Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(9.48147888733239185975363636513 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.38189823 \pm 9.8 \cdot 10^{-7} \) | \(a_{3}= +1.74853633 \pm 9.5 \cdot 10^{-7} \) |
\(a_{4}= -0.85415374 \pm 8.9 \cdot 10^{-7} \) | \(a_{5}= -0.41535158 \pm 8.4 \cdot 10^{-7} \) | \(a_{6}= -0.66776293 \pm 1.0 \cdot 10^{-6} \) |
\(a_{7}= -0.31001498 \pm 8.7 \cdot 10^{-7} \) | \(a_{8}= +0.70809803 \pm 7.4 \cdot 10^{-7} \) | \(a_{9}= +2.05737931 \pm 9.2 \cdot 10^{-7} \) |
\(a_{10}= +0.15862203 \pm 9.6 \cdot 10^{-7} \) | \(a_{11}= +0.09183794 \pm 8.0 \cdot 10^{-7} \) | \(a_{12}= -1.49351885 \pm 9.6 \cdot 10^{-7} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +0.11839417 \pm 9.4 \cdot 10^{-7} \) | \(a_{15}= -0.72625732 \pm 1.0 \cdot 10^{-6} \) |
\(a_{16}= +0.58373236 \pm 7.7 \cdot 10^{-7} \) | \(a_{17}= -0.51752466 \pm 8.7 \cdot 10^{-7} \) | \(a_{18}= -0.78570952 \pm 1.0 \cdot 10^{-6} \) |
\(a_{19}= +1.51633675 \pm 7.1 \cdot 10^{-7} \) | \(a_{20}= +0.35477410 \pm 8.7 \cdot 10^{-7} \) | \(a_{21}= -0.54207245 \pm 7.4 \cdot 10^{-7} \) |
\(a_{22}= -0.03507275 \pm 8.8 \cdot 10^{-7} \) | \(a_{23}= +0.91220643 \pm 7.2 \cdot 10^{-7} \) | \(a_{24}= +1.23813514 \pm 7.2 \cdot 10^{-7} \) |
\(a_{25}= -0.82748307 \pm 6.5 \cdot 10^{-7} \) | \(a_{26}= -0.10591951 \pm 9.9 \cdot 10^{-7} \) | \(a_{27}= +1.84886615 \pm 7.7 \cdot 10^{-7} \) |
\(a_{28}= +0.26480045 \pm 8.1 \cdot 10^{-7} \) | \(a_{29}= +1.54381337 \pm 6.4 \cdot 10^{-7} \) | \(a_{30}= +0.27735639 \pm 1.2 \cdot 10^{-6} \) |
\(a_{31}= -0.20517106 \pm 9.2 \cdot 10^{-7} \) | \(a_{32}= -0.93102439 \pm 1.0 \cdot 10^{-6} \) | \(a_{33}= +0.16058198 \pm 6.9 \cdot 10^{-7} \) |
\(a_{34}= +0.19764175 \pm 9.5 \cdot 10^{-7} \) | \(a_{35}= +0.12876521 \pm 7.0 \cdot 10^{-7} \) | \(a_{36}= -1.75731824 \pm 8.7 \cdot 10^{-7} \) |
\(a_{37}= +1.91501927 \pm 1.0 \cdot 10^{-6} \) | \(a_{38}= -0.57908632 \pm 6.8 \cdot 10^{-7} \) | \(a_{39}= +0.48495672 \pm 9.6 \cdot 10^{-7} \) |
\(a_{40}= -0.29410963 \pm 7.4 \cdot 10^{-7} \) | \(a_{41}= +1.83331789 \pm 7.8 \cdot 10^{-7} \) | \(a_{42}= +0.20701651 \pm 6.2 \cdot 10^{-7} \) |
\(a_{43}= +0.41048428 \pm 8.7 \cdot 10^{-7} \) | \(a_{44}= -0.07844372 \pm 8.3 \cdot 10^{-7} \) | \(a_{45}= -0.85453574 \pm 9.3 \cdot 10^{-7} \) |
\(a_{46}= -0.34837002 \pm 9.3 \cdot 10^{-7} \) | \(a_{47}= -0.09763336 \pm 9.0 \cdot 10^{-7} \) | \(a_{48}= +1.02067724 \pm 8.8 \cdot 10^{-7} \) |
\(a_{49}= -0.90389071 \pm 7.9 \cdot 10^{-7} \) | \(a_{50}= +0.31601432 \pm 7.8 \cdot 10^{-7} \) | \(a_{51}= -0.90491067 \pm 1.0 \cdot 10^{-6} \) |
\(a_{52}= -0.23689962 \pm 9.0 \cdot 10^{-7} \) | \(a_{53}= +0.54767265 \pm 6.6 \cdot 10^{-7} \) | \(a_{54}= -0.70607871 \pm 8.9 \cdot 10^{-7} \) |
\(a_{55}= -0.03814503 \pm 5.7 \cdot 10^{-7} \) | \(a_{56}= -0.21952100 \pm 6.5 \cdot 10^{-7} \) | \(a_{57}= +2.65136990 \pm 6.9 \cdot 10^{-7} \) |
\(a_{58}= -0.58957959 \pm 6.3 \cdot 10^{-7} \) | \(a_{59}= -0.63026236 \pm 8.0 \cdot 10^{-7} \) | \(a_{60}= +0.62033541 \pm 1.0 \cdot 10^{-6} \) |
\(a_{61}= -0.87463021 \pm 7.7 \cdot 10^{-7} \) | \(a_{62}= +0.07835446 \pm 8.1 \cdot 10^{-7} \) | \(a_{63}= -0.63781840 \pm 6.6 \cdot 10^{-7} \) |
\(a_{64}= -0.22817579 \pm 8.0 \cdot 10^{-7} \) | \(a_{65}= -0.11519780 \pm 8.5 \cdot 10^{-7} \) | \(a_{66}= -0.06132597 \pm 7.9 \cdot 10^{-7} \) |
\(a_{67}= +0.95290044 \pm 9.0 \cdot 10^{-7} \) | \(a_{68}= +0.44204562 \pm 7.7 \cdot 10^{-7} \) | \(a_{69}= +1.59502608 \pm 8.9 \cdot 10^{-7} \) |
\(a_{70}= -0.04917521 \pm 6.8 \cdot 10^{-7} \) | \(a_{71}= -0.06568989 \pm 9.2 \cdot 10^{-7} \) | \(a_{72}= +1.45682624 \pm 7.4 \cdot 10^{-7} \) |
\(a_{73}= -1.11905817 \pm 1.0 \cdot 10^{-6} \) | \(a_{74}= -0.73134247 \pm 9.9 \cdot 10^{-7} \) | \(a_{75}= -1.44688421 \pm 5.2 \cdot 10^{-7} \) |
\(a_{76}= -1.29518471 \pm 6.4 \cdot 10^{-7} \) | \(a_{77}= -0.02847114 \pm 8.2 \cdot 10^{-7} \) | \(a_{78}= -0.18520411 \pm 1.9 \cdot 10^{-6} \) |
\(a_{79}= +0.03667120 \pm 9.3 \cdot 10^{-7} \) | \(a_{80}= -0.24245416 \pm 7.2 \cdot 10^{-7} \) | \(a_{81}= +1.17543033 \pm 7.6 \cdot 10^{-7} \) |
\(a_{82}= -0.70014086 \pm 8.7 \cdot 10^{-7} \) | \(a_{83}= -1.09847822 \pm 5.7 \cdot 10^{-7} \) | \(a_{84}= +0.46301322 \pm 7.1 \cdot 10^{-7} \) |
\(a_{85}= +0.21495468 \pm 8.2 \cdot 10^{-7} \) | \(a_{86}= -0.15676322 \pm 1.0 \cdot 10^{-6} \) | \(a_{87}= +2.69941377 \pm 6.7 \cdot 10^{-7} \) |
\(a_{88}= +0.06503027 \pm 6.2 \cdot 10^{-7} \) | \(a_{89}= +1.31245538 \pm 1.1 \cdot 10^{-6} \) | \(a_{90}= +0.32634569 \pm 1.1 \cdot 10^{-6} \) |
\(a_{91}= -0.08598268 \pm 8.8 \cdot 10^{-7} \) | \(a_{92}= -0.77916453 \pm 7.9 \cdot 10^{-7} \) | \(a_{93}= -0.35874905 \pm 1.0 \cdot 10^{-6} \) |
\(a_{94}= +0.03728601 \pm 7.6 \cdot 10^{-7} \) | \(a_{95}= -0.62981286 \pm 6.3 \cdot 10^{-7} \) | \(a_{96}= -1.62792997 \pm 1.0 \cdot 10^{-6} \) |
\(a_{97}= +0.83399781 \pm 9.0 \cdot 10^{-7} \) | \(a_{98}= +0.34519426 \pm 9.3 \cdot 10^{-7} \) | \(a_{99}= +0.18894548 \pm 6.7 \cdot 10^{-7} \) |
\(a_{100}= +0.70679776 \pm 6.8 \cdot 10^{-7} \) | \(a_{101}= -1.78185376 \pm 6.6 \cdot 10^{-7} \) | \(a_{102}= +0.34558378 \pm 1.0 \cdot 10^{-6} \) |
\(a_{103}= +0.23530218 \pm 9.2 \cdot 10^{-7} \) | \(a_{104}= +0.19639106 \pm 7.5 \cdot 10^{-7} \) | \(a_{105}= +0.22515065 \pm 6.9 \cdot 10^{-7} \) |
\(a_{106}= -0.20915522 \pm 8.3 \cdot 10^{-7} \) | \(a_{107}= +0.38943980 \pm 9.8 \cdot 10^{-7} \) | \(a_{108}= -1.57921594 \pm 8.0 \cdot 10^{-7} \) |
\(a_{109}= -1.36135871 \pm 6.4 \cdot 10^{-7} \) | \(a_{110}= +0.01456752 \pm 6.4 \cdot 10^{-7} \) | \(a_{111}= +3.34848078 \pm 5.9 \cdot 10^{-7} \) |
\(a_{112}= -0.18096577 \pm 7.6 \cdot 10^{-7} \) | \(a_{113}= -0.07222589 \pm 1.1 \cdot 10^{-6} \) | \(a_{114}= -1.01255347 \pm 7.4 \cdot 10^{-7} \) |
\(a_{115}= -0.37888638 \pm 7.5 \cdot 10^{-7} \) | \(a_{116}= -1.31865397 \pm 7.2 \cdot 10^{-7} \) | \(a_{117}= +0.57061435 \pm 9.3 \cdot 10^{-7} \) |
\(a_{118}= +0.24069608 \pm 8.7 \cdot 10^{-7} \) | \(a_{119}= +0.16044040 \pm 9.5 \cdot 10^{-7} \) | \(a_{120}= -0.51426138 \pm 7.8 \cdot 10^{-7} \) |
\(a_{121}= -0.99156579 \pm 5.8 \cdot 10^{-7} \) | \(a_{122}= +0.33401973 \pm 7.3 \cdot 10^{-7} \) | \(a_{123}= +3.20562294 \pm 8.7 \cdot 10^{-7} \) |
\(a_{124}= +0.17524763 \pm 8.4 \cdot 10^{-7} \) | \(a_{125}= +0.75904797 \pm 7.0 \cdot 10^{-7} \) | \(a_{126}= +0.24358172 \pm 7.0 \cdot 10^{-7} \) |
\(a_{127}= -0.82901605 \pm 9.3 \cdot 10^{-7} \) | \(a_{128}= +1.01816432 \pm 7.7 \cdot 10^{-7} \) | \(a_{129}= +0.71774668 \pm 9.5 \cdot 10^{-7} \) |
\(a_{130}= +0.04399384 \pm 1.8 \cdot 10^{-6} \) | \(a_{131}= -1.12055745 \pm 7.4 \cdot 10^{-7} \) | \(a_{132}= -0.13716170 \pm 7.8 \cdot 10^{-7} \) |
\(a_{133}= -0.47008710 \pm 5.4 \cdot 10^{-7} \) | \(a_{134}= -0.36391099 \pm 1.0 \cdot 10^{-6} \) | \(a_{135}= -0.76792947 \pm 6.9 \cdot 10^{-7} \) |
\(a_{136}= -0.36645819 \pm 5.4 \cdot 10^{-7} \) | \(a_{137}= -0.94451919 \pm 8.9 \cdot 10^{-7} \) | \(a_{138}= -0.60913764 \pm 1.0 \cdot 10^{-6} \) |
\(a_{139}= +0.83216254 \pm 8.1 \cdot 10^{-7} \) | \(a_{140}= -0.10998529 \pm 6.7 \cdot 10^{-7} \) | \(a_{141}= -0.17071547 \pm 7.2 \cdot 10^{-7} \) |
\(a_{142}= +0.02508685 \pm 9.6 \cdot 10^{-7} \) | \(a_{143}= +0.02547126 \pm 8.1 \cdot 10^{-7} \) | \(a_{144}= +1.20095888 \pm 8.2 \cdot 10^{-7} \) |
\(a_{145}= -0.64122532 \pm 6.2 \cdot 10^{-7} \) | \(a_{146}= +0.42736634 \pm 9.6 \cdot 10^{-7} \) | \(a_{147}= -1.58048575 \pm 8.1 \cdot 10^{-7} \) |
\(a_{148}= -1.63572088 \pm 9.2 \cdot 10^{-7} \) | \(a_{149}= +0.86335825 \pm 8.4 \cdot 10^{-7} \) | \(a_{150}= +0.55256252 \pm 6.7 \cdot 10^{-7} \) |
\(a_{151}= +1.92320136 \pm 6.6 \cdot 10^{-7} \) | \(a_{152}= +1.07371507 \pm 6.0 \cdot 10^{-7} \) | \(a_{153}= -1.06474452 \pm 8.4 \cdot 10^{-7} \) |
\(a_{154}= +0.01087308 \pm 1.0 \cdot 10^{-6} \) | \(a_{155}= +0.08521812 \pm 8.8 \cdot 10^{-7} \) | \(a_{156}= -0.41422760 \pm 1.8 \cdot 10^{-6} \) |
\(a_{157}= +0.35236483 \pm 9.8 \cdot 10^{-7} \) | \(a_{158}= -0.01400467 \pm 8.4 \cdot 10^{-7} \) | \(a_{159}= +0.95762554 \pm 6.6 \cdot 10^{-7} \) |
\(a_{160}= +0.38670245 \pm 9.0 \cdot 10^{-7} \) | \(a_{161}= -0.28279766 \pm 6.4 \cdot 10^{-7} \) | \(a_{162}= -0.44889476 \pm 7.6 \cdot 10^{-7} \) |
\(a_{163}= -0.61817450 \pm 1.0 \cdot 10^{-6} \) | \(a_{164}= -1.56593534 \pm 8.0 \cdot 10^{-7} \) | \(a_{165}= -0.06669798 \pm 6.4 \cdot 10^{-7} \) |
\(a_{166}= +0.41950689 \pm 5.8 \cdot 10^{-7} \) | \(a_{167}= +1.26885321 \pm 1.0 \cdot 10^{-6} \) | \(a_{168}= -0.38384044 \pm 6.1 \cdot 10^{-7} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= -0.08209081 \pm 8.9 \cdot 10^{-7} \) | \(a_{171}= +3.11967986 \pm 8.2 \cdot 10^{-7} \) |
\(a_{172}= -0.35061668 \pm 8.9 \cdot 10^{-7} \) | \(a_{173}= -0.05170471 \pm 1.0 \cdot 10^{-6} \) | \(a_{174}= -1.03090134 \pm 4.8 \cdot 10^{-7} \) |
\(a_{175}= +0.25653215 \pm 7.1 \cdot 10^{-7} \) | \(a_{176}= +0.05360878 \pm 6.6 \cdot 10^{-7} \) | \(a_{177}= -1.10203663 \pm 7.4 \cdot 10^{-7} \) |
\(a_{178}= -0.50122439 \pm 1.2 \cdot 10^{-6} \) | \(a_{179}= -0.55256309 \pm 6.8 \cdot 10^{-7} \) | \(a_{180}= +0.72990490 \pm 8.9 \cdot 10^{-7} \) |
\(a_{181}= +1.16866986 \pm 8.8 \cdot 10^{-7} \) | \(a_{182}= +0.03283664 \pm 1.8 \cdot 10^{-6} \) | \(a_{183}= -1.52932270 \pm 7.5 \cdot 10^{-7} \) |
\(a_{184}= +0.64593158 \pm 5.9 \cdot 10^{-7} \) | \(a_{185}= -0.79540627 \pm 7.7 \cdot 10^{-7} \) | \(a_{186}= +0.13700563 \pm 1.0 \cdot 10^{-6} \) |
\(a_{187}= -0.04752840 \pm 6.9 \cdot 10^{-7} \) | \(a_{188}= +0.08339390 \pm 8.3 \cdot 10^{-7} \) | \(a_{189}= -0.57317620 \pm 6.5 \cdot 10^{-7} \) |
\(a_{190}= +0.24052442 \pm 7.1 \cdot 10^{-7} \) | \(a_{191}= -1.26116847 \pm 8.0 \cdot 10^{-7} \) | \(a_{192}= -0.39897367 \pm 9.1 \cdot 10^{-7} \) |
\(a_{193}= -0.81380464 \pm 9.4 \cdot 10^{-7} \) | \(a_{194}= -0.31850229 \pm 8.7 \cdot 10^{-7} \) | \(a_{195}= -0.20142754 \pm 1.8 \cdot 10^{-6} \) |
\(a_{196}= +0.77206164 \pm 7.2 \cdot 10^{-7} \) | \(a_{197}= -0.55225550 \pm 8.1 \cdot 10^{-7} \) | \(a_{198}= -0.07215795 \pm 7.4 \cdot 10^{-7} \) |
\(a_{199}= +1.55315873 \pm 9.0 \cdot 10^{-7} \) | \(a_{200}= -0.58593913 \pm 5.3 \cdot 10^{-7} \) | \(a_{201}= +1.66618104 \pm 1.1 \cdot 10^{-6} \) |
\(a_{202}= +0.68048679 \pm 7.9 \cdot 10^{-7} \) | \(a_{203}= -0.47860527 \pm 7.4 \cdot 10^{-7} \) | \(a_{204}= +0.77293283 \pm 9.6 \cdot 10^{-7} \) |
\(a_{205}= -0.76147148 \pm 7.0 \cdot 10^{-7} \) | \(a_{206}= -0.08986149 \pm 1.0 \cdot 10^{-6} \) | \(a_{207}= +1.87675464 \pm 8.8 \cdot 10^{-7} \) |
\(a_{208}= +0.16189823 \pm 7.8 \cdot 10^{-7} \) | \(a_{209}= +0.13925725 \pm 5.9 \cdot 10^{-7} \) | \(a_{210}= -0.08598463 \pm 4.8 \cdot 10^{-7} \) |
\(a_{211}= +0.95757996 \pm 1.0 \cdot 10^{-6} \) | \(a_{212}= -0.46779665 \pm 7.1 \cdot 10^{-7} \) | \(a_{213}= -0.11486115 \pm 1.0 \cdot 10^{-6} \) |
\(a_{214}= -0.14872637 \pm 1.1 \cdot 10^{-6} \) | \(a_{215}= -0.17049529 \pm 8.0 \cdot 10^{-7} \) | \(a_{216}= +1.30917848 \pm 6.0 \cdot 10^{-7} \) |
\(a_{217}= +0.06360610 \pm 8.3 \cdot 10^{-7} \) | \(a_{218}= +0.51990048 \pm 7.0 \cdot 10^{-7} \) | \(a_{219}= -1.95671388 \pm 1.0 \cdot 10^{-6} \) |
\(a_{220}= +0.03258172 \pm 6.2 \cdot 10^{-7} \) | \(a_{221}= -0.14353551 \pm 8.8 \cdot 10^{-7} \) | \(a_{222}= -1.27877888 \pm 6.3 \cdot 10^{-7} \) |
\(a_{223}= +0.60547391 \pm 9.0 \cdot 10^{-7} \) | \(a_{224}= +0.28863150 \pm 8.9 \cdot 10^{-7} \) | \(a_{225}= -1.70244655 \pm 5.5 \cdot 10^{-7} \) |
\(a_{226}= +0.02758294 \pm 1.1 \cdot 10^{-6} \) | \(a_{227}= -0.08324728 \pm 6.7 \cdot 10^{-7} \) | \(a_{228}= -2.26467752 \pm 5.8 \cdot 10^{-7} \) |
\(a_{229}= +0.57078198 \pm 8.9 \cdot 10^{-7} \) | \(a_{230}= +0.14469604 \pm 9.3 \cdot 10^{-7} \) | \(a_{231}= -0.04978282 \pm 6.4 \cdot 10^{-7} \) |
\(a_{232}= +1.09317121 \pm 5.6 \cdot 10^{-7} \) | \(a_{233}= -0.25541220 \pm 1.1 \cdot 10^{-6} \) | \(a_{234}= -0.21791661 \pm 1.9 \cdot 10^{-6} \) |
\(a_{235}= +0.04055217 \pm 6.6 \cdot 10^{-7} \) | \(a_{236}= +0.53834095 \pm 8.0 \cdot 10^{-7} \) | \(a_{237}= +0.06412092 \pm 8.9 \cdot 10^{-7} \) |
\(a_{238}= -0.06127190 \pm 9.7 \cdot 10^{-7} \) | \(a_{239}= +0.51921363 \pm 8.2 \cdot 10^{-7} \) | \(a_{240}= -0.42393990 \pm 9.7 \cdot 10^{-7} \) |
\(a_{241}= +0.64332246 \pm 7.3 \cdot 10^{-7} \) | \(a_{242}= +0.37867722 \pm 7.2 \cdot 10^{-7} \) | \(a_{243}= +0.20641649 \pm 9.4 \cdot 10^{-7} \) |
\(a_{244}= +0.74706867 \pm 6.2 \cdot 10^{-7} \) | \(a_{245}= +0.37543243 \pm 7.4 \cdot 10^{-7} \) | \(a_{246}= -1.22422173 \pm 1.1 \cdot 10^{-6} \) |
\(a_{247}= +0.42055615 \pm 7.2 \cdot 10^{-7} \) | \(a_{248}= -0.14528122 \pm 7.1 \cdot 10^{-7} \) | \(a_{249}= -1.92072908 \pm 5.1 \cdot 10^{-7} \) |
\(a_{250}= -0.28987908 \pm 5.3 \cdot 10^{-7} \) | \(a_{251}= -0.03733086 \pm 9.9 \cdot 10^{-7} \) | \(a_{252}= +0.54479498 \pm 5.7 \cdot 10^{-7} \) |
\(a_{253}= +0.08377516 \pm 7.0 \cdot 10^{-7} \) | \(a_{254}= +0.31659976 \pm 1.0 \cdot 10^{-6} \) | \(a_{255}= +0.37585607 \pm 1.1 \cdot 10^{-6} \) |
\(a_{256}= -0.16065936 \pm 8.3 \cdot 10^{-7} \) | \(a_{257}= -1.37477273 \pm 1.0 \cdot 10^{-6} \) | \(a_{258}= -0.27410619 \pm 1.2 \cdot 10^{-6} \) |
\(a_{259}= -0.59368466 \pm 9.7 \cdot 10^{-7} \) | \(a_{260}= +0.09839663 \pm 1.7 \cdot 10^{-6} \) | \(a_{261}= +3.17620969 \pm 4.5 \cdot 10^{-7} \) |
\(a_{262}= +0.42793891 \pm 9.2 \cdot 10^{-7} \) | \(a_{263}= +0.08995013 \pm 8.9 \cdot 10^{-7} \) | \(a_{264}= +0.11370778 \pm 6.2 \cdot 10^{-7} \) |
\(a_{265}= -0.22747670 \pm 5.5 \cdot 10^{-7} \) | \(a_{266}= +0.17952543 \pm 6.1 \cdot 10^{-7} \) | \(a_{267}= +2.29487592 \pm 1.0 \cdot 10^{-6} \) |
\(a_{268}= -0.81392348 \pm 9.3 \cdot 10^{-7} \) | \(a_{269}= -0.89303350 \pm 1.0 \cdot 10^{-6} \) | \(a_{270}= +0.29327091 \pm 8.4 \cdot 10^{-7} \) |
\(a_{271}= +1.57685665 \pm 8.5 \cdot 10^{-7} \) | \(a_{272}= -0.30209589 \pm 7.9 \cdot 10^{-7} \) | \(a_{273}= -0.15034385 \pm 1.8 \cdot 10^{-6} \) |
\(a_{274}= +0.36071021 \pm 8.9 \cdot 10^{-7} \) | \(a_{275}= -0.07599434 \pm 6.6 \cdot 10^{-7} \) | \(a_{276}= -1.36239750 \pm 7.6 \cdot 10^{-7} \) |
\(a_{277}= +0.31674174 \pm 8.9 \cdot 10^{-7} \) | \(a_{278}= -0.31780140 \pm 7.8 \cdot 10^{-7} \) | \(a_{279}= -0.42211469 \pm 9.0 \cdot 10^{-7} \) |
\(a_{280}= +0.09117839 \pm 6.7 \cdot 10^{-7} \) | \(a_{281}= -1.64323817 \pm 1.3 \cdot 10^{-6} \) | \(a_{282}= +0.06519594 \pm 8.1 \cdot 10^{-7} \) |
\(a_{283}= -0.33345882 \pm 6.8 \cdot 10^{-7} \) | \(a_{284}= +0.05610926 \pm 8.1 \cdot 10^{-7} \) | \(a_{285}= -1.10125067 \pm 7.5 \cdot 10^{-7} \) |
\(a_{286}= -0.00972743 \pm 1.8 \cdot 10^{-6} \) | \(a_{287}= -0.56835601 \pm 4.3 \cdot 10^{-7} \) | \(a_{288}= -1.91547031 \pm 1.0 \cdot 10^{-6} \) |
\(a_{289}= -0.73216823 \pm 7.2 \cdot 10^{-7} \) | \(a_{290}= +0.24488281 \pm 6.5 \cdot 10^{-7} \) | \(a_{291}= +1.45827548 \pm 9.0 \cdot 10^{-7} \) |
\(a_{292}= +0.95584773 \pm 9.7 \cdot 10^{-7} \) | \(a_{293}= -0.45599990 \pm 7.7 \cdot 10^{-7} \) | \(a_{294}= +0.60358471 \pm 1.0 \cdot 10^{-6} \) |
\(a_{295}= +0.26178046 \pm 7.2 \cdot 10^{-7} \) | \(a_{296}= +1.35602138 \pm 9.7 \cdot 10^{-7} \) | \(a_{297}= +0.16979606 \pm 6.9 \cdot 10^{-7} \) |
\(a_{298}= -0.32971499 \pm 8.6 \cdot 10^{-7} \) | \(a_{299}= +0.25300054 \pm 7.3 \cdot 10^{-7} \) | \(a_{300}= +1.23586156 \pm 6.1 \cdot 10^{-7} \) |
\(a_{301}= -0.12725627 \pm 7.1 \cdot 10^{-7} \) | \(a_{302}= -0.73446720 \pm 6.4 \cdot 10^{-7} \) | \(a_{303}= -3.11563604 \pm 7.4 \cdot 10^{-7} \) |
\(a_{304}= +0.88513482 \pm 5.6 \cdot 10^{-7} \) | \(a_{305}= +0.36327904 \pm 6.2 \cdot 10^{-7} \) | \(a_{306}= +0.40662405 \pm 1.0 \cdot 10^{-6} \) |
\(a_{307}= +0.78842814 \pm 6.7 \cdot 10^{-7} \) | \(a_{308}= +0.02431873 \pm 8.8 \cdot 10^{-7} \) | \(a_{309}= +0.41143441 \pm 1.0 \cdot 10^{-6} \) |
\(a_{310}= -0.03254465 \pm 8.8 \cdot 10^{-7} \) | \(a_{311}= -1.05485478 \pm 1.1 \cdot 10^{-6} \) | \(a_{312}= +0.34339690 \pm 1.7 \cdot 10^{-6} \) |
\(a_{313}= +0.98217368 \pm 6.6 \cdot 10^{-7} \) | \(a_{314}= -0.13456751 \pm 9.2 \cdot 10^{-7} \) | \(a_{315}= +0.26491888 \pm 5.3 \cdot 10^{-7} \) |
\(a_{316}= -0.03132284 \pm 8.2 \cdot 10^{-7} \) | \(a_{317}= +0.71049873 \pm 8.4 \cdot 10^{-7} \) | \(a_{318}= -0.36571550 \pm 8.6 \cdot 10^{-7} \) |
\(a_{319}= +0.14178064 \pm 5.2 \cdot 10^{-7} \) | \(a_{320}= +0.09477318 \pm 8.0 \cdot 10^{-7} \) | \(a_{321}= +0.68094964 \pm 9.6 \cdot 10^{-7} \) |
\(a_{322}= +0.10799992 \pm 9.2 \cdot 10^{-7} \) | \(a_{323}= -0.78474166 \pm 5.2 \cdot 10^{-7} \) | \(a_{324}= -1.00399821 \pm 7.4 \cdot 10^{-7} \) |
\(a_{325}= -0.22950251 \pm 6.6 \cdot 10^{-7} \) | \(a_{326}= +0.23607975 \pm 7.7 \cdot 10^{-7} \) | \(a_{327}= -2.38038517 \pm 7.5 \cdot 10^{-7} \) |
\(a_{328}= +1.29816879 \pm 3.7 \cdot 10^{-7} \) | \(a_{329}= +0.03026780 \pm 6.6 \cdot 10^{-7} \) | \(a_{330}= +0.02547184 \pm 7.2 \cdot 10^{-7} \) |
\(a_{331}= -0.48261051 \pm 1.0 \cdot 10^{-6} \) | \(a_{332}= +0.93826928 \pm 5.3 \cdot 10^{-7} \) | \(a_{333}= +3.93992103 \pm 9.2 \cdot 10^{-7} \) |
\(a_{334}= -0.48457279 \pm 1.0 \cdot 10^{-6} \) | \(a_{335}= -0.39578870 \pm 9.6 \cdot 10^{-7} \) | \(a_{336}= -0.31642523 \pm 5.3 \cdot 10^{-7} \) |
\(a_{337}= +0.93721315 \pm 9.4 \cdot 10^{-7} \) | \(a_{338}= -0.02937679 \pm 9.9 \cdot 10^{-7} \) | \(a_{339}= -0.12628960 \pm 1.1 \cdot 10^{-6} \) |
\(a_{340}= -0.18360435 \pm 7.5 \cdot 10^{-7} \) | \(a_{341}= -0.01884249 \pm 6.7 \cdot 10^{-7} \) | \(a_{342}= -1.19140021 \pm 9.0 \cdot 10^{-7} \) |
\(a_{343}= +0.59023464 \pm 6.5 \cdot 10^{-7} \) | \(a_{344}= +0.29066311 \pm 5.1 \cdot 10^{-7} \) | \(a_{345}= -0.66249660 \pm 1.0 \cdot 10^{-6} \) |
\(a_{346}= +0.01974594 \pm 9.9 \cdot 10^{-7} \) | \(a_{347}= +0.14569115 \pm 1.1 \cdot 10^{-6} \) | \(a_{348}= -2.30571437 \pm 6.8 \cdot 10^{-7} \) |
\(a_{349}= -0.71818037 \pm 9.5 \cdot 10^{-7} \) | \(a_{350}= -0.09796917 \pm 9.2 \cdot 10^{-7} \) | \(a_{351}= +0.51278321 \pm 7.8 \cdot 10^{-7} \) |
\(a_{352}= -0.08550336 \pm 8.5 \cdot 10^{-7} \) | \(a_{353}= -1.38272262 \pm 7.6 \cdot 10^{-7} \) | \(a_{354}= +0.42086584 \pm 7.9 \cdot 10^{-7} \) |
\(a_{355}= +0.02728440 \pm 9.0 \cdot 10^{-7} \) | \(a_{356}= -1.12103867 \pm 9.9 \cdot 10^{-7} \) | \(a_{357}= +0.28053586 \pm 8.9 \cdot 10^{-7} \) |
\(a_{358}= +0.21102287 \pm 6.4 \cdot 10^{-7} \) | \(a_{359}= -0.37118195 \pm 1.2 \cdot 10^{-6} \) | \(a_{360}= -0.60509508 \pm 7.0 \cdot 10^{-7} \) |
\(a_{361}= +1.29927713 \pm 6.5 \cdot 10^{-7} \) | \(a_{362}= -0.44631295 \pm 9.6 \cdot 10^{-7} \) | \(a_{363}= -1.73378882 \pm 6.5 \cdot 10^{-7} \) |
\(a_{364}= +0.07344243 \pm 1.7 \cdot 10^{-6} \) | \(a_{365}= +0.46480258 \pm 8.3 \cdot 10^{-7} \) | \(a_{366}= +0.58404563 \pm 5.6 \cdot 10^{-7} \) |
\(a_{367}= -1.89900183 \pm 1.0 \cdot 10^{-6} \) | \(a_{368}= +0.53248441 \pm 6.6 \cdot 10^{-7} \) | \(a_{369}= +3.77183030 \pm 7.1 \cdot 10^{-7} \) |
\(a_{370}= +0.30376425 \pm 8.0 \cdot 10^{-7} \) | \(a_{371}= -0.16978673 \pm 6.8 \cdot 10^{-7} \) | \(a_{372}= +0.30642684 \pm 1.0 \cdot 10^{-6} \) |
\(a_{373}= -0.89126007 \pm 6.5 \cdot 10^{-7} \) | \(a_{374}= +0.01815101 \pm 7.4 \cdot 10^{-7} \) | \(a_{375}= +1.32722296 \pm 7.0 \cdot 10^{-7} \) |
\(a_{376}= -0.06913399 \pm 7.8 \cdot 10^{-7} \) | \(a_{377}= +0.42817679 \pm 6.5 \cdot 10^{-7} \) | \(a_{378}= +0.21889498 \pm 8.2 \cdot 10^{-7} \) |
\(a_{379}= -0.32258037 \pm 8.5 \cdot 10^{-7} \) | \(a_{380}= +0.53795701 \pm 6.6 \cdot 10^{-7} \) | \(a_{381}= -1.44956468 \pm 8.5 \cdot 10^{-7} \) |
\(a_{382}= +0.48163801 \pm 9.3 \cdot 10^{-7} \) | \(a_{383}= +1.44035678 \pm 1.2 \cdot 10^{-6} \) | \(a_{384}= +1.78029730 \pm 7.6 \cdot 10^{-7} \) |
\(a_{385}= +0.01182553 \pm 5.2 \cdot 10^{-7} \) | \(a_{386}= +0.31079055 \pm 8.8 \cdot 10^{-7} \) | \(a_{387}= +0.84452186 \pm 8.0 \cdot 10^{-7} \) |
\(a_{388}= -0.71236235 \pm 8.5 \cdot 10^{-7} \) | \(a_{389}= -0.18706100 \pm 8.1 \cdot 10^{-7} \) | \(a_{390}= +0.07692482 \pm 2.8 \cdot 10^{-6} \) |
\(a_{391}= -0.47208932 \pm 5.1 \cdot 10^{-7} \) | \(a_{392}= -0.64004323 \pm 5.9 \cdot 10^{-7} \) | \(a_{393}= -1.95933541 \pm 8.5 \cdot 10^{-7} \) |
\(a_{394}= +0.21090540 \pm 9.4 \cdot 10^{-7} \) | \(a_{395}= -0.01523144 \pm 7.5 \cdot 10^{-7} \) | \(a_{396}= -0.16138849 \pm 6.9 \cdot 10^{-7} \) |
\(a_{397}= +0.98583254 \pm 7.0 \cdot 10^{-7} \) | \(a_{398}= -0.59314857 \pm 1.0 \cdot 10^{-6} \) | \(a_{399}= -0.82196438 \pm 3.6 \cdot 10^{-7} \) |
\(a_{400}= -0.48302864 \pm 6.2 \cdot 10^{-7} \) | \(a_{401}= +0.49352087 \pm 6.8 \cdot 10^{-7} \) | \(a_{402}= -0.63631159 \pm 1.4 \cdot 10^{-6} \) |
\(a_{403}= -0.05690421 \pm 9.3 \cdot 10^{-7} \) | \(a_{404}= +1.52197705 \pm 7.7 \cdot 10^{-7} \) | \(a_{405}= -0.48821684 \pm 7.6 \cdot 10^{-7} \) |
\(a_{406}= +0.18277850 \pm 7.1 \cdot 10^{-7} \) | \(a_{407}= +0.17587143 \pm 9.2 \cdot 10^{-7} \) | \(a_{408}= -0.64076546 \pm 6.5 \cdot 10^{-7} \) |
\(a_{409}= +0.12301665 \pm 7.9 \cdot 10^{-7} \) | \(a_{410}= +0.29080461 \pm 9.6 \cdot 10^{-7} \) | \(a_{411}= -1.65152613 \pm 7.9 \cdot 10^{-7} \) |
\(a_{412}= -0.20098424 \pm 9.2 \cdot 10^{-7} \) | \(a_{413}= +0.19539077 \pm 8.3 \cdot 10^{-7} \) | \(a_{414}= -0.71672927 \pm 1.0 \cdot 10^{-6} \) |
\(a_{415}= +0.45625466 \pm 5.3 \cdot 10^{-7} \) | \(a_{416}= -0.25821970 \pm 1.0 \cdot 10^{-6} \) | \(a_{417}= +1.45506644 \pm 9.4 \cdot 10^{-7} \) |
\(a_{418}= -0.05318210 \pm 5.1 \cdot 10^{-7} \) | \(a_{419}= -0.33704803 \pm 9.9 \cdot 10^{-7} \) | \(a_{420}= -0.19231327 \pm 6.0 \cdot 10^{-7} \) |
\(a_{421}= -0.92815234 \pm 9.8 \cdot 10^{-7} \) | \(a_{422}= -0.36569809 \pm 1.1 \cdot 10^{-6} \) | \(a_{423}= -0.20086885 \pm 8.1 \cdot 10^{-7} \) |
\(a_{424}= +0.38780593 \pm 5.4 \cdot 10^{-7} \) | \(a_{425}= +0.42824289 \pm 6.1 \cdot 10^{-7} \) | \(a_{426}= +0.04386527 \pm 1.1 \cdot 10^{-6} \) |
\(a_{427}= +0.27114847 \pm 9.5 \cdot 10^{-7} \) | \(a_{428}= -0.33264146 \pm 9.9 \cdot 10^{-7} \) | \(a_{429}= +0.04453743 \pm 1.7 \cdot 10^{-6} \) |
\(a_{430}= +0.06511185 \pm 1.0 \cdot 10^{-6} \) | \(a_{431}= +0.34852363 \pm 1.0 \cdot 10^{-6} \) | \(a_{432}= +1.07924300 \pm 6.9 \cdot 10^{-7} \) |
\(a_{433}= -0.48193636 \pm 8.4 \cdot 10^{-7} \) | \(a_{434}= -0.02429106 \pm 6.3 \cdot 10^{-7} \) | \(a_{435}= -1.12120576 \pm 6.5 \cdot 10^{-7} \) |
\(a_{436}= +1.16280964 \pm 6.7 \cdot 10^{-7} \) | \(a_{437}= +1.38321213 \pm 6.6 \cdot 10^{-7} \) | \(a_{438}= +0.74726557 \pm 9.8 \cdot 10^{-7} \) |
\(a_{439}= +0.35641212 \pm 8.0 \cdot 10^{-7} \) | \(a_{440}= -0.02701042 \pm 5.8 \cdot 10^{-7} \) | \(a_{441}= -1.85964606 \pm 8.3 \cdot 10^{-7} \) |
\(a_{442}= +0.05481596 \pm 1.8 \cdot 10^{-6} \) | \(a_{443}= -0.84504051 \pm 9.1 \cdot 10^{-7} \) | \(a_{444}= -2.86011739 \pm 6.2 \cdot 10^{-7} \) |
\(a_{445}= -0.54513041 \pm 9.8 \cdot 10^{-7} \) | \(a_{446}= -0.23122942 \pm 7.9 \cdot 10^{-7} \) | \(a_{447}= +1.50961327 \pm 6.4 \cdot 10^{-7} \) |
\(a_{448}= +0.07073791 \pm 6.7 \cdot 10^{-7} \) | \(a_{449}= -1.77313721 \pm 7.2 \cdot 10^{-7} \) | \(a_{450}= +0.65016132 \pm 6.8 \cdot 10^{-7} \) |
\(a_{451}= +0.16836814 \pm 7.2 \cdot 10^{-7} \) | \(a_{452}= +0.06169202 \pm 1.0 \cdot 10^{-6} \) | \(a_{453}= +3.36278747 \pm 8.1 \cdot 10^{-7} \) |
\(a_{454}= +0.03179199 \pm 7.2 \cdot 10^{-7} \) | \(a_{455}= +0.03571304 \pm 1.7 \cdot 10^{-6} \) | \(a_{456}= +1.87742981 \pm 5.3 \cdot 10^{-7} \) |
\(a_{457}= +0.90368737 \pm 8.3 \cdot 10^{-7} \) | \(a_{458}= -0.21798063 \pm 7.0 \cdot 10^{-7} \) | \(a_{459}= -0.95683382 \pm 6.4 \cdot 10^{-7} \) |
\(a_{460}= +0.32362722 \pm 7.9 \cdot 10^{-7} \) | \(a_{461}= -0.68144105 \pm 9.8 \cdot 10^{-7} \) | \(a_{462}= +0.01901197 \pm 7.1 \cdot 10^{-7} \) |
\(a_{463}= +0.91475008 \pm 1.0 \cdot 10^{-6} \) | \(a_{464}= +0.90117382 \pm 5.2 \cdot 10^{-7} \) | \(a_{465}= +0.14900698 \pm 1.0 \cdot 10^{-6} \) |
\(a_{466}= +0.09754147 \pm 1.2 \cdot 10^{-6} \) | \(a_{467}= -0.72910205 \pm 8.4 \cdot 10^{-7} \) | \(a_{468}= -0.48739239 \pm 1.8 \cdot 10^{-6} \) |
\(a_{469}= -0.29541341 \pm 7.2 \cdot 10^{-7} \) | \(a_{470}= -0.01548680 \pm 7.5 \cdot 10^{-7} \) | \(a_{471}= +0.61612271 \pm 8.9 \cdot 10^{-7} \) |
\(a_{472}= -0.44628754 \pm 7.2 \cdot 10^{-7} \) | \(a_{473}= +0.03769803 \pm 7.7 \cdot 10^{-7} \) | \(a_{474}= -0.02448767 \pm 1.0 \cdot 10^{-6} \) |
\(a_{475}= -1.25474298 \pm 4.9 \cdot 10^{-7} \) | \(a_{476}= -0.13704076 \pm 7.4 \cdot 10^{-7} \) | \(a_{477}= +1.12677039 \pm 6.1 \cdot 10^{-7} \) |
\(a_{478}= -0.19828677 \pm 9.7 \cdot 10^{-7} \) | \(a_{479}= -0.40420223 \pm 1.0 \cdot 10^{-6} \) | \(a_{480}= +0.67616328 \pm 1.2 \cdot 10^{-6} \) |
\(a_{481}= +0.53113078 \pm 1.0 \cdot 10^{-6} \) | \(a_{482}= -0.24568371 \pm 7.1 \cdot 10^{-7} \) | \(a_{483}= -0.49448198 \pm 4.9 \cdot 10^{-7} \) |
\(a_{484}= +0.84694963 \pm 6.5 \cdot 10^{-7} \) | \(a_{485}= -0.34640231 \pm 6.3 \cdot 10^{-7} \) | \(a_{486}= -0.07883009 \pm 1.0 \cdot 10^{-6} \) |
\(a_{487}= -0.31037583 \pm 1.0 \cdot 10^{-6} \) | \(a_{488}= -0.61932393 \pm 5.5 \cdot 10^{-7} \) | \(a_{489}= -1.08090058 \pm 9.2 \cdot 10^{-7} \) |
\(a_{490}= -0.14337698 \pm 9.1 \cdot 10^{-7} \) | \(a_{491}= -0.13659118 \pm 1.1 \cdot 10^{-6} \) | \(a_{492}= -2.73809483 \pm 9.7 \cdot 10^{-7} \) |
\(a_{493}= -0.79896148 \pm 6.7 \cdot 10^{-7} \) | \(a_{494}= -0.16060965 \pm 1.7 \cdot 10^{-6} \) | \(a_{495}= -0.07847880 \pm 5.7 \cdot 10^{-7} \) |
\(a_{496}= -0.11976498 \pm 7.1 \cdot 10^{-7} \) | \(a_{497}= +0.02036485 \pm 7.3 \cdot 10^{-7} \) | \(a_{498}= +0.73352303 \pm 6.2 \cdot 10^{-7} \) |
\(a_{499}= -0.11142302 \pm 8.9 \cdot 10^{-7} \) | \(a_{500}= -0.64834367 \pm 5.6 \cdot 10^{-7} \) | \(a_{501}= +2.21863594 \pm 9.8 \cdot 10^{-7} \) |
\(a_{502}= +0.01425659 \pm 9.4 \cdot 10^{-7} \) | \(a_{503}= -1.06979477 \pm 9.3 \cdot 10^{-7} \) | \(a_{504}= -0.45163796 \pm 5.2 \cdot 10^{-7} \) |
\(a_{505}= +0.74009577 \pm 6.9 \cdot 10^{-7} \) | \(a_{506}= -0.03199359 \pm 1.0 \cdot 10^{-6} \) | \(a_{507}= +0.13450279 \pm 9.6 \cdot 10^{-7} \) |
\(a_{508}= +0.70810716 \pm 7.4 \cdot 10^{-7} \) | \(a_{509}= +0.84990456 \pm 9.5 \cdot 10^{-7} \) | \(a_{510}= -0.14353877 \pm 1.2 \cdot 10^{-6} \) |
\(a_{511}= +0.34692480 \pm 1.0 \cdot 10^{-6} \) | \(a_{512}= -0.95680879 \pm 8.4 \cdot 10^{-7} \) | \(a_{513}= +2.80350369 \pm 7.6 \cdot 10^{-7} \) |
\(a_{514}= +0.52502327 \pm 9.2 \cdot 10^{-7} \) | \(a_{515}= -0.09773313 \pm 9.2 \cdot 10^{-7} \) | \(a_{516}= -0.61306601 \pm 1.0 \cdot 10^{-6} \) |
\(a_{517}= -0.00896645 \pm 8.2 \cdot 10^{-7} \) | \(a_{518}= +0.22672712 \pm 1.1 \cdot 10^{-6} \) | \(a_{519}= -0.09040757 \pm 1.0 \cdot 10^{-6} \) |
\(a_{520}= -0.08157134 \pm 1.6 \cdot 10^{-6} \) | \(a_{521}= +0.98382180 \pm 9.4 \cdot 10^{-7} \) | \(a_{522}= -1.21298886 \pm 4.7 \cdot 10^{-7} \) |
\(a_{523}= -1.79436552 \pm 1.1 \cdot 10^{-6} \) | \(a_{524}= +0.95712834 \pm 9.4 \cdot 10^{-7} \) | \(a_{525}= +0.44855578 \pm 4.3 \cdot 10^{-7} \) |
\(a_{526}= -0.03435179 \pm 9.4 \cdot 10^{-7} \) | \(a_{527}= +0.10618108 \pm 9.0 \cdot 10^{-7} \) | \(a_{528}= +0.09373690 \pm 6.7 \cdot 10^{-7} \) |
\(a_{529}= -0.16787943 \pm 9.9 \cdot 10^{-7} \) | \(a_{530}= +0.08687295 \pm 7.6 \cdot 10^{-7} \) | \(a_{531}= -1.29668874 \pm 7.8 \cdot 10^{-7} \) |
\(a_{532}= +0.40152666 \pm 5.4 \cdot 10^{-7} \) | \(a_{533}= +0.50847090 \pm 7.9 \cdot 10^{-7} \) | \(a_{534}= -0.87640905 \pm 1.4 \cdot 10^{-6} \) |
\(a_{535}= -0.16175443 \pm 9.1 \cdot 10^{-7} \) | \(a_{536}= +0.67474693 \pm 4.6 \cdot 10^{-7} \) | \(a_{537}= -0.96617665 \pm 7.3 \cdot 10^{-7} \) |
\(a_{538}= +0.34104791 \pm 1.1 \cdot 10^{-6} \) | \(a_{539}= -0.08301146 \pm 6.6 \cdot 10^{-7} \) | \(a_{540}= +0.65592983 \pm 7.1 \cdot 10^{-7} \) |
\(a_{541}= +0.30739337 \pm 5.6 \cdot 10^{-7} \) | \(a_{542}= -0.60219876 \pm 9.7 \cdot 10^{-7} \) | \(a_{543}= +2.04346171 \pm 6.9 \cdot 10^{-7} \) |
\(a_{544}= +0.48182808 \pm 9.7 \cdot 10^{-7} \) | \(a_{545}= +0.56544249 \pm 5.9 \cdot 10^{-7} \) | \(a_{546}= +0.05741605 \pm 2.8 \cdot 10^{-6} \) |
\(a_{547}= -0.92626480 \pm 6.6 \cdot 10^{-7} \) | \(a_{548}= +0.80676460 \pm 8.2 \cdot 10^{-7} \) | \(a_{549}= -1.79944610 \pm 6.7 \cdot 10^{-7} \) |
\(a_{550}= +0.02902210 \pm 8.0 \cdot 10^{-7} \) | \(a_{551}= +2.34094094 \pm 4.4 \cdot 10^{-7} \) | \(a_{552}= +1.12943483 \pm 7.4 \cdot 10^{-7} \) |
\(a_{553}= -0.01136862 \pm 6.1 \cdot 10^{-7} \) | \(a_{554}= -0.12096311 \pm 1.1 \cdot 10^{-6} \) | \(a_{555}= -1.39079677 \pm 5.6 \cdot 10^{-7} \) |
\(a_{556}= -0.71079475 \pm 8.5 \cdot 10^{-7} \) | \(a_{557}= -0.27668932 \pm 7.6 \cdot 10^{-7} \) | \(a_{558}= +0.16120485 \pm 1.0 \cdot 10^{-6} \) |
\(a_{559}= +0.11384786 \pm 8.8 \cdot 10^{-7} \) | \(a_{560}= +0.07516442 \pm 5.4 \cdot 10^{-7} \) | \(a_{561}= -0.08310513 \pm 6.8 \cdot 10^{-7} \) |
\(a_{562}= +0.62754975 \pm 1.2 \cdot 10^{-6} \) | \(a_{563}= +0.60123947 \pm 9.9 \cdot 10^{-7} \) | \(a_{564}= +0.14581726 \pm 8.0 \cdot 10^{-7} \) |
\(a_{565}= +0.02999914 \pm 1.0 \cdot 10^{-6} \) | \(a_{566}= +0.12734733 \pm 6.8 \cdot 10^{-7} \) | \(a_{567}= -0.36440101 \pm 6.8 \cdot 10^{-7} \) |
\(a_{568}= -0.04651488 \pm 8.0 \cdot 10^{-7} \) | \(a_{569}= -1.24965732 \pm 8.3 \cdot 10^{-7} \) | \(a_{570}= +0.42056568 \pm 8.7 \cdot 10^{-7} \) |
\(a_{571}= -0.63285596 \pm 9.1 \cdot 10^{-7} \) | \(a_{572}= -0.02175637 \pm 1.7 \cdot 10^{-6} \) | \(a_{573}= -2.20519890 \pm 9.3 \cdot 10^{-7} \) |
\(a_{574}= +0.21705415 \pm 4.1 \cdot 10^{-7} \) | \(a_{575}= -0.75483537 \pm 5.4 \cdot 10^{-7} \) | \(a_{576}= -0.46944416 \pm 8.5 \cdot 10^{-7} \) |
\(a_{577}= -1.92194265 \pm 8.8 \cdot 10^{-7} \) | \(a_{578}= +0.27961375 \pm 6.8 \cdot 10^{-7} \) | \(a_{579}= -1.42296698 \pm 9.5 \cdot 10^{-7} \) |
\(a_{580}= +0.54770500 \pm 8.0 \cdot 10^{-7} \) | \(a_{581}= +0.34054470 \pm 4.6 \cdot 10^{-7} \) | \(a_{582}= -0.55691282 \pm 7.5 \cdot 10^{-7} \) |
\(a_{583}= +0.05029713 \pm 5.5 \cdot 10^{-7} \) | \(a_{584}= -0.79240289 \pm 7.9 \cdot 10^{-7} \) | \(a_{585}= -0.23700557 \pm 1.7 \cdot 10^{-6} \) |
\(a_{586}= +0.17414556 \pm 6.7 \cdot 10^{-7} \) | \(a_{587}= +0.33896474 \pm 9.2 \cdot 10^{-7} \) | \(a_{588}= +1.34997782 \pm 8.5 \cdot 10^{-7} \) |
\(a_{589}= -0.31110841 \pm 6.5 \cdot 10^{-7} \) | \(a_{590}= -0.09997350 \pm 8.3 \cdot 10^{-7} \) | \(a_{591}= -0.96563880 \pm 9.5 \cdot 10^{-7} \) |
\(a_{592}= +1.11785871 \pm 7.0 \cdot 10^{-7} \) | \(a_{593}= +1.30475824 \pm 9.0 \cdot 10^{-7} \) | \(a_{594}= -0.06484482 \pm 8.2 \cdot 10^{-7} \) |
\(a_{595}= -0.06663917 \pm 7.4 \cdot 10^{-7} \) | \(a_{596}= -0.73744068 \pm 8.8 \cdot 10^{-7} \) | \(a_{597}= +2.71575447 \pm 1.1 \cdot 10^{-6} \) |
\(a_{598}= -0.09662046 \pm 1.7 \cdot 10^{-6} \) | \(a_{599}= +1.23598733 \pm 9.3 \cdot 10^{-7} \) | \(a_{600}= -1.02453586 \pm 4.9 \cdot 10^{-7} \) |
\(a_{601}= +1.61107871 \pm 9.6 \cdot 10^{-7} \) | \(a_{602}= +0.04859895 \pm 8.4 \cdot 10^{-7} \) | \(a_{603}= +1.96047766 \pm 8.8 \cdot 10^{-7} \) |
\(a_{604}= -1.64270964 \pm 6.3 \cdot 10^{-7} \) | \(a_{605}= +0.41184842 \pm 4.9 \cdot 10^{-7} \) | \(a_{606}= +1.18985589 \pm 9.1 \cdot 10^{-7} \) |
\(a_{607}= +1.01345803 \pm 6.4 \cdot 10^{-7} \) | \(a_{608}= -1.41174649 \pm 6.1 \cdot 10^{-7} \) | \(a_{609}= -0.83685870 \pm 7.8 \cdot 10^{-7} \) |
\(a_{610}= -0.13873562 \pm 4.0 \cdot 10^{-7} \) | \(a_{611}= -0.02707862 \pm 9.1 \cdot 10^{-7} \) | \(a_{612}= +0.90945552 \pm 8.0 \cdot 10^{-7} \) |
\(a_{613}= -0.29429675 \pm 9.0 \cdot 10^{-7} \) | \(a_{614}= -0.30109931 \pm 5.6 \cdot 10^{-7} \) | \(a_{615}= -1.33146054 \pm 9.7 \cdot 10^{-7} \) |
\(a_{616}= -0.02016036 \pm 5.7 \cdot 10^{-7} \) | \(a_{617}= +0.29901983 \pm 1.0 \cdot 10^{-6} \) | \(a_{618}= -0.15712607 \pm 1.4 \cdot 10^{-6} \) |
\(a_{619}= -0.37691894 \pm 8.5 \cdot 10^{-7} \) | \(a_{620}= -0.07278938 \pm 8.7 \cdot 10^{-7} \) | \(a_{621}= +1.68654759 \pm 8.3 \cdot 10^{-7} \) |
\(a_{622}= +0.40284717 \pm 1.0 \cdot 10^{-6} \) | \(a_{623}= -0.40688083 \pm 8.7 \cdot 10^{-7} \) | \(a_{624}= +0.28308493 \pm 1.7 \cdot 10^{-6} \) |
\(a_{625}= +0.51221130 \pm 8.6 \cdot 10^{-7} \) | \(a_{626}= -0.37509039 \pm 7.9 \cdot 10^{-7} \) | \(a_{627}= +0.24349636 \pm 5.0 \cdot 10^{-7} \) |
\(a_{628}= -0.30097374 \pm 8.6 \cdot 10^{-7} \) | \(a_{629}= -0.99106969 \pm 7.6 \cdot 10^{-7} \) | \(a_{630}= -0.10117205 \pm 5.3 \cdot 10^{-7} \) |
\(a_{631}= -0.79585563 \pm 9.1 \cdot 10^{-7} \) | \(a_{632}= +0.02596680 \pm 7.3 \cdot 10^{-7} \) | \(a_{633}= +1.67436335 \pm 1.0 \cdot 10^{-6} \) |
\(a_{634}= -0.27133821 \pm 9.6 \cdot 10^{-7} \) | \(a_{635}= +0.34433312 \pm 7.2 \cdot 10^{-7} \) | \(a_{636}= -0.81795944 \pm 8.0 \cdot 10^{-7} \) |
\(a_{637}= -0.25069418 \pm 8.0 \cdot 10^{-7} \) | \(a_{638}= -0.05414578 \pm 6.2 \cdot 10^{-7} \) | \(a_{639}= -0.13514901 \pm 1.0 \cdot 10^{-6} \) |
\(a_{640}= -0.42289615 \pm 7.7 \cdot 10^{-7} \) | \(a_{641}= -1.07692179 \pm 8.3 \cdot 10^{-7} \) | \(a_{642}= -0.26005346 \pm 1.2 \cdot 10^{-6} \) |
\(a_{643}= -1.32511412 \pm 1.0 \cdot 10^{-6} \) | \(a_{644}= +0.24155268 \pm 8.5 \cdot 10^{-7} \) | \(a_{645}= -0.29811721 \pm 1.0 \cdot 10^{-6} \) |
\(a_{646}= +0.29969145 \pm 5.7 \cdot 10^{-7} \) | \(a_{647}= +1.13346374 \pm 6.8 \cdot 10^{-7} \) | \(a_{648}= +0.83231990 \pm 6.3 \cdot 10^{-7} \) |
\(a_{649}= -0.05788200 \pm 7.1 \cdot 10^{-7} \) | \(a_{650}= +0.08764660 \pm 1.6 \cdot 10^{-6} \) | \(a_{651}= +0.11121758 \pm 8.7 \cdot 10^{-7} \) |
\(a_{652}= +0.52801607 \pm 7.8 \cdot 10^{-7} \) | \(a_{653}= +0.37017915 \pm 8.9 \cdot 10^{-7} \) | \(a_{654}= +0.90906488 \pm 8.6 \cdot 10^{-7} \) |
\(a_{655}= +0.46542530 \pm 8.0 \cdot 10^{-7} \) | \(a_{656}= +1.07016697 \pm 7.0 \cdot 10^{-7} \) | \(a_{657}= -2.30232714 \pm 9.1 \cdot 10^{-7} \) |
\(a_{658}= -0.01155922 \pm 6.5 \cdot 10^{-7} \) | \(a_{659}= -1.69327880 \pm 6.8 \cdot 10^{-7} \) | \(a_{660}= +0.05697033 \pm 6.4 \cdot 10^{-7} \) |
\(a_{661}= +0.82013378 \pm 9.6 \cdot 10^{-7} \) | \(a_{662}= +0.18430810 \pm 1.2 \cdot 10^{-6} \) | \(a_{663}= -0.25097706 \pm 1.8 \cdot 10^{-6} \) |
\(a_{664}= -0.77783026 \pm 4.4 \cdot 10^{-7} \) | \(a_{665}= +0.19525142 \pm 4.6 \cdot 10^{-7} \) | \(a_{666}= -1.50464887 \pm 8.3 \cdot 10^{-7} \) |
\(a_{667}= +1.40827648 \pm 5.2 \cdot 10^{-7} \) | \(a_{668}= -1.08379571 \pm 9.1 \cdot 10^{-7} \) | \(a_{669}= +1.05869314 \pm 9.4 \cdot 10^{-7} \) |
\(a_{670}= +0.15115100 \pm 1.2 \cdot 10^{-6} \) | \(a_{671}= -0.08032424 \pm 6.0 \cdot 10^{-7} \) | \(a_{672}= +0.50468267 \pm 7.4 \cdot 10^{-7} \) |
\(a_{673}= +0.82643663 \pm 1.0 \cdot 10^{-6} \) | \(a_{674}= -0.35792004 \pm 9.1 \cdot 10^{-7} \) | \(a_{675}= -1.52990543 \pm 5.6 \cdot 10^{-7} \) |
\(a_{676}= -0.06570413 \pm 9.0 \cdot 10^{-7} \) | \(a_{677}= -0.56925419 \pm 9.9 \cdot 10^{-7} \) | \(a_{678}= +0.04822977 \pm 1.4 \cdot 10^{-6} \) |
\(a_{679}= -0.25855181 \pm 1.0 \cdot 10^{-6} \) | \(a_{680}= +0.15220899 \pm 5.9 \cdot 10^{-7} \) | \(a_{681}= -0.14556089 \pm 7.8 \cdot 10^{-7} \) |
\(a_{682}= +0.00719591 \pm 5.4 \cdot 10^{-7} \) | \(a_{683}= +0.81376018 \pm 8.1 \cdot 10^{-7} \) | \(a_{684}= -2.66468623 \pm 6.8 \cdot 10^{-7} \) |
\(a_{685}= +0.39230754 \pm 7.1 \cdot 10^{-7} \) | \(a_{686}= -0.22540956 \pm 5.2 \cdot 10^{-7} \) | \(a_{687}= +0.99803303 \pm 1.0 \cdot 10^{-6} \) |
\(a_{688}= +0.23961296 \pm 8.0 \cdot 10^{-7} \) | \(a_{689}= +0.15189706 \pm 6.7 \cdot 10^{-7} \) | \(a_{690}= +0.25300628 \pm 1.1 \cdot 10^{-6} \) |
\(a_{691}= -0.75894892 \pm 9.7 \cdot 10^{-7} \) | \(a_{692}= +0.04416377 \pm 1.0 \cdot 10^{-6} \) | \(a_{693}= -0.05857593 \pm 5.6 \cdot 10^{-7} \) |
\(a_{694}= -0.05563919 \pm 1.0 \cdot 10^{-6} \) | \(a_{695}= -0.34564002 \pm 7.6 \cdot 10^{-7} \) | \(a_{696}= +1.91144957 \pm 5.9 \cdot 10^{-7} \) |
\(a_{697}= -0.94878721 \pm 7.1 \cdot 10^{-7} \) | \(a_{698}= +0.27427181 \pm 7.1 \cdot 10^{-7} \) | \(a_{699}= -0.44659752 \pm 1.1 \cdot 10^{-6} \) |
\(a_{700}= -0.21911789 \pm 6.9 \cdot 10^{-7} \) | \(a_{701}= -0.85977092 \pm 7.8 \cdot 10^{-7} \) | \(a_{702}= -0.19583100 \pm 1.7 \cdot 10^{-6} \) |
\(a_{703}= +2.90381409 \pm 9.0 \cdot 10^{-7} \) | \(a_{704}= -0.02095520 \pm 7.6 \cdot 10^{-7} \) | \(a_{705}= +0.07090694 \pm 7.3 \cdot 10^{-7} \) |
\(a_{706}= +0.52805932 \pm 9.9 \cdot 10^{-7} \) | \(a_{707}= +0.55240135 \pm 4.8 \cdot 10^{-7} \) | \(a_{708}= +0.94130871 \pm 7.5 \cdot 10^{-7} \) |
\(a_{709}= +0.60534884 \pm 1.0 \cdot 10^{-6} \) | \(a_{710}= -0.01041986 \pm 1.0 \cdot 10^{-6} \) | \(a_{711}= +0.07544656 \pm 9.6 \cdot 10^{-7} \) |
\(a_{712}= +0.92934707 \pm 7.8 \cdot 10^{-7} \) | \(a_{713}= -0.18715836 \pm 5.3 \cdot 10^{-7} \) | \(a_{714}= -0.10713615 \pm 5.9 \cdot 10^{-7} \) |
\(a_{715}= -0.01057953 \pm 1.6 \cdot 10^{-6} \) | \(a_{716}= +0.47197383 \pm 6.3 \cdot 10^{-7} \) | \(a_{717}= +0.90786389 \pm 8.4 \cdot 10^{-7} \) |
\(a_{718}= +0.14175373 \pm 1.2 \cdot 10^{-6} \) | \(a_{719}= +0.23905101 \pm 8.6 \cdot 10^{-7} \) | \(a_{720}= -0.49882016 \pm 8.4 \cdot 10^{-7} \) |
\(a_{721}= -0.07294720 \pm 6.8 \cdot 10^{-7} \) | \(a_{722}= -0.49619164 \pm 7.5 \cdot 10^{-7} \) | \(a_{723}= +1.12487269 \pm 5.7 \cdot 10^{-7} \) |
\(a_{724}= -0.99822373 \pm 7.7 \cdot 10^{-7} \) | \(a_{725}= -1.27747942 \pm 4.3 \cdot 10^{-7} \) | \(a_{726}= +0.66213088 \pm 8.3 \cdot 10^{-7} \) |
\(a_{727}= -1.06940764 \pm 8.4 \cdot 10^{-7} \) | \(a_{728}= -0.06088417 \pm 1.6 \cdot 10^{-6} \) | \(a_{729}= -0.81450360 \pm 7.2 \cdot 10^{-7} \) |
\(a_{730}= -0.17750728 \pm 6.9 \cdot 10^{-7} \) | \(a_{731}= -0.21243574 \pm 8.5 \cdot 10^{-7} \) | \(a_{732}= +1.30627671 \pm 6.7 \cdot 10^{-7} \) |
\(a_{733}= -0.52805855 \pm 1.0 \cdot 10^{-6} \) | \(a_{734}= +0.72522544 \pm 1.3 \cdot 10^{-6} \) | \(a_{735}= +0.65645725 \pm 9.1 \cdot 10^{-7} \) |
\(a_{736}= -0.84928643 \pm 6.9 \cdot 10^{-7} \) | \(a_{737}= +0.08751242 \pm 7.2 \cdot 10^{-7} \) | \(a_{738}= -1.44045531 \pm 9.6 \cdot 10^{-7} \) |
\(a_{739}= -0.70971803 \pm 1.2 \cdot 10^{-6} \) | \(a_{740}= +0.67939924 \pm 8.7 \cdot 10^{-7} \) | \(a_{741}= +0.73535770 \pm 1.6 \cdot 10^{-6} \) |
\(a_{742}= +0.06484125 \pm 8.3 \cdot 10^{-7} \) | \(a_{743}= -0.28625789 \pm 9.2 \cdot 10^{-7} \) | \(a_{744}= -0.25402949 \pm 6.9 \cdot 10^{-7} \) |
\(a_{745}= -0.35859721 \pm 7.3 \cdot 10^{-7} \) | \(a_{746}= +0.34037064 \pm 6.7 \cdot 10^{-7} \) | \(a_{747}= -2.25998636 \pm 4.8 \cdot 10^{-7} \) |
\(a_{748}= +0.04059656 \pm 6.0 \cdot 10^{-7} \) | \(a_{749}= -0.12073217 \pm 8.6 \cdot 10^{-7} \) | \(a_{750}= -0.50686410 \pm 6.5 \cdot 10^{-7} \) |
\(a_{751}= +1.37341316 \pm 8.0 \cdot 10^{-7} \) | \(a_{752}= -0.05699175 \pm 7.7 \cdot 10^{-7} \) | \(a_{753}= -0.06527436 \pm 1.0 \cdot 10^{-6} \) |
\(a_{754}= -0.16351996 \pm 1.6 \cdot 10^{-6} \) | \(a_{755}= -0.79880472 \pm 6.7 \cdot 10^{-7} \) | \(a_{756}= +0.48958060 \pm 6.9 \cdot 10^{-7} \) |
\(a_{757}= -0.38449005 \pm 9.5 \cdot 10^{-7} \) | \(a_{758}= +0.12319287 \pm 1.1 \cdot 10^{-6} \) | \(a_{759}= +0.14648391 \pm 6.8 \cdot 10^{-7} \) |
\(a_{760}= -0.44596925 \pm 6.2 \cdot 10^{-7} \) | \(a_{761}= -1.96838723 \pm 9.4 \cdot 10^{-7} \) | \(a_{762}= +0.55358618 \pm 1.0 \cdot 10^{-6} \) |
\(a_{763}= +0.42204159 \pm 7.2 \cdot 10^{-7} \) | \(a_{764}= +1.07723177 \pm 8.5 \cdot 10^{-7} \) | \(a_{765}= +0.44224332 \pm 8.7 \cdot 10^{-7} \) |
\(a_{766}= -0.55006970 \pm 1.3 \cdot 10^{-6} \) | \(a_{767}= -0.17480333 \pm 8.1 \cdot 10^{-7} \) | \(a_{768}= -0.28091872 \pm 6.5 \cdot 10^{-7} \) |
\(a_{769}= +0.90098117 \pm 9.4 \cdot 10^{-7} \) | \(a_{770}= -0.00451615 \pm 5.6 \cdot 10^{-7} \) | \(a_{771}= -2.40384007 \pm 9.3 \cdot 10^{-7} \) |
\(a_{772}= +0.69511428 \pm 9.2 \cdot 10^{-7} \) | \(a_{773}= -0.35188574 \pm 9.1 \cdot 10^{-7} \) | \(a_{774}= -0.32252140 \pm 1.0 \cdot 10^{-6} \) |
\(a_{775}= +0.16977558 \pm 5.3 \cdot 10^{-7} \) | \(a_{776}= +0.59055221 \pm 6.8 \cdot 10^{-7} \) | \(a_{777}= -1.03807920 \pm 5.8 \cdot 10^{-7} \) |
\(a_{778}= +0.07143826 \pm 6.6 \cdot 10^{-7} \) | \(a_{779}= +2.77992729 \pm 5.5 \cdot 10^{-7} \) | \(a_{780}= +0.17205009 \pm 2.7 \cdot 10^{-6} \) |
\(a_{781}= -0.00603282 \pm 6.9 \cdot 10^{-7} \) | \(a_{782}= +0.18029007 \pm 6.5 \cdot 10^{-7} \) | \(a_{783}= +2.85430428 \pm 4.8 \cdot 10^{-7} \) |
\(a_{784}= -0.52763026 \pm 7.8 \cdot 10^{-7} \) | \(a_{785}= -0.14635529 \pm 8.6 \cdot 10^{-7} \) | \(a_{786}= +0.74826673 \pm 1.1 \cdot 10^{-6} \) |
\(a_{787}= -1.70286297 \pm 1.0 \cdot 10^{-6} \) | \(a_{788}= +0.47171110 \pm 9.0 \cdot 10^{-7} \) | \(a_{789}= +0.15728106 \pm 8.4 \cdot 10^{-7} \) |
\(a_{790}= +0.00581686 \pm 8.3 \cdot 10^{-7} \) | \(a_{791}= +0.02239111 \pm 9.1 \cdot 10^{-7} \) | \(a_{792}= +0.13379192 \pm 6.4 \cdot 10^{-7} \) |
\(a_{793}= -0.24257877 \pm 7.8 \cdot 10^{-7} \) | \(a_{794}= -0.37648770 \pm 8.3 \cdot 10^{-7} \) | \(a_{795}= -0.39775128 \pm 7.2 \cdot 10^{-7} \) |
\(a_{796}= -1.32663634 \pm 9.7 \cdot 10^{-7} \) | \(a_{797}= -0.92483298 \pm 7.2 \cdot 10^{-7} \) | \(a_{798}= +0.31390674 \pm 3.5 \cdot 10^{-7} \) |
\(a_{799}= +0.05052767 \pm 6.7 \cdot 10^{-7} \) | \(a_{800}= +0.77040691 \pm 7.0 \cdot 10^{-7} \) | \(a_{801}= +2.70021855 \pm 1.1 \cdot 10^{-6} \) |
\(a_{802}= -0.18847475 \pm 8.0 \cdot 10^{-7} \) | \(a_{803}= -0.10277200 \pm 9.4 \cdot 10^{-7} \) | \(a_{804}= -1.42317477 \pm 1.2 \cdot 10^{-6} \) |
\(a_{805}= +0.11746045 \pm 5.3 \cdot 10^{-7} \) | \(a_{806}= +0.02173162 \pm 1.9 \cdot 10^{-6} \) | \(a_{807}= -1.56150153 \pm 1.1 \cdot 10^{-6} \) |
\(a_{808}= -1.26172714 \pm 7.3 \cdot 10^{-7} \) | \(a_{809}= +0.36762698 \pm 9.4 \cdot 10^{-7} \) | \(a_{810}= +0.18644915 \pm 8.3 \cdot 10^{-7} \) |
\(a_{811}= +0.73755468 \pm 1.3 \cdot 10^{-6} \) | \(a_{812}= +0.40880248 \pm 7.8 \cdot 10^{-7} \) | \(a_{813}= +2.75719114 \pm 9.8 \cdot 10^{-7} \) |
\(a_{814}= -0.06716499 \pm 9.3 \cdot 10^{-7} \) | \(a_{815}= +0.25675975 \pm 9.4 \cdot 10^{-7} \) | \(a_{816}= -0.52822564 \pm 8.1 \cdot 10^{-7} \) |
\(a_{817}= +0.62243240 \pm 5.2 \cdot 10^{-7} \) | \(a_{818}= -0.04697984 \pm 9.3 \cdot 10^{-7} \) | \(a_{819}= -0.17689900 \pm 1.8 \cdot 10^{-6} \) |
\(a_{820}= +0.65041371 \pm 7.4 \cdot 10^{-7} \) | \(a_{821}= -1.13014059 \pm 9.3 \cdot 10^{-7} \) | \(a_{822}= +0.63071490 \pm 8.0 \cdot 10^{-7} \) |
\(a_{823}= +1.29524123 \pm 9.2 \cdot 10^{-7} \) | \(a_{824}= +0.16661701 \pm 5.6 \cdot 10^{-7} \) | \(a_{825}= -0.13287887 \pm 4.9 \cdot 10^{-7} \) |
\(a_{826}= -0.07461939 \pm 9.8 \cdot 10^{-7} \) | \(a_{827}= +1.03491466 \pm 9.7 \cdot 10^{-7} \) | \(a_{828}= -1.60303700 \pm 6.9 \cdot 10^{-7} \) |
\(a_{829}= +0.30801048 \pm 9.1 \cdot 10^{-7} \) | \(a_{830}= -0.17424285 \pm 5.4 \cdot 10^{-7} \) | \(a_{831}= +0.55383445 \pm 7.9 \cdot 10^{-7} \) |
\(a_{832}= -0.06328458 \pm 8.1 \cdot 10^{-7} \) | \(a_{833}= +0.46778573 \pm 7.7 \cdot 10^{-7} \) | \(a_{834}= -0.55568730 \pm 8.1 \cdot 10^{-7} \) |
\(a_{835}= -0.52702018 \pm 8.7 \cdot 10^{-7} \) | \(a_{836}= -0.11894710 \pm 5.5 \cdot 10^{-7} \) | \(a_{837}= -0.37933382 \pm 7.0 \cdot 10^{-7} \) |
\(a_{838}= +0.12871805 \pm 1.0 \cdot 10^{-6} \) | \(a_{839}= -0.95324414 \pm 1.1 \cdot 10^{-6} \) | \(a_{840}= +0.15942873 \pm 6.0 \cdot 10^{-7} \) |
\(a_{841}= +1.38335971 \pm 8.0 \cdot 10^{-7} \) | \(a_{842}= +0.35445974 \pm 1.0 \cdot 10^{-6} \) | \(a_{843}= -2.87326164 \pm 1.3 \cdot 10^{-6} \) |
\(a_{844}= -0.81792051 \pm 9.1 \cdot 10^{-7} \) | \(a_{845}= -0.03195012 \pm 8.5 \cdot 10^{-7} \) | \(a_{846}= +0.07671146 \pm 8.3 \cdot 10^{-7} \) |
\(a_{847}= +0.30740025 \pm 5.8 \cdot 10^{-7} \) | \(a_{848}= +0.31969425 \pm 7.2 \cdot 10^{-7} \) | \(a_{849}= -0.58306485 \pm 5.9 \cdot 10^{-7} \) |
\(a_{850}= -0.16354520 \pm 7.4 \cdot 10^{-7} \) | \(a_{851}= +1.74689289 \pm 5.6 \cdot 10^{-7} \) | \(a_{852}= +0.09810908 \pm 9.3 \cdot 10^{-7} \) |
\(a_{853}= -1.19988862 \pm 1.2 \cdot 10^{-6} \) | \(a_{854}= -0.10355112 \pm 9.8 \cdot 10^{-7} \) | \(a_{855}= -1.29576395 \pm 8.4 \cdot 10^{-7} \) |
\(a_{856}= +0.27576156 \pm 8.2 \cdot 10^{-7} \) | \(a_{857}= +1.11344487 \pm 8.5 \cdot 10^{-7} \) | \(a_{858}= -0.01700876 \pm 2.7 \cdot 10^{-6} \) |
\(a_{859}= -1.19695437 \pm 1.2 \cdot 10^{-6} \) | \(a_{860}= +0.14562919 \pm 8.4 \cdot 10^{-7} \) | \(a_{861}= -0.99379113 \pm 3.3 \cdot 10^{-7} \) |
\(a_{862}= -0.13310056 \pm 8.6 \cdot 10^{-7} \) | \(a_{863}= -1.42083734 \pm 1.1 \cdot 10^{-6} \) | \(a_{864}= -1.72133947 \pm 7.7 \cdot 10^{-7} \) |
\(a_{865}= +0.02147563 \pm 9.3 \cdot 10^{-7} \) | \(a_{866}= +0.18405064 \pm 1.0 \cdot 10^{-6} \) | \(a_{867}= -1.28022275 \pm 5.8 \cdot 10^{-7} \) |
\(a_{868}= -0.05432939 \pm 6.6 \cdot 10^{-7} \) | \(a_{869}= +0.00336781 \pm 8.5 \cdot 10^{-7} \) | \(a_{870}= +0.42818650 \pm 4.8 \cdot 10^{-7} \) |
\(a_{871}= +0.26428703 \pm 9.1 \cdot 10^{-7} \) | \(a_{872}= -0.96397542 \pm 4.5 \cdot 10^{-7} \) | \(a_{873}= +1.71584985 \pm 7.3 \cdot 10^{-7} \) |
\(a_{874}= -0.52824626 \pm 7.3 \cdot 10^{-7} \) | \(a_{875}= -0.23531624 \pm 5.6 \cdot 10^{-7} \) | \(a_{876}= +1.67133448 \pm 1.0 \cdot 10^{-6} \) |
\(a_{877}= +1.63500641 \pm 8.8 \cdot 10^{-7} \) | \(a_{878}= -0.13611316 \pm 7.5 \cdot 10^{-7} \) | \(a_{879}= -0.79733240 \pm 9.1 \cdot 10^{-7} \) |
\(a_{880}= -0.02226649 \pm 4.8 \cdot 10^{-7} \) | \(a_{881}= +1.65119598 \pm 9.1 \cdot 10^{-7} \) | \(a_{882}= +0.71019554 \pm 1.0 \cdot 10^{-6} \) |
\(a_{883}= +1.36891810 \pm 6.2 \cdot 10^{-7} \) | \(a_{884}= +0.12260140 \pm 1.7 \cdot 10^{-6} \) | \(a_{885}= +0.45773265 \pm 7.9 \cdot 10^{-7} \) |
\(a_{886}= +0.32271947 \pm 1.0 \cdot 10^{-6} \) | \(a_{887}= -1.89512994 \pm 8.6 \cdot 10^{-7} \) | \(a_{888}= +2.37105265 \pm 5.6 \cdot 10^{-7} \) |
\(a_{889}= +0.25700739 \pm 8.9 \cdot 10^{-7} \) | \(a_{890}= +0.20818434 \pm 1.2 \cdot 10^{-6} \) | \(a_{891}= +0.10794910 \pm 5.4 \cdot 10^{-7} \) |
\(a_{892}= -0.51716781 \pm 8.1 \cdot 10^{-7} \) | \(a_{893}= -0.14804504 \pm 8.2 \cdot 10^{-7} \) | \(a_{894}= -0.57651864 \pm 6.6 \cdot 10^{-7} \) |
\(a_{895}= +0.22950795 \pm 6.5 \cdot 10^{-7} \) | \(a_{896}= -0.31564619 \pm 8.3 \cdot 10^{-7} \) | \(a_{897}= +0.44238064 \pm 1.6 \cdot 10^{-6} \) |
\(a_{898}= +0.67715796 \pm 8.6 \cdot 10^{-7} \) | \(a_{899}= -0.31674582 \pm 7.2 \cdot 10^{-7} \) | \(a_{900}= +1.45415109 \pm 5.7 \cdot 10^{-7} \) |
\(a_{901}= -0.28343410 \pm 7.2 \cdot 10^{-7} \) | \(a_{902}= -0.06429950 \pm 6.4 \cdot 10^{-7} \) | \(a_{903}= -0.22251222 \pm 5.2 \cdot 10^{-7} \) |
\(a_{904}= -0.05114301 \pm 8.5 \cdot 10^{-7} \) | \(a_{905}= -0.48540887 \pm 7.1 \cdot 10^{-7} \) | \(a_{906}= -1.28424258 \pm 8.2 \cdot 10^{-7} \) |
\(a_{907}= +1.09985870 \pm 6.4 \cdot 10^{-7} \) | \(a_{908}= +0.07110597 \pm 7.2 \cdot 10^{-7} \) | \(a_{909}= -3.66594906 \pm 8.4 \cdot 10^{-7} \) |
\(a_{910}= -0.01363875 \pm 2.7 \cdot 10^{-6} \) | \(a_{911}= +0.18843230 \pm 5.4 \cdot 10^{-7} \) | \(a_{912}= +1.54769040 \pm 6.6 \cdot 10^{-7} \) |
\(a_{913}= -0.10088198 \pm 4.5 \cdot 10^{-7} \) | \(a_{914}= -0.34511661 \pm 1.0 \cdot 10^{-6} \) | \(a_{915}= +0.63520659 \pm 7.3 \cdot 10^{-7} \) |
\(a_{916}= -0.48753556 \pm 8.7 \cdot 10^{-7} \) | \(a_{917}= +0.34738959 \pm 6.1 \cdot 10^{-7} \) | \(a_{918}= +0.36541314 \pm 7.7 \cdot 10^{-7} \) |
\(a_{919}= +0.58791893 \pm 7.6 \cdot 10^{-7} \) | \(a_{920}= -0.26828870 \pm 6.8 \cdot 10^{-7} \) | \(a_{921}= +1.37859525 \pm 6.6 \cdot 10^{-7} \) |
\(a_{922}= +0.26024113 \pm 1.2 \cdot 10^{-6} \) | \(a_{923}= -0.01821910 \pm 9.3 \cdot 10^{-7} \) | \(a_{924}= +0.04252218 \pm 7.1 \cdot 10^{-7} \) |
\(a_{925}= -1.58464602 \pm 7.5 \cdot 10^{-7} \) | \(a_{926}= -0.34934143 \pm 1.3 \cdot 10^{-6} \) | \(a_{927}= +0.48410584 \pm 9.7 \cdot 10^{-7} \) |
\(a_{928}= -1.43732789 \pm 5.9 \cdot 10^{-7} \) | \(a_{929}= +0.62132493 \pm 8.1 \cdot 10^{-7} \) | \(a_{930}= -0.05690550 \pm 1.2 \cdot 10^{-6} \) |
\(a_{931}= -1.37060270 \pm 5.5 \cdot 10^{-7} \) | \(a_{932}= +0.21816129 \pm 1.1 \cdot 10^{-6} \) | \(a_{933}= -1.84445191 \pm 1.2 \cdot 10^{-6} \) |
\(a_{934}= +0.27844278 \pm 1.0 \cdot 10^{-6} \) | \(a_{935}= +0.01974100 \pm 5.4 \cdot 10^{-7} \) | \(a_{936}= +0.40405090 \pm 1.6 \cdot 10^{-6} \) |
\(a_{937}= +0.55073190 \pm 1.0 \cdot 10^{-6} \) | \(a_{938}= +0.11281786 \pm 7.4 \cdot 10^{-7} \) | \(a_{939}= +1.71736637 \pm 8.4 \cdot 10^{-7} \) |
\(a_{940}= -0.03463779 \pm 7.5 \cdot 10^{-7} \) | \(a_{941}= +1.27481410 \pm 1.0 \cdot 10^{-6} \) | \(a_{942}= -0.23529617 \pm 1.1 \cdot 10^{-6} \) |
\(a_{943}= +1.67236436 \pm 4.9 \cdot 10^{-7} \) | \(a_{944}= -0.36790453 \pm 8.2 \cdot 10^{-7} \) | \(a_{945}= +0.23806964 \pm 4.7 \cdot 10^{-7} \) |
\(a_{946}= -0.01439681 \pm 9.0 \cdot 10^{-7} \) | \(a_{947}= -1.41145144 \pm 7.4 \cdot 10^{-7} \) | \(a_{948}= -0.05476912 \pm 8.9 \cdot 10^{-7} \) |
\(a_{949}= -0.31037089 \pm 1.0 \cdot 10^{-6} \) | \(a_{950}= +0.47918412 \pm 5.2 \cdot 10^{-7} \) | \(a_{951}= +1.24233285 \pm 7.7 \cdot 10^{-7} \) |
\(a_{952}= +0.11360753 \pm 6.3 \cdot 10^{-7} \) | \(a_{953}= -0.16998262 \pm 8.3 \cdot 10^{-7} \) | \(a_{954}= -0.43031162 \pm 8.0 \cdot 10^{-7} \) |
\(a_{955}= +0.52382831 \pm 7.8 \cdot 10^{-7} \) | \(a_{956}= -0.44348826 \pm 8.0 \cdot 10^{-7} \) | \(a_{957}= +0.24790861 \pm 4.9 \cdot 10^{-7} \) |
\(a_{958}= +0.15436411 \pm 8.4 \cdot 10^{-7} \) | \(a_{959}= +0.29281510 \pm 9.5 \cdot 10^{-7} \) | \(a_{960}= +0.16571434 \pm 1.0 \cdot 10^{-6} \) |
\(a_{961}= -0.95790484 \pm 6.5 \cdot 10^{-7} \) | \(a_{962}= -0.20283791 \pm 2.0 \cdot 10^{-6} \) | \(a_{963}= +0.80122539 \pm 9.7 \cdot 10^{-7} \) |
\(a_{964}= -0.54949628 \pm 7.7 \cdot 10^{-7} \) | \(a_{965}= +0.33801504 \pm 8.9 \cdot 10^{-7} \) | \(a_{966}= +0.18884179 \pm 6.6 \cdot 10^{-7} \) |
\(a_{967}= -1.35306984 \pm 8.8 \cdot 10^{-7} \) | \(a_{968}= -0.70212579 \pm 4.0 \cdot 10^{-7} \) | \(a_{969}= -1.37214930 \pm 5.9 \cdot 10^{-7} \) |
\(a_{970}= +0.13229043 \pm 5.8 \cdot 10^{-7} \) | \(a_{971}= -0.89602539 \pm 9.8 \cdot 10^{-7} \) | \(a_{972}= -0.17631142 \pm 9.5 \cdot 10^{-7} \) |
\(a_{973}= -0.25798285 \pm 9.1 \cdot 10^{-7} \) | \(a_{974}= +0.11853198 \pm 1.1 \cdot 10^{-6} \) | \(a_{975}= -0.40129348 \pm 1.6 \cdot 10^{-6} \) |
\(a_{976}= -0.51054995 \pm 7.3 \cdot 10^{-7} \) | \(a_{977}= -1.53587400 \pm 7.4 \cdot 10^{-7} \) | \(a_{978}= +0.41279402 \pm 6.8 \cdot 10^{-7} \) |
\(a_{979}= +0.12053320 \pm 8.9 \cdot 10^{-7} \) | \(a_{980}= -0.32067702 \pm 6.7 \cdot 10^{-7} \) | \(a_{981}= -2.80083125 \pm 7.2 \cdot 10^{-7} \) |
\(a_{982}= +0.05216393 \pm 1.2 \cdot 10^{-6} \) | \(a_{983}= -0.66845558 \pm 9.7 \cdot 10^{-7} \) | \(a_{984}= +2.26989530 \pm 3.8 \cdot 10^{-7} \) |
\(a_{985}= +0.22938019 \pm 8.9 \cdot 10^{-7} \) | \(a_{986}= +0.30512198 \pm 4.8 \cdot 10^{-7} \) | \(a_{987}= +0.05292435 \pm 4.2 \cdot 10^{-7} \) |
\(a_{988}= -0.35921961 \pm 1.6 \cdot 10^{-6} \) | \(a_{989}= +0.37444640 \pm 6.1 \cdot 10^{-7} \) | \(a_{990}= +0.02997092 \pm 6.5 \cdot 10^{-7} \) |
\(a_{991}= -1.31107349 \pm 8.2 \cdot 10^{-7} \) | \(a_{992}= +0.19101926 \pm 9.8 \cdot 10^{-7} \) | \(a_{993}= -0.84386201 \pm 9.5 \cdot 10^{-7} \) |
\(a_{994}= -0.00777730 \pm 7.1 \cdot 10^{-7} \) | \(a_{995}= -0.64510693 \pm 9.4 \cdot 10^{-7} \) | \(a_{996}= +1.64059793 \pm 5.6 \cdot 10^{-7} \) |
\(a_{997}= +1.69841165 \pm 1.1 \cdot 10^{-6} \) | \(a_{998}= +0.04255225 \pm 9.8 \cdot 10^{-7} \) | \(a_{999}= +3.54061431 \pm 7.4 \cdot 10^{-7} \) |
\(a_{1000}= +0.53748038 \pm 5.9 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000