Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(6.4925656074380383424260045973 \pm 3 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +1.22382707 \pm 5.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= -0.28248102 \pm 3.8 \cdot 10^{-8} \) | \(a_{6}= -0.86537642 \pm 6.1 \cdot 10^{-8} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.49775271 \pm 3.9 \cdot 10^{-8} \) |
\(a_{10}= +0.19974425 \pm 4.9 \cdot 10^{-8} \) | \(a_{11}= +0.89794832 \pm 3.9 \cdot 10^{-8} \) | \(a_{12}= +0.61191354 \pm 6.1 \cdot 10^{-8} \) |
\(a_{13}= +0.29003037 \pm 3.7 \cdot 10^{-8} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -0.34570792 \pm 4.8 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.32917667 \pm 2.5 \cdot 10^{-8} \) | \(a_{18}= -0.35196431 \pm 5.0 \cdot 10^{-8} \) |
\(a_{19}= +1.34350421 \pm 3.8 \cdot 10^{-8} \) | \(a_{20}= -0.14124051 \pm 4.9 \cdot 10^{-8} \) | \(a_{21}= +0.46256315 \pm 6.1 \cdot 10^{-8} \) |
\(a_{22}= -0.63494535 \pm 5.0 \cdot 10^{-8} \) | \(a_{23}= +0.60489660 \pm 3.5 \cdot 10^{-8} \) | \(a_{24}= -0.43268821 \pm 6.1 \cdot 10^{-8} \) |
\(a_{25}= -0.92020447 \pm 3.0 \cdot 10^{-8} \) | \(a_{26}= -0.20508244 \pm 4.7 \cdot 10^{-8} \) | \(a_{27}= -0.61466384 \pm 3.7 \cdot 10^{-8} \) |
\(a_{28}= +0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= +1.51900790 \pm 4.3 \cdot 10^{-8} \) | \(a_{30}= +0.24445242 \pm 9.9 \cdot 10^{-8} \) |
\(a_{31}= -0.56825713 \pm 4.2 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +1.09893346 \pm 4.7 \cdot 10^{-8} \) |
\(a_{34}= -0.93986984 \pm 3.6 \cdot 10^{-8} \) | \(a_{35}= -0.10676779 \pm 4.9 \cdot 10^{-8} \) | \(a_{36}= +0.24887635 \pm 5.0 \cdot 10^{-8} \) |
\(a_{37}= +1.92710911 \pm 3.0 \cdot 10^{-8} \) | \(a_{38}= -0.95000094 \pm 4.9 \cdot 10^{-8} \) | \(a_{39}= +0.35494702 \pm 4.3 \cdot 10^{-8} \) |
\(a_{40}= +0.09987212 \pm 4.9 \cdot 10^{-8} \) | \(a_{41}= -0.59659368 \pm 2.5 \cdot 10^{-8} \) | \(a_{42}= -0.32708154 \pm 6.1 \cdot 10^{-8} \) |
\(a_{43}= -1.77495323 \pm 3.9 \cdot 10^{-8} \) | \(a_{44}= +0.44897416 \pm 5.0 \cdot 10^{-8} \) | \(a_{45}= -0.14060569 \pm 3.4 \cdot 10^{-8} \) |
\(a_{46}= -0.42772649 \pm 4.5 \cdot 10^{-8} \) | \(a_{47}= -0.55854787 \pm 2.8 \cdot 10^{-8} \) | \(a_{48}= +0.30595677 \pm 6.1 \cdot 10^{-8} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.65068282 \pm 4.0 \cdot 10^{-8} \) | \(a_{51}= +1.62668240 \pm 3.0 \cdot 10^{-8} \) |
\(a_{52}= +0.14501519 \pm 4.7 \cdot 10^{-8} \) | \(a_{53}= -0.19240874 \pm 3.7 \cdot 10^{-8} \) | \(a_{54}= +0.43463297 \pm 4.7 \cdot 10^{-8} \) |
\(a_{55}= -0.25365336 \pm 3.6 \cdot 10^{-8} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +1.64421682 \pm 5.4 \cdot 10^{-8} \) |
\(a_{58}= -1.07410078 \pm 5.3 \cdot 10^{-8} \) | \(a_{59}= -0.47432916 \pm 4.0 \cdot 10^{-8} \) | \(a_{60}= -0.17285396 \pm 9.9 \cdot 10^{-8} \) |
\(a_{61}= -1.32680198 \pm 2.4 \cdot 10^{-8} \) | \(a_{62}= +0.40181847 \pm 5.3 \cdot 10^{-8} \) | \(a_{63}= +0.18813284 \pm 5.0 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -0.08192808 \pm 2.7 \cdot 10^{-8} \) | \(a_{66}= -0.77706330 \pm 1.0 \cdot 10^{-7} \) |
\(a_{67}= -0.58908180 \pm 4.0 \cdot 10^{-8} \) | \(a_{68}= +0.66458834 \pm 3.6 \cdot 10^{-8} \) | \(a_{69}= +0.74028884 \pm 4.6 \cdot 10^{-8} \) |
\(a_{70}= +0.07549623 \pm 4.9 \cdot 10^{-8} \) | \(a_{71}= +0.42592196 \pm 5.2 \cdot 10^{-8} \) | \(a_{72}= -0.17598216 \pm 5.0 \cdot 10^{-8} \) |
\(a_{73}= +0.76567729 \pm 3.8 \cdot 10^{-8} \) | \(a_{74}= -1.36267192 \pm 4.1 \cdot 10^{-8} \) | \(a_{75}= -1.12617115 \pm 3.2 \cdot 10^{-8} \) |
\(a_{76}= +0.67175210 \pm 4.9 \cdot 10^{-8} \) | \(a_{77}= +0.33939256 \pm 5.0 \cdot 10^{-8} \) | \(a_{78}= -0.25098544 \pm 9.8 \cdot 10^{-8} \) |
\(a_{79}= -0.06177403 \pm 4.7 \cdot 10^{-8} \) | \(a_{80}= -0.07062026 \pm 4.9 \cdot 10^{-8} \) | \(a_{81}= -1.24999495 \pm 4.2 \cdot 10^{-8} \) |
\(a_{82}= +0.42185543 \pm 3.5 \cdot 10^{-8} \) | \(a_{83}= +1.43366575 \pm 2.9 \cdot 10^{-8} \) | \(a_{84}= +0.23128158 \pm 6.1 \cdot 10^{-8} \) |
\(a_{85}= -0.37546718 \pm 3.0 \cdot 10^{-8} \) | \(a_{86}= +1.25508146 \pm 4.9 \cdot 10^{-8} \) | \(a_{87}= +1.85900299 \pm 5.8 \cdot 10^{-8} \) |
\(a_{88}= -0.31747267 \pm 5.0 \cdot 10^{-8} \) | \(a_{89}= -1.16712023 \pm 2.7 \cdot 10^{-8} \) | \(a_{90}= +0.09942324 \pm 8.8 \cdot 10^{-8} \) |
\(a_{91}= +0.10962118 \pm 4.7 \cdot 10^{-8} \) | \(a_{92}= +0.30244830 \pm 4.5 \cdot 10^{-8} \) | \(a_{93}= -0.69544846 \pm 5.5 \cdot 10^{-8} \) |
\(a_{94}= +0.39495299 \pm 3.8 \cdot 10^{-8} \) | \(a_{95}= -0.37951444 \pm 3.2 \cdot 10^{-8} \) | \(a_{96}= -0.21634411 \pm 6.1 \cdot 10^{-8} \) |
\(a_{97}= -1.73136310 \pm 3.1 \cdot 10^{-8} \) | \(a_{98}= -0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +0.44695621 \pm 3.1 \cdot 10^{-8} \) |
\(a_{100}= -0.46010224 \pm 4.0 \cdot 10^{-8} \) | \(a_{101}= +0.99053443 \pm 4.2 \cdot 10^{-8} \) | \(a_{102}= -1.15023815 \pm 8.6 \cdot 10^{-8} \) |
\(a_{103}= -0.60605118 \pm 2.9 \cdot 10^{-8} \) | \(a_{104}= -0.10254122 \pm 4.7 \cdot 10^{-8} \) | \(a_{105}= -0.13066531 \pm 9.9 \cdot 10^{-8} \) |
\(a_{106}= +0.13605353 \pm 4.8 \cdot 10^{-8} \) | \(a_{107}= +0.69663334 \pm 2.9 \cdot 10^{-8} \) | \(a_{108}= -0.30733192 \pm 4.7 \cdot 10^{-8} \) |
\(a_{109}= -1.30318388 \pm 2.9 \cdot 10^{-8} \) | \(a_{110}= +0.17936001 \pm 8.9 \cdot 10^{-8} \) | \(a_{111}= +2.35844830 \pm 3.1 \cdot 10^{-8} \) |
\(a_{112}= +0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +1.11189646 \pm 4.6 \cdot 10^{-8} \) | \(a_{114}= -1.16263686 \pm 9.9 \cdot 10^{-8} \) |
\(a_{115}= -0.17087181 \pm 4.0 \cdot 10^{-8} \) | \(a_{116}= +0.75950395 \pm 5.3 \cdot 10^{-8} \) | \(a_{117}= +0.14436340 \pm 3.1 \cdot 10^{-8} \) |
\(a_{118}= +0.33540136 \pm 5.1 \cdot 10^{-8} \) | \(a_{119}= +0.50238156 \pm 3.6 \cdot 10^{-8} \) | \(a_{120}= +0.12222621 \pm 9.9 \cdot 10^{-8} \) |
\(a_{121}= -0.19368882 \pm 3.4 \cdot 10^{-8} \) | \(a_{122}= +0.93819068 \pm 3.4 \cdot 10^{-8} \) | \(a_{123}= -0.73012749 \pm 2.9 \cdot 10^{-8} \) |
\(a_{124}= -0.28412857 \pm 5.3 \cdot 10^{-8} \) | \(a_{125}= +0.54242132 \pm 3.2 \cdot 10^{-8} \) | \(a_{126}= -0.13303001 \pm 5.0 \cdot 10^{-8} \) |
\(a_{127}= -0.57452321 \pm 3.8 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -2.17223582 \pm 4.9 \cdot 10^{-8} \) |
\(a_{130}= +0.05793190 \pm 8.6 \cdot 10^{-8} \) | \(a_{131}= +0.57362697 \pm 3.1 \cdot 10^{-8} \) | \(a_{132}= +0.54946673 \pm 1.0 \cdot 10^{-7} \) |
\(a_{133}= +0.50779686 \pm 4.9 \cdot 10^{-8} \) | \(a_{134}= +0.41654373 \pm 5.0 \cdot 10^{-8} \) | \(a_{135}= +0.17363087 \pm 2.8 \cdot 10^{-8} \) |
\(a_{136}= -0.46993492 \pm 3.6 \cdot 10^{-8} \) | \(a_{137}= -0.26957183 \pm 4.3 \cdot 10^{-8} \) | \(a_{138}= -0.52346326 \pm 9.6 \cdot 10^{-8} \) |
\(a_{139}= -0.73420750 \pm 3.5 \cdot 10^{-8} \) | \(a_{140}= -0.05338390 \pm 4.9 \cdot 10^{-8} \) | \(a_{141}= -0.68356601 \pm 3.4 \cdot 10^{-8} \) |
\(a_{142}= -0.30117231 \pm 6.3 \cdot 10^{-8} \) | \(a_{143}= +0.26043228 \pm 4.8 \cdot 10^{-8} \) | \(a_{144}= +0.12443818 \pm 5.0 \cdot 10^{-8} \) |
\(a_{145}= -0.42909090 \pm 4.1 \cdot 10^{-8} \) | \(a_{146}= -0.54141560 \pm 4.9 \cdot 10^{-8} \) | \(a_{147}= +0.17483244 \pm 6.1 \cdot 10^{-8} \) |
\(a_{148}= +0.96355455 \pm 4.1 \cdot 10^{-8} \) | \(a_{149}= -0.19278188 \pm 2.7 \cdot 10^{-8} \) | \(a_{150}= +0.79632325 \pm 9.1 \cdot 10^{-8} \) |
\(a_{151}= +0.27034901 \pm 3.3 \cdot 10^{-8} \) | \(a_{152}= -0.47500047 \pm 4.9 \cdot 10^{-8} \) | \(a_{153}= +0.66160128 \pm 2.9 \cdot 10^{-8} \) |
\(a_{154}= -0.23998678 \pm 5.0 \cdot 10^{-8} \) | \(a_{155}= +0.16052185 \pm 4.8 \cdot 10^{-8} \) | \(a_{156}= +0.17747351 \pm 9.8 \cdot 10^{-8} \) |
\(a_{157}= +1.34364778 \pm 3.3 \cdot 10^{-8} \) | \(a_{158}= +0.04368083 \pm 5.7 \cdot 10^{-8} \) | \(a_{159}= -0.23547503 \pm 4.3 \cdot 10^{-8} \) |
\(a_{160}= +0.04993606 \pm 4.9 \cdot 10^{-8} \) | \(a_{161}= +0.22862943 \pm 4.5 \cdot 10^{-8} \) | \(a_{162}= +0.88387991 \pm 5.2 \cdot 10^{-8} \) |
\(a_{163}= +0.66559517 \pm 2.9 \cdot 10^{-8} \) | \(a_{164}= -0.29829684 \pm 3.5 \cdot 10^{-8} \) | \(a_{165}= -0.31042785 \pm 4.6 \cdot 10^{-8} \) |
\(a_{166}= -1.01375478 \pm 3.9 \cdot 10^{-8} \) | \(a_{167}= -0.10547364 \pm 4.3 \cdot 10^{-8} \) | \(a_{168}= -0.16354077 \pm 6.1 \cdot 10^{-8} \) |
\(a_{169}= -0.91588238 \pm 3.9 \cdot 10^{-8} \) | \(a_{170}= +0.26549539 \pm 7.5 \cdot 10^{-8} \) | \(a_{171}= +0.66873285 \pm 5.1 \cdot 10^{-8} \) |
\(a_{172}= -0.88747661 \pm 4.9 \cdot 10^{-8} \) | \(a_{173}= +0.88199724 \pm 4.4 \cdot 10^{-8} \) | \(a_{174}= -1.31451362 \pm 1.0 \cdot 10^{-7} \) |
\(a_{175}= -0.34780460 \pm 4.0 \cdot 10^{-8} \) | \(a_{176}= +0.22448708 \pm 5.0 \cdot 10^{-8} \) | \(a_{177}= -0.58049686 \pm 4.8 \cdot 10^{-8} \) |
\(a_{178}= +0.82527863 \pm 3.8 \cdot 10^{-8} \) | \(a_{179}= -0.30756796 \pm 3.5 \cdot 10^{-8} \) | \(a_{180}= -0.07030285 \pm 8.8 \cdot 10^{-8} \) |
\(a_{181}= +1.61324650 \pm 3.5 \cdot 10^{-8} \) | \(a_{182}= -0.07751388 \pm 4.7 \cdot 10^{-8} \) | \(a_{183}= -1.62377618 \pm 3.3 \cdot 10^{-8} \) |
\(a_{184}= -0.21386325 \pm 4.5 \cdot 10^{-8} \) | \(a_{185}= -0.54437175 \pm 2.6 \cdot 10^{-8} \) | \(a_{186}= +0.49175632 \pm 1.0 \cdot 10^{-7} \) |
\(a_{187}= +1.19353196 \pm 2.1 \cdot 10^{-8} \) | \(a_{188}= -0.27927394 \pm 3.8 \cdot 10^{-8} \) | \(a_{189}= -0.23232109 \pm 4.7 \cdot 10^{-8} \) |
\(a_{190}= +0.26835723 \pm 8.8 \cdot 10^{-8} \) | \(a_{191}= +0.64617015 \pm 2.7 \cdot 10^{-8} \) | \(a_{192}= +0.15297838 \pm 6.1 \cdot 10^{-8} \) |
\(a_{193}= -1.43441417 \pm 3.0 \cdot 10^{-8} \) | \(a_{194}= +1.22425859 \pm 4.1 \cdot 10^{-8} \) | \(a_{195}= -0.10026580 \pm 3.0 \cdot 10^{-8} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= -1.52279302 \pm 4.9 \cdot 10^{-8} \) | \(a_{198}= -0.31604576 \pm 8.9 \cdot 10^{-8} \) |
\(a_{199}= -1.07290711 \pm 3.5 \cdot 10^{-8} \) | \(a_{200}= +0.32534141 \pm 4.0 \cdot 10^{-8} \) | \(a_{201}= -0.72093425 \pm 5.1 \cdot 10^{-8} \) |
\(a_{202}= -0.70041361 \pm 5.2 \cdot 10^{-8} \) | \(a_{203}= +0.57413102 \pm 5.3 \cdot 10^{-8} \) | \(a_{204}= +0.81334120 \pm 8.6 \cdot 10^{-8} \) |
\(a_{205}= +0.16852639 \pm 2.7 \cdot 10^{-8} \) | \(a_{206}= +0.42854290 \pm 4.0 \cdot 10^{-8} \) | \(a_{207}= +0.30108892 \pm 3.5 \cdot 10^{-8} \) |
\(a_{208}= +0.07250759 \pm 4.7 \cdot 10^{-8} \) | \(a_{209}= +1.20639735 \pm 3.1 \cdot 10^{-8} \) | \(a_{210}= +0.09239433 \pm 9.9 \cdot 10^{-8} \) |
\(a_{211}= +1.58747762 \pm 4.6 \cdot 10^{-8} \) | \(a_{212}= -0.09620437 \pm 4.8 \cdot 10^{-8} \) | \(a_{213}= +0.52125483 \pm 7.4 \cdot 10^{-8} \) |
\(a_{214}= -0.49259416 \pm 3.9 \cdot 10^{-8} \) | \(a_{215}= +0.50139060 \pm 3.3 \cdot 10^{-8} \) | \(a_{216}= +0.21731648 \pm 4.7 \cdot 10^{-8} \) |
\(a_{217}= -0.21478101 \pm 5.3 \cdot 10^{-8} \) | \(a_{218}= +0.92149016 \pm 3.9 \cdot 10^{-8} \) | \(a_{219}= +0.93705659 \pm 4.9 \cdot 10^{-8} \) |
\(a_{220}= -0.12682668 \pm 8.9 \cdot 10^{-8} \) | \(a_{221}= +0.38550160 \pm 2.2 \cdot 10^{-8} \) | \(a_{222}= -1.66767479 \pm 9.1 \cdot 10^{-8} \) |
\(a_{223}= -0.44446919 \pm 3.5 \cdot 10^{-8} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= -0.45803427 \pm 2.5 \cdot 10^{-8} \) |
\(a_{226}= -0.78622953 \pm 5.6 \cdot 10^{-8} \) | \(a_{227}= -1.21029734 \pm 4.1 \cdot 10^{-8} \) | \(a_{228}= +0.82210841 \pm 9.9 \cdot 10^{-8} \) |
\(a_{229}= -0.38539263 \pm 3.4 \cdot 10^{-8} \) | \(a_{230}= +0.12082462 \pm 8.4 \cdot 10^{-8} \) | \(a_{231}= +0.41535781 \pm 1.0 \cdot 10^{-7} \) |
\(a_{232}= -0.53705039 \pm 5.3 \cdot 10^{-8} \) | \(a_{233}= -1.61385420 \pm 2.9 \cdot 10^{-8} \) | \(a_{234}= -0.10208034 \pm 8.7 \cdot 10^{-8} \) |
\(a_{235}= +0.15777917 \pm 2.8 \cdot 10^{-8} \) | \(a_{236}= -0.23716458 \pm 5.1 \cdot 10^{-8} \) | \(a_{237}= -0.07560073 \pm 6.3 \cdot 10^{-8} \) |
\(a_{238}= -0.35523741 \pm 3.6 \cdot 10^{-8} \) | \(a_{239}= +0.45823132 \pm 4.6 \cdot 10^{-8} \) | \(a_{240}= -0.08642698 \pm 9.9 \cdot 10^{-8} \) |
\(a_{241}= -0.16258105 \pm 4.3 \cdot 10^{-8} \) | \(a_{242}= +0.13695867 \pm 4.5 \cdot 10^{-8} \) | \(a_{243}= -0.91511382 \pm 4.0 \cdot 10^{-8} \) |
\(a_{244}= -0.66340099 \pm 3.4 \cdot 10^{-8} \) | \(a_{245}= -0.04035443 \pm 4.9 \cdot 10^{-8} \) | \(a_{246}= +0.51627810 \pm 8.6 \cdot 10^{-8} \) |
\(a_{247}= +0.38965702 \pm 3.6 \cdot 10^{-8} \) | \(a_{248}= +0.20090924 \pm 5.3 \cdot 10^{-8} \) | \(a_{249}= +1.75455896 \pm 3.7 \cdot 10^{-8} \) |
\(a_{250}= -0.38354979 \pm 4.3 \cdot 10^{-8} \) | \(a_{251}= -0.37493861 \pm 3.6 \cdot 10^{-8} \) | \(a_{252}= +0.09406642 \pm 5.0 \cdot 10^{-8} \) |
\(a_{253}= +0.54316589 \pm 4.3 \cdot 10^{-8} \) | \(a_{254}= +0.40624926 \pm 4.8 \cdot 10^{-8} \) | \(a_{255}= -0.45950690 \pm 2.8 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.82619845 \pm 4.2 \cdot 10^{-8} \) | \(a_{258}= +1.53600268 \pm 1.0 \cdot 10^{-7} \) |
\(a_{259}= +0.72837878 \pm 4.1 \cdot 10^{-8} \) | \(a_{260}= -0.04096404 \pm 8.6 \cdot 10^{-8} \) | \(a_{261}= +0.75609029 \pm 4.1 \cdot 10^{-8} \) |
\(a_{262}= -0.40561552 \pm 4.1 \cdot 10^{-8} \) | \(a_{263}= -1.30766812 \pm 4.1 \cdot 10^{-8} \) | \(a_{264}= -0.38853165 \pm 1.0 \cdot 10^{-7} \) |
\(a_{265}= +0.05435182 \pm 4.1 \cdot 10^{-8} \) | \(a_{266}= -0.35906660 \pm 4.9 \cdot 10^{-8} \) | \(a_{267}= -1.42835334 \pm 3.6 \cdot 10^{-8} \) |
\(a_{268}= -0.29454090 \pm 5.0 \cdot 10^{-8} \) | \(a_{269}= +0.62328111 \pm 3.6 \cdot 10^{-8} \) | \(a_{270}= -0.12277556 \pm 8.6 \cdot 10^{-8} \) |
\(a_{271}= +1.81132255 \pm 3.1 \cdot 10^{-8} \) | \(a_{272}= +0.33229417 \pm 3.6 \cdot 10^{-8} \) | \(a_{273}= +0.13415736 \pm 9.8 \cdot 10^{-8} \) |
\(a_{274}= +0.19061607 \pm 5.4 \cdot 10^{-8} \) | \(a_{275}= -0.82629606 \pm 3.3 \cdot 10^{-8} \) | \(a_{276}= +0.37014442 \pm 9.6 \cdot 10^{-8} \) |
\(a_{277}= -0.62361765 \pm 5.2 \cdot 10^{-8} \) | \(a_{278}= +0.51916310 \pm 4.6 \cdot 10^{-8} \) | \(a_{279}= -0.28285152 \pm 3.3 \cdot 10^{-8} \) |
\(a_{280}= +0.03774811 \pm 4.9 \cdot 10^{-8} \) | \(a_{281}= -0.49367388 \pm 3.3 \cdot 10^{-8} \) | \(a_{282}= +0.48335416 \pm 8.9 \cdot 10^{-8} \) |
\(a_{283}= -0.21240320 \pm 3.9 \cdot 10^{-8} \) | \(a_{284}= +0.21296098 \pm 6.3 \cdot 10^{-8} \) | \(a_{285}= -0.46446005 \pm 4.2 \cdot 10^{-8} \) |
\(a_{286}= -0.18415343 \pm 8.7 \cdot 10^{-8} \) | \(a_{287}= -0.22549121 \pm 3.5 \cdot 10^{-8} \) | \(a_{288}= -0.08799108 \pm 5.0 \cdot 10^{-8} \) |
\(a_{289}= +0.76671063 \pm 3.2 \cdot 10^{-8} \) | \(a_{290}= +0.30341309 \pm 9.2 \cdot 10^{-8} \) | \(a_{291}= -2.11888904 \pm 4.8 \cdot 10^{-8} \) |
\(a_{292}= +0.38283864 \pm 4.9 \cdot 10^{-8} \) | \(a_{293}= +0.04273915 \pm 2.7 \cdot 10^{-8} \) | \(a_{294}= -0.12362520 \pm 6.1 \cdot 10^{-8} \) |
\(a_{295}= +0.13398898 \pm 5.0 \cdot 10^{-8} \) | \(a_{296}= -0.68133596 \pm 4.1 \cdot 10^{-8} \) | \(a_{297}= -0.55193636 \pm 3.8 \cdot 10^{-8} \) |
\(a_{298}= +0.13631738 \pm 3.8 \cdot 10^{-8} \) | \(a_{299}= +0.17543839 \pm 2.8 \cdot 10^{-8} \) | \(a_{300}= -0.56308557 \pm 9.1 \cdot 10^{-8} \) |
\(a_{301}= -0.67086926 \pm 4.9 \cdot 10^{-8} \) | \(a_{302}= -0.19116562 \pm 4.3 \cdot 10^{-8} \) | \(a_{303}= +1.21224285 \pm 5.4 \cdot 10^{-8} \) |
\(a_{304}= +0.33587605 \pm 4.9 \cdot 10^{-8} \) | \(a_{305}= +0.37479638 \pm 2.3 \cdot 10^{-8} \) | \(a_{306}= -0.46782275 \pm 7.5 \cdot 10^{-8} \) |
\(a_{307}= -0.42795069 \pm 3.3 \cdot 10^{-8} \) | \(a_{308}= +0.16969628 \pm 5.0 \cdot 10^{-8} \) | \(a_{309}= -0.74170184 \pm 4.5 \cdot 10^{-8} \) |
\(a_{310}= -0.11350609 \pm 9.2 \cdot 10^{-8} \) | \(a_{311}= +1.77920520 \pm 4.3 \cdot 10^{-8} \) | \(a_{312}= -0.12549272 \pm 9.8 \cdot 10^{-8} \) |
\(a_{313}= +0.91358961 \pm 2.4 \cdot 10^{-8} \) | \(a_{314}= -0.95010245 \pm 4.3 \cdot 10^{-8} \) | \(a_{315}= -0.05314396 \pm 8.8 \cdot 10^{-8} \) |
\(a_{316}= -0.03088701 \pm 5.7 \cdot 10^{-8} \) | \(a_{317}= -0.74081899 \pm 4.2 \cdot 10^{-8} \) | \(a_{318}= +0.16650599 \pm 9.8 \cdot 10^{-8} \) |
\(a_{319}= +1.36399059 \pm 3.4 \cdot 10^{-8} \) | \(a_{320}= -0.03531013 \pm 4.9 \cdot 10^{-8} \) | \(a_{321}= +0.85255875 \pm 3.4 \cdot 10^{-8} \) |
\(a_{322}= -0.16166542 \pm 4.5 \cdot 10^{-8} \) | \(a_{323}= +1.78575445 \pm 2.4 \cdot 10^{-8} \) | \(a_{324}= -0.62499747 \pm 5.2 \cdot 10^{-8} \) |
\(a_{325}= -0.26688724 \pm 3.2 \cdot 10^{-8} \) | \(a_{326}= -0.47064686 \pm 3.9 \cdot 10^{-8} \) | \(a_{327}= -1.59487172 \pm 3.2 \cdot 10^{-8} \) |
\(a_{328}= +0.21092772 \pm 3.5 \cdot 10^{-8} \) | \(a_{329}= -0.21111125 \pm 3.8 \cdot 10^{-8} \) | \(a_{330}= +0.21950564 \pm 1.3 \cdot 10^{-7} \) |
\(a_{331}= +0.39430442 \pm 3.4 \cdot 10^{-8} \) | \(a_{332}= +0.71683288 \pm 3.9 \cdot 10^{-8} \) | \(a_{333}= +0.95922377 \pm 1.9 \cdot 10^{-8} \) |
\(a_{334}= +0.07458113 \pm 5.3 \cdot 10^{-8} \) | \(a_{335}= +0.16640443 \pm 3.2 \cdot 10^{-8} \) | \(a_{336}= +0.11564079 \pm 6.1 \cdot 10^{-8} \) |
\(a_{337}= -1.52713802 \pm 3.8 \cdot 10^{-8} \) | \(a_{338}= +0.64762664 \pm 4.9 \cdot 10^{-8} \) | \(a_{339}= +1.36076899 \pm 6.3 \cdot 10^{-8} \) |
\(a_{340}= -0.18773359 \pm 7.5 \cdot 10^{-8} \) | \(a_{341}= -0.51026554 \pm 3.5 \cdot 10^{-8} \) | \(a_{342}= -0.47286554 \pm 8.8 \cdot 10^{-8} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.62754073 \pm 4.9 \cdot 10^{-8} \) | \(a_{345}= -0.20911755 \pm 5.2 \cdot 10^{-8} \) |
\(a_{346}= -0.62366623 \pm 5.5 \cdot 10^{-8} \) | \(a_{347}= -1.85096559 \pm 3.9 \cdot 10^{-8} \) | \(a_{348}= +0.92950149 \pm 1.0 \cdot 10^{-7} \) |
\(a_{349}= +0.52494803 \pm 3.7 \cdot 10^{-8} \) | \(a_{350}= +0.24593499 \pm 4.0 \cdot 10^{-8} \) | \(a_{351}= -0.17827118 \pm 4.0 \cdot 10^{-8} \) |
\(a_{352}= -0.15873634 \pm 5.0 \cdot 10^{-8} \) | \(a_{353}= -1.45389105 \pm 2.4 \cdot 10^{-8} \) | \(a_{354}= +0.41047327 \pm 1.0 \cdot 10^{-7} \) |
\(a_{355}= -0.12031487 \pm 5.1 \cdot 10^{-8} \) | \(a_{356}= -0.58356012 \pm 3.8 \cdot 10^{-8} \) | \(a_{357}= +0.61482816 \pm 8.6 \cdot 10^{-8} \) |
\(a_{358}= +0.21748339 \pm 4.5 \cdot 10^{-8} \) | \(a_{359}= +0.28022886 \pm 5.0 \cdot 10^{-8} \) | \(a_{360}= +0.04971162 \pm 8.8 \cdot 10^{-8} \) |
\(a_{361}= +0.80500356 \pm 3.3 \cdot 10^{-8} \) | \(a_{362}= -1.14073754 \pm 4.6 \cdot 10^{-8} \) | \(a_{363}= -0.23704162 \pm 4.1 \cdot 10^{-8} \) |
\(a_{364}= +0.05481059 \pm 4.7 \cdot 10^{-8} \) | \(a_{365}= -0.21628930 \pm 3.2 \cdot 10^{-8} \) | \(a_{366}= +1.14818315 \pm 8.5 \cdot 10^{-8} \) |
\(a_{367}= -0.92058768 \pm 2.6 \cdot 10^{-8} \) | \(a_{368}= +0.15122415 \pm 4.5 \cdot 10^{-8} \) | \(a_{369}= -0.29695612 \pm 1.5 \cdot 10^{-8} \) |
\(a_{370}= +0.38492895 \pm 8.0 \cdot 10^{-8} \) | \(a_{371}= -0.07272367 \pm 4.8 \cdot 10^{-8} \) | \(a_{372}= -0.34772423 \pm 1.0 \cdot 10^{-7} \) |
\(a_{373}= -1.10306725 \pm 4.8 \cdot 10^{-8} \) | \(a_{374}= -0.84395454 \pm 7.6 \cdot 10^{-8} \) | \(a_{375}= +0.66382990 \pm 4.3 \cdot 10^{-8} \) |
\(a_{376}= +0.19747649 \pm 3.8 \cdot 10^{-8} \) | \(a_{377}= +0.44055842 \pm 3.1 \cdot 10^{-8} \) | \(a_{378}= +0.16427582 \pm 4.7 \cdot 10^{-8} \) |
\(a_{379}= -1.13271526 \pm 4.4 \cdot 10^{-8} \) | \(a_{380}= -0.18975722 \pm 8.8 \cdot 10^{-8} \) | \(a_{381}= -0.70311706 \pm 4.8 \cdot 10^{-8} \) |
\(a_{382}= -0.45691130 \pm 3.8 \cdot 10^{-8} \) | \(a_{383}= +0.80304947 \pm 3.5 \cdot 10^{-8} \) | \(a_{384}= -0.10817205 \pm 6.1 \cdot 10^{-8} \) |
\(a_{385}= -0.09587196 \pm 8.9 \cdot 10^{-8} \) | \(a_{386}= +1.01428399 \pm 4.0 \cdot 10^{-8} \) | \(a_{387}= -0.88348777 \pm 3.2 \cdot 10^{-8} \) |
\(a_{388}= -0.86568155 \pm 4.1 \cdot 10^{-8} \) | \(a_{389}= +1.01372560 \pm 3.9 \cdot 10^{-8} \) | \(a_{390}= +0.07089862 \pm 1.3 \cdot 10^{-7} \) |
\(a_{391}= +0.80401446 \pm 2.0 \cdot 10^{-8} \) | \(a_{392}= -0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +0.70202022 \pm 4.2 \cdot 10^{-8} \) |
\(a_{394}= +1.07677727 \pm 6.0 \cdot 10^{-8} \) | \(a_{395}= +0.01744999 \pm 4.7 \cdot 10^{-8} \) | \(a_{396}= +0.22347810 \pm 8.9 \cdot 10^{-8} \) |
\(a_{397}= +1.10902432 \pm 3.1 \cdot 10^{-8} \) | \(a_{398}= +0.75865990 \pm 4.5 \cdot 10^{-8} \) | \(a_{399}= +0.62145554 \pm 9.9 \cdot 10^{-8} \) |
\(a_{400}= -0.23005112 \pm 4.0 \cdot 10^{-8} \) | \(a_{401}= -0.24098330 \pm 4.2 \cdot 10^{-8} \) | \(a_{402}= +0.50977750 \pm 1.0 \cdot 10^{-7} \) |
\(a_{403}= -0.16481183 \pm 2.2 \cdot 10^{-8} \) | \(a_{404}= +0.49526721 \pm 5.2 \cdot 10^{-8} \) | \(a_{405}= +0.35309985 \pm 3.8 \cdot 10^{-8} \) |
\(a_{406}= -0.40597194 \pm 5.3 \cdot 10^{-8} \) | \(a_{407}= +1.73044439 \pm 4.0 \cdot 10^{-8} \) | \(a_{408}= -0.57511908 \pm 8.6 \cdot 10^{-8} \) |
\(a_{409}= +0.44888373 \pm 4.9 \cdot 10^{-8} \) | \(a_{410}= -0.11916615 \pm 7.4 \cdot 10^{-8} \) | \(a_{411}= -0.32990930 \pm 5.4 \cdot 10^{-8} \) |
\(a_{412}= -0.30302559 \pm 4.0 \cdot 10^{-8} \) | \(a_{413}= -0.17927957 \pm 5.1 \cdot 10^{-8} \) | \(a_{414}= -0.21290202 \pm 8.5 \cdot 10^{-8} \) |
\(a_{415}= -0.40498337 \pm 2.6 \cdot 10^{-8} \) | \(a_{416}= -0.05127061 \pm 4.7 \cdot 10^{-8} \) | \(a_{417}= -0.89854302 \pm 4.6 \cdot 10^{-8} \) |
\(a_{418}= -0.85305174 \pm 8.9 \cdot 10^{-8} \) | \(a_{419}= -0.47039426 \pm 3.4 \cdot 10^{-8} \) | \(a_{420}= -0.06533266 \pm 9.9 \cdot 10^{-8} \) |
\(a_{421}= +0.52866758 \pm 3.3 \cdot 10^{-8} \) | \(a_{422}= -1.12251619 \pm 5.7 \cdot 10^{-8} \) | \(a_{423}= -0.27801872 \pm 3.7 \cdot 10^{-8} \) |
\(a_{424}= +0.06802676 \pm 4.8 \cdot 10^{-8} \) | \(a_{425}= -1.22311432 \pm 2.7 \cdot 10^{-8} \) | \(a_{426}= -0.36858282 \pm 1.1 \cdot 10^{-7} \) |
\(a_{427}= -0.50148401 \pm 3.4 \cdot 10^{-8} \) | \(a_{428}= +0.34831667 \pm 3.9 \cdot 10^{-8} \) | \(a_{429}= +0.31872408 \pm 5.0 \cdot 10^{-8} \) |
\(a_{430}= -0.35453669 \pm 8.8 \cdot 10^{-8} \) | \(a_{431}= +0.13839285 \pm 3.5 \cdot 10^{-8} \) | \(a_{432}= -0.15366596 \pm 4.7 \cdot 10^{-8} \) |
\(a_{433}= -0.64537929 \pm 4.9 \cdot 10^{-8} \) | \(a_{434}= +0.15187311 \pm 5.3 \cdot 10^{-8} \) | \(a_{435}= -0.52513306 \pm 5.6 \cdot 10^{-8} \) |
\(a_{436}= -0.65159194 \pm 3.9 \cdot 10^{-8} \) | \(a_{437}= +0.81268113 \pm 2.6 \cdot 10^{-8} \) | \(a_{438}= -0.66259907 \pm 9.9 \cdot 10^{-8} \) |
\(a_{439}= +0.64483090 \pm 4.7 \cdot 10^{-8} \) | \(a_{440}= +0.08968000 \pm 8.9 \cdot 10^{-8} \) | \(a_{441}= +0.07110753 \pm 5.0 \cdot 10^{-8} \) |
\(a_{442}= -0.27259080 \pm 7.3 \cdot 10^{-8} \) | \(a_{443}= +0.13728792 \pm 3.7 \cdot 10^{-8} \) | \(a_{444}= +1.17922415 \pm 9.1 \cdot 10^{-8} \) |
\(a_{445}= +0.32968932 \pm 3.4 \cdot 10^{-8} \) | \(a_{446}= +0.31428718 \pm 4.6 \cdot 10^{-8} \) | \(a_{447}= -0.23593169 \pm 3.3 \cdot 10^{-8} \) |
\(a_{448}= +0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +0.13973331 \pm 3.6 \cdot 10^{-8} \) | \(a_{450}= +0.32387914 \pm 8.0 \cdot 10^{-8} \) |
\(a_{451}= -0.53571029 \pm 3.1 \cdot 10^{-8} \) | \(a_{452}= +0.55594823 \pm 5.6 \cdot 10^{-8} \) | \(a_{453}= +0.33086044 \pm 3.8 \cdot 10^{-8} \) |
\(a_{454}= +0.85580946 \pm 5.2 \cdot 10^{-8} \) | \(a_{455}= -0.03096590 \pm 8.6 \cdot 10^{-8} \) | \(a_{456}= -0.58131843 \pm 9.9 \cdot 10^{-8} \) |
\(a_{457}= +1.33701282 \pm 5.1 \cdot 10^{-8} \) | \(a_{458}= +0.27251374 \pm 4.4 \cdot 10^{-8} \) | \(a_{459}= -0.81699683 \pm 2.8 \cdot 10^{-8} \) |
\(a_{460}= -0.08543591 \pm 8.4 \cdot 10^{-8} \) | \(a_{461}= -0.84986886 \pm 2.4 \cdot 10^{-8} \) | \(a_{462}= -0.29370232 \pm 1.0 \cdot 10^{-7} \) |
\(a_{463}= -0.50087203 \pm 4.7 \cdot 10^{-8} \) | \(a_{464}= +0.37975197 \pm 5.3 \cdot 10^{-8} \) | \(a_{465}= +0.19645099 \pm 6.1 \cdot 10^{-8} \) |
\(a_{466}= +1.14116725 \pm 4.0 \cdot 10^{-8} \) | \(a_{467}= -0.11807537 \pm 4.5 \cdot 10^{-8} \) | \(a_{468}= +0.07218170 \pm 8.7 \cdot 10^{-8} \) |
\(a_{469}= -0.22265199 \pm 5.0 \cdot 10^{-8} \) | \(a_{470}= -0.11156672 \pm 7.7 \cdot 10^{-8} \) | \(a_{471}= +1.64439253 \pm 4.0 \cdot 10^{-8} \) |
\(a_{472}= +0.16770068 \pm 5.1 \cdot 10^{-8} \) | \(a_{473}= -1.59381627 \pm 3.4 \cdot 10^{-8} \) | \(a_{474}= +0.05345779 \pm 1.0 \cdot 10^{-7} \) |
\(a_{475}= -1.23629858 \pm 2.6 \cdot 10^{-8} \) | \(a_{476}= +0.25119078 \pm 3.6 \cdot 10^{-8} \) | \(a_{477}= -0.09577197 \pm 3.0 \cdot 10^{-8} \) |
\(a_{478}= -0.32401848 \pm 5.6 \cdot 10^{-8} \) | \(a_{479}= -0.24190328 \pm 4.2 \cdot 10^{-8} \) | \(a_{480}= +0.06111310 \pm 9.9 \cdot 10^{-8} \) |
\(a_{481}= +0.55892017 \pm 4.1 \cdot 10^{-8} \) | \(a_{482}= +0.11496216 \pm 5.3 \cdot 10^{-8} \) | \(a_{483}= +0.27980288 \pm 9.6 \cdot 10^{-8} \) |
\(a_{484}= -0.09684441 \pm 4.5 \cdot 10^{-8} \) | \(a_{485}= +0.48907722 \pm 2.2 \cdot 10^{-8} \) | \(a_{486}= +0.64708319 \pm 5.1 \cdot 10^{-8} \) |
\(a_{487}= +0.50248588 \pm 3.2 \cdot 10^{-8} \) | \(a_{488}= +0.46909534 \pm 3.4 \cdot 10^{-8} \) | \(a_{489}= +0.81457339 \pm 3.5 \cdot 10^{-8} \) |
\(a_{490}= +0.02853489 \pm 4.9 \cdot 10^{-8} \) | \(a_{491}= -1.83757808 \pm 4.6 \cdot 10^{-8} \) | \(a_{492}= -0.36506375 \pm 8.6 \cdot 10^{-8} \) |
\(a_{493}= +2.01902986 \pm 2.5 \cdot 10^{-8} \) | \(a_{494}= -0.27552912 \pm 8.6 \cdot 10^{-8} \) | \(a_{495}= -0.12625665 \pm 3.0 \cdot 10^{-8} \) |
\(a_{496}= -0.14206428 \pm 5.3 \cdot 10^{-8} \) | \(a_{497}= +0.16098337 \pm 6.3 \cdot 10^{-8} \) | \(a_{498}= -1.24066054 \pm 9.0 \cdot 10^{-8} \) |
\(a_{499}= +0.54853707 \pm 5.4 \cdot 10^{-8} \) | \(a_{500}= +0.27121066 \pm 4.3 \cdot 10^{-8} \) | \(a_{501}= -0.12908150 \pm 4.9 \cdot 10^{-8} \) |
\(a_{502}= +0.26512164 \pm 4.7 \cdot 10^{-8} \) | \(a_{503}= +0.58422585 \pm 3.9 \cdot 10^{-8} \) | \(a_{504}= -0.06651500 \pm 5.0 \cdot 10^{-8} \) |
\(a_{505}= -0.27980718 \pm 4.5 \cdot 10^{-8} \) | \(a_{506}= -0.38407628 \pm 8.5 \cdot 10^{-8} \) | \(a_{507}= -1.12088166 \pm 4.3 \cdot 10^{-8} \) |
\(a_{508}= -0.28726160 \pm 4.8 \cdot 10^{-8} \) | \(a_{509}= -1.15168997 \pm 3.3 \cdot 10^{-8} \) | \(a_{510}= +0.32492045 \pm 1.2 \cdot 10^{-7} \) |
\(a_{511}= +0.28939881 \pm 4.9 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.82580345 \pm 4.6 \cdot 10^{-8} \) |
\(a_{514}= -0.58421053 \pm 5.2 \cdot 10^{-8} \) | \(a_{515}= +0.17119796 \pm 1.7 \cdot 10^{-8} \) | \(a_{516}= -1.08611791 \pm 1.0 \cdot 10^{-7} \) |
\(a_{517}= -0.50154713 \pm 2.7 \cdot 10^{-8} \) | \(a_{518}= -0.51504157 \pm 4.1 \cdot 10^{-8} \) | \(a_{519}= +1.07941210 \pm 6.1 \cdot 10^{-8} \) |
\(a_{520}= +0.02896595 \pm 8.6 \cdot 10^{-8} \) | \(a_{521}= +0.69879078 \pm 3.6 \cdot 10^{-8} \) | \(a_{522}= -0.53463657 \pm 9.3 \cdot 10^{-8} \) |
\(a_{523}= +0.77009231 \pm 3.9 \cdot 10^{-8} \) | \(a_{524}= +0.28681349 \pm 4.1 \cdot 10^{-8} \) | \(a_{525}= -0.42565268 \pm 9.1 \cdot 10^{-8} \) |
\(a_{526}= +0.92466099 \pm 5.2 \cdot 10^{-8} \) | \(a_{527}= -0.75531412 \pm 1.8 \cdot 10^{-8} \) | \(a_{528}= +0.27473337 \pm 1.0 \cdot 10^{-7} \) |
\(a_{529}= -0.63410010 \pm 3.3 \cdot 10^{-8} \) | \(a_{530}= -0.03843254 \pm 8.7 \cdot 10^{-8} \) | \(a_{531}= -0.23609862 \pm 3.1 \cdot 10^{-8} \) |
\(a_{532}= +0.25389843 \pm 4.9 \cdot 10^{-8} \) | \(a_{533}= -0.17303029 \pm 2.2 \cdot 10^{-8} \) | \(a_{534}= +1.00999833 \pm 8.8 \cdot 10^{-8} \) |
\(a_{535}= -0.19678570 \pm 2.1 \cdot 10^{-8} \) | \(a_{536}= +0.20827187 \pm 5.0 \cdot 10^{-8} \) | \(a_{537}= -0.37641000 \pm 4.2 \cdot 10^{-8} \) |
\(a_{538}= -0.44072630 \pm 4.7 \cdot 10^{-8} \) | \(a_{539}= +0.12827833 \pm 5.0 \cdot 10^{-8} \) | \(a_{540}= +0.08681543 \pm 8.6 \cdot 10^{-8} \) |
\(a_{541}= -0.83719627 \pm 2.8 \cdot 10^{-8} \) | \(a_{542}= -1.28079846 \pm 4.2 \cdot 10^{-8} \) | \(a_{543}= +1.97433474 \pm 4.0 \cdot 10^{-8} \) |
\(a_{544}= -0.23496746 \pm 3.6 \cdot 10^{-8} \) | \(a_{545}= +0.36812471 \pm 3.4 \cdot 10^{-8} \) | \(a_{546}= -0.09486358 \pm 9.8 \cdot 10^{-8} \) |
\(a_{547}= +1.50079171 \pm 3.3 \cdot 10^{-8} \) | \(a_{548}= -0.13478591 \pm 5.4 \cdot 10^{-8} \) | \(a_{549}= -0.66041927 \pm 2.8 \cdot 10^{-8} \) |
\(a_{550}= +0.58427955 \pm 8.0 \cdot 10^{-8} \) | \(a_{551}= +2.04079350 \pm 4.1 \cdot 10^{-8} \) | \(a_{552}= -0.26173163 \pm 9.6 \cdot 10^{-8} \) |
\(a_{553}= -0.02334839 \pm 5.7 \cdot 10^{-8} \) | \(a_{554}= +0.44096427 \pm 6.3 \cdot 10^{-8} \) | \(a_{555}= -0.66621688 \pm 2.5 \cdot 10^{-8} \) |
\(a_{556}= -0.36710375 \pm 4.6 \cdot 10^{-8} \) | \(a_{557}= -0.98798089 \pm 4.2 \cdot 10^{-8} \) | \(a_{558}= +0.20000623 \pm 9.2 \cdot 10^{-8} \) |
\(a_{559}= -0.51479034 \pm 4.0 \cdot 10^{-8} \) | \(a_{560}= -0.02669195 \pm 4.9 \cdot 10^{-8} \) | \(a_{561}= +1.46067673 \pm 2.6 \cdot 10^{-8} \) |
\(a_{562}= +0.34908015 \pm 4.4 \cdot 10^{-8} \) | \(a_{563}= +0.81652197 \pm 2.9 \cdot 10^{-8} \) | \(a_{564}= -0.34178301 \pm 8.9 \cdot 10^{-8} \) |
\(a_{565}= -0.31408965 \pm 4.8 \cdot 10^{-8} \) | \(a_{566}= +0.15019174 \pm 5.0 \cdot 10^{-8} \) | \(a_{567}= -0.47245368 \pm 5.2 \cdot 10^{-8} \) |
\(a_{568}= -0.15058615 \pm 6.3 \cdot 10^{-8} \) | \(a_{569}= -0.02805796 \pm 3.5 \cdot 10^{-8} \) | \(a_{570}= +0.32842285 \pm 1.3 \cdot 10^{-7} \) |
\(a_{571}= +1.30666849 \pm 3.3 \cdot 10^{-8} \) | \(a_{572}= +0.13021614 \pm 8.7 \cdot 10^{-8} \) | \(a_{573}= +0.79080053 \pm 3.6 \cdot 10^{-8} \) |
\(a_{574}= +0.15944637 \pm 3.5 \cdot 10^{-8} \) | \(a_{575}= -0.55662856 \pm 2.9 \cdot 10^{-8} \) | \(a_{576}= +0.06221909 \pm 5.0 \cdot 10^{-8} \) |
\(a_{577}= -0.78724478 \pm 3.2 \cdot 10^{-8} \) | \(a_{578}= -0.54214628 \pm 4.2 \cdot 10^{-8} \) | \(a_{579}= -1.75547490 \pm 4.1 \cdot 10^{-8} \) |
\(a_{580}= -0.21454545 \pm 9.2 \cdot 10^{-8} \) | \(a_{581}= +0.54187472 \pm 3.9 \cdot 10^{-8} \) | \(a_{582}= +1.49828081 \pm 9.2 \cdot 10^{-8} \) |
\(a_{583}= -0.17277311 \pm 2.9 \cdot 10^{-8} \) | \(a_{584}= -0.27070780 \pm 4.9 \cdot 10^{-8} \) | \(a_{585}= -0.04077992 \pm 2.6 \cdot 10^{-8} \) |
\(a_{586}= -0.03022114 \pm 3.7 \cdot 10^{-8} \) | \(a_{587}= +0.66363791 \pm 4.4 \cdot 10^{-8} \) | \(a_{588}= +0.08741622 \pm 6.1 \cdot 10^{-8} \) |
\(a_{589}= -0.76345585 \pm 4.0 \cdot 10^{-8} \) | \(a_{590}= -0.09474452 \pm 8.9 \cdot 10^{-8} \) | \(a_{591}= -1.86363533 \pm 6.3 \cdot 10^{-8} \) |
\(a_{592}= +0.48177728 \pm 4.1 \cdot 10^{-8} \) | \(a_{593}= +0.77451486 \pm 4.8 \cdot 10^{-8} \) | \(a_{594}= +0.39027794 \pm 8.7 \cdot 10^{-8} \) |
\(a_{595}= -0.14191326 \pm 7.5 \cdot 10^{-8} \) | \(a_{596}= -0.09639094 \pm 3.8 \cdot 10^{-8} \) | \(a_{597}= -1.31305277 \pm 4.9 \cdot 10^{-8} \) |
\(a_{598}= -0.12405367 \pm 8.3 \cdot 10^{-8} \) | \(a_{599}= +0.14464654 \pm 3.8 \cdot 10^{-8} \) | \(a_{600}= +0.39816163 \pm 9.1 \cdot 10^{-8} \) |
\(a_{601}= -0.05402368 \pm 4.1 \cdot 10^{-8} \) | \(a_{602}= +0.47437620 \pm 4.9 \cdot 10^{-8} \) | \(a_{603}= -0.29321706 \pm 3.7 \cdot 10^{-8} \) |
\(a_{604}= +0.13517451 \pm 4.3 \cdot 10^{-8} \) | \(a_{605}= +0.05471341 \pm 2.8 \cdot 10^{-8} \) | \(a_{606}= -0.85718514 \pm 1.0 \cdot 10^{-7} \) |
\(a_{607}= -0.74639740 \pm 4.2 \cdot 10^{-8} \) | \(a_{608}= -0.23750023 \pm 4.9 \cdot 10^{-8} \) | \(a_{609}= +0.70263709 \pm 1.0 \cdot 10^{-7} \) |
\(a_{610}= -0.26502106 \pm 7.3 \cdot 10^{-8} \) | \(a_{611}= -0.16199585 \pm 2.6 \cdot 10^{-8} \) | \(a_{612}= +0.33080064 \pm 7.5 \cdot 10^{-8} \) |
\(a_{613}= -1.41090229 \pm 3.5 \cdot 10^{-8} \) | \(a_{614}= +0.30260684 \pm 4.4 \cdot 10^{-8} \) | \(a_{615}= +0.20624716 \pm 3.3 \cdot 10^{-8} \) |
\(a_{616}= -0.11999339 \pm 5.0 \cdot 10^{-8} \) | \(a_{617}= -1.75242329 \pm 3.6 \cdot 10^{-8} \) | \(a_{618}= +0.52446240 \pm 9.0 \cdot 10^{-8} \) |
\(a_{619}= -1.33065646 \pm 2.9 \cdot 10^{-8} \) | \(a_{620}= +0.08026093 \pm 9.2 \cdot 10^{-8} \) | \(a_{621}= -0.37180807 \pm 3.3 \cdot 10^{-8} \) |
\(a_{622}= -1.25808806 \pm 5.4 \cdot 10^{-8} \) | \(a_{623}= -0.44112998 \pm 3.8 \cdot 10^{-8} \) | \(a_{624}= +0.08873675 \pm 9.8 \cdot 10^{-8} \) |
\(a_{625}= +0.76698074 \pm 3.0 \cdot 10^{-8} \) | \(a_{626}= -0.64600541 \pm 3.4 \cdot 10^{-8} \) | \(a_{627}= +1.47642173 \pm 3.9 \cdot 10^{-8} \) |
\(a_{628}= +0.67182389 \pm 4.3 \cdot 10^{-8} \) | \(a_{629}= +2.56146847 \pm 2.4 \cdot 10^{-8} \) | \(a_{630}= +0.03757845 \pm 8.8 \cdot 10^{-8} \) |
\(a_{631}= +0.75964485 \pm 2.7 \cdot 10^{-8} \) | \(a_{632}= +0.02184042 \pm 5.7 \cdot 10^{-8} \) | \(a_{633}= +1.94279809 \pm 6.3 \cdot 10^{-8} \) |
\(a_{634}= +0.52383813 \pm 5.3 \cdot 10^{-8} \) | \(a_{635}= +0.16229190 \pm 4.8 \cdot 10^{-8} \) | \(a_{636}= -0.11773751 \pm 9.8 \cdot 10^{-8} \) |
\(a_{637}= +0.04143291 \pm 4.7 \cdot 10^{-8} \) | \(a_{638}= -0.96448699 \pm 9.3 \cdot 10^{-8} \) | \(a_{639}= +0.21200381 \pm 6.3 \cdot 10^{-8} \) |
\(a_{640}= +0.02496803 \pm 4.9 \cdot 10^{-8} \) | \(a_{641}= +1.06781807 \pm 5.5 \cdot 10^{-8} \) | \(a_{642}= -0.60285007 \pm 9.0 \cdot 10^{-8} \) |
\(a_{643}= -0.74073947 \pm 3.4 \cdot 10^{-8} \) | \(a_{644}= +0.11431471 \pm 4.5 \cdot 10^{-8} \) | \(a_{645}= +0.61361539 \pm 4.1 \cdot 10^{-8} \) |
\(a_{646}= -1.26271908 \pm 7.4 \cdot 10^{-8} \) | \(a_{647}= +0.81162318 \pm 3.7 \cdot 10^{-8} \) | \(a_{648}= +0.44193995 \pm 5.2 \cdot 10^{-8} \) |
\(a_{649}= -0.42592307 \pm 3.7 \cdot 10^{-8} \) | \(a_{650}= +0.18871778 \pm 7.8 \cdot 10^{-8} \) | \(a_{651}= -0.26285481 \pm 1.0 \cdot 10^{-7} \) |
\(a_{652}= +0.33279759 \pm 3.9 \cdot 10^{-8} \) | \(a_{653}= +1.87779081 \pm 4.2 \cdot 10^{-8} \) | \(a_{654}= +1.12774461 \pm 9.0 \cdot 10^{-8} \) |
\(a_{655}= -0.16203873 \pm 2.4 \cdot 10^{-8} \) | \(a_{656}= -0.14914842 \pm 3.5 \cdot 10^{-8} \) | \(a_{657}= +0.38111794 \pm 4.2 \cdot 10^{-8} \) |
\(a_{658}= +0.14927820 \pm 3.8 \cdot 10^{-8} \) | \(a_{659}= -1.28562811 \pm 3.4 \cdot 10^{-8} \) | \(a_{660}= -0.15521392 \pm 1.3 \cdot 10^{-7} \) |
\(a_{661}= -0.51126999 \pm 4.3 \cdot 10^{-8} \) | \(a_{662}= -0.27881533 \pm 4.5 \cdot 10^{-8} \) | \(a_{663}= +0.47178730 \pm 2.4 \cdot 10^{-8} \) |
\(a_{664}= -0.50687739 \pm 3.9 \cdot 10^{-8} \) | \(a_{665}= -0.14344298 \pm 8.8 \cdot 10^{-8} \) | \(a_{666}= -0.67827363 \pm 8.0 \cdot 10^{-8} \) |
\(a_{667}= +0.91884272 \pm 3.0 \cdot 10^{-8} \) | \(a_{668}= -0.05273682 \pm 5.3 \cdot 10^{-8} \) | \(a_{669}= -0.54395343 \pm 5.2 \cdot 10^{-8} \) |
\(a_{670}= -0.11766570 \pm 8.9 \cdot 10^{-8} \) | \(a_{671}= -1.19139961 \pm 2.8 \cdot 10^{-8} \) | \(a_{672}= -0.08177039 \pm 6.1 \cdot 10^{-8} \) |
\(a_{673}= +0.95594772 \pm 2.8 \cdot 10^{-8} \) | \(a_{674}= +1.07984965 \pm 4.9 \cdot 10^{-8} \) | \(a_{675}= +0.56561641 \pm 3.1 \cdot 10^{-8} \) |
\(a_{676}= -0.45794119 \pm 4.9 \cdot 10^{-8} \) | \(a_{677}= -0.91612837 \pm 3.9 \cdot 10^{-8} \) | \(a_{678}= -0.96220898 \pm 1.0 \cdot 10^{-7} \) |
\(a_{679}= -0.65439374 \pm 4.1 \cdot 10^{-8} \) | \(a_{680}= +0.13274770 \pm 7.5 \cdot 10^{-8} \) | \(a_{681}= -1.48119465 \pm 5.9 \cdot 10^{-8} \) |
\(a_{682}= +0.36081222 \pm 9.3 \cdot 10^{-8} \) | \(a_{683}= -0.99322855 \pm 2.4 \cdot 10^{-8} \) | \(a_{684}= +0.33436643 \pm 8.8 \cdot 10^{-8} \) |
\(a_{685}= +0.07614893 \pm 4.3 \cdot 10^{-8} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= -0.47165394 \pm 4.7 \cdot 10^{-8} \) |
\(a_{688}= -0.44373831 \pm 4.9 \cdot 10^{-8} \) | \(a_{689}= -0.05580438 \pm 3.1 \cdot 10^{-8} \) | \(a_{690}= +0.14786844 \pm 1.3 \cdot 10^{-7} \) |
\(a_{691}= -0.07549563 \pm 2.6 \cdot 10^{-8} \) | \(a_{692}= +0.44099862 \pm 5.5 \cdot 10^{-8} \) | \(a_{693}= +0.16893357 \pm 8.9 \cdot 10^{-8} \) |
\(a_{694}= +1.30883032 \pm 4.9 \cdot 10^{-8} \) | \(a_{695}= +0.20739968 \pm 2.7 \cdot 10^{-8} \) | \(a_{696}= -0.65725681 \pm 1.0 \cdot 10^{-7} \) |
\(a_{697}= -0.79297840 \pm 1.4 \cdot 10^{-8} \) | \(a_{698}= -0.37119432 \pm 4.8 \cdot 10^{-8} \) | \(a_{699}= -1.97507847 \pm 3.4 \cdot 10^{-8} \) |
\(a_{700}= -0.17390230 \pm 4.0 \cdot 10^{-8} \) | \(a_{701}= +0.73900367 \pm 2.9 \cdot 10^{-8} \) | \(a_{702}= +0.12605676 \pm 8.5 \cdot 10^{-8} \) |
\(a_{703}= +2.58907919 \pm 2.4 \cdot 10^{-8} \) | \(a_{704}= +0.11224354 \pm 5.0 \cdot 10^{-8} \) | \(a_{705}= +0.19309442 \pm 2.5 \cdot 10^{-8} \) |
\(a_{706}= +1.02805622 \pm 3.5 \cdot 10^{-8} \) | \(a_{707}= +0.37438682 \pm 5.2 \cdot 10^{-8} \) | \(a_{708}= -0.29024843 \pm 1.0 \cdot 10^{-7} \) |
\(a_{709}= -0.48161318 \pm 4.2 \cdot 10^{-8} \) | \(a_{710}= +0.08507546 \pm 1.0 \cdot 10^{-7} \) | \(a_{711}= -0.03074819 \pm 4.1 \cdot 10^{-8} \) |
\(a_{712}= +0.41263932 \pm 3.8 \cdot 10^{-8} \) | \(a_{713}= -0.34373681 \pm 4.0 \cdot 10^{-8} \) | \(a_{714}= -0.43474916 \pm 8.6 \cdot 10^{-8} \) |
\(a_{715}= -0.07356718 \pm 2.4 \cdot 10^{-8} \) | \(a_{716}= -0.15378398 \pm 4.5 \cdot 10^{-8} \) | \(a_{717}= +0.56079590 \pm 6.5 \cdot 10^{-8} \) |
\(a_{718}= -0.19815173 \pm 6.0 \cdot 10^{-8} \) | \(a_{719}= +1.49400860 \pm 4.2 \cdot 10^{-8} \) | \(a_{720}= -0.03515142 \pm 8.8 \cdot 10^{-8} \) |
\(a_{721}= -0.22906581 \pm 4.0 \cdot 10^{-8} \) | \(a_{722}= -0.56922347 \pm 4.4 \cdot 10^{-8} \) | \(a_{723}= -0.19897109 \pm 5.3 \cdot 10^{-8} \) |
\(a_{724}= +0.80662325 \pm 4.6 \cdot 10^{-8} \) | \(a_{725}= -1.39779786 \pm 1.9 \cdot 10^{-8} \) | \(a_{726}= +0.16761373 \pm 9.5 \cdot 10^{-8} \) |
\(a_{727}= +0.16524606 \pm 2.7 \cdot 10^{-8} \) | \(a_{728}= -0.03875694 \pm 4.7 \cdot 10^{-8} \) | \(a_{729}= +0.13005388 \pm 3.4 \cdot 10^{-8} \) |
\(a_{730}= +0.15293963 \pm 8.8 \cdot 10^{-8} \) | \(a_{731}= -2.35922643 \pm 2.6 \cdot 10^{-8} \) | \(a_{732}= -0.81188809 \pm 8.5 \cdot 10^{-8} \) |
\(a_{733}= -0.13609057 \pm 3.5 \cdot 10^{-8} \) | \(a_{734}= +0.65095379 \pm 3.7 \cdot 10^{-8} \) | \(a_{735}= -0.04938685 \pm 9.9 \cdot 10^{-8} \) |
\(a_{736}= -0.10693162 \pm 4.5 \cdot 10^{-8} \) | \(a_{737}= -0.52896501 \pm 4.0 \cdot 10^{-8} \) | \(a_{738}= +0.20997968 \pm 7.5 \cdot 10^{-8} \) |
\(a_{739}= +1.74744681 \pm 2.6 \cdot 10^{-8} \) | \(a_{740}= -0.27218587 \pm 8.0 \cdot 10^{-8} \) | \(a_{741}= +0.47687281 \pm 4.7 \cdot 10^{-8} \) |
\(a_{742}= +0.05142340 \pm 4.8 \cdot 10^{-8} \) | \(a_{743}= -1.89995066 \pm 4.4 \cdot 10^{-8} \) | \(a_{744}= +0.24587816 \pm 1.0 \cdot 10^{-7} \) |
\(a_{745}= +0.05445722 \pm 3.1 \cdot 10^{-8} \) | \(a_{746}= +0.77998633 \pm 5.8 \cdot 10^{-8} \) | \(a_{747}= +0.71361101 \pm 2.7 \cdot 10^{-8} \) |
\(a_{748}= +0.59676598 \pm 7.6 \cdot 10^{-8} \) | \(a_{749}= +0.26330265 \pm 3.9 \cdot 10^{-8} \) | \(a_{750}= -0.46939862 \pm 9.3 \cdot 10^{-8} \) |
\(a_{751}= +1.70865754 \pm 3.9 \cdot 10^{-8} \) | \(a_{752}= -0.13963697 \pm 3.8 \cdot 10^{-8} \) | \(a_{753}= -0.45886003 \pm 5.2 \cdot 10^{-8} \) |
\(a_{754}= -0.31152185 \pm 9.0 \cdot 10^{-8} \) | \(a_{755}= -0.07636846 \pm 2.3 \cdot 10^{-8} \) | \(a_{756}= -0.11616055 \pm 4.7 \cdot 10^{-8} \) |
\(a_{757}= +0.48768839 \pm 3.0 \cdot 10^{-8} \) | \(a_{758}= +0.80095064 \pm 5.4 \cdot 10^{-8} \) | \(a_{759}= +0.66474112 \pm 5.3 \cdot 10^{-8} \) |
\(a_{760}= +0.13417862 \pm 8.8 \cdot 10^{-8} \) | \(a_{761}= +1.52766275 \pm 5.7 \cdot 10^{-8} \) | \(a_{762}= +0.49717884 \pm 9.9 \cdot 10^{-8} \) |
\(a_{763}= -0.49255721 \pm 3.9 \cdot 10^{-8} \) | \(a_{764}= +0.32308508 \pm 3.8 \cdot 10^{-8} \) | \(a_{765}= -0.18688981 \pm 2.6 \cdot 10^{-8} \) |
\(a_{766}= -0.56784173 \pm 4.5 \cdot 10^{-8} \) | \(a_{767}= -0.13756986 \pm 2.8 \cdot 10^{-8} \) | \(a_{768}= +0.07648919 \pm 6.1 \cdot 10^{-8} \) |
\(a_{769}= -0.54215497 \pm 4.6 \cdot 10^{-8} \) | \(a_{770}= +0.06779171 \pm 8.9 \cdot 10^{-8} \) | \(a_{771}= +1.01112403 \pm 5.6 \cdot 10^{-8} \) |
\(a_{772}= -0.71720709 \pm 4.0 \cdot 10^{-8} \) | \(a_{773}= -0.62163750 \pm 2.3 \cdot 10^{-8} \) | \(a_{774}= +0.62472019 \pm 8.9 \cdot 10^{-8} \) |
\(a_{775}= +0.52291275 \pm 2.8 \cdot 10^{-8} \) | \(a_{776}= +0.61212930 \pm 4.1 \cdot 10^{-8} \) | \(a_{777}= +0.89140967 \pm 9.1 \cdot 10^{-8} \) |
\(a_{778}= -0.71681225 \pm 4.9 \cdot 10^{-8} \) | \(a_{779}= -0.80152612 \pm 1.5 \cdot 10^{-8} \) | \(a_{780}= -0.05013290 \pm 1.3 \cdot 10^{-7} \) |
\(a_{781}= +0.38245591 \pm 4.8 \cdot 10^{-8} \) | \(a_{782}= -0.56852407 \pm 7.1 \cdot 10^{-8} \) | \(a_{783}= -0.93367922 \pm 2.7 \cdot 10^{-8} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.37955500 \pm 4.1 \cdot 10^{-8} \) | \(a_{786}= -0.49640326 \pm 9.2 \cdot 10^{-8} \) |
\(a_{787}= -0.78945308 \pm 4.3 \cdot 10^{-8} \) | \(a_{788}= -0.76139651 \pm 6.0 \cdot 10^{-8} \) | \(a_{789}= -1.60035964 \pm 5.5 \cdot 10^{-8} \) |
\(a_{790}= -0.01233901 \pm 9.6 \cdot 10^{-8} \) | \(a_{791}= +0.42025736 \pm 5.6 \cdot 10^{-8} \) | \(a_{792}= -0.15802288 \pm 8.9 \cdot 10^{-8} \) |
\(a_{793}= -0.38481287 \pm 2.5 \cdot 10^{-8} \) | \(a_{794}= -0.78419861 \pm 4.1 \cdot 10^{-8} \) | \(a_{795}= +0.06651723 \pm 4.2 \cdot 10^{-8} \) |
\(a_{796}= -0.53645356 \pm 4.5 \cdot 10^{-8} \) | \(a_{797}= +1.19102706 \pm 3.4 \cdot 10^{-8} \) | \(a_{798}= -0.43943543 \pm 9.9 \cdot 10^{-8} \) |
\(a_{799}= -0.74240881 \pm 3.0 \cdot 10^{-8} \) | \(a_{800}= +0.16267071 \pm 4.0 \cdot 10^{-8} \) | \(a_{801}= -0.58093725 \pm 2.9 \cdot 10^{-8} \) |
\(a_{802}= +0.17040093 \pm 5.3 \cdot 10^{-8} \) | \(a_{803}= +0.68753863 \pm 3.7 \cdot 10^{-8} \) | \(a_{804}= -0.36046712 \pm 1.0 \cdot 10^{-7} \) |
\(a_{805}= -0.06458347 \pm 8.4 \cdot 10^{-8} \) | \(a_{806}= +0.11653956 \pm 9.0 \cdot 10^{-8} \) | \(a_{807}= +0.76278830 \pm 4.6 \cdot 10^{-8} \) |
\(a_{808}= -0.35020680 \pm 5.2 \cdot 10^{-8} \) | \(a_{809}= -0.57488829 \pm 4.7 \cdot 10^{-8} \) | \(a_{810}= -0.24967930 \pm 9.1 \cdot 10^{-8} \) |
\(a_{811}= +1.23227055 \pm 3.5 \cdot 10^{-8} \) | \(a_{812}= +0.28706551 \pm 5.3 \cdot 10^{-8} \) | \(a_{813}= +2.21674557 \pm 4.1 \cdot 10^{-8} \) |
\(a_{814}= -1.22360896 \pm 8.1 \cdot 10^{-8} \) | \(a_{815}= -0.18801800 \pm 2.9 \cdot 10^{-8} \) | \(a_{816}= +0.40667060 \pm 8.6 \cdot 10^{-8} \) |
\(a_{817}= -2.38465713 \pm 4.1 \cdot 10^{-8} \) | \(a_{818}= -0.31740873 \pm 6.0 \cdot 10^{-8} \) | \(a_{819}= +0.05456424 \pm 8.7 \cdot 10^{-8} \) |
\(a_{820}= +0.08426320 \pm 7.4 \cdot 10^{-8} \) | \(a_{821}= +0.40520313 \pm 4.6 \cdot 10^{-8} \) | \(a_{822}= +0.23328110 \pm 1.0 \cdot 10^{-7} \) |
\(a_{823}= +0.71996037 \pm 2.1 \cdot 10^{-8} \) | \(a_{824}= +0.21427145 \pm 4.0 \cdot 10^{-8} \) | \(a_{825}= -1.01124349 \pm 3.7 \cdot 10^{-8} \) |
\(a_{826}= +0.12676980 \pm 5.1 \cdot 10^{-8} \) | \(a_{827}= +0.30905219 \pm 3.2 \cdot 10^{-8} \) | \(a_{828}= +0.15054446 \pm 8.5 \cdot 10^{-8} \) |
\(a_{829}= +0.75711538 \pm 5.0 \cdot 10^{-8} \) | \(a_{830}= +0.28636648 \pm 7.8 \cdot 10^{-8} \) | \(a_{831}= -0.76320016 \pm 7.2 \cdot 10^{-8} \) |
\(a_{832}= +0.03625380 \pm 4.7 \cdot 10^{-8} \) | \(a_{833}= +0.18988238 \pm 3.6 \cdot 10^{-8} \) | \(a_{834}= +0.63536586 \pm 9.6 \cdot 10^{-8} \) |
\(a_{835}= +0.02979430 \pm 4.8 \cdot 10^{-8} \) | \(a_{836}= +0.60319867 \pm 8.9 \cdot 10^{-8} \) | \(a_{837}= +0.34928711 \pm 2.0 \cdot 10^{-8} \) |
\(a_{838}= +0.33261897 \pm 4.4 \cdot 10^{-8} \) | \(a_{839}= -1.13047869 \pm 4.0 \cdot 10^{-8} \) | \(a_{840}= +0.04619716 \pm 9.9 \cdot 10^{-8} \) |
\(a_{841}= +1.30738499 \pm 4.3 \cdot 10^{-8} \) | \(a_{842}= -0.37382443 \pm 4.3 \cdot 10^{-8} \) | \(a_{843}= -0.60417146 \pm 4.3 \cdot 10^{-8} \) |
\(a_{844}= +0.79373881 \pm 5.7 \cdot 10^{-8} \) | \(a_{845}= +0.25871939 \pm 2.8 \cdot 10^{-8} \) | \(a_{846}= +0.19658892 \pm 7.8 \cdot 10^{-8} \) |
\(a_{847}= -0.07320749 \pm 4.5 \cdot 10^{-8} \) | \(a_{848}= -0.04810219 \pm 4.8 \cdot 10^{-8} \) | \(a_{849}= -0.25994479 \pm 5.0 \cdot 10^{-8} \) |
\(a_{850}= +0.86487243 \pm 6.6 \cdot 10^{-8} \) | \(a_{851}= +1.16570175 \pm 2.5 \cdot 10^{-8} \) | \(a_{852}= +0.26062741 \pm 1.1 \cdot 10^{-7} \) |
\(a_{853}= -0.76829839 \pm 2.3 \cdot 10^{-8} \) | \(a_{854}= +0.35460275 \pm 3.4 \cdot 10^{-8} \) | \(a_{855}= -0.18890434 \pm 3.5 \cdot 10^{-8} \) |
\(a_{856}= -0.24629708 \pm 3.9 \cdot 10^{-8} \) | \(a_{857}= -1.19115821 \pm 3.5 \cdot 10^{-8} \) | \(a_{858}= -0.22537196 \pm 1.3 \cdot 10^{-7} \) |
\(a_{859}= -0.04655395 \pm 2.0 \cdot 10^{-8} \) | \(a_{860}= +0.25069530 \pm 8.8 \cdot 10^{-8} \) | \(a_{861}= -0.27596225 \pm 8.6 \cdot 10^{-8} \) |
\(a_{862}= -0.09785852 \pm 4.6 \cdot 10^{-8} \) | \(a_{863}= +1.21031028 \pm 2.8 \cdot 10^{-8} \) | \(a_{864}= +0.10865824 \pm 4.7 \cdot 10^{-8} \) |
\(a_{865}= -0.24914748 \pm 4.4 \cdot 10^{-8} \) | \(a_{866}= +0.45635207 \pm 5.9 \cdot 10^{-8} \) | \(a_{867}= +0.93832122 \pm 3.7 \cdot 10^{-8} \) |
\(a_{868}= -0.10739050 \pm 5.3 \cdot 10^{-8} \) | \(a_{869}= -0.05546988 \pm 3.7 \cdot 10^{-8} \) | \(a_{870}= +0.37132515 \pm 1.4 \cdot 10^{-7} \) |
\(a_{871}= -0.17085161 \pm 4.6 \cdot 10^{-8} \) | \(a_{872}= +0.46074508 \pm 3.9 \cdot 10^{-8} \) | \(a_{873}= -0.86179067 \pm 5.2 \cdot 10^{-8} \) |
\(a_{874}= -0.57465234 \pm 8.4 \cdot 10^{-8} \) | \(a_{875}= +0.20501599 \pm 4.3 \cdot 10^{-8} \) | \(a_{876}= +0.46852830 \pm 9.9 \cdot 10^{-8} \) |
\(a_{877}= -1.00432953 \pm 3.9 \cdot 10^{-8} \) | \(a_{878}= -0.45596430 \pm 5.8 \cdot 10^{-8} \) | \(a_{879}= +0.05230533 \pm 3.2 \cdot 10^{-8} \) |
\(a_{880}= -0.06341334 \pm 8.9 \cdot 10^{-8} \) | \(a_{881}= +1.48283610 \pm 3.4 \cdot 10^{-8} \) | \(a_{882}= -0.05028062 \pm 5.0 \cdot 10^{-8} \) |
\(a_{883}= -0.33317425 \pm 3.4 \cdot 10^{-8} \) | \(a_{884}= +0.19275080 \pm 7.3 \cdot 10^{-8} \) | \(a_{885}= +0.16397935 \pm 5.6 \cdot 10^{-8} \) |
\(a_{886}= -0.09707722 \pm 4.7 \cdot 10^{-8} \) | \(a_{887}= +1.09532119 \pm 4.0 \cdot 10^{-8} \) | \(a_{888}= -0.83383739 \pm 9.1 \cdot 10^{-8} \) |
\(a_{889}= -0.21714936 \pm 4.8 \cdot 10^{-8} \) | \(a_{890}= -0.23312555 \pm 7.6 \cdot 10^{-8} \) | \(a_{891}= -1.12243086 \pm 4.1 \cdot 10^{-8} \) |
\(a_{892}= -0.22223460 \pm 4.6 \cdot 10^{-8} \) | \(a_{893}= -0.75041142 \pm 3.1 \cdot 10^{-8} \) | \(a_{894}= +0.16682890 \pm 8.8 \cdot 10^{-8} \) |
\(a_{895}= +0.08688211 \pm 4.1 \cdot 10^{-8} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= +0.21470625 \pm 3.4 \cdot 10^{-8} \) |
\(a_{898}= -0.09880637 \pm 4.7 \cdot 10^{-8} \) | \(a_{899}= -0.86318707 \pm 5.4 \cdot 10^{-8} \) | \(a_{900}= -0.22901713 \pm 8.0 \cdot 10^{-8} \) |
\(a_{901}= -0.25574521 \pm 3.4 \cdot 10^{-8} \) | \(a_{902}= +0.37880438 \pm 7.5 \cdot 10^{-8} \) | \(a_{903}= -0.82102797 \pm 1.0 \cdot 10^{-7} \) |
\(a_{904}= -0.39311476 \pm 5.6 \cdot 10^{-8} \) | \(a_{905}= -0.45571152 \pm 3.9 \cdot 10^{-8} \) | \(a_{906}= -0.23395366 \pm 9.4 \cdot 10^{-8} \) |
\(a_{907}= -0.24518993 \pm 4.4 \cdot 10^{-8} \) | \(a_{908}= -0.60514867 \pm 5.2 \cdot 10^{-8} \) | \(a_{909}= +0.49304119 \pm 3.4 \cdot 10^{-8} \) |
\(a_{910}= +0.02189620 \pm 8.6 \cdot 10^{-8} \) | \(a_{911}= -1.69231345 \pm 2.9 \cdot 10^{-8} \) | \(a_{912}= +0.41105421 \pm 9.9 \cdot 10^{-8} \) |
\(a_{913}= +1.28735775 \pm 3.4 \cdot 10^{-8} \) | \(a_{914}= -0.94541083 \pm 6.2 \cdot 10^{-8} \) | \(a_{915}= +0.45868595 \pm 3.3 \cdot 10^{-8} \) |
\(a_{916}= -0.19269632 \pm 4.4 \cdot 10^{-8} \) | \(a_{917}= +0.21681062 \pm 4.1 \cdot 10^{-8} \) | \(a_{918}= +0.57770400 \pm 7.3 \cdot 10^{-8} \) |
\(a_{919}= -0.41476885 \pm 4.3 \cdot 10^{-8} \) | \(a_{920}= +0.06041231 \pm 8.4 \cdot 10^{-8} \) | \(a_{921}= -0.52373764 \pm 4.4 \cdot 10^{-8} \) |
\(a_{922}= +0.60094803 \pm 3.5 \cdot 10^{-8} \) | \(a_{923}= +0.12353030 \pm 4.2 \cdot 10^{-8} \) | \(a_{924}= +0.20767890 \pm 1.0 \cdot 10^{-7} \) |
\(a_{925}= -1.77333442 \pm 2.9 \cdot 10^{-8} \) | \(a_{926}= +0.35417001 \pm 5.7 \cdot 10^{-8} \) | \(a_{927}= -0.30166361 \pm 5.0 \cdot 10^{-8} \) |
\(a_{928}= -0.26852520 \pm 5.3 \cdot 10^{-8} \) | \(a_{929}= +1.22764371 \pm 4.2 \cdot 10^{-8} \) | \(a_{930}= -0.13891183 \pm 1.4 \cdot 10^{-7} \) |
\(a_{931}= +0.19192917 \pm 4.9 \cdot 10^{-8} \) | \(a_{932}= -0.80692710 \pm 4.0 \cdot 10^{-8} \) | \(a_{933}= +2.17743949 \pm 5.2 \cdot 10^{-8} \) |
\(a_{934}= +0.08349189 \pm 5.5 \cdot 10^{-8} \) | \(a_{935}= -0.33715013 \pm 2.1 \cdot 10^{-8} \) | \(a_{936}= -0.05104017 \pm 8.7 \cdot 10^{-8} \) |
\(a_{937}= +0.97158557 \pm 3.8 \cdot 10^{-8} \) | \(a_{938}= +0.15743873 \pm 5.0 \cdot 10^{-8} \) | \(a_{939}= +1.11807570 \pm 3.3 \cdot 10^{-8} \) |
\(a_{940}= +0.07888959 \pm 7.7 \cdot 10^{-8} \) | \(a_{941}= +1.49479173 \pm 3.9 \cdot 10^{-8} \) | \(a_{942}= -1.16276111 \pm 9.4 \cdot 10^{-8} \) |
\(a_{943}= -0.36087749 \pm 2.8 \cdot 10^{-8} \) | \(a_{944}= -0.11858229 \pm 5.1 \cdot 10^{-8} \) | \(a_{945}= +0.06562630 \pm 8.6 \cdot 10^{-8} \) |
\(a_{946}= +1.12699829 \pm 8.9 \cdot 10^{-8} \) | \(a_{947}= +0.22803043 \pm 2.2 \cdot 10^{-8} \) | \(a_{948}= -0.03780036 \pm 1.0 \cdot 10^{-7} \) |
\(a_{949}= +0.22206967 \pm 4.3 \cdot 10^{-8} \) | \(a_{950}= +0.87419511 \pm 7.9 \cdot 10^{-8} \) | \(a_{951}= -0.90663434 \pm 5.2 \cdot 10^{-8} \) |
\(a_{952}= -0.17761870 \pm 3.6 \cdot 10^{-8} \) | \(a_{953}= -1.15558208 \pm 3.7 \cdot 10^{-8} \) | \(a_{954}= +0.06772101 \pm 8.7 \cdot 10^{-8} \) |
\(a_{955}= -0.18253080 \pm 3.0 \cdot 10^{-8} \) | \(a_{956}= +0.22911566 \pm 5.6 \cdot 10^{-8} \) | \(a_{957}= +1.66928861 \pm 4.4 \cdot 10^{-8} \) |
\(a_{958}= +0.17105145 \pm 5.2 \cdot 10^{-8} \) | \(a_{959}= -0.10188857 \pm 5.4 \cdot 10^{-8} \) | \(a_{960}= -0.04321349 \pm 9.9 \cdot 10^{-8} \) |
\(a_{961}= -0.67708383 \pm 4.5 \cdot 10^{-8} \) | \(a_{962}= -0.39521624 \pm 7.8 \cdot 10^{-8} \) | \(a_{963}= +0.34675113 \pm 2.5 \cdot 10^{-8} \) |
\(a_{964}= -0.08129053 \pm 5.3 \cdot 10^{-8} \) | \(a_{965}= +0.40519478 \pm 2.7 \cdot 10^{-8} \) | \(a_{966}= -0.19785051 \pm 9.6 \cdot 10^{-8} \) |
\(a_{967}= +0.32989495 \pm 5.1 \cdot 10^{-8} \) | \(a_{968}= +0.06847934 \pm 4.5 \cdot 10^{-8} \) | \(a_{969}= +2.18545465 \pm 3.4 \cdot 10^{-8} \) |
\(a_{970}= -0.34582982 \pm 8.0 \cdot 10^{-8} \) | \(a_{971}= -0.68186595 \pm 5.1 \cdot 10^{-8} \) | \(a_{972}= -0.45755691 \pm 5.1 \cdot 10^{-8} \) |
\(a_{973}= -0.27750435 \pm 4.6 \cdot 10^{-8} \) | \(a_{974}= -0.35531117 \pm 4.3 \cdot 10^{-8} \) | \(a_{975}= -0.32662383 \pm 3.1 \cdot 10^{-8} \) |
\(a_{976}= -0.33170050 \pm 3.4 \cdot 10^{-8} \) | \(a_{977}= -0.52938681 \pm 5.1 \cdot 10^{-8} \) | \(a_{978}= -0.57599037 \pm 9.0 \cdot 10^{-8} \) |
\(a_{979}= -1.04801365 \pm 3.2 \cdot 10^{-8} \) | \(a_{980}= -0.02017722 \pm 4.9 \cdot 10^{-8} \) | \(a_{981}= -0.64866330 \pm 2.8 \cdot 10^{-8} \) |
\(a_{982}= +1.29936392 \pm 5.7 \cdot 10^{-8} \) | \(a_{983}= +1.82267003 \pm 3.5 \cdot 10^{-8} \) | \(a_{984}= +0.25813905 \pm 8.6 \cdot 10^{-8} \) |
\(a_{985}= +0.43016013 \pm 4.2 \cdot 10^{-8} \) | \(a_{986}= -1.42766971 \pm 7.9 \cdot 10^{-8} \) | \(a_{987}= -0.25836367 \pm 8.9 \cdot 10^{-8} \) |
\(a_{988}= +0.19482851 \pm 8.6 \cdot 10^{-8} \) | \(a_{989}= -1.07366318 \pm 2.3 \cdot 10^{-8} \) | \(a_{990}= +0.08927693 \pm 1.2 \cdot 10^{-7} \) |
\(a_{991}= +1.08840843 \pm 3.6 \cdot 10^{-8} \) | \(a_{992}= +0.10045462 \pm 5.3 \cdot 10^{-8} \) | \(a_{993}= +0.48256043 \pm 5.2 \cdot 10^{-8} \) |
\(a_{994}= -0.11383243 \pm 6.3 \cdot 10^{-8} \) | \(a_{995}= +0.30307590 \pm 3.5 \cdot 10^{-8} \) | \(a_{996}= +0.87727948 \pm 9.0 \cdot 10^{-8} \) |
\(a_{997}= -0.68907455 \pm 2.4 \cdot 10^{-8} \) | \(a_{998}= -0.38787429 \pm 6.5 \cdot 10^{-8} \) | \(a_{999}= -1.18452428 \pm 3.1 \cdot 10^{-8} \) |
\(a_{1000}= -0.19177490 \pm 4.3 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000