Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(6.75529844582064249219773781201 \pm 4 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.82627355 \pm 1 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.64804579 \pm 1 \cdot 10^{-8} \) | \(a_{6}= -0.58426363 \pm 1.2 \cdot 10^{-8} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.31727203 \pm 1 \cdot 10^{-8} \) |
\(a_{10}= +0.45823758 \pm 1.3 \cdot 10^{-8} \) | \(a_{11}= -1.05702564 \pm 1 \cdot 10^{-8} \) | \(a_{12}= -0.41313677 \pm 1.2 \cdot 10^{-8} \) |
\(a_{13}= -1.66353822 \pm 1 \cdot 10^{-8} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -0.53546310 \pm 1 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.00373705 \pm 1 \cdot 10^{-8} \) | \(a_{18}= -0.22434520 \pm 1.2 \cdot 10^{-8} \) |
\(a_{19}= -0.54407171 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.32402290 \pm 1.3 \cdot 10^{-8} \) | \(a_{21}= +0.31230205 \pm 1.2 \cdot 10^{-8} \) |
\(a_{22}= -0.74743000 \pm 1.3 \cdot 10^{-8} \) | \(a_{23}= +0.53665100 \pm 1 \cdot 10^{-8} \) | \(a_{24}= -0.29213181 \pm 1.2 \cdot 10^{-8} \) |
\(a_{25}= -0.58003665 \pm 1 \cdot 10^{-8} \) | \(a_{26}= -1.17629915 \pm 1.2 \cdot 10^{-8} \) | \(a_{27}= +1.08842703 \pm 1 \cdot 10^{-8} \) |
\(a_{28}= -0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -0.93854623 \pm 1 \cdot 10^{-8} \) | \(a_{30}= -0.37862959 \pm 1.4 \cdot 10^{-8} \) |
\(a_{31}= +1.34296159 \pm 1 \cdot 10^{-8} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.87339233 \pm 1 \cdot 10^{-8} \) |
\(a_{34}= -0.00264249 \pm 1.3 \cdot 10^{-8} \) | \(a_{35}= -0.24493829 \pm 1.3 \cdot 10^{-8} \) | \(a_{36}= -0.15863601 \pm 1.2 \cdot 10^{-8} \) |
\(a_{37}= -0.94842185 \pm 1 \cdot 10^{-8} \) | \(a_{38}= -0.38471680 \pm 1.2 \cdot 10^{-8} \) | \(a_{39}= +1.37453762 \pm 1 \cdot 10^{-8} \) |
\(a_{40}= +0.22911879 \pm 1.3 \cdot 10^{-8} \) | \(a_{41}= +0.01677296 \pm 1 \cdot 10^{-8} \) | \(a_{42}= +0.22083089 \pm 1.2 \cdot 10^{-8} \) |
\(a_{43}= -1.03326708 \pm 1 \cdot 10^{-8} \) | \(a_{44}= -0.52851282 \pm 1.3 \cdot 10^{-8} \) | \(a_{45}= -0.20560680 \pm 1 \cdot 10^{-8} \) |
\(a_{46}= +0.37946956 \pm 1.1 \cdot 10^{-8} \) | \(a_{47}= -0.11274862 \pm 1 \cdot 10^{-8} \) | \(a_{48}= -0.20656839 \pm 1.2 \cdot 10^{-8} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.41014785 \pm 1.3 \cdot 10^{-8} \) | \(a_{51}= +0.00308782 \pm 1 \cdot 10^{-8} \) |
\(a_{52}= -0.83176911 \pm 1.2 \cdot 10^{-8} \) | \(a_{53}= +1.56919839 \pm 1 \cdot 10^{-8} \) | \(a_{54}= +0.76963413 \pm 1.2 \cdot 10^{-8} \) |
\(a_{55}= -0.68500102 \pm 1 \cdot 10^{-8} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +0.44955206 \pm 1 \cdot 10^{-8} \) |
\(a_{58}= -0.66365241 \pm 1.2 \cdot 10^{-8} \) | \(a_{59}= +1.81293420 \pm 1 \cdot 10^{-8} \) | \(a_{60}= -0.26773155 \pm 1.4 \cdot 10^{-8} \) |
\(a_{61}= -0.35786703 \pm 1 \cdot 10^{-8} \) | \(a_{62}= +0.94961725 \pm 1.3 \cdot 10^{-8} \) | \(a_{63}= +0.11991755 \pm 1.2 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.07804895 \pm 1 \cdot 10^{-8} \) | \(a_{66}= +0.61758164 \pm 1.5 \cdot 10^{-8} \) |
\(a_{67}= -1.68768703 \pm 1 \cdot 10^{-8} \) | \(a_{68}= -0.00186852 \pm 1.3 \cdot 10^{-8} \) | \(a_{69}= -0.44342053 \pm 1 \cdot 10^{-8} \) |
\(a_{70}= -0.17319752 \pm 1.3 \cdot 10^{-8} \) | \(a_{71}= -1.00924997 \pm 1 \cdot 10^{-8} \) | \(a_{72}= -0.11217260 \pm 1.2 \cdot 10^{-8} \) |
\(a_{73}= +0.30177925 \pm 1 \cdot 10^{-8} \) | \(a_{74}= -0.67063552 \pm 1.1 \cdot 10^{-8} \) | \(a_{75}= +0.47926894 \pm 1 \cdot 10^{-8} \) |
\(a_{76}= -0.27203585 \pm 1.2 \cdot 10^{-8} \) | \(a_{77}= +0.39951814 \pm 1.3 \cdot 10^{-8} \) | \(a_{78}= +0.97194487 \pm 1.4 \cdot 10^{-8} \) |
\(a_{79}= +1.13881774 \pm 1 \cdot 10^{-8} \) | \(a_{80}= +0.16201145 \pm 1.3 \cdot 10^{-8} \) | \(a_{81}= -0.58206644 \pm 1 \cdot 10^{-8} \) |
\(a_{82}= +0.01186027 \pm 1.2 \cdot 10^{-8} \) | \(a_{83}= +1.94950660 \pm 1 \cdot 10^{-8} \) | \(a_{84}= +0.15615102 \pm 1.2 \cdot 10^{-8} \) |
\(a_{85}= -0.00242178 \pm 1 \cdot 10^{-8} \) | \(a_{86}= -0.73063016 \pm 1.2 \cdot 10^{-8} \) | \(a_{87}= +0.77549592 \pm 1 \cdot 10^{-8} \) |
\(a_{88}= -0.37371500 \pm 1.3 \cdot 10^{-8} \) | \(a_{89}= -1.76645002 \pm 1 \cdot 10^{-8} \) | \(a_{90}= -0.14538596 \pm 1.5 \cdot 10^{-8} \) |
\(a_{91}= +0.62875835 \pm 1.2 \cdot 10^{-8} \) | \(a_{92}= +0.26832550 \pm 1.1 \cdot 10^{-8} \) | \(a_{93}= -1.10965364 \pm 1 \cdot 10^{-8} \) |
\(a_{94}= -0.07972532 \pm 1.2 \cdot 10^{-8} \) | \(a_{95}= -0.35258338 \pm 1 \cdot 10^{-8} \) | \(a_{96}= -0.14606591 \pm 1.2 \cdot 10^{-8} \) |
\(a_{97}= +0.97644622 \pm 1 \cdot 10^{-8} \) | \(a_{98}= +0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +0.33536467 \pm 1 \cdot 10^{-8} \) |
\(a_{100}= -0.29001832 \pm 1.3 \cdot 10^{-8} \) | \(a_{101}= -0.12498046 \pm 1 \cdot 10^{-8} \) | \(a_{102}= +0.00218342 \pm 1.4 \cdot 10^{-8} \) |
\(a_{103}= -0.75659796 \pm 1 \cdot 10^{-8} \) | \(a_{104}= -0.58814958 \pm 1.2 \cdot 10^{-8} \) | \(a_{105}= +0.20238603 \pm 1.4 \cdot 10^{-8} \) |
\(a_{106}= +1.10959082 \pm 1.3 \cdot 10^{-8} \) | \(a_{107}= -0.63358388 \pm 1 \cdot 10^{-8} \) | \(a_{108}= +0.54421351 \pm 1.2 \cdot 10^{-8} \) |
\(a_{109}= -1.51673878 \pm 1 \cdot 10^{-8} \) | \(a_{110}= -0.48436887 \pm 1.5 \cdot 10^{-8} \) | \(a_{111}= +0.78365589 \pm 1 \cdot 10^{-8} \) |
\(a_{112}= -0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +0.52115099 \pm 1 \cdot 10^{-8} \) | \(a_{114}= +0.31788131 \pm 1.3 \cdot 10^{-8} \) |
\(a_{115}= +0.34777443 \pm 1 \cdot 10^{-8} \) | \(a_{116}= -0.46927312 \pm 1.2 \cdot 10^{-8} \) | \(a_{117}= +0.52779414 \pm 1 \cdot 10^{-8} \) |
\(a_{118}= +1.28193806 \pm 1.2 \cdot 10^{-8} \) | \(a_{119}= +0.00141247 \pm 1.3 \cdot 10^{-8} \) | \(a_{120}= -0.18931479 \pm 1.4 \cdot 10^{-8} \) |
\(a_{121}= +0.11730321 \pm 1 \cdot 10^{-8} \) | \(a_{122}= -0.25305020 \pm 1.2 \cdot 10^{-8} \) | \(a_{123}= -0.01385905 \pm 1 \cdot 10^{-8} \) |
\(a_{124}= +0.67148080 \pm 1.3 \cdot 10^{-8} \) | \(a_{125}= -1.02393611 \pm 1 \cdot 10^{-8} \) | \(a_{126}= +0.08479452 \pm 1.2 \cdot 10^{-8} \) |
\(a_{127}= +0.00121303 \pm 1 \cdot 10^{-8} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.85376125 \pm 1 \cdot 10^{-8} \) |
\(a_{130}= -0.76229572 \pm 1.5 \cdot 10^{-8} \) | \(a_{131}= +0.19190868 \pm 1 \cdot 10^{-8} \) | \(a_{132}= +0.43669616 \pm 1.5 \cdot 10^{-8} \) |
\(a_{133}= +0.20563978 \pm 1.2 \cdot 10^{-8} \) | \(a_{134}= -1.19337494 \pm 1.2 \cdot 10^{-8} \) | \(a_{135}= +0.70535056 \pm 1 \cdot 10^{-8} \) |
\(a_{136}= -0.00132125 \pm 1.3 \cdot 10^{-8} \) | \(a_{137}= -1.92327949 \pm 1 \cdot 10^{-8} \) | \(a_{138}= -0.31354566 \pm 1.3 \cdot 10^{-8} \) |
\(a_{139}= +0.03793357 \pm 1 \cdot 10^{-8} \) | \(a_{140}= -0.12246914 \pm 1.3 \cdot 10^{-8} \) | \(a_{141}= +0.09316121 \pm 1 \cdot 10^{-8} \) |
\(a_{142}= -0.71364750 \pm 1.3 \cdot 10^{-8} \) | \(a_{143}= +1.75840255 \pm 1 \cdot 10^{-8} \) | \(a_{144}= -0.07931801 \pm 1.2 \cdot 10^{-8} \) |
\(a_{145}= -0.60822094 \pm 1 \cdot 10^{-8} \) | \(a_{146}= +0.21339015 \pm 1.2 \cdot 10^{-8} \) | \(a_{147}= -0.11803908 \pm 1.2 \cdot 10^{-8} \) |
\(a_{148}= -0.47421093 \pm 1.1 \cdot 10^{-8} \) | \(a_{149}= -0.98797964 \pm 1 \cdot 10^{-8} \) | \(a_{150}= +0.33889432 \pm 1.5 \cdot 10^{-8} \) |
\(a_{151}= +0.60342809 \pm 1 \cdot 10^{-8} \) | \(a_{152}= -0.19235840 \pm 1.2 \cdot 10^{-8} \) | \(a_{153}= +0.00118566 \pm 1 \cdot 10^{-8} \) |
\(a_{154}= +0.28250199 \pm 1.3 \cdot 10^{-8} \) | \(a_{155}= +0.87030061 \pm 1 \cdot 10^{-8} \) | \(a_{156}= +0.68726881 \pm 1.4 \cdot 10^{-8} \) |
\(a_{157}= -0.61017733 \pm 1 \cdot 10^{-8} \) | \(a_{158}= +0.80526575 \pm 1.2 \cdot 10^{-8} \) | \(a_{159}= -1.29658712 \pm 1 \cdot 10^{-8} \) |
\(a_{160}= +0.11455939 \pm 1.3 \cdot 10^{-8} \) | \(a_{161}= -0.20283501 \pm 1.1 \cdot 10^{-8} \) | \(a_{162}= -0.41158312 \pm 1.2 \cdot 10^{-8} \) |
\(a_{163}= +1.24420436 \pm 1 \cdot 10^{-8} \) | \(a_{164}= +0.00838648 \pm 1.2 \cdot 10^{-8} \) | \(a_{165}= +0.56599822 \pm 1 \cdot 10^{-8} \) |
\(a_{166}= +1.37850934 \pm 1.2 \cdot 10^{-8} \) | \(a_{167}= -0.49934849 \pm 1 \cdot 10^{-8} \) | \(a_{168}= +0.11041545 \pm 1.2 \cdot 10^{-8} \) |
\(a_{169}= +1.76735940 \pm 1 \cdot 10^{-8} \) | \(a_{170}= -0.00171245 \pm 1.5 \cdot 10^{-8} \) | \(a_{171}= +0.17261873 \pm 1 \cdot 10^{-8} \) |
\(a_{172}= -0.51663354 \pm 1.2 \cdot 10^{-8} \) | \(a_{173}= -1.19361477 \pm 1 \cdot 10^{-8} \) | \(a_{174}= +0.54835843 \pm 1.4 \cdot 10^{-8} \) |
\(a_{175}= +0.21923325 \pm 1.3 \cdot 10^{-8} \) | \(a_{176}= -0.26425641 \pm 1.3 \cdot 10^{-8} \) | \(a_{177}= -1.49797957 \pm 1 \cdot 10^{-8} \) |
\(a_{178}= -1.24906879 \pm 1.2 \cdot 10^{-8} \) | \(a_{179}= -0.91631607 \pm 1 \cdot 10^{-8} \) | \(a_{180}= -0.10280340 \pm 1.5 \cdot 10^{-8} \) |
\(a_{181}= +0.12093588 \pm 1 \cdot 10^{-8} \) | \(a_{182}= +0.44459929 \pm 1.2 \cdot 10^{-8} \) | \(a_{183}= +0.29569606 \pm 1 \cdot 10^{-8} \) |
\(a_{184}= +0.18973478 \pm 1.1 \cdot 10^{-8} \) | \(a_{185}= -0.61462079 \pm 1 \cdot 10^{-8} \) | \(a_{186}= -0.78464361 \pm 1.4 \cdot 10^{-8} \) |
\(a_{187}= +0.00395015 \pm 1 \cdot 10^{-8} \) | \(a_{188}= -0.05637431 \pm 1.2 \cdot 10^{-8} \) | \(a_{189}= -0.41138675 \pm 1.2 \cdot 10^{-8} \) |
\(a_{190}= -0.24931410 \pm 1.4 \cdot 10^{-8} \) | \(a_{191}= -1.28554703 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -0.10328419 \pm 1.2 \cdot 10^{-8} \) |
\(a_{193}= +1.62854973 \pm 1 \cdot 10^{-8} \) | \(a_{194}= +0.69045174 \pm 1.2 \cdot 10^{-8} \) | \(a_{195}= +0.89076333 \pm 1 \cdot 10^{-8} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= -0.34713524 \pm 1 \cdot 10^{-8} \) | \(a_{198}= +0.23713863 \pm 1.5 \cdot 10^{-8} \) |
\(a_{199}= +0.00361329 \pm 1 \cdot 10^{-8} \) | \(a_{200}= -0.20507392 \pm 1.3 \cdot 10^{-8} \) | \(a_{201}= +1.39449115 \pm 1 \cdot 10^{-8} \) |
\(a_{202}= -0.08837453 \pm 1.3 \cdot 10^{-8} \) | \(a_{203}= +0.35473713 \pm 1.2 \cdot 10^{-8} \) | \(a_{204}= +0.00154391 \pm 1.4 \cdot 10^{-8} \) |
\(a_{205}= +0.01086964 \pm 1 \cdot 10^{-8} \) | \(a_{206}= -0.53499554 \pm 1.2 \cdot 10^{-8} \) | \(a_{207}= -0.17026435 \pm 1 \cdot 10^{-8} \) |
\(a_{208}= -0.41588455 \pm 1.2 \cdot 10^{-8} \) | \(a_{209}= +0.57509775 \pm 1 \cdot 10^{-8} \) | \(a_{210}= +0.14310853 \pm 1.4 \cdot 10^{-8} \) |
\(a_{211}= +1.10398043 \pm 1 \cdot 10^{-8} \) | \(a_{212}= +0.78459919 \pm 1.3 \cdot 10^{-8} \) | \(a_{213}= +0.83391655 \pm 1 \cdot 10^{-8} \) |
\(a_{214}= -0.44801146 \pm 1.2 \cdot 10^{-8} \) | \(a_{215}= -0.66960439 \pm 1 \cdot 10^{-8} \) | \(a_{216}= +0.38481707 \pm 1.2 \cdot 10^{-8} \) |
\(a_{217}= -0.50759177 \pm 1.3 \cdot 10^{-8} \) | \(a_{218}= -1.07249627 \pm 1.2 \cdot 10^{-8} \) | \(a_{219}= -0.24935221 \pm 1 \cdot 10^{-8} \) |
\(a_{220}= -0.34250051 \pm 1.5 \cdot 10^{-8} \) | \(a_{221}= +0.00621672 \pm 1 \cdot 10^{-8} \) | \(a_{222}= +0.55412839 \pm 1.3 \cdot 10^{-8} \) |
\(a_{223}= -1.25676856 \pm 1 \cdot 10^{-8} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +0.18402940 \pm 1 \cdot 10^{-8} \) |
\(a_{226}= +0.36850940 \pm 1.2 \cdot 10^{-8} \) | \(a_{227}= +0.92722551 \pm 1 \cdot 10^{-8} \) | \(a_{228}= +0.22477603 \pm 1.3 \cdot 10^{-8} \) |
\(a_{229}= -1.62832311 \pm 1 \cdot 10^{-8} \) | \(a_{230}= +0.24591366 \pm 1.4 \cdot 10^{-8} \) | \(a_{231}= -0.33011127 \pm 1.5 \cdot 10^{-8} \) |
\(a_{232}= -0.33182620 \pm 1.2 \cdot 10^{-8} \) | \(a_{233}= +0.11211504 \pm 1 \cdot 10^{-8} \) | \(a_{234}= +0.37320682 \pm 1.4 \cdot 10^{-8} \) |
\(a_{235}= -0.07306627 \pm 1 \cdot 10^{-8} \) | \(a_{236}= +0.90646710 \pm 1.2 \cdot 10^{-8} \) | \(a_{237}= -0.94097497 \pm 1 \cdot 10^{-8} \) |
\(a_{238}= +0.00099877 \pm 1.3 \cdot 10^{-8} \) | \(a_{239}= +0.01519149 \pm 1 \cdot 10^{-8} \) | \(a_{240}= -0.13386577 \pm 1.4 \cdot 10^{-8} \) |
\(a_{241}= +1.03488142 \pm 1 \cdot 10^{-8} \) | \(a_{242}= +0.08294589 \pm 1.3 \cdot 10^{-8} \) | \(a_{243}= -0.60748093 \pm 1 \cdot 10^{-8} \) |
\(a_{244}= -0.17893352 \pm 1.2 \cdot 10^{-8} \) | \(a_{245}= +0.09257797 \pm 1.3 \cdot 10^{-8} \) | \(a_{246}= -0.00979983 \pm 1.4 \cdot 10^{-8} \) |
\(a_{247}= +0.90508408 \pm 1 \cdot 10^{-8} \) | \(a_{248}= +0.47480862 \pm 1.3 \cdot 10^{-8} \) | \(a_{249}= -1.61082573 \pm 1 \cdot 10^{-8} \) |
\(a_{250}= -0.72403216 \pm 1.3 \cdot 10^{-8} \) | \(a_{251}= -1.12933853 \pm 1 \cdot 10^{-8} \) | \(a_{252}= +0.05995878 \pm 1.2 \cdot 10^{-8} \) |
\(a_{253}= -0.56725387 \pm 1 \cdot 10^{-8} \) | \(a_{254}= +0.00085774 \pm 1.3 \cdot 10^{-8} \) | \(a_{255}= +0.00200105 \pm 1 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.56280537 \pm 1 \cdot 10^{-8} \) | \(a_{258}= +0.60370037 \pm 1.3 \cdot 10^{-8} \) |
\(a_{259}= +0.35846976 \pm 1.1 \cdot 10^{-8} \) | \(a_{260}= -0.53902447 \pm 1.5 \cdot 10^{-8} \) | \(a_{261}= +0.29777446 \pm 1 \cdot 10^{-8} \) |
\(a_{262}= +0.13569993 \pm 1.2 \cdot 10^{-8} \) | \(a_{263}= +0.61836476 \pm 1 \cdot 10^{-8} \) | \(a_{264}= +0.30879082 \pm 1.5 \cdot 10^{-8} \) |
\(a_{265}= +1.01691242 \pm 1 \cdot 10^{-8} \) | \(a_{266}= +0.14540928 \pm 1.2 \cdot 10^{-8} \) | \(a_{267}= +1.45957092 \pm 1 \cdot 10^{-8} \) |
\(a_{268}= -0.84384351 \pm 1.2 \cdot 10^{-8} \) | \(a_{269}= +0.27833931 \pm 1 \cdot 10^{-8} \) | \(a_{270}= +0.49875816 \pm 1.4 \cdot 10^{-8} \) |
\(a_{271}= +0.91177662 \pm 1 \cdot 10^{-8} \) | \(a_{272}= -0.00093426 \pm 1.3 \cdot 10^{-8} \) | \(a_{273}= -0.51952639 \pm 1.4 \cdot 10^{-8} \) |
\(a_{274}= -1.35996397 \pm 1.2 \cdot 10^{-8} \) | \(a_{275}= +0.61311361 \pm 1 \cdot 10^{-8} \) | \(a_{276}= -0.22171026 \pm 1.3 \cdot 10^{-8} \) |
\(a_{277}= +0.97373632 \pm 1 \cdot 10^{-8} \) | \(a_{278}= +0.02682309 \pm 1.2 \cdot 10^{-8} \) | \(a_{279}= -0.42608415 \pm 1 \cdot 10^{-8} \) |
\(a_{280}= -0.08659876 \pm 1.3 \cdot 10^{-8} \) | \(a_{281}= -0.56681966 \pm 1 \cdot 10^{-8} \) | \(a_{282}= +0.06587492 \pm 1.4 \cdot 10^{-8} \) |
\(a_{283}= -0.99513732 \pm 1 \cdot 10^{-8} \) | \(a_{284}= -0.50462498 \pm 1.3 \cdot 10^{-8} \) | \(a_{285}= +0.29133032 \pm 1 \cdot 10^{-8} \) |
\(a_{286}= +1.24337837 \pm 1.5 \cdot 10^{-8} \) | \(a_{287}= -0.00633958 \pm 1.2 \cdot 10^{-8} \) | \(a_{288}= -0.05608630 \pm 1.2 \cdot 10^{-8} \) |
\(a_{289}= -0.99998603 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.43007715 \pm 1.5 \cdot 10^{-8} \) | \(a_{291}= -0.80681168 \pm 1 \cdot 10^{-8} \) |
\(a_{292}= +0.15088962 \pm 1.2 \cdot 10^{-8} \) | \(a_{293}= -0.17389921 \pm 1 \cdot 10^{-8} \) | \(a_{294}= -0.08346623 \pm 1.2 \cdot 10^{-8} \) |
\(a_{295}= +1.17486438 \pm 1 \cdot 10^{-8} \) | \(a_{296}= -0.33531776 \pm 1.1 \cdot 10^{-8} \) | \(a_{297}= -1.15049528 \pm 1 \cdot 10^{-8} \) |
\(a_{298}= -0.69860710 \pm 1.3 \cdot 10^{-8} \) | \(a_{299}= -0.89273945 \pm 1 \cdot 10^{-8} \) | \(a_{300}= +0.23963447 \pm 1.5 \cdot 10^{-8} \) |
\(a_{301}= +0.39053825 \pm 1.2 \cdot 10^{-8} \) | \(a_{302}= +0.42668809 \pm 1.3 \cdot 10^{-8} \) | \(a_{303}= +0.10326805 \pm 1 \cdot 10^{-8} \) |
\(a_{304}= -0.13601793 \pm 1.2 \cdot 10^{-8} \) | \(a_{305}= -0.23191422 \pm 1 \cdot 10^{-8} \) | \(a_{306}= +0.00083839 \pm 1.5 \cdot 10^{-8} \) |
\(a_{307}= +0.00452855 \pm 1 \cdot 10^{-8} \) | \(a_{308}= +0.19975907 \pm 1.3 \cdot 10^{-8} \) | \(a_{309}= +0.62515688 \pm 1 \cdot 10^{-8} \) |
\(a_{310}= +0.61539546 \pm 1.5 \cdot 10^{-8} \) | \(a_{311}= -0.26374027 \pm 1 \cdot 10^{-8} \) | \(a_{312}= +0.48597244 \pm 1.4 \cdot 10^{-8} \) |
\(a_{313}= -0.55430030 \pm 1 \cdot 10^{-8} \) | \(a_{314}= -0.43146053 \pm 1.3 \cdot 10^{-8} \) | \(a_{315}= +0.07771207 \pm 1.5 \cdot 10^{-8} \) |
\(a_{316}= +0.56940887 \pm 1.2 \cdot 10^{-8} \) | \(a_{317}= -1.35766842 \pm 1 \cdot 10^{-8} \) | \(a_{318}= -0.91682554 \pm 1.4 \cdot 10^{-8} \) |
\(a_{319}= +0.99206743 \pm 1 \cdot 10^{-8} \) | \(a_{320}= +0.08100572 \pm 1.3 \cdot 10^{-8} \) | \(a_{321}= +0.52351360 \pm 1 \cdot 10^{-8} \) |
\(a_{322}= -0.14342601 \pm 1.1 \cdot 10^{-8} \) | \(a_{323}= +0.00203322 \pm 1 \cdot 10^{-8} \) | \(a_{324}= -0.29103322 \pm 1.2 \cdot 10^{-8} \) |
\(a_{325}= +0.96491313 \pm 1 \cdot 10^{-8} \) | \(a_{326}= +0.87978534 \pm 1.2 \cdot 10^{-8} \) | \(a_{327}= +1.25324113 \pm 1 \cdot 10^{-8} \) |
\(a_{328}= +0.00593014 \pm 1.2 \cdot 10^{-8} \) | \(a_{329}= +0.04261497 \pm 1.2 \cdot 10^{-8} \) | \(a_{330}= +0.40022118 \pm 1.7 \cdot 10^{-8} \) |
\(a_{331}= -0.29787770 \pm 1 \cdot 10^{-8} \) | \(a_{332}= +0.97475330 \pm 1.2 \cdot 10^{-8} \) | \(a_{333}= +0.30090772 \pm 1 \cdot 10^{-8} \) |
\(a_{334}= -0.35309271 \pm 1.2 \cdot 10^{-8} \) | \(a_{335}= -1.09369848 \pm 1 \cdot 10^{-8} \) | \(a_{336}= +0.07807551 \pm 1.2 \cdot 10^{-8} \) |
\(a_{337}= +1.25282347 \pm 1 \cdot 10^{-8} \) | \(a_{338}= +1.24971182 \pm 1.2 \cdot 10^{-8} \) | \(a_{339}= -0.43061328 \pm 1 \cdot 10^{-8} \) |
\(a_{340}= -0.00121089 \pm 1.5 \cdot 10^{-8} \) | \(a_{341}= -1.41954484 \pm 1 \cdot 10^{-8} \) | \(a_{342}= +0.12205988 \pm 1.4 \cdot 10^{-8} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.36531508 \pm 1.2 \cdot 10^{-8} \) | \(a_{345}= -0.28735681 \pm 1 \cdot 10^{-8} \) |
\(a_{346}= -0.84401310 \pm 1.2 \cdot 10^{-8} \) | \(a_{347}= +0.44510246 \pm 1 \cdot 10^{-8} \) | \(a_{348}= +0.38774796 \pm 1.4 \cdot 10^{-8} \) |
\(a_{349}= +0.84578890 \pm 1 \cdot 10^{-8} \) | \(a_{350}= +0.15502131 \pm 1.3 \cdot 10^{-8} \) | \(a_{351}= -1.81063996 \pm 1 \cdot 10^{-8} \) |
\(a_{352}= -0.18685750 \pm 1.3 \cdot 10^{-8} \) | \(a_{353}= +0.61583231 \pm 1 \cdot 10^{-8} \) | \(a_{354}= -1.05923151 \pm 1.4 \cdot 10^{-8} \) |
\(a_{355}= -0.65404020 \pm 1 \cdot 10^{-8} \) | \(a_{356}= -0.88322501 \pm 1.2 \cdot 10^{-8} \) | \(a_{357}= -0.00116709 \pm 1.4 \cdot 10^{-8} \) |
\(a_{358}= -0.64793331 \pm 1.2 \cdot 10^{-8} \) | \(a_{359}= +0.20532142 \pm 1 \cdot 10^{-8} \) | \(a_{360}= -0.07269298 \pm 1.5 \cdot 10^{-8} \) |
\(a_{361}= -0.70398597 \pm 1 \cdot 10^{-8} \) | \(a_{362}= +0.08551458 \pm 1.2 \cdot 10^{-8} \) | \(a_{363}= -0.09692454 \pm 1 \cdot 10^{-8} \) |
\(a_{364}= +0.31437917 \pm 1.2 \cdot 10^{-8} \) | \(a_{365}= +0.19556677 \pm 1 \cdot 10^{-8} \) | \(a_{366}= +0.20908869 \pm 1.4 \cdot 10^{-8} \) |
\(a_{367}= +0.61620737 \pm 1 \cdot 10^{-8} \) | \(a_{368}= +0.13416275 \pm 1.1 \cdot 10^{-8} \) | \(a_{369}= -0.00532159 \pm 1 \cdot 10^{-8} \) |
\(a_{370}= -0.43460253 \pm 1.4 \cdot 10^{-8} \) | \(a_{371}= -0.59310124 \pm 1.3 \cdot 10^{-8} \) | \(a_{372}= -0.55482682 \pm 1.4 \cdot 10^{-8} \) |
\(a_{373}= +1.36329967 \pm 1 \cdot 10^{-8} \) | \(a_{374}= +0.00279318 \pm 1.6 \cdot 10^{-8} \) | \(a_{375}= +0.84605132 \pm 1 \cdot 10^{-8} \) |
\(a_{376}= -0.03986266 \pm 1.2 \cdot 10^{-8} \) | \(a_{377}= +1.56130753 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.29089436 \pm 1.2 \cdot 10^{-8} \) |
\(a_{379}= -1.76773687 \pm 1 \cdot 10^{-8} \) | \(a_{380}= -0.17629169 \pm 1.4 \cdot 10^{-8} \) | \(a_{381}= -0.00100230 \pm 1 \cdot 10^{-8} \) |
\(a_{382}= -0.90901903 \pm 1.2 \cdot 10^{-8} \) | \(a_{383}= +0.59088898 \pm 1 \cdot 10^{-8} \) | \(a_{384}= -0.07303295 \pm 1.2 \cdot 10^{-8} \) |
\(a_{385}= +0.25890605 \pm 1.5 \cdot 10^{-8} \) | \(a_{386}= +1.15155856 \pm 1.2 \cdot 10^{-8} \) | \(a_{387}= +0.32782674 \pm 1 \cdot 10^{-8} \) |
\(a_{388}= +0.48822311 \pm 1.2 \cdot 10^{-8} \) | \(a_{389}= +0.18657338 \pm 1 \cdot 10^{-8} \) | \(a_{390}= +0.62986479 \pm 1.6 \cdot 10^{-8} \) |
\(a_{391}= -0.00200549 \pm 1 \cdot 10^{-8} \) | \(a_{392}= +0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= -0.15856906 \pm 1 \cdot 10^{-8} \) |
\(a_{394}= -0.24546168 \pm 1.2 \cdot 10^{-8} \) | \(a_{395}= +0.73800605 \pm 1 \cdot 10^{-8} \) | \(a_{396}= +0.16768233 \pm 1.5 \cdot 10^{-8} \) |
\(a_{397}= -0.33343491 \pm 1 \cdot 10^{-8} \) | \(a_{398}= +0.00255498 \pm 1.2 \cdot 10^{-8} \) | \(a_{399}= -0.16991471 \pm 1.3 \cdot 10^{-8} \) |
\(a_{400}= -0.14500916 \pm 1.3 \cdot 10^{-8} \) | \(a_{401}= -0.88148477 \pm 1 \cdot 10^{-8} \) | \(a_{402}= +0.98605415 \pm 1.4 \cdot 10^{-8} \) |
\(a_{403}= -2.23406793 \pm 1 \cdot 10^{-8} \) | \(a_{404}= -0.06249023 \pm 1.3 \cdot 10^{-8} \) | \(a_{405}= -0.37720571 \pm 1 \cdot 10^{-8} \) |
\(a_{406}= +0.25083703 \pm 1.2 \cdot 10^{-8} \) | \(a_{407}= +1.00250621 \pm 1 \cdot 10^{-8} \) | \(a_{408}= +0.00109171 \pm 1.4 \cdot 10^{-8} \) |
\(a_{409}= +0.11991438 \pm 1 \cdot 10^{-8} \) | \(a_{410}= +0.00768600 \pm 1.5 \cdot 10^{-8} \) | \(a_{411}= +1.58915497 \pm 1 \cdot 10^{-8} \) |
\(a_{412}= -0.37829898 \pm 1.2 \cdot 10^{-8} \) | \(a_{413}= -0.68522472 \pm 1.2 \cdot 10^{-8} \) | \(a_{414}= -0.12039508 \pm 1.4 \cdot 10^{-8} \) |
\(a_{415}= +1.26336956 \pm 1 \cdot 10^{-8} \) | \(a_{416}= -0.29407479 \pm 1.2 \cdot 10^{-8} \) | \(a_{417}= -0.03134351 \pm 1 \cdot 10^{-8} \) |
\(a_{418}= +0.40665552 \pm 1.5 \cdot 10^{-8} \) | \(a_{419}= -1.61227188 \pm 1 \cdot 10^{-8} \) | \(a_{420}= +0.10119301 \pm 1.4 \cdot 10^{-8} \) |
\(a_{421}= -0.00949284 \pm 1 \cdot 10^{-8} \) | \(a_{422}= +0.78063205 \pm 1.2 \cdot 10^{-8} \) | \(a_{423}= +0.03577198 \pm 1 \cdot 10^{-8} \) |
\(a_{424}= +0.55479541 \pm 1.3 \cdot 10^{-8} \) | \(a_{425}= +0.00216762 \pm 1 \cdot 10^{-8} \) | \(a_{426}= +0.58966805 \pm 1.4 \cdot 10^{-8} \) |
\(a_{427}= +0.13526102 \pm 1.2 \cdot 10^{-8} \) | \(a_{428}= -0.31679194 \pm 1.2 \cdot 10^{-8} \) | \(a_{429}= -1.45292151 \pm 1 \cdot 10^{-8} \) |
\(a_{430}= -0.47348180 \pm 1.4 \cdot 10^{-8} \) | \(a_{431}= +1.36108684 \pm 1 \cdot 10^{-8} \) | \(a_{432}= +0.27210676 \pm 1.2 \cdot 10^{-8} \) |
\(a_{433}= -0.49787805 \pm 1 \cdot 10^{-8} \) | \(a_{434}= -0.35892158 \pm 1.3 \cdot 10^{-8} \) | \(a_{435}= +0.50255687 \pm 1 \cdot 10^{-8} \) |
\(a_{436}= -0.75836939 \pm 1.2 \cdot 10^{-8} \) | \(a_{437}= -0.29197663 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.17631864 \pm 1.4 \cdot 10^{-8} \) |
\(a_{439}= -1.06124748 \pm 1 \cdot 10^{-8} \) | \(a_{440}= -0.24218443 \pm 1.5 \cdot 10^{-8} \) | \(a_{441}= -0.04532458 \pm 1.2 \cdot 10^{-8} \) |
\(a_{442}= +0.00439588 \pm 1.5 \cdot 10^{-8} \) | \(a_{443}= -0.93190584 \pm 1 \cdot 10^{-8} \) | \(a_{444}= +0.39182794 \pm 1.3 \cdot 10^{-8} \) |
\(a_{445}= -1.14474051 \pm 1 \cdot 10^{-8} \) | \(a_{446}= -0.88866957 \pm 1.2 \cdot 10^{-8} \) | \(a_{447}= +0.81634144 \pm 1 \cdot 10^{-8} \) |
\(a_{448}= -0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= -0.09420324 \pm 1 \cdot 10^{-8} \) | \(a_{450}= +0.13012844 \pm 1.5 \cdot 10^{-8} \) |
\(a_{451}= -0.01772944 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +0.26057549 \pm 1.2 \cdot 10^{-8} \) | \(a_{453}= -0.49859667 \pm 1 \cdot 10^{-8} \) |
\(a_{454}= +0.65564745 \pm 1.3 \cdot 10^{-8} \) | \(a_{455}= +0.40746420 \pm 1.5 \cdot 10^{-8} \) | \(a_{456}= +0.15894066 \pm 1.3 \cdot 10^{-8} \) |
\(a_{457}= +0.81936128 \pm 1 \cdot 10^{-8} \) | \(a_{458}= -1.15139831 \pm 1.2 \cdot 10^{-8} \) | \(a_{459}= -0.00406750 \pm 1 \cdot 10^{-8} \) |
\(a_{460}= +0.17388721 \pm 1.4 \cdot 10^{-8} \) | \(a_{461}= +0.67813155 \pm 1 \cdot 10^{-8} \) | \(a_{462}= -0.23342392 \pm 1.5 \cdot 10^{-8} \) |
\(a_{463}= +1.45224310 \pm 1 \cdot 10^{-8} \) | \(a_{464}= -0.23463656 \pm 1.2 \cdot 10^{-8} \) | \(a_{465}= -0.71910637 \pm 1 \cdot 10^{-8} \) |
\(a_{466}= +0.07927730 \pm 1.3 \cdot 10^{-8} \) | \(a_{467}= -0.39061929 \pm 1 \cdot 10^{-8} \) | \(a_{468}= +0.26389707 \pm 1.4 \cdot 10^{-8} \) |
\(a_{469}= +0.63788574 \pm 1.2 \cdot 10^{-8} \) | \(a_{470}= -0.05166566 \pm 1.5 \cdot 10^{-8} \) | \(a_{471}= +0.50417339 \pm 1 \cdot 10^{-8} \) |
\(a_{472}= +0.64096903 \pm 1.2 \cdot 10^{-8} \) | \(a_{473}= +1.09218980 \pm 1 \cdot 10^{-8} \) | \(a_{474}= -0.66536978 \pm 1.4 \cdot 10^{-8} \) |
\(a_{475}= +0.31558153 \pm 1 \cdot 10^{-8} \) | \(a_{476}= +0.00070624 \pm 1.3 \cdot 10^{-8} \) | \(a_{477}= -0.49786275 \pm 1 \cdot 10^{-8} \) |
\(a_{478}= +0.01074201 \pm 1.2 \cdot 10^{-8} \) | \(a_{479}= -0.26169993 \pm 1 \cdot 10^{-8} \) | \(a_{480}= -0.09465740 \pm 1.4 \cdot 10^{-8} \) |
\(a_{481}= +1.57773599 \pm 1 \cdot 10^{-8} \) | \(a_{482}= +0.73177167 \pm 1.4 \cdot 10^{-8} \) | \(a_{483}= +0.16759721 \pm 1.3 \cdot 10^{-8} \) |
\(a_{484}= +0.05865160 \pm 1.3 \cdot 10^{-8} \) | \(a_{485}= +0.63278187 \pm 1 \cdot 10^{-8} \) | \(a_{486}= -0.42955389 \pm 1.2 \cdot 10^{-8} \) |
\(a_{487}= +0.66736102 \pm 1 \cdot 10^{-8} \) | \(a_{488}= -0.12652510 \pm 1.2 \cdot 10^{-8} \) | \(a_{489}= -1.02805315 \pm 1 \cdot 10^{-8} \) |
\(a_{490}= +0.06546251 \pm 1.3 \cdot 10^{-8} \) | \(a_{491}= -0.41955956 \pm 1 \cdot 10^{-8} \) | \(a_{492}= -0.00692952 \pm 1.4 \cdot 10^{-8} \) |
\(a_{493}= +0.00350739 \pm 1 \cdot 10^{-8} \) | \(a_{494}= +0.63999109 \pm 1.4 \cdot 10^{-8} \) | \(a_{495}= +0.21733166 \pm 1 \cdot 10^{-8} \) |
\(a_{496}= +0.33574040 \pm 1.3 \cdot 10^{-8} \) | \(a_{497}= +0.38146063 \pm 1.3 \cdot 10^{-8} \) | \(a_{498}= -1.13902580 \pm 1.3 \cdot 10^{-8} \) |
\(a_{499}= -0.69205994 \pm 1 \cdot 10^{-8} \) | \(a_{500}= -0.51196805 \pm 1.3 \cdot 10^{-8} \) | \(a_{501}= +0.41259845 \pm 1 \cdot 10^{-8} \) |
\(a_{502}= -0.79856293 \pm 1.2 \cdot 10^{-8} \) | \(a_{503}= -0.59835782 \pm 1 \cdot 10^{-8} \) | \(a_{504}= +0.04239726 \pm 1.2 \cdot 10^{-8} \) |
\(a_{505}= -0.08099306 \pm 1 \cdot 10^{-8} \) | \(a_{506}= -0.40110906 \pm 1.4 \cdot 10^{-8} \) | \(a_{507}= -1.46032232 \pm 1 \cdot 10^{-8} \) |
\(a_{508}= +0.00060652 \pm 1.3 \cdot 10^{-8} \) | \(a_{509}= -0.85518520 \pm 1 \cdot 10^{-8} \) | \(a_{510}= +0.00141496 \pm 1.7 \cdot 10^{-8} \) |
\(a_{511}= -0.11406183 \pm 1.2 \cdot 10^{-8} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.59218235 \pm 1 \cdot 10^{-8} \) |
\(a_{514}= +0.39796349 \pm 1.1 \cdot 10^{-8} \) | \(a_{515}= -0.49031012 \pm 1 \cdot 10^{-8} \) | \(a_{516}= +0.42688063 \pm 1.3 \cdot 10^{-8} \) |
\(a_{517}= +0.11917819 \pm 1 \cdot 10^{-8} \) | \(a_{518}= +0.25347640 \pm 1.1 \cdot 10^{-8} \) | \(a_{519}= +0.98625231 \pm 1 \cdot 10^{-8} \) |
\(a_{520}= -0.38114786 \pm 1.5 \cdot 10^{-8} \) | \(a_{521}= +0.37369089 \pm 1 \cdot 10^{-8} \) | \(a_{522}= +0.21055834 \pm 1.5 \cdot 10^{-8} \) |
\(a_{523}= -0.95719696 \pm 1 \cdot 10^{-8} \) | \(a_{524}= +0.09595434 \pm 1.2 \cdot 10^{-8} \) | \(a_{525}= -0.18114663 \pm 1.5 \cdot 10^{-8} \) |
\(a_{526}= +0.43724992 \pm 1.2 \cdot 10^{-8} \) | \(a_{527}= -0.00501871 \pm 1 \cdot 10^{-8} \) | \(a_{528}= +0.21834808 \pm 1.5 \cdot 10^{-8} \) |
\(a_{529}= -0.71200570 \pm 1 \cdot 10^{-8} \) | \(a_{530}= +0.71906567 \pm 1.5 \cdot 10^{-8} \) | \(a_{531}= -0.57519331 \pm 1 \cdot 10^{-8} \) |
\(a_{532}= +0.10281989 \pm 1.2 \cdot 10^{-8} \) | \(a_{533}= -0.02790245 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +1.03207250 \pm 1.4 \cdot 10^{-8} \) |
\(a_{535}= -0.41059137 \pm 1 \cdot 10^{-8} \) | \(a_{536}= -0.59668747 \pm 1.2 \cdot 10^{-8} \) | \(a_{537}= +0.75712773 \pm 1 \cdot 10^{-8} \) |
\(a_{538}= +0.19681561 \pm 1.2 \cdot 10^{-8} \) | \(a_{539}= -0.15100366 \pm 1.3 \cdot 10^{-8} \) | \(a_{540}= +0.35267528 \pm 1.4 \cdot 10^{-8} \) |
\(a_{541}= +0.55051652 \pm 1 \cdot 10^{-8} \) | \(a_{542}= +0.64472343 \pm 1.2 \cdot 10^{-8} \) | \(a_{543}= -0.09992612 \pm 1 \cdot 10^{-8} \) |
\(a_{544}= -0.00066062 \pm 1.3 \cdot 10^{-8} \) | \(a_{545}= -0.98291619 \pm 1 \cdot 10^{-8} \) | \(a_{546}= -0.36736063 \pm 1.4 \cdot 10^{-8} \) |
\(a_{547}= +0.15396235 \pm 1 \cdot 10^{-8} \) | \(a_{548}= -0.96163975 \pm 1.2 \cdot 10^{-8} \) | \(a_{549}= +0.11354120 \pm 1 \cdot 10^{-8} \) |
\(a_{550}= +0.43353679 \pm 1.6 \cdot 10^{-8} \) | \(a_{551}= +0.51063645 \pm 1 \cdot 10^{-8} \) | \(a_{552}= -0.15677283 \pm 1.3 \cdot 10^{-8} \) |
\(a_{553}= -0.43043265 \pm 1.2 \cdot 10^{-8} \) | \(a_{554}= +0.68853556 \pm 1.2 \cdot 10^{-8} \) | \(a_{555}= +0.50784490 \pm 1 \cdot 10^{-8} \) |
\(a_{556}= +0.01896679 \pm 1.2 \cdot 10^{-8} \) | \(a_{557}= +0.19177808 \pm 1 \cdot 10^{-8} \) | \(a_{558}= -0.30128699 \pm 1.5 \cdot 10^{-8} \) |
\(a_{559}= +1.71887928 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.06123457 \pm 1.3 \cdot 10^{-8} \) | \(a_{561}= -0.00326391 \pm 1 \cdot 10^{-8} \) |
\(a_{562}= -0.40080202 \pm 1.2 \cdot 10^{-8} \) | \(a_{563}= +0.93003111 \pm 1 \cdot 10^{-8} \) | \(a_{564}= +0.04658060 \pm 1.4 \cdot 10^{-8} \) |
\(a_{565}= +0.33772971 \pm 1 \cdot 10^{-8} \) | \(a_{566}= -0.70366835 \pm 1.3 \cdot 10^{-8} \) | \(a_{567}= +0.22000043 \pm 1.2 \cdot 10^{-8} \) |
\(a_{568}= -0.35682375 \pm 1.3 \cdot 10^{-8} \) | \(a_{569}= +1.12961664 \pm 1 \cdot 10^{-8} \) | \(a_{570}= +0.20600165 \pm 1.6 \cdot 10^{-8} \) |
\(a_{571}= -1.10156464 \pm 1 \cdot 10^{-8} \) | \(a_{572}= +0.87920128 \pm 1.5 \cdot 10^{-8} \) | \(a_{573}= +1.06221351 \pm 1 \cdot 10^{-8} \) |
\(a_{574}= -0.00448276 \pm 1.2 \cdot 10^{-8} \) | \(a_{575}= -0.31127725 \pm 1 \cdot 10^{-8} \) | \(a_{576}= -0.03965900 \pm 1.2 \cdot 10^{-8} \) |
\(a_{577}= +1.32319480 \pm 1 \cdot 10^{-8} \) | \(a_{578}= -0.70709691 \pm 1.4 \cdot 10^{-8} \) | \(a_{579}= -1.34562756 \pm 1 \cdot 10^{-8} \) |
\(a_{580}= -0.30411047 \pm 1.5 \cdot 10^{-8} \) | \(a_{581}= -0.73684424 \pm 1.2 \cdot 10^{-8} \) | \(a_{582}= -0.57050201 \pm 1.4 \cdot 10^{-8} \) |
\(a_{583}= -1.65868293 \pm 1 \cdot 10^{-8} \) | \(a_{584}= +0.10669508 \pm 1.2 \cdot 10^{-8} \) | \(a_{585}= +0.34203477 \pm 1 \cdot 10^{-8} \) |
\(a_{586}= -0.12296531 \pm 1.2 \cdot 10^{-8} \) | \(a_{587}= +0.23542453 \pm 1 \cdot 10^{-8} \) | \(a_{588}= -0.05901954 \pm 1.2 \cdot 10^{-8} \) |
\(a_{589}= -0.73066741 \pm 1 \cdot 10^{-8} \) | \(a_{590}= +0.83075457 \pm 1.5 \cdot 10^{-8} \) | \(a_{591}= +0.28682867 \pm 1 \cdot 10^{-8} \) |
\(a_{592}= -0.23710546 \pm 1.1 \cdot 10^{-8} \) | \(a_{593}= +0.76237774 \pm 1 \cdot 10^{-8} \) | \(a_{594}= -0.81352301 \pm 1.5 \cdot 10^{-8} \) |
\(a_{595}= +0.00091535 \pm 1.5 \cdot 10^{-8} \) | \(a_{596}= -0.49398982 \pm 1.3 \cdot 10^{-8} \) | \(a_{597}= -0.00298556 \pm 1 \cdot 10^{-8} \) |
\(a_{598}= -0.63126212 \pm 1.4 \cdot 10^{-8} \) | \(a_{599}= -1.14997779 \pm 1 \cdot 10^{-8} \) | \(a_{600}= +0.16944716 \pm 1.5 \cdot 10^{-8} \) |
\(a_{601}= -1.10328011 \pm 1 \cdot 10^{-8} \) | \(a_{602}= +0.27615224 \pm 1.2 \cdot 10^{-8} \) | \(a_{603}= +0.53545588 \pm 1 \cdot 10^{-8} \) |
\(a_{604}= +0.30171405 \pm 1.3 \cdot 10^{-8} \) | \(a_{605}= +0.07601785 \pm 1 \cdot 10^{-8} \) | \(a_{606}= +0.07302154 \pm 1.5 \cdot 10^{-8} \) |
\(a_{607}= +0.52026939 \pm 1 \cdot 10^{-8} \) | \(a_{608}= -0.09617920 \pm 1.2 \cdot 10^{-8} \) | \(a_{609}= -0.29310991 \pm 1.4 \cdot 10^{-8} \) |
\(a_{610}= -0.16398812 \pm 1.4 \cdot 10^{-8} \) | \(a_{611}= +0.18756164 \pm 1 \cdot 10^{-8} \) | \(a_{612}= +0.00059283 \pm 1.5 \cdot 10^{-8} \) |
\(a_{613}= +1.63113599 \pm 1 \cdot 10^{-8} \) | \(a_{614}= +0.00320217 \pm 1.2 \cdot 10^{-8} \) | \(a_{615}= -0.00898130 \pm 1 \cdot 10^{-8} \) |
\(a_{616}= +0.14125099 \pm 1.3 \cdot 10^{-8} \) | \(a_{617}= -1.95967189 \pm 1 \cdot 10^{-8} \) | \(a_{618}= +0.44205267 \pm 1.4 \cdot 10^{-8} \) |
\(a_{619}= +0.80733072 \pm 1 \cdot 10^{-8} \) | \(a_{620}= +0.43515031 \pm 1.5 \cdot 10^{-8} \) | \(a_{621}= +0.58410546 \pm 1 \cdot 10^{-8} \) |
\(a_{622}= -0.18649253 \pm 1.3 \cdot 10^{-8} \) | \(a_{623}= +0.66765535 \pm 1.2 \cdot 10^{-8} \) | \(a_{624}= +0.34363441 \pm 1.4 \cdot 10^{-8} \) |
\(a_{625}= -0.08352084 \pm 1 \cdot 10^{-8} \) | \(a_{626}= -0.39194950 \pm 1.3 \cdot 10^{-8} \) | \(a_{627}= -0.47518806 \pm 1 \cdot 10^{-8} \) |
\(a_{628}= -0.30508867 \pm 1.3 \cdot 10^{-8} \) | \(a_{629}= +0.00354430 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.05495073 \pm 1.5 \cdot 10^{-8} \) |
\(a_{631}= -0.72606188 \pm 1 \cdot 10^{-8} \) | \(a_{632}= +0.40263287 \pm 1.2 \cdot 10^{-8} \) | \(a_{633}= -0.91218982 \pm 1 \cdot 10^{-8} \) |
\(a_{634}= -0.96001655 \pm 1.2 \cdot 10^{-8} \) | \(a_{635}= +0.00078610 \pm 1 \cdot 10^{-8} \) | \(a_{636}= -0.64829356 \pm 1.4 \cdot 10^{-8} \) |
\(a_{637}= -0.23764832 \pm 1.2 \cdot 10^{-8} \) | \(a_{638}= +0.70149761 \pm 1.5 \cdot 10^{-8} \) | \(a_{639}= +0.32020678 \pm 1 \cdot 10^{-8} \) |
\(a_{640}= +0.05727970 \pm 1.3 \cdot 10^{-8} \) | \(a_{641}= +0.18551885 \pm 1 \cdot 10^{-8} \) | \(a_{642}= +0.37018002 \pm 1.4 \cdot 10^{-8} \) |
\(a_{643}= +1.13225724 \pm 1 \cdot 10^{-8} \) | \(a_{644}= -0.10141751 \pm 1.1 \cdot 10^{-8} \) | \(a_{645}= +0.55327639 \pm 1 \cdot 10^{-8} \) |
\(a_{646}= +0.00143770 \pm 1.5 \cdot 10^{-8} \) | \(a_{647}= +0.72725740 \pm 1 \cdot 10^{-8} \) | \(a_{648}= -0.20579156 \pm 1.2 \cdot 10^{-8} \) |
\(a_{649}= -1.91631793 \pm 1 \cdot 10^{-8} \) | \(a_{650}= +0.68229662 \pm 1.5 \cdot 10^{-8} \) | \(a_{651}= +0.41940965 \pm 1.4 \cdot 10^{-8} \) |
\(a_{652}= +0.62210218 \pm 1.2 \cdot 10^{-8} \) | \(a_{653}= +0.11991370 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.88617530 \pm 1.3 \cdot 10^{-8} \) |
\(a_{655}= +0.12436561 \pm 1 \cdot 10^{-8} \) | \(a_{656}= +0.00419324 \pm 1.2 \cdot 10^{-8} \) | \(a_{657}= -0.09574611 \pm 1 \cdot 10^{-8} \) |
\(a_{658}= +0.03013334 \pm 1.2 \cdot 10^{-8} \) | \(a_{659}= -1.21873495 \pm 1 \cdot 10^{-8} \) | \(a_{660}= +0.28299911 \pm 1.7 \cdot 10^{-8} \) |
\(a_{661}= +0.48984657 \pm 1 \cdot 10^{-8} \) | \(a_{662}= -0.21063134 \pm 1.2 \cdot 10^{-8} \) | \(a_{663}= -0.00513671 \pm 1 \cdot 10^{-8} \) |
\(a_{664}= +0.68925467 \pm 1.2 \cdot 10^{-8} \) | \(a_{665}= +0.13326399 \pm 1.4 \cdot 10^{-8} \) | \(a_{666}= +0.21277389 \pm 1.3 \cdot 10^{-8} \) |
\(a_{667}= -0.50367178 \pm 1 \cdot 10^{-8} \) | \(a_{668}= -0.24967425 \pm 1.2 \cdot 10^{-8} \) | \(a_{669}= +1.03843462 \pm 1 \cdot 10^{-8} \) |
\(a_{670}= -0.77336161 \pm 1.5 \cdot 10^{-8} \) | \(a_{671}= +0.37827463 \pm 1 \cdot 10^{-8} \) | \(a_{672}= +0.05520772 \pm 1.2 \cdot 10^{-8} \) |
\(a_{673}= +1.61062510 \pm 1 \cdot 10^{-8} \) | \(a_{674}= +0.88587997 \pm 1.3 \cdot 10^{-8} \) | \(a_{675}= -0.63132756 \pm 1 \cdot 10^{-8} \) |
\(a_{676}= +0.88367970 \pm 1.2 \cdot 10^{-8} \) | \(a_{677}= +0.04102051 \pm 1 \cdot 10^{-8} \) | \(a_{678}= -0.30448957 \pm 1.4 \cdot 10^{-8} \) |
\(a_{679}= -0.36906198 \pm 1.2 \cdot 10^{-8} \) | \(a_{680}= -0.00085623 \pm 1.5 \cdot 10^{-8} \) | \(a_{681}= -0.76614191 \pm 1 \cdot 10^{-8} \) |
\(a_{682}= -1.00376978 \pm 1.6 \cdot 10^{-8} \) | \(a_{683}= +0.78897483 \pm 1 \cdot 10^{-8} \) | \(a_{684}= +0.08630937 \pm 1.4 \cdot 10^{-8} \) |
\(a_{685}= -1.24637319 \pm 1 \cdot 10^{-8} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= +1.34544031 \pm 1 \cdot 10^{-8} \) |
\(a_{688}= -0.25831677 \pm 1.2 \cdot 10^{-8} \) | \(a_{689}= -2.61042149 \pm 1 \cdot 10^{-8} \) | \(a_{690}= -0.20319195 \pm 1.6 \cdot 10^{-8} \) |
\(a_{691}= -0.95307975 \pm 1 \cdot 10^{-8} \) | \(a_{692}= -0.59680738 \pm 1.2 \cdot 10^{-8} \) | \(a_{693}= -0.12675593 \pm 1.5 \cdot 10^{-8} \) |
\(a_{694}= +0.31473497 \pm 1.2 \cdot 10^{-8} \) | \(a_{695}= +0.02458269 \pm 1 \cdot 10^{-8} \) | \(a_{696}= +0.27417921 \pm 1.4 \cdot 10^{-8} \) |
\(a_{697}= -0.00006268 \pm 1 \cdot 10^{-8} \) | \(a_{698}= +0.59806307 \pm 1.2 \cdot 10^{-8} \) | \(a_{699}= -0.09263769 \pm 1 \cdot 10^{-8} \) |
\(a_{700}= +0.10961662 \pm 1.3 \cdot 10^{-8} \) | \(a_{701}= -0.82817325 \pm 1 \cdot 10^{-8} \) | \(a_{702}= -1.28031579 \pm 1.4 \cdot 10^{-8} \) |
\(a_{703}= +0.51600950 \pm 1 \cdot 10^{-8} \) | \(a_{704}= -0.13212821 \pm 1.3 \cdot 10^{-8} \) | \(a_{705}= +0.06037273 \pm 1 \cdot 10^{-8} \) |
\(a_{706}= +0.43545920 \pm 1.2 \cdot 10^{-8} \) | \(a_{707}= +0.04723817 \pm 1.3 \cdot 10^{-8} \) | \(a_{708}= -0.74898978 \pm 1.4 \cdot 10^{-8} \) |
\(a_{709}= -1.51131538 \pm 1 \cdot 10^{-8} \) | \(a_{710}= -0.46247626 \pm 1.5 \cdot 10^{-8} \) | \(a_{711}= -0.36131501 \pm 1 \cdot 10^{-8} \) |
\(a_{712}= -0.62453439 \pm 1.2 \cdot 10^{-8} \) | \(a_{713}= +0.72070169 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.00082526 \pm 1.4 \cdot 10^{-8} \) |
\(a_{715}= +1.13952538 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.45815804 \pm 1.2 \cdot 10^{-8} \) | \(a_{717}= -0.01255233 \pm 1 \cdot 10^{-8} \) |
\(a_{718}= +0.14518417 \pm 1.2 \cdot 10^{-8} \) | \(a_{719}= +1.13496667 \pm 1 \cdot 10^{-8} \) | \(a_{720}= -0.05140170 \pm 1.5 \cdot 10^{-8} \) |
\(a_{721}= +0.28596715 \pm 1.2 \cdot 10^{-8} \) | \(a_{722}= -0.49779326 \pm 1.2 \cdot 10^{-8} \) | \(a_{723}= -0.85509514 \pm 1 \cdot 10^{-8} \) |
\(a_{724}= +0.06046794 \pm 1.2 \cdot 10^{-8} \) | \(a_{725}= +0.54439121 \pm 1 \cdot 10^{-8} \) | \(a_{726}= -0.06853600 \pm 1.5 \cdot 10^{-8} \) |
\(a_{727}= +1.48788269 \pm 1 \cdot 10^{-8} \) | \(a_{728}= +0.22229964 \pm 1.2 \cdot 10^{-8} \) | \(a_{729}= +1.08401186 \pm 1 \cdot 10^{-8} \) |
\(a_{730}= +0.13828659 \pm 1.4 \cdot 10^{-8} \) | \(a_{731}= +0.00386137 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.14784803 \pm 1.4 \cdot 10^{-8} \) |
\(a_{733}= +1.04181986 \pm 1 \cdot 10^{-8} \) | \(a_{734}= +0.43572441 \pm 1.2 \cdot 10^{-8} \) | \(a_{735}= -0.07649473 \pm 1.4 \cdot 10^{-8} \) |
\(a_{736}= +0.09486739 \pm 1.1 \cdot 10^{-8} \) | \(a_{737}= +1.78392846 \pm 1 \cdot 10^{-8} \) | \(a_{738}= -0.00376293 \pm 1.5 \cdot 10^{-8} \) |
\(a_{739}= -1.21940111 \pm 1 \cdot 10^{-8} \) | \(a_{740}= -0.30731040 \pm 1.4 \cdot 10^{-8} \) | \(a_{741}= -0.74784703 \pm 1 \cdot 10^{-8} \) |
\(a_{742}= -0.41938591 \pm 1.3 \cdot 10^{-8} \) | \(a_{743}= +0.09135078 \pm 1 \cdot 10^{-8} \) | \(a_{744}= -0.39232181 \pm 1.4 \cdot 10^{-8} \) |
\(a_{745}= -0.64025605 \pm 1 \cdot 10^{-8} \) | \(a_{746}= +0.96399844 \pm 1.3 \cdot 10^{-8} \) | \(a_{747}= -0.61852391 \pm 1 \cdot 10^{-8} \) |
\(a_{748}= +0.00197508 \pm 1.6 \cdot 10^{-8} \) | \(a_{749}= +0.23947220 \pm 1.2 \cdot 10^{-8} \) | \(a_{750}= +0.59824862 \pm 1.5 \cdot 10^{-8} \) |
\(a_{751}= +1.62270424 \pm 1 \cdot 10^{-8} \) | \(a_{752}= -0.02818716 \pm 1.2 \cdot 10^{-8} \) | \(a_{753}= +0.93314255 \pm 1 \cdot 10^{-8} \) |
\(a_{754}= +1.10401114 \pm 1.4 \cdot 10^{-8} \) | \(a_{755}= +0.39104904 \pm 1 \cdot 10^{-8} \) | \(a_{756}= -0.20569337 \pm 1.2 \cdot 10^{-8} \) |
\(a_{757}= -0.29200200 \pm 1 \cdot 10^{-8} \) | \(a_{758}= -1.24997873 \pm 1.2 \cdot 10^{-8} \) | \(a_{759}= +0.46870687 \pm 1 \cdot 10^{-8} \) |
\(a_{760}= -0.12465705 \pm 1.4 \cdot 10^{-8} \) | \(a_{761}= +1.20964367 \pm 1 \cdot 10^{-8} \) | \(a_{762}= -0.00070873 \pm 1.4 \cdot 10^{-8} \) |
\(a_{763}= +0.57327337 \pm 1.2 \cdot 10^{-8} \) | \(a_{764}= -0.64277352 \pm 1.2 \cdot 10^{-8} \) | \(a_{765}= +0.00076836 \pm 1 \cdot 10^{-8} \) |
\(a_{766}= +0.41782160 \pm 1.3 \cdot 10^{-8} \) | \(a_{767}= -3.01588532 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.05164210 \pm 1.2 \cdot 10^{-8} \) |
\(a_{769}= -1.06558017 \pm 1 \cdot 10^{-8} \) | \(a_{770}= +0.18307422 \pm 1.5 \cdot 10^{-8} \) | \(a_{771}= -0.46503119 \pm 1 \cdot 10^{-8} \) |
\(a_{772}= +0.81427486 \pm 1.2 \cdot 10^{-8} \) | \(a_{773}= -1.91635562 \pm 1 \cdot 10^{-8} \) | \(a_{774}= +0.23180851 \pm 1.4 \cdot 10^{-8} \) |
\(a_{775}= -0.77896694 \pm 1 \cdot 10^{-8} \) | \(a_{776}= +0.34522587 \pm 1.2 \cdot 10^{-8} \) | \(a_{777}= -0.29619408 \pm 1.3 \cdot 10^{-8} \) |
\(a_{778}= +0.13192730 \pm 1.1 \cdot 10^{-8} \) | \(a_{779}= -0.00912569 \pm 1 \cdot 10^{-8} \) | \(a_{780}= +0.44538166 \pm 1.6 \cdot 10^{-8} \) |
\(a_{781}= +1.06680309 \pm 1 \cdot 10^{-8} \) | \(a_{782}= -0.00141810 \pm 1.4 \cdot 10^{-8} \) | \(a_{783}= -1.02153909 \pm 1 \cdot 10^{-8} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.39542285 \pm 1 \cdot 10^{-8} \) | \(a_{786}= -0.11212526 \pm 1.4 \cdot 10^{-8} \) |
\(a_{787}= +0.82238116 \pm 1 \cdot 10^{-8} \) | \(a_{788}= -0.17356762 \pm 1.2 \cdot 10^{-8} \) | \(a_{789}= -0.51093844 \pm 1 \cdot 10^{-8} \) |
\(a_{790}= +0.52184908 \pm 1.5 \cdot 10^{-8} \) | \(a_{791}= -0.19697656 \pm 1.2 \cdot 10^{-8} \) | \(a_{792}= +0.11856932 \pm 1.5 \cdot 10^{-8} \) |
\(a_{793}= +0.59532548 \pm 1 \cdot 10^{-8} \) | \(a_{794}= -0.23577409 \pm 1.2 \cdot 10^{-8} \) | \(a_{795}= -0.84024783 \pm 1 \cdot 10^{-8} \) |
\(a_{796}= +0.00180664 \pm 1.2 \cdot 10^{-8} \) | \(a_{797}= +0.89907259 \pm 1 \cdot 10^{-8} \) | \(a_{798}= -0.12014784 \pm 1.3 \cdot 10^{-8} \) |
\(a_{799}= +0.00042135 \pm 1 \cdot 10^{-8} \) | \(a_{800}= -0.10253696 \pm 1.3 \cdot 10^{-8} \) | \(a_{801}= +0.56044518 \pm 1 \cdot 10^{-8} \) |
\(a_{802}= -0.62330386 \pm 1.2 \cdot 10^{-8} \) | \(a_{803}= -0.31898840 \pm 1 \cdot 10^{-8} \) | \(a_{804}= +0.69724557 \pm 1.4 \cdot 10^{-8} \) |
\(a_{805}= -0.13144638 \pm 1.4 \cdot 10^{-8} \) | \(a_{806}= -1.57972458 \pm 1.5 \cdot 10^{-8} \) | \(a_{807}= -0.22998441 \pm 1 \cdot 10^{-8} \) |
\(a_{808}= -0.04418727 \pm 1.3 \cdot 10^{-8} \) | \(a_{809}= +0.63068007 \pm 1 \cdot 10^{-8} \) | \(a_{810}= -0.26672471 \pm 1.4 \cdot 10^{-8} \) |
\(a_{811}= -1.57869894 \pm 1 \cdot 10^{-8} \) | \(a_{812}= +0.17736857 \pm 1.2 \cdot 10^{-8} \) | \(a_{813}= -0.75337690 \pm 1 \cdot 10^{-8} \) |
\(a_{814}= +0.70887894 \pm 1.4 \cdot 10^{-8} \) | \(a_{815}= +0.80630141 \pm 1 \cdot 10^{-8} \) | \(a_{816}= +0.00077196 \pm 1.4 \cdot 10^{-8} \) |
\(a_{817}= +0.56217139 \pm 1 \cdot 10^{-8} \) | \(a_{818}= +0.08479227 \pm 1.3 \cdot 10^{-8} \) | \(a_{819}= -0.19948743 \pm 1.4 \cdot 10^{-8} \) |
\(a_{820}= +0.00543482 \pm 1.5 \cdot 10^{-8} \) | \(a_{821}= +0.17274956 \pm 1 \cdot 10^{-8} \) | \(a_{822}= +1.12370225 \pm 1.3 \cdot 10^{-8} \) |
\(a_{823}= -0.22204726 \pm 1 \cdot 10^{-8} \) | \(a_{824}= -0.26749777 \pm 1.2 \cdot 10^{-8} \) | \(a_{825}= -0.50659956 \pm 1 \cdot 10^{-8} \) |
\(a_{826}= -0.48452704 \pm 1.2 \cdot 10^{-8} \) | \(a_{827}= +0.22346002 \pm 1 \cdot 10^{-8} \) | \(a_{828}= -0.08513218 \pm 1.4 \cdot 10^{-8} \) |
\(a_{829}= +0.73780512 \pm 1 \cdot 10^{-8} \) | \(a_{830}= +0.89333718 \pm 1.4 \cdot 10^{-8} \) | \(a_{831}= -0.80457256 \pm 1 \cdot 10^{-8} \) |
\(a_{832}= -0.20794228 \pm 1.2 \cdot 10^{-8} \) | \(a_{833}= -0.00053386 \pm 1.3 \cdot 10^{-8} \) | \(a_{834}= -0.02216321 \pm 1.3 \cdot 10^{-8} \) |
\(a_{835}= -0.32360069 \pm 1 \cdot 10^{-8} \) | \(a_{836}= +0.28754887 \pm 1.5 \cdot 10^{-8} \) | \(a_{837}= +1.46171570 \pm 1 \cdot 10^{-8} \) |
\(a_{838}= -1.14004838 \pm 1.3 \cdot 10^{-8} \) | \(a_{839}= -0.12279697 \pm 1 \cdot 10^{-8} \) | \(a_{840}= +0.07155427 \pm 1.4 \cdot 10^{-8} \) |
\(a_{841}= -0.11913097 \pm 1 \cdot 10^{-8} \) | \(a_{842}= -0.00671245 \pm 1.2 \cdot 10^{-8} \) | \(a_{843}= +0.46834809 \pm 1 \cdot 10^{-8} \) |
\(a_{844}= +0.55199021 \pm 1.2 \cdot 10^{-8} \) | \(a_{845}= +1.14532983 \pm 1 \cdot 10^{-8} \) | \(a_{846}= +0.02529461 \pm 1.4 \cdot 10^{-8} \) |
\(a_{847}= -0.04433644 \pm 1.3 \cdot 10^{-8} \) | \(a_{848}= +0.39229960 \pm 1.3 \cdot 10^{-8} \) | \(a_{849}= +0.82225564 \pm 1 \cdot 10^{-8} \) |
\(a_{850}= +0.00153274 \pm 1.6 \cdot 10^{-8} \) | \(a_{851}= -0.50897154 \pm 1 \cdot 10^{-8} \) | \(a_{852}= +0.41695828 \pm 1.4 \cdot 10^{-8} \) |
\(a_{853}= -1.50132827 \pm 1 \cdot 10^{-8} \) | \(a_{854}= +0.09564399 \pm 1.2 \cdot 10^{-8} \) | \(a_{855}= +0.11186484 \pm 1 \cdot 10^{-8} \) |
\(a_{856}= -0.22400573 \pm 1.2 \cdot 10^{-8} \) | \(a_{857}= +0.66989150 \pm 1 \cdot 10^{-8} \) | \(a_{858}= -1.02737065 \pm 1.7 \cdot 10^{-8} \) |
\(a_{859}= +0.44289946 \pm 1 \cdot 10^{-8} \) | \(a_{860}= -0.33480219 \pm 1.4 \cdot 10^{-8} \) | \(a_{861}= +0.00523823 \pm 1.4 \cdot 10^{-8} \) |
\(a_{862}= +0.96243373 \pm 1.3 \cdot 10^{-8} \) | \(a_{863}= +0.57928179 \pm 1 \cdot 10^{-8} \) | \(a_{864}= +0.19240853 \pm 1.2 \cdot 10^{-8} \) |
\(a_{865}= -0.77351703 \pm 1 \cdot 10^{-8} \) | \(a_{866}= -0.35205295 \pm 1.3 \cdot 10^{-8} \) | \(a_{867}= +0.82626201 \pm 1 \cdot 10^{-8} \) |
\(a_{868}= -0.25379589 \pm 1.3 \cdot 10^{-8} \) | \(a_{869}= -1.20375955 \pm 1 \cdot 10^{-8} \) | \(a_{870}= +0.35536137 \pm 1.6 \cdot 10^{-8} \) |
\(a_{871}= +2.80753187 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.53624814 \pm 1.2 \cdot 10^{-8} \) | \(a_{873}= -0.30979907 \pm 1 \cdot 10^{-8} \) |
\(a_{874}= -0.20645865 \pm 1.3 \cdot 10^{-8} \) | \(a_{875}= +0.38701147 \pm 1.3 \cdot 10^{-8} \) | \(a_{876}= -0.12467611 \pm 1.4 \cdot 10^{-8} \) |
\(a_{877}= -1.43027446 \pm 1 \cdot 10^{-8} \) | \(a_{878}= -0.75041529 \pm 1.2 \cdot 10^{-8} \) | \(a_{879}= +0.14368831 \pm 1 \cdot 10^{-8} \) |
\(a_{880}= -0.17125026 \pm 1.5 \cdot 10^{-8} \) | \(a_{881}= +1.47487066 \pm 1 \cdot 10^{-8} \) | \(a_{882}= -0.03204931 \pm 1.2 \cdot 10^{-8} \) |
\(a_{883}= +1.06364884 \pm 1 \cdot 10^{-8} \) | \(a_{884}= +0.00310836 \pm 1.5 \cdot 10^{-8} \) | \(a_{885}= -0.97075936 \pm 1 \cdot 10^{-8} \) |
\(a_{886}= -0.65895694 \pm 1.3 \cdot 10^{-8} \) | \(a_{887}= -0.35734024 \pm 1 \cdot 10^{-8} \) | \(a_{888}= +0.27706420 \pm 1.3 \cdot 10^{-8} \) |
\(a_{889}= -0.00045848 \pm 1.3 \cdot 10^{-8} \) | \(a_{890}= -0.80945378 \pm 1.5 \cdot 10^{-8} \) | \(a_{891}= +0.61525915 \pm 1 \cdot 10^{-8} \) |
\(a_{892}= -0.62838428 \pm 1.2 \cdot 10^{-8} \) | \(a_{893}= +0.06134334 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +0.57724057 \pm 1.5 \cdot 10^{-8} \) |
\(a_{895}= -0.59381478 \pm 1 \cdot 10^{-8} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= +0.73764699 \pm 1 \cdot 10^{-8} \) |
\(a_{898}= -0.06661175 \pm 1.2 \cdot 10^{-8} \) | \(a_{899}= -1.26043154 \pm 1 \cdot 10^{-8} \) | \(a_{900}= +0.09201470 \pm 1.5 \cdot 10^{-8} \) |
\(a_{901}= -0.00586417 \pm 1 \cdot 10^{-8} \) | \(a_{902}= -0.01253661 \pm 1.5 \cdot 10^{-8} \) | \(a_{903}= -0.32269142 \pm 1.3 \cdot 10^{-8} \) |
\(a_{904}= +0.18425470 \pm 1.2 \cdot 10^{-8} \) | \(a_{905}= +0.07837199 \pm 1 \cdot 10^{-8} \) | \(a_{906}= -0.35256109 \pm 1.4 \cdot 10^{-8} \) |
\(a_{907}= -0.14243933 \pm 1 \cdot 10^{-8} \) | \(a_{908}= +0.46361276 \pm 1.3 \cdot 10^{-8} \) | \(a_{909}= +0.03965280 \pm 1 \cdot 10^{-8} \) |
\(a_{910}= +0.28812070 \pm 1.5 \cdot 10^{-8} \) | \(a_{911}= -1.57162023 \pm 1 \cdot 10^{-8} \) | \(a_{912}= +0.11238802 \pm 1.3 \cdot 10^{-8} \) |
\(a_{913}= -2.06067847 \pm 1 \cdot 10^{-8} \) | \(a_{914}= +0.57937592 \pm 1.3 \cdot 10^{-8} \) | \(a_{915}= +0.19162459 \pm 1 \cdot 10^{-8} \) |
\(a_{916}= -0.81416156 \pm 1.2 \cdot 10^{-8} \) | \(a_{917}= -0.07253466 \pm 1.2 \cdot 10^{-8} \) | \(a_{918}= -0.00287616 \pm 1.5 \cdot 10^{-8} \) |
\(a_{919}= -1.01315199 \pm 1 \cdot 10^{-8} \) | \(a_{920}= +0.12295683 \pm 1.4 \cdot 10^{-8} \) | \(a_{921}= -0.00374182 \pm 1 \cdot 10^{-8} \) |
\(a_{922}= +0.47951141 \pm 1.2 \cdot 10^{-8} \) | \(a_{923}= +1.67892589 \pm 1 \cdot 10^{-8} \) | \(a_{924}= -0.16505564 \pm 1.5 \cdot 10^{-8} \) |
\(a_{925}= +0.55011943 \pm 1 \cdot 10^{-8} \) | \(a_{926}= +1.02689095 \pm 1.2 \cdot 10^{-8} \) | \(a_{927}= +0.24004737 \pm 1 \cdot 10^{-8} \) |
\(a_{928}= -0.16591310 \pm 1.2 \cdot 10^{-8} \) | \(a_{929}= +0.44072586 \pm 1 \cdot 10^{-8} \) | \(a_{930}= -0.50848499 \pm 1.7 \cdot 10^{-8} \) |
\(a_{931}= -0.07772453 \pm 1.2 \cdot 10^{-8} \) | \(a_{932}= +0.05605752 \pm 1.3 \cdot 10^{-8} \) | \(a_{933}= +0.21792161 \pm 1 \cdot 10^{-8} \) |
\(a_{934}= -0.27620955 \pm 1.2 \cdot 10^{-8} \) | \(a_{935}= +0.00255988 \pm 1 \cdot 10^{-8} \) | \(a_{936}= +0.18660341 \pm 1.4 \cdot 10^{-8} \) |
\(a_{937}= -1.34637712 \pm 1 \cdot 10^{-8} \) | \(a_{938}= +0.45105333 \pm 1.2 \cdot 10^{-8} \) | \(a_{939}= +0.45800368 \pm 1 \cdot 10^{-8} \) |
\(a_{940}= -0.03653314 \pm 1.5 \cdot 10^{-8} \) | \(a_{941}= -0.08167699 \pm 1 \cdot 10^{-8} \) | \(a_{942}= +0.35650442 \pm 1.4 \cdot 10^{-8} \) |
\(a_{943}= +0.00900122 \pm 1 \cdot 10^{-8} \) | \(a_{944}= +0.45323355 \pm 1.2 \cdot 10^{-8} \) | \(a_{945}= -0.26659745 \pm 1.4 \cdot 10^{-8} \) |
\(a_{946}= +0.77229481 \pm 1.5 \cdot 10^{-8} \) | \(a_{947}= -1.53804354 \pm 1 \cdot 10^{-8} \) | \(a_{948}= -0.47048749 \pm 1.4 \cdot 10^{-8} \) |
\(a_{949}= -0.50202131 \pm 1 \cdot 10^{-8} \) | \(a_{950}= +0.22314984 \pm 1.5 \cdot 10^{-8} \) | \(a_{951}= +1.12180550 \pm 1 \cdot 10^{-8} \) |
\(a_{952}= +0.00049938 \pm 1.3 \cdot 10^{-8} \) | \(a_{953}= -0.65172145 \pm 1 \cdot 10^{-8} \) | \(a_{954}= -0.35204213 \pm 1.5 \cdot 10^{-8} \) |
\(a_{955}= -0.83309335 \pm 1 \cdot 10^{-8} \) | \(a_{956}= +0.00759575 \pm 1.2 \cdot 10^{-8} \) | \(a_{957}= -0.81971908 \pm 1 \cdot 10^{-8} \) |
\(a_{958}= -0.18504980 \pm 1.2 \cdot 10^{-8} \) | \(a_{959}= +0.72693132 \pm 1.2 \cdot 10^{-8} \) | \(a_{960}= -0.06693289 \pm 1.4 \cdot 10^{-8} \) |
\(a_{961}= +0.80354584 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +1.11562782 \pm 1.3 \cdot 10^{-8} \) | \(a_{963}= +0.20101844 \pm 1 \cdot 10^{-8} \) |
\(a_{964}= +0.51744071 \pm 1.4 \cdot 10^{-8} \) | \(a_{965}= +1.05537480 \pm 1 \cdot 10^{-8} \) | \(a_{966}= +0.11850912 \pm 1.3 \cdot 10^{-8} \) |
\(a_{967}= +0.75781932 \pm 1 \cdot 10^{-8} \) | \(a_{968}= +0.04147295 \pm 1.3 \cdot 10^{-8} \) | \(a_{969}= -0.00168000 \pm 1 \cdot 10^{-8} \) |
\(a_{970}= +0.44744435 \pm 1.5 \cdot 10^{-8} \) | \(a_{971}= +0.77647607 \pm 1 \cdot 10^{-8} \) | \(a_{972}= -0.30374047 \pm 1.2 \cdot 10^{-8} \) |
\(a_{973}= -0.01433754 \pm 1.2 \cdot 10^{-8} \) | \(a_{974}= +0.47189550 \pm 1.2 \cdot 10^{-8} \) | \(a_{975}= -0.79728219 \pm 1 \cdot 10^{-8} \) |
\(a_{976}= -0.08946676 \pm 1.2 \cdot 10^{-8} \) | \(a_{977}= +1.33431523 \pm 1 \cdot 10^{-8} \) | \(a_{978}= -0.72694336 \pm 1.4 \cdot 10^{-8} \) |
\(a_{979}= +1.86718297 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +0.04628899 \pm 1.3 \cdot 10^{-8} \) | \(a_{981}= +0.48121878 \pm 1 \cdot 10^{-8} \) |
\(a_{982}= -0.29667341 \pm 1.2 \cdot 10^{-8} \) | \(a_{983}= -0.64368124 \pm 1 \cdot 10^{-8} \) | \(a_{984}= -0.00489991 \pm 1.4 \cdot 10^{-8} \) |
\(a_{985}= -0.22495953 \pm 1 \cdot 10^{-8} \) | \(a_{986}= +0.00248010 \pm 1.5 \cdot 10^{-8} \) | \(a_{987}= -0.03521163 \pm 1.4 \cdot 10^{-8} \) |
\(a_{988}= +0.45254204 \pm 1.4 \cdot 10^{-8} \) | \(a_{989}= -0.55450382 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.15367669 \pm 1.8 \cdot 10^{-8} \) |
\(a_{991}= +0.75698217 \pm 1 \cdot 10^{-8} \) | \(a_{992}= +0.23740431 \pm 1.3 \cdot 10^{-8} \) | \(a_{993}= +0.24612846 \pm 1 \cdot 10^{-8} \) |
\(a_{994}= +0.26973340 \pm 1.3 \cdot 10^{-8} \) | \(a_{995}= +0.00234158 \pm 1 \cdot 10^{-8} \) | \(a_{996}= -0.80541287 \pm 1.3 \cdot 10^{-8} \) |
\(a_{997}= +0.22373346 \pm 1 \cdot 10^{-8} \) | \(a_{998}= -0.48936028 \pm 1.2 \cdot 10^{-8} \) | \(a_{999}= -1.03228798 \pm 1 \cdot 10^{-8} \) |
\(a_{1000}= -0.36201608 \pm 1.3 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000