Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(9.6157410480843738310823441407 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +1.71232722 \pm 9.7 \cdot 10^{-7} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.15974547 \pm 7.4 \cdot 10^{-7} \) | \(a_{6}= +1.21079819 \pm 9.8 \cdot 10^{-7} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +1.93206450 \pm 7.6 \cdot 10^{-7} \) |
\(a_{10}= +0.82006389 \pm 7.6 \cdot 10^{-7} \) | \(a_{11}= +1.49733547 \pm 7.6 \cdot 10^{-7} \) | \(a_{12}= +0.85616361 \pm 9.8 \cdot 10^{-7} \) |
\(a_{13}= -1.23443747 \pm 7.2 \cdot 10^{-7} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= +1.98586373 \pm 9.2 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -1.57020896 \pm 4.9 \cdot 10^{-7} \) | \(a_{18}= +1.36617591 \pm 7.7 \cdot 10^{-7} \) |
\(a_{19}= -0.80781892 \pm 7.4 \cdot 10^{-7} \) | \(a_{20}= +0.57987273 \pm 7.6 \cdot 10^{-7} \) | \(a_{21}= -0.64719885 \pm 9.8 \cdot 10^{-7} \) |
\(a_{22}= +1.05877607 \pm 7.8 \cdot 10^{-7} \) | \(a_{23}= +0.78026450 \pm 6.8 \cdot 10^{-7} \) | \(a_{24}= +0.60539909 \pm 9.8 \cdot 10^{-7} \) |
\(a_{25}= +0.34500955 \pm 5.8 \cdot 10^{-7} \) | \(a_{26}= -0.87287911 \pm 7.3 \cdot 10^{-7} \) | \(a_{27}= +1.59599941 \pm 7.1 \cdot 10^{-7} \) |
\(a_{28}= -0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -0.34000398 \pm 8.3 \cdot 10^{-7} \) | \(a_{30}= +1.40421771 \pm 1.7 \cdot 10^{-6} \) |
\(a_{31}= +0.32143315 \pm 8.2 \cdot 10^{-7} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +2.56392829 \pm 9.1 \cdot 10^{-7} \) |
\(a_{34}= -1.11030540 \pm 5.0 \cdot 10^{-7} \) | \(a_{35}= -0.43834259 \pm 7.6 \cdot 10^{-7} \) | \(a_{36}= +0.96603225 \pm 7.7 \cdot 10^{-7} \) |
\(a_{37}= +0.70479254 \pm 5.9 \cdot 10^{-7} \) | \(a_{38}= -0.57121424 \pm 7.5 \cdot 10^{-7} \) | \(a_{39}= -2.11376088 \pm 8.3 \cdot 10^{-7} \) |
\(a_{40}= +0.41003194 \pm 7.6 \cdot 10^{-7} \) | \(a_{41}= -0.46993306 \pm 4.8 \cdot 10^{-7} \) | \(a_{42}= -0.45763870 \pm 9.8 \cdot 10^{-7} \) |
\(a_{43}= +0.94981999 \pm 7.5 \cdot 10^{-7} \) | \(a_{44}= +0.74866774 \pm 7.8 \cdot 10^{-7} \) | \(a_{45}= +2.24070305 \pm 6.6 \cdot 10^{-7} \) |
\(a_{46}= +0.55173032 \pm 6.9 \cdot 10^{-7} \) | \(a_{47}= -0.44431620 \pm 5.4 \cdot 10^{-7} \) | \(a_{48}= +0.42808180 \pm 9.8 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.24395860 \pm 5.9 \cdot 10^{-7} \) | \(a_{51}= -2.68871153 \pm 5.8 \cdot 10^{-7} \) |
\(a_{52}= -0.61721873 \pm 7.3 \cdot 10^{-7} \) | \(a_{53}= -0.32805540 \pm 7.2 \cdot 10^{-7} \) | \(a_{54}= +1.12854200 \pm 7.2 \cdot 10^{-7} \) |
\(a_{55}= +1.73652803 \pm 7.1 \cdot 10^{-7} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= -1.38325033 \pm 1.0 \cdot 10^{-6} \) |
\(a_{58}= -0.24041912 \pm 8.4 \cdot 10^{-7} \) | \(a_{59}= -0.16073985 \pm 7.8 \cdot 10^{-7} \) | \(a_{60}= +0.99293187 \pm 1.7 \cdot 10^{-6} \) |
\(a_{61}= -0.75612625 \pm 4.6 \cdot 10^{-7} \) | \(a_{62}= +0.22728756 \pm 8.3 \cdot 10^{-7} \) | \(a_{63}= -0.73025174 \pm 7.7 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.43163326 \pm 5.2 \cdot 10^{-7} \) | \(a_{66}= +1.81297108 \pm 1.7 \cdot 10^{-6} \) |
\(a_{67}= +0.70818733 \pm 7.8 \cdot 10^{-7} \) | \(a_{68}= -0.78510448 \pm 5.0 \cdot 10^{-7} \) | \(a_{69}= +1.33606814 \pm 8.8 \cdot 10^{-7} \) |
\(a_{70}= -0.30995501 \pm 7.6 \cdot 10^{-7} \) | \(a_{71}= +0.65603386 \pm 1.0 \cdot 10^{-6} \) | \(a_{72}= +0.68308795 \pm 7.7 \cdot 10^{-7} \) |
\(a_{73}= -0.65472784 \pm 7.4 \cdot 10^{-7} \) | \(a_{74}= +0.49836359 \pm 6.0 \cdot 10^{-7} \) | \(a_{75}= +0.59076925 \pm 6.3 \cdot 10^{-7} \) |
\(a_{76}= -0.40390946 \pm 7.5 \cdot 10^{-7} \) | \(a_{77}= -0.56593961 \pm 7.8 \cdot 10^{-7} \) | \(a_{78}= -1.49465465 \pm 1.7 \cdot 10^{-6} \) |
\(a_{79}= -0.98502748 \pm 9.1 \cdot 10^{-7} \) | \(a_{80}= +0.28993637 \pm 7.6 \cdot 10^{-7} \) | \(a_{81}= +0.80080872 \pm 8.1 \cdot 10^{-7} \) |
\(a_{82}= -0.33229285 \pm 4.9 \cdot 10^{-7} \) | \(a_{83}= +0.95436835 \pm 5.6 \cdot 10^{-7} \) | \(a_{84}= -0.32359943 \pm 9.8 \cdot 10^{-7} \) |
\(a_{85}= -1.82104272 \pm 5.7 \cdot 10^{-7} \) | \(a_{86}= +0.67162415 \pm 7.7 \cdot 10^{-7} \) | \(a_{87}= -0.58219807 \pm 1.1 \cdot 10^{-6} \) |
\(a_{88}= +0.52938803 \pm 7.8 \cdot 10^{-7} \) | \(a_{89}= -1.49558864 \pm 5.3 \cdot 10^{-7} \) | \(a_{90}= +1.58441632 \pm 1.5 \cdot 10^{-6} \) |
\(a_{91}= +0.46657351 \pm 7.3 \cdot 10^{-7} \) | \(a_{92}= +0.39013225 \pm 6.9 \cdot 10^{-7} \) | \(a_{93}= +0.55039873 \pm 1.0 \cdot 10^{-6} \) |
\(a_{94}= -0.31417900 \pm 5.5 \cdot 10^{-7} \) | \(a_{95}= -0.93686433 \pm 6.3 \cdot 10^{-7} \) | \(a_{96}= +0.30269955 \pm 9.8 \cdot 10^{-7} \) |
\(a_{97}= +1.35449693 \pm 6.0 \cdot 10^{-7} \) | \(a_{98}= +0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +2.89294871 \pm 6.0 \cdot 10^{-7} \) |
\(a_{100}= +0.17250478 \pm 5.9 \cdot 10^{-7} \) | \(a_{101}= -1.03806833 \pm 8.1 \cdot 10^{-7} \) | \(a_{102}= -1.90120616 \pm 1.4 \cdot 10^{-6} \) |
\(a_{103}= -1.38907667 \pm 5.6 \cdot 10^{-7} \) | \(a_{104}= -0.43643955 \pm 7.3 \cdot 10^{-7} \) | \(a_{105}= -0.75058594 \pm 1.7 \cdot 10^{-6} \) |
\(a_{106}= -0.23197020 \pm 7.3 \cdot 10^{-7} \) | \(a_{107}= -0.39411550 \pm 5.6 \cdot 10^{-7} \) | \(a_{108}= +0.79799970 \pm 7.2 \cdot 10^{-7} \) |
\(a_{109}= +0.78890362 \pm 5.6 \cdot 10^{-7} \) | \(a_{110}= +1.22791075 \pm 1.5 \cdot 10^{-6} \) | \(a_{111}= +1.20683546 \pm 6.1 \cdot 10^{-7} \) |
\(a_{112}= -0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= -0.49300771 \pm 8.9 \cdot 10^{-7} \) | \(a_{114}= -0.97810569 \pm 1.7 \cdot 10^{-6} \) |
\(a_{115}= +0.90490822 \pm 7.8 \cdot 10^{-7} \) | \(a_{116}= -0.17000199 \pm 8.4 \cdot 10^{-7} \) | \(a_{117}= -2.38501281 \pm 6.1 \cdot 10^{-7} \) |
\(a_{118}= -0.11366024 \pm 7.9 \cdot 10^{-7} \) | \(a_{119}= +0.59348320 \pm 5.0 \cdot 10^{-7} \) | \(a_{120}= +0.70210886 \pm 1.7 \cdot 10^{-6} \) |
\(a_{121}= +1.24201352 \pm 6.7 \cdot 10^{-7} \) | \(a_{122}= -0.53466200 \pm 4.7 \cdot 10^{-7} \) | \(a_{123}= -0.80467917 \pm 5.6 \cdot 10^{-7} \) |
\(a_{124}= +0.16071657 \pm 8.3 \cdot 10^{-7} \) | \(a_{125}= -0.75962220 \pm 6.2 \cdot 10^{-7} \) | \(a_{126}= -0.51636596 \pm 7.7 \cdot 10^{-7} \) |
\(a_{127}= -1.69748582 \pm 7.3 \cdot 10^{-7} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +1.62640261 \pm 9.4 \cdot 10^{-7} \) |
\(a_{130}= -1.01231759 \pm 1.4 \cdot 10^{-6} \) | \(a_{131}= +0.08280441 \pm 6.0 \cdot 10^{-7} \) | \(a_{132}= +1.28196414 \pm 1.7 \cdot 10^{-6} \) |
\(a_{133}= +0.30532685 \pm 7.5 \cdot 10^{-7} \) | \(a_{134}= +0.50076406 \pm 7.9 \cdot 10^{-7} \) | \(a_{135}= +1.85095308 \pm 5.4 \cdot 10^{-7} \) |
\(a_{136}= -0.55515270 \pm 5.0 \cdot 10^{-7} \) | \(a_{137}= -0.22354826 \pm 8.4 \cdot 10^{-7} \) | \(a_{138}= +0.94474284 \pm 1.6 \cdot 10^{-6} \) |
\(a_{139}= +1.68975008 \pm 6.8 \cdot 10^{-7} \) | \(a_{140}= -0.21917129 \pm 7.6 \cdot 10^{-7} \) | \(a_{141}= -0.76081472 \pm 6.6 \cdot 10^{-7} \) |
\(a_{142}= +0.46388599 \pm 1.0 \cdot 10^{-6} \) | \(a_{143}= -1.84836701 \pm 9.2 \cdot 10^{-7} \) | \(a_{144}= +0.48301612 \pm 7.7 \cdot 10^{-7} \) |
\(a_{145}= -0.39431808 \pm 7.9 \cdot 10^{-7} \) | \(a_{146}= -0.46296250 \pm 7.5 \cdot 10^{-7} \) | \(a_{147}= +0.24461817 \pm 9.8 \cdot 10^{-7} \) |
\(a_{148}= +0.35239627 \pm 6.0 \cdot 10^{-7} \) | \(a_{149}= -1.12412084 \pm 5.3 \cdot 10^{-7} \) | \(a_{150}= +0.41773694 \pm 1.5 \cdot 10^{-6} \) |
\(a_{151}= +1.37476682 \pm 6.4 \cdot 10^{-7} \) | \(a_{152}= -0.28560712 \pm 7.5 \cdot 10^{-7} \) | \(a_{153}= -3.03374498 \pm 5.6 \cdot 10^{-7} \) |
\(a_{154}= -0.40017974 \pm 7.8 \cdot 10^{-7} \) | \(a_{155}= +0.37278064 \pm 9.3 \cdot 10^{-7} \) | \(a_{156}= -1.05688044 \pm 1.7 \cdot 10^{-6} \) |
\(a_{157}= -0.18991230 \pm 6.3 \cdot 10^{-7} \) | \(a_{158}= -0.69651961 \pm 9.2 \cdot 10^{-7} \) | \(a_{159}= -0.56173819 \pm 8.4 \cdot 10^{-7} \) |
\(a_{160}= +0.20501597 \pm 7.6 \cdot 10^{-7} \) | \(a_{161}= -0.29491226 \pm 6.9 \cdot 10^{-7} \) | \(a_{162}= +0.56625728 \pm 8.2 \cdot 10^{-7} \) |
\(a_{163}= +1.52545129 \pm 5.6 \cdot 10^{-7} \) | \(a_{164}= -0.23496653 \pm 4.9 \cdot 10^{-7} \) | \(a_{165}= +2.97350421 \pm 9.0 \cdot 10^{-7} \) |
\(a_{166}= +0.67484033 \pm 5.7 \cdot 10^{-7} \) | \(a_{167}= +0.26272038 \pm 8.3 \cdot 10^{-7} \) | \(a_{168}= -0.22881935 \pm 9.8 \cdot 10^{-7} \) |
\(a_{169}= +0.52383587 \pm 7.5 \cdot 10^{-7} \) | \(a_{170}= -1.28767166 \pm 1.2 \cdot 10^{-6} \) | \(a_{171}= -1.56075826 \pm 9.9 \cdot 10^{-7} \) |
\(a_{172}= +0.47490999 \pm 7.7 \cdot 10^{-7} \) | \(a_{173}= +1.40435167 \pm 8.5 \cdot 10^{-7} \) | \(a_{174}= -0.41167620 \pm 1.8 \cdot 10^{-6} \) |
\(a_{175}= -0.13040135 \pm 5.9 \cdot 10^{-7} \) | \(a_{176}= +0.37433387 \pm 7.8 \cdot 10^{-7} \) | \(a_{177}= -0.27523922 \pm 9.2 \cdot 10^{-7} \) |
\(a_{178}= -1.05754087 \pm 5.4 \cdot 10^{-7} \) | \(a_{179}= -0.60194120 \pm 6.7 \cdot 10^{-7} \) | \(a_{180}= +1.12035152 \pm 1.5 \cdot 10^{-6} \) |
\(a_{181}= +1.66674440 \pm 6.8 \cdot 10^{-7} \) | \(a_{182}= +0.32991729 \pm 7.3 \cdot 10^{-7} \) | \(a_{183}= -1.29473556 \pm 6.3 \cdot 10^{-7} \) |
\(a_{184}= +0.27586516 \pm 6.9 \cdot 10^{-7} \) | \(a_{185}= +0.81737996 \pm 5.0 \cdot 10^{-7} \) | \(a_{186}= +0.38919067 \pm 1.8 \cdot 10^{-6} \) |
\(a_{187}= -2.35112957 \pm 4.1 \cdot 10^{-7} \) | \(a_{188}= -0.22215810 \pm 5.5 \cdot 10^{-7} \) | \(a_{189}= -0.60323107 \pm 7.2 \cdot 10^{-7} \) |
\(a_{190}= -0.66246312 \pm 1.5 \cdot 10^{-6} \) | \(a_{191}= +1.88810847 \pm 5.3 \cdot 10^{-7} \) | \(a_{192}= +0.21404090 \pm 9.8 \cdot 10^{-7} \) |
\(a_{193}= +1.20703152 \pm 5.8 \cdot 10^{-7} \) | \(a_{194}= +0.95777396 \pm 6.1 \cdot 10^{-7} \) | \(a_{195}= -2.45142460 \pm 5.8 \cdot 10^{-7} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= -1.63050437 \pm 9.5 \cdot 10^{-7} \) | \(a_{198}= +2.04562365 \pm 1.5 \cdot 10^{-6} \) |
\(a_{199}= -1.29685815 \pm 6.7 \cdot 10^{-7} \) | \(a_{200}= +0.12197930 \pm 5.9 \cdot 10^{-7} \) | \(a_{201}= +1.21264844 \pm 9.8 \cdot 10^{-7} \) |
\(a_{202}= -0.73402515 \pm 8.2 \cdot 10^{-7} \) | \(a_{203}= +0.12850943 \pm 8.4 \cdot 10^{-7} \) | \(a_{204}= -1.34435577 \pm 1.4 \cdot 10^{-6} \) |
\(a_{205}= -0.54500274 \pm 5.2 \cdot 10^{-7} \) | \(a_{206}= -0.98222553 \pm 5.8 \cdot 10^{-7} \) | \(a_{207}= +1.50752133 \pm 6.8 \cdot 10^{-7} \) |
\(a_{208}= -0.30860937 \pm 7.3 \cdot 10^{-7} \) | \(a_{209}= -1.20957593 \pm 6.0 \cdot 10^{-7} \) | \(a_{210}= -0.53074441 \pm 1.7 \cdot 10^{-6} \) |
\(a_{211}= +0.13417236 \pm 9.0 \cdot 10^{-7} \) | \(a_{212}= -0.16402770 \pm 7.3 \cdot 10^{-7} \) | \(a_{213}= +1.12334463 \pm 1.4 \cdot 10^{-6} \) |
\(a_{214}= -0.27868174 \pm 5.7 \cdot 10^{-7} \) | \(a_{215}= +1.10154942 \pm 6.4 \cdot 10^{-7} \) | \(a_{216}= +0.56427100 \pm 7.2 \cdot 10^{-7} \) |
\(a_{217}= -0.12149031 \pm 8.3 \cdot 10^{-7} \) | \(a_{218}= +0.55783910 \pm 5.7 \cdot 10^{-7} \) | \(a_{219}= -1.12110830 \pm 9.5 \cdot 10^{-7} \) |
\(a_{220}= +0.86826402 \pm 1.5 \cdot 10^{-6} \) | \(a_{221}= +1.93832477 \pm 4.3 \cdot 10^{-7} \) | \(a_{222}= +0.85336153 \pm 1.5 \cdot 10^{-6} \) |
\(a_{223}= -0.25274523 \pm 6.8 \cdot 10^{-7} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +0.66658071 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= -0.34860909 \pm 9.0 \cdot 10^{-7} \) | \(a_{227}= +1.05774742 \pm 8.0 \cdot 10^{-7} \) | \(a_{228}= -0.69162516 \pm 1.7 \cdot 10^{-6} \) |
\(a_{229}= -0.90109596 \pm 6.5 \cdot 10^{-7} \) | \(a_{230}= +0.63986674 \pm 1.4 \cdot 10^{-6} \) | \(a_{231}= -0.96907380 \pm 1.7 \cdot 10^{-6} \) |
\(a_{232}= -0.12020956 \pm 8.4 \cdot 10^{-7} \) | \(a_{233}= +0.60192114 \pm 5.7 \cdot 10^{-7} \) | \(a_{234}= -1.68645873 \pm 1.4 \cdot 10^{-6} \) |
\(a_{235}= -0.51529370 \pm 5.5 \cdot 10^{-7} \) | \(a_{236}= -0.08036992 \pm 7.9 \cdot 10^{-7} \) | \(a_{237}= -1.68668935 \pm 1.2 \cdot 10^{-6} \) |
\(a_{238}= +0.41965600 \pm 5.0 \cdot 10^{-7} \) | \(a_{239}= +0.74930888 \pm 8.9 \cdot 10^{-7} \) | \(a_{240}= +0.49646593 \pm 1.7 \cdot 10^{-6} \) |
\(a_{241}= -0.25241862 \pm 8.3 \cdot 10^{-7} \) | \(a_{242}= +0.87823618 \pm 6.8 \cdot 10^{-7} \) | \(a_{243}= -0.22475283 \pm 7.8 \cdot 10^{-7} \) |
\(a_{244}= -0.37806312 \pm 4.7 \cdot 10^{-7} \) | \(a_{245}= +0.16567792 \pm 7.6 \cdot 10^{-7} \) | \(a_{246}= -0.56899410 \pm 1.4 \cdot 10^{-6} \) |
\(a_{247}= +0.99720195 \pm 7.1 \cdot 10^{-7} \) | \(a_{248}= +0.11364378 \pm 8.3 \cdot 10^{-7} \) | \(a_{249}= +1.63419089 \pm 7.2 \cdot 10^{-7} \) |
\(a_{250}= -0.53713401 \pm 6.3 \cdot 10^{-7} \) | \(a_{251}= +0.36214745 \pm 7.0 \cdot 10^{-7} \) | \(a_{252}= -0.36512587 \pm 7.7 \cdot 10^{-7} \) |
\(a_{253}= +1.16831771 \pm 8.3 \cdot 10^{-7} \) | \(a_{254}= -1.20030373 \pm 7.4 \cdot 10^{-7} \) | \(a_{255}= -3.11822102 \pm 5.4 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +1.14114105 \pm 8.1 \cdot 10^{-7} \) | \(a_{258}= +1.15004032 \pm 1.7 \cdot 10^{-6} \) |
\(a_{259}= -0.26638654 \pm 6.0 \cdot 10^{-7} \) | \(a_{260}= -0.71581663 \pm 1.4 \cdot 10^{-6} \) | \(a_{261}= -0.65690962 \pm 8.0 \cdot 10^{-7} \) |
\(a_{262}= +0.05855156 \pm 6.1 \cdot 10^{-7} \) | \(a_{263}= -0.91997375 \pm 8.0 \cdot 10^{-7} \) | \(a_{264}= +0.90648554 \pm 1.7 \cdot 10^{-6} \) |
\(a_{265}= -0.38046077 \pm 8.0 \cdot 10^{-7} \) | \(a_{266}= +0.21589869 \pm 7.5 \cdot 10^{-7} \) | \(a_{267}= -2.56093713 \pm 6.9 \cdot 10^{-7} \) |
\(a_{268}= +0.35409366 \pm 7.9 \cdot 10^{-7} \) | \(a_{269}= -0.84856147 \pm 7.1 \cdot 10^{-7} \) | \(a_{270}= +1.30882148 \pm 1.4 \cdot 10^{-6} \) |
\(a_{271}= +0.85259578 \pm 6.1 \cdot 10^{-7} \) | \(a_{272}= -0.39255224 \pm 5.0 \cdot 10^{-7} \) | \(a_{273}= +0.79892652 \pm 1.7 \cdot 10^{-6} \) |
\(a_{274}= -0.15807249 \pm 8.5 \cdot 10^{-7} \) | \(a_{275}= +0.51659505 \pm 6.5 \cdot 10^{-7} \) | \(a_{276}= +0.66803407 \pm 1.6 \cdot 10^{-6} \) |
\(a_{277}= -0.02401811 \pm 1.0 \cdot 10^{-6} \) | \(a_{278}= +1.19483374 \pm 6.9 \cdot 10^{-7} \) | \(a_{279}= +0.62102957 \pm 6.3 \cdot 10^{-7} \) |
\(a_{280}= -0.15497751 \pm 7.6 \cdot 10^{-7} \) | \(a_{281}= +1.51941173 \pm 6.5 \cdot 10^{-7} \) | \(a_{282}= -0.53797725 \pm 1.5 \cdot 10^{-6} \) |
\(a_{283}= -0.70356539 \pm 7.6 \cdot 10^{-7} \) | \(a_{284}= +0.32801693 \pm 1.0 \cdot 10^{-6} \) | \(a_{285}= -1.60421830 \pm 8.1 \cdot 10^{-7} \) |
\(a_{286}= -1.30699285 \pm 1.5 \cdot 10^{-6} \) | \(a_{287}= +0.17761800 \pm 4.9 \cdot 10^{-7} \) | \(a_{288}= +0.34154398 \pm 7.7 \cdot 10^{-7} \) |
\(a_{289}= +1.46555617 \pm 6.2 \cdot 10^{-7} \) | \(a_{290}= -0.27882499 \pm 1.5 \cdot 10^{-6} \) | \(a_{291}= +2.31934196 \pm 9.4 \cdot 10^{-7} \) |
\(a_{292}= -0.32736392 \pm 7.5 \cdot 10^{-7} \) | \(a_{293}= +0.16097539 \pm 5.2 \cdot 10^{-7} \) | \(a_{294}= +0.17297117 \pm 9.8 \cdot 10^{-7} \) |
\(a_{295}= -0.18641731 \pm 9.8 \cdot 10^{-7} \) | \(a_{296}= +0.24918179 \pm 6.0 \cdot 10^{-7} \) | \(a_{297}= +2.38974653 \pm 7.4 \cdot 10^{-7} \) |
\(a_{298}= -0.79487347 \pm 5.4 \cdot 10^{-7} \) | \(a_{299}= -0.96318773 \pm 5.4 \cdot 10^{-7} \) | \(a_{300}= +0.29538463 \pm 1.5 \cdot 10^{-6} \) |
\(a_{301}= -0.35899821 \pm 7.7 \cdot 10^{-7} \) | \(a_{302}= +0.97210694 \pm 6.5 \cdot 10^{-7} \) | \(a_{303}= -1.77751265 \pm 1.0 \cdot 10^{-6} \) |
\(a_{304}= -0.20195473 \pm 7.5 \cdot 10^{-7} \) | \(a_{305}= -0.87691399 \pm 4.4 \cdot 10^{-7} \) | \(a_{306}= -2.14518165 \pm 1.2 \cdot 10^{-6} \) |
\(a_{307}= -0.56845108 \pm 6.4 \cdot 10^{-7} \) | \(a_{308}= -0.28296981 \pm 7.8 \cdot 10^{-7} \) | \(a_{309}= -2.37855379 \pm 8.8 \cdot 10^{-7} \) |
\(a_{310}= +0.26359572 \pm 1.5 \cdot 10^{-6} \) | \(a_{311}= +0.63813365 \pm 8.4 \cdot 10^{-7} \) | \(a_{312}= -0.74732732 \pm 1.7 \cdot 10^{-6} \) |
\(a_{313}= +1.62872447 \pm 4.7 \cdot 10^{-7} \) | \(a_{314}= -0.13428827 \pm 6.4 \cdot 10^{-7} \) | \(a_{315}= -0.84690615 \pm 1.5 \cdot 10^{-6} \) |
\(a_{316}= -0.49251374 \pm 9.2 \cdot 10^{-7} \) | \(a_{317}= +0.95942768 \pm 8.2 \cdot 10^{-7} \) | \(a_{318}= -0.39720889 \pm 1.7 \cdot 10^{-6} \) |
\(a_{319}= -0.50910002 \pm 6.5 \cdot 10^{-7} \) | \(a_{320}= +0.14496818 \pm 7.6 \cdot 10^{-7} \) | \(a_{321}= -0.67485470 \pm 6.5 \cdot 10^{-7} \) |
\(a_{322}= -0.20853446 \pm 6.9 \cdot 10^{-7} \) | \(a_{323}= +1.26844451 \pm 4.7 \cdot 10^{-7} \) | \(a_{324}= +0.40040436 \pm 8.2 \cdot 10^{-7} \) |
\(a_{325}= -0.42589272 \pm 6.2 \cdot 10^{-7} \) | \(a_{326}= +1.07865695 \pm 5.7 \cdot 10^{-7} \) | \(a_{327}= +1.35086114 \pm 6.2 \cdot 10^{-7} \) |
\(a_{328}= -0.16614643 \pm 4.9 \cdot 10^{-7} \) | \(a_{329}= +0.16793574 \pm 5.5 \cdot 10^{-7} \) | \(a_{330}= +2.10258499 \pm 2.5 \cdot 10^{-6} \) |
\(a_{331}= -1.12242777 \pm 6.7 \cdot 10^{-7} \) | \(a_{332}= +0.47718417 \pm 5.7 \cdot 10^{-7} \) | \(a_{333}= +1.36170465 \pm 3.7 \cdot 10^{-7} \) |
\(a_{334}= +0.18577136 \pm 8.4 \cdot 10^{-7} \) | \(a_{335}= +0.82131705 \pm 6.1 \cdot 10^{-7} \) | \(a_{336}= -0.16179971 \pm 9.8 \cdot 10^{-7} \) |
\(a_{337}= -1.45769889 \pm 7.4 \cdot 10^{-7} \) | \(a_{338}= +0.37040789 \pm 7.6 \cdot 10^{-7} \) | \(a_{339}= -0.84419051 \pm 1.2 \cdot 10^{-6} \) |
\(a_{340}= -0.91052136 \pm 1.2 \cdot 10^{-6} \) | \(a_{341}= +0.48129325 \pm 6.7 \cdot 10^{-7} \) | \(a_{342}= -1.10362275 \pm 1.5 \cdot 10^{-6} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.33581208 \pm 7.7 \cdot 10^{-7} \) | \(a_{345}= +1.54949897 \pm 1.0 \cdot 10^{-6} \) |
\(a_{346}= +0.99302659 \pm 8.6 \cdot 10^{-7} \) | \(a_{347}= -0.81043229 \pm 7.5 \cdot 10^{-7} \) | \(a_{348}= -0.29109903 \pm 1.8 \cdot 10^{-6} \) |
\(a_{349}= -0.23698895 \pm 7.3 \cdot 10^{-7} \) | \(a_{350}= -0.09220768 \pm 5.9 \cdot 10^{-7} \) | \(a_{351}= -1.97016147 \pm 7.7 \cdot 10^{-7} \) |
\(a_{352}= +0.26469402 \pm 7.8 \cdot 10^{-7} \) | \(a_{353}= +0.32017142 \pm 4.7 \cdot 10^{-7} \) | \(a_{354}= -0.19462352 \pm 1.7 \cdot 10^{-6} \) |
\(a_{355}= +0.76083230 \pm 9.8 \cdot 10^{-7} \) | \(a_{356}= -0.74779432 \pm 5.4 \cdot 10^{-7} \) | \(a_{357}= +1.01623744 \pm 1.4 \cdot 10^{-6} \) |
\(a_{358}= -0.42563671 \pm 6.8 \cdot 10^{-7} \) | \(a_{359}= -1.01859443 \pm 9.7 \cdot 10^{-7} \) | \(a_{360}= +0.79220816 \pm 1.5 \cdot 10^{-6} \) |
\(a_{361}= -0.34742859 \pm 6.5 \cdot 10^{-7} \) | \(a_{362}= +1.17856627 \pm 6.9 \cdot 10^{-7} \) | \(a_{363}= +2.12673356 \pm 7.9 \cdot 10^{-7} \) |
\(a_{364}= +0.23328675 \pm 7.3 \cdot 10^{-7} \) | \(a_{365}= -0.75931765 \pm 6.1 \cdot 10^{-7} \) | \(a_{366}= -0.91551629 \pm 1.4 \cdot 10^{-6} \) |
\(a_{367}= +0.47120256 \pm 5.1 \cdot 10^{-7} \) | \(a_{368}= +0.19506612 \pm 6.9 \cdot 10^{-7} \) | \(a_{369}= -0.90794098 \pm 2.9 \cdot 10^{-7} \) |
\(a_{370}= +0.57797491 \pm 1.3 \cdot 10^{-6} \) | \(a_{371}= +0.12399329 \pm 7.3 \cdot 10^{-7} \) | \(a_{372}= +0.27519936 \pm 1.8 \cdot 10^{-6} \) |
\(a_{373}= -0.14271558 \pm 9.2 \cdot 10^{-7} \) | \(a_{374}= -1.66249966 \pm 1.2 \cdot 10^{-6} \) | \(a_{375}= -1.30072177 \pm 8.3 \cdot 10^{-7} \) |
\(a_{376}= -0.15708950 \pm 5.5 \cdot 10^{-7} \) | \(a_{377}= +0.41971365 \pm 6.1 \cdot 10^{-7} \) | \(a_{378}= -0.42654878 \pm 7.2 \cdot 10^{-7} \) |
\(a_{379}= +0.60399903 \pm 8.5 \cdot 10^{-7} \) | \(a_{380}= -0.46843217 \pm 1.5 \cdot 10^{-6} \) | \(a_{381}= -2.90665117 \pm 9.3 \cdot 10^{-7} \) |
\(a_{382}= +1.33509431 \pm 5.4 \cdot 10^{-7} \) | \(a_{383}= +0.82879968 \pm 6.8 \cdot 10^{-7} \) | \(a_{384}= +0.15134977 \pm 9.8 \cdot 10^{-7} \) |
\(a_{385}= -0.65634590 \pm 1.5 \cdot 10^{-6} \) | \(a_{386}= +0.85350017 \pm 5.9 \cdot 10^{-7} \) | \(a_{387}= +1.83511347 \pm 6.2 \cdot 10^{-7} \) |
\(a_{388}= +0.67724846 \pm 6.1 \cdot 10^{-7} \) | \(a_{389}= +0.55805993 \pm 7.5 \cdot 10^{-7} \) | \(a_{390}= -1.73341896 \pm 2.4 \cdot 10^{-6} \) |
\(a_{391}= -1.22517830 \pm 4.0 \cdot 10^{-7} \) | \(a_{392}= +0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +0.14178825 \pm 8.2 \cdot 10^{-7} \) |
\(a_{394}= -1.15294070 \pm 9.6 \cdot 10^{-7} \) | \(a_{395}= -1.14238115 \pm 9.2 \cdot 10^{-7} \) | \(a_{396}= +1.44647436 \pm 1.5 \cdot 10^{-6} \) |
\(a_{397}= -0.56747305 \pm 6.0 \cdot 10^{-7} \) | \(a_{398}= -0.91701719 \pm 6.8 \cdot 10^{-7} \) | \(a_{399}= +0.52281948 \pm 1.7 \cdot 10^{-6} \) |
\(a_{400}= +0.08625239 \pm 5.9 \cdot 10^{-7} \) | \(a_{401}= +0.96780120 \pm 8.2 \cdot 10^{-7} \) | \(a_{402}= +0.85747193 \pm 1.7 \cdot 10^{-6} \) |
\(a_{403}= -0.39678912 \pm 4.4 \cdot 10^{-7} \) | \(a_{404}= -0.51903416 \pm 8.2 \cdot 10^{-7} \) | \(a_{405}= +0.92873429 \pm 7.4 \cdot 10^{-7} \) |
\(a_{406}= +0.09086989 \pm 8.4 \cdot 10^{-7} \) | \(a_{407}= +1.05531088 \pm 7.8 \cdot 10^{-7} \) | \(a_{408}= -0.95060308 \pm 1.4 \cdot 10^{-6} \) |
\(a_{409}= +1.76056357 \pm 9.6 \cdot 10^{-7} \) | \(a_{410}= -0.38537513 \pm 1.2 \cdot 10^{-6} \) | \(a_{411}= -0.38278777 \pm 1.0 \cdot 10^{-6} \) |
\(a_{412}= -0.69453834 \pm 5.8 \cdot 10^{-7} \) | \(a_{413}= +0.06075395 \pm 7.9 \cdot 10^{-7} \) | \(a_{414}= +1.06597856 \pm 1.4 \cdot 10^{-6} \) |
\(a_{415}= +1.10682437 \pm 5.0 \cdot 10^{-7} \) | \(a_{416}= -0.21821978 \pm 7.3 \cdot 10^{-7} \) | \(a_{417}= +2.89340504 \pm 9.0 \cdot 10^{-7} \) |
\(a_{418}= -0.85529934 \pm 1.5 \cdot 10^{-6} \) | \(a_{419}= +0.30427683 \pm 6.5 \cdot 10^{-7} \) | \(a_{420}= -0.37529297 \pm 1.7 \cdot 10^{-6} \) |
\(a_{421}= -0.37638037 \pm 6.4 \cdot 10^{-7} \) | \(a_{422}= +0.09487418 \pm 9.1 \cdot 10^{-7} \) | \(a_{423}= -0.85844755 \pm 7.2 \cdot 10^{-7} \) |
\(a_{424}= -0.11598510 \pm 7.3 \cdot 10^{-7} \) | \(a_{425}= -0.54173709 \pm 5.2 \cdot 10^{-7} \) | \(a_{426}= +0.79432461 \pm 2.0 \cdot 10^{-6} \) |
\(a_{427}= +0.28578886 \pm 4.7 \cdot 10^{-7} \) | \(a_{428}= -0.19705775 \pm 5.7 \cdot 10^{-7} \) | \(a_{429}= -3.16500914 \pm 9.7 \cdot 10^{-7} \) |
\(a_{430}= +0.77891307 \pm 1.5 \cdot 10^{-6} \) | \(a_{431}= -0.00551274 \pm 6.8 \cdot 10^{-7} \) | \(a_{432}= +0.39899985 \pm 7.2 \cdot 10^{-7} \) |
\(a_{433}= -0.71878122 \pm 9.5 \cdot 10^{-7} \) | \(a_{434}= -0.08590662 \pm 8.3 \cdot 10^{-7} \) | \(a_{435}= -0.67520157 \pm 1.0 \cdot 10^{-6} \) |
\(a_{436}= +0.39445181 \pm 5.7 \cdot 10^{-7} \) | \(a_{437}= -0.63031243 \pm 5.1 \cdot 10^{-7} \) | \(a_{438}= -0.79274328 \pm 1.7 \cdot 10^{-6} \) |
\(a_{439}= +1.35582064 \pm 9.2 \cdot 10^{-7} \) | \(a_{440}= +0.61395537 \pm 1.5 \cdot 10^{-6} \) | \(a_{441}= +0.27600921 \pm 7.7 \cdot 10^{-7} \) |
\(a_{442}= +1.37060259 \pm 1.2 \cdot 10^{-6} \) | \(a_{443}= +0.85631679 \pm 7.1 \cdot 10^{-7} \) | \(a_{444}= +0.60341773 \pm 1.5 \cdot 10^{-6} \) |
\(a_{445}= -1.73450215 \pm 6.5 \cdot 10^{-7} \) | \(a_{446}= -0.17871786 \pm 7.0 \cdot 10^{-7} \) | \(a_{447}= -1.92486271 \pm 6.4 \cdot 10^{-7} \) |
\(a_{448}= -0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= -0.69943241 \pm 7.0 \cdot 10^{-7} \) | \(a_{450}= +0.47134374 \pm 1.3 \cdot 10^{-6} \) |
\(a_{451}= -0.70364744 \pm 6.0 \cdot 10^{-7} \) | \(a_{452}= -0.24650385 \pm 9.0 \cdot 10^{-7} \) | \(a_{453}= +2.35405064 \pm 7.4 \cdot 10^{-7} \) |
\(a_{454}= +0.74794037 \pm 8.1 \cdot 10^{-7} \) | \(a_{455}= +0.54110651 \pm 1.4 \cdot 10^{-6} \) | \(a_{456}= -0.48905284 \pm 1.7 \cdot 10^{-6} \) |
\(a_{457}= +0.20377096 \pm 9.9 \cdot 10^{-7} \) | \(a_{458}= -0.63717106 \pm 6.6 \cdot 10^{-7} \) | \(a_{459}= -2.50605256 \pm 5.5 \cdot 10^{-7} \) |
\(a_{460}= +0.45245411 \pm 1.4 \cdot 10^{-6} \) | \(a_{461}= +1.58361431 \pm 4.8 \cdot 10^{-7} \) | \(a_{462}= -0.68523866 \pm 1.7 \cdot 10^{-6} \) |
\(a_{463}= -1.41784859 \pm 9.1 \cdot 10^{-7} \) | \(a_{464}= -0.08500100 \pm 8.4 \cdot 10^{-7} \) | \(a_{465}= +0.63832243 \pm 1.1 \cdot 10^{-6} \) |
\(a_{466}= +0.42562252 \pm 5.8 \cdot 10^{-7} \) | \(a_{467}= -0.00449403 \pm 8.7 \cdot 10^{-7} \) | \(a_{468}= -1.19250640 \pm 1.4 \cdot 10^{-6} \) |
\(a_{469}= -0.26766965 \pm 7.9 \cdot 10^{-7} \) | \(a_{470}= -0.36436767 \pm 1.3 \cdot 10^{-6} \) | \(a_{471}= -0.32519199 \pm 7.8 \cdot 10^{-7} \) |
\(a_{472}= -0.05683012 \pm 7.9 \cdot 10^{-7} \) | \(a_{473}= +1.42219916 \pm 6.6 \cdot 10^{-7} \) | \(a_{474}= -1.19266948 \pm 1.9 \cdot 10^{-6} \) |
\(a_{475}= -0.27870525 \pm 5.1 \cdot 10^{-7} \) | \(a_{476}= +0.29674160 \pm 5.0 \cdot 10^{-7} \) | \(a_{477}= -0.63382420 \pm 5.8 \cdot 10^{-7} \) |
\(a_{478}= +0.52984139 \pm 9.0 \cdot 10^{-7} \) | \(a_{479}= +0.65895780 \pm 8.1 \cdot 10^{-7} \) | \(a_{480}= +0.35105443 \pm 1.7 \cdot 10^{-6} \) |
\(a_{481}= -0.87002232 \pm 7.9 \cdot 10^{-7} \) | \(a_{482}= -0.17848691 \pm 8.4 \cdot 10^{-7} \) | \(a_{483}= -0.50498629 \pm 1.6 \cdot 10^{-6} \) |
\(a_{484}= +0.62100676 \pm 6.8 \cdot 10^{-7} \) | \(a_{485}= +1.57087168 \pm 4.4 \cdot 10^{-7} \) | \(a_{486}= -0.15892425 \pm 7.9 \cdot 10^{-7} \) |
\(a_{487}= -0.05906648 \pm 6.3 \cdot 10^{-7} \) | \(a_{488}= -0.26733100 \pm 4.7 \cdot 10^{-7} \) | \(a_{489}= +2.61207176 \pm 6.8 \cdot 10^{-7} \) |
\(a_{490}= +0.11715198 \pm 7.6 \cdot 10^{-7} \) | \(a_{491}= -1.29457391 \pm 9.0 \cdot 10^{-7} \) | \(a_{492}= -0.40233959 \pm 1.4 \cdot 10^{-6} \) |
\(a_{493}= +0.53387729 \pm 4.9 \cdot 10^{-7} \) | \(a_{494}= +0.70512826 \pm 1.4 \cdot 10^{-6} \) | \(a_{495}= +3.35508416 \pm 5.9 \cdot 10^{-7} \) |
\(a_{496}= +0.08035829 \pm 8.3 \cdot 10^{-7} \) | \(a_{497}= -0.24795749 \pm 1.0 \cdot 10^{-6} \) | \(a_{498}= +1.15554746 \pm 1.5 \cdot 10^{-6} \) |
\(a_{499}= +0.72009599 \pm 1.0 \cdot 10^{-6} \) | \(a_{500}= -0.37981110 \pm 6.3 \cdot 10^{-7} \) | \(a_{501}= +0.44986326 \pm 9.5 \cdot 10^{-7} \) |
\(a_{502}= +0.25607692 \pm 7.1 \cdot 10^{-7} \) | \(a_{503}= -0.32902449 \pm 7.5 \cdot 10^{-7} \) | \(a_{504}= -0.25818298 \pm 7.7 \cdot 10^{-7} \) |
\(a_{505}= -1.20389504 \pm 8.7 \cdot 10^{-7} \) | \(a_{506}= +0.82612538 \pm 1.4 \cdot 10^{-6} \) | \(a_{507}= +0.89697841 \pm 8.4 \cdot 10^{-7} \) |
\(a_{508}= -0.84874291 \pm 7.4 \cdot 10^{-7} \) | \(a_{509}= -1.91454700 \pm 6.5 \cdot 10^{-7} \) | \(a_{510}= -2.20491523 \pm 2.2 \cdot 10^{-6} \) |
\(a_{511}= +0.24746386 \pm 7.5 \cdot 10^{-7} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -1.28927852 \pm 9.0 \cdot 10^{-7} \) |
\(a_{514}= +0.80690857 \pm 8.2 \cdot 10^{-7} \) | \(a_{515}= -1.61097538 \pm 3.4 \cdot 10^{-7} \) | \(a_{516}= +0.81320131 \pm 1.7 \cdot 10^{-6} \) |
\(a_{517}= -0.66529041 \pm 5.2 \cdot 10^{-7} \) | \(a_{518}= -0.18836373 \pm 6.0 \cdot 10^{-7} \) | \(a_{519}= +2.40470959 \pm 1.1 \cdot 10^{-6} \) |
\(a_{520}= -0.50615879 \pm 1.4 \cdot 10^{-6} \) | \(a_{521}= +0.43998940 \pm 6.9 \cdot 10^{-7} \) | \(a_{522}= -0.46450525 \pm 1.6 \cdot 10^{-6} \) |
\(a_{523}= -1.88348885 \pm 7.5 \cdot 10^{-7} \) | \(a_{524}= +0.04140221 \pm 6.1 \cdot 10^{-7} \) | \(a_{525}= -0.22328979 \pm 1.5 \cdot 10^{-6} \) |
\(a_{526}= -0.65051968 \pm 8.1 \cdot 10^{-7} \) | \(a_{527}= -0.50471721 \pm 3.5 \cdot 10^{-7} \) | \(a_{528}= +0.64098207 \pm 1.7 \cdot 10^{-6} \) |
\(a_{529}= -0.39118731 \pm 6.5 \cdot 10^{-7} \) | \(a_{530}= -0.26902639 \pm 1.4 \cdot 10^{-6} \) | \(a_{531}= -0.31055976 \pm 6.0 \cdot 10^{-7} \) |
\(a_{532}= +0.15266343 \pm 7.5 \cdot 10^{-7} \) | \(a_{533}= +0.58010298 \pm 4.3 \cdot 10^{-7} \) | \(a_{534}= -1.81085601 \pm 1.5 \cdot 10^{-6} \) |
\(a_{535}= -0.45707367 \pm 4.2 \cdot 10^{-7} \) | \(a_{536}= +0.25038203 \pm 7.9 \cdot 10^{-7} \) | \(a_{537}= -1.03072030 \pm 8.2 \cdot 10^{-7} \) |
\(a_{538}= -0.60002357 \pm 7.2 \cdot 10^{-7} \) | \(a_{539}= +0.21390507 \pm 7.8 \cdot 10^{-7} \) | \(a_{540}= +0.92547654 \pm 1.4 \cdot 10^{-6} \) |
\(a_{541}= -0.25300663 \pm 5.4 \cdot 10^{-7} \) | \(a_{542}= +0.60287626 \pm 6.2 \cdot 10^{-7} \) | \(a_{543}= +2.85401180 \pm 7.8 \cdot 10^{-7} \) |
\(a_{544}= -0.27757635 \pm 5.0 \cdot 10^{-7} \) | \(a_{545}= +0.91492740 \pm 6.5 \cdot 10^{-7} \) | \(a_{546}= +0.56492636 \pm 1.7 \cdot 10^{-6} \) |
\(a_{547}= +1.25846751 \pm 6.5 \cdot 10^{-7} \) | \(a_{548}= -0.11177413 \pm 8.5 \cdot 10^{-7} \) | \(a_{549}= -1.46088468 \pm 5.5 \cdot 10^{-7} \) |
\(a_{550}= +0.36528786 \pm 1.3 \cdot 10^{-6} \) | \(a_{551}= +0.27466165 \pm 8.0 \cdot 10^{-7} \) | \(a_{552}= +0.47237142 \pm 1.6 \cdot 10^{-6} \) |
\(a_{553}= +0.37230539 \pm 9.2 \cdot 10^{-7} \) | \(a_{554}= -0.01698337 \pm 1.0 \cdot 10^{-6} \) | \(a_{555}= +1.39962195 \pm 4.8 \cdot 10^{-7} \) |
\(a_{556}= +0.84487504 \pm 6.9 \cdot 10^{-7} \) | \(a_{557}= +0.50790669 \pm 8.2 \cdot 10^{-7} \) | \(a_{558}= +0.43913422 \pm 1.5 \cdot 10^{-6} \) |
\(a_{559}= -1.17249338 \pm 7.7 \cdot 10^{-7} \) | \(a_{560}= -0.10958565 \pm 7.6 \cdot 10^{-7} \) | \(a_{561}= -4.02590316 \pm 5.1 \cdot 10^{-7} \) |
\(a_{562}= +1.07438634 \pm 6.6 \cdot 10^{-7} \) | \(a_{563}= -1.75633572 \pm 5.6 \cdot 10^{-7} \) | \(a_{564}= -0.38040736 \pm 1.5 \cdot 10^{-6} \) |
\(a_{565}= -0.57176345 \pm 9.4 \cdot 10^{-7} \) | \(a_{566}= -0.49749586 \pm 7.7 \cdot 10^{-7} \) | \(a_{567}= -0.30267725 \pm 8.2 \cdot 10^{-7} \) |
\(a_{568}= +0.23194300 \pm 1.0 \cdot 10^{-6} \) | \(a_{569}= +1.30197389 \pm 6.8 \cdot 10^{-7} \) | \(a_{570}= -1.13435364 \pm 2.4 \cdot 10^{-6} \) |
\(a_{571}= +0.35088712 \pm 6.5 \cdot 10^{-7} \) | \(a_{572}= -0.92418351 \pm 1.5 \cdot 10^{-6} \) | \(a_{573}= +3.23305953 \pm 6.9 \cdot 10^{-7} \) |
\(a_{574}= +0.12559489 \pm 4.9 \cdot 10^{-7} \) | \(a_{575}= +0.26919871 \pm 5.7 \cdot 10^{-7} \) | \(a_{576}= +0.24150806 \pm 7.7 \cdot 10^{-7} \) |
\(a_{577}= +0.81810636 \pm 6.3 \cdot 10^{-7} \) | \(a_{578}= +1.03630470 \pm 6.3 \cdot 10^{-7} \) | \(a_{579}= +2.06683292 \pm 7.9 \cdot 10^{-7} \) |
\(a_{580}= -0.19715904 \pm 1.5 \cdot 10^{-6} \) | \(a_{581}= -0.36071733 \pm 5.7 \cdot 10^{-7} \) | \(a_{582}= +1.64002243 \pm 1.5 \cdot 10^{-6} \) |
\(a_{583}= -0.49120899 \pm 5.6 \cdot 10^{-7} \) | \(a_{584}= -0.23148125 \pm 7.5 \cdot 10^{-7} \) | \(a_{585}= -2.76600780 \pm 5.1 \cdot 10^{-7} \) |
\(a_{586}= +0.11382679 \pm 5.3 \cdot 10^{-7} \) | \(a_{587}= -1.61514142 \pm 8.5 \cdot 10^{-7} \) | \(a_{588}= +0.12230909 \pm 9.8 \cdot 10^{-7} \) |
\(a_{589}= -0.25965978 \pm 7.7 \cdot 10^{-7} \) | \(a_{590}= -0.13181695 \pm 1.5 \cdot 10^{-6} \) | \(a_{591}= -2.79195701 \pm 1.2 \cdot 10^{-6} \) |
\(a_{592}= +0.17619814 \pm 6.0 \cdot 10^{-7} \) | \(a_{593}= +1.52172664 \pm 9.4 \cdot 10^{-7} \) | \(a_{594}= +1.68980598 \pm 1.4 \cdot 10^{-6} \) |
\(a_{595}= +0.68828945 \pm 1.2 \cdot 10^{-6} \) | \(a_{596}= -0.56206042 \pm 5.4 \cdot 10^{-7} \) | \(a_{597}= -2.22064550 \pm 9.4 \cdot 10^{-7} \) |
\(a_{598}= -0.68107658 \pm 1.4 \cdot 10^{-6} \) | \(a_{599}= +1.00693892 \pm 7.3 \cdot 10^{-7} \) | \(a_{600}= +0.20886847 \pm 1.5 \cdot 10^{-6} \) |
\(a_{601}= +1.89688117 \pm 8.0 \cdot 10^{-7} \) | \(a_{602}= -0.25385007 \pm 7.7 \cdot 10^{-7} \) | \(a_{603}= +1.36826359 \pm 7.3 \cdot 10^{-7} \) |
\(a_{604}= +0.68738341 \pm 6.5 \cdot 10^{-7} \) | \(a_{605}= +1.44041956 \pm 5.4 \cdot 10^{-7} \) | \(a_{606}= -1.25689125 \pm 1.8 \cdot 10^{-6} \) |
\(a_{607}= -0.94605453 \pm 8.1 \cdot 10^{-7} \) | \(a_{608}= -0.14280356 \pm 7.5 \cdot 10^{-7} \) | \(a_{609}= +0.22005019 \pm 1.8 \cdot 10^{-6} \) |
\(a_{610}= -0.62007183 \pm 1.2 \cdot 10^{-6} \) | \(a_{611}= +0.54848056 \pm 5.0 \cdot 10^{-7} \) | \(a_{612}= -1.51687249 \pm 1.2 \cdot 10^{-6} \) |
\(a_{613}= +1.18481694 \pm 6.7 \cdot 10^{-7} \) | \(a_{614}= -0.40195562 \pm 6.5 \cdot 10^{-7} \) | \(a_{615}= -0.93322302 \pm 6.3 \cdot 10^{-7} \) |
\(a_{616}= -0.20008987 \pm 7.8 \cdot 10^{-7} \) | \(a_{617}= +0.58363526 \pm 7.0 \cdot 10^{-7} \) | \(a_{618}= -1.68189152 \pm 1.5 \cdot 10^{-6} \) |
\(a_{619}= +0.99457426 \pm 5.6 \cdot 10^{-7} \) | \(a_{620}= +0.18639032 \pm 1.5 \cdot 10^{-6} \) | \(a_{621}= +1.24530167 \pm 6.5 \cdot 10^{-7} \) |
\(a_{622}= +0.45122863 \pm 8.5 \cdot 10^{-7} \) | \(a_{623}= +0.56527937 \pm 5.4 \cdot 10^{-7} \) | \(a_{624}= -0.52844022 \pm 1.7 \cdot 10^{-6} \) |
\(a_{625}= -1.22597796 \pm 5.9 \cdot 10^{-7} \) | \(a_{626}= +1.15168212 \pm 4.8 \cdot 10^{-7} \) | \(a_{627}= -2.07118978 \pm 7.5 \cdot 10^{-7} \) |
\(a_{628}= -0.09495615 \pm 6.4 \cdot 10^{-7} \) | \(a_{629}= -1.10667157 \pm 4.6 \cdot 10^{-7} \) | \(a_{630}= -0.59885308 \pm 1.5 \cdot 10^{-6} \) |
\(a_{631}= -1.86553487 \pm 5.3 \cdot 10^{-7} \) | \(a_{632}= -0.34825980 \pm 9.2 \cdot 10^{-7} \) | \(a_{633}= +0.22974698 \pm 1.2 \cdot 10^{-6} \) |
\(a_{634}= +0.67841782 \pm 8.3 \cdot 10^{-7} \) | \(a_{635}= -1.96865149 \pm 9.3 \cdot 10^{-7} \) | \(a_{636}= -0.28086910 \pm 1.7 \cdot 10^{-6} \) |
\(a_{637}= -0.17634821 \pm 7.3 \cdot 10^{-7} \) | \(a_{638}= -0.35998808 \pm 1.6 \cdot 10^{-6} \) | \(a_{639}= +1.26749973 \pm 1.2 \cdot 10^{-6} \) |
\(a_{640}= +0.10250799 \pm 7.6 \cdot 10^{-7} \) | \(a_{641}= +0.91433361 \pm 1.0 \cdot 10^{-6} \) | \(a_{642}= -0.47719434 \pm 1.5 \cdot 10^{-6} \) |
\(a_{643}= +0.22482078 \pm 6.6 \cdot 10^{-7} \) | \(a_{644}= -0.14745613 \pm 6.9 \cdot 10^{-7} \) | \(a_{645}= +1.88621306 \pm 7.9 \cdot 10^{-7} \) |
\(a_{646}= +0.89692571 \pm 1.2 \cdot 10^{-6} \) | \(a_{647}= +0.22443154 \pm 7.2 \cdot 10^{-7} \) | \(a_{648}= +0.28312864 \pm 8.2 \cdot 10^{-7} \) |
\(a_{649}= -0.24068148 \pm 7.2 \cdot 10^{-7} \) | \(a_{650}= -0.30115163 \pm 1.3 \cdot 10^{-6} \) | \(a_{651}= -0.20803116 \pm 1.8 \cdot 10^{-6} \) |
\(a_{652}= +0.76272565 \pm 5.7 \cdot 10^{-7} \) | \(a_{653}= -1.07182648 \pm 8.1 \cdot 10^{-7} \) | \(a_{654}= +0.95520307 \pm 1.5 \cdot 10^{-6} \) |
\(a_{655}= +0.09603204 \pm 4.7 \cdot 10^{-7} \) | \(a_{656}= -0.11748327 \pm 4.9 \cdot 10^{-7} \) | \(a_{657}= -1.26497641 \pm 8.1 \cdot 10^{-7} \) |
\(a_{658}= +0.11874850 \pm 5.5 \cdot 10^{-7} \) | \(a_{659}= +1.72682156 \pm 6.5 \cdot 10^{-7} \) | \(a_{660}= +1.48675211 \pm 2.5 \cdot 10^{-6} \) |
\(a_{661}= +0.05308416 \pm 8.4 \cdot 10^{-7} \) | \(a_{662}= -0.79367629 \pm 6.8 \cdot 10^{-7} \) | \(a_{663}= +3.31904626 \pm 4.6 \cdot 10^{-7} \) |
\(a_{664}= +0.33742016 \pm 5.7 \cdot 10^{-7} \) | \(a_{665}= +0.35410143 \pm 1.5 \cdot 10^{-6} \) | \(a_{666}= +0.96287059 \pm 1.3 \cdot 10^{-6} \) |
\(a_{667}= -0.26529303 \pm 5.9 \cdot 10^{-7} \) | \(a_{668}= +0.13136019 \pm 8.4 \cdot 10^{-7} \) | \(a_{669}= -0.43278253 \pm 1.0 \cdot 10^{-6} \) |
\(a_{670}= +0.58075885 \pm 1.5 \cdot 10^{-6} \) | \(a_{671}= -1.13217466 \pm 5.5 \cdot 10^{-7} \) | \(a_{672}= -0.11440967 \pm 9.8 \cdot 10^{-7} \) |
\(a_{673}= -0.88904235 \pm 5.4 \cdot 10^{-7} \) | \(a_{674}= -1.03074877 \pm 7.5 \cdot 10^{-7} \) | \(a_{675}= +0.55063504 \pm 6.1 \cdot 10^{-7} \) |
\(a_{676}= +0.26191793 \pm 7.6 \cdot 10^{-7} \) | \(a_{677}= -1.94372195 \pm 7.5 \cdot 10^{-7} \) | \(a_{678}= -0.59693284 \pm 1.8 \cdot 10^{-6} \) |
\(a_{679}= -0.51195172 \pm 6.1 \cdot 10^{-7} \) | \(a_{680}= -0.64383583 \pm 1.2 \cdot 10^{-6} \) | \(a_{681}= +1.81120969 \pm 1.1 \cdot 10^{-6} \) |
\(a_{682}= +0.34032572 \pm 1.6 \cdot 10^{-6} \) | \(a_{683}= -0.67701960 \pm 4.7 \cdot 10^{-7} \) | \(a_{684}= -0.78037913 \pm 1.5 \cdot 10^{-6} \) |
\(a_{685}= -0.25925908 \pm 8.3 \cdot 10^{-7} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= -1.54297114 \pm 9.2 \cdot 10^{-7} \) |
\(a_{688}= +0.23745500 \pm 7.7 \cdot 10^{-7} \) | \(a_{689}= +0.40496388 \pm 6.0 \cdot 10^{-7} \) | \(a_{690}= +1.09566123 \pm 2.4 \cdot 10^{-6} \) |
\(a_{691}= +0.71440710 \pm 5.1 \cdot 10^{-7} \) | \(a_{692}= +0.70217583 \pm 8.6 \cdot 10^{-7} \) | \(a_{693}= -1.09343183 \pm 1.5 \cdot 10^{-6} \) |
\(a_{694}= -0.57306217 \pm 7.6 \cdot 10^{-7} \) | \(a_{695}= +1.95968000 \pm 5.2 \cdot 10^{-7} \) | \(a_{696}= -0.20583810 \pm 1.8 \cdot 10^{-6} \) |
\(a_{697}= +0.73789310 \pm 2.8 \cdot 10^{-7} \) | \(a_{698}= -0.16757649 \pm 7.4 \cdot 10^{-7} \) | \(a_{699}= +1.03068595 \pm 6.5 \cdot 10^{-7} \) |
\(a_{700}= -0.06520068 \pm 5.9 \cdot 10^{-7} \) | \(a_{701}= +0.21160594 \pm 5.6 \cdot 10^{-7} \) | \(a_{702}= -1.39311453 \pm 1.4 \cdot 10^{-6} \) |
\(a_{703}= -0.56934475 \pm 4.7 \cdot 10^{-7} \) | \(a_{704}= +0.18716693 \pm 7.8 \cdot 10^{-7} \) | \(a_{705}= -0.88235142 \pm 4.8 \cdot 10^{-7} \) |
\(a_{706}= +0.22639538 \pm 4.8 \cdot 10^{-7} \) | \(a_{707}= +0.39235295 \pm 8.2 \cdot 10^{-7} \) | \(a_{708}= -0.13761961 \pm 1.7 \cdot 10^{-6} \) |
\(a_{709}= +0.75442973 \pm 8.2 \cdot 10^{-7} \) | \(a_{710}= +0.53798968 \pm 1.7 \cdot 10^{-6} \) | \(a_{711}= -1.90313661 \pm 7.9 \cdot 10^{-7} \) |
\(a_{712}= -0.52877043 \pm 5.4 \cdot 10^{-7} \) | \(a_{713}= +0.25080287 \pm 7.7 \cdot 10^{-7} \) | \(a_{714}= +0.71858838 \pm 1.4 \cdot 10^{-6} \) |
\(a_{715}= -2.14363527 \pm 4.6 \cdot 10^{-7} \) | \(a_{716}= -0.30097060 \pm 6.8 \cdot 10^{-7} \) | \(a_{717}= +1.28306200 \pm 1.2 \cdot 10^{-6} \) |
\(a_{718}= -0.72025503 \pm 9.8 \cdot 10^{-7} \) | \(a_{719}= -1.50572929 \pm 8.1 \cdot 10^{-7} \) | \(a_{720}= +0.56017576 \pm 1.5 \cdot 10^{-6} \) |
\(a_{721}= +0.52502163 \pm 5.8 \cdot 10^{-7} \) | \(a_{722}= -0.24566911 \pm 6.6 \cdot 10^{-7} \) | \(a_{723}= -0.43222327 \pm 1.0 \cdot 10^{-6} \) |
\(a_{724}= +0.83337220 \pm 6.9 \cdot 10^{-7} \) | \(a_{725}= -0.11730462 \pm 3.8 \cdot 10^{-7} \) | \(a_{726}= +1.50382772 \pm 1.6 \cdot 10^{-6} \) |
\(a_{727}= -1.54894126 \pm 5.2 \cdot 10^{-7} \) | \(a_{728}= +0.16495865 \pm 7.3 \cdot 10^{-7} \) | \(a_{729}= -1.18565912 \pm 6.7 \cdot 10^{-7} \) |
\(a_{730}= -0.53691866 \pm 1.5 \cdot 10^{-6} \) | \(a_{731}= -1.49141585 \pm 5.1 \cdot 10^{-7} \) | \(a_{732}= -0.64736778 \pm 1.4 \cdot 10^{-6} \) |
\(a_{733}= -0.28366471 \pm 6.8 \cdot 10^{-7} \) | \(a_{734}= +0.33319052 \pm 5.2 \cdot 10^{-7} \) | \(a_{735}= +0.28369482 \pm 1.7 \cdot 10^{-6} \) |
\(a_{736}= +0.13793258 \pm 6.9 \cdot 10^{-7} \) | \(a_{737}= +1.06039401 \pm 7.8 \cdot 10^{-7} \) | \(a_{738}= -0.64201123 \pm 1.2 \cdot 10^{-6} \) |
\(a_{739}= +0.94098446 \pm 5.0 \cdot 10^{-7} \) | \(a_{740}= +0.40868998 \pm 1.3 \cdot 10^{-6} \) | \(a_{741}= +1.70753603 \pm 9.2 \cdot 10^{-7} \) |
\(a_{742}= +0.08767649 \pm 7.3 \cdot 10^{-7} \) | \(a_{743}= +0.80254299 \pm 8.5 \cdot 10^{-7} \) | \(a_{744}= +0.19459534 \pm 1.8 \cdot 10^{-6} \) |
\(a_{745}= -1.30369405 \pm 6.0 \cdot 10^{-7} \) | \(a_{746}= -0.10091516 \pm 9.3 \cdot 10^{-7} \) | \(a_{747}= +1.84390120 \pm 5.3 \cdot 10^{-7} \) |
\(a_{748}= -1.17556479 \pm 1.2 \cdot 10^{-6} \) | \(a_{749}= +0.14896166 \pm 5.7 \cdot 10^{-7} \) | \(a_{750}= -0.91974918 \pm 1.6 \cdot 10^{-6} \) |
\(a_{751}= -0.24073581 \pm 7.6 \cdot 10^{-7} \) | \(a_{752}= -0.11107905 \pm 5.5 \cdot 10^{-7} \) | \(a_{753}= +0.62011494 \pm 1.0 \cdot 10^{-6} \) |
\(a_{754}= +0.29678237 \pm 1.5 \cdot 10^{-6} \) | \(a_{755}= +1.59437959 \pm 4.6 \cdot 10^{-7} \) | \(a_{756}= -0.30161554 \pm 7.2 \cdot 10^{-7} \) |
\(a_{757}= +0.29789652 \pm 5.8 \cdot 10^{-7} \) | \(a_{758}= +0.42709181 \pm 8.6 \cdot 10^{-7} \) | \(a_{759}= +2.00054222 \pm 1.0 \cdot 10^{-6} \) |
\(a_{760}= -0.33123156 \pm 1.5 \cdot 10^{-6} \) | \(a_{761}= +1.67585126 \pm 1.1 \cdot 10^{-6} \) | \(a_{762}= -2.05531275 \pm 1.7 \cdot 10^{-6} \) |
\(a_{763}= -0.29817754 \pm 5.7 \cdot 10^{-7} \) | \(a_{764}= +0.94405424 \pm 5.4 \cdot 10^{-7} \) | \(a_{765}= -3.51837199 \pm 5.1 \cdot 10^{-7} \) |
\(a_{766}= +0.58604987 \pm 6.9 \cdot 10^{-7} \) | \(a_{767}= +0.19842329 \pm 5.4 \cdot 10^{-7} \) | \(a_{768}= +0.10702045 \pm 9.8 \cdot 10^{-7} \) |
\(a_{769}= +1.03028902 \pm 8.9 \cdot 10^{-7} \) | \(a_{770}= -0.46410664 \pm 1.5 \cdot 10^{-6} \) | \(a_{771}= +1.95400688 \pm 1.0 \cdot 10^{-6} \) |
\(a_{772}= +0.60351576 \pm 5.9 \cdot 10^{-7} \) | \(a_{773}= +0.11585753 \pm 4.5 \cdot 10^{-7} \) | \(a_{774}= +1.29762118 \pm 1.5 \cdot 10^{-6} \) |
\(a_{775}= +0.11089751 \pm 5.5 \cdot 10^{-7} \) | \(a_{776}= +0.47888698 \pm 6.1 \cdot 10^{-7} \) | \(a_{777}= -0.45614093 \pm 1.5 \cdot 10^{-6} \) |
\(a_{778}= +0.39460796 \pm 7.6 \cdot 10^{-7} \) | \(a_{779}= +0.37962082 \pm 2.9 \cdot 10^{-7} \) | \(a_{780}= -1.22571230 \pm 2.4 \cdot 10^{-6} \) |
\(a_{781}= +0.98230277 \pm 9.3 \cdot 10^{-7} \) | \(a_{782}= -0.86633189 \pm 1.1 \cdot 10^{-6} \) | \(a_{783}= -0.54264615 \pm 5.2 \cdot 10^{-7} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.22024992 \pm 8.0 \cdot 10^{-7} \) | \(a_{786}= +0.10025943 \pm 1.5 \cdot 10^{-6} \) |
\(a_{787}= -1.13599652 \pm 8.3 \cdot 10^{-7} \) | \(a_{788}= -0.81525219 \pm 9.6 \cdot 10^{-7} \) | \(a_{789}= -1.57529610 \pm 1.0 \cdot 10^{-6} \) |
\(a_{790}= -0.80778546 \pm 1.6 \cdot 10^{-6} \) | \(a_{791}= +0.18633940 \pm 9.0 \cdot 10^{-7} \) | \(a_{792}= +1.02281183 \pm 1.5 \cdot 10^{-6} \) |
\(a_{793}= +0.93339057 \pm 4.9 \cdot 10^{-7} \) | \(a_{794}= -0.40126404 \pm 6.1 \cdot 10^{-7} \) | \(a_{795}= -0.65147332 \pm 8.1 \cdot 10^{-7} \) |
\(a_{796}= -0.64842907 \pm 6.8 \cdot 10^{-7} \) | \(a_{797}= -0.75684848 \pm 6.6 \cdot 10^{-7} \) | \(a_{798}= +0.36968920 \pm 1.7 \cdot 10^{-6} \) |
\(a_{799}= +0.69766927 \pm 5.9 \cdot 10^{-7} \) | \(a_{800}= +0.06098965 \pm 5.9 \cdot 10^{-7} \) | \(a_{801}= -2.88957371 \pm 5.6 \cdot 10^{-7} \) |
\(a_{802}= +0.68433879 \pm 8.3 \cdot 10^{-7} \) | \(a_{803}= -0.98034722 \pm 7.1 \cdot 10^{-7} \) | \(a_{804}= +0.60632422 \pm 1.7 \cdot 10^{-6} \) |
\(a_{805}= -0.34202316 \pm 1.4 \cdot 10^{-6} \) | \(a_{806}= -0.28057228 \pm 1.5 \cdot 10^{-6} \) | \(a_{807}= -1.45301490 \pm 8.9 \cdot 10^{-7} \) |
\(a_{808}= -0.36701258 \pm 8.2 \cdot 10^{-7} \) | \(a_{809}= -0.05738746 \pm 9.1 \cdot 10^{-7} \) | \(a_{810}= +0.65671431 \pm 1.5 \cdot 10^{-6} \) |
\(a_{811}= -0.30784706 \pm 6.8 \cdot 10^{-7} \) | \(a_{812}= +0.06425471 \pm 8.4 \cdot 10^{-7} \) | \(a_{813}= +1.45992297 \pm 7.9 \cdot 10^{-7} \) |
\(a_{814}= +0.74621748 \pm 1.3 \cdot 10^{-6} \) | \(a_{815}= +1.76913522 \pm 5.6 \cdot 10^{-7} \) | \(a_{816}= -0.67217788 \pm 1.4 \cdot 10^{-6} \) |
\(a_{817}= -0.76728256 \pm 7.9 \cdot 10^{-7} \) | \(a_{818}= +1.24490644 \pm 9.7 \cdot 10^{-7} \) | \(a_{819}= +0.90145011 \pm 1.4 \cdot 10^{-6} \) |
\(a_{820}= -0.27250137 \pm 1.2 \cdot 10^{-6} \) | \(a_{821}= -1.35354196 \pm 9.0 \cdot 10^{-7} \) | \(a_{822}= -0.27067183 \pm 1.8 \cdot 10^{-6} \) |
\(a_{823}= -0.68771333 \pm 4.0 \cdot 10^{-7} \) | \(a_{824}= -0.49111277 \pm 5.8 \cdot 10^{-7} \) | \(a_{825}= +0.88457976 \pm 7.2 \cdot 10^{-7} \) |
\(a_{826}= +0.04295953 \pm 7.9 \cdot 10^{-7} \) | \(a_{827}= -0.09036082 \pm 6.3 \cdot 10^{-7} \) | \(a_{828}= +0.75376067 \pm 1.4 \cdot 10^{-6} \) |
\(a_{829}= +0.23151750 \pm 9.7 \cdot 10^{-7} \) | \(a_{830}= +0.78264301 \pm 1.3 \cdot 10^{-6} \) | \(a_{831}= -0.04112686 \pm 1.3 \cdot 10^{-6} \) |
\(a_{832}= -0.15430468 \pm 7.3 \cdot 10^{-7} \) | \(a_{833}= -0.22431557 \pm 5.0 \cdot 10^{-7} \) | \(a_{834}= +2.04594633 \pm 1.6 \cdot 10^{-6} \) |
\(a_{835}= +0.30468877 \pm 9.4 \cdot 10^{-7} \) | \(a_{836}= -0.60478796 \pm 1.5 \cdot 10^{-6} \) | \(a_{837}= +0.51300711 \pm 4.0 \cdot 10^{-7} \) |
\(a_{838}= +0.21515621 \pm 6.6 \cdot 10^{-7} \) | \(a_{839}= -1.28907488 \pm 7.7 \cdot 10^{-7} \) | \(a_{840}= -0.26537220 \pm 1.7 \cdot 10^{-6} \) |
\(a_{841}= -0.88439729 \pm 8.3 \cdot 10^{-7} \) | \(a_{842}= -0.26614111 \pm 6.5 \cdot 10^{-7} \) | \(a_{843}= +2.60173006 \pm 8.3 \cdot 10^{-7} \) |
\(a_{844}= +0.06708618 \pm 9.1 \cdot 10^{-7} \) | \(a_{845}= +0.60751627 \pm 5.5 \cdot 10^{-7} \) | \(a_{846}= -0.60701409 \pm 1.3 \cdot 10^{-6} \) |
\(a_{847}= -0.46943699 \pm 6.8 \cdot 10^{-7} \) | \(a_{848}= -0.08201385 \pm 7.3 \cdot 10^{-7} \) | \(a_{849}= -1.20473416 \pm 9.8 \cdot 10^{-7} \) |
\(a_{850}= -0.38306597 \pm 1.0 \cdot 10^{-6} \) | \(a_{851}= +0.54992460 \pm 4.9 \cdot 10^{-7} \) | \(a_{852}= +0.56167232 \pm 2.0 \cdot 10^{-6} \) |
\(a_{853}= -0.05218834 \pm 4.5 \cdot 10^{-7} \) | \(a_{854}= +0.20208324 \pm 4.7 \cdot 10^{-7} \) | \(a_{855}= -1.81008232 \pm 6.9 \cdot 10^{-7} \) |
\(a_{856}= -0.13934087 \pm 5.7 \cdot 10^{-7} \) | \(a_{857}= -1.41187274 \pm 6.9 \cdot 10^{-7} \) | \(a_{858}= -2.23799943 \pm 2.4 \cdot 10^{-6} \) |
\(a_{859}= -0.23295939 \pm 3.8 \cdot 10^{-7} \) | \(a_{860}= +0.55077471 \pm 1.5 \cdot 10^{-6} \) | \(a_{861}= +0.30414014 \pm 1.4 \cdot 10^{-6} \) |
\(a_{862}= -0.00389810 \pm 6.9 \cdot 10^{-7} \) | \(a_{863}= -0.70297166 \pm 5.5 \cdot 10^{-7} \) | \(a_{864}= +0.28213550 \pm 7.2 \cdot 10^{-7} \) |
\(a_{865}= +1.62869049 \pm 8.5 \cdot 10^{-7} \) | \(a_{866}= -0.50825507 \pm 9.6 \cdot 10^{-7} \) | \(a_{867}= +2.50951171 \pm 7.1 \cdot 10^{-7} \) |
\(a_{868}= -0.06074515 \pm 8.3 \cdot 10^{-7} \) | \(a_{869}= -1.47491658 \pm 7.2 \cdot 10^{-7} \) | \(a_{870}= -0.47743961 \pm 2.5 \cdot 10^{-6} \) |
\(a_{871}= -0.87421297 \pm 8.9 \cdot 10^{-7} \) | \(a_{872}= +0.27891955 \pm 5.7 \cdot 10^{-7} \) | \(a_{873}= +2.61697543 \pm 1.0 \cdot 10^{-6} \) |
\(a_{874}= -0.44569819 \pm 1.4 \cdot 10^{-6} \) | \(a_{875}= +0.28711021 \pm 6.3 \cdot 10^{-7} \) | \(a_{876}= -0.56055415 \pm 1.7 \cdot 10^{-6} \) |
\(a_{877}= +1.63611614 \pm 7.5 \cdot 10^{-7} \) | \(a_{878}= +0.95870997 \pm 9.3 \cdot 10^{-7} \) | \(a_{879}= +0.27564254 \pm 6.2 \cdot 10^{-7} \) |
\(a_{880}= +0.43413201 \pm 1.5 \cdot 10^{-6} \) | \(a_{881}= +0.64222026 \pm 6.5 \cdot 10^{-7} \) | \(a_{882}= +0.19516799 \pm 7.7 \cdot 10^{-7} \) |
\(a_{883}= +1.48306261 \pm 6.6 \cdot 10^{-7} \) | \(a_{884}= +0.96916239 \pm 1.2 \cdot 10^{-6} \) | \(a_{885}= -0.31920744 \pm 1.0 \cdot 10^{-6} \) |
\(a_{886}= +0.60550741 \pm 7.2 \cdot 10^{-7} \) | \(a_{887}= -1.32832890 \pm 7.7 \cdot 10^{-7} \) | \(a_{888}= +0.42668077 \pm 1.5 \cdot 10^{-6} \) |
\(a_{889}= +0.64158933 \pm 7.4 \cdot 10^{-7} \) | \(a_{890}= -1.22647823 \pm 1.2 \cdot 10^{-6} \) | \(a_{891}= +1.19907931 \pm 8.0 \cdot 10^{-7} \) |
\(a_{892}= -0.12637261 \pm 7.0 \cdot 10^{-7} \) | \(a_{893}= +0.35892703 \pm 6.0 \cdot 10^{-7} \) | \(a_{894}= -1.36108348 \pm 1.5 \cdot 10^{-6} \) |
\(a_{895}= -0.69809858 \pm 7.9 \cdot 10^{-7} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= -1.64929257 \pm 6.6 \cdot 10^{-7} \) |
\(a_{898}= -0.49457340 \pm 7.1 \cdot 10^{-7} \) | \(a_{899}= -0.10928855 \pm 1.0 \cdot 10^{-6} \) | \(a_{900}= +0.33329036 \pm 1.3 \cdot 10^{-6} \) |
\(a_{901}= +0.51511553 \pm 6.6 \cdot 10^{-7} \) | \(a_{902}= -0.49755388 \pm 1.2 \cdot 10^{-6} \) | \(a_{903}= -0.61472241 \pm 1.7 \cdot 10^{-6} \) |
\(a_{904}= -0.17430455 \pm 9.0 \cdot 10^{-7} \) | \(a_{905}= +1.93299927 \pm 7.5 \cdot 10^{-7} \) | \(a_{906}= +1.66456517 \pm 1.6 \cdot 10^{-6} \) |
\(a_{907}= -0.90579757 \pm 8.5 \cdot 10^{-7} \) | \(a_{908}= +0.52887371 \pm 8.1 \cdot 10^{-7} \) | \(a_{909}= -2.00561496 \pm 6.7 \cdot 10^{-7} \) |
\(a_{910}= +0.38262008 \pm 1.4 \cdot 10^{-6} \) | \(a_{911}= -0.32397238 \pm 5.6 \cdot 10^{-7} \) | \(a_{912}= -0.34581258 \pm 1.7 \cdot 10^{-6} \) |
\(a_{913}= +1.42900958 \pm 6.7 \cdot 10^{-7} \) | \(a_{914}= +0.14408782 \pm 1.0 \cdot 10^{-6} \) | \(a_{915}= -1.50156369 \pm 6.4 \cdot 10^{-7} \) |
\(a_{916}= -0.45054798 \pm 6.6 \cdot 10^{-7} \) | \(a_{917}= -0.03129713 \pm 6.1 \cdot 10^{-7} \) | \(a_{918}= -1.77204676 \pm 1.2 \cdot 10^{-6} \) |
\(a_{919}= +0.20821796 \pm 8.4 \cdot 10^{-7} \) | \(a_{920}= +0.31993337 \pm 1.4 \cdot 10^{-6} \) | \(a_{921}= -0.97337426 \pm 8.5 \cdot 10^{-7} \) |
\(a_{922}= +1.11978442 \pm 4.9 \cdot 10^{-7} \) | \(a_{923}= -0.80983278 \pm 8.2 \cdot 10^{-7} \) | \(a_{924}= -0.48453690 \pm 1.7 \cdot 10^{-6} \) |
\(a_{925}= +0.24316016 \pm 5.6 \cdot 10^{-7} \) | \(a_{926}= -1.00257035 \pm 9.2 \cdot 10^{-7} \) | \(a_{927}= -2.68378572 \pm 9.8 \cdot 10^{-7} \) |
\(a_{928}= -0.06010478 \pm 8.4 \cdot 10^{-7} \) | \(a_{929}= +0.95830347 \pm 8.1 \cdot 10^{-7} \) | \(a_{930}= +0.45136212 \pm 2.5 \cdot 10^{-6} \) |
\(a_{931}= -0.11540270 \pm 7.5 \cdot 10^{-7} \) | \(a_{932}= +0.30096057 \pm 5.8 \cdot 10^{-7} \) | \(a_{933}= +1.09269362 \pm 1.0 \cdot 10^{-6} \) |
\(a_{934}= -0.00317776 \pm 8.8 \cdot 10^{-7} \) | \(a_{935}= -2.72671187 \pm 4.2 \cdot 10^{-7} \) | \(a_{936}= -0.84322937 \pm 1.4 \cdot 10^{-6} \) |
\(a_{937}= -0.64604865 \pm 7.4 \cdot 10^{-7} \) | \(a_{938}= -0.18927102 \pm 7.9 \cdot 10^{-7} \) | \(a_{939}= +2.78890924 \pm 6.5 \cdot 10^{-7} \) |
\(a_{940}= -0.25764685 \pm 1.3 \cdot 10^{-6} \) | \(a_{941}= +1.12114243 \pm 7.5 \cdot 10^{-7} \) | \(a_{942}= -0.22994546 \pm 1.6 \cdot 10^{-6} \) |
\(a_{943}= -0.36667208 \pm 5.5 \cdot 10^{-7} \) | \(a_{944}= -0.04018496 \pm 7.9 \cdot 10^{-7} \) | \(a_{945}= -0.69959451 \pm 1.4 \cdot 10^{-6} \) |
\(a_{946}= +1.00564667 \pm 1.5 \cdot 10^{-6} \) | \(a_{947}= +0.03174129 \pm 4.3 \cdot 10^{-7} \) | \(a_{948}= -0.84334468 \pm 1.9 \cdot 10^{-6} \) |
\(a_{949}= +0.80822058 \pm 8.3 \cdot 10^{-7} \) | \(a_{950}= -0.19707437 \pm 1.3 \cdot 10^{-6} \) | \(a_{951}= +1.64285413 \pm 1.0 \cdot 10^{-6} \) |
\(a_{952}= +0.20982800 \pm 5.0 \cdot 10^{-7} \) | \(a_{953}= -0.52955838 \pm 7.3 \cdot 10^{-7} \) | \(a_{954}= -0.44818139 \pm 1.5 \cdot 10^{-6} \) |
\(a_{955}= +2.18972525 \pm 5.8 \cdot 10^{-7} \) | \(a_{956}= +0.37465444 \pm 9.0 \cdot 10^{-7} \) | \(a_{957}= -0.87174582 \pm 8.4 \cdot 10^{-7} \) |
\(a_{958}= +0.46595353 \pm 8.2 \cdot 10^{-7} \) | \(a_{959}= +0.08449330 \pm 8.5 \cdot 10^{-7} \) | \(a_{960}= +0.24823297 \pm 1.7 \cdot 10^{-6} \) |
\(a_{961}= -0.89668073 \pm 8.8 \cdot 10^{-7} \) | \(a_{962}= -0.61519869 \pm 1.3 \cdot 10^{-6} \) | \(a_{963}= -0.76145657 \pm 4.8 \cdot 10^{-7} \) |
\(a_{964}= -0.12620931 \pm 8.4 \cdot 10^{-7} \) | \(a_{965}= +1.39984934 \pm 5.2 \cdot 10^{-7} \) | \(a_{966}= -0.35707923 \pm 1.6 \cdot 10^{-6} \) |
\(a_{967}= +0.53869922 \pm 9.8 \cdot 10^{-7} \) | \(a_{968}= +0.43911809 \pm 6.8 \cdot 10^{-7} \) | \(a_{969}= +2.17199205 \pm 6.6 \cdot 10^{-7} \) |
\(a_{970}= +1.11077402 \pm 1.3 \cdot 10^{-6} \) | \(a_{971}= +1.31661288 \pm 9.8 \cdot 10^{-7} \) | \(a_{972}= -0.11237642 \pm 7.9 \cdot 10^{-7} \) |
\(a_{973}= -0.63866550 \pm 6.9 \cdot 10^{-7} \) | \(a_{974}= -0.04176631 \pm 6.4 \cdot 10^{-7} \) | \(a_{975}= -0.72926770 \pm 6.0 \cdot 10^{-7} \) |
\(a_{976}= -0.18903156 \pm 4.7 \cdot 10^{-7} \) | \(a_{977}= -1.80716174 \pm 1.0 \cdot 10^{-6} \) | \(a_{978}= +1.84701366 \pm 1.5 \cdot 10^{-6} \) |
\(a_{979}= -2.23939792 \pm 6.2 \cdot 10^{-7} \) | \(a_{980}= +0.08283896 \pm 7.6 \cdot 10^{-7} \) | \(a_{981}= +1.52421268 \pm 5.4 \cdot 10^{-7} \) |
\(a_{982}= -0.91540199 \pm 9.1 \cdot 10^{-7} \) | \(a_{983}= +0.37871757 \pm 6.9 \cdot 10^{-7} \) | \(a_{984}= -0.28449705 \pm 1.4 \cdot 10^{-6} \) |
\(a_{985}= -1.89097006 \pm 8.2 \cdot 10^{-7} \) | \(a_{986}= +0.37750826 \pm 1.3 \cdot 10^{-6} \) | \(a_{987}= +0.28756093 \pm 1.5 \cdot 10^{-6} \) |
\(a_{988}= +0.49860097 \pm 1.4 \cdot 10^{-6} \) | \(a_{989}= +0.74111081 \pm 4.5 \cdot 10^{-7} \) | \(a_{990}= +2.37240276 \pm 2.2 \cdot 10^{-6} \) |
\(a_{991}= +1.01041424 \pm 7.1 \cdot 10^{-7} \) | \(a_{992}= +0.05682189 \pm 8.3 \cdot 10^{-7} \) | \(a_{993}= -1.92196361 \pm 1.0 \cdot 10^{-6} \) |
\(a_{994}= -0.17533242 \pm 1.0 \cdot 10^{-6} \) | \(a_{995}= -1.50402536 \pm 6.9 \cdot 10^{-7} \) | \(a_{996}= +0.81709545 \pm 1.5 \cdot 10^{-6} \) |
\(a_{997}= -1.16730316 \pm 4.7 \cdot 10^{-7} \) | \(a_{998}= +0.50918476 \pm 1.0 \cdot 10^{-6} \) | \(a_{999}= +1.12484848 \pm 5.9 \cdot 10^{-7} \) |
\(a_{1000}= -0.26856701 \pm 6.3 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000