Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(11.1134306546693979915166355651 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +1.66654851 \pm 1.2 \cdot 10^{-5} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.34901476 \pm 9.8 \cdot 10^{-6} \) | \(a_{6}= -1.17842775 \pm 1.2 \cdot 10^{-5} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +1.77738393 \pm 9.9 \cdot 10^{-6} \) |
\(a_{10}= -0.95389749 \pm 9.8 \cdot 10^{-6} \) | \(a_{11}= +1.67397663 \pm 1.0 \cdot 10^{-5} \) | \(a_{12}= +0.83327425 \pm 1.2 \cdot 10^{-5} \) |
\(a_{13}= +0.78093275 \pm 9.4 \cdot 10^{-6} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= +2.24819854 \pm 1.2 \cdot 10^{-5} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +0.00113081 \pm 6.5 \cdot 10^{-6} \) | \(a_{18}= -1.25680023 \pm 9.9 \cdot 10^{-6} \) |
\(a_{19}= -1.07438278 \pm 9.7 \cdot 10^{-6} \) | \(a_{20}= +0.67450738 \pm 9.8 \cdot 10^{-6} \) | \(a_{21}= +0.62989613 \pm 1.2 \cdot 10^{-5} \) |
\(a_{22}= -1.18368023 \pm 1.0 \cdot 10^{-5} \) | \(a_{23}= -1.05654566 \pm 8.9 \cdot 10^{-6} \) | \(a_{24}= -0.58921388 \pm 1.2 \cdot 10^{-5} \) |
\(a_{25}= +0.81984083 \pm 7.6 \cdot 10^{-6} \) | \(a_{26}= -0.55220284 \pm 9.4 \cdot 10^{-6} \) | \(a_{27}= +1.29554802 \pm 9.3 \cdot 10^{-6} \) |
\(a_{28}= +0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -1.30218890 \pm 1.0 \cdot 10^{-5} \) | \(a_{30}= -1.58971643 \pm 2.2 \cdot 10^{-5} \) |
\(a_{31}= +0.62470357 \pm 1.0 \cdot 10^{-5} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +2.78976326 \pm 1.1 \cdot 10^{-5} \) |
\(a_{34}= -0.00079960 \pm 6.5 \cdot 10^{-6} \) | \(a_{35}= +0.50987965 \pm 9.8 \cdot 10^{-6} \) | \(a_{36}= +0.88869196 \pm 9.9 \cdot 10^{-6} \) |
\(a_{37}= +0.48026224 \pm 7.7 \cdot 10^{-6} \) | \(a_{38}= +0.75970335 \pm 9.7 \cdot 10^{-6} \) | \(a_{39}= +1.30146231 \pm 1.0 \cdot 10^{-5} \) |
\(a_{40}= -0.47694874 \pm 9.8 \cdot 10^{-6} \) | \(a_{41}= -1.27324812 \pm 6.3 \cdot 10^{-6} \) | \(a_{42}= -0.44540382 \pm 1.2 \cdot 10^{-5} \) |
\(a_{43}= -1.25735185 \pm 9.9 \cdot 10^{-6} \) | \(a_{44}= +0.83698832 \pm 1.0 \cdot 10^{-5} \) | \(a_{45}= +2.39771716 \pm 8.7 \cdot 10^{-6} \) |
\(a_{46}= +0.74709060 \pm 8.9 \cdot 10^{-6} \) | \(a_{47}= +0.12459623 \pm 7.1 \cdot 10^{-6} \) | \(a_{48}= +0.41663713 \pm 1.2 \cdot 10^{-5} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.57971501 \pm 7.6 \cdot 10^{-6} \) | \(a_{51}= +0.00188455 \pm 7.6 \cdot 10^{-6} \) |
\(a_{52}= +0.39046637 \pm 9.4 \cdot 10^{-6} \) | \(a_{53}= -0.52923718 \pm 9.5 \cdot 10^{-6} \) | \(a_{54}= -0.91609079 \pm 9.3 \cdot 10^{-6} \) |
\(a_{55}= +2.25821919 \pm 9.3 \cdot 10^{-6} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= -1.79051102 \pm 1.3 \cdot 10^{-5} \) |
\(a_{58}= +0.92078660 \pm 1.0 \cdot 10^{-5} \) | \(a_{59}= +1.35801779 \pm 1.0 \cdot 10^{-5} \) | \(a_{60}= +1.12409927 \pm 2.2 \cdot 10^{-5} \) |
\(a_{61}= -1.26246880 \pm 6.0 \cdot 10^{-6} \) | \(a_{62}= -0.44173213 \pm 1.0 \cdot 10^{-5} \) | \(a_{63}= +0.67178798 \pm 9.9 \cdot 10^{-6} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +1.05348981 \pm 6.8 \cdot 10^{-6} \) | \(a_{66}= -1.97266052 \pm 2.2 \cdot 10^{-5} \) |
\(a_{67}= +0.05357290 \pm 1.0 \cdot 10^{-5} \) | \(a_{68}= +0.00056540 \pm 6.5 \cdot 10^{-6} \) | \(a_{69}= -1.76078458 \pm 1.1 \cdot 10^{-5} \) |
\(a_{70}= -0.36053936 \pm 9.8 \cdot 10^{-6} \) | \(a_{71}= +0.39497542 \pm 1.3 \cdot 10^{-5} \) | \(a_{72}= -0.62840011 \pm 9.9 \cdot 10^{-6} \) |
\(a_{73}= +1.97634206 \pm 9.7 \cdot 10^{-6} \) | \(a_{74}= -0.33959669 \pm 7.7 \cdot 10^{-6} \) | \(a_{75}= +1.36630452 \pm 8.2 \cdot 10^{-6} \) |
\(a_{76}= -0.53719139 \pm 9.7 \cdot 10^{-6} \) | \(a_{77}= +0.63270370 \pm 1.0 \cdot 10^{-5} \) | \(a_{78}= -0.92027282 \pm 2.2 \cdot 10^{-5} \) |
\(a_{79}= +1.07447711 \pm 1.1 \cdot 10^{-5} \) | \(a_{80}= +0.33725369 \pm 9.8 \cdot 10^{-6} \) | \(a_{81}= +0.38170970 \pm 1.0 \cdot 10^{-5} \) |
\(a_{82}= +0.90032238 \pm 6.3 \cdot 10^{-6} \) | \(a_{83}= -1.17421554 \pm 7.4 \cdot 10^{-6} \) | \(a_{84}= +0.31494806 \pm 1.2 \cdot 10^{-5} \) |
\(a_{85}= +0.00152548 \pm 7.5 \cdot 10^{-6} \) | \(a_{86}= +0.88908202 \pm 9.9 \cdot 10^{-6} \) | \(a_{87}= -2.17016096 \pm 1.4 \cdot 10^{-5} \) |
\(a_{88}= -0.59184011 \pm 1.0 \cdot 10^{-5} \) | \(a_{89}= +0.88435960 \pm 6.9 \cdot 10^{-6} \) | \(a_{90}= -1.69544206 \pm 1.9 \cdot 10^{-5} \) |
\(a_{91}= +0.29516484 \pm 9.4 \cdot 10^{-6} \) | \(a_{92}= -0.52827283 \pm 8.9 \cdot 10^{-6} \) | \(a_{93}= +1.04109880 \pm 1.4 \cdot 10^{-5} \) |
\(a_{94}= -0.08810284 \pm 7.1 \cdot 10^{-6} \) | \(a_{95}= -1.44935823 \pm 8.3 \cdot 10^{-6} \) | \(a_{96}= -0.29460694 \pm 1.2 \cdot 10^{-5} \) |
\(a_{97}= -0.59310197 \pm 7.8 \cdot 10^{-6} \) | \(a_{98}= -0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +2.97529916 \pm 7.9 \cdot 10^{-6} \) |
\(a_{100}= +0.40992042 \pm 7.6 \cdot 10^{-6} \) | \(a_{101}= +0.47509427 \pm 1.0 \cdot 10^{-5} \) | \(a_{102}= -0.00133258 \pm 1.9 \cdot 10^{-5} \) |
\(a_{103}= -0.51371068 \pm 7.4 \cdot 10^{-6} \) | \(a_{104}= -0.27610142 \pm 9.4 \cdot 10^{-6} \) | \(a_{105}= +0.84973918 \pm 2.2 \cdot 10^{-5} \) |
\(a_{106}= +0.37422720 \pm 9.5 \cdot 10^{-6} \) | \(a_{107}= -1.03708255 \pm 7.3 \cdot 10^{-6} \) | \(a_{108}= +0.64777401 \pm 9.3 \cdot 10^{-6} \) |
\(a_{109}= -0.03510831 \pm 7.3 \cdot 10^{-6} \) | \(a_{110}= -1.59680210 \pm 1.9 \cdot 10^{-5} \) | \(a_{111}= +0.80038032 \pm 8.0 \cdot 10^{-6} \) |
\(a_{112}= +0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +0.41636328 \pm 1.1 \cdot 10^{-5} \) | \(a_{114}= +1.26608248 \pm 2.2 \cdot 10^{-5} \) |
\(a_{115}= -1.42529569 \pm 1.0 \cdot 10^{-5} \) | \(a_{116}= -0.65109445 \pm 1.0 \cdot 10^{-5} \) | \(a_{117}= +1.38801732 \pm 7.9 \cdot 10^{-6} \) |
\(a_{118}= -0.96026359 \pm 1.0 \cdot 10^{-5} \) | \(a_{119}= +0.00042741 \pm 6.5 \cdot 10^{-6} \) | \(a_{120}= -0.79485822 \pm 2.2 \cdot 10^{-5} \) |
\(a_{121}= +1.80219777 \pm 8.8 \cdot 10^{-6} \) | \(a_{122}= +0.89270025 \pm 6.0 \cdot 10^{-6} \) | \(a_{123}= -2.12192976 \pm 7.4 \cdot 10^{-6} \) |
\(a_{124}= +0.31235178 \pm 1.0 \cdot 10^{-5} \) | \(a_{125}= -0.24303738 \pm 8.2 \cdot 10^{-6} \) | \(a_{126}= -0.47502584 \pm 9.9 \cdot 10^{-6} \) |
\(a_{127}= +0.12488068 \pm 9.6 \cdot 10^{-6} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -2.09543785 \pm 1.2 \cdot 10^{-5} \) |
\(a_{130}= -0.74492979 \pm 1.9 \cdot 10^{-5} \) | \(a_{131}= -0.35820365 \pm 7.9 \cdot 10^{-6} \) | \(a_{132}= +1.39488163 \pm 2.2 \cdot 10^{-5} \) |
\(a_{133}= -0.40607852 \pm 9.7 \cdot 10^{-6} \) | \(a_{134}= -0.03788176 \pm 1.0 \cdot 10^{-5} \) | \(a_{135}= +1.74771341 \pm 7.1 \cdot 10^{-6} \) |
\(a_{136}= -0.00039980 \pm 6.5 \cdot 10^{-6} \) | \(a_{137}= +1.23269708 \pm 1.1 \cdot 10^{-5} \) | \(a_{138}= +1.24506272 \pm 2.1 \cdot 10^{-5} \) |
\(a_{139}= -0.70690075 \pm 8.9 \cdot 10^{-6} \) | \(a_{140}= +0.25493983 \pm 9.8 \cdot 10^{-6} \) | \(a_{141}= +0.20764566 \pm 8.7 \cdot 10^{-6} \) |
\(a_{142}= -0.27928980 \pm 1.3 \cdot 10^{-5} \) | \(a_{143}= +1.30726317 \pm 1.2 \cdot 10^{-5} \) | \(a_{144}= +0.44434598 \pm 9.9 \cdot 10^{-6} \) |
\(a_{145}= -1.75667205 \pm 1.0 \cdot 10^{-5} \) | \(a_{146}= -1.39748488 \pm 9.7 \cdot 10^{-6} \) | \(a_{147}= +0.23807836 \pm 1.2 \cdot 10^{-5} \) |
\(a_{148}= +0.24013112 \pm 7.7 \cdot 10^{-6} \) | \(a_{149}= +0.69493400 \pm 6.9 \cdot 10^{-6} \) | \(a_{150}= -0.96612319 \pm 2.0 \cdot 10^{-5} \) |
\(a_{151}= +0.44157949 \pm 8.3 \cdot 10^{-6} \) | \(a_{152}= +0.37985167 \pm 9.7 \cdot 10^{-6} \) | \(a_{153}= +0.00200988 \pm 7.3 \cdot 10^{-6} \) |
\(a_{154}= -0.44738907 \pm 1.0 \cdot 10^{-5} \) | \(a_{155}= +0.84273433 \pm 1.2 \cdot 10^{-5} \) | \(a_{156}= +0.65073115 \pm 2.2 \cdot 10^{-5} \) |
\(a_{157}= -0.68812420 \pm 8.3 \cdot 10^{-6} \) | \(a_{158}= -0.75977005 \pm 1.1 \cdot 10^{-5} \) | \(a_{159}= -0.88199944 \pm 1.1 \cdot 10^{-5} \) |
\(a_{160}= -0.23847437 \pm 9.8 \cdot 10^{-6} \) | \(a_{161}= -0.39933672 \pm 8.9 \cdot 10^{-6} \) | \(a_{162}= -0.26990952 \pm 1.0 \cdot 10^{-5} \) |
\(a_{163}= -1.19915085 \pm 7.3 \cdot 10^{-6} \) | \(a_{164}= -0.63662406 \pm 6.3 \cdot 10^{-6} \) | \(a_{165}= +3.76343182 \pm 1.1 \cdot 10^{-5} \) |
\(a_{166}= +0.83029577 \pm 7.4 \cdot 10^{-6} \) | \(a_{167}= -0.10014078 \pm 1.0 \cdot 10^{-5} \) | \(a_{168}= -0.22270191 \pm 1.2 \cdot 10^{-5} \) |
\(a_{169}= -0.39014404 \pm 9.9 \cdot 10^{-6} \) | \(a_{170}= -0.00107868 \pm 1.6 \cdot 10^{-5} \) | \(a_{171}= -1.90959069 \pm 1.3 \cdot 10^{-5} \) |
\(a_{172}= -0.62867593 \pm 9.9 \cdot 10^{-6} \) | \(a_{173}= -0.71629944 \pm 1.1 \cdot 10^{-5} \) | \(a_{174}= +1.53453553 \pm 2.3 \cdot 10^{-5} \) |
\(a_{175}= +0.30987071 \pm 7.6 \cdot 10^{-6} \) | \(a_{176}= +0.41849416 \pm 1.0 \cdot 10^{-5} \) | \(a_{177}= +2.26320252 \pm 1.2 \cdot 10^{-5} \) |
\(a_{178}= -0.62533667 \pm 6.9 \cdot 10^{-6} \) | \(a_{179}= -1.21215585 \pm 8.8 \cdot 10^{-6} \) | \(a_{180}= +1.19885858 \pm 1.9 \cdot 10^{-5} \) |
\(a_{181}= -1.40691932 \pm 8.9 \cdot 10^{-6} \) | \(a_{182}= -0.20871306 \pm 9.4 \cdot 10^{-6} \) | \(a_{183}= -2.10396550 \pm 8.3 \cdot 10^{-6} \) |
\(a_{184}= +0.37354530 \pm 8.9 \cdot 10^{-6} \) | \(a_{185}= +0.64788085 \pm 6.5 \cdot 10^{-6} \) | \(a_{186}= -0.73616802 \pm 2.3 \cdot 10^{-5} \) |
\(a_{187}= +0.00189295 \pm 5.4 \cdot 10^{-6} \) | \(a_{188}= +0.06229811 \pm 7.1 \cdot 10^{-6} \) | \(a_{189}= +0.48967113 \pm 9.3 \cdot 10^{-6} \) |
\(a_{190}= +1.02485103 \pm 1.9 \cdot 10^{-5} \) | \(a_{191}= +1.29151820 \pm 7.0 \cdot 10^{-6} \) | \(a_{192}= +0.20831856 \pm 1.2 \cdot 10^{-5} \) |
\(a_{193}= +0.55076535 \pm 7.6 \cdot 10^{-6} \) | \(a_{194}= +0.41938642 \pm 7.8 \cdot 10^{-6} \) | \(a_{195}= +1.75569187 \pm 7.7 \cdot 10^{-6} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +1.12918641 \pm 1.2 \cdot 10^{-5} \) | \(a_{198}= -2.10385421 \pm 2.0 \cdot 10^{-5} \) |
\(a_{199}= +0.98065629 \pm 8.8 \cdot 10^{-6} \) | \(a_{200}= -0.28985751 \pm 7.6 \cdot 10^{-6} \) | \(a_{201}= +0.08928183 \pm 1.2 \cdot 10^{-5} \) |
\(a_{202}= -0.33594238 \pm 1.0 \cdot 10^{-5} \) | \(a_{203}= -0.49218114 \pm 1.0 \cdot 10^{-5} \) | \(a_{204}= +0.00094227 \pm 1.9 \cdot 10^{-5} \) |
\(a_{205}= -1.71763052 \pm 6.8 \cdot 10^{-6} \) | \(a_{206}= +0.36324831 \pm 7.4 \cdot 10^{-6} \) | \(a_{207}= -1.87788727 \pm 8.9 \cdot 10^{-6} \) |
\(a_{208}= +0.19523319 \pm 9.4 \cdot 10^{-6} \) | \(a_{209}= -1.79849167 \pm 7.8 \cdot 10^{-6} \) | \(a_{210}= -0.60085633 \pm 2.2 \cdot 10^{-5} \) |
\(a_{211}= -1.07584216 \pm 1.1 \cdot 10^{-5} \) | \(a_{212}= -0.26461859 \pm 9.5 \cdot 10^{-6} \) | \(a_{213}= +0.65824570 \pm 1.8 \cdot 10^{-5} \) |
\(a_{214}= +0.73332810 \pm 7.3 \cdot 10^{-6} \) | \(a_{215}= -1.69618621 \pm 8.4 \cdot 10^{-6} \) | \(a_{216}= -0.45804540 \pm 9.3 \cdot 10^{-6} \) |
\(a_{217}= +0.23611575 \pm 1.0 \cdot 10^{-5} \) | \(a_{218}= +0.02482533 \pm 7.3 \cdot 10^{-6} \) | \(a_{219}= +3.29366992 \pm 1.2 \cdot 10^{-5} \) |
\(a_{220}= +1.12910960 \pm 1.9 \cdot 10^{-5} \) | \(a_{221}= +0.00088309 \pm 5.6 \cdot 10^{-6} \) | \(a_{222}= -0.56595435 \pm 2.0 \cdot 10^{-5} \) |
\(a_{223}= +1.25542397 \pm 9.0 \cdot 10^{-6} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +1.45717192 \pm 6.4 \cdot 10^{-6} \) |
\(a_{226}= -0.29441330 \pm 1.1 \cdot 10^{-5} \) | \(a_{227}= -0.28289135 \pm 1.0 \cdot 10^{-5} \) | \(a_{228}= -0.89525551 \pm 2.2 \cdot 10^{-5} \) |
\(a_{229}= -1.53502161 \pm 8.5 \cdot 10^{-6} \) | \(a_{230}= +1.00783625 \pm 1.8 \cdot 10^{-5} \) | \(a_{231}= +1.05443140 \pm 2.2 \cdot 10^{-5} \) |
\(a_{232}= +0.46039330 \pm 1.0 \cdot 10^{-5} \) | \(a_{233}= -0.83838666 \pm 7.5 \cdot 10^{-6} \) | \(a_{234}= -0.98147646 \pm 1.9 \cdot 10^{-5} \) |
\(a_{235}= +0.16808215 \pm 7.2 \cdot 10^{-6} \) | \(a_{236}= +0.67900889 \pm 1.0 \cdot 10^{-5} \) | \(a_{237}= +1.79066823 \pm 1.5 \cdot 10^{-5} \) |
\(a_{238}= -0.00030222 \pm 6.5 \cdot 10^{-6} \) | \(a_{239}= -0.65360948 \pm 1.1 \cdot 10^{-5} \) | \(a_{240}= +0.56204964 \pm 2.2 \cdot 10^{-5} \) |
\(a_{241}= +1.02901651 \pm 1.0 \cdot 10^{-5} \) | \(a_{242}= -1.27434626 \pm 8.8 \cdot 10^{-6} \) | \(a_{243}= -0.65941030 \pm 1.0 \cdot 10^{-5} \) |
\(a_{244}= -0.63123440 \pm 6.0 \cdot 10^{-6} \) | \(a_{245}= +0.19271639 \pm 9.8 \cdot 10^{-6} \) | \(a_{246}= +1.50043092 \pm 1.9 \cdot 10^{-5} \) |
\(a_{247}= -0.83902070 \pm 9.2 \cdot 10^{-6} \) | \(a_{248}= -0.22086606 \pm 1.0 \cdot 10^{-5} \) | \(a_{249}= -1.95688715 \pm 9.4 \cdot 10^{-6} \) |
\(a_{250}= +0.17185338 \pm 8.2 \cdot 10^{-6} \) | \(a_{251}= +0.68074712 \pm 9.2 \cdot 10^{-6} \) | \(a_{252}= +0.33589399 \pm 9.9 \cdot 10^{-6} \) |
\(a_{253}= -1.76863274 \pm 1.0 \cdot 10^{-5} \) | \(a_{254}= -0.08830397 \pm 9.6 \cdot 10^{-6} \) | \(a_{255}= +0.00254228 \pm 7.1 \cdot 10^{-6} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +1.44621202 \pm 1.0 \cdot 10^{-5} \) | \(a_{258}= +1.48169831 \pm 2.2 \cdot 10^{-5} \) |
\(a_{259}= +0.18152206 \pm 7.7 \cdot 10^{-6} \) | \(a_{260}= +0.52674490 \pm 1.9 \cdot 10^{-5} \) | \(a_{261}= -2.31448961 \pm 1.0 \cdot 10^{-5} \) |
\(a_{262}= +0.25328823 \pm 7.9 \cdot 10^{-6} \) | \(a_{263}= -0.31224203 \pm 1.0 \cdot 10^{-5} \) | \(a_{264}= -0.98633026 \pm 2.2 \cdot 10^{-5} \) |
\(a_{265}= -0.71394877 \pm 1.0 \cdot 10^{-5} \) | \(a_{266}= +0.28714088 \pm 9.7 \cdot 10^{-6} \) | \(a_{267}= +1.47382817 \pm 9.1 \cdot 10^{-6} \) |
\(a_{268}= +0.02678645 \pm 1.0 \cdot 10^{-5} \) | \(a_{269}= -0.50875549 \pm 9.3 \cdot 10^{-6} \) | \(a_{270}= -1.23582000 \pm 1.9 \cdot 10^{-5} \) |
\(a_{271}= -0.62856177 \pm 7.9 \cdot 10^{-6} \) | \(a_{272}= +0.00028270 \pm 6.5 \cdot 10^{-6} \) | \(a_{273}= +0.49190652 \pm 2.2 \cdot 10^{-5} \) |
\(a_{274}= -0.87164846 \pm 1.1 \cdot 10^{-5} \) | \(a_{275}= +1.37239440 \pm 8.5 \cdot 10^{-6} \) | \(a_{276}= -0.88039229 \pm 2.1 \cdot 10^{-5} \) |
\(a_{277}= +0.22258548 \pm 1.3 \cdot 10^{-5} \) | \(a_{278}= +0.49985432 \pm 8.9 \cdot 10^{-6} \) | \(a_{279}= +1.11033808 \pm 8.3 \cdot 10^{-6} \) |
\(a_{280}= -0.18026968 \pm 9.8 \cdot 10^{-6} \) | \(a_{281}= +1.78059328 \pm 8.5 \cdot 10^{-6} \) | \(a_{282}= -0.14682765 \pm 1.9 \cdot 10^{-5} \) |
\(a_{283}= +1.29098658 \pm 1.0 \cdot 10^{-5} \) | \(a_{284}= +0.19748771 \pm 1.3 \cdot 10^{-5} \) | \(a_{285}= -2.41542580 \pm 1.0 \cdot 10^{-5} \) |
\(a_{286}= -0.92437466 \pm 1.9 \cdot 10^{-5} \) | \(a_{287}= -0.48124256 \pm 6.3 \cdot 10^{-6} \) | \(a_{288}= -0.31420006 \pm 9.9 \cdot 10^{-6} \) |
\(a_{289}= -0.99999872 \pm 8.1 \cdot 10^{-6} \) | \(a_{290}= +1.24215472 \pm 2.0 \cdot 10^{-5} \) | \(a_{291}= -0.98843320 \pm 1.2 \cdot 10^{-5} \) |
\(a_{292}= +0.98817103 \pm 9.7 \cdot 10^{-6} \) | \(a_{293}= +1.60254587 \pm 6.8 \cdot 10^{-6} \) | \(a_{294}= -0.16834682 \pm 1.2 \cdot 10^{-5} \) |
\(a_{295}= +1.83198605 \pm 1.2 \cdot 10^{-5} \) | \(a_{296}= -0.16979834 \pm 7.7 \cdot 10^{-6} \) | \(a_{297}= +2.16871712 \pm 9.7 \cdot 10^{-6} \) |
\(a_{298}= -0.49139254 \pm 7.0 \cdot 10^{-6} \) | \(a_{299}= -0.82509110 \pm 7.0 \cdot 10^{-6} \) | \(a_{300}= +0.68315226 \pm 2.0 \cdot 10^{-5} \) |
\(a_{301}= -0.47523433 \pm 9.9 \cdot 10^{-6} \) | \(a_{302}= -0.31224385 \pm 8.3 \cdot 10^{-6} \) | \(a_{303}= +0.79176765 \pm 1.3 \cdot 10^{-5} \) |
\(a_{304}= -0.26859570 \pm 9.7 \cdot 10^{-6} \) | \(a_{305}= -1.70308906 \pm 5.8 \cdot 10^{-6} \) | \(a_{306}= -0.00142120 \pm 1.6 \cdot 10^{-5} \) |
\(a_{307}= -0.35974080 \pm 8.4 \cdot 10^{-6} \) | \(a_{308}= +0.31635185 \pm 1.0 \cdot 10^{-5} \) | \(a_{309}= -0.85612377 \pm 1.1 \cdot 10^{-5} \) |
\(a_{310}= -0.59590316 \pm 2.0 \cdot 10^{-5} \) | \(a_{311}= -0.05496714 \pm 1.1 \cdot 10^{-5} \) | \(a_{312}= -0.46013641 \pm 2.2 \cdot 10^{-5} \) |
\(a_{313}= -0.75208376 \pm 6.1 \cdot 10^{-6} \) | \(a_{314}= +0.48657729 \pm 8.3 \cdot 10^{-6} \) | \(a_{315}= +0.90625190 \pm 1.9 \cdot 10^{-5} \) |
\(a_{316}= +0.53723856 \pm 1.1 \cdot 10^{-5} \) | \(a_{317}= +0.50285899 \pm 1.0 \cdot 10^{-5} \) | \(a_{318}= +0.62366778 \pm 2.2 \cdot 10^{-5} \) |
\(a_{319}= -2.17983378 \pm 8.6 \cdot 10^{-6} \) | \(a_{320}= +0.16862685 \pm 9.8 \cdot 10^{-6} \) | \(a_{321}= -1.72834838 \pm 8.6 \cdot 10^{-6} \) |
\(a_{322}= +0.28237370 \pm 8.9 \cdot 10^{-6} \) | \(a_{323}= -0.00121492 \pm 6.2 \cdot 10^{-6} \) | \(a_{324}= +0.19085485 \pm 1.0 \cdot 10^{-5} \) |
\(a_{325}= +0.64024056 \pm 8.1 \cdot 10^{-6} \) | \(a_{326}= +0.84792770 \pm 7.3 \cdot 10^{-6} \) | \(a_{327}= -0.05850971 \pm 8.1 \cdot 10^{-6} \) |
\(a_{328}= +0.45016119 \pm 6.3 \cdot 10^{-6} \) | \(a_{329}= +0.04709295 \pm 7.1 \cdot 10^{-6} \) | \(a_{330}= -2.66114816 \pm 3.2 \cdot 10^{-5} \) |
\(a_{331}= +1.12892323 \pm 8.8 \cdot 10^{-6} \) | \(a_{332}= -0.58710777 \pm 7.4 \cdot 10^{-6} \) | \(a_{333}= +0.85361039 \pm 4.8 \cdot 10^{-6} \) |
\(a_{334}= +0.07081022 \pm 1.0 \cdot 10^{-5} \) | \(a_{335}= +0.07227063 \pm 8.0 \cdot 10^{-6} \) | \(a_{336}= +0.15747403 \pm 1.2 \cdot 10^{-5} \) |
\(a_{337}= -1.26030871 \pm 9.7 \cdot 10^{-6} \) | \(a_{338}= +0.27587350 \pm 9.9 \cdot 10^{-6} \) | \(a_{339}= +0.69388961 \pm 1.5 \cdot 10^{-5} \) |
\(a_{340}= +0.00076274 \pm 1.6 \cdot 10^{-5} \) | \(a_{341}= +1.04573917 \pm 8.8 \cdot 10^{-6} \) | \(a_{342}= +1.35028452 \pm 1.9 \cdot 10^{-5} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.44454101 \pm 9.9 \cdot 10^{-6} \) | \(a_{345}= -2.37532440 \pm 1.3 \cdot 10^{-5} \) |
\(a_{346}= +0.50650019 \pm 1.1 \cdot 10^{-5} \) | \(a_{347}= +0.40262361 \pm 9.8 \cdot 10^{-6} \) | \(a_{348}= -1.08508048 \pm 2.3 \cdot 10^{-5} \) |
\(a_{349}= -0.75538162 \pm 9.5 \cdot 10^{-6} \) | \(a_{350}= -0.21911168 \pm 7.6 \cdot 10^{-6} \) | \(a_{351}= +1.01173588 \pm 1.0 \cdot 10^{-5} \) |
\(a_{352}= -0.29592006 \pm 1.0 \cdot 10^{-5} \) | \(a_{353}= -0.59265769 \pm 6.2 \cdot 10^{-6} \) | \(a_{354}= -1.60032585 \pm 2.2 \cdot 10^{-5} \) |
\(a_{355}= +0.53282768 \pm 1.2 \cdot 10^{-5} \) | \(a_{356}= +0.44217980 \pm 6.9 \cdot 10^{-6} \) | \(a_{357}= +0.00071229 \pm 1.9 \cdot 10^{-5} \) |
\(a_{358}= +0.85712362 \pm 8.8 \cdot 10^{-6} \) | \(a_{359}= +0.37215308 \pm 1.2 \cdot 10^{-5} \) | \(a_{360}= -0.84772103 \pm 1.9 \cdot 10^{-5} \) |
\(a_{361}= +0.15429836 \pm 8.5 \cdot 10^{-6} \) | \(a_{362}= +0.99484219 \pm 8.9 \cdot 10^{-6} \) | \(a_{363}= +3.00345000 \pm 1.0 \cdot 10^{-5} \) |
\(a_{364}= +0.14758242 \pm 9.4 \cdot 10^{-6} \) | \(a_{365}= +2.66611462 \pm 8.0 \cdot 10^{-6} \) | \(a_{366}= +1.48772827 \pm 1.8 \cdot 10^{-5} \) |
\(a_{367}= -0.59855527 \pm 6.7 \cdot 10^{-6} \) | \(a_{368}= -0.26413641 \pm 8.9 \cdot 10^{-6} \) | \(a_{369}= -2.26305075 \pm 3.9 \cdot 10^{-6} \) |
\(a_{370}= -0.45812094 \pm 1.7 \cdot 10^{-5} \) | \(a_{371}= -0.20003285 \pm 9.5 \cdot 10^{-6} \) | \(a_{372}= +0.52054940 \pm 2.3 \cdot 10^{-5} \) |
\(a_{373}= -0.29508392 \pm 1.2 \cdot 10^{-5} \) | \(a_{374}= -0.00133852 \pm 1.6 \cdot 10^{-5} \) | \(a_{375}= -0.40503358 \pm 1.0 \cdot 10^{-5} \) |
\(a_{376}= -0.04405142 \pm 7.1 \cdot 10^{-6} \) | \(a_{377}= -1.01692195 \pm 7.9 \cdot 10^{-6} \) | \(a_{378}= -0.34624977 \pm 9.3 \cdot 10^{-6} \) |
\(a_{379}= +0.01844176 \pm 1.1 \cdot 10^{-5} \) | \(a_{380}= -0.72467912 \pm 1.9 \cdot 10^{-5} \) | \(a_{381}= +0.20811970 \pm 1.2 \cdot 10^{-5} \) |
\(a_{382}= -0.91324127 \pm 7.0 \cdot 10^{-6} \) | \(a_{383}= +0.68343031 \pm 8.9 \cdot 10^{-6} \) | \(a_{384}= -0.14730347 \pm 1.2 \cdot 10^{-5} \) |
\(a_{385}= +0.85352663 \pm 1.9 \cdot 10^{-5} \) | \(a_{386}= -0.38944991 \pm 7.6 \cdot 10^{-6} \) | \(a_{387}= -2.23479697 \pm 8.2 \cdot 10^{-6} \) |
\(a_{388}= -0.29655098 \pm 7.8 \cdot 10^{-6} \) | \(a_{389}= -0.28648775 \pm 9.9 \cdot 10^{-6} \) | \(a_{390}= -1.24146163 \pm 3.2 \cdot 10^{-5} \) |
\(a_{391}= -0.00119475 \pm 5.2 \cdot 10^{-6} \) | \(a_{392}= -0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= -0.59696375 \pm 1.0 \cdot 10^{-5} \) |
\(a_{394}= -0.79845537 \pm 1.2 \cdot 10^{-5} \) | \(a_{395}= +1.44948549 \pm 1.2 \cdot 10^{-5} \) | \(a_{396}= +1.48764958 \pm 2.0 \cdot 10^{-5} \) |
\(a_{397}= -1.69935027 \pm 7.9 \cdot 10^{-6} \) | \(a_{398}= -0.69342871 \pm 8.8 \cdot 10^{-6} \) | \(a_{399}= -0.67674955 \pm 2.2 \cdot 10^{-5} \) |
\(a_{400}= +0.20496021 \pm 7.6 \cdot 10^{-6} \) | \(a_{401}= +1.46744323 \pm 1.0 \cdot 10^{-5} \) | \(a_{402}= -0.06313179 \pm 2.2 \cdot 10^{-5} \) |
\(a_{403}= +0.48785147 \pm 5.7 \cdot 10^{-6} \) | \(a_{404}= +0.23754713 \pm 1.0 \cdot 10^{-5} \) | \(a_{405}= +0.51493202 \pm 9.8 \cdot 10^{-6} \) |
\(a_{406}= +0.34802462 \pm 1.0 \cdot 10^{-5} \) | \(a_{407}= +0.80394777 \pm 1.0 \cdot 10^{-5} \) | \(a_{408}= -0.00066629 \pm 1.9 \cdot 10^{-5} \) |
\(a_{409}= -1.74570259 \pm 1.2 \cdot 10^{-5} \) | \(a_{410}= +1.21454819 \pm 1.6 \cdot 10^{-5} \) | \(a_{411}= +2.05434947 \pm 1.3 \cdot 10^{-5} \) |
\(a_{412}= -0.25685534 \pm 7.4 \cdot 10^{-6} \) | \(a_{413}= +0.51328248 \pm 1.0 \cdot 10^{-5} \) | \(a_{414}= +1.32786682 \pm 1.8 \cdot 10^{-5} \) |
\(a_{415}= -1.58403409 \pm 6.6 \cdot 10^{-6} \) | \(a_{416}= -0.13805071 \pm 9.4 \cdot 10^{-6} \) | \(a_{417}= -1.17808439 \pm 1.1 \cdot 10^{-5} \) |
\(a_{418}= +1.27172566 \pm 1.9 \cdot 10^{-5} \) | \(a_{419}= +0.91343126 \pm 8.6 \cdot 10^{-6} \) | \(a_{420}= +0.42486959 \pm 2.2 \cdot 10^{-5} \) |
\(a_{421}= -0.85551775 \pm 8.4 \cdot 10^{-6} \) | \(a_{422}= +0.76073529 \pm 1.1 \cdot 10^{-5} \) | \(a_{423}= +0.22145533 \pm 9.4 \cdot 10^{-6} \) |
\(a_{424}= +0.18711360 \pm 9.5 \cdot 10^{-6} \) | \(a_{425}= +0.00092708 \pm 6.8 \cdot 10^{-6} \) | \(a_{426}= -0.46545000 \pm 2.6 \cdot 10^{-5} \) |
\(a_{427}= -0.47716836 \pm 6.0 \cdot 10^{-6} \) | \(a_{428}= -0.51854128 \pm 7.3 \cdot 10^{-6} \) | \(a_{429}= +2.17861749 \pm 1.2 \cdot 10^{-5} \) |
\(a_{430}= +1.19938477 \pm 1.9 \cdot 10^{-5} \) | \(a_{431}= -0.89204115 \pm 8.9 \cdot 10^{-6} \) | \(a_{432}= +0.32388701 \pm 9.3 \cdot 10^{-6} \) |
\(a_{433}= +0.17513621 \pm 1.2 \cdot 10^{-5} \) | \(a_{434}= -0.16695905 \pm 1.0 \cdot 10^{-5} \) | \(a_{435}= -2.92757918 \pm 1.4 \cdot 10^{-5} \) |
\(a_{436}= -0.01755416 \pm 7.3 \cdot 10^{-6} \) | \(a_{437}= +1.13513446 \pm 6.6 \cdot 10^{-6} \) | \(a_{438}= -2.32897633 \pm 2.2 \cdot 10^{-5} \) |
\(a_{439}= -1.24420535 \pm 1.2 \cdot 10^{-5} \) | \(a_{440}= -0.79840105 \pm 1.9 \cdot 10^{-5} \) | \(a_{441}= +0.25391199 \pm 9.9 \cdot 10^{-6} \) |
\(a_{442}= -0.00062444 \pm 1.5 \cdot 10^{-5} \) | \(a_{443}= +1.79111833 \pm 9.3 \cdot 10^{-6} \) | \(a_{444}= +0.40019016 \pm 2.0 \cdot 10^{-5} \) |
\(a_{445}= +1.19301415 \pm 8.6 \cdot 10^{-6} \) | \(a_{446}= -0.88771880 \pm 9.0 \cdot 10^{-6} \) | \(a_{447}= +1.15814121 \pm 8.4 \cdot 10^{-6} \) |
\(a_{448}= +0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= -1.54345167 \pm 9.2 \cdot 10^{-6} \) | \(a_{450}= -1.03037615 \pm 1.7 \cdot 10^{-5} \) |
\(a_{451}= -2.13138761 \pm 7.9 \cdot 10^{-6} \) | \(a_{452}= +0.20818164 \pm 1.1 \cdot 10^{-5} \) | \(a_{453}= +0.73591364 \pm 9.7 \cdot 10^{-6} \) |
\(a_{454}= +0.20003439 \pm 1.0 \cdot 10^{-5} \) | \(a_{455}= +0.39818172 \pm 1.9 \cdot 10^{-5} \) | \(a_{456}= +0.63304124 \pm 2.2 \cdot 10^{-5} \) |
\(a_{457}= +0.60578658 \pm 1.3 \cdot 10^{-5} \) | \(a_{458}= +1.08542419 \pm 8.6 \cdot 10^{-6} \) | \(a_{459}= +0.00146502 \pm 7.2 \cdot 10^{-6} \) |
\(a_{460}= -0.71264784 \pm 1.8 \cdot 10^{-5} \) | \(a_{461}= +0.39793791 \pm 6.2 \cdot 10^{-6} \) | \(a_{462}= -0.74559559 \pm 2.2 \cdot 10^{-5} \) |
\(a_{463}= +1.76370497 \pm 1.1 \cdot 10^{-5} \) | \(a_{464}= -0.32554722 \pm 1.0 \cdot 10^{-5} \) | \(a_{465}= +1.40445765 \pm 1.5 \cdot 10^{-5} \) |
\(a_{466}= +0.59282889 \pm 7.5 \cdot 10^{-6} \) | \(a_{467}= -0.66481217 \pm 1.1 \cdot 10^{-5} \) | \(a_{468}= +0.69400866 \pm 1.9 \cdot 10^{-5} \) |
\(a_{469}= +0.02024865 \pm 1.0 \cdot 10^{-5} \) | \(a_{470}= -0.11885203 \pm 1.6 \cdot 10^{-5} \) | \(a_{471}= -1.14679235 \pm 1.0 \cdot 10^{-5} \) |
\(a_{472}= -0.48013179 \pm 1.0 \cdot 10^{-5} \) | \(a_{473}= -2.10477762 \pm 8.6 \cdot 10^{-6} \) | \(a_{474}= -1.26619365 \pm 2.4 \cdot 10^{-5} \) |
\(a_{475}= -0.88082287 \pm 6.7 \cdot 10^{-6} \) | \(a_{476}= +0.00021370 \pm 6.5 \cdot 10^{-6} \) | \(a_{477}= -0.94065766 \pm 7.6 \cdot 10^{-6} \) |
\(a_{478}= +0.46217169 \pm 1.1 \cdot 10^{-5} \) | \(a_{479}= +0.88530021 \pm 1.0 \cdot 10^{-5} \) | \(a_{480}= -0.39742911 \pm 2.2 \cdot 10^{-5} \) |
\(a_{481}= +0.37505251 \pm 1.0 \cdot 10^{-5} \) | \(a_{482}= -0.72762455 \pm 1.0 \cdot 10^{-5} \) | \(a_{483}= -0.66551402 \pm 2.1 \cdot 10^{-5} \) |
\(a_{484}= +0.90109888 \pm 8.8 \cdot 10^{-6} \) | \(a_{485}= -0.80010331 \pm 5.7 \cdot 10^{-6} \) | \(a_{486}= +0.46627349 \pm 1.0 \cdot 10^{-5} \) |
\(a_{487}= +1.32795692 \pm 8.3 \cdot 10^{-6} \) | \(a_{488}= +0.44635013 \pm 6.0 \cdot 10^{-6} \) | \(a_{489}= -1.99844306 \pm 8.9 \cdot 10^{-6} \) |
\(a_{490}= -0.13627107 \pm 9.8 \cdot 10^{-6} \) | \(a_{491}= +0.63486611 \pm 1.1 \cdot 10^{-5} \) | \(a_{492}= -1.06096488 \pm 1.9 \cdot 10^{-5} \) |
\(a_{493}= -0.00147253 \pm 6.4 \cdot 10^{-6} \) | \(a_{494}= +0.59327723 \pm 1.9 \cdot 10^{-5} \) | \(a_{495}= +4.01372250 \pm 7.7 \cdot 10^{-6} \) |
\(a_{496}= +0.15617589 \pm 1.0 \cdot 10^{-5} \) | \(a_{497}= +0.14928668 \pm 1.3 \cdot 10^{-5} \) | \(a_{498}= +1.38372817 \pm 2.0 \cdot 10^{-5} \) |
\(a_{499}= +0.65663988 \pm 1.3 \cdot 10^{-5} \) | \(a_{500}= -0.12151869 \pm 8.2 \cdot 10^{-6} \) | \(a_{501}= -0.16688947 \pm 1.2 \cdot 10^{-5} \) |
\(a_{502}= -0.48136091 \pm 9.2 \cdot 10^{-6} \) | \(a_{503}= +0.37537506 \pm 9.9 \cdot 10^{-6} \) | \(a_{504}= -0.23751292 \pm 9.9 \cdot 10^{-6} \) |
\(a_{505}= +0.64090918 \pm 1.1 \cdot 10^{-5} \) | \(a_{506}= +1.25061220 \pm 1.8 \cdot 10^{-5} \) | \(a_{507}= -0.65019397 \pm 1.1 \cdot 10^{-5} \) |
\(a_{508}= +0.06244034 \pm 9.6 \cdot 10^{-6} \) | \(a_{509}= +0.19145301 \pm 8.5 \cdot 10^{-6} \) | \(a_{510}= -0.00179767 \pm 2.9 \cdot 10^{-5} \) |
\(a_{511}= +0.74698709 \pm 9.7 \cdot 10^{-6} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -1.39191449 \pm 1.1 \cdot 10^{-5} \) |
\(a_{514}= -1.02262633 \pm 1.0 \cdot 10^{-5} \) | \(a_{515}= -0.69300330 \pm 4.5 \cdot 10^{-6} \) | \(a_{516}= -1.04771892 \pm 2.2 \cdot 10^{-5} \) |
\(a_{517}= +0.20857117 \pm 6.8 \cdot 10^{-6} \) | \(a_{518}= -0.12835548 \pm 7.7 \cdot 10^{-6} \) | \(a_{519}= -1.19374776 \pm 1.5 \cdot 10^{-5} \) |
\(a_{520}= -0.37246489 \pm 1.9 \cdot 10^{-5} \) | \(a_{521}= +0.28169512 \pm 9.1 \cdot 10^{-6} \) | \(a_{522}= +1.63659130 \pm 2.0 \cdot 10^{-5} \) |
\(a_{523}= -1.16529787 \pm 9.8 \cdot 10^{-6} \) | \(a_{524}= -0.17910182 \pm 7.9 \cdot 10^{-6} \) | \(a_{525}= +0.51641457 \pm 2.0 \cdot 10^{-5} \) |
\(a_{526}= +0.22078845 \pm 1.0 \cdot 10^{-5} \) | \(a_{527}= +0.00070642 \pm 4.6 \cdot 10^{-6} \) | \(a_{528}= +0.69744081 \pm 2.2 \cdot 10^{-5} \) |
\(a_{529}= +0.11628872 \pm 8.5 \cdot 10^{-6} \) | \(a_{530}= +0.50483802 \pm 1.9 \cdot 10^{-5} \) | \(a_{531}= +2.41371899 \pm 7.9 \cdot 10^{-6} \) |
\(a_{532}= -0.20303926 \pm 9.7 \cdot 10^{-6} \) | \(a_{533}= -0.99432116 \pm 5.6 \cdot 10^{-6} \) | \(a_{534}= -1.04215389 \pm 1.9 \cdot 10^{-5} \) |
\(a_{535}= -1.39903967 \pm 5.5 \cdot 10^{-6} \) | \(a_{536}= -0.01894088 \pm 1.0 \cdot 10^{-5} \) | \(a_{537}= -2.02011651 \pm 1.0 \cdot 10^{-5} \) |
\(a_{538}= +0.35974446 \pm 9.3 \cdot 10^{-6} \) | \(a_{539}= +0.23913952 \pm 1.0 \cdot 10^{-5} \) | \(a_{540}= +0.87385671 \pm 1.9 \cdot 10^{-5} \) |
\(a_{541}= +1.67245856 \pm 7.0 \cdot 10^{-6} \) | \(a_{542}= +0.44446029 \pm 7.9 \cdot 10^{-6} \) | \(a_{543}= -2.34469929 \pm 1.0 \cdot 10^{-5} \) |
\(a_{544}= -0.00019990 \pm 6.5 \cdot 10^{-6} \) | \(a_{545}= -0.04736163 \pm 8.6 \cdot 10^{-6} \) | \(a_{546}= -0.34783043 \pm 2.2 \cdot 10^{-5} \) |
\(a_{547}= -0.18944692 \pm 8.5 \cdot 10^{-6} \) | \(a_{548}= +0.61634854 \pm 1.1 \cdot 10^{-5} \) | \(a_{549}= -2.24389176 \pm 7.2 \cdot 10^{-6} \) |
\(a_{550}= -0.97042939 \pm 1.7 \cdot 10^{-5} \) | \(a_{551}= +1.39904933 \pm 1.0 \cdot 10^{-5} \) | \(a_{552}= +0.62253136 \pm 2.1 \cdot 10^{-5} \) |
\(a_{553}= +0.40611418 \pm 1.1 \cdot 10^{-5} \) | \(a_{554}= -0.15739170 \pm 1.3 \cdot 10^{-5} \) | \(a_{555}= +1.07972487 \pm 6.3 \cdot 10^{-6} \) |
\(a_{556}= -0.35345038 \pm 8.9 \cdot 10^{-6} \) | \(a_{557}= +1.42593559 \pm 1.0 \cdot 10^{-5} \) | \(a_{558}= -0.78512758 \pm 2.0 \cdot 10^{-5} \) |
\(a_{559}= -0.98190724 \pm 1.0 \cdot 10^{-5} \) | \(a_{560}= +0.12746991 \pm 9.8 \cdot 10^{-6} \) | \(a_{561}= +0.00315469 \pm 6.7 \cdot 10^{-6} \) |
\(a_{562}= -1.25906958 \pm 8.5 \cdot 10^{-6} \) | \(a_{563}= -1.64178541 \pm 7.3 \cdot 10^{-6} \) | \(a_{564}= +0.10382283 \pm 1.9 \cdot 10^{-5} \) |
\(a_{565}= +0.56168021 \pm 1.2 \cdot 10^{-5} \) | \(a_{566}= -0.91286536 \pm 1.0 \cdot 10^{-5} \) | \(a_{567}= +0.14427270 \pm 1.0 \cdot 10^{-5} \) |
\(a_{568}= -0.13964490 \pm 1.3 \cdot 10^{-5} \) | \(a_{569}= -0.23725112 \pm 8.9 \cdot 10^{-6} \) | \(a_{570}= +1.70796396 \pm 3.2 \cdot 10^{-5} \) |
\(a_{571}= +0.63847786 \pm 8.5 \cdot 10^{-6} \) | \(a_{572}= +0.65363159 \pm 1.9 \cdot 10^{-5} \) | \(a_{573}= +2.15237772 \pm 9.1 \cdot 10^{-6} \) |
\(a_{574}= +0.34028987 \pm 6.3 \cdot 10^{-6} \) | \(a_{575}= -0.86619927 \pm 7.4 \cdot 10^{-6} \) | \(a_{576}= +0.22217299 \pm 9.9 \cdot 10^{-6} \) |
\(a_{577}= -0.08912061 \pm 8.3 \cdot 10^{-6} \) | \(a_{578}= +0.70710588 \pm 8.1 \cdot 10^{-6} \) | \(a_{579}= +0.91787717 \pm 1.0 \cdot 10^{-5} \) |
\(a_{580}= -0.87833602 \pm 2.0 \cdot 10^{-5} \) | \(a_{581}= -0.44381176 \pm 7.4 \cdot 10^{-6} \) | \(a_{582}= +0.69892782 \pm 2.0 \cdot 10^{-5} \) |
\(a_{583}= -0.88593068 \pm 7.4 \cdot 10^{-6} \) | \(a_{584}= -0.69874244 \pm 9.7 \cdot 10^{-6} \) | \(a_{585}= +1.87245585 \pm 6.7 \cdot 10^{-6} \) |
\(a_{586}= -1.13317105 \pm 6.8 \cdot 10^{-6} \) | \(a_{587}= +1.03384237 \pm 1.1 \cdot 10^{-5} \) | \(a_{588}= +0.11903918 \pm 1.2 \cdot 10^{-5} \) |
\(a_{589}= -0.67117075 \pm 1.0 \cdot 10^{-5} \) | \(a_{590}= -1.29540976 \pm 2.0 \cdot 10^{-5} \) | \(a_{591}= +1.88184393 \pm 1.6 \cdot 10^{-5} \) |
\(a_{592}= +0.12006556 \pm 7.7 \cdot 10^{-6} \) | \(a_{593}= -0.82625342 \pm 1.2 \cdot 10^{-5} \) | \(a_{594}= -1.53351458 \pm 1.9 \cdot 10^{-5} \) |
\(a_{595}= +0.00057658 \pm 1.6 \cdot 10^{-5} \) | \(a_{596}= +0.34746700 \pm 7.0 \cdot 10^{-6} \) | \(a_{597}= +1.63431128 \pm 1.2 \cdot 10^{-5} \) |
\(a_{598}= +0.58342751 \pm 1.8 \cdot 10^{-5} \) | \(a_{599}= +0.01961512 \pm 9.6 \cdot 10^{-6} \) | \(a_{600}= -0.48306159 \pm 2.0 \cdot 10^{-5} \) |
\(a_{601}= -0.03682596 \pm 1.0 \cdot 10^{-5} \) | \(a_{602}= +0.33604142 \pm 9.9 \cdot 10^{-6} \) | \(a_{603}= +0.09521960 \pm 9.5 \cdot 10^{-6} \) |
\(a_{604}= +0.22078974 \pm 8.3 \cdot 10^{-6} \) | \(a_{605}= +2.43119140 \pm 7.0 \cdot 10^{-6} \) | \(a_{606}= -0.55986427 \pm 2.3 \cdot 10^{-5} \) |
\(a_{607}= +0.32959803 \pm 1.0 \cdot 10^{-5} \) | \(a_{608}= +0.18992584 \pm 9.7 \cdot 10^{-6} \) | \(a_{609}= -0.82024374 \pm 2.3 \cdot 10^{-5} \) |
\(a_{610}= +1.20426582 \pm 1.5 \cdot 10^{-5} \) | \(a_{611}= +0.09730127 \pm 6.6 \cdot 10^{-6} \) | \(a_{612}= +0.00100494 \pm 1.6 \cdot 10^{-5} \) |
\(a_{613}= -0.40619781 \pm 8.8 \cdot 10^{-6} \) | \(a_{614}= +0.25437516 \pm 8.4 \cdot 10^{-6} \) | \(a_{615}= -2.86251457 \pm 8.3 \cdot 10^{-6} \) |
\(a_{616}= -0.22369454 \pm 1.0 \cdot 10^{-5} \) | \(a_{617}= -0.85029009 \pm 9.2 \cdot 10^{-6} \) | \(a_{618}= +0.60537092 \pm 2.0 \cdot 10^{-5} \) |
\(a_{619}= -0.79962054 \pm 7.3 \cdot 10^{-6} \) | \(a_{620}= +0.42136717 \pm 2.0 \cdot 10^{-5} \) | \(a_{621}= -1.36880564 \pm 8.5 \cdot 10^{-6} \) |
\(a_{622}= +0.03886764 \pm 1.1 \cdot 10^{-5} \) | \(a_{623}= +0.33425651 \pm 6.9 \cdot 10^{-6} \) | \(a_{624}= +0.32536558 \pm 2.2 \cdot 10^{-5} \) |
\(a_{625}= -1.14770184 \pm 7.7 \cdot 10^{-6} \) | \(a_{626}= +0.53180353 \pm 6.1 \cdot 10^{-6} \) | \(a_{627}= -2.99727361 \pm 9.9 \cdot 10^{-6} \) |
\(a_{628}= -0.34406210 \pm 8.3 \cdot 10^{-6} \) | \(a_{629}= +0.00054309 \pm 6.0 \cdot 10^{-6} \) | \(a_{630}= -0.64081687 \pm 1.9 \cdot 10^{-5} \) |
\(a_{631}= +1.75160018 \pm 6.9 \cdot 10^{-6} \) | \(a_{632}= -0.37988503 \pm 1.1 \cdot 10^{-5} \) | \(a_{633}= -1.79294314 \pm 1.5 \cdot 10^{-5} \) |
\(a_{634}= -0.35557500 \pm 1.0 \cdot 10^{-5} \) | \(a_{635}= +0.16846588 \pm 1.2 \cdot 10^{-5} \) | \(a_{636}= -0.44099972 \pm 2.2 \cdot 10^{-5} \) |
\(a_{637}= +0.11156182 \pm 9.4 \cdot 10^{-6} \) | \(a_{638}= +1.54137525 \pm 2.0 \cdot 10^{-5} \) | \(a_{639}= +0.70202297 \pm 1.5 \cdot 10^{-5} \) |
\(a_{640}= -0.11923719 \pm 9.8 \cdot 10^{-6} \) | \(a_{641}= -0.19671445 \pm 1.3 \cdot 10^{-5} \) | \(a_{642}= +1.22212686 \pm 2.0 \cdot 10^{-5} \) |
\(a_{643}= +1.12810896 \pm 8.6 \cdot 10^{-6} \) | \(a_{644}= -0.19966836 \pm 8.9 \cdot 10^{-6} \) | \(a_{645}= -2.82677660 \pm 1.0 \cdot 10^{-5} \) |
\(a_{646}= +0.00085908 \pm 1.6 \cdot 10^{-5} \) | \(a_{647}= +1.13161695 \pm 9.5 \cdot 10^{-6} \) | \(a_{648}= -0.13495476 \pm 1.0 \cdot 10^{-5} \) |
\(a_{649}= +2.27329004 \pm 9.5 \cdot 10^{-6} \) | \(a_{650}= -0.45271844 \pm 1.7 \cdot 10^{-5} \) | \(a_{651}= +0.39349836 \pm 2.3 \cdot 10^{-5} \) |
\(a_{652}= -0.59957542 \pm 7.3 \cdot 10^{-6} \) | \(a_{653}= -1.43512282 \pm 1.0 \cdot 10^{-5} \) | \(a_{654}= +0.04137261 \pm 2.0 \cdot 10^{-5} \) |
\(a_{655}= -0.48322201 \pm 6.1 \cdot 10^{-6} \) | \(a_{656}= -0.31831203 \pm 6.3 \cdot 10^{-6} \) | \(a_{657}= +3.51271862 \pm 1.0 \cdot 10^{-5} \) |
\(a_{658}= -0.03329974 \pm 7.1 \cdot 10^{-6} \) | \(a_{659}= +0.31007817 \pm 8.5 \cdot 10^{-6} \) | \(a_{660}= +1.88171591 \pm 3.2 \cdot 10^{-5} \) |
\(a_{661}= +0.21956728 \pm 1.1 \cdot 10^{-5} \) | \(a_{662}= -0.79826927 \pm 8.8 \cdot 10^{-6} \) | \(a_{663}= +0.00147171 \pm 6.0 \cdot 10^{-6} \) |
\(a_{664}= +0.41514788 \pm 7.4 \cdot 10^{-6} \) | \(a_{665}= -0.54780592 \pm 1.9 \cdot 10^{-5} \) | \(a_{666}= -0.60359369 \pm 1.7 \cdot 10^{-5} \) |
\(a_{667}= +1.37582202 \pm 7.7 \cdot 10^{-6} \) | \(a_{668}= -0.05007039 \pm 1.0 \cdot 10^{-5} \) | \(a_{669}= +2.09222494 \pm 1.3 \cdot 10^{-5} \) |
\(a_{670}= -0.05110305 \pm 2.0 \cdot 10^{-5} \) | \(a_{671}= -2.11334328 \pm 7.2 \cdot 10^{-6} \) | \(a_{672}= -0.11135096 \pm 1.2 \cdot 10^{-5} \) |
\(a_{673}= -1.00717267 \pm 7.1 \cdot 10^{-6} \) | \(a_{674}= +0.89117283 \pm 9.7 \cdot 10^{-6} \) | \(a_{675}= +1.06214317 \pm 8.0 \cdot 10^{-6} \) |
\(a_{676}= -0.19507202 \pm 9.9 \cdot 10^{-6} \) | \(a_{677}= +0.57985674 \pm 9.8 \cdot 10^{-6} \) | \(a_{678}= -0.49065405 \pm 2.4 \cdot 10^{-5} \) |
\(a_{679}= -0.22417147 \pm 7.8 \cdot 10^{-6} \) | \(a_{680}= -0.00053934 \pm 1.6 \cdot 10^{-5} \) | \(a_{681}= -0.47145216 \pm 1.4 \cdot 10^{-5} \) |
\(a_{682}= -0.73944926 \pm 2.0 \cdot 10^{-5} \) | \(a_{683}= -1.27258394 \pm 6.1 \cdot 10^{-6} \) | \(a_{684}= -0.95479534 \pm 1.9 \cdot 10^{-5} \) |
\(a_{685}= +1.66292656 \pm 1.0 \cdot 10^{-5} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= -2.55818797 \pm 1.2 \cdot 10^{-5} \) |
\(a_{688}= -0.31433796 \pm 9.9 \cdot 10^{-6} \) | \(a_{689}= -0.41329865 \pm 7.9 \cdot 10^{-6} \) | \(a_{690}= +1.67960799 \pm 3.1 \cdot 10^{-5} \) |
\(a_{691}= +0.19603008 \pm 6.7 \cdot 10^{-6} \) | \(a_{692}= -0.35814972 \pm 1.1 \cdot 10^{-5} \) | \(a_{693}= +1.12455738 \pm 2.0 \cdot 10^{-5} \) |
\(a_{694}= -0.28469788 \pm 9.8 \cdot 10^{-6} \) | \(a_{695}= -0.95361955 \pm 6.8 \cdot 10^{-6} \) | \(a_{696}= +0.76726777 \pm 2.3 \cdot 10^{-5} \) |
\(a_{697}= -0.00143980 \pm 3.7 \cdot 10^{-6} \) | \(a_{698}= +0.53413547 \pm 9.5 \cdot 10^{-6} \) | \(a_{699}= -1.39721204 \pm 8.5 \cdot 10^{-6} \) |
\(a_{700}= +0.15493535 \pm 7.6 \cdot 10^{-6} \) | \(a_{701}= +1.16488599 \pm 7.4 \cdot 10^{-6} \) | \(a_{702}= -0.71540530 \pm 1.8 \cdot 10^{-5} \) |
\(a_{703}= -0.51598548 \pm 6.1 \cdot 10^{-6} \) | \(a_{704}= +0.20924708 \pm 1.0 \cdot 10^{-5} \) | \(a_{705}= +0.28011706 \pm 6.3 \cdot 10^{-6} \) |
\(a_{706}= +0.41907227 \pm 6.2 \cdot 10^{-6} \) | \(a_{707}= +0.17956876 \pm 1.0 \cdot 10^{-5} \) | \(a_{708}= +1.13160126 \pm 2.2 \cdot 10^{-5} \) |
\(a_{709}= -0.20397933 \pm 1.0 \cdot 10^{-5} \) | \(a_{710}= -0.37676606 \pm 2.3 \cdot 10^{-5} \) | \(a_{711}= +1.90975835 \pm 1.0 \cdot 10^{-5} \) |
\(a_{712}= -0.31266833 \pm 6.9 \cdot 10^{-6} \) | \(a_{713}= -0.66002784 \pm 1.0 \cdot 10^{-5} \) | \(a_{714}= -0.00050367 \pm 1.9 \cdot 10^{-5} \) |
\(a_{715}= +1.76351732 \pm 6.1 \cdot 10^{-6} \) | \(a_{716}= -0.60607792 \pm 8.8 \cdot 10^{-6} \) | \(a_{717}= -1.08927190 \pm 1.6 \cdot 10^{-5} \) |
\(a_{718}= -0.26315197 \pm 1.2 \cdot 10^{-5} \) | \(a_{719}= +1.61764997 \pm 1.0 \cdot 10^{-5} \) | \(a_{720}= +0.59942929 \pm 1.9 \cdot 10^{-5} \) |
\(a_{721}= -0.19416439 \pm 7.4 \cdot 10^{-6} \) | \(a_{722}= -0.10910542 \pm 8.5 \cdot 10^{-6} \) | \(a_{723}= +1.71490592 \pm 1.3 \cdot 10^{-5} \) |
\(a_{724}= -0.70345966 \pm 8.9 \cdot 10^{-6} \) | \(a_{725}= -1.06758763 \pm 4.9 \cdot 10^{-6} \) | \(a_{726}= -2.12375986 \pm 2.1 \cdot 10^{-5} \) |
\(a_{727}= +0.40876686 \pm 6.8 \cdot 10^{-6} \) | \(a_{728}= -0.10435653 \pm 9.4 \cdot 10^{-6} \) | \(a_{729}= -1.48064894 \pm 8.8 \cdot 10^{-6} \) |
\(a_{730}= -1.88522773 \pm 1.9 \cdot 10^{-5} \) | \(a_{731}= -0.00142183 \pm 6.7 \cdot 10^{-6} \) | \(a_{732}= -1.05198275 \pm 1.8 \cdot 10^{-5} \) |
\(a_{733}= -1.23641226 \pm 8.9 \cdot 10^{-6} \) | \(a_{734}= +0.42324249 \pm 6.7 \cdot 10^{-6} \) | \(a_{735}= +0.32117122 \pm 2.2 \cdot 10^{-5} \) |
\(a_{736}= +0.18677265 \pm 8.9 \cdot 10^{-6} \) | \(a_{737}= +0.08967977 \pm 1.0 \cdot 10^{-5} \) | \(a_{738}= +1.60021853 \pm 1.6 \cdot 10^{-5} \) |
\(a_{739}= -1.02660357 \pm 6.6 \cdot 10^{-6} \) | \(a_{740}= +0.32394043 \pm 1.7 \cdot 10^{-5} \) | \(a_{741}= -1.39826869 \pm 1.2 \cdot 10^{-5} \) |
\(a_{742}= +0.14144459 \pm 9.5 \cdot 10^{-6} \) | \(a_{743}= +1.49224601 \pm 1.1 \cdot 10^{-5} \) | \(a_{744}= -0.36808401 \pm 2.3 \cdot 10^{-5} \) |
\(a_{745}= +0.93747622 \pm 7.8 \cdot 10^{-6} \) | \(a_{746}= +0.20865584 \pm 1.2 \cdot 10^{-5} \) | \(a_{747}= -2.08703182 \pm 7.0 \cdot 10^{-6} \) |
\(a_{748}= +0.00094647 \pm 1.6 \cdot 10^{-5} \) | \(a_{749}= -0.39198036 \pm 7.3 \cdot 10^{-6} \) | \(a_{750}= +0.28640199 \pm 2.0 \cdot 10^{-5} \) |
\(a_{751}= +0.72566720 \pm 9.9 \cdot 10^{-6} \) | \(a_{752}= +0.03114906 \pm 7.1 \cdot 10^{-6} \) | \(a_{753}= +1.13449810 \pm 1.3 \cdot 10^{-5} \) |
\(a_{754}= +0.71907241 \pm 2.0 \cdot 10^{-5} \) | \(a_{755}= +0.59569725 \pm 6.0 \cdot 10^{-6} \) | \(a_{756}= +0.24483556 \pm 9.3 \cdot 10^{-6} \) |
\(a_{757}= +0.30392507 \pm 7.6 \cdot 10^{-6} \) | \(a_{758}= -0.01304029 \pm 1.1 \cdot 10^{-5} \) | \(a_{759}= -2.94751225 \pm 1.3 \cdot 10^{-5} \) |
\(a_{760}= +0.51242552 \pm 1.9 \cdot 10^{-5} \) | \(a_{761}= -1.83083278 \pm 1.4 \cdot 10^{-5} \) | \(a_{762}= -0.14716285 \pm 2.2 \cdot 10^{-5} \) |
\(a_{763}= -0.01326970 \pm 7.3 \cdot 10^{-6} \) | \(a_{764}= +0.64575910 \pm 7.0 \cdot 10^{-6} \) | \(a_{765}= +0.00271136 \pm 6.7 \cdot 10^{-6} \) |
\(a_{766}= -0.48325821 \pm 8.9 \cdot 10^{-6} \) | \(a_{767}= +1.06052057 \pm 7.1 \cdot 10^{-6} \) | \(a_{768}= +0.10415928 \pm 1.2 \cdot 10^{-5} \) |
\(a_{769}= +1.67996350 \pm 1.1 \cdot 10^{-5} \) | \(a_{770}= -0.60353447 \pm 1.9 \cdot 10^{-5} \) | \(a_{771}= +2.41018249 \pm 1.4 \cdot 10^{-5} \) |
\(a_{772}= +0.27538268 \pm 7.6 \cdot 10^{-6} \) | \(a_{773}= +0.20268404 \pm 5.9 \cdot 10^{-6} \) | \(a_{774}= +1.58024009 \pm 1.9 \cdot 10^{-5} \) |
\(a_{775}= +0.51215749 \pm 7.2 \cdot 10^{-6} \) | \(a_{776}= +0.20969321 \pm 7.8 \cdot 10^{-6} \) | \(a_{777}= +0.30251533 \pm 2.0 \cdot 10^{-5} \) |
\(a_{778}= +0.20257743 \pm 9.9 \cdot 10^{-6} \) | \(a_{779}= +1.36795586 \pm 3.9 \cdot 10^{-6} \) | \(a_{780}= +0.87784593 \pm 3.2 \cdot 10^{-5} \) |
\(a_{781}= +0.66117963 \pm 1.2 \cdot 10^{-5} \) | \(a_{782}= +0.00084482 \pm 1.5 \cdot 10^{-5} \) | \(a_{783}= -1.68704825 \pm 6.8 \cdot 10^{-6} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.92828970 \pm 1.0 \cdot 10^{-5} \) | \(a_{786}= +0.42211712 \pm 2.0 \cdot 10^{-5} \) |
\(a_{787}= -1.74445490 \pm 1.0 \cdot 10^{-5} \) | \(a_{788}= +0.56459321 \pm 1.2 \cdot 10^{-5} \) | \(a_{789}= -0.52036648 \pm 1.4 \cdot 10^{-5} \) |
\(a_{790}= -1.02494102 \pm 2.1 \cdot 10^{-5} \) | \(a_{791}= +0.15737053 \pm 1.1 \cdot 10^{-5} \) | \(a_{792}= -1.05192711 \pm 2.0 \cdot 10^{-5} \) |
\(a_{793}= -0.98590323 \pm 6.4 \cdot 10^{-6} \) | \(a_{794}= +1.20162210 \pm 7.9 \cdot 10^{-6} \) | \(a_{795}= -1.18983027 \pm 1.0 \cdot 10^{-5} \) |
\(a_{796}= +0.49032815 \pm 8.8 \cdot 10^{-6} \) | \(a_{797}= -0.38646587 \pm 8.6 \cdot 10^{-6} \) | \(a_{798}= +0.47853420 \pm 2.2 \cdot 10^{-5} \) |
\(a_{799}= +0.00014089 \pm 7.7 \cdot 10^{-6} \) | \(a_{800}= -0.14492875 \pm 7.6 \cdot 10^{-6} \) | \(a_{801}= +1.57184653 \pm 7.4 \cdot 10^{-6} \) |
\(a_{802}= -1.03763906 \pm 1.0 \cdot 10^{-5} \) | \(a_{803}= +3.30835043 \pm 9.3 \cdot 10^{-6} \) | \(a_{804}= +0.04464091 \pm 2.2 \cdot 10^{-5} \) |
\(a_{805}= -0.53871113 \pm 1.8 \cdot 10^{-5} \) | \(a_{806}= -0.34496309 \pm 2.0 \cdot 10^{-5} \) | \(a_{807}= -0.84786571 \pm 1.1 \cdot 10^{-5} \) |
\(a_{808}= -0.16797119 \pm 1.0 \cdot 10^{-5} \) | \(a_{809}= -1.50558857 \pm 1.1 \cdot 10^{-5} \) | \(a_{810}= -0.36411192 \pm 2.0 \cdot 10^{-5} \) |
\(a_{811}= +0.80501709 \pm 8.9 \cdot 10^{-6} \) | \(a_{812}= -0.24609057 \pm 1.0 \cdot 10^{-5} \) | \(a_{813}= -1.04752868 \pm 1.0 \cdot 10^{-5} \) |
\(a_{814}= -0.56847692 \pm 1.7 \cdot 10^{-5} \) | \(a_{815}= -1.61767220 \pm 7.3 \cdot 10^{-6} \) | \(a_{816}= +0.00047114 \pm 1.9 \cdot 10^{-5} \) |
\(a_{817}= +1.35087718 \pm 1.0 \cdot 10^{-5} \) | \(a_{818}= +1.23439814 \pm 1.2 \cdot 10^{-5} \) | \(a_{819}= +0.52462123 \pm 1.9 \cdot 10^{-5} \) |
\(a_{820}= -0.85881526 \pm 1.6 \cdot 10^{-5} \) | \(a_{821}= -1.24861101 \pm 1.1 \cdot 10^{-5} \) | \(a_{822}= -1.45264444 \pm 2.3 \cdot 10^{-5} \) |
\(a_{823}= -1.36849497 \pm 5.3 \cdot 10^{-6} \) | \(a_{824}= +0.18162415 \pm 7.4 \cdot 10^{-6} \) | \(a_{825}= +2.28716184 \pm 9.5 \cdot 10^{-6} \) |
\(a_{826}= -0.36294552 \pm 1.0 \cdot 10^{-5} \) | \(a_{827}= -1.88925597 \pm 8.2 \cdot 10^{-6} \) | \(a_{828}= -0.93894363 \pm 1.8 \cdot 10^{-5} \) |
\(a_{829}= +0.93321568 \pm 1.2 \cdot 10^{-5} \) | \(a_{830}= +1.12008125 \pm 1.7 \cdot 10^{-5} \) | \(a_{831}= +0.37094950 \pm 1.8 \cdot 10^{-5} \) |
\(a_{832}= +0.09761659 \pm 9.4 \cdot 10^{-6} \) | \(a_{833}= +0.00016154 \pm 6.5 \cdot 10^{-6} \) | \(a_{834}= +0.83303146 \pm 2.1 \cdot 10^{-5} \) |
\(a_{835}= -0.13509139 \pm 1.2 \cdot 10^{-5} \) | \(a_{836}= -0.89924583 \pm 1.9 \cdot 10^{-5} \) | \(a_{837}= +0.80933347 \pm 5.2 \cdot 10^{-6} \) |
\(a_{838}= -0.64589344 \pm 8.6 \cdot 10^{-6} \) | \(a_{839}= -1.49991647 \pm 1.0 \cdot 10^{-5} \) | \(a_{840}= -0.30042817 \pm 2.2 \cdot 10^{-5} \) |
\(a_{841}= +0.69569592 \pm 1.0 \cdot 10^{-5} \) | \(a_{842}= +0.60494240 \pm 8.4 \cdot 10^{-6} \) | \(a_{843}= +2.96744507 \pm 1.0 \cdot 10^{-5} \) |
\(a_{844}= -0.53792108 \pm 1.1 \cdot 10^{-5} \) | \(a_{845}= -0.52631007 \pm 7.2 \cdot 10^{-6} \) | \(a_{846}= -0.15659257 \pm 1.7 \cdot 10^{-5} \) |
\(a_{847}= +0.68116673 \pm 8.8 \cdot 10^{-6} \) | \(a_{848}= -0.13230930 \pm 9.5 \cdot 10^{-6} \) | \(a_{849}= +2.15149176 \pm 1.2 \cdot 10^{-5} \) |
\(a_{850}= -0.00065555 \pm 1.4 \cdot 10^{-5} \) | \(a_{851}= -0.50741898 \pm 6.5 \cdot 10^{-6} \) | \(a_{852}= +0.32912285 \pm 2.6 \cdot 10^{-5} \) |
\(a_{853}= +0.84062644 \pm 5.9 \cdot 10^{-6} \) | \(a_{854}= +0.33740898 \pm 6.0 \cdot 10^{-6} \) | \(a_{855}= -2.57606603 \pm 9.0 \cdot 10^{-6} \) |
\(a_{856}= +0.36666405 \pm 7.3 \cdot 10^{-6} \) | \(a_{857}= -0.44234536 \pm 9.0 \cdot 10^{-6} \) | \(a_{858}= -1.54051520 \pm 3.2 \cdot 10^{-5} \) |
\(a_{859}= -0.38064154 \pm 5.0 \cdot 10^{-6} \) | \(a_{860}= -0.84809311 \pm 1.9 \cdot 10^{-5} \) | \(a_{861}= -0.80201406 \pm 1.9 \cdot 10^{-5} \) |
\(a_{862}= +0.63076835 \pm 8.9 \cdot 10^{-6} \) | \(a_{863}= +0.15188628 \pm 7.2 \cdot 10^{-6} \) | \(a_{864}= -0.22902270 \pm 9.3 \cdot 10^{-6} \) |
\(a_{865}= -0.96629852 \pm 1.1 \cdot 10^{-5} \) | \(a_{866}= -0.12384000 \pm 1.2 \cdot 10^{-5} \) | \(a_{867}= -1.66654638 \pm 9.4 \cdot 10^{-6} \) |
\(a_{868}= +0.11805788 \pm 1.0 \cdot 10^{-5} \) | \(a_{869}= +1.79864958 \pm 9.5 \cdot 10^{-6} \) | \(a_{870}= +2.07011109 \pm 3.3 \cdot 10^{-5} \) |
\(a_{871}= +0.04183683 \pm 1.1 \cdot 10^{-5} \) | \(a_{872}= +0.01241266 \pm 7.3 \cdot 10^{-6} \) | \(a_{873}= -1.05416991 \pm 1.3 \cdot 10^{-5} \) |
\(a_{874}= -0.80266127 \pm 1.8 \cdot 10^{-5} \) | \(a_{875}= -0.09185949 \pm 8.2 \cdot 10^{-6} \) | \(a_{876}= +1.64683496 \pm 2.2 \cdot 10^{-5} \) |
\(a_{877}= -0.43411414 \pm 9.8 \cdot 10^{-6} \) | \(a_{878}= +0.87978604 \pm 1.2 \cdot 10^{-5} \) | \(a_{879}= +2.67072042 \pm 8.1 \cdot 10^{-6} \) |
\(a_{880}= +0.56455480 \pm 1.9 \cdot 10^{-5} \) | \(a_{881}= +0.84144283 \pm 8.6 \cdot 10^{-6} \) | \(a_{882}= -0.17954289 \pm 9.9 \cdot 10^{-6} \) |
\(a_{883}= +0.13154096 \pm 8.7 \cdot 10^{-6} \) | \(a_{884}= +0.00044154 \pm 1.5 \cdot 10^{-5} \) | \(a_{885}= +3.05309361 \pm 1.4 \cdot 10^{-5} \) |
\(a_{886}= -1.26651191 \pm 9.3 \cdot 10^{-6} \) | \(a_{887}= +1.54528979 \pm 1.0 \cdot 10^{-5} \) | \(a_{888}= -0.28297718 \pm 2.0 \cdot 10^{-5} \) |
\(a_{889}= +0.04720046 \pm 9.6 \cdot 10^{-6} \) | \(a_{890}= -0.84358840 \pm 1.6 \cdot 10^{-5} \) | \(a_{891}= +0.63897311 \pm 1.0 \cdot 10^{-5} \) |
\(a_{892}= +0.62771199 \pm 9.0 \cdot 10^{-6} \) | \(a_{893}= -0.13386404 \pm 7.8 \cdot 10^{-6} \) | \(a_{894}= -0.81892951 \pm 1.9 \cdot 10^{-5} \) |
\(a_{895}= -1.63521613 \pm 1.0 \cdot 10^{-5} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= -1.37505435 \pm 8.6 \cdot 10^{-6} \) |
\(a_{898}= +1.09138514 \pm 9.2 \cdot 10^{-6} \) | \(a_{899}= -0.81348205 \pm 1.3 \cdot 10^{-5} \) | \(a_{900}= +0.72858596 \pm 1.7 \cdot 10^{-5} \) |
\(a_{901}= -0.00059847 \pm 8.7 \cdot 10^{-6} \) | \(a_{902}= +1.50711863 \pm 1.6 \cdot 10^{-5} \) | \(a_{903}= -0.79200106 \pm 2.2 \cdot 10^{-5} \) |
\(a_{904}= -0.14720665 \pm 1.1 \cdot 10^{-5} \) | \(a_{905}= -1.89795493 \pm 9.9 \cdot 10^{-6} \) | \(a_{906}= -0.52036952 \pm 2.1 \cdot 10^{-5} \) |
\(a_{907}= +1.09555851 \pm 1.1 \cdot 10^{-5} \) | \(a_{908}= -0.14144568 \pm 1.0 \cdot 10^{-5} \) | \(a_{909}= +0.84442492 \pm 8.8 \cdot 10^{-6} \) |
\(a_{910}= -0.28155699 \pm 1.9 \cdot 10^{-5} \) | \(a_{911}= +1.68046624 \pm 7.4 \cdot 10^{-6} \) | \(a_{912}= -0.44762775 \pm 2.2 \cdot 10^{-5} \) |
\(a_{913}= -1.96560937 \pm 8.8 \cdot 10^{-6} \) | \(a_{914}= -0.42835580 \pm 1.3 \cdot 10^{-5} \) | \(a_{915}= -2.83828052 \pm 8.3 \cdot 10^{-6} \) |
\(a_{916}= -0.76751080 \pm 8.6 \cdot 10^{-6} \) | \(a_{917}= -0.13538825 \pm 7.9 \cdot 10^{-6} \) | \(a_{918}= -0.00103592 \pm 1.5 \cdot 10^{-5} \) |
\(a_{919}= +0.36731801 \pm 1.0 \cdot 10^{-5} \) | \(a_{920}= +0.50391812 \pm 1.8 \cdot 10^{-5} \) | \(a_{921}= -0.59952550 \pm 1.1 \cdot 10^{-5} \) |
\(a_{922}= -0.28138459 \pm 6.2 \cdot 10^{-6} \) | \(a_{923}= +0.30844924 \pm 1.0 \cdot 10^{-5} \) | \(a_{924}= +0.52721570 \pm 2.2 \cdot 10^{-5} \) |
\(a_{925}= +0.39373859 \pm 7.4 \cdot 10^{-6} \) | \(a_{926}= -1.24712775 \pm 1.1 \cdot 10^{-5} \) | \(a_{927}= -0.91306111 \pm 1.2 \cdot 10^{-5} \) |
\(a_{928}= +0.23019665 \pm 1.0 \cdot 10^{-5} \) | \(a_{929}= +1.44558524 \pm 1.0 \cdot 10^{-5} \) | \(a_{930}= -0.99310153 \pm 3.3 \cdot 10^{-5} \) |
\(a_{931}= -0.15348325 \pm 9.7 \cdot 10^{-6} \) | \(a_{932}= -0.41919333 \pm 7.5 \cdot 10^{-6} \) | \(a_{933}= -0.09160540 \pm 1.3 \cdot 10^{-5} \) |
\(a_{934}= +0.47009319 \pm 1.1 \cdot 10^{-5} \) | \(a_{935}= +0.00255362 \pm 5.5 \cdot 10^{-6} \) | \(a_{936}= -0.49073823 \pm 1.9 \cdot 10^{-5} \) |
\(a_{937}= -1.22132240 \pm 9.7 \cdot 10^{-6} \) | \(a_{938}= -0.01431796 \pm 1.0 \cdot 10^{-5} \) | \(a_{939}= -1.25338407 \pm 8.5 \cdot 10^{-6} \) |
\(a_{940}= +0.08404108 \pm 1.6 \cdot 10^{-5} \) | \(a_{941}= +0.36803504 \pm 9.8 \cdot 10^{-6} \) | \(a_{942}= +0.81090465 \pm 2.1 \cdot 10^{-5} \) |
\(a_{943}= +1.34524477 \pm 7.2 \cdot 10^{-6} \) | \(a_{944}= +0.33950445 \pm 1.0 \cdot 10^{-5} \) | \(a_{945}= +0.66057358 \pm 1.9 \cdot 10^{-5} \) |
\(a_{946}= +1.48830253 \pm 2.0 \cdot 10^{-5} \) | \(a_{947}= -0.65806650 \pm 5.7 \cdot 10^{-6} \) | \(a_{948}= +0.89533411 \pm 2.4 \cdot 10^{-5} \) |
\(a_{949}= +1.54339024 \pm 1.0 \cdot 10^{-5} \) | \(a_{950}= +0.62283583 \pm 1.7 \cdot 10^{-5} \) | \(a_{951}= +0.83803889 \pm 1.3 \cdot 10^{-5} \) |
\(a_{952}= -0.00015111 \pm 6.5 \cdot 10^{-6} \) | \(a_{953}= -1.45687848 \pm 9.5 \cdot 10^{-6} \) | \(a_{954}= +0.66514541 \pm 1.9 \cdot 10^{-5} \) |
\(a_{955}= +1.74227711 \pm 7.7 \cdot 10^{-6} \) | \(a_{956}= -0.32680474 \pm 1.1 \cdot 10^{-5} \) | \(a_{957}= -3.63279874 \pm 1.1 \cdot 10^{-5} \) |
\(a_{958}= -0.62600178 \pm 1.0 \cdot 10^{-5} \) | \(a_{959}= +0.46591570 \pm 1.1 \cdot 10^{-5} \) | \(a_{960}= +0.28102482 \pm 2.2 \cdot 10^{-5} \) |
\(a_{961}= -0.60974545 \pm 1.1 \cdot 10^{-5} \) | \(a_{962}= -0.26520217 \pm 1.7 \cdot 10^{-5} \) | \(a_{963}= -1.84329386 \pm 6.3 \cdot 10^{-6} \) |
\(a_{964}= +0.51450825 \pm 1.0 \cdot 10^{-5} \) | \(a_{965}= +0.74299059 \pm 6.9 \cdot 10^{-6} \) | \(a_{966}= +0.47058947 \pm 2.1 \cdot 10^{-5} \) |
\(a_{967}= +0.65744309 \pm 1.2 \cdot 10^{-5} \) | \(a_{968}= -0.63717313 \pm 8.8 \cdot 10^{-6} \) | \(a_{969}= -0.00202473 \pm 8.6 \cdot 10^{-6} \) |
\(a_{970}= +0.56575848 \pm 1.7 \cdot 10^{-5} \) | \(a_{971}= -0.32982491 \pm 1.2 \cdot 10^{-5} \) | \(a_{972}= -0.32970515 \pm 1.0 \cdot 10^{-5} \) |
\(a_{973}= -0.26718337 \pm 8.9 \cdot 10^{-6} \) | \(a_{974}= -0.93900734 \pm 8.3 \cdot 10^{-6} \) | \(a_{975}= +1.06699194 \pm 7.9 \cdot 10^{-6} \) |
\(a_{976}= -0.31561720 \pm 6.0 \cdot 10^{-6} \) | \(a_{977}= -1.40100551 \pm 1.3 \cdot 10^{-5} \) | \(a_{978}= +1.41311264 \pm 2.0 \cdot 10^{-5} \) |
\(a_{979}= +1.48039730 \pm 8.1 \cdot 10^{-6} \) | \(a_{980}= +0.09635820 \pm 9.8 \cdot 10^{-6} \) | \(a_{981}= -0.06240095 \pm 7.0 \cdot 10^{-6} \) |
\(a_{982}= -0.44891813 \pm 1.1 \cdot 10^{-5} \) | \(a_{983}= -0.58425835 \pm 9.0 \cdot 10^{-6} \) | \(a_{984}= +0.75021546 \pm 1.9 \cdot 10^{-5} \) |
\(a_{985}= +1.52328914 \pm 1.0 \cdot 10^{-5} \) | \(a_{986}= +0.00104123 \pm 1.7 \cdot 10^{-5} \) | \(a_{987}= +0.07848268 \pm 1.9 \cdot 10^{-5} \) |
\(a_{988}= -0.41951035 \pm 1.9 \cdot 10^{-5} \) | \(a_{989}= +1.32844963 \pm 5.8 \cdot 10^{-6} \) | \(a_{990}= -2.83813040 \pm 2.9 \cdot 10^{-5} \) |
\(a_{991}= +1.24674803 \pm 9.3 \cdot 10^{-6} \) | \(a_{992}= -0.11043303 \pm 1.0 \cdot 10^{-5} \) | \(a_{993}= +1.88140532 \pm 1.3 \cdot 10^{-5} \) |
\(a_{994}= -0.10556162 \pm 1.3 \cdot 10^{-5} \) | \(a_{995}= +1.32291982 \pm 9.0 \cdot 10^{-6} \) | \(a_{996}= -0.97844357 \pm 2.0 \cdot 10^{-5} \) |
\(a_{997}= -1.65507590 \pm 6.1 \cdot 10^{-6} \) | \(a_{998}= -0.46431451 \pm 1.3 \cdot 10^{-5} \) | \(a_{999}= +0.62220280 \pm 7.8 \cdot 10^{-6} \) |
\(a_{1000}= +0.08592669 \pm 8.2 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000