553 \pm 2.3 \cdot 10^{-8} \) | \(a_{258}= +0.38235786 \pm 1.2 \cdot 10^{-8} \) |
\(a_{259}= +0.51775306 \pm 1.1 \cdot 10^{-8} \) | \(a_{260}= -0.72786583 \pm 5.5 \cdot 10^{-8} \) | \(a_{261}= +1.24860941 \pm 1 \cdot 10^{-8} \) |
\(a_{262}= +2.79445938 \pm 1.6 \cdot 10^{-8} \) | \(a_{263}= +0.55830303 \pm 1.6 \cdot 10^{-8} \) | \(a_{264}= +0.94742398 \pm 1.4 \cdot 10^{-8} \) |
\(a_{265}= +2.22088827 \pm 2.2 \cdot 10^{-8} \) | \(a_{266}= -0.00001822 \pm 3.3 \cdot 10^{-8} \) | \(a_{267}= +0.67243446 \pm 1.4 \cdot 10^{-8} \) |
\(a_{268}= +1.18542560 \pm 1.8 \cdot 10^{-8} \) | \(a_{269}= +0.79106767 \pm 2.0 \cdot 10^{-8} \) | \(a_{270}= -2.07402314 \pm 1.1 \cdot 10^{-8} \) |
\(a_{271}= -0.56485463 \pm 2.0 \cdot 10^{-8} \) | \(a_{272}= +0.74995261 \pm 1.0 \cdot 10^{-8} \) | \(a_{273}= +0.06859575 \pm 4.6 \cdot 10^{-8} \) |
\(a_{274}= -2.33890524 \pm 1.6 \cdot 10^{-8} \) | \(a_{275}= +1.01308866 \pm 1.2 \cdot 10^{-8} \) | \(a_{276}= +1.25606975 \pm 1.3 \cdot 10^{-8} \) |
\(a_{277}= -0.91155710 \pm 1.5 \cdot 10^{-8} \) | \(a_{278}= -2.84726257 \pm 1.1 \cdot 10^{-8} \) | \(a_{279}= -1.18961730 \pm 1.3 \cdot 10^{-8} \) |
\(a_{280}= -1.04175032 \pm 1.7 \cdot 10^{-8} \) | \(a_{281}= +0.76593456 \pm 1.5 \cdot 10^{-8} \) | \(a_{282}= -0.38709387 \pm 1.7 \cdot 10^{-8} \) |
\(a_{283}= +0.68199824 \pm 1.7 \cdot 10^{-8} \) | \(a_{284}= -0.10598301 \pm 1.7 \cdot 10^{-8} \) | \(a_{285}= -0.00001537 \pm 1.0 \cdot 10^{-8} \) |
\(a_{286}= +0.55688795 \pm 4.7 \cdot 10^{-8} \) | \(a_{287}= +0.25286369 \pm 2.3 \cdot 10^{-8} \) | \(a_{288}= -0.18716358 \pm 1.3 \cdot 10^{-8} \) |
\(a_{289}= -0.06288251 \pm 1.6 \cdot 10^{-8} \) | \(a_{290}= +3.94437612 \pm 1.7 \cdot 10^{-8} \) | \(a_{291}= -0.82676523 \pm 2.1 \cdot 10^{-8} \) |
\(a_{292}= +1.16978984 \pm 2.1 \cdot 10^{-8} \) | \(a_{293}= -1.25440300 \pm 1.1 \cdot 10^{-8} \) | \(a_{294}= -0.66952170 \pm 1.0 \cdot 10^{-8} \) |
\(a_{295}= -0.01109274 \pm 2.3 \cdot 10^{-8} \) | \(a_{296}= -1.68875724 \pm 1.7 \cdot 10^{-8} \) | \(a_{297}= +1.04393749 \pm 1.8 \cdot 10^{-8} \) |
\(a_{298}= +0.94387820 \pm 1.3 \cdot 10^{-8} \) | \(a_{299}= +0.35435652 \pm 2.3 \cdot 10^{-8} \) | \(a_{300}= -0.84804361 \pm 2.1 \cdot 10^{-8} \) |
\(a_{301}= +0.21161682 \pm 1 \cdot 10^{-8} \) | \(a_{302}= +0.66374012 \pm 1.5 \cdot 10^{-8} \) | \(a_{303}= -0.85730034 \pm 1.4 \cdot 10^{-8} \) |
\(a_{304}= +0.00001707 \pm 1.3 \cdot 10^{-8} \) | \(a_{305}= +1.31753730 \pm 2.2 \cdot 10^{-8} \) | \(a_{306}= +1.22242973 \pm 1.4 \cdot 10^{-8} \) |
\(a_{307}= +0.07104902 \pm 2.4 \cdot 10^{-8} \) | \(a_{308}= +1.09249967 \pm 1.0 \cdot 10^{-8} \) | \(a_{309}= -0.18378311 \pm 1.6 \cdot 10^{-8} \) |
\(a_{310}= -3.75801916 \pm 1 \cdot 10^{-8} \) | \(a_{311}= -0.46026899 \pm 1.4 \cdot 10^{-8} \) | \(a_{312}= -0.22373904 \pm 5.1 \cdot 10^{-8} \) |
\(a_{313}= -0.80325554 \pm 2.0 \cdot 10^{-8} \) | \(a_{314}= -0.40386798 \pm 1.7 \cdot 10^{-8} \) | \(a_{315}= -0.48765038 \pm 1.3 \cdot 10^{-8} \) |
\(a_{316}= +1.29348894 \pm 1.5 \cdot 10^{-8} \) | \(a_{317}= +0.13464564 \pm 1.6 \cdot 10^{-8} \) | \(a_{318}= +1.42237441 \pm 1.2 \cdot 10^{-8} \) |
\(a_{319}= -1.98535978 \pm 1 \cdot 10^{-8} \) | \(a_{320}= -1.64855260 \pm 1.9 \cdot 10^{-8} \) | \(a_{321}= +0.05288252 \pm 1.5 \cdot 10^{-8} \) |
\(a_{322}= +1.05669467 \pm 1.4 \cdot 10^{-8} \) | \(a_{323}= +0.00002133 \pm 1.3 \cdot 10^{-8} \) | \(a_{324}= +0.54643253 \pm 2.5 \cdot 10^{-8} \) |
\(a_{325}= -0.23924610 \pm 3.2 \cdot 10^{-8} \) | \(a_{326}= -0.08690588 \pm 1.8 \cdot 10^{-8} \) | \(a_{327}= -0.28980907 \pm 1.9 \cdot 10^{-8} \) |
\(a_{328}= -0.82476651 \pm 3.3 \cdot 10^{-8} \) | \(a_{329}= -0.21423798 \pm 1.2 \cdot 10^{-8} \) | \(a_{330}= +1.40100929 \pm 1.0 \cdot 10^{-8} \) |
\(a_{331}= +0.26036731 \pm 2.1 \cdot 10^{-8} \) | \(a_{332}= -1.60860538 \pm 3.0 \cdot 10^{-8} \) | \(a_{333}= -0.79051871 \pm 1.4 \cdot 10^{-8} \) |
\(a_{334}= -0.48872421 \pm 1.8 \cdot 10^{-8} \) | \(a_{335}= +0.84134510 \pm 1.3 \cdot 10^{-8} \) | \(a_{336}= -0.19160450 \pm 1 \cdot 10^{-8} \) |
\(a_{337}= +1.36743622 \pm 2.1 \cdot 10^{-8} \) | \(a_{338}= -0.13151195 \pm 3.3 \cdot 10^{-8} \) | \(a_{339}= -0.61449362 \pm 1.2 \cdot 10^{-8} \) |
\(a_{340}= +2.54050487 \pm 1.2 \cdot 10^{-8} \) | \(a_{341}= +1.89155898 \pm 1.4 \cdot 10^{-8} \) | \(a_{342}= +0.00002782 \pm 2.3 \cdot 10^{-8} \) |
\(a_{343}= -0.85430704 \pm 1.5 \cdot 10^{-8} \) | \(a_{344}= -0.69023144 \pm 1.5 \cdot 10^{-8} \) | \(a_{345}= +0.89148415 \pm 1.0 \cdot 10^{-8} \) |
\(a_{346}= +0.74737934 \pm 2.1 \cdot 10^{-8} \) | \(a_{347}= -0.93114754 \pm 1.6 \cdot 10^{-8} \) | \(a_{348}= +1.66191937 \pm 3.0 \cdot 10^{-8} \) |
\(a_{349}= +1.10425951 \pm 2.3 \cdot 10^{-8} \) | \(a_{350}= -0.71343423 \pm 1.5 \cdot 10^{-8} \) | \(a_{351}= -0.24653121 \pm 2.9 \cdot 10^{-8} \) |
\(a_{352}= +0.29760070 \pm 1.0 \cdot 10^{-8} \) | \(a_{353}= -0.87005796 \pm 2.1 \cdot 10^{-8} \) | \(a_{354}= -0.00710438 \pm 1.0 \cdot 10^{-8} \) |
\(a_{355}= -0.07522049 \pm 1.4 \cdot 10^{-8} \) | \(a_{356}= -2.52913175 \pm 2.5 \cdot 10^{-8} \) | \(a_{357}= -0.23942303 \pm 1.5 \cdot 10^{-8} \) |
\(a_{358}= +1.77331176 \pm 2.3 \cdot 10^{-8} \) | \(a_{359}= +1.37600766 \pm 1.3 \cdot 10^{-8} \) | \(a_{360}= +1.59057120 \pm 1.6 \cdot 10^{-8} \) |
\(a_{361}= -1.00000000 \pm 2.5 \cdot 10^{-8} \) | \(a_{362}= +0.63081479 \pm 1.7 \cdot 10^{-8} \) | \(a_{363}= -0.19392518 \pm 1.8 \cdot 10^{-8} \) |
\(a_{364}= -0.25799941 \pm 5.3 \cdot 10^{-8} \) | \(a_{365}= +0.83024776 \pm 1 \cdot 10^{-8} \) | \(a_{366}= +0.84382063 \pm 1.8 \cdot 10^{-8} \) |
\(a_{367}= -1.59461120 \pm 2.1 \cdot 10^{-8} \) | \(a_{368}= -0.98980332 \pm 1.1 \cdot 10^{-8} \) | \(a_{369}= -0.38607879 \pm 1.3 \cdot 10^{-8} \) |
\(a_{370}= -2.49726063 \pm 1.3 \cdot 10^{-8} \) | \(a_{371}= +0.78721634 \pm 1.4 \cdot 10^{-8} \) | \(a_{372}= -1.58339992 \pm 1 \cdot 10^{-8} \) |
\(a_{373}= +0.87538891 \pm 1.6 \cdot 10^{-8} \) | \(a_{374}= -1.94373261 \pm 1 \cdot 10^{-8} \) | \(a_{375}= +0.09586140 \pm 1.7 \cdot 10^{-8} \) |
\(a_{376}= +0.69878087 \pm 2.0 \cdot 10^{-8} \) | \(a_{377}= +0.46885292 \pm 2.7 \cdot 10^{-8} \) | \(a_{378}= -0.73515850 \pm 1.5 \cdot 10^{-8} \) |
\(a_{379}= -0.87160592 \pm 2.0 \cdot 10^{-8} \) | \(a_{380}= +0.00005781 \pm 2.4 \cdot 10^{-8} \) | \(a_{381}= -0.28704023 \pm 2.1 \cdot 10^{-8} \) |
\(a_{382}= +0.43704277 \pm 3.6 \cdot 10^{-8} \) | \(a_{383}= -0.50699413 \pm 1.3 \cdot 10^{-8} \) | \(a_{384}= -0.92626865 \pm 2.4 \cdot 10^{-8} \) |
\(a_{385}= +0.77539176 \pm 1.0 \cdot 10^{-8} \) | \(a_{386}= -2.16915742 \pm 2.4 \cdot 10^{-8} \) | \(a_{387}= -0.32310201 \pm 1.3 \cdot 10^{-8} \) |
\(a_{388}= +3.10959405 \pm 3.2 \cdot 10^{-8} \) | \(a_{389}= +0.70223973 \pm 1.8 \cdot 10^{-8} \) | \(a_{390}= -0.33085555 \pm 7.1 \cdot 10^{-8} \) |
\(a_{391}= -1.23682750 \pm 1.1 \cdot 10^{-8} \) | \(a_{392}= +1.20861888 \pm 1.5 \cdot 10^{-8} \) | \(a_{393}= +0.83565939 \pm 1.2 \cdot 10^{-8} \) |
\(a_{394}= +0.25857540 \pm 3.0 \cdot 10^{-8} \) | \(a_{395}= +0.91804208 \pm 1.3 \cdot 10^{-8} \) | \(a_{396}= -1.66805663 \pm 1 \cdot 10^{-8} \) |
\(a_{397}= -0.18281905 \pm 2.0 \cdot 10^{-8} \) | \(a_{398}= -0.31825516 \pm 2.6 \cdot 10^{-8} \) | \(a_{399}= -0.00000545 \pm 1 \cdot 10^{-8} \) |
\(a_{400}= +0.66827210 \pm 1.5 \cdot 10^{-8} \) | \(a_{401}= +0.85084808 \pm 1.7 \cdot 10^{-8} \) | \(a_{402}= +0.53884194 \pm 1 \cdot 10^{-8} \) |
\(a_{403}= -0.44670138 \pm 2.3 \cdot 10^{-8} \) | \(a_{404}= +3.22444139 \pm 1.8 \cdot 10^{-8} \) | \(a_{405}= +0.38782555 \pm 1.1 \cdot 10^{-8} \) |
\(a_{406}= +1.39812405 \pm 2.7 \cdot 10^{-8} \) | \(a_{407}= +1.25696958 \pm 1.3 \cdot 10^{-8} \) | \(a_{408}= +0.78092707 \pm 2.2 \cdot 10^{-8} \) |
\(a_{409}= -0.53368484 \pm 1.6 \cdot 10^{-8} \) | \(a_{410}= -1.21962878 \pm 2.0 \cdot 10^{-8} \) | \(a_{411}= -0.69942979 \pm 1 \cdot 10^{-8} \) |
\(a_{412}= +0.69123718 \pm 2.4 \cdot 10^{-8} \) | \(a_{413}= -0.00393193 \pm 1.0 \cdot 10^{-8} \) | \(a_{414}= -1.61338863 \pm 1.1 \cdot 10^{-8} \) |
\(a_{415}= -1.14169312 \pm 1.6 \cdot 10^{-8} \) | \(a_{416}= -0.07027994 \pm 2.7 \cdot 10^{-8} \) | \(a_{417}= -0.85144974 \pm 1.1 \cdot 10^{-8} \) |
\(a_{418}= -0.00004423 \pm 1.0 \cdot 10^{-8} \) | \(a_{419}= -1.85459380 \pm 1.6 \cdot 10^{-8} \) | \(a_{420}= -0.64907056 \pm 1.2 \cdot 10^{-8} \) |
\(a_{421}= +0.13706254 \pm 2.1 \cdot 10^{-8} \) | \(a_{422}= +2.77397697 \pm 2.9 \cdot 10^{-8} \) | \(a_{423}= +0.32710406 \pm 1.6 \cdot 10^{-8} \) |
\(a_{424}= -2.56766668 \pm 1.7 \cdot 10^{-8} \) | \(a_{425}= +0.83505207 \pm 1.7 \cdot 10^{-8} \) | \(a_{426}= -0.04817518 \pm 1 \cdot 10^{-8} \) |
\(a_{427}= +0.46701444 \pm 1.6 \cdot 10^{-8} \) | \(a_{428}= -0.19889946 \pm 2.9 \cdot 10^{-8} \) | \(a_{429}= +0.16653262 \pm 4.1 \cdot 10^{-8} \) |
\(a_{430}= -1.02068417 \pm 1.4 \cdot 10^{-8} \) | \(a_{431}= +0.30600229 \pm 2.2 \cdot 10^{-8} \) | \(a_{432}= +0.68862118 \pm 1.7 \cdot 10^{-8} \) |
\(a_{433}= +0.48945533 \pm 1.7 \cdot 10^{-8} \) | \(a_{434}= -1.33206794 \pm 1 \cdot 10^{-8} \) | \(a_{435}= +1.17953225 \pm 1 \cdot 10^{-8} \) |
\(a_{436}= +1.09001749 \pm 3.3 \cdot 10^{-8} \) | \(a_{437}= -0.00002815 \pm 1.4 \cdot 10^{-8} \) | \(a_{438}= +0.53173462 \pm 1.9 \cdot 10^{-8} \) |
\(a_{439}= +0.28067509 \pm 1.5 \cdot 10^{-8} \) | \(a_{440}= -2.52909843 \pm 1.2 \cdot 10^{-8} \) | \(a_{441}= +0.56576269 \pm 1.4 \cdot 10^{-8} \) |
\(a_{442}= +0.45902245 \pm 5.1 \cdot 10^{-8} \) | \(a_{443}= +0.11130914 \pm 1.0 \cdot 10^{-8} \) | \(a_{444}= -1.05219322 \pm 1.8 \cdot 10^{-8} \) |
\(a_{445}= -1.79502839 \pm 1.3 \cdot 10^{-8} \) | \(a_{446}= -0.36146442 \pm 2.5 \cdot 10^{-8} \) | \(a_{447}= +0.28225877 \pm 1.3 \cdot 10^{-8} \) |
\(a_{448}= -0.58434616 \pm 2.3 \cdot 10^{-8} \) | \(a_{449}= -1.44794756 \pm 1.6 \cdot 10^{-8} \) | \(a_{450}= +1.08928975 \pm 1.3 \cdot 10^{-8} \) |
\(a_{451}= +0.61388718 \pm 1.3 \cdot 10^{-8} \) | \(a_{452}= +2.31120712 \pm 1.0 \cdot 10^{-8} \) | \(a_{453}= +0.19848586 \pm 1.4 \cdot 10^{-8} \) |
\(a_{454}= +0.09838937 \pm 1.9 \cdot 10^{-8} \) | \(a_{455}= -0.18311275 \pm 4.7 \cdot 10^{-8} \) | \(a_{456}= +0.00001777 \pm 1.1 \cdot 10^{-8} \) |
\(a_{457}= -1.09588875 \pm 1.8 \cdot 10^{-8} \) | \(a_{458}= +1.66404793 \pm 2.2 \cdot 10^{-8} \) | \(a_{459}= +0.86047964 \pm 1.8 \cdot 10^{-8} \) |
\(a_{460}= -3.35301209 \pm 1.3 \cdot 10^{-8} \) | \(a_{461}= +1.77281966 \pm 2.1 \cdot 10^{-8} \) | \(a_{462}= +0.49660193 \pm 1 \cdot 10^{-8} \) |
\(a_{463}= +1.26794217 \pm 2.0 \cdot 10^{-8} \) | \(a_{464}= -1.30961939 \pm 2.0 \cdot 10^{-8} \) | \(a_{465}= -1.12380378 \pm 1 \cdot 10^{-8} \) |
\(a_{466}= -1.12754099 \pm 2.0 \cdot 10^{-8} \) | \(a_{467}= -0.75820493 \pm 2.1 \cdot 10^{-8} \) | \(a_{468}= +0.39392015 \pm 5.1 \cdot 10^{-8} \) |
\(a_{469}= +0.29822329 \pm 1.5 \cdot 10^{-8} \) | \(a_{470}= +1.03332670 \pm 1.6 \cdot 10^{-8} \) | \(a_{471}= -0.12077330 \pm 1.4 \cdot 10^{-8} \) |
\(a_{472}= +0.01282481 \pm 1.5 \cdot 10^{-8} \) | \(a_{473}= +0.51375053 \pm 1.0 \cdot 10^{-8} \) | \(a_{474}= +0.58796275 \pm 1.1 \cdot 10^{-8} \) |
\(a_{475}= +0.00001900 \pm 1.0 \cdot 10^{-8} \) | \(a_{476}= +0.90050768 \pm 2.4 \cdot 10^{-8} \) | \(a_{477}= -1.20194217 \pm 1.4 \cdot 10^{-8} \) |
\(a_{478}= +0.54688332 \pm 1.7 \cdot 10^{-8} \) | \(a_{479}= -0.73831078 \pm 1.9 \cdot 10^{-8} \) | \(a_{480}= -0.17680908 \pm 1.3 \cdot 10^{-8} \) |
\(a_{481}= -0.29683983 \pm 2.6 \cdot 10^{-8} \) | \(a_{482}= -1.30852437 \pm 2.3 \cdot 10^{-8} \) | \(a_{483}= +0.31599558 \pm 1 \cdot 10^{-8} \) |
\(a_{484}= +0.72938308 \pm 2.3 \cdot 10^{-8} \) | \(a_{485}= +2.20700627 \pm 1.4 \cdot 10^{-8} \) | \(a_{486}= +1.76806404 \pm 1.6 \cdot 10^{-8} \) |
\(a_{487}= -0.84927270 \pm 2.0 \cdot 10^{-8} \) | \(a_{488}= -1.52326287 \pm 1.7 \cdot 10^{-8} \) | \(a_{489}= -0.02598847 \pm 1.5 \cdot 10^{-8} \) |
\(a_{490}= +1.78725294 \pm 1.5 \cdot 10^{-8} \) | \(a_{491}= -1.56736325 \pm 1.5 \cdot 10^{-8} \) | \(a_{492}= -0.51387713 \pm 4.0 \cdot 10^{-8} \) |
\(a_{493}= -1.63645973 \pm 1.7 \cdot 10^{-8} \) | \(a_{494}= +0.00001045 \pm 5.2 \cdot 10^{-8} \) | \(a_{495}= -1.18388811 \pm 1 \cdot 10^{-8} \) |
\(a_{496}= +1.24774479 \pm 1 \cdot 10^{-8} \) | \(a_{497}= -0.02666266 \pm 1.4 \cdot 10^{-8} \) | \(a_{498}= -0.73120071 \pm 2.9 \cdot 10^{-8} \) |
\(a_{499}= +1.03101442 \pm 1.6 \cdot 10^{-8} \) | \(a_{500}= -0.36054981 \pm 2.5 \cdot 10^{-8} \) | \(a_{501}= -0.14614883 \pm 1.8 \cdot 10^{-8} \) |
\(a_{502}= +0.50702780 \pm 2.7 \cdot 10^{-8} \) | \(a_{503}= -1.81641579 \pm 1.9 \cdot 10^{-8} \) | \(a_{504}= +0.56379407 \pm 1.5 \cdot 10^{-8} \) |
\(a_{505}= +2.28851813 \pm 2.5 \cdot 10^{-8} \) | \(a_{506}= +2.56537943 \pm 1 \cdot 10^{-8} \) | \(a_{507}= -0.03932753 \pm 2.8 \cdot 10^{-8} \) |
\(a_{508}= +1.07960346 \pm 3.1 \cdot 10^{-8} \) | \(a_{509}= +0.38113868 \pm 1.9 \cdot 10^{-8} \) | \(a_{510}= +1.15480092 \pm 1.0 \cdot 10^{-8} \) |
\(a_{511}= +0.29428973 \pm 1.2 \cdot 10^{-8} \) | \(a_{512}= +1.41869991 \pm 1.6 \cdot 10^{-8} \) | \(a_{513}= +0.00001958 \pm 1.3 \cdot 10^{-8} \) |
\(a_{514}= -0.85446102 \pm 3.3 \cdot 10^{-8} \) | \(a_{515}= +0.49059934 \pm 2.8 \cdot 10^{-8} \) | \(a_{516}= -0.43005402 \pm 1 \cdot 10^{-8} \) |
\(a_{517}= -0.52011401 \pm 1.2 \cdot 10^{-8} \) | \(a_{518}= -0.88517932 \pm 1.6 \cdot 10^{-8} \) | \(a_{519}= +0.22349746 \pm 1.7 \cdot 10^{-8} \) |
\(a_{520}= +0.59725960 \pm 5.2 \cdot 10^{-8} \) | \(a_{521}= -1.11851005 \pm 1.1 \cdot 10^{-8} \) | \(a_{522}= -2.13469181 \pm 1.3 \cdot 10^{-8} \) |
\(a_{523}= +0.61517300 \pm 1.4 \cdot 10^{-8} \) | \(a_{524}= -3.14304639 \pm 1.5 \cdot 10^{-8} \) | \(a_{525}= -0.21334646 \pm 1.3 \cdot 10^{-8} \) |
\(a_{526}= -0.95450578 \pm 2.1 \cdot 10^{-8} \) | \(a_{527}= +1.55914316 \pm 1.2 \cdot 10^{-8} \) | \(a_{528}= -0.46516582 \pm 1.6 \cdot 10^{-8} \) |
\(a_{529}= +0.63239110 \pm 1.2 \cdot 10^{-8} \) | \(a_{530}= -3.79695361 \pm 1.3 \cdot 10^{-8} \) | \(a_{531}= +0.00600338 \pm 1.0 \cdot 10^{-8} \) |
\(a_{532}= +0.00002049 \pm 3.4 \cdot 10^{-8} \) | \(a_{533}= -0.14497261 \pm 3.6 \cdot 10^{-8} \) | \(a_{534}= -1.14963120 \pm 1.9 \cdot 10^{-8} \) |
\(a_{535}= -0.14116709 \pm 1.8 \cdot 10^{-8} \) | \(a_{536}= -0.97271611 \pm 1.7 \cdot 10^{-8} \) | \(a_{537}= +0.53029385 \pm 2.1 \cdot 10^{-8} \) |
\(a_{538}= -1.35245311 \pm 2.2 \cdot 10^{-8} \) | \(a_{539}= -0.89959476 \pm 1.1 \cdot 10^{-8} \) | \(a_{540}= +2.33274134 \pm 1.7 \cdot 10^{-8} \) |
\(a_{541}= -1.12655238 \pm 1.7 \cdot 10^{-8} \) | \(a_{542}= +0.96570676 \pm 2.3 \cdot 10^{-8} \) | \(a_{543}= +0.18863982 \pm 1.3 \cdot 10^{-8} \) |
\(a_{544}= +0.24530142 \pm 1.1 \cdot 10^{-8} \) | \(a_{545}= +0.77363006 \pm 2.1 \cdot 10^{-8} \) | \(a_{546}= -0.11727510 \pm 6.9 \cdot 10^{-8} \) |
\(a_{547}= +1.76088909 \pm 2.4 \cdot 10^{-8} \) | \(a_{548}= +2.63066542 \pm 2.0 \cdot 10^{-8} \) | \(a_{549}= -0.71304967 \pm 1.2 \cdot 10^{-8} \) |
\(a_{550}= -1.73203249 \pm 1 \cdot 10^{-8} \) | \(a_{551}= -0.00003724 \pm 1.2 \cdot 10^{-8} \) | \(a_{552}= -1.03068407 \pm 1.3 \cdot 10^{-8} \) |
\(a_{553}= +0.32540931 \pm 1.5 \cdot 10^{-8} \) | \(a_{554}= +1.55844851 \pm 2.1 \cdot 10^{-8} \) | \(a_{555}= -0.74678463 \pm 1.4 \cdot 10^{-8} \) |
\(a_{556}= +3.20243636 \pm 1.1 \cdot 10^{-8} \) | \(a_{557}= -0.06561479 \pm 2.3 \cdot 10^{-8} \) | \(a_{558}= +2.03383564 \pm 1.2 \cdot 10^{-8} \) |
\(a_{559}= -0.12132483 \pm 2.5 \cdot 10^{-8} \) | \(a_{560}= +0.51147812 \pm 1.1 \cdot 10^{-8} \) | \(a_{561}= -0.58125676 \pm 1.3 \cdot 10^{-8} \) |
\(a_{562}= -1.30948415 \pm 1.9 \cdot 10^{-8} \) | \(a_{563}= +1.23589729 \pm 1.2 \cdot 10^{-8} \) | \(a_{564}= +0.43538081 \pm 1.4 \cdot 10^{-8} \) |
\(a_{565}= +1.64035836 \pm 1.7 \cdot 10^{-8} \) | \(a_{566}= -1.16598196 \pm 2.5 \cdot 10^{-8} \) | \(a_{567}= +0.13746869 \pm 1.6 \cdot 10^{-8} \) |
\(a_{568}= +0.08696571 \pm 1.7 \cdot 10^{-8} \) | \(a_{569}= +0.22591188 \pm 2.0 \cdot 10^{-8} \) | \(a_{570}= +0.00002628 \pm 1 \cdot 10^{-8} \) |
\(a_{571}= +0.48835757 \pm 1.9 \cdot 10^{-8} \) | \(a_{572}= -0.62635538 \pm 4.8 \cdot 10^{-8} \) | \(a_{573}= +0.13069394 \pm 2.3 \cdot 10^{-8} \) |
\(a_{574}= -0.43230977 \pm 3.5 \cdot 10^{-8} \) | \(a_{575}= -1.10211940 \pm 1.2 \cdot 10^{-8} \) | \(a_{576}= +0.89219477 \pm 1.8 \cdot 10^{-8} \) |
\(a_{577}= -0.41119521 \pm 1.7 \cdot 10^{-8} \) | \(a_{578}= +0.10750741 \pm 1.6 \cdot 10^{-8} \) | \(a_{579}= -0.64866814 \pm 1.8 \cdot 10^{-8} \) |
\(a_{580}= -4.43640627 \pm 2.0 \cdot 10^{-8} \) | \(a_{581}= -0.40468469 \pm 2.1 \cdot 10^{-8} \) | \(a_{582}= +1.41348364 \pm 3.2 \cdot 10^{-8} \) |
\(a_{583}= +1.91115623 \pm 1.5 \cdot 10^{-8} \) | \(a_{584}= -0.95988598 \pm 2.0 \cdot 10^{-8} \) | \(a_{585}= +0.27958126 \pm 4.5 \cdot 10^{-8} \) |
\(a_{586}= +2.14459685 \pm 1.6 \cdot 10^{-8} \) | \(a_{587}= -1.43109942 \pm 1.6 \cdot 10^{-8} \) | \(a_{588}= +0.75303931 \pm 1 \cdot 10^{-8} \) |
\(a_{589}= +0.00003548 \pm 1.3 \cdot 10^{-8} \) | \(a_{590}= +0.01896476 \pm 1.3 \cdot 10^{-8} \) | \(a_{591}= +0.07732478 \pm 2.3 \cdot 10^{-8} \) |
\(a_{592}= +0.82914531 \pm 1.2 \cdot 10^{-8} \) | \(a_{593}= +1.59878730 \pm 2.3 \cdot 10^{-8} \) | \(a_{594}= -1.78477336 \pm 1.8 \cdot 10^{-8} \) |
\(a_{595}= +0.63912718 \pm 1 \cdot 10^{-8} \) | \(a_{596}= -1.06161964 \pm 1.2 \cdot 10^{-8} \) | \(a_{597}= -0.09517151 \pm 1.9 \cdot 10^{-8} \) |
\(a_{598}= -0.60582754 \pm 4.6 \cdot 10^{-8} \) | \(a_{599}= -1.62461350 \pm 1.9 \cdot 10^{-8} \) | \(a_{600}= +0.69587301 \pm 1.8 \cdot 10^{-8} \) |
\(a_{601}= -0.21046450 \pm 1.2 \cdot 10^{-8} \) | \(a_{602}= -0.36179184 \pm 1.2 \cdot 10^{-8} \) | \(a_{603}= -0.45533500 \pm 1.1 \cdot 10^{-8} \) |
\(a_{604}= -0.74653653 \pm 1.5 \cdot 10^{-8} \) | \(a_{605}= +0.51767305 \pm 1.6 \cdot 10^{-8} \) | \(a_{606}= +1.46568815 \pm 1.3 \cdot 10^{-8} \) |
\(a_{607}= -0.54743534 \pm 1.9 \cdot 10^{-8} \) | \(a_{608}= +0.00000558 \pm 1.8 \cdot 10^{-8} \) | \(a_{609}= +0.41809715 \pm 1.7 \cdot 10^{-8} \) |
\(a_{610}= -2.25253476 \pm 1.6 \cdot 10^{-8} \) | \(a_{611}= +0.12282760 \pm 2.4 \cdot 10^{-8} \) | \(a_{612}= -1.37491831 \pm 1 \cdot 10^{-8} \) |
\(a_{613}= -1.15473238 \pm 1.7 \cdot 10^{-8} \) | \(a_{614}= -0.12146933 \pm 3.0 \cdot 10^{-8} \) | \(a_{615}= -0.36471965 \pm 2.1 \cdot 10^{-8} \) |
\(a_{616}= -0.89646455 \pm 1.1 \cdot 10^{-8} \) | \(a_{617}= +0.96646641 \pm 1.3 \cdot 10^{-8} \) | \(a_{618}= +0.31420579 \pm 1.9 \cdot 10^{-8} \) |
\(a_{619}= -1.02963422 \pm 1.8 \cdot 10^{-8} \) | \(a_{620}= +4.22680273 \pm 1 \cdot 10^{-8} \) | \(a_{621}= -1.13567924 \pm 1.2 \cdot 10^{-8} \) |
\(a_{622}= +0.78690135 \pm 1.8 \cdot 10^{-8} \) | \(a_{623}= -0.63626599 \pm 1.7 \cdot 10^{-8} \) | \(a_{624}= +0.10985130 \pm 4.4 \cdot 10^{-8} \) |
\(a_{625}= -1.11851104 \pm 1.9 \cdot 10^{-8} \) | \(a_{626}= +1.37329017 \pm 3.1 \cdot 10^{-8} \) | \(a_{627}= -0.00001323 \pm 1 \cdot 10^{-8} \) |
\(a_{628}= +0.45424736 \pm 1.8 \cdot 10^{-8} \) | \(a_{629}= +1.03607423 \pm 1.3 \cdot 10^{-8} \) | \(a_{630}= +0.83371410 \pm 1.7 \cdot 10^{-8} \) |
\(a_{631}= -0.97712825 \pm 1.5 \cdot 10^{-8} \) | \(a_{632}= -1.06138886 \pm 1.3 \cdot 10^{-8} \) | \(a_{633}= +0.82953430 \pm 2.3 \cdot 10^{-8} \) |
\(a_{634}= -0.23019765 \pm 2.3 \cdot 10^{-8} \) | \(a_{635}= +0.76623879 \pm 1.5 \cdot 10^{-8} \) | \(a_{636}= -1.59980452 \pm 1.0 \cdot 10^{-8} \) |
\(a_{637}= +0.21244393 \pm 2.4 \cdot 10^{-8} \) | \(a_{638}= +3.39428105 \pm 1 \cdot 10^{-8} \) | \(a_{639}= +0.04070924 \pm 1.1 \cdot 10^{-8} \) |
\(a_{640}= +2.47262540 \pm 2.3 \cdot 10^{-8} \) | \(a_{641}= +1.03545338 \pm 1.9 \cdot 10^{-8} \) | \(a_{642}= -0.09041088 \pm 2.2 \cdot 10^{-8} \) |
\(a_{643}= -1.28847787 \pm 1.8 \cdot 10^{-8} \) | \(a_{644}= -1.18850909 \pm 1.5 \cdot 10^{-8} \) | \(a_{645}= -0.30522695 \pm 1.3 \cdot 10^{-8} \) |
\(a_{646}= -0.00003646 \pm 1.3 \cdot 10^{-8} \) | \(a_{647}= -0.47450524 \pm 1.2 \cdot 10^{-8} \) | \(a_{648}= -0.44838218 \pm 2.2 \cdot 10^{-8} \) |
\(a_{649}= -0.00954571 \pm 1.1 \cdot 10^{-8} \) | \(a_{650}= +0.40902838 \pm 5.5 \cdot 10^{-8} \) | \(a_{651}= -0.39834363 \pm 1 \cdot 10^{-8} \) |
\(a_{652}= +0.09774671 \pm 2.1 \cdot 10^{-8} \) | \(a_{653}= -0.65492941 \pm 1.7 \cdot 10^{-8} \) | \(a_{654}= +0.49547364 \pm 2.9 \cdot 10^{-8} \) |
\(a_{655}= -2.23074876 \pm 1.2 \cdot 10^{-8} \) | \(a_{656}= +0.40494351 \pm 2.0 \cdot 10^{-8} \) | \(a_{657}= -0.44932913 \pm 1 \cdot 10^{-8} \) |
\(a_{658}= +0.36627311 \pm 1.9 \cdot 10^{-8} \) | \(a_{659}= -0.84953593 \pm 2.0 \cdot 10^{-8} \) | \(a_{660}= -1.57577427 \pm 1 \cdot 10^{-8} \) |
\(a_{661}= +0.16704394 \pm 1.6 \cdot 10^{-8} \) | \(a_{662}= -0.44513837 \pm 2.4 \cdot 10^{-8} \) | \(a_{663}= +0.13726677 \pm 4.5 \cdot 10^{-8} \) |
\(a_{664}= +1.31996167 \pm 2.4 \cdot 10^{-8} \) | \(a_{665}= +0.00001454 \pm 2.0 \cdot 10^{-8} \) | \(a_{666}= +1.35151457 \pm 1.5 \cdot 10^{-8} \) |
\(a_{667}= +2.15983418 \pm 1.1 \cdot 10^{-8} \) | \(a_{668}= +0.54968875 \pm 2.1 \cdot 10^{-8} \) | \(a_{669}= -0.10809287 \pm 1.7 \cdot 10^{-8} \) |
\(a_{670}= -1.43841019 \pm 1.5 \cdot 10^{-8} \) | \(a_{671}= +1.13378942 \pm 1.2 \cdot 10^{-8} \) | \(a_{672}= -0.06267177 \pm 1 \cdot 10^{-8} \) |
\(a_{673}= +0.05039521 \pm 1.8 \cdot 10^{-8} \) | \(a_{674}= -2.33784471 \pm 2.2 \cdot 10^{-8} \) | \(a_{675}= +0.76676117 \pm 2.4 \cdot 10^{-8} \) |
\(a_{676}= +0.14791704 \pm 3.5 \cdot 10^{-8} \) | \(a_{677}= +0.94303238 \pm 1.8 \cdot 10^{-8} \) | \(a_{678}= +1.05057233 \pm 1.1 \cdot 10^{-8} \) |
\(a_{679}= +0.78229572 \pm 1.8 \cdot 10^{-8} \) | \(a_{680}= -2.08464370 \pm 1.2 \cdot 10^{-8} \) | \(a_{681}= +0.02942251 \pm 1.8 \cdot 10^{-8} \) |
\(a_{682}= -3.23391402 \pm 1.2 \cdot 10^{-8} \) | \(a_{683}= +0.26275616 \pm 1.9 \cdot 10^{-8} \) | \(a_{684}= -0.00003129 \pm 2.3 \cdot 10^{-8} \) |
\(a_{685}= +1.86709100 \pm 1.1 \cdot 10^{-8} \) | \(a_{686}= +1.46057065 \pm 1.8 \cdot 10^{-8} \) | \(a_{687}= +0.49761943 \pm 1.6 \cdot 10^{-8} \) |
\(a_{688}= +0.33888953 \pm 1 \cdot 10^{-8} \) | \(a_{689}= -0.45132937 \pm 2.9 \cdot 10^{-8} \) | \(a_{690}= -1.52413069 \pm 1 \cdot 10^{-8} \) |
\(a_{691}= +0.25961078 \pm 1.8 \cdot 10^{-8} \) | \(a_{692}= -0.84060908 \pm 2.4 \cdot 10^{-8} \) | \(a_{693}= -0.41964113 \pm 1 \cdot 10^{-8} \) |
\(a_{694}= +1.59194142 \pm 2.4 \cdot 10^{-8} \) | \(a_{695}= +2.27290026 \pm 1.6 \cdot 10^{-8} \) | \(a_{696}= -1.36370915 \pm 2.4 \cdot 10^{-8} \) |
\(a_{697}= +0.50600483 \pm 2.6 \cdot 10^{-8} \) | \(a_{698}= -1.88790322 \pm 2.9 \cdot 10^{-8} \) | \(a_{699}= -0.33718158 \pm 1 \cdot 10^{-8} \) |
\(a_{700}= +0.80242959 \pm 1.9 \cdot 10^{-8} \) | \(a_{701}= -1.25672832 \pm 1.7 \cdot 10^{-8} \) | \(a_{702}= +0.42148341 \pm 5.3 \cdot 10^{-8} \) |
\(a_{703}= +0.00002358 \pm 1.4 \cdot 10^{-8} \) | \(a_{704}= -1.41864028 \pm 1.1 \cdot 10^{-8} \) | \(a_{705}= +0.30900759 \pm 1 \cdot 10^{-8} \) |
\(a_{706}= +1.48749928 \pm 2.0 \cdot 10^{-8} \) | \(a_{707}= +0.81118842 \pm 1.5 \cdot 10^{-8} \) | \(a_{708}= +0.00799059 \pm 1.0 \cdot 10^{-8} \) |
\(a_{709}= +0.75191203 \pm 2.0 \cdot 10^{-8} \) | \(a_{710}= +0.12860111 \pm 1.7 \cdot 10^{-8} \) | \(a_{711}= -0.49684332 \pm 1.4 \cdot 10^{-8} \) |
\(a_{712}= +2.07531133 \pm 2.4 \cdot 10^{-8} \) | \(a_{713}= -2.05779013 \pm 1.0 \cdot 10^{-8} \) | \(a_{714}= +0.40933088 \pm 2.3 \cdot 10^{-8} \) |
\(a_{715}= -0.44455007 \pm 4.3 \cdot 10^{-8} \) | \(a_{716}= -1.99451856 \pm 2.6 \cdot 10^{-8} \) | \(a_{717}= +0.16354082 \pm 1 \cdot 10^{-8} \) |
\(a_{718}= -2.35249891 \pm 1.3 \cdot 10^{-8} \) | \(a_{719}= -1.86763841 \pm 1.2 \cdot 10^{-8} \) | \(a_{720}= -0.78093797 \pm 1.4 \cdot 10^{-8} \) |
\(a_{721}= +0.17389790 \pm 1.8 \cdot 10^{-8} \) | \(a_{722}= +1.70965539 \pm 3.6 \cdot 10^{-8} \) | \(a_{723}= -0.39130312 \pm 1.5 \cdot 10^{-8} \) |
\(a_{724}= -0.70950401 \pm 1.7 \cdot 10^{-8} \) | \(a_{725}= -1.45822600 \pm 1.3 \cdot 10^{-8} \) | \(a_{726}= +0.33154522 \pm 2.3 \cdot 10^{-8} \) |
\(a_{727}= +0.75566247 \pm 2.3 \cdot 10^{-8} \) | \(a_{728}= +0.21170471 \pm 5.1 \cdot 10^{-8} \) | \(a_{729}= +0.24455670 \pm 1.4 \cdot 10^{-8} \) |
\(a_{730}= -1.41943757 \pm 1.2 \cdot 10^{-8} \) | \(a_{731}= +0.42346584 \pm 1.0 \cdot 10^{-8} \) | \(a_{732}= -0.94908067 \pm 1.8 \cdot 10^{-8} \) |
\(a_{733}= -0.50833139 \pm 1.9 \cdot 10^{-8} \) | \(a_{734}= +2.72623563 \pm 2.5 \cdot 10^{-8} \) | \(a_{735}= +0.53446284 \pm 1 \cdot 10^{-8} \) |
\(a_{736}= -0.32375400 \pm 1.2 \cdot 10^{-8} \) | \(a_{737}= +0.72400848 \pm 1.1 \cdot 10^{-8} \) | \(a_{738}= +0.66006169 \pm 1.5 \cdot 10^{-8} \) |
\(a_{739}= +1.97423285 \pm 2.0 \cdot 10^{-8} \) | \(a_{740}= +2.80877441 \pm 1.2 \cdot 10^{-8} \) | \(a_{741}= +0.00000312 \pm 4.7 \cdot 10^{-8} \) |
\(a_{742}= -1.34586866 \pm 1 \cdot 10^{-8} \) | \(a_{743}= -0.80215236 \pm 1.4 \cdot 10^{-8} \) | \(a_{744}= +1.29927901 \pm 1.2 \cdot 10^{-8} \) |
\(a_{745}= -0.75347494 \pm 1.1 \cdot 10^{-8} \) | \(a_{746}= -1.49661337 \pm 2.0 \cdot 10^{-8} \) | \(a_{747}= +0.61788300 \pm 2.1 \cdot 10^{-8} \) |
\(a_{748}= +2.18619809 \pm 1 \cdot 10^{-8} \) | \(a_{749}= -0.05003811 \pm 1.8 \cdot 10^{-8} \) | \(a_{750}= -0.16388997 \pm 1.6 \cdot 10^{-8} \) |
\(a_{751}= +0.16977208 \pm 1.9 \cdot 10^{-8} \) | \(a_{752}= -0.34308713 \pm 1.9 \cdot 10^{-8} \) | \(a_{753}= +0.15162237 \pm 2.1 \cdot 10^{-8} \) |
\(a_{754}= -0.80157692 \pm 5.0 \cdot 10^{-8} \) | \(a_{755}= -0.52984755 \pm 1.2 \cdot 10^{-8} \) | \(a_{756}= +0.82686379 \pm 1.8 \cdot 10^{-8} \) |
\(a_{757}= -1.46507207 \pm 1.5 \cdot 10^{-8} \) | \(a_{758}= +1.49014576 \pm 2.3 \cdot 10^{-8} \) | \(a_{759}= +0.76715498 \pm 1.1 \cdot 10^{-8} \) |
\(a_{760}= -0.00004744 \pm 2.3 \cdot 10^{-8} \) | \(a_{761}= +0.26441642 \pm 2.0 \cdot 10^{-8} \) | \(a_{762}= +0.49073988 \pm 3.3 \cdot 10^{-8} \) |
\(a_{763}= +0.27422101 \pm 2.3 \cdot 10^{-8} \) | \(a_{764}= -0.49156045 \pm 3.8 \cdot 10^{-8} \) | \(a_{765}= -0.97583584 \pm 1 \cdot 10^{-8} \) |
\(a_{766}= +0.86678524 \pm 1.5 \cdot 10^{-8} \) | \(a_{767}= +0.00225427 \pm 2.5 \cdot 10^{-8} \) | \(a_{768}= +0.96603694 \pm 2.1 \cdot 10^{-8} \) |
\(a_{769}= +1.26084095 \pm 1.8 \cdot 10^{-8} \) | \(a_{770}= -1.32565271 \pm 1 \cdot 10^{-8} \) | \(a_{771}= -0.25551933 \pm 2.3 \cdot 10^{-8} \) |
\(a_{772}= +2.43974289 \pm 2.4 \cdot 10^{-8} \) | \(a_{773}= -1.32584549 \pm 1.4 \cdot 10^{-8} \) | \(a_{774}= +0.55239310 \pm 1.3 \cdot 10^{-8} \) |
\(a_{775}= +1.38933030 \pm 1.1 \cdot 10^{-8} \) | \(a_{776}= -2.55161709 \pm 2.6 \cdot 10^{-8} \) | \(a_{777}= -0.26470537 \pm 1.3 \cdot 10^{-8} \) |
\(a_{778}= -1.20058795 \pm 2.1 \cdot 10^{-8} \) | \(a_{779}= +0.00001151 \pm 1.7 \cdot 10^{-8} \) | \(a_{780}= +0.37212720 \pm 7.2 \cdot 10^{-8} \) |
\(a_{781}= -0.06473000 \pm 1 \cdot 10^{-8} \) | \(a_{782}= +2.11454880 \pm 1.3 \cdot 10^{-8} \) | \(a_{783}= -1.50262938 \pm 1.4 \cdot 10^{-8} \) |
\(a_{784}= -0.59340718 \pm 1.0 \cdot 10^{-8} \) | \(a_{785}= +0.32239795 \pm 1.4 \cdot 10^{-8} \) | \(a_{786}= -1.42868959 \pm 1.5 \cdot 10^{-8} \) |
\(a_{787}= -1.73227039 \pm 1.9 \cdot 10^{-8} \) | \(a_{788}= -0.29083067 \pm 3.2 \cdot 10^{-8} \) | \(a_{789}= -0.28543686 \pm 1.8 \cdot 10^{-8} \) |
\(a_{790}= -1.56953560 \pm 1.5 \cdot 10^{-8} \) | \(a_{791}= +0.58144163 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +1.36874515 \pm 1.6 \cdot 10^{-8} \) |
\(a_{793}= -0.26775020 \pm 2.7 \cdot 10^{-8} \) | \(a_{794}= +0.31255758 \pm 2.3 \cdot 10^{-8} \) | \(a_{795}= -1.13544680 \pm 1.6 \cdot 10^{-8} \) |
\(a_{796}= +0.35795501 \pm 2.8 \cdot 10^{-8} \) | \(a_{797}= -0.18294255 \pm 1.3 \cdot 10^{-8} \) | \(a_{798}= +0.00000931 \pm 1 \cdot 10^{-8} \) |
\(a_{799}= -0.42871103 \pm 1.2 \cdot 10^{-8} \) | \(a_{800}= +0.21858461 \pm 1.8 \cdot 10^{-8} \) | \(a_{801}= +0.97146730 \pm 1.3 \cdot 10^{-8} \) |
\(a_{802}= -1.45465700 \pm 2.0 \cdot 10^{-8} \) | \(a_{803}= +0.71445881 \pm 1 \cdot 10^{-8} \) | \(a_{804}= -0.60605827 \pm 1 \cdot 10^{-8} \) |
\(a_{805}= -0.84353358 \pm 1.0 \cdot 10^{-8} \) | \(a_{806}= +0.76370542 \pm 4.7 \cdot 10^{-8} \) | \(a_{807}= -0.40443964 \pm 1.8 \cdot 10^{-8} \) |
\(a_{808}= -2.64585653 \pm 1.6 \cdot 10^{-8} \) | \(a_{809}= +1.29848865 \pm 1.3 \cdot 10^{-8} \) | \(a_{810}= -0.66304803 \pm 1.5 \cdot 10^{-8} \) |
\(a_{811}= +0.27450604 \pm 1.6 \cdot 10^{-8} \) | \(a_{812}= -1.57252912 \pm 2.9 \cdot 10^{-8} \) | \(a_{813}= +0.28878642 \pm 1.3 \cdot 10^{-8} \) |
\(a_{814}= -2.14898483 \pm 1.3 \cdot 10^{-8} \) | \(a_{815}= +0.06937485 \pm 1.8 \cdot 10^{-8} \) | \(a_{816}= -0.38341924 \pm 1.2 \cdot 10^{-8} \) |
\(a_{817}= +0.00000964 \pm 2.1 \cdot 10^{-8} \) | \(a_{818}= +0.91241716 \pm 2.0 \cdot 10^{-8} \) | \(a_{819}= +0.09910041 \pm 4.4 \cdot 10^{-8} \) |
\(a_{820}= +1.37176795 \pm 2.8 \cdot 10^{-8} \) | \(a_{821}= +1.19855968 \pm 1.2 \cdot 10^{-8} \) | \(a_{822}= +1.19578391 \pm 1 \cdot 10^{-8} \) |
\(a_{823}= +1.43814686 \pm 2.0 \cdot 10^{-8} \) | \(a_{824}= -0.56720349 \pm 1.9 \cdot 10^{-8} \) | \(a_{825}= -0.51794964 \pm 1.4 \cdot 10^{-8} \) |
\(a_{826}= +0.00672225 \pm 1.0 \cdot 10^{-8} \) | \(a_{827}= -0.51988672 \pm 2.1 \cdot 10^{-8} \) | \(a_{828}= +1.81464627 \pm 1 \cdot 10^{-8} \) |
\(a_{829}= -0.83365874 \pm 2.1 \cdot 10^{-8} \) | \(a_{830}= +1.95190181 \pm 1.9 \cdot 10^{-8} \) | \(a_{831}= +0.46604082 \pm 1.3 \cdot 10^{-8} \) |
\(a_{832}= +0.33501920 \pm 3.3 \cdot 10^{-8} \) | \(a_{833}= -0.74150319 \pm 1.0 \cdot 10^{-8} \) | \(a_{834}= +1.45568564 \pm 1.0 \cdot 10^{-8} \) |
\(a_{835}= +0.39013662 \pm 2.8 \cdot 10^{-8} \) | \(a_{836}= +0.00004975 \pm 1 \cdot 10^{-8} \) | \(a_{837}= +1.43163579 \pm 1.5 \cdot 10^{-8} \) |
\(a_{838}= +3.17071629 \pm 2.5 \cdot 10^{-8} \) | \(a_{839}= -0.88034510 \pm 1.9 \cdot 10^{-8} \) | \(a_{840}= +0.53260314 \pm 1.1 \cdot 10^{-8} \) |
\(a_{841}= +1.85769978 \pm 1.7 \cdot 10^{-8} \) | \(a_{842}= -0.23432972 \pm 2.3 \cdot 10^{-8} \) | \(a_{843}= -0.39159014 \pm 1.9 \cdot 10^{-8} \) |
\(a_{844}= -3.12000896 \pm 3.2 \cdot 10^{-8} \) | \(a_{845}= +0.10498278 \pm 3.0 \cdot 10^{-8} \) | \(a_{846}= -0.55923522 \pm 1.9 \cdot 10^{-8} \) |
\(a_{847}= +0.18349445 \pm 1.8 \cdot 10^{-8} \) | \(a_{848}= +1.26067189 \pm 1.0 \cdot 10^{-8} \) | \(a_{849}= -0.34867702 \pm 1.8 \cdot 10^{-8} \) |
\(a_{850}= -1.42765128 \pm 1.9 \cdot 10^{-8} \) | \(a_{851}= -1.36743270 \pm 1.2 \cdot 10^{-8} \) | \(a_{852}= +0.05418466 \pm 1 \cdot 10^{-8} \) |
\(a_{853}= +1.37532530 \pm 1.7 \cdot 10^{-8} \) | \(a_{854}= -0.79843375 \pm 2.3 \cdot 10^{-8} \) | \(a_{855}= -0.00002221 \pm 1.6 \cdot 10^{-8} \) |
\(a_{856}= +0.16320949 \pm 2.6 \cdot 10^{-8} \) | \(a_{857}= -0.98533386 \pm 1.8 \cdot 10^{-8} \) | \(a_{858}= -0.28471340 \pm 6.4 \cdot 10^{-8} \) |
\(a_{859}= -0.02786993 \pm 1.3 \cdot 10^{-8} \) | \(a_{860}= +1.14800656 \pm 1.0 \cdot 10^{-8} \) | \(a_{861}= -0.12927857 \pm 2.4 \cdot 10^{-8} \) |
\(a_{862}= -0.52315846 \pm 3.3 \cdot 10^{-8} \) | \(a_{863}= -1.07412215 \pm 1.8 \cdot 10^{-8} \) | \(a_{864}= +0.22524057 \pm 1.4 \cdot 10^{-8} \) |
\(a_{865}= -0.59661469 \pm 1.7 \cdot 10^{-8} \) | \(a_{866}= -0.83679994 \pm 1.6 \cdot 10^{-8} \) | \(a_{867}= +0.03214918 \pm 1.4 \cdot 10^{-8} \) |
\(a_{868}= +1.49823303 \pm 1.0 \cdot 10^{-8} \) | \(a_{869}= +0.79000905 \pm 1.4 \cdot 10^{-8} \) | \(a_{870}= -2.01659367 \pm 1.3 \cdot 10^{-8} \) |
\(a_{871}= -0.17097832 \pm 2.5 \cdot 10^{-8} \) | \(a_{872}= -0.89442776 \pm 2.6 \cdot 10^{-8} \) | \(a_{873}= -1.19442925 \pm 1.3 \cdot 10^{-8} \) |
\(a_{874}= +0.00004812 \pm 1.6 \cdot 10^{-8} \) | \(a_{875}= -0.09070527 \pm 1.9 \cdot 10^{-8} \) | \(a_{876}= -0.59806436 \pm 2.0 \cdot 10^{-8} \) |
\(a_{877}= -0.06821955 \pm 1.8 \cdot 10^{-8} \) | \(a_{878}= -0.47985768 \pm 1.9 \cdot 10^{-8} \) | \(a_{879}= +0.64132351 \pm 1.3 \cdot 10^{-8} \) |
\(a_{880}= +1.24173566 \pm 1.2 \cdot 10^{-8} \) | \(a_{881}= -0.57061374 \pm 1.6 \cdot 10^{-8} \) | \(a_{882}= -0.96725923 \pm 1.8 \cdot 10^{-8} \) |
\(a_{883}= +1.23304923 \pm 2.1 \cdot 10^{-8} \) | \(a_{884}= -0.51628192 \pm 5.3 \cdot 10^{-8} \) | \(a_{885}= +0.00567125 \pm 1.7 \cdot 10^{-8} \) |
\(a_{886}= -0.19030027 \pm 1.2 \cdot 10^{-8} \) | \(a_{887}= +1.53804598 \pm 1.5 \cdot 10^{-8} \) | \(a_{888}= +0.86339058 \pm 1.9 \cdot 10^{-8} \) |
\(a_{889}= +0.27160110 \pm 2.0 \cdot 10^{-8} \) | \(a_{890}= +3.06887997 \pm 1.9 \cdot 10^{-8} \) | \(a_{891}= +0.33373818 \pm 1.6 \cdot 10^{-8} \) |
\(a_{892}= +0.40655428 \pm 2.8 \cdot 10^{-8} \) | \(a_{893}= -0.00000976 \pm 1.4 \cdot 10^{-8} \) | \(a_{894}= -0.48256524 \pm 1.4 \cdot 10^{-8} \) |
\(a_{895}= -1.41559152 \pm 2.3 \cdot 10^{-8} \) | \(a_{896}= +0.87644711 \pm 2.7 \cdot 10^{-8} \) | \(a_{897}= -0.18116759 \pm 4.1 \cdot 10^{-8} \) |
\(a_{898}= +2.47549136 \pm 1.8 \cdot 10^{-8} \) | \(a_{899}= -2.72268420 \pm 1 \cdot 10^{-8} \) | \(a_{900}= -1.22517015 \pm 1.0 \cdot 10^{-8} \) |
\(a_{901}= +1.57529645 \pm 1.8 \cdot 10^{-8} \) | \(a_{902}= -1.04953552 \pm 1.2 \cdot 10^{-8} \) | \(a_{903}= -0.10819078 \pm 1 \cdot 10^{-8} \) |
\(a_{904}= -1.89649050 \pm 1.2 \cdot 10^{-8} \) | \(a_{905}= -0.50356406 \pm 1.7 \cdot 10^{-8} \) | \(a_{906}= -0.33934242 \pm 1.5 \cdot 10^{-8} \) |
\(a_{907}= +1.77972987 \pm 1.3 \cdot 10^{-8} \) | \(a_{908}= -0.11066267 \pm 1.9 \cdot 10^{-8} \) | \(a_{909}= -1.23854337 \pm 1.2 \cdot 10^{-8} \) |
\(a_{910}= +0.31305970 \pm 7.1 \cdot 10^{-8} \) | \(a_{911}= +1.22340716 \pm 1.9 \cdot 10^{-8} \) | \(a_{912}= -0.00000873 \pm 1 \cdot 10^{-8} \) |
\(a_{913}= -0.98246902 \pm 1.3 \cdot 10^{-8} \) | \(a_{914}= +1.87359212 \pm 2.6 \cdot 10^{-8} \) | \(a_{915}= -0.67360143 \pm 1.7 \cdot 10^{-8} \) |
\(a_{916}= -1.87162492 \pm 2.3 \cdot 10^{-8} \) | \(a_{917}= -0.79071148 \pm 1.2 \cdot 10^{-8} \) | \(a_{918}= -1.47112366 \pm 2.1 \cdot 10^{-8} \) |
\(a_{919}= +0.30679499 \pm 2.2 \cdot 10^{-8} \) | \(a_{920}= +2.75135686 \pm 1.4 \cdot 10^{-8} \) | \(a_{921}= -0.03632437 \pm 2.7 \cdot 10^{-8} \) |
\(a_{922}= -3.03091070 \pm 2.8 \cdot 10^{-8} \) | \(a_{923}= +0.01528632 \pm 2.4 \cdot 10^{-8} \) | \(a_{924}= -0.55854915 \pm 1 \cdot 10^{-8} \) |
\(a_{925}= +0.92323102 \pm 1.5 \cdot 10^{-8} \) | \(a_{926}= -2.16774418 \pm 2.6 \cdot 10^{-8} \) | \(a_{927}= -0.26551180 \pm 1.1 \cdot 10^{-8} \) |
\(a_{928}= -0.42836240 \pm 1.9 \cdot 10^{-8} \) | \(a_{929}= +0.70988284 \pm 1.4 \cdot 10^{-8} \) | \(a_{930}= +1.92131719 \pm 1 \cdot 10^{-8} \) |
\(a_{931}= -0.00001687 \pm 1.9 \cdot 10^{-8} \) | \(a_{932}= +1.26819293 \pm 2.1 \cdot 10^{-8} \) | \(a_{933}= +0.23531618 \pm 1.4 \cdot 10^{-8} \) |
\(a_{934}= +1.29626915 \pm 2.2 \cdot 10^{-8} \) | \(a_{935}= +1.55163433 \pm 1 \cdot 10^{-8} \) | \(a_{936}= -0.32323621 \pm 4.9 \cdot 10^{-8} \) |
\(a_{937}= +0.04189092 \pm 1.1 \cdot 10^{-8} \) | \(a_{938}= -0.50985906 \pm 2.0 \cdot 10^{-8} \) | \(a_{939}= +0.41067078 \pm 2.2 \cdot 10^{-8} \) |
\(a_{940}= -1.16222615 \pm 1.9 \cdot 10^{-8} \) | \(a_{941}= +0.68007469 \pm 1.9 \cdot 10^{-8} \) | \(a_{942}= +0.20648072 \pm 1.5 \cdot 10^{-8} \) |
\(a_{943}= -0.66783589 \pm 1.6 \cdot 10^{-8} \) | \(a_{944}= -0.00629672 \pm 1.3 \cdot 10^{-8} \) | \(a_{945}= +0.58685910 \pm 1.3 \cdot 10^{-8} \) |
\(a_{946}= -0.87833636 \pm 1.0 \cdot 10^{-8} \) | \(a_{947}= -0.86580382 \pm 1.7 \cdot 10^{-8} \) | \(a_{948}= -0.66130651 \pm 1 \cdot 10^{-8} \) |
\(a_{949}= -0.16872312 \pm 2.5 \cdot 10^{-8} \) | \(a_{950}= -0.00003249 \pm 1 \cdot 10^{-8} \) | \(a_{951}= -0.06883866 \pm 1.7 \cdot 10^{-8} \) |
\(a_{952}= -0.73892307 \pm 1.9 \cdot 10^{-8} \) | \(a_{953}= -0.15219492 \pm 1.8 \cdot 10^{-8} \) | \(a_{954}= +2.05490692 \pm 1.2 \cdot 10^{-8} \) |
\(a_{955}= -0.34888058 \pm 2.0 \cdot 10^{-8} \) | \(a_{956}= -0.61510275 \pm 1.8 \cdot 10^{-8} \) | \(a_{957}= +1.01503098 \pm 1 \cdot 10^{-8} \) |
\(a_{958}= +1.26225701 \pm 2.2 \cdot 10^{-8} \) | \(a_{959}= +0.66180931 \pm 1.1 \cdot 10^{-8} \) | \(a_{960}= +0.84283563 \pm 1.1 \cdot 10^{-8} \) |
\(a_{961}= +1.59404760 \pm 1.5 \cdot 10^{-8} \) | \(a_{962}= +0.50749382 \pm 4.9 \cdot 10^{-8} \) | \(a_{963}= +0.07639947 \pm 1.1 \cdot 10^{-8} \) |
\(a_{964}= +1.47175257 \pm 2.6 \cdot 10^{-8} \) | \(a_{965}= +1.73158546 \pm 1.3 \cdot 10^{-8} \) | \(a_{966}= -0.54024356 \pm 1.2 \cdot 10^{-8} \) |
\(a_{967}= -1.37610540 \pm 2.4 \cdot 10^{-8} \) | \(a_{968}= -0.59850459 \pm 2.1 \cdot 10^{-8} \) | \(a_{969}= -0.00001090 \pm 1.1 \cdot 10^{-8} \) |
\(a_{970}= -3.77322017 \pm 1.4 \cdot 10^{-8} \) | \(a_{971}= -1.78549944 \pm 1.5 \cdot 10^{-8} \) | \(a_{972}= -1.98861624 \pm 1.5 \cdot 10^{-8} \) |
\(a_{973}= +0.80565251 \pm 1.2 \cdot 10^{-8} \) | \(a_{974}= +1.45196365 \pm 3.0 \cdot 10^{-8} \) | \(a_{975}= +0.12231647 \pm 4.9 \cdot 10^{-8} \) |
\(a_{976}= +0.74789095 \pm 1.2 \cdot 10^{-8} \) | \(a_{977}= -1.20672454 \pm 2.0 \cdot 10^{-8} \) | \(a_{978}= +0.04443132 \pm 1.9 \cdot 10^{-8} \) |
\(a_{979}= -1.54468810 \pm 1.0 \cdot 10^{-8} \) | \(a_{980}= -2.01019880 \pm 1.7 \cdot 10^{-8} \) | \(a_{981}= -0.41868770 \pm 1.3 \cdot 10^{-8} \) |
\(a_{982}= +2.67965103 \pm 1.8 \cdot 10^{-8} \) | \(a_{983}= +0.03714477 \pm 1.8 \cdot 10^{-8} \) | \(a_{984}= +0.42166844 \pm 3.3 \cdot 10^{-8} \) |
\(a_{985}= -0.20641444 \pm 1.3 \cdot 10^{-8} \) | \(a_{986}= +2.79778221 \pm 2.8 \cdot 10^{-8} \) | \(a_{987}= +0.10953087 \pm 1 \cdot 10^{-8} \) |
\(a_{988}= -0.00001175 \pm 5.4 \cdot 10^{-8} \) | \(a_{989}= -0.55889918 \pm 1.3 \cdot 10^{-8} \) | \(a_{990}= +2.02404069 \pm 1 \cdot 10^{-8} \) |
\(a_{991}= +1.90427975 \pm 1.4 \cdot 10^{-8} \) | \(a_{992}= +0.40812388 \pm 1.1 \cdot 10^{-8} \) | \(a_{993}= -0.13311486 \pm 1.9 \cdot 10^{-8} \) |
\(a_{994}= +0.04558396 \pm 2.1 \cdot 10^{-8} \) | \(a_{995}= +0.25405533 \pm 2.2 \cdot 10^{-8} \) | \(a_{996}= +0.82241229 \pm 2.8 \cdot 10^{-8} \) |
\(a_{997}= +0.38281692 \pm 1.3 \cdot 10^{-8} \) | \(a_{998}= -1.76267937 \pm 2.4 \cdot 10^{-8} \) | \(a_{999}= +0.95134366 \pm 1.7 \cdot 10^{-8} \) |
\(a_{1000}= +0.29585375 \pm 2.1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000