Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.7229827041542024618797899614 \pm 5 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +1.97406954 \pm 5.7 \cdot 10^{-7} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.99642243 \pm 8.6 \cdot 10^{-7} \) | \(a_{6}= +1.39587796 \pm 5.8 \cdot 10^{-7} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +2.89695054 \pm 7.9 \cdot 10^{-7} \) |
\(a_{10}= +0.70457706 \pm 8.7 \cdot 10^{-7} \) | \(a_{11}= -0.81746955 \pm 1.0 \cdot 10^{-6} \) | \(a_{12}= +0.98703477 \pm 5.8 \cdot 10^{-7} \) |
\(a_{13}= +0.08680522 \pm 7.3 \cdot 10^{-7} \) | \(a_{14}= +0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= +1.96700717 \pm 5.8 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -1.26373710 \pm 9.4 \cdot 10^{-7} \) | \(a_{18}= +2.04845337 \pm 8.0 \cdot 10^{-7} \) |
\(a_{19}= +1.14289288 \pm 6.2 \cdot 10^{-7} \) | \(a_{20}= +0.49821122 \pm 8.7 \cdot 10^{-7} \) | \(a_{21}= +0.74612815 \pm 5.8 \cdot 10^{-7} \) |
\(a_{22}= -0.57803826 \pm 1.0 \cdot 10^{-6} \) | \(a_{23}= +0.08959890 \pm 5.1 \cdot 10^{-7} \) | \(a_{24}= +0.69793898 \pm 5.8 \cdot 10^{-7} \) |
\(a_{25}= -0.00714234 \pm 1.0 \cdot 10^{-6} \) | \(a_{26}= +0.06138056 \pm 7.4 \cdot 10^{-7} \) | \(a_{27}= +3.74471228 \pm 6.2 \cdot 10^{-7} \) |
\(a_{28}= +0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -0.32649023 \pm 7.8 \cdot 10^{-7} \) | \(a_{30}= +1.39088411 \pm 1.4 \cdot 10^{-6} \) |
\(a_{31}= +0.07066552 \pm 9.1 \cdot 10^{-7} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -1.61374173 \pm 5.3 \cdot 10^{-7} \) |
\(a_{34}= -0.89359707 \pm 9.5 \cdot 10^{-7} \) | \(a_{35}= +0.37661228 \pm 8.7 \cdot 10^{-7} \) | \(a_{36}= +1.44847527 \pm 8.0 \cdot 10^{-7} \) |
\(a_{37}= -1.16605999 \pm 3.9 \cdot 10^{-7} \) | \(a_{38}= +0.80814731 \pm 6.3 \cdot 10^{-7} \) | \(a_{39}= +0.17135954 \pm 8.1 \cdot 10^{-7} \) |
\(a_{40}= +0.35228853 \pm 8.7 \cdot 10^{-7} \) | \(a_{41}= -1.71470670 \pm 8.2 \cdot 10^{-7} \) | \(a_{42}= +0.52759228 \pm 5.8 \cdot 10^{-7} \) |
\(a_{43}= -1.60534037 \pm 5.8 \cdot 10^{-7} \) | \(a_{44}= -0.40873477 \pm 1.0 \cdot 10^{-6} \) | \(a_{45}= +2.88658651 \pm 8.7 \cdot 10^{-7} \) |
\(a_{46}= +0.06335599 \pm 5.2 \cdot 10^{-7} \) | \(a_{47}= +0.26777542 \pm 6.9 \cdot 10^{-7} \) | \(a_{48}= +0.49351738 \pm 5.8 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.00505039 \pm 1.0 \cdot 10^{-6} \) | \(a_{51}= -2.49470491 \pm 4.7 \cdot 10^{-7} \) |
\(a_{52}= +0.04340261 \pm 7.4 \cdot 10^{-7} \) | \(a_{53}= +0.91881566 \pm 9.2 \cdot 10^{-7} \) | \(a_{54}= +2.64791145 \pm 6.3 \cdot 10^{-7} \) |
\(a_{55}= -0.81454499 \pm 9.1 \cdot 10^{-7} \) | \(a_{56}= +0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +2.25615002 \pm 5.3 \cdot 10^{-7} \) |
\(a_{58}= -0.23086346 \pm 7.9 \cdot 10^{-7} \) | \(a_{59}= +0.95545462 \pm 7.3 \cdot 10^{-7} \) | \(a_{60}= +0.98350359 \pm 1.4 \cdot 10^{-6} \) |
\(a_{61}= -0.34557009 \pm 6.6 \cdot 10^{-7} \) | \(a_{62}= +0.04996807 \pm 9.2 \cdot 10^{-7} \) | \(a_{63}= +1.09494438 \pm 8.0 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.08649467 \pm 6.2 \cdot 10^{-7} \) | \(a_{66}= -1.14108772 \pm 1.6 \cdot 10^{-6} \) |
\(a_{67}= +0.01326173 \pm 7.4 \cdot 10^{-7} \) | \(a_{68}= -0.63186855 \pm 9.5 \cdot 10^{-7} \) | \(a_{69}= +0.17687446 \pm 4.4 \cdot 10^{-7} \) |
\(a_{70}= +0.26630510 \pm 8.7 \cdot 10^{-7} \) | \(a_{71}= +1.40249551 \pm 8.9 \cdot 10^{-7} \) | \(a_{72}= +1.02422669 \pm 8.0 \cdot 10^{-7} \) |
\(a_{73}= +0.16933762 \pm 6.3 \cdot 10^{-7} \) | \(a_{74}= -0.82452893 \pm 4.0 \cdot 10^{-7} \) | \(a_{75}= -0.01409947 \pm 5.7 \cdot 10^{-7} \) |
\(a_{76}= +0.57144644 \pm 6.3 \cdot 10^{-7} \) | \(a_{77}= -0.30897445 \pm 1.0 \cdot 10^{-6} \) | \(a_{78}= +0.12116949 \pm 1.3 \cdot 10^{-6} \) |
\(a_{79}= -0.66910499 \pm 7.2 \cdot 10^{-7} \) | \(a_{80}= +0.24910561 \pm 8.7 \cdot 10^{-7} \) | \(a_{81}= +4.49537190 \pm 6.6 \cdot 10^{-7} \) |
\(a_{82}= -1.21248074 \pm 8.3 \cdot 10^{-7} \) | \(a_{83}= -0.14302838 \pm 6.1 \cdot 10^{-7} \) | \(a_{84}= +0.37306408 \pm 5.8 \cdot 10^{-7} \) |
\(a_{85}= -1.25921600 \pm 6.4 \cdot 10^{-7} \) | \(a_{86}= -1.13514706 \pm 5.9 \cdot 10^{-7} \) | \(a_{87}= -0.64451442 \pm 4.1 \cdot 10^{-7} \) |
\(a_{88}= -0.28901913 \pm 1.0 \cdot 10^{-6} \) | \(a_{89}= -0.83808805 \pm 7.0 \cdot 10^{-7} \) | \(a_{90}= +2.04112489 \pm 1.6 \cdot 10^{-6} \) |
\(a_{91}= +0.03280929 \pm 7.4 \cdot 10^{-7} \) | \(a_{92}= +0.04479945 \pm 5.2 \cdot 10^{-7} \) | \(a_{93}= +0.13949866 \pm 6.1 \cdot 10^{-7} \) |
\(a_{94}= +0.18934582 \pm 7.0 \cdot 10^{-7} \) | \(a_{95}= +1.13880411 \pm 4.5 \cdot 10^{-7} \) | \(a_{96}= +0.34896949 \pm 5.8 \cdot 10^{-7} \) |
\(a_{97}= +0.80131416 \pm 8.4 \cdot 10^{-7} \) | \(a_{98}= +0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= -2.36816884 \pm 8.4 \cdot 10^{-7} \) |
\(a_{100}= -0.00357117 \pm 1.0 \cdot 10^{-6} \) | \(a_{101}= -0.97889854 \pm 1.0 \cdot 10^{-6} \) | \(a_{102}= -1.76402276 \pm 1.5 \cdot 10^{-6} \) |
\(a_{103}= +0.08279926 \pm 7.3 \cdot 10^{-7} \) | \(a_{104}= +0.03069028 \pm 7.4 \cdot 10^{-7} \) | \(a_{105}= +0.74345883 \pm 1.4 \cdot 10^{-6} \) |
\(a_{106}= +0.64970078 \pm 9.3 \cdot 10^{-7} \) | \(a_{107}= +0.15794041 \pm 6.5 \cdot 10^{-7} \) | \(a_{108}= +1.87235614 \pm 6.3 \cdot 10^{-7} \) |
\(a_{109}= +1.46282217 \pm 5.6 \cdot 10^{-7} \) | \(a_{110}= -0.57597029 \pm 1.9 \cdot 10^{-6} \) | \(a_{111}= -2.30188350 \pm 2.8 \cdot 10^{-7} \) |
\(a_{112}= +0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +0.72967351 \pm 6.8 \cdot 10^{-7} \) | \(a_{114}= +1.59533898 \pm 1.2 \cdot 10^{-6} \) |
\(a_{115}= +0.08927835 \pm 6.3 \cdot 10^{-7} \) | \(a_{116}= -0.16324512 \pm 7.9 \cdot 10^{-7} \) | \(a_{117}= +0.25147042 \pm 8.1 \cdot 10^{-7} \) |
\(a_{118}= +0.67560844 \pm 7.4 \cdot 10^{-7} \) | \(a_{119}= -0.47764773 \pm 9.5 \cdot 10^{-7} \) | \(a_{120}= +0.69544205 \pm 1.4 \cdot 10^{-6} \) |
\(a_{121}= -0.33174354 \pm 1.1 \cdot 10^{-6} \) | \(a_{122}= -0.24435496 \pm 6.7 \cdot 10^{-7} \) | \(a_{123}= -3.38495027 \pm 6.7 \cdot 10^{-7} \) |
\(a_{124}= +0.03533276 \pm 9.2 \cdot 10^{-7} \) | \(a_{125}= -1.00353922 \pm 1.1 \cdot 10^{-6} \) | \(a_{126}= +0.77424260 \pm 8.0 \cdot 10^{-7} \) |
\(a_{127}= +0.74683548 \pm 9.4 \cdot 10^{-7} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -3.16905352 \pm 5.1 \cdot 10^{-7} \) |
\(a_{130}= +0.06116097 \pm 1.6 \cdot 10^{-6} \) | \(a_{131}= +1.50341095 \pm 7.8 \cdot 10^{-7} \) | \(a_{132}= -0.80687086 \pm 1.6 \cdot 10^{-6} \) |
\(a_{133}= +0.43197291 \pm 6.3 \cdot 10^{-7} \) | \(a_{134}= +0.00937746 \pm 7.5 \cdot 10^{-7} \) | \(a_{135}= +3.73131532 \pm 6.2 \cdot 10^{-7} \) |
\(a_{136}= -0.44679854 \pm 9.5 \cdot 10^{-7} \) | \(a_{137}= +0.67986034 \pm 5.7 \cdot 10^{-7} \) | \(a_{138}= +0.12506913 \pm 1.1 \cdot 10^{-6} \) |
\(a_{139}= -1.81637207 \pm 6.0 \cdot 10^{-7} \) | \(a_{140}= +0.18830614 \pm 8.7 \cdot 10^{-7} \) | \(a_{141}= +0.52860731 \pm 6.3 \cdot 10^{-7} \) |
\(a_{142}= +0.99171408 \pm 9.1 \cdot 10^{-7} \) | \(a_{143}= -0.07096062 \pm 8.0 \cdot 10^{-7} \) | \(a_{144}= +0.72423764 \pm 8.0 \cdot 10^{-7} \) |
\(a_{145}= -0.32532219 \pm 5.4 \cdot 10^{-7} \) | \(a_{146}= +0.11973978 \pm 6.5 \cdot 10^{-7} \) | \(a_{147}= +0.28200993 \pm 5.8 \cdot 10^{-7} \) |
\(a_{148}= -0.58302999 \pm 4.0 \cdot 10^{-7} \) | \(a_{149}= +0.36008667 \pm 1.0 \cdot 10^{-6} \) | \(a_{150}= -0.00996983 \pm 1.6 \cdot 10^{-6} \) |
\(a_{151}= -0.27857580 \pm 8.7 \cdot 10^{-7} \) | \(a_{152}= +0.40407365 \pm 6.3 \cdot 10^{-7} \) | \(a_{153}= -3.66098388 \pm 9.0 \cdot 10^{-7} \) |
\(a_{154}= -0.21847793 \pm 1.0 \cdot 10^{-6} \) | \(a_{155}= +0.07041271 \pm 1.0 \cdot 10^{-6} \) | \(a_{156}= +0.08567977 \pm 1.3 \cdot 10^{-6} \) |
\(a_{157}= -0.44104495 \pm 9.6 \cdot 10^{-7} \) | \(a_{158}= -0.47312867 \pm 7.3 \cdot 10^{-7} \) | \(a_{159}= +1.81380600 \pm 5.4 \cdot 10^{-7} \) |
\(a_{160}= +0.17614426 \pm 8.7 \cdot 10^{-7} \) | \(a_{161}= +0.03386520 \pm 5.2 \cdot 10^{-7} \) | \(a_{162}= +3.17870795 \pm 6.7 \cdot 10^{-7} \) |
\(a_{163}= -0.27421435 \pm 7.4 \cdot 10^{-7} \) | \(a_{164}= -0.85735335 \pm 8.3 \cdot 10^{-7} \) | \(a_{165}= -1.60796846 \pm 5.0 \cdot 10^{-7} \) |
\(a_{166}= -0.10113634 \pm 6.2 \cdot 10^{-7} \) | \(a_{167}= -0.46843539 \pm 5.5 \cdot 10^{-7} \) | \(a_{168}= +0.26379614 \pm 5.8 \cdot 10^{-7} \) |
\(a_{169}= -0.99246485 \pm 7.7 \cdot 10^{-7} \) | \(a_{170}= -0.89040017 \pm 1.8 \cdot 10^{-6} \) | \(a_{171}= +3.31090415 \pm 5.8 \cdot 10^{-7} \) |
\(a_{172}= -0.80267018 \pm 5.9 \cdot 10^{-7} \) | \(a_{173}= -1.75330250 \pm 6.7 \cdot 10^{-7} \) | \(a_{174}= -0.45574052 \pm 1.3 \cdot 10^{-6} \) |
\(a_{175}= -0.00269955 \pm 1.0 \cdot 10^{-6} \) | \(a_{176}= -0.20436739 \pm 1.0 \cdot 10^{-6} \) | \(a_{177}= +1.88613386 \pm 5.2 \cdot 10^{-7} \) |
\(a_{178}= -0.59261775 \pm 7.1 \cdot 10^{-7} \) | \(a_{179}= +0.69753139 \pm 5.3 \cdot 10^{-7} \) | \(a_{180}= +1.44329325 \pm 1.6 \cdot 10^{-6} \) |
\(a_{181}= -0.16256879 \pm 5.9 \cdot 10^{-7} \) | \(a_{182}= +0.02319967 \pm 7.4 \cdot 10^{-7} \) | \(a_{183}= -0.68217940 \pm 5.0 \cdot 10^{-7} \) |
\(a_{184}= +0.03167800 \pm 5.2 \cdot 10^{-7} \) | \(a_{185}= -1.16188833 \pm 3.5 \cdot 10^{-7} \) | \(a_{186}= +0.09864045 \pm 1.5 \cdot 10^{-6} \) |
\(a_{187}= +1.03306659 \pm 1.0 \cdot 10^{-6} \) | \(a_{188}= +0.13388771 \pm 7.0 \cdot 10^{-7} \) | \(a_{189}= +1.41536820 \pm 6.3 \cdot 10^{-7} \) |
\(a_{190}= +0.80525611 \pm 1.5 \cdot 10^{-6} \) | \(a_{191}= -0.48310811 \pm 5.8 \cdot 10^{-7} \) | \(a_{192}= +0.24675869 \pm 5.8 \cdot 10^{-7} \) |
\(a_{193}= -1.32379220 \pm 6.5 \cdot 10^{-7} \) | \(a_{194}= +0.56661468 \pm 8.5 \cdot 10^{-7} \) | \(a_{195}= +0.17074649 \pm 6.1 \cdot 10^{-7} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +0.60911151 \pm 6.9 \cdot 10^{-7} \) | \(a_{198}= -1.67454825 \pm 1.8 \cdot 10^{-6} \) |
\(a_{199}= -0.34681035 \pm 6.9 \cdot 10^{-7} \) | \(a_{200}= -0.00252520 \pm 1.0 \cdot 10^{-6} \) | \(a_{201}= +0.02617959 \pm 3.6 \cdot 10^{-7} \) |
\(a_{202}= -0.69218580 \pm 1.0 \cdot 10^{-6} \) | \(a_{203}= -0.12340171 \pm 7.9 \cdot 10^{-7} \) | \(a_{204}= -1.24735246 \pm 1.5 \cdot 10^{-6} \) |
\(a_{205}= -1.70857223 \pm 1.0 \cdot 10^{-6} \) | \(a_{206}= +0.05854792 \pm 7.4 \cdot 10^{-7} \) | \(a_{207}= +0.25956358 \pm 5.3 \cdot 10^{-7} \) |
\(a_{208}= +0.02170130 \pm 7.4 \cdot 10^{-7} \) | \(a_{209}= -0.93428013 \pm 5.5 \cdot 10^{-7} \) | \(a_{210}= +0.52570478 \pm 1.4 \cdot 10^{-6} \) |
\(a_{211}= +0.93425715 \pm 7.0 \cdot 10^{-7} \) | \(a_{212}= +0.45940783 \pm 9.3 \cdot 10^{-7} \) | \(a_{213}= +2.76862366 \pm 5.3 \cdot 10^{-7} \) |
\(a_{214}= +0.11168073 \pm 6.6 \cdot 10^{-7} \) | \(a_{215}= -1.59959715 \pm 6.4 \cdot 10^{-7} \) | \(a_{216}= +1.32395572 \pm 6.3 \cdot 10^{-7} \) |
\(a_{217}= +0.02670906 \pm 9.2 \cdot 10^{-7} \) | \(a_{218}= +1.03437147 \pm 5.8 \cdot 10^{-7} \) | \(a_{219}= +0.33428424 \pm 5.2 \cdot 10^{-7} \) |
\(a_{220}= -0.40727250 \pm 1.9 \cdot 10^{-6} \) | \(a_{221}= -0.10969897 \pm 6.8 \cdot 10^{-7} \) | \(a_{222}= -1.62767743 \pm 9.7 \cdot 10^{-7} \) |
\(a_{223}= -1.36448016 \pm 8.1 \cdot 10^{-7} \) | \(a_{224}= +0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= -0.02069099 \pm 9.9 \cdot 10^{-7} \) |
\(a_{226}= +0.51595708 \pm 6.9 \cdot 10^{-7} \) | \(a_{227}= -0.29467557 \pm 1.1 \cdot 10^{-6} \) | \(a_{228}= +1.12807501 \pm 1.2 \cdot 10^{-6} \) |
\(a_{229}= +1.48451028 \pm 7.2 \cdot 10^{-7} \) | \(a_{230}= +0.06312933 \pm 1.3 \cdot 10^{-6} \) | \(a_{231}= -0.60993704 \pm 1.6 \cdot 10^{-6} \) |
\(a_{232}= -0.11543173 \pm 7.9 \cdot 10^{-7} \) | \(a_{233}= -1.61369848 \pm 1.0 \cdot 10^{-6} \) | \(a_{234}= +0.17781644 \pm 1.5 \cdot 10^{-6} \) |
\(a_{235}= +0.26681744 \pm 7.7 \cdot 10^{-7} \) | \(a_{236}= +0.47772731 \pm 7.4 \cdot 10^{-7} \) | \(a_{237}= -1.32085977 \pm 3.3 \cdot 10^{-7} \) |
\(a_{238}= -0.33774795 \pm 9.5 \cdot 10^{-7} \) | \(a_{239}= -0.10460169 \pm 6.9 \cdot 10^{-7} \) | \(a_{240}= +0.49175179 \pm 1.4 \cdot 10^{-6} \) |
\(a_{241}= +0.64638526 \pm 1.2 \cdot 10^{-6} \) | \(a_{242}= -0.23457811 \pm 1.1 \cdot 10^{-6} \) | \(a_{243}= +5.12946445 \pm 6.8 \cdot 10^{-7} \) |
\(a_{244}= -0.17278505 \pm 6.7 \cdot 10^{-7} \) | \(a_{245}= +0.14234606 \pm 8.7 \cdot 10^{-7} \) | \(a_{246}= -2.39352129 \pm 1.4 \cdot 10^{-6} \) |
\(a_{247}= +0.09920907 \pm 7.6 \cdot 10^{-7} \) | \(a_{248}= +0.02498404 \pm 9.2 \cdot 10^{-7} \) | \(a_{249}= -0.28234797 \pm 4.6 \cdot 10^{-7} \) |
\(a_{250}= -0.70960938 \pm 1.1 \cdot 10^{-6} \) | \(a_{251}= +0.66279424 \pm 7.1 \cdot 10^{-7} \) | \(a_{252}= +0.54747219 \pm 8.0 \cdot 10^{-7} \) |
\(a_{253}= -0.07324437 \pm 4.6 \cdot 10^{-7} \) | \(a_{254}= +0.52809243 \pm 9.5 \cdot 10^{-7} \) | \(a_{255}= -2.48577994 \pm 5.3 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.72869398 \pm 5.1 \cdot 10^{-7} \) | \(a_{258}= -2.24085923 \pm 1.1 \cdot 10^{-6} \) |
\(a_{259}= -0.44072925 \pm 4.0 \cdot 10^{-7} \) | \(a_{260}= +0.04324733 \pm 1.6 \cdot 10^{-6} \) | \(a_{261}= -0.94582605 \pm 7.6 \cdot 10^{-7} \) |
\(a_{262}= +1.06307208 \pm 7.9 \cdot 10^{-7} \) | \(a_{263}= +0.55940958 \pm 6.0 \cdot 10^{-7} \) | \(a_{264}= -0.57054386 \pm 1.6 \cdot 10^{-6} \) |
\(a_{265}= +0.91552853 \pm 8.9 \cdot 10^{-7} \) | \(a_{266}= +0.30545097 \pm 6.3 \cdot 10^{-7} \) | \(a_{267}= -1.65444410 \pm 5.1 \cdot 10^{-7} \) |
\(a_{268}= +0.00663087 \pm 7.5 \cdot 10^{-7} \) | \(a_{269}= +0.38955344 \pm 6.2 \cdot 10^{-7} \) | \(a_{270}= +2.63843837 \pm 1.4 \cdot 10^{-6} \) |
\(a_{271}= -0.08274819 \pm 6.6 \cdot 10^{-7} \) | \(a_{272}= -0.31593428 \pm 9.5 \cdot 10^{-7} \) | \(a_{273}= +0.06476782 \pm 1.3 \cdot 10^{-6} \) |
\(a_{274}= +0.48073386 \pm 5.8 \cdot 10^{-7} \) | \(a_{275}= +0.00583864 \pm 6.2 \cdot 10^{-7} \) | \(a_{276}= +0.08843723 \pm 1.1 \cdot 10^{-6} \) |
\(a_{277}= -0.88479209 \pm 7.7 \cdot 10^{-7} \) | \(a_{278}= -1.28436901 \pm 6.1 \cdot 10^{-7} \) | \(a_{279}= +0.20471453 \pm 7.9 \cdot 10^{-7} \) |
\(a_{280}= +0.13315255 \pm 8.7 \cdot 10^{-7} \) | \(a_{281}= +1.24364297 \pm 8.5 \cdot 10^{-7} \) | \(a_{282}= +0.37378181 \pm 1.2 \cdot 10^{-6} \) |
\(a_{283}= +0.30954500 \pm 8.6 \cdot 10^{-7} \) | \(a_{284}= +0.70124775 \pm 9.1 \cdot 10^{-7} \) | \(a_{285}= +2.24807850 \pm 2.8 \cdot 10^{-7} \) |
\(a_{286}= -0.05017674 \pm 1.7 \cdot 10^{-6} \) | \(a_{287}= -0.64809822 \pm 8.3 \cdot 10^{-7} \) | \(a_{288}= +0.51211334 \pm 8.0 \cdot 10^{-7} \) |
\(a_{289}= +0.59703146 \pm 1.2 \cdot 10^{-6} \) | \(a_{290}= -0.23003753 \pm 1.6 \cdot 10^{-6} \) | \(a_{291}= +1.58184987 \pm 4.0 \cdot 10^{-7} \) |
\(a_{292}= +0.08466881 \pm 6.5 \cdot 10^{-7} \) | \(a_{293}= -1.35741864 \pm 8.5 \cdot 10^{-7} \) | \(a_{294}= +0.19941114 \pm 5.8 \cdot 10^{-7} \) |
\(a_{295}= +0.95203642 \pm 4.7 \cdot 10^{-7} \) | \(a_{296}= -0.41226446 \pm 4.0 \cdot 10^{-7} \) | \(a_{297}= -3.06118825 \pm 8.5 \cdot 10^{-7} \) |
\(a_{298}= +0.25461973 \pm 1.0 \cdot 10^{-6} \) | \(a_{299}= +0.00777765 \pm 5.5 \cdot 10^{-7} \) | \(a_{300}= -0.00704973 \pm 1.6 \cdot 10^{-6} \) |
\(a_{301}= -0.60676163 \pm 5.9 \cdot 10^{-7} \) | \(a_{302}= -0.19698284 \pm 8.8 \cdot 10^{-7} \) | \(a_{303}= -1.93241380 \pm 6.6 \cdot 10^{-7} \) |
\(a_{304}= +0.28572322 \pm 6.3 \cdot 10^{-7} \) | \(a_{305}= -0.34433379 \pm 9.9 \cdot 10^{-7} \) | \(a_{306}= -2.58870653 \pm 1.7 \cdot 10^{-6} \) |
\(a_{307}= +0.42537645 \pm 7.4 \cdot 10^{-7} \) | \(a_{308}= -0.15448722 \pm 1.0 \cdot 10^{-6} \) | \(a_{309}= +0.16345150 \pm 4.7 \cdot 10^{-7} \) |
\(a_{310}= +0.04978931 \pm 1.7 \cdot 10^{-6} \) | \(a_{311}= +0.88111609 \pm 8.7 \cdot 10^{-7} \) | \(a_{312}= +0.06058475 \pm 1.3 \cdot 10^{-6} \) |
\(a_{313}= +0.37884751 \pm 9.8 \cdot 10^{-7} \) | \(a_{314}= -0.31186588 \pm 9.7 \cdot 10^{-7} \) | \(a_{315}= +1.09102715 \pm 1.6 \cdot 10^{-6} \) |
\(a_{316}= -0.33455249 \pm 7.3 \cdot 10^{-7} \) | \(a_{317}= -0.38485554 \pm 5.3 \cdot 10^{-7} \) | \(a_{318}= +1.28255452 \pm 1.5 \cdot 10^{-6} \) |
\(a_{319}= +0.26689582 \pm 9.0 \cdot 10^{-7} \) | \(a_{320}= +0.12455280 \pm 8.7 \cdot 10^{-7} \) | \(a_{321}= +0.31178535 \pm 6.3 \cdot 10^{-7} \) |
\(a_{322}= +0.02394631 \pm 5.2 \cdot 10^{-7} \) | \(a_{323}= -1.44431614 \pm 8.7 \cdot 10^{-7} \) | \(a_{324}= +2.24768595 \pm 6.7 \cdot 10^{-7} \) |
\(a_{325}= -0.00061999 \pm 6.7 \cdot 10^{-7} \) | \(a_{326}= -0.19389883 \pm 7.5 \cdot 10^{-7} \) | \(a_{327}= +2.88771268 \pm 4.5 \cdot 10^{-7} \) |
\(a_{328}= -0.60624037 \pm 8.3 \cdot 10^{-7} \) | \(a_{329}= +0.10120960 \pm 7.0 \cdot 10^{-7} \) | \(a_{330}= -1.13700540 \pm 2.4 \cdot 10^{-6} \) |
\(a_{331}= -0.53385642 \pm 5.5 \cdot 10^{-7} \) | \(a_{332}= -0.07151419 \pm 6.2 \cdot 10^{-7} \) | \(a_{333}= -3.37801811 \pm 4.2 \cdot 10^{-7} \) |
\(a_{334}= -0.33123384 \pm 5.6 \cdot 10^{-7} \) | \(a_{335}= +0.01321429 \pm 7.0 \cdot 10^{-7} \) | \(a_{336}= +0.18653204 \pm 5.8 \cdot 10^{-7} \) |
\(a_{337}= +1.45196145 \pm 9.1 \cdot 10^{-7} \) | \(a_{338}= -0.70177863 \pm 7.8 \cdot 10^{-7} \) | \(a_{339}= +1.44042624 \pm 6.6 \cdot 10^{-7} \) |
\(a_{340}= -0.62960800 \pm 1.8 \cdot 10^{-6} \) | \(a_{341}= -0.05776691 \pm 1.2 \cdot 10^{-6} \) | \(a_{342}= +2.34116278 \pm 1.4 \cdot 10^{-6} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.56757353 \pm 5.9 \cdot 10^{-7} \) | \(a_{345}= +0.17624168 \pm 4.5 \cdot 10^{-7} \) |
\(a_{346}= -1.23977209 \pm 6.8 \cdot 10^{-7} \) | \(a_{347}= -1.35514025 \pm 6.8 \cdot 10^{-7} \) | \(a_{348}= -0.32225721 \pm 1.3 \cdot 10^{-6} \) |
\(a_{349}= +1.42839366 \pm 7.9 \cdot 10^{-7} \) | \(a_{350}= -0.00190887 \pm 1.0 \cdot 10^{-6} \) | \(a_{351}= +0.32506057 \pm 7.0 \cdot 10^{-7} \) |
\(a_{352}= -0.14450956 \pm 1.0 \cdot 10^{-6} \) | \(a_{353}= +0.29397415 \pm 6.6 \cdot 10^{-7} \) | \(a_{354}= +1.33369804 \pm 1.3 \cdot 10^{-6} \) |
\(a_{355}= +1.39747798 \pm 7.5 \cdot 10^{-7} \) | \(a_{356}= -0.41904403 \pm 7.1 \cdot 10^{-7} \) | \(a_{357}= -0.94290983 \pm 1.5 \cdot 10^{-6} \) |
\(a_{358}= +0.49322917 \pm 5.4 \cdot 10^{-7} \) | \(a_{359}= -0.03956122 \pm 5.2 \cdot 10^{-7} \) | \(a_{360}= +1.02056245 \pm 1.6 \cdot 10^{-6} \) |
\(a_{361}= +0.30620414 \pm 6.9 \cdot 10^{-7} \) | \(a_{362}= -0.11495349 \pm 6.0 \cdot 10^{-7} \) | \(a_{363}= -0.65488482 \pm 7.2 \cdot 10^{-7} \) |
\(a_{364}= +0.01640464 \pm 7.4 \cdot 10^{-7} \) | \(a_{365}= +0.16873180 \pm 8.0 \cdot 10^{-7} \) | \(a_{366}= -0.48237368 \pm 1.2 \cdot 10^{-6} \) |
\(a_{367}= +0.51092810 \pm 8.3 \cdot 10^{-7} \) | \(a_{368}= +0.02239973 \pm 5.2 \cdot 10^{-7} \) | \(a_{369}= -4.96742052 \pm 7.3 \cdot 10^{-7} \) |
\(a_{370}= -0.82157912 \pm 1.2 \cdot 10^{-6} \) | \(a_{371}= +0.34727968 \pm 9.3 \cdot 10^{-7} \) | \(a_{372}= +0.06974933 \pm 1.5 \cdot 10^{-6} \) |
\(a_{373}= +1.92367268 \pm 8.8 \cdot 10^{-7} \) | \(a_{374}= +0.73048839 \pm 1.9 \cdot 10^{-6} \) | \(a_{375}= -1.98105620 \pm 5.9 \cdot 10^{-7} \) |
\(a_{376}= +0.09467291 \pm 7.0 \cdot 10^{-7} \) | \(a_{377}= -0.02834106 \pm 5.1 \cdot 10^{-7} \) | \(a_{378}= +1.00081645 \pm 6.3 \cdot 10^{-7} \) |
\(a_{379}= +0.58876023 \pm 8.3 \cdot 10^{-7} \) | \(a_{380}= +0.56940205 \pm 1.5 \cdot 10^{-6} \) | \(a_{381}= +1.47430517 \pm 6.1 \cdot 10^{-7} \) |
\(a_{382}= -0.34160902 \pm 5.9 \cdot 10^{-7} \) | \(a_{383}= -1.01873965 \pm 1.0 \cdot 10^{-6} \) | \(a_{384}= +0.17448474 \pm 5.8 \cdot 10^{-7} \) |
\(a_{385}= -0.30786907 \pm 1.9 \cdot 10^{-6} \) | \(a_{386}= -0.93606244 \pm 6.6 \cdot 10^{-7} \) | \(a_{387}= -4.65059164 \pm 7.2 \cdot 10^{-7} \) |
\(a_{388}= +0.40065708 \pm 8.5 \cdot 10^{-7} \) | \(a_{389}= +0.77473904 \pm 4.0 \cdot 10^{-7} \) | \(a_{390}= +0.12073600 \pm 2.1 \cdot 10^{-6} \) |
\(a_{391}= -0.11322945 \pm 4.9 \cdot 10^{-7} \) | \(a_{392}= +0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +2.96783776 \pm 6.6 \cdot 10^{-7} \) |
\(a_{394}= +0.43070688 \pm 7.0 \cdot 10^{-7} \) | \(a_{395}= -0.66671122 \pm 1.1 \cdot 10^{-6} \) | \(a_{396}= -1.18408442 \pm 1.8 \cdot 10^{-6} \) |
\(a_{397}= +0.55308786 \pm 7.8 \cdot 10^{-7} \) | \(a_{398}= -0.24523195 \pm 7.0 \cdot 10^{-7} \) | \(a_{399}= +0.85274455 \pm 1.2 \cdot 10^{-6} \) |
\(a_{400}= -0.00178558 \pm 1.0 \cdot 10^{-6} \) | \(a_{401}= +0.90589317 \pm 8.1 \cdot 10^{-7} \) | \(a_{402}= +0.01851176 \pm 1.3 \cdot 10^{-6} \) |
\(a_{403}= +0.00613414 \pm 8.3 \cdot 10^{-7} \) | \(a_{404}= -0.48944927 \pm 1.0 \cdot 10^{-6} \) | \(a_{405}= +4.47928940 \pm 6.6 \cdot 10^{-7} \) |
\(a_{406}= -0.08725818 \pm 7.9 \cdot 10^{-7} \) | \(a_{407}= +0.95321853 \pm 3.8 \cdot 10^{-7} \) | \(a_{408}= -0.88201138 \pm 1.5 \cdot 10^{-6} \) |
\(a_{409}= -0.60430652 \pm 1.1 \cdot 10^{-6} \) | \(a_{410}= -1.20814301 \pm 1.7 \cdot 10^{-6} \) | \(a_{411}= +1.34209158 \pm 3.7 \cdot 10^{-7} \) |
\(a_{412}= +0.04139963 \pm 7.4 \cdot 10^{-7} \) | \(a_{413}= +0.36112790 \pm 7.4 \cdot 10^{-7} \) | \(a_{414}= +0.18353917 \pm 1.3 \cdot 10^{-6} \) |
\(a_{415}= -0.14251669 \pm 4.1 \cdot 10^{-7} \) | \(a_{416}= +0.01534514 \pm 7.4 \cdot 10^{-7} \) | \(a_{417}= -3.58564477 \pm 5.6 \cdot 10^{-7} \) |
\(a_{418}= -0.66063581 \pm 1.6 \cdot 10^{-6} \) | \(a_{419}= -1.35033165 \pm 9.7 \cdot 10^{-7} \) | \(a_{420}= +0.37172941 \pm 1.4 \cdot 10^{-6} \) |
\(a_{421}= -1.25077680 \pm 7.6 \cdot 10^{-7} \) | \(a_{422}= +0.66061956 \pm 7.1 \cdot 10^{-7} \) | \(a_{423}= +0.77573216 \pm 8.1 \cdot 10^{-7} \) |
\(a_{424}= +0.32485039 \pm 9.3 \cdot 10^{-7} \) | \(a_{425}= +0.00902603 \pm 1.0 \cdot 10^{-6} \) | \(a_{426}= +1.95771256 \pm 1.4 \cdot 10^{-6} \) |
\(a_{427}= -0.13061322 \pm 6.7 \cdot 10^{-7} \) | \(a_{428}= +0.07897020 \pm 6.6 \cdot 10^{-7} \) | \(a_{429}= -0.14008120 \pm 4.9 \cdot 10^{-7} \) |
\(a_{430}= -1.13108599 \pm 1.4 \cdot 10^{-6} \) | \(a_{431}= +1.97321817 \pm 1.0 \cdot 10^{-6} \) | \(a_{432}= +0.93617807 \pm 6.3 \cdot 10^{-7} \) |
\(a_{433}= +0.43338737 \pm 9.1 \cdot 10^{-7} \) | \(a_{434}= +0.01888616 \pm 9.2 \cdot 10^{-7} \) | \(a_{435}= -0.64220863 \pm 6.0 \cdot 10^{-7} \) |
\(a_{436}= +0.73141108 \pm 5.8 \cdot 10^{-7} \) | \(a_{437}= +0.10240195 \pm 4.8 \cdot 10^{-7} \) | \(a_{438}= +0.23637465 \pm 1.2 \cdot 10^{-6} \) |
\(a_{439}= -1.49940793 \pm 7.3 \cdot 10^{-7} \) | \(a_{440}= -0.28798514 \pm 1.9 \cdot 10^{-6} \) | \(a_{441}= +0.41385008 \pm 8.0 \cdot 10^{-7} \) |
\(a_{442}= -0.07756889 \pm 1.6 \cdot 10^{-6} \) | \(a_{443}= -1.32525714 \pm 1.1 \cdot 10^{-6} \) | \(a_{444}= -1.15094175 \pm 9.7 \cdot 10^{-7} \) |
\(a_{445}= -0.83508974 \pm 5.3 \cdot 10^{-7} \) | \(a_{446}= -0.96483317 \pm 8.2 \cdot 10^{-7} \) | \(a_{447}= +0.71083613 \pm 5.4 \cdot 10^{-7} \) |
\(a_{448}= +0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +0.39556479 \pm 6.8 \cdot 10^{-7} \) | \(a_{450}= -0.01463074 \pm 1.8 \cdot 10^{-6} \) |
\(a_{451}= +1.40172051 \pm 9.6 \cdot 10^{-7} \) | \(a_{452}= +0.36483675 \pm 6.9 \cdot 10^{-7} \) | \(a_{453}= -0.54992800 \pm 5.0 \cdot 10^{-7} \) |
\(a_{454}= -0.20836710 \pm 1.1 \cdot 10^{-6} \) | \(a_{455}= +0.03269191 \pm 1.6 \cdot 10^{-6} \) | \(a_{456}= +0.79766949 \pm 1.2 \cdot 10^{-6} \) |
\(a_{457}= +0.20160983 \pm 1.0 \cdot 10^{-6} \) | \(a_{458}= +1.04970728 \pm 7.3 \cdot 10^{-7} \) | \(a_{459}= -4.73233184 \pm 4.1 \cdot 10^{-7} \) |
\(a_{460}= +0.04463918 \pm 1.3 \cdot 10^{-6} \) | \(a_{461}= +0.14016244 \pm 7.6 \cdot 10^{-7} \) | \(a_{462}= -0.43129062 \pm 1.6 \cdot 10^{-6} \) |
\(a_{463}= -0.80777028 \pm 6.1 \cdot 10^{-7} \) | \(a_{464}= -0.08162256 \pm 7.9 \cdot 10^{-7} \) | \(a_{465}= +0.13899959 \pm 5.6 \cdot 10^{-7} \) |
\(a_{466}= -1.14105714 \pm 1.0 \cdot 10^{-6} \) | \(a_{467}= +1.82370432 \pm 7.4 \cdot 10^{-7} \) | \(a_{468}= +0.12573521 \pm 1.5 \cdot 10^{-6} \) |
\(a_{469}= +0.00501246 \pm 7.5 \cdot 10^{-7} \) | \(a_{470}= +0.18866842 \pm 1.5 \cdot 10^{-6} \) | \(a_{471}= -0.87065340 \pm 6.0 \cdot 10^{-7} \) |
\(a_{472}= +0.33780422 \pm 7.4 \cdot 10^{-7} \) | \(a_{473}= +1.31231686 \pm 5.0 \cdot 10^{-7} \) | \(a_{474}= -0.93398890 \pm 1.3 \cdot 10^{-6} \) |
\(a_{475}= -0.00816292 \pm 6.9 \cdot 10^{-7} \) | \(a_{476}= -0.23882386 \pm 9.5 \cdot 10^{-7} \) | \(a_{477}= +2.66176352 \pm 7.6 \cdot 10^{-7} \) |
\(a_{478}= -0.07396456 \pm 7.0 \cdot 10^{-7} \) | \(a_{479}= +1.69999840 \pm 7.1 \cdot 10^{-7} \) | \(a_{480}= +0.34772103 \pm 1.4 \cdot 10^{-6} \) |
\(a_{481}= -0.10122009 \pm 3.2 \cdot 10^{-7} \) | \(a_{482}= +0.45706340 \pm 1.2 \cdot 10^{-6} \) | \(a_{483}= +0.06685226 \pm 1.1 \cdot 10^{-6} \) |
\(a_{484}= -0.16587177 \pm 1.1 \cdot 10^{-6} \) | \(a_{485}= +0.79844740 \pm 1.1 \cdot 10^{-6} \) | \(a_{486}= +3.62707909 \pm 6.9 \cdot 10^{-7} \) |
\(a_{487}= -0.35379887 \pm 6.2 \cdot 10^{-7} \) | \(a_{488}= -0.12217748 \pm 6.7 \cdot 10^{-7} \) | \(a_{489}= -0.54131820 \pm 4.9 \cdot 10^{-7} \) |
\(a_{490}= +0.10065387 \pm 8.7 \cdot 10^{-7} \) | \(a_{491}= +1.12723299 \pm 8.3 \cdot 10^{-7} \) | \(a_{492}= -1.69247514 \pm 1.4 \cdot 10^{-6} \) |
\(a_{493}= +0.41259782 \pm 1.3 \cdot 10^{-6} \) | \(a_{494}= +0.07015140 \pm 1.3 \cdot 10^{-6} \) | \(a_{495}= -2.35969656 \pm 7.4 \cdot 10^{-7} \) |
\(a_{496}= +0.01766638 \pm 9.2 \cdot 10^{-7} \) | \(a_{497}= +0.53009348 \pm 9.1 \cdot 10^{-7} \) | \(a_{498}= -0.19965017 \pm 1.2 \cdot 10^{-6} \) |
\(a_{499}= -0.33915832 \pm 7.8 \cdot 10^{-7} \) | \(a_{500}= -0.50176961 \pm 1.1 \cdot 10^{-6} \) | \(a_{501}= -0.92472403 \pm 6.5 \cdot 10^{-7} \) |
\(a_{502}= +0.46866630 \pm 7.2 \cdot 10^{-7} \) | \(a_{503}= +0.12566149 \pm 1.0 \cdot 10^{-6} \) | \(a_{504}= +0.38712130 \pm 8.0 \cdot 10^{-7} \) |
\(a_{505}= -0.97539647 \pm 8.6 \cdot 10^{-7} \) | \(a_{506}= -0.05179159 \pm 1.5 \cdot 10^{-6} \) | \(a_{507}= -1.95919464 \pm 9.2 \cdot 10^{-7} \) |
\(a_{508}= +0.37341774 \pm 9.5 \cdot 10^{-7} \) | \(a_{509}= -0.79572669 \pm 9.7 \cdot 10^{-7} \) | \(a_{510}= -1.75771185 \pm 2.3 \cdot 10^{-6} \) |
\(a_{511}= +0.06400360 \pm 6.5 \cdot 10^{-7} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +4.27980501 \pm 2.9 \cdot 10^{-7} \) |
\(a_{514}= -0.51526446 \pm 5.2 \cdot 10^{-7} \) | \(a_{515}= +0.08250304 \pm 6.2 \cdot 10^{-7} \) | \(a_{516}= -1.58452676 \pm 1.1 \cdot 10^{-6} \) |
\(a_{517}= -0.21889825 \pm 9.6 \cdot 10^{-7} \) | \(a_{518}= -0.31164264 \pm 4.0 \cdot 10^{-7} \) | \(a_{519}= -3.46114106 \pm 5.0 \cdot 10^{-7} \) |
\(a_{520}= +0.03058048 \pm 1.6 \cdot 10^{-6} \) | \(a_{521}= +0.48214831 \pm 7.2 \cdot 10^{-7} \) | \(a_{522}= -0.66880002 \pm 1.5 \cdot 10^{-6} \) |
\(a_{523}= +1.74105117 \pm 7.5 \cdot 10^{-7} \) | \(a_{524}= +0.75170547 \pm 7.9 \cdot 10^{-7} \) | \(a_{525}= -0.00532910 \pm 1.6 \cdot 10^{-6} \) |
\(a_{526}= +0.39556231 \pm 6.1 \cdot 10^{-7} \) | \(a_{527}= -0.08930265 \pm 6.8 \cdot 10^{-7} \) | \(a_{528}= -0.40343543 \pm 1.6 \cdot 10^{-6} \) |
\(a_{529}= -0.99197204 \pm 6.0 \cdot 10^{-7} \) | \(a_{530}= +0.64737643 \pm 1.8 \cdot 10^{-6} \) | \(a_{531}= +2.76790478 \pm 8.4 \cdot 10^{-7} \) |
\(a_{532}= +0.21598645 \pm 6.3 \cdot 10^{-7} \) | \(a_{533}= -0.14884549 \pm 8.9 \cdot 10^{-7} \) | \(a_{534}= -1.16986864 \pm 1.2 \cdot 10^{-6} \) |
\(a_{535}= +0.15737537 \pm 8.7 \cdot 10^{-7} \) | \(a_{536}= +0.00468873 \pm 7.5 \cdot 10^{-7} \) | \(a_{537}= +1.37697546 \pm 4.5 \cdot 10^{-7} \) |
\(a_{538}= +0.27545588 \pm 6.3 \cdot 10^{-7} \) | \(a_{539}= -0.11678136 \pm 1.0 \cdot 10^{-6} \) | \(a_{540}= +1.86565766 \pm 1.4 \cdot 10^{-6} \) |
\(a_{541}= -1.35157718 \pm 5.5 \cdot 10^{-7} \) | \(a_{542}= -0.05851180 \pm 6.8 \cdot 10^{-7} \) | \(a_{543}= -0.32092210 \pm 6.9 \cdot 10^{-7} \) |
\(a_{544}= -0.22339927 \pm 9.5 \cdot 10^{-7} \) | \(a_{545}= +1.45758882 \pm 3.8 \cdot 10^{-7} \) | \(a_{546}= +0.04579776 \pm 1.3 \cdot 10^{-6} \) |
\(a_{547}= -0.37224557 \pm 6.4 \cdot 10^{-7} \) | \(a_{548}= +0.33993017 \pm 5.8 \cdot 10^{-7} \) | \(a_{549}= -1.00109947 \pm 7.3 \cdot 10^{-7} \) |
\(a_{550}= +0.00412854 \pm 2.0 \cdot 10^{-6} \) | \(a_{551}= -0.37314336 \pm 6.8 \cdot 10^{-7} \) | \(a_{552}= +0.06253456 \pm 1.1 \cdot 10^{-6} \) |
\(a_{553}= -0.25289791 \pm 7.3 \cdot 10^{-7} \) | \(a_{554}= -0.62564248 \pm 7.8 \cdot 10^{-7} \) | \(a_{555}= -2.29364836 \pm 3.7 \cdot 10^{-7} \) |
\(a_{556}= -0.90818603 \pm 6.1 \cdot 10^{-7} \) | \(a_{557}= -0.62759769 \pm 9.3 \cdot 10^{-7} \) | \(a_{558}= +0.14475503 \pm 1.7 \cdot 10^{-6} \) |
\(a_{559}= -0.13935192 \pm 5.1 \cdot 10^{-7} \) | \(a_{560}= +0.09415307 \pm 8.7 \cdot 10^{-7} \) | \(a_{561}= +2.03934529 \pm 3.6 \cdot 10^{-7} \) |
\(a_{562}= +0.87938838 \pm 8.6 \cdot 10^{-7} \) | \(a_{563}= -0.31946259 \pm 9.2 \cdot 10^{-7} \) | \(a_{564}= +0.26430365 \pm 1.2 \cdot 10^{-6} \) |
\(a_{565}= +0.72706305 \pm 5.4 \cdot 10^{-7} \) | \(a_{566}= +0.21888137 \pm 8.7 \cdot 10^{-7} \) | \(a_{567}= +1.69909087 \pm 6.7 \cdot 10^{-7} \) |
\(a_{568}= +0.49585704 \pm 9.1 \cdot 10^{-7} \) | \(a_{569}= -0.29568703 \pm 7.9 \cdot 10^{-7} \) | \(a_{570}= +1.58963155 \pm 2.0 \cdot 10^{-6} \) |
\(a_{571}= -0.13299778 \pm 6.3 \cdot 10^{-7} \) | \(a_{572}= -0.03548031 \pm 1.7 \cdot 10^{-6} \) | \(a_{573}= -0.95368901 \pm 3.4 \cdot 10^{-7} \) |
\(a_{574}= -0.45827464 \pm 8.3 \cdot 10^{-7} \) | \(a_{575}= -0.00063995 \pm 7.9 \cdot 10^{-7} \) | \(a_{576}= +0.36211882 \pm 8.0 \cdot 10^{-7} \) |
\(a_{577}= -0.08893250 \pm 4.7 \cdot 10^{-7} \) | \(a_{578}= +0.42216499 \pm 1.2 \cdot 10^{-6} \) | \(a_{579}= -2.61325785 \pm 4.5 \cdot 10^{-7} \) |
\(a_{580}= -0.16266110 \pm 1.6 \cdot 10^{-6} \) | \(a_{581}= -0.05405965 \pm 6.2 \cdot 10^{-7} \) | \(a_{582}= +1.11853677 \pm 1.4 \cdot 10^{-6} \) |
\(a_{583}= -0.75110382 \pm 1.5 \cdot 10^{-6} \) | \(a_{584}= +0.05986989 \pm 6.5 \cdot 10^{-7} \) | \(a_{585}= +0.25057077 \pm 7.7 \cdot 10^{-7} \) |
\(a_{586}= -0.95983993 \pm 8.6 \cdot 10^{-7} \) | \(a_{587}= +1.03558428 \pm 7.6 \cdot 10^{-7} \) | \(a_{588}= +0.14100497 \pm 5.8 \cdot 10^{-7} \) |
\(a_{589}= +0.08076313 \pm 5.8 \cdot 10^{-7} \) | \(a_{590}= +0.67319141 \pm 1.6 \cdot 10^{-6} \) | \(a_{591}= +1.20242847 \pm 5.7 \cdot 10^{-7} \) |
\(a_{592}= -0.29151500 \pm 4.0 \cdot 10^{-7} \) | \(a_{593}= +1.50458956 \pm 6.0 \cdot 10^{-7} \) | \(a_{594}= -2.16458697 \pm 1.6 \cdot 10^{-6} \) |
\(a_{595}= -0.47593891 \pm 1.8 \cdot 10^{-6} \) | \(a_{596}= +0.18004334 \pm 1.0 \cdot 10^{-6} \) | \(a_{597}= -0.68462774 \pm 4.3 \cdot 10^{-7} \) |
\(a_{598}= +0.00549963 \pm 1.2 \cdot 10^{-6} \) | \(a_{599}= +1.63227276 \pm 4.4 \cdot 10^{-7} \) | \(a_{600}= -0.00498491 \pm 1.6 \cdot 10^{-6} \) |
\(a_{601}= +1.45249969 \pm 8.3 \cdot 10^{-7} \) | \(a_{602}= -0.42904526 \pm 5.9 \cdot 10^{-7} \) | \(a_{603}= +0.03841859 \pm 7.4 \cdot 10^{-7} \) |
\(a_{604}= -0.13928790 \pm 8.8 \cdot 10^{-7} \) | \(a_{605}= -0.33055671 \pm 1.1 \cdot 10^{-6} \) | \(a_{606}= -1.36642290 \pm 1.6 \cdot 10^{-6} \) |
\(a_{607}= -1.09522098 \pm 6.7 \cdot 10^{-7} \) | \(a_{608}= +0.20203683 \pm 6.3 \cdot 10^{-7} \) | \(a_{609}= -0.24360355 \pm 1.3 \cdot 10^{-6} \) |
\(a_{610}= -0.24348076 \pm 1.5 \cdot 10^{-6} \) | \(a_{611}= +0.02324430 \pm 6.7 \cdot 10^{-7} \) | \(a_{612}= -1.83049194 \pm 1.7 \cdot 10^{-6} \) |
\(a_{613}= +0.49282110 \pm 8.6 \cdot 10^{-7} \) | \(a_{614}= +0.30078657 \pm 7.5 \cdot 10^{-7} \) | \(a_{615}= -3.37284039 \pm 4.7 \cdot 10^{-7} \) |
\(a_{616}= -0.10923896 \pm 1.0 \cdot 10^{-6} \) | \(a_{617}= +1.09938417 \pm 7.1 \cdot 10^{-7} \) | \(a_{618}= +0.11557767 \pm 1.3 \cdot 10^{-6} \) |
\(a_{619}= -0.66534099 \pm 1.0 \cdot 10^{-6} \) | \(a_{620}= +0.03520636 \pm 1.7 \cdot 10^{-6} \) | \(a_{621}= +0.33552210 \pm 3.4 \cdot 10^{-7} \) |
\(a_{622}= +0.62304316 \pm 8.8 \cdot 10^{-7} \) | \(a_{623}= -0.31676751 \pm 7.1 \cdot 10^{-7} \) | \(a_{624}= +0.04283988 \pm 1.3 \cdot 10^{-6} \) |
\(a_{625}= -0.99280665 \pm 1.1 \cdot 10^{-6} \) | \(a_{626}= +0.26788564 \pm 9.9 \cdot 10^{-7} \) | \(a_{627}= -1.84433394 \pm 1.9 \cdot 10^{-7} \) |
\(a_{628}= -0.22052248 \pm 9.7 \cdot 10^{-7} \) | \(a_{629}= +1.47359327 \pm 6.0 \cdot 10^{-7} \) | \(a_{630}= +0.77147269 \pm 1.6 \cdot 10^{-6} \) |
\(a_{631}= -0.28723579 \pm 1.0 \cdot 10^{-6} \) | \(a_{632}= -0.23656434 \pm 7.3 \cdot 10^{-7} \) | \(a_{633}= +1.84428857 \pm 4.7 \cdot 10^{-7} \) |
\(a_{634}= -0.27213396 \pm 5.4 \cdot 10^{-7} \) | \(a_{635}= +0.74416362 \pm 8.2 \cdot 10^{-7} \) | \(a_{636}= +0.90690300 \pm 1.5 \cdot 10^{-6} \) |
\(a_{637}= +0.01240075 \pm 7.4 \cdot 10^{-7} \) | \(a_{638}= +0.18872385 \pm 1.8 \cdot 10^{-6} \) | \(a_{639}= +4.06296012 \pm 8.3 \cdot 10^{-7} \) |
\(a_{640}= +0.08807213 \pm 8.7 \cdot 10^{-7} \) | \(a_{641}= -0.74820611 \pm 7.4 \cdot 10^{-7} \) | \(a_{642}= +0.22046553 \pm 1.2 \cdot 10^{-6} \) |
\(a_{643}= -0.21694535 \pm 1.0 \cdot 10^{-6} \) | \(a_{644}= +0.01693260 \pm 5.2 \cdot 10^{-7} \) | \(a_{645}= -3.15771601 \pm 6.1 \cdot 10^{-7} \) |
\(a_{646}= -1.02128573 \pm 1.5 \cdot 10^{-6} \) | \(a_{647}= +0.84269243 \pm 5.7 \cdot 10^{-7} \) | \(a_{648}= +1.58935398 \pm 6.7 \cdot 10^{-7} \) |
\(a_{649}= -0.78105506 \pm 6.9 \cdot 10^{-7} \) | \(a_{650}= -0.00043840 \pm 1.7 \cdot 10^{-6} \) | \(a_{651}= +0.05272554 \pm 1.5 \cdot 10^{-6} \) |
\(a_{652}= -0.13710718 \pm 7.5 \cdot 10^{-7} \) | \(a_{653}= +1.32932897 \pm 7.0 \cdot 10^{-7} \) | \(a_{654}= +2.04192122 \pm 1.1 \cdot 10^{-6} \) |
\(a_{655}= +1.49803239 \pm 7.3 \cdot 10^{-7} \) | \(a_{656}= -0.42867668 \pm 8.3 \cdot 10^{-7} \) | \(a_{657}= +0.49056271 \pm 6.1 \cdot 10^{-7} \) |
\(a_{658}= +0.07156599 \pm 7.0 \cdot 10^{-7} \) | \(a_{659}= +0.16996082 \pm 9.0 \cdot 10^{-7} \) | \(a_{660}= -0.80398423 \pm 2.4 \cdot 10^{-6} \) |
\(a_{661}= -0.51945551 \pm 8.1 \cdot 10^{-7} \) | \(a_{662}= -0.37749349 \pm 5.6 \cdot 10^{-7} \) | \(a_{663}= -0.21655340 \pm 6.2 \cdot 10^{-7} \) |
\(a_{664}= -0.05056817 \pm 6.2 \cdot 10^{-7} \) | \(a_{665}= +0.43042749 \pm 1.5 \cdot 10^{-6} \) | \(a_{666}= -2.38861952 \pm 1.1 \cdot 10^{-6} \) |
\(a_{667}= -0.02925317 \pm 4.1 \cdot 10^{-7} \) | \(a_{668}= -0.23421769 \pm 5.6 \cdot 10^{-7} \) | \(a_{669}= -2.69357871 \pm 6.9 \cdot 10^{-7} \) |
\(a_{670}= +0.00934391 \pm 1.6 \cdot 10^{-6} \) | \(a_{671}= +0.28249303 \pm 4.9 \cdot 10^{-7} \) | \(a_{672}= +0.13189807 \pm 5.8 \cdot 10^{-7} \) |
\(a_{673}= -0.14110732 \pm 1.0 \cdot 10^{-6} \) | \(a_{674}= +1.02669179 \pm 9.2 \cdot 10^{-7} \) | \(a_{675}= -0.02674599 \pm 4.5 \cdot 10^{-7} \) |
\(a_{676}= -0.49623243 \pm 7.8 \cdot 10^{-7} \) | \(a_{677}= -0.66852022 \pm 9.1 \cdot 10^{-7} \) | \(a_{678}= +1.01853516 \pm 1.2 \cdot 10^{-6} \) |
\(a_{679}= +0.30286828 \pm 8.5 \cdot 10^{-7} \) | \(a_{680}= -0.44520009 \pm 1.8 \cdot 10^{-6} \) | \(a_{681}= -0.58171007 \pm 6.8 \cdot 10^{-7} \) |
\(a_{682}= -0.04084738 \pm 1.9 \cdot 10^{-6} \) | \(a_{683}= -0.18368033 \pm 9.9 \cdot 10^{-7} \) | \(a_{684}= +1.65545208 \pm 1.4 \cdot 10^{-6} \) |
\(a_{685}= +0.67742809 \pm 8.4 \cdot 10^{-7} \) | \(a_{686}= +0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= +2.93052651 \pm 6.2 \cdot 10^{-7} \) |
\(a_{688}= -0.40133509 \pm 5.9 \cdot 10^{-7} \) | \(a_{689}= +0.07975799 \pm 7.8 \cdot 10^{-7} \) | \(a_{690}= +0.12462169 \pm 1.9 \cdot 10^{-6} \) |
\(a_{691}= +1.19326452 \pm 1.3 \cdot 10^{-6} \) | \(a_{692}= -0.87665125 \pm 6.8 \cdot 10^{-7} \) | \(a_{693}= -0.89508369 \pm 1.8 \cdot 10^{-6} \) |
\(a_{694}= -0.95822886 \pm 6.9 \cdot 10^{-7} \) | \(a_{695}= -1.80987388 \pm 6.6 \cdot 10^{-7} \) | \(a_{696}= -0.22787026 \pm 1.3 \cdot 10^{-6} \) |
\(a_{697}= +2.16693848 \pm 6.1 \cdot 10^{-7} \) | \(a_{698}= +1.01002684 \pm 8.0 \cdot 10^{-7} \) | \(a_{699}= -3.18555301 \pm 5.1 \cdot 10^{-7} \) |
\(a_{700}= -0.00134977 \pm 1.0 \cdot 10^{-6} \) | \(a_{701}= -1.03994820 \pm 5.9 \cdot 10^{-7} \) | \(a_{702}= +0.22985253 \pm 1.3 \cdot 10^{-6} \) |
\(a_{703}= -1.33268166 \pm 3.5 \cdot 10^{-7} \) | \(a_{704}= -0.10218369 \pm 1.0 \cdot 10^{-6} \) | \(a_{705}= +0.52671618 \pm 6.9 \cdot 10^{-7} \) |
\(a_{706}= +0.20787112 \pm 6.7 \cdot 10^{-7} \) | \(a_{707}= -0.36998887 \pm 1.0 \cdot 10^{-6} \) | \(a_{708}= +0.94306693 \pm 1.3 \cdot 10^{-6} \) |
\(a_{709}= -1.31294322 \pm 7.8 \cdot 10^{-7} \) | \(a_{710}= +0.98816616 \pm 1.7 \cdot 10^{-6} \) | \(a_{711}= -1.93836405 \pm 7.0 \cdot 10^{-7} \) |
\(a_{712}= -0.29630887 \pm 7.1 \cdot 10^{-7} \) | \(a_{713}= +0.00633155 \pm 5.8 \cdot 10^{-7} \) | \(a_{714}= -0.66673793 \pm 1.5 \cdot 10^{-6} \) |
\(a_{715}= -0.07070676 \pm 7.5 \cdot 10^{-7} \) | \(a_{716}= +0.34876569 \pm 5.4 \cdot 10^{-7} \) | \(a_{717}= -0.20649101 \pm 4.9 \cdot 10^{-7} \) |
\(a_{718}= -0.02797401 \pm 5.3 \cdot 10^{-7} \) | \(a_{719}= -1.66590621 \pm 5.3 \cdot 10^{-7} \) | \(a_{720}= +0.72164663 \pm 1.6 \cdot 10^{-6} \) |
\(a_{721}= +0.03129518 \pm 7.4 \cdot 10^{-7} \) | \(a_{722}= +0.21651902 \pm 7.0 \cdot 10^{-7} \) | \(a_{723}= +1.27600946 \pm 6.5 \cdot 10^{-7} \) |
\(a_{724}= -0.08128440 \pm 6.0 \cdot 10^{-7} \) | \(a_{725}= +0.00233190 \pm 7.8 \cdot 10^{-7} \) | \(a_{726}= -0.46307350 \pm 1.7 \cdot 10^{-6} \) |
\(a_{727}= -0.62299181 \pm 1.0 \cdot 10^{-6} \) | \(a_{728}= +0.01159984 \pm 7.4 \cdot 10^{-7} \) | \(a_{729}= +5.63054761 \pm 5.8 \cdot 10^{-7} \) |
\(a_{730}= +0.11931140 \pm 1.5 \cdot 10^{-6} \) | \(a_{731}= +2.02872818 \pm 8.1 \cdot 10^{-7} \) | \(a_{732}= -0.34108970 \pm 1.2 \cdot 10^{-6} \) |
\(a_{733}= -0.67813567 \pm 6.4 \cdot 10^{-7} \) | \(a_{734}= +0.36128073 \pm 8.4 \cdot 10^{-7} \) | \(a_{735}= +0.28100102 \pm 1.4 \cdot 10^{-6} \) |
\(a_{736}= +0.01583900 \pm 5.2 \cdot 10^{-7} \) | \(a_{737}= -0.01084106 \pm 7.9 \cdot 10^{-7} \) | \(a_{738}= -3.51249673 \pm 1.6 \cdot 10^{-6} \) |
\(a_{739}= +1.01646207 \pm 6.8 \cdot 10^{-7} \) | \(a_{740}= -0.58094417 \pm 1.2 \cdot 10^{-6} \) | \(a_{741}= +0.19584560 \pm 9.4 \cdot 10^{-7} \) |
\(a_{742}= +0.24556381 \pm 9.3 \cdot 10^{-7} \) | \(a_{743}= -0.82079057 \pm 6.3 \cdot 10^{-7} \) | \(a_{744}= +0.04932022 \pm 1.5 \cdot 10^{-6} \) |
\(a_{745}= +0.35879844 \pm 1.0 \cdot 10^{-6} \) | \(a_{746}= +1.36024200 \pm 8.9 \cdot 10^{-7} \) | \(a_{747}= -0.41434615 \pm 6.9 \cdot 10^{-7} \) |
\(a_{748}= +0.51653330 \pm 1.9 \cdot 10^{-6} \) | \(a_{749}= +0.05969586 \pm 6.6 \cdot 10^{-7} \) | \(a_{750}= -1.40081827 \pm 1.7 \cdot 10^{-6} \) |
\(a_{751}= +1.67147033 \pm 9.1 \cdot 10^{-7} \) | \(a_{752}= +0.06694386 \pm 7.0 \cdot 10^{-7} \) | \(a_{753}= +1.30840193 \pm 5.8 \cdot 10^{-7} \) |
\(a_{754}= -0.02004015 \pm 1.5 \cdot 10^{-6} \) | \(a_{755}= -0.27757918 \pm 1.0 \cdot 10^{-6} \) | \(a_{756}= +0.70768410 \pm 6.3 \cdot 10^{-7} \) |
\(a_{757}= +1.09982015 \pm 7.9 \cdot 10^{-7} \) | \(a_{758}= +0.41631635 \pm 8.4 \cdot 10^{-7} \) | \(a_{759}= -0.14458948 \pm 2.4 \cdot 10^{-7} \) |
\(a_{760}= +0.40262805 \pm 1.5 \cdot 10^{-6} \) | \(a_{761}= +0.17775461 \pm 7.4 \cdot 10^{-7} \) | \(a_{762}= +1.04249118 \pm 1.5 \cdot 10^{-6} \) |
\(a_{763}= +0.55289481 \pm 5.8 \cdot 10^{-7} \) | \(a_{764}= -0.24155406 \pm 5.9 \cdot 10^{-7} \) | \(a_{765}= -3.64788646 \pm 6.5 \cdot 10^{-7} \) |
\(a_{766}= -0.72035771 \pm 1.0 \cdot 10^{-6} \) | \(a_{767}= +0.08293845 \pm 6.3 \cdot 10^{-7} \) | \(a_{768}= +0.12337935 \pm 5.8 \cdot 10^{-7} \) |
\(a_{769}= +1.72693545 \pm 8.8 \cdot 10^{-7} \) | \(a_{770}= -0.21769631 \pm 1.9 \cdot 10^{-6} \) | \(a_{771}= -1.43849259 \pm 3.8 \cdot 10^{-7} \) |
\(a_{772}= -0.66189610 \pm 6.6 \cdot 10^{-7} \) | \(a_{773}= +1.76113982 \pm 7.8 \cdot 10^{-7} \) | \(a_{774}= -3.28846489 \pm 1.3 \cdot 10^{-6} \) |
\(a_{775}= -0.00050472 \pm 1.2 \cdot 10^{-6} \) | \(a_{776}= +0.28330734 \pm 8.5 \cdot 10^{-7} \) | \(a_{777}= -0.87003019 \pm 9.7 \cdot 10^{-7} \) |
\(a_{778}= +0.54782323 \pm 4.1 \cdot 10^{-7} \) | \(a_{779}= -1.95972609 \pm 7.1 \cdot 10^{-7} \) | \(a_{780}= +0.08537324 \pm 2.1 \cdot 10^{-6} \) |
\(a_{781}= -1.14649737 \pm 1.2 \cdot 10^{-6} \) | \(a_{782}= -0.08006532 \pm 1.4 \cdot 10^{-6} \) | \(a_{783}= -1.22261198 \pm 3.3 \cdot 10^{-7} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= -0.43946708 \pm 9.6 \cdot 10^{-7} \) | \(a_{786}= +2.09857820 \pm 1.3 \cdot 10^{-6} \) |
\(a_{787}= -0.97538815 \pm 1.0 \cdot 10^{-6} \) | \(a_{788}= +0.30455575 \pm 7.0 \cdot 10^{-7} \) | \(a_{789}= +1.10431342 \pm 4.6 \cdot 10^{-7} \) |
\(a_{790}= -0.47143602 \pm 1.6 \cdot 10^{-6} \) | \(a_{791}= +0.27579066 \pm 6.9 \cdot 10^{-7} \) | \(a_{792}= -0.83727412 \pm 1.8 \cdot 10^{-6} \) |
\(a_{793}= -0.02999729 \pm 6.3 \cdot 10^{-7} \) | \(a_{794}= +0.39109218 \pm 7.9 \cdot 10^{-7} \) | \(a_{795}= +1.80731699 \pm 5.6 \cdot 10^{-7} \) |
\(a_{796}= -0.17340517 \pm 7.0 \cdot 10^{-7} \) | \(a_{797}= -0.12758239 \pm 7.2 \cdot 10^{-7} \) | \(a_{798}= +0.60298146 \pm 1.2 \cdot 10^{-6} \) |
\(a_{799}= -0.33839774 \pm 5.9 \cdot 10^{-7} \) | \(a_{800}= -0.00126260 \pm 1.0 \cdot 10^{-6} \) | \(a_{801}= -2.42789964 \pm 6.6 \cdot 10^{-7} \) |
\(a_{802}= +0.64056321 \pm 8.2 \cdot 10^{-7} \) | \(a_{803}= -0.13842835 \pm 8.4 \cdot 10^{-7} \) | \(a_{804}= +0.01308979 \pm 1.3 \cdot 10^{-6} \) |
\(a_{805}= +0.03374405 \pm 1.3 \cdot 10^{-6} \) | \(a_{806}= +0.00433749 \pm 1.6 \cdot 10^{-6} \) | \(a_{807}= +0.76900557 \pm 6.8 \cdot 10^{-7} \) |
\(a_{808}= -0.34609290 \pm 1.0 \cdot 10^{-6} \) | \(a_{809}= +1.17158430 \pm 6.6 \cdot 10^{-7} \) | \(a_{810}= +3.16733591 \pm 1.5 \cdot 10^{-6} \) |
\(a_{811}= +0.51234149 \pm 6.6 \cdot 10^{-7} \) | \(a_{812}= -0.06170085 \pm 7.9 \cdot 10^{-7} \) | \(a_{813}= -0.16335068 \pm 7.1 \cdot 10^{-7} \) |
\(a_{814}= +0.67402729 \pm 1.4 \cdot 10^{-6} \) | \(a_{815}= -0.27323333 \pm 9.6 \cdot 10^{-7} \) | \(a_{816}= -0.62367623 \pm 1.5 \cdot 10^{-6} \) |
\(a_{817}= -1.83473208 \pm 4.4 \cdot 10^{-7} \) | \(a_{818}= -0.42730924 \pm 1.1 \cdot 10^{-6} \) | \(a_{819}= +0.09504689 \pm 1.5 \cdot 10^{-6} \) |
\(a_{820}= -0.85428611 \pm 1.7 \cdot 10^{-6} \) | \(a_{821}= +1.59108356 \pm 8.5 \cdot 10^{-7} \) | \(a_{822}= +0.94900206 \pm 1.1 \cdot 10^{-6} \) |
\(a_{823}= -0.25438305 \pm 8.5 \cdot 10^{-7} \) | \(a_{824}= +0.02927396 \pm 7.4 \cdot 10^{-7} \) | \(a_{825}= +0.01152588 \pm 2.4 \cdot 10^{-7} \) |
\(a_{826}= +0.25535599 \pm 7.4 \cdot 10^{-7} \) | \(a_{827}= +0.63454544 \pm 9.1 \cdot 10^{-7} \) | \(a_{828}= +0.12978179 \pm 1.3 \cdot 10^{-6} \) |
\(a_{829}= -0.17359297 \pm 5.2 \cdot 10^{-7} \) | \(a_{830}= -0.10077452 \pm 1.4 \cdot 10^{-6} \) | \(a_{831}= -1.74664111 \pm 4.8 \cdot 10^{-7} \) |
\(a_{832}= +0.01085065 \pm 7.4 \cdot 10^{-7} \) | \(a_{833}= -0.18053387 \pm 9.5 \cdot 10^{-7} \) | \(a_{834}= -2.53543373 \pm 1.1 \cdot 10^{-6} \) |
\(a_{835}= -0.46675953 \pm 6.3 \cdot 10^{-7} \) | \(a_{836}= -0.46714006 \pm 1.6 \cdot 10^{-6} \) | \(a_{837}= +0.26462206 \pm 7.3 \cdot 10^{-7} \) |
\(a_{838}= -0.95482866 \pm 9.8 \cdot 10^{-7} \) | \(a_{839}= +0.32239346 \pm 9.7 \cdot 10^{-7} \) | \(a_{840}= +0.26285239 \pm 1.4 \cdot 10^{-6} \) |
\(a_{841}= -0.89340413 \pm 9.1 \cdot 10^{-7} \) | \(a_{842}= -0.88443276 \pm 7.7 \cdot 10^{-7} \) | \(a_{843}= +2.45503771 \pm 5.6 \cdot 10^{-7} \) |
\(a_{844}= +0.46712857 \pm 7.1 \cdot 10^{-7} \) | \(a_{845}= -0.98891424 \pm 6.2 \cdot 10^{-7} \) | \(a_{846}= +0.54852547 \pm 1.5 \cdot 10^{-6} \) |
\(a_{847}= -0.12538727 \pm 1.1 \cdot 10^{-6} \) | \(a_{848}= +0.22970391 \pm 9.3 \cdot 10^{-7} \) | \(a_{849}= +0.61106335 \pm 6.4 \cdot 10^{-7} \) |
\(a_{850}= +0.00638237 \pm 1.9 \cdot 10^{-6} \) | \(a_{851}= -0.10447769 \pm 2.8 \cdot 10^{-7} \) | \(a_{852}= +1.38431183 \pm 1.4 \cdot 10^{-6} \) |
\(a_{853}= -1.70395971 \pm 9.8 \cdot 10^{-7} \) | \(a_{854}= -0.09235749 \pm 6.7 \cdot 10^{-7} \) | \(a_{855}= +3.29905917 \pm 4.9 \cdot 10^{-7} \) |
\(a_{856}= +0.05584037 \pm 6.6 \cdot 10^{-7} \) | \(a_{857}= +1.50410862 \pm 8.6 \cdot 10^{-7} \) | \(a_{858}= -0.09905237 \pm 2.3 \cdot 10^{-6} \) |
\(a_{859}= -0.32784594 \pm 9.3 \cdot 10^{-7} \) | \(a_{860}= -0.79979858 \pm 1.4 \cdot 10^{-6} \) | \(a_{861}= -1.27939095 \pm 1.4 \cdot 10^{-6} \) |
\(a_{862}= +1.39527595 \pm 1.0 \cdot 10^{-6} \) | \(a_{863}= +1.75017285 \pm 8.4 \cdot 10^{-7} \) | \(a_{864}= +0.66197786 \pm 6.3 \cdot 10^{-7} \) |
\(a_{865}= -1.74702994 \pm 4.3 \cdot 10^{-7} \) | \(a_{866}= +0.30645115 \pm 9.2 \cdot 10^{-7} \) | \(a_{867}= +1.17858162 \pm 3.7 \cdot 10^{-7} \) |
\(a_{868}= +0.01335453 \pm 9.2 \cdot 10^{-7} \) | \(a_{869}= +0.54697295 \pm 4.8 \cdot 10^{-7} \) | \(a_{870}= -0.45411007 \pm 2.2 \cdot 10^{-6} \) |
\(a_{871}= +0.00115119 \pm 5.4 \cdot 10^{-7} \) | \(a_{872}= +0.51718574 \pm 5.8 \cdot 10^{-7} \) | \(a_{873}= +2.32136749 \pm 6.9 \cdot 10^{-7} \) |
\(a_{874}= +0.07240911 \pm 1.1 \cdot 10^{-6} \) | \(a_{875}= -0.37930217 \pm 1.1 \cdot 10^{-6} \) | \(a_{876}= +0.16714212 \pm 1.2 \cdot 10^{-6} \) |
\(a_{877}= -0.21301830 \pm 9.3 \cdot 10^{-7} \) | \(a_{878}= -1.06024151 \pm 7.4 \cdot 10^{-7} \) | \(a_{879}= -2.67963879 \pm 5.0 \cdot 10^{-7} \) |
\(a_{880}= -0.20363625 \pm 1.9 \cdot 10^{-6} \) | \(a_{881}= -0.73839655 \pm 9.0 \cdot 10^{-7} \) | \(a_{882}= +0.29263620 \pm 8.0 \cdot 10^{-7} \) |
\(a_{883}= +1.07456361 \pm 7.4 \cdot 10^{-7} \) | \(a_{884}= -0.05484949 \pm 1.6 \cdot 10^{-6} \) | \(a_{885}= +1.87938609 \pm 5.3 \cdot 10^{-7} \) |
\(a_{886}= -0.93709831 \pm 1.1 \cdot 10^{-6} \) | \(a_{887}= -0.34855323 \pm 8.1 \cdot 10^{-7} \) | \(a_{888}= -0.81383872 \pm 9.7 \cdot 10^{-7} \) |
\(a_{889}= +0.28227728 \pm 9.5 \cdot 10^{-7} \) | \(a_{890}= -0.59049762 \pm 1.5 \cdot 10^{-6} \) | \(a_{891}= -3.67482963 \pm 5.8 \cdot 10^{-7} \) |
\(a_{892}= -0.68224008 \pm 8.2 \cdot 10^{-7} \) | \(a_{893}= +0.30603863 \pm 3.4 \cdot 10^{-7} \) | \(a_{894}= +0.50263705 \pm 1.6 \cdot 10^{-6} \) |
\(a_{895}= +0.69503592 \pm 6.0 \cdot 10^{-7} \) | \(a_{896}= +0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= +0.01535363 \pm 6.7 \cdot 10^{-7} \) |
\(a_{898}= +0.27970654 \pm 6.9 \cdot 10^{-7} \) | \(a_{899}= -0.02307160 \pm 5.2 \cdot 10^{-7} \) | \(a_{900}= -0.01034550 \pm 1.8 \cdot 10^{-6} \) |
\(a_{901}= -1.16114143 \pm 7.3 \cdot 10^{-7} \) | \(a_{902}= +0.99116608 \pm 1.8 \cdot 10^{-6} \) | \(a_{903}= -1.19778964 \pm 1.1 \cdot 10^{-6} \) |
\(a_{904}= +0.25797854 \pm 6.9 \cdot 10^{-7} \) | \(a_{905}= -0.16198719 \pm 6.8 \cdot 10^{-7} \) | \(a_{906}= -0.38885782 \pm 1.4 \cdot 10^{-6} \) |
\(a_{907}= +1.78895840 \pm 8.3 \cdot 10^{-7} \) | \(a_{908}= -0.14733779 \pm 1.1 \cdot 10^{-6} \) | \(a_{909}= -2.83582067 \pm 8.9 \cdot 10^{-7} \) |
\(a_{910}= +0.02311667 \pm 1.6 \cdot 10^{-6} \) | \(a_{911}= -0.78928833 \pm 9.5 \cdot 10^{-7} \) | \(a_{912}= +0.56403751 \pm 1.2 \cdot 10^{-6} \) |
\(a_{913}= +0.11692135 \pm 6.2 \cdot 10^{-7} \) | \(a_{914}= +0.14255968 \pm 1.0 \cdot 10^{-6} \) | \(a_{915}= -0.67973885 \pm 4.5 \cdot 10^{-7} \) |
\(a_{916}= +0.74225514 \pm 7.3 \cdot 10^{-7} \) | \(a_{917}= +0.56823593 \pm 7.9 \cdot 10^{-7} \) | \(a_{918}= -3.34626393 \pm 1.5 \cdot 10^{-6} \) |
\(a_{919}= +0.45618242 \pm 4.8 \cdot 10^{-7} \) | \(a_{920}= +0.03156466 \pm 1.3 \cdot 10^{-6} \) | \(a_{921}= +0.83972269 \pm 4.7 \cdot 10^{-7} \) |
\(a_{922}= +0.09910981 \pm 7.7 \cdot 10^{-7} \) | \(a_{923}= +0.12174393 \pm 7.7 \cdot 10^{-7} \) | \(a_{924}= -0.30496852 \pm 1.6 \cdot 10^{-6} \) |
\(a_{925}= +0.00832839 \pm 4.5 \cdot 10^{-7} \) | \(a_{926}= -0.57117984 \pm 6.2 \cdot 10^{-7} \) | \(a_{927}= +0.23986537 \pm 8.1 \cdot 10^{-7} \) |
\(a_{928}= -0.05771586 \pm 7.9 \cdot 10^{-7} \) | \(a_{929}= +1.68009761 \pm 8.9 \cdot 10^{-7} \) | \(a_{930}= +0.09828756 \pm 2.3 \cdot 10^{-6} \) |
\(a_{931}= +0.16327041 \pm 6.3 \cdot 10^{-7} \) | \(a_{932}= -0.80684924 \pm 1.0 \cdot 10^{-6} \) | \(a_{933}= +1.73938444 \pm 6.5 \cdot 10^{-7} \) |
\(a_{934}= +1.28955369 \pm 7.5 \cdot 10^{-7} \) | \(a_{935}= +1.02937073 \pm 6.2 \cdot 10^{-7} \) | \(a_{936}= +0.08890822 \pm 1.5 \cdot 10^{-6} \) |
\(a_{937}= +1.35557891 \pm 1.0 \cdot 10^{-6} \) | \(a_{938}= +0.00354435 \pm 7.5 \cdot 10^{-7} \) | \(a_{939}= +0.74787132 \pm 7.1 \cdot 10^{-7} \) |
\(a_{940}= +0.13340872 \pm 1.5 \cdot 10^{-6} \) | \(a_{941}= -0.92465789 \pm 8.2 \cdot 10^{-7} \) | \(a_{942}= -0.61564492 \pm 1.5 \cdot 10^{-6} \) |
\(a_{943}= -0.15363584 \pm 5.8 \cdot 10^{-7} \) | \(a_{944}= +0.23886366 \pm 7.4 \cdot 10^{-7} \) | \(a_{945}= +1.41030463 \pm 1.4 \cdot 10^{-6} \) |
\(a_{946}= +0.92794815 \pm 1.6 \cdot 10^{-6} \) | \(a_{947}= -0.58087710 \pm 8.0 \cdot 10^{-7} \) | \(a_{948}= -0.66042989 \pm 1.3 \cdot 10^{-6} \) |
\(a_{949}= +0.01469939 \pm 5.1 \cdot 10^{-7} \) | \(a_{950}= -0.00577206 \pm 1.6 \cdot 10^{-6} \) | \(a_{951}= -0.75973160 \pm 4.2 \cdot 10^{-7} \) |
\(a_{952}= -0.16887397 \pm 9.5 \cdot 10^{-7} \) | \(a_{953}= -0.83301230 \pm 8.5 \cdot 10^{-7} \) | \(a_{954}= +1.88215103 \pm 1.7 \cdot 10^{-6} \) |
\(a_{955}= -0.48137976 \pm 8.9 \cdot 10^{-7} \) | \(a_{956}= -0.05230084 \pm 7.0 \cdot 10^{-7} \) | \(a_{957}= +0.52687091 \pm 3.3 \cdot 10^{-7} \) |
\(a_{958}= +1.20208040 \pm 7.2 \cdot 10^{-7} \) | \(a_{959}= +0.25696305 \pm 5.8 \cdot 10^{-7} \) | \(a_{960}= +0.24587590 \pm 1.4 \cdot 10^{-6} \) |
\(a_{961}= -0.99500638 \pm 7.1 \cdot 10^{-7} \) | \(a_{962}= -0.07157341 \pm 1.1 \cdot 10^{-6} \) | \(a_{963}= +0.45754555 \pm 6.3 \cdot 10^{-7} \) |
\(a_{964}= +0.32319263 \pm 1.2 \cdot 10^{-6} \) | \(a_{965}= -1.31905624 \pm 7.8 \cdot 10^{-7} \) | \(a_{966}= +0.04727169 \pm 1.1 \cdot 10^{-6} \) |
\(a_{967}= -1.67281895 \pm 7.5 \cdot 10^{-7} \) | \(a_{968}= -0.11728905 \pm 1.1 \cdot 10^{-6} \) | \(a_{969}= -2.85118049 \pm 5.1 \cdot 10^{-7} \) |
\(a_{970}= +0.56458757 \pm 1.7 \cdot 10^{-6} \) | \(a_{971}= +0.31129442 \pm 8.6 \cdot 10^{-7} \) | \(a_{972}= +2.56473222 \pm 6.9 \cdot 10^{-7} \) |
\(a_{973}= -0.68652411 \pm 6.1 \cdot 10^{-7} \) | \(a_{974}= -0.25017358 \pm 6.3 \cdot 10^{-7} \) | \(a_{975}= -0.00122391 \pm 6.3 \cdot 10^{-7} \) |
\(a_{976}= -0.08639252 \pm 6.7 \cdot 10^{-7} \) | \(a_{977}= -1.42644084 \pm 7.2 \cdot 10^{-7} \) | \(a_{978}= -0.38276977 \pm 1.3 \cdot 10^{-6} \) |
\(a_{979}= +0.68511146 \pm 7.9 \cdot 10^{-7} \) | \(a_{980}= +0.07117303 \pm 8.7 \cdot 10^{-7} \) | \(a_{981}= +4.23772346 \pm 5.8 \cdot 10^{-7} \) |
\(a_{982}= +0.79707409 \pm 8.4 \cdot 10^{-7} \) | \(a_{983}= +0.80316184 \pm 9.8 \cdot 10^{-7} \) | \(a_{984}= -1.19676065 \pm 1.4 \cdot 10^{-6} \) |
\(a_{985}= +0.60693237 \pm 9.8 \cdot 10^{-7} \) | \(a_{986}= +0.29175072 \pm 1.7 \cdot 10^{-6} \) | \(a_{987}= +0.19979478 \pm 1.2 \cdot 10^{-6} \) |
\(a_{988}= +0.04960453 \pm 1.3 \cdot 10^{-6} \) | \(a_{989}= -0.14383673 \pm 3.8 \cdot 10^{-7} \) | \(a_{990}= -1.66855744 \pm 2.6 \cdot 10^{-6} \) |
\(a_{991}= +0.27491229 \pm 6.9 \cdot 10^{-7} \) | \(a_{992}= +0.01249202 \pm 9.2 \cdot 10^{-7} \) | \(a_{993}= -1.05386969 \pm 3.8 \cdot 10^{-7} \) |
\(a_{994}= +0.37483269 \pm 9.1 \cdot 10^{-7} \) | \(a_{995}= -0.34556961 \pm 6.8 \cdot 10^{-7} \) | \(a_{996}= -0.14117399 \pm 1.2 \cdot 10^{-6} \) |
\(a_{997}= +0.03917332 \pm 6.2 \cdot 10^{-7} \) | \(a_{998}= -0.23982115 \pm 7.9 \cdot 10^{-7} \) | \(a_{999}= -4.36655916 \pm 2.4 \cdot 10^{-7} \) |
\(a_{1000}= -0.35480469 \pm 1.1 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000