Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(12.9707194030509437521312479484 \pm 3 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.82138308 \pm 1.7 \cdot 10^{-7} \) |
\(a_{4}= +0.5 \) | \(a_{5}= -1.80718382 \pm 2.6 \cdot 10^{-7} \) | \(a_{6}= +0.58080554 \pm 1.8 \cdot 10^{-7} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.32532984 \pm 2.4 \cdot 10^{-7} \) |
\(a_{10}= -1.27787194 \pm 2.7 \cdot 10^{-7} \) | \(a_{11}= -0.76289104 \pm 3.1 \cdot 10^{-7} \) | \(a_{12}= +0.41069154 \pm 1.8 \cdot 10^{-7} \) |
\(a_{13}= +0.78738989 \pm 2.2 \cdot 10^{-7} \) | \(a_{14}= +0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -1.48439021 \pm 1.8 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.00193573 \pm 2.9 \cdot 10^{-7} \) | \(a_{18}= -0.23004294 \pm 2.5 \cdot 10^{-7} \) |
\(a_{19}= +1.05939729 \pm 1.9 \cdot 10^{-7} \) | \(a_{20}= -0.90359191 \pm 2.7 \cdot 10^{-7} \) | \(a_{21}= +0.31045362 \pm 1.8 \cdot 10^{-7} \) |
\(a_{22}= -0.53944543 \pm 3.2 \cdot 10^{-7} \) | \(a_{23}= +1.69178660 \pm 1.5 \cdot 10^{-7} \) | \(a_{24}= +0.29040277 \pm 1.8 \cdot 10^{-7} \) |
\(a_{25}= +2.26591337 \pm 3.1 \cdot 10^{-7} \) | \(a_{26}= +0.55676873 \pm 2.3 \cdot 10^{-7} \) | \(a_{27}= -1.08860350 \pm 1.9 \cdot 10^{-7} \) |
\(a_{28}= +0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= +0.95218856 \pm 2.4 \cdot 10^{-7} \) | \(a_{30}= -1.04962238 \pm 4.5 \cdot 10^{-7} \) |
\(a_{31}= -0.78276390 \pm 2.8 \cdot 10^{-7} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.62662579 \pm 1.6 \cdot 10^{-7} \) |
\(a_{34}= +0.70847555 \pm 3.0 \cdot 10^{-7} \) | \(a_{35}= -0.68305128 \pm 2.7 \cdot 10^{-7} \) | \(a_{36}= -0.16266492 \pm 2.5 \cdot 10^{-7} \) |
\(a_{37}= +0.36741876 \pm 1.2 \cdot 10^{-7} \) | \(a_{38}= +0.74910701 \pm 2.0 \cdot 10^{-7} \) | \(a_{39}= +0.64674873 \pm 2.5 \cdot 10^{-7} \) |
\(a_{40}= -0.63893597 \pm 2.7 \cdot 10^{-7} \) | \(a_{41}= +0.82264413 \pm 2.5 \cdot 10^{-7} \) | \(a_{42}= +0.21952386 \pm 1.8 \cdot 10^{-7} \) |
\(a_{43}= -0.97907934 \pm 1.7 \cdot 10^{-7} \) | \(a_{44}= -0.38144552 \pm 3.2 \cdot 10^{-7} \) | \(a_{45}= +0.58793083 \pm 2.6 \cdot 10^{-7} \) |
\(a_{46}= +1.19627377 \pm 1.6 \cdot 10^{-7} \) | \(a_{47}= -0.47825688 \pm 2.1 \cdot 10^{-7} \) | \(a_{48}= +0.20534577 \pm 1.8 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +1.60224271 \pm 3.2 \cdot 10^{-7} \) | \(a_{51}= +0.82297305 \pm 1.4 \cdot 10^{-7} \) |
\(a_{52}= +0.39369495 \pm 2.3 \cdot 10^{-7} \) | \(a_{53}= +0.27318282 \pm 2.8 \cdot 10^{-7} \) | \(a_{54}= -0.76975892 \pm 2.0 \cdot 10^{-7} \) |
\(a_{55}= +1.37868435 \pm 2.8 \cdot 10^{-7} \) | \(a_{56}= +0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +0.87017101 \pm 1.6 \cdot 10^{-7} \) |
\(a_{58}= +0.67329899 \pm 2.5 \cdot 10^{-7} \) | \(a_{59}= +0.00319503 \pm 2.2 \cdot 10^{-7} \) | \(a_{60}= -0.74219510 \pm 4.5 \cdot 10^{-7} \) |
\(a_{61}= +1.77704441 \pm 2.0 \cdot 10^{-7} \) | \(a_{62}= -0.55349766 \pm 2.9 \cdot 10^{-7} \) | \(a_{63}= -0.12296312 \pm 2.5 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.42295827 \pm 1.9 \cdot 10^{-7} \) | \(a_{66}= -0.44309135 \pm 5.0 \cdot 10^{-7} \) |
\(a_{67}= +0.25772973 \pm 2.2 \cdot 10^{-7} \) | \(a_{68}= +0.50096787 \pm 3.0 \cdot 10^{-7} \) | \(a_{69}= +1.38960488 \pm 1.3 \cdot 10^{-7} \) |
\(a_{70}= -0.48299019 \pm 2.7 \cdot 10^{-7} \) | \(a_{71}= +1.65338381 \pm 2.7 \cdot 10^{-7} \) | \(a_{72}= -0.11502147 \pm 2.5 \cdot 10^{-7} \) |
\(a_{73}= -1.33808057 \pm 1.9 \cdot 10^{-7} \) | \(a_{74}= +0.25980430 \pm 1.3 \cdot 10^{-7} \) | \(a_{75}= +1.86118289 \pm 1.7 \cdot 10^{-7} \) |
\(a_{76}= +0.52969865 \pm 2.0 \cdot 10^{-7} \) | \(a_{77}= -0.28834571 \pm 3.2 \cdot 10^{-7} \) | \(a_{78}= +0.45732041 \pm 4.1 \cdot 10^{-7} \) |
\(a_{79}= -1.20487464 \pm 2.2 \cdot 10^{-7} \) | \(a_{80}= -0.45179596 \pm 2.7 \cdot 10^{-7} \) | \(a_{81}= -0.56883065 \pm 2.0 \cdot 10^{-7} \) |
\(a_{82}= +0.58169724 \pm 2.6 \cdot 10^{-7} \) | \(a_{83}= +1.09298144 \pm 1.8 \cdot 10^{-7} \) | \(a_{84}= +0.15522681 \pm 1.8 \cdot 10^{-7} \) |
\(a_{85}= -1.81068205 \pm 1.9 \cdot 10^{-7} \) | \(a_{86}= -0.69231364 \pm 1.9 \cdot 10^{-7} \) | \(a_{87}= +0.78211157 \pm 1.2 \cdot 10^{-7} \) |
\(a_{88}= -0.26972271 \pm 3.2 \cdot 10^{-7} \) | \(a_{89}= +1.04767267 \pm 2.1 \cdot 10^{-7} \) | \(a_{90}= +0.41572988 \pm 5.2 \cdot 10^{-7} \) |
\(a_{91}= +0.29760541 \pm 2.3 \cdot 10^{-7} \) | \(a_{92}= +0.84589330 \pm 1.6 \cdot 10^{-7} \) | \(a_{93}= -0.64294902 \pm 1.8 \cdot 10^{-7} \) |
\(a_{94}= -0.33817868 \pm 2.2 \cdot 10^{-7} \) | \(a_{95}= -1.91452565 \pm 1.4 \cdot 10^{-7} \) | \(a_{96}= +0.14520139 \pm 1.8 \cdot 10^{-7} \) |
\(a_{97}= -0.77768576 \pm 2.6 \cdot 10^{-7} \) | \(a_{98}= +0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +0.24819122 \pm 2.6 \cdot 10^{-7} \) |
\(a_{100}= +1.13295669 \pm 3.2 \cdot 10^{-7} \) | \(a_{101}= +0.21584173 \pm 3.2 \cdot 10^{-7} \) | \(a_{102}= +0.58192983 \pm 4.8 \cdot 10^{-7} \) |
\(a_{103}= +0.41760417 \pm 2.2 \cdot 10^{-7} \) | \(a_{104}= +0.27838437 \pm 2.3 \cdot 10^{-7} \) | \(a_{105}= -0.56104676 \pm 4.5 \cdot 10^{-7} \) |
\(a_{106}= +0.19316942 \pm 2.9 \cdot 10^{-7} \) | \(a_{107}= +0.75480326 \pm 2.0 \cdot 10^{-7} \) | \(a_{108}= -0.54430175 \pm 2.0 \cdot 10^{-7} \) |
\(a_{109}= -1.17392166 \pm 1.7 \cdot 10^{-7} \) | \(a_{110}= +0.97487705 \pm 5.9 \cdot 10^{-7} \) | \(a_{111}= +0.30179155 \pm 8.8 \cdot 10^{-8} \) |
\(a_{112}= +0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +1.00459512 \pm 2.1 \cdot 10^{-7} \) | \(a_{114}= +0.61530382 \pm 3.8 \cdot 10^{-7} \) |
\(a_{115}= -3.05736937 \pm 1.9 \cdot 10^{-7} \) | \(a_{116}= +0.47609428 \pm 2.5 \cdot 10^{-7} \) | \(a_{117}= -0.25616143 \pm 2.5 \cdot 10^{-7} \) |
\(a_{118}= +0.00225923 \pm 2.3 \cdot 10^{-7} \) | \(a_{119}= +0.37869611 \pm 3.0 \cdot 10^{-7} \) | \(a_{120}= -0.52481119 \pm 4.5 \cdot 10^{-7} \) |
\(a_{121}= -0.41799726 \pm 3.5 \cdot 10^{-7} \) | \(a_{122}= +1.25656016 \pm 2.1 \cdot 10^{-7} \) | \(a_{123}= +0.67570596 \pm 2.0 \cdot 10^{-7} \) |
\(a_{124}= -0.39138195 \pm 2.9 \cdot 10^{-7} \) | \(a_{125}= -2.28773816 \pm 3.6 \cdot 10^{-7} \) | \(a_{126}= -0.08694806 \pm 2.5 \cdot 10^{-7} \) |
\(a_{127}= -0.04069027 \pm 2.9 \cdot 10^{-7} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.80419920 \pm 1.5 \cdot 10^{-7} \) |
\(a_{130}= -1.00618344 \pm 5.0 \cdot 10^{-7} \) | \(a_{131}= +1.45532499 \pm 2.4 \cdot 10^{-7} \) | \(a_{132}= -0.31331290 \pm 5.0 \cdot 10^{-7} \) |
\(a_{133}= +0.40041454 \pm 2.0 \cdot 10^{-7} \) | \(a_{134}= +0.18224244 \pm 2.3 \cdot 10^{-7} \) | \(a_{135}= +1.96730664 \pm 1.9 \cdot 10^{-7} \) |
\(a_{136}= +0.35423778 \pm 3.0 \cdot 10^{-7} \) | \(a_{137}= +0.80578558 \pm 1.7 \cdot 10^{-7} \) | \(a_{138}= +0.98259903 \pm 3.4 \cdot 10^{-7} \) |
\(a_{139}= +0.82371478 \pm 1.8 \cdot 10^{-7} \) | \(a_{140}= -0.34152564 \pm 2.7 \cdot 10^{-7} \) | \(a_{141}= -0.39283210 \pm 1.9 \cdot 10^{-7} \) |
\(a_{142}= +1.16911891 \pm 2.8 \cdot 10^{-7} \) | \(a_{143}= -0.60069269 \pm 2.4 \cdot 10^{-7} \) | \(a_{144}= -0.08133246 \pm 2.5 \cdot 10^{-7} \) |
\(a_{145}= -1.72077976 \pm 1.6 \cdot 10^{-7} \) | \(a_{146}= -0.94616584 \pm 2.0 \cdot 10^{-7} \) | \(a_{147}= +0.11734044 \pm 1.8 \cdot 10^{-7} \) |
\(a_{148}= +0.18370938 \pm 1.3 \cdot 10^{-7} \) | \(a_{149}= -1.97033652 \pm 3.2 \cdot 10^{-7} \) | \(a_{150}= +1.31605505 \pm 5.0 \cdot 10^{-7} \) |
\(a_{151}= -1.89949990 \pm 2.7 \cdot 10^{-7} \) | \(a_{152}= +0.37455351 \pm 2.0 \cdot 10^{-7} \) | \(a_{153}= -0.32595959 \pm 2.8 \cdot 10^{-7} \) |
\(a_{154}= -0.20389121 \pm 3.2 \cdot 10^{-7} \) | \(a_{155}= +1.41459825 \pm 3.3 \cdot 10^{-7} \) | \(a_{156}= +0.32337437 \pm 4.1 \cdot 10^{-7} \) |
\(a_{157}= +0.52820832 \pm 2.9 \cdot 10^{-7} \) | \(a_{158}= -0.85197503 \pm 2.3 \cdot 10^{-7} \) | \(a_{159}= +0.22438775 \pm 1.6 \cdot 10^{-7} \) |
\(a_{160}= -0.31946798 \pm 2.7 \cdot 10^{-7} \) | \(a_{161}= +0.63943523 \pm 1.6 \cdot 10^{-7} \) | \(a_{162}= -0.40222401 \pm 2.1 \cdot 10^{-7} \) |
\(a_{163}= -1.44413161 \pm 2.3 \cdot 10^{-7} \) | \(a_{164}= +0.41132206 \pm 2.6 \cdot 10^{-7} \) | \(a_{165}= +1.13242799 \pm 1.5 \cdot 10^{-7} \) |
\(a_{166}= +0.77285458 \pm 1.9 \cdot 10^{-7} \) | \(a_{167}= +0.19881265 \pm 1.7 \cdot 10^{-7} \) | \(a_{168}= +0.10976193 \pm 1.8 \cdot 10^{-7} \) |
\(a_{169}= -0.38001716 \pm 2.3 \cdot 10^{-7} \) | \(a_{170}= -1.28034556 \pm 5.6 \cdot 10^{-7} \) | \(a_{171}= -0.34465355 \pm 1.8 \cdot 10^{-7} \) |
\(a_{172}= -0.48953967 \pm 1.9 \cdot 10^{-7} \) | \(a_{173}= +0.58160724 \pm 2.0 \cdot 10^{-7} \) | \(a_{174}= +0.55303639 \pm 4.3 \cdot 10^{-7} \) |
\(a_{175}= +0.85643475 \pm 3.2 \cdot 10^{-7} \) | \(a_{176}= -0.19072276 \pm 3.2 \cdot 10^{-7} \) | \(a_{177}= +0.00262435 \pm 1.6 \cdot 10^{-7} \) |
\(a_{178}= +0.74081645 \pm 2.2 \cdot 10^{-7} \) | \(a_{179}= +0.20338592 \pm 1.6 \cdot 10^{-7} \) | \(a_{180}= +0.29396541 \pm 5.2 \cdot 10^{-7} \) |
\(a_{181}= -0.09210126 \pm 1.8 \cdot 10^{-7} \) | \(a_{182}= +0.21043880 \pm 2.3 \cdot 10^{-7} \) | \(a_{183}= +1.45963421 \pm 1.5 \cdot 10^{-7} \) |
\(a_{184}= +0.59813689 \pm 1.6 \cdot 10^{-7} \) | \(a_{185}= -0.66399324 \pm 1.0 \cdot 10^{-7} \) | \(a_{186}= -0.45463361 \pm 4.7 \cdot 10^{-7} \) |
\(a_{187}= -0.76436779 \pm 3.2 \cdot 10^{-7} \) | \(a_{188}= -0.23912844 \pm 2.2 \cdot 10^{-7} \) | \(a_{189}= -0.41145345 \pm 2.0 \cdot 10^{-7} \) |
\(a_{190}= -1.35377407 \pm 4.7 \cdot 10^{-7} \) | \(a_{191}= -0.18460411 \pm 1.8 \cdot 10^{-7} \) | \(a_{192}= +0.10267288 \pm 1.8 \cdot 10^{-7} \) |
\(a_{193}= +0.81992394 \pm 2.0 \cdot 10^{-7} \) | \(a_{194}= -0.54990688 \pm 2.7 \cdot 10^{-7} \) | \(a_{195}= -1.16879384 \pm 1.9 \cdot 10^{-7} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +0.17246040 \pm 2.1 \cdot 10^{-7} \) | \(a_{198}= +0.17549770 \pm 5.7 \cdot 10^{-7} \) |
\(a_{199}= -0.05859421 \pm 2.1 \cdot 10^{-7} \) | \(a_{200}= +0.80112135 \pm 3.2 \cdot 10^{-7} \) | \(a_{201}= +0.21169484 \pm 1.1 \cdot 10^{-7} \) |
\(a_{202}= +0.15262315 \pm 3.3 \cdot 10^{-7} \) | \(a_{203}= +0.35989345 \pm 2.5 \cdot 10^{-7} \) | \(a_{204}= +0.41148653 \pm 4.8 \cdot 10^{-7} \) |
\(a_{205}= -1.48666916 \pm 3.1 \cdot 10^{-7} \) | \(a_{206}= +0.29529074 \pm 2.3 \cdot 10^{-7} \) | \(a_{207}= -0.55038867 \pm 1.6 \cdot 10^{-7} \) |
\(a_{208}= +0.19684747 \pm 2.3 \cdot 10^{-7} \) | \(a_{209}= -0.80820470 \pm 1.7 \cdot 10^{-7} \) | \(a_{210}= -0.39671997 \pm 4.5 \cdot 10^{-7} \) |
\(a_{211}= -0.62766630 \pm 2.1 \cdot 10^{-7} \) | \(a_{212}= +0.13659141 \pm 2.9 \cdot 10^{-7} \) | \(a_{213}= +1.35806148 \pm 1.6 \cdot 10^{-7} \) |
\(a_{214}= +0.53372651 \pm 2.1 \cdot 10^{-7} \) | \(a_{215}= +1.76937635 \pm 2.0 \cdot 10^{-7} \) | \(a_{216}= -0.38487946 \pm 2.0 \cdot 10^{-7} \) |
\(a_{217}= -0.29585694 \pm 2.9 \cdot 10^{-7} \) | \(a_{218}= -0.83008797 \pm 1.8 \cdot 10^{-7} \) | \(a_{219}= -1.09907673 \pm 1.6 \cdot 10^{-7} \) |
\(a_{220}= +0.68934217 \pm 5.9 \cdot 10^{-7} \) | \(a_{221}= +0.78891407 \pm 2.1 \cdot 10^{-7} \) | \(a_{222}= +0.21339885 \pm 3.0 \cdot 10^{-7} \) |
\(a_{223}= +0.64182222 \pm 2.5 \cdot 10^{-7} \) | \(a_{224}= +0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= -0.73716924 \pm 3.0 \cdot 10^{-7} \) |
\(a_{226}= +0.71035602 \pm 2.2 \cdot 10^{-7} \) | \(a_{227}= -0.39630161 \pm 3.4 \cdot 10^{-7} \) | \(a_{228}= +0.43508550 \pm 3.8 \cdot 10^{-7} \) |
\(a_{229}= +1.60925546 \pm 2.2 \cdot 10^{-7} \) | \(a_{230}= -2.16188661 \pm 4.3 \cdot 10^{-7} \) | \(a_{231}= -0.23684229 \pm 5.0 \cdot 10^{-7} \) |
\(a_{232}= +0.33664949 \pm 2.5 \cdot 10^{-7} \) | \(a_{233}= +0.34676789 \pm 3.1 \cdot 10^{-7} \) | \(a_{234}= -0.18113348 \pm 4.8 \cdot 10^{-7} \) |
\(a_{235}= +0.86429809 \pm 2.3 \cdot 10^{-7} \) | \(a_{236}= +0.00159752 \pm 2.3 \cdot 10^{-7} \) | \(a_{237}= -0.98966364 \pm 1.0 \cdot 10^{-7} \) |
\(a_{238}= +0.26777859 \pm 3.0 \cdot 10^{-7} \) | \(a_{239}= +0.13187601 \pm 2.1 \cdot 10^{-7} \) | \(a_{240}= -0.37109755 \pm 4.5 \cdot 10^{-7} \) |
\(a_{241}= -1.52231484 \pm 3.8 \cdot 10^{-7} \) | \(a_{242}= -0.29556870 \pm 3.6 \cdot 10^{-7} \) | \(a_{243}= +0.62137563 \pm 2.1 \cdot 10^{-7} \) |
\(a_{244}= +0.88852221 \pm 2.1 \cdot 10^{-7} \) | \(a_{245}= -0.25816912 \pm 2.7 \cdot 10^{-7} \) | \(a_{246}= +0.47779627 \pm 4.4 \cdot 10^{-7} \) |
\(a_{247}= +0.83415872 \pm 2.3 \cdot 10^{-7} \) | \(a_{248}= -0.27674883 \pm 2.9 \cdot 10^{-7} \) | \(a_{249}= +0.89775645 \pm 1.4 \cdot 10^{-7} \) |
\(a_{250}= -1.61767517 \pm 3.7 \cdot 10^{-7} \) | \(a_{251}= +1.06243878 \pm 2.1 \cdot 10^{-7} \) | \(a_{252}= -0.06148156 \pm 2.5 \cdot 10^{-7} \) |
\(a_{253}= -1.29064884 \pm 1.4 \cdot 10^{-7} \) | \(a_{254}= -0.02877236 \pm 3.0 \cdot 10^{-7} \) | \(a_{255}= -1.48726359 \pm 1.6 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.05159916 \pm 1.5 \cdot 10^{-7} \) | \(a_{258}= -0.56865471 \pm 3.6 \cdot 10^{-7} \) |
\(a_{259}= +0.13887124 \pm 1.3 \cdot 10^{-7} \) | \(a_{260}= -0.71147914 \pm 5.0 \cdot 10^{-7} \) | \(a_{261}= -0.30977535 \pm 2.3 \cdot 10^{-7} \) |
\(a_{262}= +1.02907017 \pm 2.5 \cdot 10^{-7} \) | \(a_{263}= -0.98846791 \pm 1.8 \cdot 10^{-7} \) | \(a_{264}= -0.22154567 \pm 5.0 \cdot 10^{-7} \) |
\(a_{265}= -0.49369157 \pm 2.7 \cdot 10^{-7} \) | \(a_{266}= +0.28313584 \pm 2.0 \cdot 10^{-7} \) | \(a_{267}= +0.86054060 \pm 1.5 \cdot 10^{-7} \) |
\(a_{268}= +0.12886486 \pm 2.3 \cdot 10^{-7} \) | \(a_{269}= -0.01958832 \pm 1.9 \cdot 10^{-7} \) | \(a_{270}= +1.39109587 \pm 4.6 \cdot 10^{-7} \) |
\(a_{271}= +0.80293058 \pm 2.0 \cdot 10^{-7} \) | \(a_{272}= +0.25048393 \pm 3.0 \cdot 10^{-7} \) | \(a_{273}= +0.24444804 \pm 4.1 \cdot 10^{-7} \) |
\(a_{274}= +0.56977645 \pm 1.8 \cdot 10^{-7} \) | \(a_{275}= -1.72864501 \pm 1.9 \cdot 10^{-7} \) | \(a_{276}= +0.69480244 \pm 3.4 \cdot 10^{-7} \) |
\(a_{277}= +1.27717229 \pm 2.3 \cdot 10^{-7} \) | \(a_{278}= +0.58245431 \pm 1.9 \cdot 10^{-7} \) | \(a_{279}= +0.25465646 \pm 2.4 \cdot 10^{-7} \) |
\(a_{280}= -0.24149510 \pm 2.7 \cdot 10^{-7} \) | \(a_{281}= +1.11743245 \pm 2.6 \cdot 10^{-7} \) | \(a_{282}= -0.27777424 \pm 4.0 \cdot 10^{-7} \) |
\(a_{283}= +1.15725138 \pm 2.6 \cdot 10^{-7} \) | \(a_{284}= +0.82669191 \pm 2.8 \cdot 10^{-7} \) | \(a_{285}= -1.57255897 \pm 8.7 \cdot 10^{-8} \) |
\(a_{286}= -0.42475388 \pm 5.5 \cdot 10^{-7} \) | \(a_{287}= +0.31093025 \pm 2.6 \cdot 10^{-7} \) | \(a_{288}= -0.05751073 \pm 2.5 \cdot 10^{-7} \) |
\(a_{289}= +0.00387521 \pm 3.7 \cdot 10^{-7} \) | \(a_{290}= -1.21677503 \pm 5.2 \cdot 10^{-7} \) | \(a_{291}= -0.63877792 \pm 1.2 \cdot 10^{-7} \) |
\(a_{292}= -0.66904028 \pm 2.0 \cdot 10^{-7} \) | \(a_{293}= -0.93285008 \pm 2.6 \cdot 10^{-7} \) | \(a_{294}= +0.08297222 \pm 1.8 \cdot 10^{-7} \) |
\(a_{295}= -0.00577401 \pm 1.4 \cdot 10^{-7} \) | \(a_{296}= +0.12990215 \pm 1.3 \cdot 10^{-7} \) | \(a_{297}= +0.83048586 \pm 2.6 \cdot 10^{-7} \) |
\(a_{298}= -1.39323832 \pm 3.3 \cdot 10^{-7} \) | \(a_{299}= +1.33209566 \pm 1.7 \cdot 10^{-7} \) | \(a_{300}= +0.93059145 \pm 5.0 \cdot 10^{-7} \) |
\(a_{301}= -0.37005721 \pm 1.9 \cdot 10^{-7} \) | \(a_{302}= -1.34314926 \pm 2.8 \cdot 10^{-7} \) | \(a_{303}= +0.17728874 \pm 2.0 \cdot 10^{-7} \) |
\(a_{304}= +0.26484932 \pm 2.0 \cdot 10^{-7} \) | \(a_{305}= -3.21144592 \pm 3.0 \cdot 10^{-7} \) | \(a_{306}= -0.23048824 \pm 5.4 \cdot 10^{-7} \) |
\(a_{307}= +0.96251516 \pm 2.2 \cdot 10^{-7} \) | \(a_{308}= -0.14417286 \pm 3.2 \cdot 10^{-7} \) | \(a_{309}= +0.34301300 \pm 1.4 \cdot 10^{-7} \) |
\(a_{310}= +1.00027202 \pm 5.6 \cdot 10^{-7} \) | \(a_{311}= -0.71570405 \pm 2.7 \cdot 10^{-7} \) | \(a_{312}= +0.22866021 \pm 4.1 \cdot 10^{-7} \) |
\(a_{313}= +0.42433676 \pm 3.0 \cdot 10^{-7} \) | \(a_{314}= +0.37349969 \pm 3.0 \cdot 10^{-7} \) | \(a_{315}= +0.22221697 \pm 5.2 \cdot 10^{-7} \) |
\(a_{316}= -0.60243732 \pm 2.3 \cdot 10^{-7} \) | \(a_{317}= -0.46732077 \pm 1.6 \cdot 10^{-7} \) | \(a_{318}= +0.15866610 \pm 4.7 \cdot 10^{-7} \) |
\(a_{319}= -0.72641612 \pm 2.7 \cdot 10^{-7} \) | \(a_{320}= -0.22589798 \pm 2.7 \cdot 10^{-7} \) | \(a_{321}= +0.61998263 \pm 1.9 \cdot 10^{-7} \) |
\(a_{322}= +0.45214899 \pm 1.6 \cdot 10^{-7} \) | \(a_{323}= +1.06144800 \pm 2.7 \cdot 10^{-7} \) | \(a_{324}= -0.28441533 \pm 2.1 \cdot 10^{-7} \) |
\(a_{325}= +1.78415728 \pm 2.0 \cdot 10^{-7} \) | \(a_{326}= -1.02115525 \pm 2.4 \cdot 10^{-7} \) | \(a_{327}= -0.96423938 \pm 1.4 \cdot 10^{-7} \) |
\(a_{328}= +0.29084862 \pm 2.6 \cdot 10^{-7} \) | \(a_{329}= -0.18076411 \pm 2.2 \cdot 10^{-7} \) | \(a_{330}= +0.80074751 \pm 7.7 \cdot 10^{-7} \) |
\(a_{331}= +1.43895184 \pm 1.7 \cdot 10^{-7} \) | \(a_{332}= +0.54649072 \pm 1.9 \cdot 10^{-7} \) | \(a_{333}= -0.11953229 \pm 1.3 \cdot 10^{-7} \) |
\(a_{334}= +0.14058177 \pm 1.8 \cdot 10^{-7} \) | \(a_{335}= -0.46576499 \pm 2.1 \cdot 10^{-7} \) | \(a_{336}= +0.07761341 \pm 1.8 \cdot 10^{-7} \) |
\(a_{337}= -0.00962888 \pm 2.8 \cdot 10^{-7} \) | \(a_{338}= -0.26871271 \pm 2.4 \cdot 10^{-7} \) | \(a_{339}= +0.82515743 \pm 2.0 \cdot 10^{-7} \) |
\(a_{340}= -0.90534102 \pm 5.6 \cdot 10^{-7} \) | \(a_{341}= +0.59716356 \pm 3.9 \cdot 10^{-7} \) | \(a_{342}= -0.24370687 \pm 4.4 \cdot 10^{-7} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.34615682 \pm 1.9 \cdot 10^{-7} \) | \(a_{345}= -2.51127146 \pm 1.3 \cdot 10^{-7} \) |
\(a_{346}= +0.41125843 \pm 2.1 \cdot 10^{-7} \) | \(a_{347}= -0.25445728 \pm 2.1 \cdot 10^{-7} \) | \(a_{348}= +0.39105578 \pm 4.3 \cdot 10^{-7} \) |
\(a_{349}= +1.89937496 \pm 2.4 \cdot 10^{-7} \) | \(a_{350}= +0.60559082 \pm 3.2 \cdot 10^{-7} \) | \(a_{351}= -0.85715539 \pm 2.1 \cdot 10^{-7} \) |
\(a_{352}= -0.13486136 \pm 3.2 \cdot 10^{-7} \) | \(a_{353}= +1.11427171 \pm 2.0 \cdot 10^{-7} \) | \(a_{354}= +0.00185569 \pm 4.1 \cdot 10^{-7} \) |
\(a_{355}= -2.98796848 \pm 2.3 \cdot 10^{-7} \) | \(a_{356}= +0.52383634 \pm 2.2 \cdot 10^{-7} \) | \(a_{357}= +0.31105458 \pm 4.8 \cdot 10^{-7} \) |
\(a_{358}= +0.14381556 \pm 1.7 \cdot 10^{-7} \) | \(a_{359}= -1.02988091 \pm 1.6 \cdot 10^{-7} \) | \(a_{360}= +0.20786494 \pm 5.2 \cdot 10^{-7} \) |
\(a_{361}= +0.12232263 \pm 2.1 \cdot 10^{-7} \) | \(a_{362}= -0.06512543 \pm 1.9 \cdot 10^{-7} \) | \(a_{363}= -0.34333587 \pm 2.2 \cdot 10^{-7} \) |
\(a_{364}= +0.14880270 \pm 2.3 \cdot 10^{-7} \) | \(a_{365}= +2.41815756 \pm 2.4 \cdot 10^{-7} \) | \(a_{366}= +1.03211725 \pm 3.9 \cdot 10^{-7} \) |
\(a_{367}= -1.21842462 \pm 2.5 \cdot 10^{-7} \) | \(a_{368}= +0.42294665 \pm 1.6 \cdot 10^{-7} \) | \(a_{369}= -0.26763068 \pm 2.2 \cdot 10^{-7} \) |
\(a_{370}= -0.46951412 \pm 3.9 \cdot 10^{-7} \) | \(a_{371}= +0.10325340 \pm 2.9 \cdot 10^{-7} \) | \(a_{372}= -0.32147451 \pm 4.7 \cdot 10^{-7} \) |
\(a_{373}= +0.21833483 \pm 2.7 \cdot 10^{-7} \) | \(a_{374}= -0.54048965 \pm 6.1 \cdot 10^{-7} \) | \(a_{375}= -1.87910941 \pm 1.8 \cdot 10^{-7} \) |
\(a_{376}= -0.16908934 \pm 2.2 \cdot 10^{-7} \) | \(a_{377}= +0.74974364 \pm 1.5 \cdot 10^{-7} \) | \(a_{378}= -0.29094152 \pm 2.0 \cdot 10^{-7} \) |
\(a_{379}= +0.23784672 \pm 2.5 \cdot 10^{-7} \) | \(a_{380}= -0.95726283 \pm 4.7 \cdot 10^{-7} \) | \(a_{381}= -0.03342230 \pm 1.9 \cdot 10^{-7} \) |
\(a_{382}= -0.13053482 \pm 1.9 \cdot 10^{-7} \) | \(a_{383}= -1.15931421 \pm 3.1 \cdot 10^{-7} \) | \(a_{384}= +0.07260069 \pm 1.8 \cdot 10^{-7} \) |
\(a_{385}= +0.52109370 \pm 5.9 \cdot 10^{-7} \) | \(a_{386}= +0.57977378 \pm 2.1 \cdot 10^{-7} \) | \(a_{387}= +0.31852373 \pm 2.2 \cdot 10^{-7} \) |
\(a_{388}= -0.38884288 \pm 2.7 \cdot 10^{-7} \) | \(a_{389}= -1.93177215 \pm 1.2 \cdot 10^{-7} \) | \(a_{390}= -0.82646205 \pm 6.8 \cdot 10^{-7} \) |
\(a_{391}= +1.69506144 \pm 1.5 \cdot 10^{-7} \) | \(a_{392}= +0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +1.19537932 \pm 2.0 \cdot 10^{-7} \) |
\(a_{394}= +0.12194792 \pm 2.2 \cdot 10^{-7} \) | \(a_{395}= +2.17742996 \pm 3.6 \cdot 10^{-7} \) | \(a_{396}= +0.12409561 \pm 5.7 \cdot 10^{-7} \) |
\(a_{397}= +0.26009401 \pm 2.4 \cdot 10^{-7} \) | \(a_{398}= -0.04143236 \pm 2.2 \cdot 10^{-7} \) | \(a_{399}= +0.32889373 \pm 3.8 \cdot 10^{-7} \) |
\(a_{400}= +0.56647834 \pm 3.2 \cdot 10^{-7} \) | \(a_{401}= +0.91482534 \pm 2.5 \cdot 10^{-7} \) | \(a_{402}= +0.14969085 \pm 4.1 \cdot 10^{-7} \) |
\(a_{403}= -0.61634038 \pm 2.5 \cdot 10^{-7} \) | \(a_{404}= +0.10792086 \pm 3.3 \cdot 10^{-7} \) | \(a_{405}= +1.02798155 \pm 2.0 \cdot 10^{-7} \) |
\(a_{406}= +0.25448310 \pm 2.5 \cdot 10^{-7} \) | \(a_{407}= -0.28030048 \pm 1.1 \cdot 10^{-7} \) | \(a_{408}= +0.29096491 \pm 4.8 \cdot 10^{-7} \) |
\(a_{409}= -1.67966956 \pm 3.4 \cdot 10^{-7} \) | \(a_{410}= -1.05123384 \pm 5.3 \cdot 10^{-7} \) | \(a_{411}= +0.66185864 \pm 1.1 \cdot 10^{-7} \) |
\(a_{412}= +0.20880208 \pm 2.3 \cdot 10^{-7} \) | \(a_{413}= +0.00120761 \pm 2.3 \cdot 10^{-7} \) | \(a_{414}= -0.38918356 \pm 4.1 \cdot 10^{-7} \) |
\(a_{415}= -1.97521837 \pm 1.2 \cdot 10^{-7} \) | \(a_{416}= +0.13919218 \pm 2.3 \cdot 10^{-7} \) | \(a_{417}= +0.67658538 \pm 1.7 \cdot 10^{-7} \) |
\(a_{418}= -0.57148703 \pm 5.1 \cdot 10^{-7} \) | \(a_{419}= +0.30174085 \pm 3.0 \cdot 10^{-7} \) | \(a_{420}= -0.28052338 \pm 4.5 \cdot 10^{-7} \) |
\(a_{421}= -0.67206288 \pm 2.3 \cdot 10^{-7} \) | \(a_{422}= -0.44382709 \pm 2.2 \cdot 10^{-7} \) | \(a_{423}= +0.15559123 \pm 2.5 \cdot 10^{-7} \) |
\(a_{424}= +0.09658471 \pm 2.9 \cdot 10^{-7} \) | \(a_{425}= +2.27029957 \pm 3.0 \cdot 10^{-7} \) | \(a_{426}= +0.96029448 \pm 4.6 \cdot 10^{-7} \) |
\(a_{427}= +0.67165966 \pm 2.1 \cdot 10^{-7} \) | \(a_{428}= +0.37740163 \pm 2.1 \cdot 10^{-7} \) | \(a_{429}= -0.49339881 \pm 1.5 \cdot 10^{-7} \) |
\(a_{430}= +1.25113801 \pm 4.5 \cdot 10^{-7} \) | \(a_{431}= -0.80135249 \pm 3.2 \cdot 10^{-7} \) | \(a_{432}= -0.27215088 \pm 2.0 \cdot 10^{-7} \) |
\(a_{433}= -1.21050967 \pm 2.8 \cdot 10^{-7} \) | \(a_{434}= -0.20920245 \pm 2.9 \cdot 10^{-7} \) | \(a_{435}= -1.41341937 \pm 1.8 \cdot 10^{-7} \) |
\(a_{436}= -0.58696083 \pm 1.8 \cdot 10^{-7} \) | \(a_{437}= +1.79227414 \pm 1.4 \cdot 10^{-7} \) | \(a_{438}= -0.77716461 \pm 3.8 \cdot 10^{-7} \) |
\(a_{439}= -0.70774789 \pm 2.2 \cdot 10^{-7} \) | \(a_{440}= +0.48743853 \pm 5.9 \cdot 10^{-7} \) | \(a_{441}= -0.04647569 \pm 2.5 \cdot 10^{-7} \) |
\(a_{442}= +0.55784649 \pm 5.2 \cdot 10^{-7} \) | \(a_{443}= +0.52684394 \pm 3.6 \cdot 10^{-7} \) | \(a_{444}= +0.15089578 \pm 3.0 \cdot 10^{-7} \) |
\(a_{445}= -1.89333710 \pm 1.6 \cdot 10^{-7} \) | \(a_{446}= +0.45383684 \pm 2.6 \cdot 10^{-7} \) | \(a_{447}= -1.61840107 \pm 1.6 \cdot 10^{-7} \) |
\(a_{448}= +0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +0.02156006 \pm 2.1 \cdot 10^{-7} \) | \(a_{450}= -0.52125737 \pm 5.7 \cdot 10^{-7} \) |
\(a_{451}= -0.62758784 \pm 2.9 \cdot 10^{-7} \) | \(a_{452}= +0.50229756 \pm 2.2 \cdot 10^{-7} \) | \(a_{453}= -1.56021707 \pm 1.5 \cdot 10^{-7} \) |
\(a_{454}= -0.28022756 \pm 3.5 \cdot 10^{-7} \) | \(a_{455}= -0.53782767 \pm 5.0 \cdot 10^{-7} \) | \(a_{456}= +0.30765191 \pm 3.8 \cdot 10^{-7} \) |
\(a_{457}= +1.37083432 \pm 3.0 \cdot 10^{-7} \) | \(a_{458}= +1.13791545 \pm 2.3 \cdot 10^{-7} \) | \(a_{459}= -1.09071075 \pm 1.2 \cdot 10^{-7} \) |
\(a_{460}= -1.52868468 \pm 4.3 \cdot 10^{-7} \) | \(a_{461}= +1.61596273 \pm 2.3 \cdot 10^{-7} \) | \(a_{462}= -0.16747279 \pm 5.0 \cdot 10^{-7} \) |
\(a_{463}= +0.90838241 \pm 1.8 \cdot 10^{-7} \) | \(a_{464}= +0.23804714 \pm 2.5 \cdot 10^{-7} \) | \(a_{465}= +1.16192706 \pm 1.7 \cdot 10^{-7} \) |
\(a_{466}= +0.24520192 \pm 3.2 \cdot 10^{-7} \) | \(a_{467}= +0.17463374 \pm 2.2 \cdot 10^{-7} \) | \(a_{468}= -0.12808071 \pm 4.8 \cdot 10^{-7} \) |
\(a_{469}= +0.09741268 \pm 2.3 \cdot 10^{-7} \) | \(a_{470}= +0.61115104 \pm 4.9 \cdot 10^{-7} \) | \(a_{471}= +0.43386138 \pm 1.8 \cdot 10^{-7} \) |
\(a_{472}= +0.00112961 \pm 2.3 \cdot 10^{-7} \) | \(a_{473}= +0.74693086 \pm 1.5 \cdot 10^{-7} \) | \(a_{474}= -0.69979787 \pm 4.1 \cdot 10^{-7} \) |
\(a_{475}= +2.40050249 \pm 2.1 \cdot 10^{-7} \) | \(a_{476}= +0.18934806 \pm 3.0 \cdot 10^{-7} \) | \(a_{477}= -0.08887452 \pm 2.3 \cdot 10^{-7} \) |
\(a_{478}= +0.09325042 \pm 2.2 \cdot 10^{-7} \) | \(a_{479}= -0.87357989 \pm 2.2 \cdot 10^{-7} \) | \(a_{480}= -0.26240560 \pm 4.5 \cdot 10^{-7} \) |
\(a_{481}= +0.28930182 \pm 9.9 \cdot 10^{-8} \) | \(a_{482}= -1.07643915 \pm 3.9 \cdot 10^{-7} \) | \(a_{483}= +0.52522128 \pm 3.4 \cdot 10^{-7} \) |
\(a_{484}= -0.20899863 \pm 3.6 \cdot 10^{-7} \) | \(a_{485}= +1.40542113 \pm 3.4 \cdot 10^{-7} \) | \(a_{486}= +0.43937892 \pm 2.2 \cdot 10^{-7} \) |
\(a_{487}= -1.36696282 \pm 1.9 \cdot 10^{-7} \) | \(a_{488}= +0.62828008 \pm 2.1 \cdot 10^{-7} \) | \(a_{489}= -1.18618526 \pm 1.5 \cdot 10^{-7} \) |
\(a_{490}= -0.18255313 \pm 2.7 \cdot 10^{-7} \) | \(a_{491}= -0.81541590 \pm 2.5 \cdot 10^{-7} \) | \(a_{492}= +0.33785298 \pm 4.4 \cdot 10^{-7} \) |
\(a_{493}= +0.95403174 \pm 4.2 \cdot 10^{-7} \) | \(a_{494}= +0.58983929 \pm 4.3 \cdot 10^{-7} \) | \(a_{495}= -0.44852716 \pm 2.3 \cdot 10^{-7} \) |
\(a_{496}= -0.19569097 \pm 2.9 \cdot 10^{-7} \) | \(a_{497}= +0.62492034 \pm 2.8 \cdot 10^{-7} \) | \(a_{498}= +0.63480968 \pm 3.7 \cdot 10^{-7} \) |
\(a_{499}= -1.25440005 \pm 2.4 \cdot 10^{-7} \) | \(a_{500}= -1.14386908 \pm 3.7 \cdot 10^{-7} \) | \(a_{501}= +0.16330135 \pm 2.0 \cdot 10^{-7} \) |
\(a_{502}= +0.75125767 \pm 2.3 \cdot 10^{-7} \) | \(a_{503}= +1.06768826 \pm 3.1 \cdot 10^{-7} \) | \(a_{504}= -0.04347403 \pm 2.5 \cdot 10^{-7} \) |
\(a_{505}= -0.39006568 \pm 2.6 \cdot 10^{-7} \) | \(a_{506}= -0.91262655 \pm 4.8 \cdot 10^{-7} \) | \(a_{507}= -0.31213966 \pm 2.8 \cdot 10^{-7} \) |
\(a_{508}= -0.02034513 \pm 3.0 \cdot 10^{-7} \) | \(a_{509}= -0.84776204 \pm 3.0 \cdot 10^{-7} \) | \(a_{510}= -1.05165417 \pm 7.4 \cdot 10^{-7} \) |
\(a_{511}= -0.50574692 \pm 2.0 \cdot 10^{-7} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -1.15326360 \pm 9.1 \cdot 10^{-8} \) |
\(a_{514}= -0.03648611 \pm 1.6 \cdot 10^{-7} \) | \(a_{515}= -0.75468750 \pm 1.9 \cdot 10^{-7} \) | \(a_{516}= -0.40209960 \pm 3.6 \cdot 10^{-7} \) |
\(a_{517}= +0.36485789 \pm 2.9 \cdot 10^{-7} \) | \(a_{518}= +0.09819679 \pm 1.3 \cdot 10^{-7} \) | \(a_{519}= +0.47772235 \pm 1.5 \cdot 10^{-7} \) |
\(a_{520}= -0.50309172 \pm 5.0 \cdot 10^{-7} \) | \(a_{521}= +0.09145760 \pm 2.2 \cdot 10^{-7} \) | \(a_{522}= -0.21904425 \pm 5.0 \cdot 10^{-7} \) |
\(a_{523}= +0.91595284 \pm 2.3 \cdot 10^{-7} \) | \(a_{524}= +0.72766250 \pm 2.5 \cdot 10^{-7} \) | \(a_{525}= +0.70346101 \pm 5.0 \cdot 10^{-7} \) |
\(a_{526}= -0.69895236 \pm 1.9 \cdot 10^{-7} \) | \(a_{527}= -0.78427912 \pm 2.1 \cdot 10^{-7} \) | \(a_{528}= -0.15665645 \pm 5.0 \cdot 10^{-7} \) |
\(a_{529}= +1.86214188 \pm 1.8 \cdot 10^{-7} \) | \(a_{530}= -0.34909266 \pm 5.6 \cdot 10^{-7} \) | \(a_{531}= -0.00103944 \pm 2.6 \cdot 10^{-7} \) |
\(a_{532}= +0.20020727 \pm 2.0 \cdot 10^{-7} \) | \(a_{533}= +0.64774167 \pm 2.7 \cdot 10^{-7} \) | \(a_{534}= +0.60849409 \pm 4.0 \cdot 10^{-7} \) |
\(a_{535}= -1.36406825 \pm 2.6 \cdot 10^{-7} \) | \(a_{536}= +0.09112122 \pm 2.3 \cdot 10^{-7} \) | \(a_{537}= +0.16705775 \pm 1.4 \cdot 10^{-7} \) |
\(a_{538}= -0.01385103 \pm 2.0 \cdot 10^{-7} \) | \(a_{539}= -0.10898443 \pm 3.2 \cdot 10^{-7} \) | \(a_{540}= +0.98365332 \pm 4.6 \cdot 10^{-7} \) |
\(a_{541}= -0.20035434 \pm 1.7 \cdot 10^{-7} \) | \(a_{542}= +0.56775766 \pm 2.1 \cdot 10^{-7} \) | \(a_{543}= -0.07565042 \pm 2.1 \cdot 10^{-7} \) |
\(a_{544}= +0.17711889 \pm 3.0 \cdot 10^{-7} \) | \(a_{545}= +2.12149223 \pm 1.1 \cdot 10^{-7} \) | \(a_{546}= +0.17285087 \pm 4.1 \cdot 10^{-7} \) |
\(a_{547}= -1.39376265 \pm 2.0 \cdot 10^{-7} \) | \(a_{548}= +0.40289279 \pm 1.8 \cdot 10^{-7} \) | \(a_{549}= -0.57812558 \pm 2.2 \cdot 10^{-7} \) |
\(a_{550}= -1.22233661 \pm 6.4 \cdot 10^{-7} \) | \(a_{551}= +1.00874598 \pm 2.1 \cdot 10^{-7} \) | \(a_{552}= +0.49129952 \pm 3.4 \cdot 10^{-7} \) |
\(a_{553}= -0.45539981 \pm 2.3 \cdot 10^{-7} \) | \(a_{554}= +0.90309719 \pm 2.4 \cdot 10^{-7} \) | \(a_{555}= -0.54539281 \pm 1.1 \cdot 10^{-7} \) |
\(a_{556}= +0.41185739 \pm 1.9 \cdot 10^{-7} \) | \(a_{557}= -0.66189720 \pm 2.8 \cdot 10^{-7} \) | \(a_{558}= +0.18006931 \pm 5.3 \cdot 10^{-7} \) |
\(a_{559}= -0.77091718 \pm 1.5 \cdot 10^{-7} \) | \(a_{560}= -0.17076282 \pm 2.7 \cdot 10^{-7} \) | \(a_{561}= -0.62783877 \pm 1.1 \cdot 10^{-7} \) |
\(a_{562}= +0.79014406 \pm 2.7 \cdot 10^{-7} \) | \(a_{563}= -0.66543504 \pm 2.8 \cdot 10^{-7} \) | \(a_{564}= -0.19641605 \pm 4.0 \cdot 10^{-7} \) |
\(a_{565}= -1.81548804 \pm 1.6 \cdot 10^{-7} \) | \(a_{566}= +0.81830030 \pm 2.7 \cdot 10^{-7} \) | \(a_{567}= -0.21499778 \pm 2.1 \cdot 10^{-7} \) |
\(a_{568}= +0.58455945 \pm 2.8 \cdot 10^{-7} \) | \(a_{569}= +0.81217782 \pm 2.4 \cdot 10^{-7} \) | \(a_{570}= -1.11196711 \pm 6.4 \cdot 10^{-7} \) |
\(a_{571}= -0.11601181 \pm 1.9 \cdot 10^{-7} \) | \(a_{572}= -0.30034635 \pm 5.5 \cdot 10^{-7} \) | \(a_{573}= -0.15163069 \pm 1.0 \cdot 10^{-7} \) |
\(a_{574}= +0.21986089 \pm 2.6 \cdot 10^{-7} \) | \(a_{575}= +3.83344187 \pm 2.4 \cdot 10^{-7} \) | \(a_{576}= -0.04066623 \pm 2.5 \cdot 10^{-7} \) |
\(a_{577}= +1.74168311 \pm 1.4 \cdot 10^{-7} \) | \(a_{578}= +0.00274019 \pm 3.8 \cdot 10^{-7} \) | \(a_{579}= +0.67347165 \pm 1.3 \cdot 10^{-7} \) |
\(a_{580}= -0.86038988 \pm 5.2 \cdot 10^{-7} \) | \(a_{581}= +0.41310815 \pm 1.9 \cdot 10^{-7} \) | \(a_{582}= -0.45168420 \pm 4.4 \cdot 10^{-7} \) |
\(a_{583}= -0.20840873 \pm 4.7 \cdot 10^{-7} \) | \(a_{584}= -0.47308292 \pm 2.0 \cdot 10^{-7} \) | \(a_{585}= +0.46293079 \pm 2.3 \cdot 10^{-7} \) |
\(a_{586}= -0.65962462 \pm 2.7 \cdot 10^{-7} \) | \(a_{587}= -1.31842116 \pm 2.3 \cdot 10^{-7} \) | \(a_{588}= +0.05867022 \pm 1.8 \cdot 10^{-7} \) |
\(a_{589}= -0.82925795 \pm 1.8 \cdot 10^{-7} \) | \(a_{590}= -0.00408284 \pm 5.0 \cdot 10^{-7} \) | \(a_{591}= +0.14165606 \pm 1.7 \cdot 10^{-7} \) |
\(a_{592}= +0.09185469 \pm 1.3 \cdot 10^{-7} \) | \(a_{593}= -1.34879247 \pm 1.8 \cdot 10^{-7} \) | \(a_{594}= +0.58724218 \pm 5.1 \cdot 10^{-7} \) |
\(a_{595}= -0.68437349 \pm 5.6 \cdot 10^{-7} \) | \(a_{596}= -0.98516826 \pm 3.3 \cdot 10^{-7} \) | \(a_{597}= -0.04812829 \pm 1.3 \cdot 10^{-7} \) |
\(a_{598}= +0.94193388 \pm 3.9 \cdot 10^{-7} \) | \(a_{599}= -0.25277091 \pm 1.3 \cdot 10^{-7} \) | \(a_{600}= +0.65802752 \pm 5.0 \cdot 10^{-7} \) |
\(a_{601}= -0.67588028 \pm 2.5 \cdot 10^{-7} \) | \(a_{602}= -0.26166996 \pm 1.9 \cdot 10^{-7} \) | \(a_{603}= -0.08384717 \pm 2.2 \cdot 10^{-7} \) |
\(a_{604}= -0.94974995 \pm 2.8 \cdot 10^{-7} \) | \(a_{605}= +0.75539788 \pm 3.6 \cdot 10^{-7} \) | \(a_{606}= +0.12536207 \pm 5.1 \cdot 10^{-7} \) |
\(a_{607}= +1.60512819 \pm 2.0 \cdot 10^{-7} \) | \(a_{608}= +0.18727675 \pm 2.0 \cdot 10^{-7} \) | \(a_{609}= +0.29561039 \pm 4.3 \cdot 10^{-7} \) |
\(a_{610}= -2.27083519 \pm 4.8 \cdot 10^{-7} \) | \(a_{611}= -0.37657463 \pm 2.0 \cdot 10^{-7} \) | \(a_{612}= -0.16297980 \pm 5.4 \cdot 10^{-7} \) |
\(a_{613}= -0.34499308 \pm 2.6 \cdot 10^{-7} \) | \(a_{614}= +0.68060100 \pm 2.3 \cdot 10^{-7} \) | \(a_{615}= -1.22112489 \pm 1.4 \cdot 10^{-7} \) |
\(a_{616}= -0.10194560 \pm 3.2 \cdot 10^{-7} \) | \(a_{617}= -0.36365165 \pm 2.2 \cdot 10^{-7} \) | \(a_{618}= +0.24254682 \pm 4.1 \cdot 10^{-7} \) |
\(a_{619}= +1.93194728 \pm 3.3 \cdot 10^{-7} \) | \(a_{620}= +0.70729913 \pm 5.6 \cdot 10^{-7} \) | \(a_{621}= -1.84168481 \pm 1.0 \cdot 10^{-7} \) |
\(a_{622}= -0.50607919 \pm 2.8 \cdot 10^{-7} \) | \(a_{623}= +0.39598305 \pm 2.2 \cdot 10^{-7} \) | \(a_{624}= +0.16168718 \pm 4.1 \cdot 10^{-7} \) |
\(a_{625}= +1.86845003 \pm 3.6 \cdot 10^{-7} \) | \(a_{626}= +0.30005140 \pm 3.1 \cdot 10^{-7} \) | \(a_{627}= -0.66384567 \pm 6.0 \cdot 10^{-8} \) |
\(a_{628}= +0.26410416 \pm 3.0 \cdot 10^{-7} \) | \(a_{629}= +0.36812999 \pm 1.8 \cdot 10^{-7} \) | \(a_{630}= +0.15713112 \pm 5.2 \cdot 10^{-7} \) |
\(a_{631}= -0.71199172 \pm 3.3 \cdot 10^{-7} \) | \(a_{632}= -0.42598751 \pm 2.3 \cdot 10^{-7} \) | \(a_{633}= -0.51555447 \pm 1.4 \cdot 10^{-7} \) |
\(a_{634}= -0.33044568 \pm 1.7 \cdot 10^{-7} \) | \(a_{635}= +0.07353479 \pm 2.5 \cdot 10^{-7} \) | \(a_{636}= +0.11219387 \pm 4.7 \cdot 10^{-7} \) |
\(a_{637}= +0.11248427 \pm 2.3 \cdot 10^{-7} \) | \(a_{638}= -0.51365376 \pm 5.7 \cdot 10^{-7} \) | \(a_{639}= -0.53789509 \pm 2.5 \cdot 10^{-7} \) |
\(a_{640}= -0.15973399 \pm 2.7 \cdot 10^{-7} \) | \(a_{641}= +1.04108103 \pm 2.3 \cdot 10^{-7} \) | \(a_{642}= +0.43839392 \pm 3.9 \cdot 10^{-7} \) |
\(a_{643}= +1.20351646 \pm 3.1 \cdot 10^{-7} \) | \(a_{644}= +0.31971761 \pm 1.6 \cdot 10^{-7} \) | \(a_{645}= +1.45333579 \pm 1.9 \cdot 10^{-7} \) |
\(a_{646}= +0.75055708 \pm 4.9 \cdot 10^{-7} \) | \(a_{647}= +0.98399753 \pm 1.7 \cdot 10^{-7} \) | \(a_{648}= -0.20111201 \pm 2.1 \cdot 10^{-7} \) |
\(a_{649}= -0.00243746 \pm 2.1 \cdot 10^{-7} \) | \(a_{650}= +1.26158971 \pm 5.5 \cdot 10^{-7} \) | \(a_{651}= -0.24301189 \pm 4.7 \cdot 10^{-7} \) |
\(a_{652}= -0.72206580 \pm 2.4 \cdot 10^{-7} \) | \(a_{653}= -0.47755411 \pm 2.1 \cdot 10^{-7} \) | \(a_{654}= -0.68182021 \pm 3.6 \cdot 10^{-7} \) |
\(a_{655}= -2.63003978 \pm 2.2 \cdot 10^{-7} \) | \(a_{656}= +0.20566103 \pm 2.6 \cdot 10^{-7} \) | \(a_{657}= +0.43531754 \pm 1.9 \cdot 10^{-7} \) |
\(a_{658}= -0.12781953 \pm 2.2 \cdot 10^{-7} \) | \(a_{659}= +0.69067340 \pm 2.8 \cdot 10^{-7} \) | \(a_{660}= +0.56621400 \pm 7.7 \cdot 10^{-7} \) |
\(a_{661}= +0.27333183 \pm 2.5 \cdot 10^{-7} \) | \(a_{662}= +1.01749260 \pm 1.8 \cdot 10^{-7} \) | \(a_{663}= +0.64800066 \pm 1.9 \cdot 10^{-7} \) |
\(a_{664}= +0.38642729 \pm 1.9 \cdot 10^{-7} \) | \(a_{665}= -0.72362268 \pm 4.7 \cdot 10^{-7} \) | \(a_{666}= -0.08452209 \pm 3.7 \cdot 10^{-7} \) |
\(a_{667}= +1.61089984 \pm 1.2 \cdot 10^{-7} \) | \(a_{668}= +0.09940632 \pm 1.8 \cdot 10^{-7} \) | \(a_{669}= +0.52718191 \pm 2.1 \cdot 10^{-7} \) |
\(a_{670}= -0.32934558 \pm 5.0 \cdot 10^{-7} \) | \(a_{671}= -1.35569126 \pm 1.5 \cdot 10^{-7} \) | \(a_{672}= +0.05488097 \pm 1.8 \cdot 10^{-7} \) |
\(a_{673}= +0.07793535 \pm 3.1 \cdot 10^{-7} \) | \(a_{674}= -0.00680864 \pm 2.9 \cdot 10^{-7} \) | \(a_{675}= -2.46668123 \pm 1.3 \cdot 10^{-7} \) |
\(a_{676}= -0.19000858 \pm 2.4 \cdot 10^{-7} \) | \(a_{677}= -1.71455694 \pm 2.8 \cdot 10^{-7} \) | \(a_{678}= +0.58347441 \pm 4.0 \cdot 10^{-7} \) |
\(a_{679}= -0.29393759 \pm 2.7 \cdot 10^{-7} \) | \(a_{680}= -0.64017278 \pm 5.6 \cdot 10^{-7} \) | \(a_{681}= -0.32551544 \pm 2.1 \cdot 10^{-7} \) |
\(a_{682}= +0.42225841 \pm 6.1 \cdot 10^{-7} \) | \(a_{683}= +0.64558483 \pm 3.0 \cdot 10^{-7} \) | \(a_{684}= -0.17232678 \pm 4.4 \cdot 10^{-7} \) |
\(a_{685}= -1.45620267 \pm 2.6 \cdot 10^{-7} \) | \(a_{686}= +0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= +1.32181520 \pm 1.9 \cdot 10^{-7} \) |
\(a_{688}= -0.24476984 \pm 1.9 \cdot 10^{-7} \) | \(a_{689}= +0.21510139 \pm 2.4 \cdot 10^{-7} \) | \(a_{690}= -1.77573708 \pm 6.1 \cdot 10^{-7} \) |
\(a_{691}= -0.08102534 \pm 4.0 \cdot 10^{-7} \) | \(a_{692}= +0.29080362 \pm 2.1 \cdot 10^{-7} \) | \(a_{693}= +0.09380746 \pm 5.7 \cdot 10^{-7} \) |
\(a_{694}= -0.17992847 \pm 2.2 \cdot 10^{-7} \) | \(a_{695}= -1.48860403 \pm 2.0 \cdot 10^{-7} \) | \(a_{696}= +0.27651820 \pm 4.3 \cdot 10^{-7} \) |
\(a_{697}= +0.82423655 \pm 1.8 \cdot 10^{-7} \) | \(a_{698}= +1.34306091 \pm 2.5 \cdot 10^{-7} \) | \(a_{699}= +0.28482927 \pm 1.6 \cdot 10^{-7} \) |
\(a_{700}= +0.42821738 \pm 3.2 \cdot 10^{-7} \) | \(a_{701}= -0.09203912 \pm 1.8 \cdot 10^{-7} \) | \(a_{702}= -0.60610039 \pm 4.2 \cdot 10^{-7} \) |
\(a_{703}= +0.38924244 \pm 1.1 \cdot 10^{-7} \) | \(a_{704}= -0.09536138 \pm 3.2 \cdot 10^{-7} \) | \(a_{705}= +0.70991982 \pm 2.1 \cdot 10^{-7} \) |
\(a_{706}= +0.78790908 \pm 2.1 \cdot 10^{-7} \) | \(a_{707}= +0.08158051 \pm 3.3 \cdot 10^{-7} \) | \(a_{708}= +0.00131217 \pm 4.1 \cdot 10^{-7} \) |
\(a_{709}= -0.88438751 \pm 2.4 \cdot 10^{-7} \) | \(a_{710}= -2.11281277 \pm 5.5 \cdot 10^{-7} \) | \(a_{711}= +0.39198168 \pm 2.1 \cdot 10^{-7} \) |
\(a_{712}= +0.37040822 \pm 2.2 \cdot 10^{-7} \) | \(a_{713}= -1.32426947 \pm 1.8 \cdot 10^{-7} \) | \(a_{714}= +0.21994880 \pm 4.8 \cdot 10^{-7} \) |
\(a_{715}= +1.08556212 \pm 2.3 \cdot 10^{-7} \) | \(a_{716}= +0.10169296 \pm 1.7 \cdot 10^{-7} \) | \(a_{717}= +0.10832072 \pm 1.5 \cdot 10^{-7} \) |
\(a_{718}= -0.72823578 \pm 1.7 \cdot 10^{-7} \) | \(a_{719}= -0.34861230 \pm 1.6 \cdot 10^{-7} \) | \(a_{720}= +0.14698271 \pm 5.2 \cdot 10^{-7} \) |
\(a_{721}= +0.15783954 \pm 2.3 \cdot 10^{-7} \) | \(a_{722}= +0.08649516 \pm 2.2 \cdot 10^{-7} \) | \(a_{723}= -1.25040365 \pm 2.0 \cdot 10^{-7} \) |
\(a_{724}= -0.04605063 \pm 1.9 \cdot 10^{-7} \) | \(a_{725}= +2.15757678 \pm 2.4 \cdot 10^{-7} \) | \(a_{726}= -0.24277513 \pm 5.4 \cdot 10^{-7} \) |
\(a_{727}= -0.04464259 \pm 3.2 \cdot 10^{-7} \) | \(a_{728}= +0.10521940 \pm 2.3 \cdot 10^{-7} \) | \(a_{729}= +1.07921808 \pm 1.8 \cdot 10^{-7} \) |
\(a_{730}= +1.70989561 \pm 4.7 \cdot 10^{-7} \) | \(a_{731}= -0.98097458 \pm 2.5 \cdot 10^{-7} \) | \(a_{732}= +0.72981710 \pm 3.9 \cdot 10^{-7} \) |
\(a_{733}= +0.39817930 \pm 1.9 \cdot 10^{-7} \) | \(a_{734}= -0.86155631 \pm 2.6 \cdot 10^{-7} \) | \(a_{735}= -0.21205574 \pm 4.5 \cdot 10^{-7} \) |
\(a_{736}= +0.29906844 \pm 1.6 \cdot 10^{-7} \) | \(a_{737}= -0.19661970 \pm 2.4 \cdot 10^{-7} \) | \(a_{738}= -0.18924347 \pm 5.1 \cdot 10^{-7} \) |
\(a_{739}= -0.84401247 \pm 2.1 \cdot 10^{-7} \) | \(a_{740}= -0.33199662 \pm 3.9 \cdot 10^{-7} \) | \(a_{741}= +0.68516385 \pm 2.9 \cdot 10^{-7} \) |
\(a_{742}= +0.07301118 \pm 2.9 \cdot 10^{-7} \) | \(a_{743}= +1.55126067 \pm 1.9 \cdot 10^{-7} \) | \(a_{744}= -0.22731681 \pm 4.7 \cdot 10^{-7} \) |
\(a_{745}= +3.56076029 \pm 3.2 \cdot 10^{-7} \) | \(a_{746}= +0.15438604 \pm 2.8 \cdot 10^{-7} \) | \(a_{747}= -0.35557948 \pm 2.1 \cdot 10^{-7} \) |
\(a_{748}= -0.38218390 \pm 6.1 \cdot 10^{-7} \) | \(a_{749}= +0.28528882 \pm 2.1 \cdot 10^{-7} \) | \(a_{750}= -1.32873101 \pm 5.5 \cdot 10^{-7} \) |
\(a_{751}= -1.56564275 \pm 2.8 \cdot 10^{-7} \) | \(a_{752}= -0.11956422 \pm 2.2 \cdot 10^{-7} \) | \(a_{753}= +0.87266923 \pm 1.8 \cdot 10^{-7} \) |
\(a_{754}= +0.53014881 \pm 4.8 \cdot 10^{-7} \) | \(a_{755}= +3.43274549 \pm 3.3 \cdot 10^{-7} \) | \(a_{756}= -0.20572672 \pm 2.0 \cdot 10^{-7} \) |
\(a_{757}= -0.47145405 \pm 2.4 \cdot 10^{-7} \) | \(a_{758}= +0.16818303 \pm 2.6 \cdot 10^{-7} \) | \(a_{759}= -1.06011711 \pm 7.6 \cdot 10^{-8} \) |
\(a_{760}= -0.67688704 \pm 4.7 \cdot 10^{-7} \) | \(a_{761}= -1.33970022 \pm 2.2 \cdot 10^{-7} \) | \(a_{762}= -0.02363313 \pm 4.8 \cdot 10^{-7} \) |
\(a_{763}= -0.44370068 \pm 1.8 \cdot 10^{-7} \) | \(a_{764}= -0.09230206 \pm 1.9 \cdot 10^{-7} \) | \(a_{765}= +0.58906890 \pm 2.0 \cdot 10^{-7} \) |
\(a_{766}= -0.81975894 \pm 3.2 \cdot 10^{-7} \) | \(a_{767}= +0.00251574 \pm 1.9 \cdot 10^{-7} \) | \(a_{768}= +0.05133644 \pm 1.8 \cdot 10^{-7} \) |
\(a_{769}= -1.38030389 \pm 2.7 \cdot 10^{-7} \) | \(a_{770}= +0.36846889 \pm 5.9 \cdot 10^{-7} \) | \(a_{771}= -0.04238267 \pm 1.1 \cdot 10^{-7} \) |
\(a_{772}= +0.40996197 \pm 2.1 \cdot 10^{-7} \) | \(a_{773}= -1.29514958 \pm 2.4 \cdot 10^{-7} \) | \(a_{774}= +0.22523029 \pm 4.3 \cdot 10^{-7} \) |
\(a_{775}= -1.77367518 \pm 3.8 \cdot 10^{-7} \) | \(a_{776}= -0.27495344 \pm 2.7 \cdot 10^{-7} \) | \(a_{777}= +0.11406648 \pm 3.0 \cdot 10^{-7} \) |
\(a_{778}= -1.36596918 \pm 1.3 \cdot 10^{-7} \) | \(a_{779}= +0.87150696 \pm 2.1 \cdot 10^{-7} \) | \(a_{780}= -0.58439692 \pm 6.8 \cdot 10^{-7} \) |
\(a_{781}= -1.26135170 \pm 3.9 \cdot 10^{-7} \) | \(a_{782}= +1.19858944 \pm 4.6 \cdot 10^{-7} \) | \(a_{783}= -1.03655580 \pm 1.0 \cdot 10^{-7} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.95456953 \pm 2.9 \cdot 10^{-7} \) | \(a_{786}= +0.84526082 \pm 4.3 \cdot 10^{-7} \) |
\(a_{787}= +0.50157161 \pm 3.2 \cdot 10^{-7} \) | \(a_{788}= +0.08623020 \pm 2.2 \cdot 10^{-7} \) | \(a_{789}= -0.81191081 \pm 1.4 \cdot 10^{-7} \) |
\(a_{790}= +1.53967549 \pm 5.0 \cdot 10^{-7} \) | \(a_{791}= +0.37970126 \pm 2.2 \cdot 10^{-7} \) | \(a_{792}= +0.08774885 \pm 5.7 \cdot 10^{-7} \) |
\(a_{793}= +1.39922681 \pm 1.9 \cdot 10^{-7} \) | \(a_{794}= +0.18391424 \pm 2.5 \cdot 10^{-7} \) | \(a_{795}= -0.40550990 \pm 1.7 \cdot 10^{-7} \) |
\(a_{796}= -0.02929710 \pm 2.2 \cdot 10^{-7} \) | \(a_{797}= +1.05117990 \pm 2.2 \cdot 10^{-7} \) | \(a_{798}= +0.23256298 \pm 3.8 \cdot 10^{-7} \) |
\(a_{799}= -0.47918265 \pm 1.8 \cdot 10^{-7} \) | \(a_{800}= +0.40056068 \pm 3.2 \cdot 10^{-7} \) | \(a_{801}= -0.34083918 \pm 2.0 \cdot 10^{-7} \) |
\(a_{802}= +0.64687920 \pm 2.6 \cdot 10^{-7} \) | \(a_{803}= +1.02080968 \pm 2.5 \cdot 10^{-7} \) | \(a_{804}= +0.10584742 \pm 4.1 \cdot 10^{-7} \) |
\(a_{805}= -1.15557700 \pm 4.3 \cdot 10^{-7} \) | \(a_{806}= -0.43581846 \pm 5.2 \cdot 10^{-7} \) | \(a_{807}= -0.01608951 \pm 2.1 \cdot 10^{-7} \) |
\(a_{808}= +0.07631158 \pm 3.3 \cdot 10^{-7} \) | \(a_{809}= -0.54942116 \pm 2.0 \cdot 10^{-7} \) | \(a_{810}= +0.72689273 \pm 4.8 \cdot 10^{-7} \) |
\(a_{811}= -1.09937680 \pm 2.0 \cdot 10^{-7} \) | \(a_{812}= +0.17994672 \pm 2.5 \cdot 10^{-7} \) | \(a_{813}= +0.65951359 \pm 2.2 \cdot 10^{-7} \) |
\(a_{814}= -0.19820237 \pm 4.4 \cdot 10^{-7} \) | \(a_{815}= +2.60981128 \pm 2.9 \cdot 10^{-7} \) | \(a_{816}= +0.20574326 \pm 4.8 \cdot 10^{-7} \) |
\(a_{817}= -1.03723401 \pm 1.3 \cdot 10^{-7} \) | \(a_{818}= -1.18770573 \pm 3.5 \cdot 10^{-7} \) | \(a_{819}= -0.09681992 \pm 4.8 \cdot 10^{-7} \) |
\(a_{820}= -0.74333458 \pm 5.3 \cdot 10^{-7} \) | \(a_{821}= -1.35584032 \pm 2.6 \cdot 10^{-7} \) | \(a_{822}= +0.46800473 \pm 3.6 \cdot 10^{-7} \) |
\(a_{823}= +0.86217672 \pm 2.6 \cdot 10^{-7} \) | \(a_{824}= +0.14764537 \pm 2.3 \cdot 10^{-7} \) | \(a_{825}= -1.41987976 \pm 7.6 \cdot 10^{-8} \) |
\(a_{826}= +0.00085391 \pm 2.3 \cdot 10^{-7} \) | \(a_{827}= +0.67337207 \pm 2.8 \cdot 10^{-7} \) | \(a_{828}= -0.27519433 \pm 4.1 \cdot 10^{-7} \) |
\(a_{829}= -0.17622224 \pm 1.6 \cdot 10^{-7} \) | \(a_{830}= -1.39669030 \pm 4.6 \cdot 10^{-7} \) | \(a_{831}= +1.04904770 \pm 1.4 \cdot 10^{-7} \) |
\(a_{832}= +0.09842374 \pm 2.3 \cdot 10^{-7} \) | \(a_{833}= +0.14313368 \pm 3.0 \cdot 10^{-7} \) | \(a_{834}= +0.47841811 \pm 3.7 \cdot 10^{-7} \) |
\(a_{835}= -0.35929100 \pm 1.9 \cdot 10^{-7} \) | \(a_{836}= -0.40410235 \pm 5.1 \cdot 10^{-7} \) | \(a_{837}= +0.85211952 \pm 2.2 \cdot 10^{-7} \) |
\(a_{838}= +0.21336300 \pm 3.1 \cdot 10^{-7} \) | \(a_{839}= -0.10686398 \pm 3.0 \cdot 10^{-7} \) | \(a_{840}= -0.19835999 \pm 4.5 \cdot 10^{-7} \) |
\(a_{841}= -0.09333695 \pm 2.8 \cdot 10^{-7} \) | \(a_{842}= -0.47522022 \pm 2.4 \cdot 10^{-7} \) | \(a_{843}= +0.91784010 \pm 1.7 \cdot 10^{-7} \) |
\(a_{844}= -0.31383315 \pm 2.2 \cdot 10^{-7} \) | \(a_{845}= +0.68676086 \pm 1.9 \cdot 10^{-7} \) | \(a_{846}= +0.11001962 \pm 4.7 \cdot 10^{-7} \) |
\(a_{847}= -0.15798811 \pm 3.6 \cdot 10^{-7} \) | \(a_{848}= +0.06829571 \pm 2.9 \cdot 10^{-7} \) | \(a_{849}= +0.95054670 \pm 1.9 \cdot 10^{-7} \) |
\(a_{850}= +1.60534422 \pm 6.1 \cdot 10^{-7} \) | \(a_{851}= +0.62159413 \pm 8.9 \cdot 10^{-8} \) | \(a_{852}= +0.67903074 \pm 4.6 \cdot 10^{-7} \) |
\(a_{853}= -0.26408539 \pm 3.0 \cdot 10^{-7} \) | \(a_{854}= +0.47493510 \pm 2.1 \cdot 10^{-7} \) | \(a_{855}= +0.62285233 \pm 1.5 \cdot 10^{-7} \) |
\(a_{856}= +0.26686325 \pm 2.1 \cdot 10^{-7} \) | \(a_{857}= +0.00002151 \pm 2.6 \cdot 10^{-7} \) | \(a_{858}= -0.34888565 \pm 7.3 \cdot 10^{-7} \) |
\(a_{859}= -0.52446173 \pm 2.8 \cdot 10^{-7} \) | \(a_{860}= +0.88468817 \pm 4.5 \cdot 10^{-7} \) | \(a_{861}= +0.25539285 \pm 4.4 \cdot 10^{-7} \) |
\(a_{862}= -0.56664178 \pm 3.3 \cdot 10^{-7} \) | \(a_{863}= -1.43108346 \pm 2.6 \cdot 10^{-7} \) | \(a_{864}= -0.19243973 \pm 2.0 \cdot 10^{-7} \) |
\(a_{865}= -1.05107120 \pm 1.3 \cdot 10^{-7} \) | \(a_{866}= -0.85595960 \pm 2.9 \cdot 10^{-7} \) | \(a_{867}= +0.00318303 \pm 1.1 \cdot 10^{-7} \) |
\(a_{868}= -0.14792847 \pm 2.9 \cdot 10^{-7} \) | \(a_{869}= +0.91918807 \pm 1.4 \cdot 10^{-7} \) | \(a_{870}= -0.99943842 \pm 7.0 \cdot 10^{-7} \) |
\(a_{871}= +0.20293378 \pm 1.6 \cdot 10^{-7} \) | \(a_{872}= -0.41504398 \pm 1.8 \cdot 10^{-7} \) | \(a_{873}= +0.25300439 \pm 2.1 \cdot 10^{-7} \) |
\(a_{874}= +1.26732920 \pm 3.6 \cdot 10^{-7} \) | \(a_{875}= -0.86468375 \pm 3.7 \cdot 10^{-7} \) | \(a_{876}= -0.54953837 \pm 3.8 \cdot 10^{-7} \) |
\(a_{877}= +1.75824861 \pm 2.8 \cdot 10^{-7} \) | \(a_{878}= -0.50045334 \pm 2.3 \cdot 10^{-7} \) | \(a_{879}= -0.76622727 \pm 1.5 \cdot 10^{-7} \) |
\(a_{880}= +0.34467109 \pm 5.9 \cdot 10^{-7} \) | \(a_{881}= -1.32257555 \pm 2.7 \cdot 10^{-7} \) | \(a_{882}= -0.03286328 \pm 2.5 \cdot 10^{-7} \) |
\(a_{883}= +0.22452553 \pm 2.3 \cdot 10^{-7} \) | \(a_{884}= +0.39445703 \pm 5.2 \cdot 10^{-7} \) | \(a_{885}= -0.00474268 \pm 1.6 \cdot 10^{-7} \) |
\(a_{886}= +0.37253493 \pm 3.7 \cdot 10^{-7} \) | \(a_{887}= +1.08097643 \pm 2.5 \cdot 10^{-7} \) | \(a_{888}= +0.10669943 \pm 3.0 \cdot 10^{-7} \) |
\(a_{889}= -0.01537947 \pm 3.0 \cdot 10^{-7} \) | \(a_{890}= -1.33879150 \pm 4.9 \cdot 10^{-7} \) | \(a_{891}= +0.43395581 \pm 1.8 \cdot 10^{-7} \) |
\(a_{892}= +0.32091111 \pm 2.6 \cdot 10^{-7} \) | \(a_{893}= -0.50666404 \pm 1.0 \cdot 10^{-7} \) | \(a_{894}= -1.14438237 \pm 5.1 \cdot 10^{-7} \) |
\(a_{895}= -0.36755574 \pm 1.8 \cdot 10^{-7} \) | \(a_{896}= +0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= +1.09416083 \pm 2.0 \cdot 10^{-7} \) |
\(a_{898}= +0.01524527 \pm 2.2 \cdot 10^{-7} \) | \(a_{899}= -0.74533883 \pm 1.6 \cdot 10^{-7} \) | \(a_{900}= -0.36858462 \pm 5.7 \cdot 10^{-7} \) |
\(a_{901}= +0.27371163 \pm 2.2 \cdot 10^{-7} \) | \(a_{902}= -0.44377161 \pm 5.8 \cdot 10^{-7} \) | \(a_{903}= -0.30395873 \pm 3.6 \cdot 10^{-7} \) |
\(a_{904}= +0.35517801 \pm 2.2 \cdot 10^{-7} \) | \(a_{905}= +0.16644391 \pm 2.1 \cdot 10^{-7} \) | \(a_{906}= -1.10324007 \pm 4.6 \cdot 10^{-7} \) |
\(a_{907}= -0.01815217 \pm 2.5 \cdot 10^{-7} \) | \(a_{908}= -0.19815081 \pm 3.5 \cdot 10^{-7} \) | \(a_{909}= -0.07021976 \pm 2.7 \cdot 10^{-7} \) |
\(a_{910}= -0.38030160 \pm 5.0 \cdot 10^{-7} \) | \(a_{911}= -0.63420006 \pm 2.9 \cdot 10^{-7} \) | \(a_{912}= +0.21754275 \pm 3.8 \cdot 10^{-7} \) |
\(a_{913}= -0.83382575 \pm 1.9 \cdot 10^{-7} \) | \(a_{914}= +0.96932625 \pm 3.1 \cdot 10^{-7} \) | \(a_{915}= -2.63782733 \pm 1.3 \cdot 10^{-7} \) |
\(a_{916}= +0.80462773 \pm 2.3 \cdot 10^{-7} \) | \(a_{917}= +0.55006114 \pm 2.5 \cdot 10^{-7} \) | \(a_{918}= -0.77124897 \pm 4.9 \cdot 10^{-7} \) |
\(a_{919}= -1.44346933 \pm 1.4 \cdot 10^{-7} \) | \(a_{920}= -1.08094331 \pm 4.3 \cdot 10^{-7} \) | \(a_{921}= +0.79059366 \pm 1.4 \cdot 10^{-7} \) |
\(a_{922}= +1.14265821 \pm 2.4 \cdot 10^{-7} \) | \(a_{923}= +1.30185770 \pm 2.3 \cdot 10^{-7} \) | \(a_{924}= -0.11842114 \pm 5.0 \cdot 10^{-7} \) |
\(a_{925}= +0.83253908 \pm 1.3 \cdot 10^{-7} \) | \(a_{926}= +0.64232336 \pm 2.0 \cdot 10^{-7} \) | \(a_{927}= -0.13585910 \pm 2.5 \cdot 10^{-7} \) |
\(a_{928}= +0.16832475 \pm 2.5 \cdot 10^{-7} \) | \(a_{929}= -0.44378306 \pm 2.7 \cdot 10^{-7} \) | \(a_{930}= +0.82160651 \pm 7.3 \cdot 10^{-7} \) |
\(a_{931}= +0.15134247 \pm 2.0 \cdot 10^{-7} \) | \(a_{932}= +0.17338394 \pm 3.2 \cdot 10^{-7} \) | \(a_{933}= -0.58786719 \pm 2.0 \cdot 10^{-7} \) |
\(a_{934}= +0.12348470 \pm 2.3 \cdot 10^{-7} \) | \(a_{935}= +1.38135311 \pm 1.9 \cdot 10^{-7} \) | \(a_{936}= -0.09056674 \pm 4.8 \cdot 10^{-7} \) |
\(a_{937}= +0.65510764 \pm 3.2 \cdot 10^{-7} \) | \(a_{938}= +0.06888117 \pm 2.3 \cdot 10^{-7} \) | \(a_{939}= +0.34854303 \pm 2.2 \cdot 10^{-7} \) |
\(a_{940}= +0.43214904 \pm 4.9 \cdot 10^{-7} \) | \(a_{941}= +0.52223586 \pm 2.5 \cdot 10^{-7} \) | \(a_{942}= +0.30678632 \pm 4.8 \cdot 10^{-7} \) |
\(a_{943}= +1.39173831 \pm 1.7 \cdot 10^{-7} \) | \(a_{944}= +0.00079876 \pm 2.3 \cdot 10^{-7} \) | \(a_{945}= +0.74357202 \pm 4.6 \cdot 10^{-7} \) |
\(a_{946}= +0.52815988 \pm 5.0 \cdot 10^{-7} \) | \(a_{947}= -0.24020443 \pm 2.4 \cdot 10^{-7} \) | \(a_{948}= -0.49483182 \pm 4.1 \cdot 10^{-7} \) |
\(a_{949}= -1.05359111 \pm 1.5 \cdot 10^{-7} \) | \(a_{950}= +1.69741159 \pm 5.1 \cdot 10^{-7} \) | \(a_{951}= -0.38384937 \pm 1.3 \cdot 10^{-7} \) |
\(a_{952}= +0.13388929 \pm 3.0 \cdot 10^{-7} \) | \(a_{953}= +0.33396535 \pm 2.6 \cdot 10^{-7} \) | \(a_{954}= -0.06284378 \pm 5.4 \cdot 10^{-7} \) |
\(a_{955}= +0.33361356 \pm 2.7 \cdot 10^{-7} \) | \(a_{956}= +0.06593800 \pm 2.2 \cdot 10^{-7} \) | \(a_{957}= -0.59666591 \pm 1.0 \cdot 10^{-7} \) |
\(a_{958}= -0.61771427 \pm 2.3 \cdot 10^{-7} \) | \(a_{959}= +0.30455832 \pm 1.8 \cdot 10^{-7} \) | \(a_{960}= -0.18554878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{961}= -0.38728068 \pm 2.1 \cdot 10^{-7} \) | \(a_{962}= +0.20456728 \pm 3.5 \cdot 10^{-7} \) | \(a_{963}= -0.24556003 \pm 1.9 \cdot 10^{-7} \) |
\(a_{964}= -0.76115742 \pm 3.9 \cdot 10^{-7} \) | \(a_{965}= -1.48175328 \pm 2.4 \cdot 10^{-7} \) | \(a_{966}= +0.37138753 \pm 3.4 \cdot 10^{-7} \) |
\(a_{967}= -1.19630791 \pm 2.3 \cdot 10^{-7} \) | \(a_{968}= -0.14778435 \pm 3.6 \cdot 10^{-7} \) | \(a_{969}= +0.87185543 \pm 1.5 \cdot 10^{-7} \) |
\(a_{970}= +0.99378281 \pm 5.3 \cdot 10^{-7} \) | \(a_{971}= +0.07709851 \pm 2.6 \cdot 10^{-7} \) | \(a_{972}= +0.31068782 \pm 2.2 \cdot 10^{-7} \) |
\(a_{973}= +0.31133492 \pm 1.9 \cdot 10^{-7} \) | \(a_{974}= -0.96658868 \pm 2.0 \cdot 10^{-7} \) | \(a_{975}= +1.46547660 \pm 1.9 \cdot 10^{-7} \) |
\(a_{976}= +0.44426110 \pm 2.1 \cdot 10^{-7} \) | \(a_{977}= +0.40581074 \pm 2.2 \cdot 10^{-7} \) | \(a_{978}= -0.83875964 \pm 4.1 \cdot 10^{-7} \) |
\(a_{979}= -0.79926009 \pm 2.4 \cdot 10^{-7} \) | \(a_{980}= -0.12908456 \pm 2.7 \cdot 10^{-7} \) | \(a_{981}= +0.38191175 \pm 1.8 \cdot 10^{-7} \) |
\(a_{982}= -0.57658611 \pm 2.6 \cdot 10^{-7} \) | \(a_{983}= -1.53128929 \pm 3.0 \cdot 10^{-7} \) | \(a_{984}= +0.23889813 \pm 4.4 \cdot 10^{-7} \) |
\(a_{985}= -0.31166765 \pm 3.0 \cdot 10^{-7} \) | \(a_{986}= +0.67460231 \pm 5.4 \cdot 10^{-7} \) | \(a_{987}= -0.14847658 \pm 4.0 \cdot 10^{-7} \) |
\(a_{988}= +0.41707936 \pm 4.3 \cdot 10^{-7} \) | \(a_{989}= -1.65639331 \pm 1.1 \cdot 10^{-7} \) | \(a_{990}= -0.31715660 \pm 8.4 \cdot 10^{-7} \) |
\(a_{991}= +0.92612072 \pm 2.1 \cdot 10^{-7} \) | \(a_{992}= -0.13837441 \pm 2.9 \cdot 10^{-7} \) | \(a_{993}= +1.18193069 \pm 1.1 \cdot 10^{-7} \) |
\(a_{994}= +0.44188541 \pm 2.8 \cdot 10^{-7} \) | \(a_{995}= +0.10589050 \pm 2.1 \cdot 10^{-7} \) | \(a_{996}= +0.44887823 \pm 3.7 \cdot 10^{-7} \) |
\(a_{997}= -1.29631105 \pm 1.9 \cdot 10^{-7} \) | \(a_{998}= -0.88699478 \pm 2.5 \cdot 10^{-7} \) | \(a_{999}= -0.39997335 \pm 7.5 \cdot 10^{-8} \) |
\(a_{1000}= -0.80883758 \pm 3.7 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000