Maass form invariants
Level: | \( 15 = 3 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 15.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(5.04639152421925115467652117489 \pm 2 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.12638288 \pm 4.1 \cdot 10^{-8} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.26873840 \pm 4.1 \cdot 10^{-8} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -0.65031746 \pm 5.2 \cdot 10^{-8} \) |
\(a_{7}= -1.67990027 \pm 3.6 \cdot 10^{-8} \) | \(a_{8}= -0.82368055 \pm 3.0 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.50373374 \pm 5.2 \cdot 10^{-8} \) | \(a_{11}= +1.33584752 \pm 3.6 \cdot 10^{-8} \) | \(a_{12}= -0.15515618 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= -0.39969907 \pm 3.5 \cdot 10^{-8} \) | \(a_{14}= -1.89221091 \pm 4.2 \cdot 10^{-8} \) | \(a_{15}= +0.25819889 \pm 1.0 \cdot 10^{-8} \) |
\(a_{16}= -1.19651807 \pm 3.5 \cdot 10^{-8} \) | \(a_{17}= +0.92225614 \pm 3.1 \cdot 10^{-8} \) | \(a_{18}= +0.37546096 \pm 5.2 \cdot 10^{-8} \) |
\(a_{19}= -0.48241875 \pm 3.1 \cdot 10^{-8} \) | \(a_{20}= -0.12018346 \pm 5.2 \cdot 10^{-8} \) | \(a_{21}= +0.96989087 \pm 4.6 \cdot 10^{-8} \) |
\(a_{22}= +1.50467578 \pm 4.3 \cdot 10^{-8} \) | \(a_{23}= -1.47555439 \pm 2.7 \cdot 10^{-8} \) | \(a_{24}= +0.47555219 \pm 4.0 \cdot 10^{-8} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -0.45021419 \pm 4.6 \cdot 10^{-8} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.45145370 \pm 4.6 \cdot 10^{-8} \) | \(a_{29}= -0.57607064 \pm 2.3 \cdot 10^{-8} \) | \(a_{30}= +0.29083081 \pm 5.2 \cdot 10^{-8} \) |
\(a_{31}= +0.03412613 \pm 1.8 \cdot 10^{-8} \) | \(a_{32}= -0.52405692 \pm 3.1 \cdot 10^{-8} \) | \(a_{33}= -0.77125192 \pm 4.6 \cdot 10^{-8} \) |
\(a_{34}= +1.03881353 \pm 3.9 \cdot 10^{-8} \) | \(a_{35}= +0.75127424 \pm 4.6 \cdot 10^{-8} \) | \(a_{36}= +0.08957947 \pm 5.2 \cdot 10^{-8} \) |
\(a_{37}= -0.15244083 \pm 2.7 \cdot 10^{-8} \) | \(a_{38}= -0.54338823 \pm 3.5 \cdot 10^{-8} \) | \(a_{39}= +0.23076637 \pm 4.6 \cdot 10^{-8} \) |
\(a_{40}= +0.36836114 \pm 4.0 \cdot 10^{-8} \) | \(a_{41}= -0.20874690 \pm 3.1 \cdot 10^{-8} \) | \(a_{42}= +1.09246848 \pm 8.8 \cdot 10^{-8} \) |
\(a_{43}= -0.32873533 \pm 3.4 \cdot 10^{-8} \) | \(a_{44}= +0.35899352 \pm 3.4 \cdot 10^{-8} \) | \(a_{45}= -0.14907120 \pm 1.4 \cdot 10^{-7} \) |
\(a_{46}= -1.66203920 \pm 2.0 \cdot 10^{-8} \) | \(a_{47}= -0.29840022 \pm 4.1 \cdot 10^{-8} \) | \(a_{48}= +0.69081003 \pm 4.5 \cdot 10^{-8} \) |
\(a_{49}= +1.82206492 \pm 2.7 \cdot 10^{-8} \) | \(a_{50}= +0.22527658 \pm 5.2 \cdot 10^{-8} \) | \(a_{51}= -0.53246483 \pm 4.2 \cdot 10^{-8} \) |
\(a_{52}= -0.10741449 \pm 3.7 \cdot 10^{-8} \) | \(a_{53}= -1.76867867 \pm 4.4 \cdot 10^{-8} \) | \(a_{54}= -0.21677249 \pm 5.2 \cdot 10^{-8} \) |
\(a_{55}= -0.59740917 \pm 4.6 \cdot 10^{-8} \) | \(a_{56}= +1.38370119 \pm 3.1 \cdot 10^{-8} \) | \(a_{57}= +0.27852460 \pm 4.2 \cdot 10^{-8} \) |
\(a_{58}= -0.64887611 \pm 3.0 \cdot 10^{-8} \) | \(a_{59}= -0.26592633 \pm 2.9 \cdot 10^{-8} \) | \(a_{60}= +0.06938796 \pm 5.2 \cdot 10^{-8} \) |
\(a_{61}= -0.33615906 \pm 3.7 \cdot 10^{-8} \) | \(a_{62}= +0.03843909 \pm 2.1 \cdot 10^{-8} \) | \(a_{63}= -0.55996676 \pm 4.6 \cdot 10^{-8} \) |
\(a_{64}= +0.60622933 \pm 3.8 \cdot 10^{-8} \) | \(a_{65}= +0.17875086 \pm 4.6 \cdot 10^{-8} \) | \(a_{66}= -0.86872496 \pm 8.8 \cdot 10^{-8} \) |
\(a_{67}= +0.99610813 \pm 3.1 \cdot 10^{-8} \) | \(a_{68}= +0.24784563 \pm 3.9 \cdot 10^{-8} \) | \(a_{69}= +0.85191172 \pm 3.8 \cdot 10^{-8} \) |
\(a_{70}= +0.84622244 \pm 8.8 \cdot 10^{-8} \) | \(a_{71}= +0.84685928 \pm 3.9 \cdot 10^{-8} \) | \(a_{72}= -0.27456018 \pm 4.0 \cdot 10^{-8} \) |
\(a_{73}= +1.29637878 \pm 3.4 \cdot 10^{-8} \) | \(a_{74}= -0.17170675 \pm 2.9 \cdot 10^{-8} \) | \(a_{75}= -0.11547005 \pm 2.2 \cdot 10^{-7} \) |
\(a_{76}= -0.12964444 \pm 4.0 \cdot 10^{-8} \) | \(a_{77}= -2.24409061 \pm 2.8 \cdot 10^{-8} \) | \(a_{78}= +0.25993128 \pm 8.8 \cdot 10^{-8} \) |
\(a_{79}= -1.71462875 \pm 3.6 \cdot 10^{-8} \) | \(a_{80}= +0.53509915 \pm 4.5 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.23512894 \pm 4.0 \cdot 10^{-8} \) | \(a_{83}= -0.79856600 \pm 2.3 \cdot 10^{-8} \) | \(a_{84}= +0.26064692 \pm 8.8 \cdot 10^{-8} \) |
\(a_{85}= -0.41244548 \pm 4.2 \cdot 10^{-8} \) | \(a_{86}= -0.37028185 \pm 3.6 \cdot 10^{-8} \) | \(a_{87}= +0.33259454 \pm 3.3 \cdot 10^{-8} \) |
\(a_{88}= -1.10031162 \pm 3.1 \cdot 10^{-8} \) | \(a_{89}= +1.13306928 \pm 3.3 \cdot 10^{-8} \) | \(a_{90}= -0.16791125 \pm 5.2 \cdot 10^{-8} \) |
\(a_{91}= +0.67145457 \pm 2.8 \cdot 10^{-8} \) | \(a_{92}= -0.39653812 \pm 2.7 \cdot 10^{-8} \) | \(a_{93}= -0.01970273 \pm 2.9 \cdot 10^{-8} \) |
\(a_{94}= -0.33611290 \pm 5.0 \cdot 10^{-8} \) | \(a_{95}= +0.21574423 \pm 4.2 \cdot 10^{-8} \) | \(a_{96}= +0.30256440 \pm 4.2 \cdot 10^{-8} \) |
\(a_{97}= +1.61598478 \pm 3.0 \cdot 10^{-8} \) | \(a_{98}= +2.05234274 \pm 3.0 \cdot 10^{-8} \) | \(a_{99}= +0.44528251 \pm 4.6 \cdot 10^{-8} \) |
\(a_{100}= +0.05374768 \pm 5.2 \cdot 10^{-8} \) | \(a_{101}= +0.52049396 \pm 3.2 \cdot 10^{-8} \) | \(a_{102}= -0.59975927 \pm 8.3 \cdot 10^{-8} \) |
\(a_{103}= -1.47756007 \pm 3.5 \cdot 10^{-8} \) | \(a_{104}= +0.32922435 \pm 2.5 \cdot 10^{-8} \) | \(a_{105}= -0.43374839 \pm 4.6 \cdot 10^{-8} \) |
\(a_{106}= -1.99220938 \pm 4.1 \cdot 10^{-8} \) | \(a_{107}= +0.11411511 \pm 3.3 \cdot 10^{-8} \) | \(a_{108}= -0.05171873 \pm 5.2 \cdot 10^{-8} \) |
\(a_{109}= +0.38886890 \pm 3.2 \cdot 10^{-8} \) | \(a_{110}= -0.67291146 \pm 8.8 \cdot 10^{-8} \) | \(a_{111}= +0.08801176 \pm 3.7 \cdot 10^{-8} \) |
\(a_{112}= +2.01003103 \pm 3.0 \cdot 10^{-8} \) | \(a_{113}= -0.98779553 \pm 4.2 \cdot 10^{-8} \) | \(a_{114}= +0.31372534 \pm 8.3 \cdot 10^{-8} \) |
\(a_{115}= +0.65988798 \pm 3.8 \cdot 10^{-8} \) | \(a_{116}= -0.15481230 \pm 2.7 \cdot 10^{-8} \) | \(a_{117}= -0.13323302 \pm 4.6 \cdot 10^{-8} \) |
\(a_{118}= -0.29953487 \pm 4.5 \cdot 10^{-8} \) | \(a_{119}= -1.54929834 \pm 3.5 \cdot 10^{-8} \) | \(a_{120}= -0.21267340 \pm 4.0 \cdot 10^{-8} \) |
\(a_{121}= +0.78448859 \pm 3.4 \cdot 10^{-8} \) | \(a_{122}= -0.37864381 \pm 4.3 \cdot 10^{-8} \) | \(a_{123}= +0.12052008 \pm 4.2 \cdot 10^{-8} \) |
\(a_{124}= +0.00917100 \pm 2.4 \cdot 10^{-8} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.63073697 \pm 8.8 \cdot 10^{-8} \) |
\(a_{127}= -0.42446602 \pm 3.0 \cdot 10^{-8} \) | \(a_{128}= +1.20690326 \pm 4.0 \cdot 10^{-8} \) | \(a_{129}= +0.18979543 \pm 4.5 \cdot 10^{-8} \) |
\(a_{130}= +0.20134191 \pm 8.8 \cdot 10^{-8} \) | \(a_{131}= -0.96210932 \pm 3.9 \cdot 10^{-8} \) | \(a_{132}= -0.20726500 \pm 8.8 \cdot 10^{-8} \) |
\(a_{133}= +0.81041540 \pm 3.0 \cdot 10^{-8} \) | \(a_{134}= +1.12199915 \pm 3.3 \cdot 10^{-8} \) | \(a_{135}= +0.08606630 \pm 3.3 \cdot 10^{-7} \) |
\(a_{136}= -0.75964445 \pm 2.9 \cdot 10^{-8} \) | \(a_{137}= -1.24065119 \pm 3.1 \cdot 10^{-8} \) | \(a_{138}= +0.95957878 \pm 8.0 \cdot 10^{-8} \) |
\(a_{139}= -0.30048366 \pm 3.9 \cdot 10^{-8} \) | \(a_{140}= +0.20189623 \pm 8.8 \cdot 10^{-8} \) | \(a_{141}= +0.17228145 \pm 5.2 \cdot 10^{-8} \) |
\(a_{142}= +0.95388780 \pm 3.1 \cdot 10^{-8} \) | \(a_{143}= -0.53393701 \pm 3.8 \cdot 10^{-8} \) | \(a_{144}= -0.39883936 \pm 4.5 \cdot 10^{-8} \) |
\(a_{145}= +0.25762662 \pm 3.3 \cdot 10^{-8} \) | \(a_{146}= +1.46021886 \pm 5.1 \cdot 10^{-8} \) | \(a_{147}= -1.05196967 \pm 3.7 \cdot 10^{-8} \) |
\(a_{148}= -0.04096671 \pm 3.4 \cdot 10^{-8} \) | \(a_{149}= +1.41736835 \pm 2.3 \cdot 10^{-8} \) | \(a_{150}= -0.13006349 \pm 5.2 \cdot 10^{-8} \) |
\(a_{151}= +0.72710015 \pm 4.2 \cdot 10^{-8} \) | \(a_{152}= +0.39735895 \pm 2.7 \cdot 10^{-8} \) | \(a_{153}= +0.30741871 \pm 4.2 \cdot 10^{-8} \) |
\(a_{154}= -2.52770525 \pm 3.7 \cdot 10^{-8} \) | \(a_{155}= -0.01526167 \pm 2.9 \cdot 10^{-8} \) | \(a_{156}= +0.06201578 \pm 8.8 \cdot 10^{-8} \) |
\(a_{157}= -0.17341835 \pm 3.2 \cdot 10^{-8} \) | \(a_{158}= -1.93132848 \pm 5.0 \cdot 10^{-8} \) | \(a_{159}= +1.02114711 \pm 5.5 \cdot 10^{-8} \) |
\(a_{160}= +0.23436538 \pm 4.2 \cdot 10^{-8} \) | \(a_{161}= +2.47878422 \pm 2.8 \cdot 10^{-8} \) | \(a_{162}= +0.12515365 \pm 5.2 \cdot 10^{-8} \) |
\(a_{163}= -0.86748615 \pm 3.7 \cdot 10^{-8} \) | \(a_{164}= -0.05609831 \pm 2.9 \cdot 10^{-8} \) | \(a_{165}= +0.34491435 \pm 4.6 \cdot 10^{-8} \) |
\(a_{166}= -0.89949107 \pm 3.0 \cdot 10^{-8} \) | \(a_{167}= -0.80573263 \pm 4.3 \cdot 10^{-8} \) | \(a_{168}= -0.79888025 \pm 7.6 \cdot 10^{-8} \) |
\(a_{169}= -0.84024065 \pm 4.0 \cdot 10^{-8} \) | \(a_{170}= -0.46457153 \pm 8.3 \cdot 10^{-8} \) | \(a_{171}= -0.16080625 \pm 4.2 \cdot 10^{-8} \) |
\(a_{172}= -0.08834380 \pm 3.8 \cdot 10^{-8} \) | \(a_{173}= +0.60271569 \pm 2.9 \cdot 10^{-8} \) | \(a_{174}= +0.37462880 \pm 7.5 \cdot 10^{-8} \) |
\(a_{175}= -0.33598005 \pm 4.6 \cdot 10^{-8} \) | \(a_{176}= -1.59836569 \pm 3.9 \cdot 10^{-8} \) | \(a_{177}= +0.15353264 \pm 4.0 \cdot 10^{-8} \) |
\(a_{178}= +1.27626984 \pm 4.4 \cdot 10^{-8} \) | \(a_{179}= -1.43605666 \pm 3.1 \cdot 10^{-8} \) | \(a_{180}= -0.04006115 \pm 5.2 \cdot 10^{-8} \) |
\(a_{181}= +0.89092931 \pm 3.2 \cdot 10^{-8} \) | \(a_{182}= +0.75631494 \pm 4.1 \cdot 10^{-8} \) | \(a_{183}= +0.19408152 \pm 4.8 \cdot 10^{-8} \) |
\(a_{184}= +1.21538545 \pm 2.0 \cdot 10^{-8} \) | \(a_{185}= +0.06817361 \pm 3.7 \cdot 10^{-8} \) | \(a_{186}= -0.02219282 \pm 7.1 \cdot 10^{-8} \) |
\(a_{187}= +1.23199357 \pm 2.8 \cdot 10^{-8} \) | \(a_{188}= -0.08019160 \pm 5.5 \cdot 10^{-8} \) | \(a_{189}= +0.32329696 \pm 4.6 \cdot 10^{-8} \) |
\(a_{190}= +0.24301060 \pm 8.3 \cdot 10^{-8} \) | \(a_{191}= +0.14301837 \pm 2.5 \cdot 10^{-8} \) | \(a_{192}= -0.35000667 \pm 4.9 \cdot 10^{-8} \) |
\(a_{193}= -0.95529618 \pm 2.7 \cdot 10^{-8} \) | \(a_{194}= +1.82021759 \pm 2.8 \cdot 10^{-8} \) | \(a_{195}= -0.10320186 \pm 4.6 \cdot 10^{-8} \) |
\(a_{196}= +0.48965880 \pm 3.0 \cdot 10^{-8} \) | \(a_{197}= -0.21690152 \pm 2.0 \cdot 10^{-8} \) | \(a_{198}= +0.50155859 \pm 8.8 \cdot 10^{-8} \) |
\(a_{199}= -0.40853807 \pm 3.7 \cdot 10^{-8} \) | \(a_{200}= -0.16473611 \pm 4.0 \cdot 10^{-8} \) | \(a_{201}= -0.57510330 \pm 4.1 \cdot 10^{-8} \) |
\(a_{202}= +0.58627549 \pm 2.3 \cdot 10^{-8} \) | \(a_{203}= +0.96774123 \pm 2.5 \cdot 10^{-8} \) | \(a_{204}= -0.14309374 \pm 8.3 \cdot 10^{-8} \) |
\(a_{205}= +0.09335445 \pm 4.2 \cdot 10^{-8} \) | \(a_{206}= -1.66429837 \pm 4.5 \cdot 10^{-8} \) | \(a_{207}= -0.49185146 \pm 3.8 \cdot 10^{-8} \) |
\(a_{208}= +0.47824716 \pm 3.5 \cdot 10^{-8} \) | \(a_{209}= -0.64443789 \pm 3.0 \cdot 10^{-8} \) | \(a_{210}= -0.48856676 \pm 8.8 \cdot 10^{-8} \) |
\(a_{211}= -1.60981412 \pm 3.2 \cdot 10^{-8} \) | \(a_{212}= -0.47531187 \pm 4.9 \cdot 10^{-8} \) | \(a_{213}= -0.48893443 \pm 5.0 \cdot 10^{-8} \) |
\(a_{214}= +0.12853731 \pm 3.6 \cdot 10^{-8} \) | \(a_{215}= +0.14701491 \pm 4.5 \cdot 10^{-8} \) | \(a_{216}= +0.15851740 \pm 4.0 \cdot 10^{-8} \) |
\(a_{217}= -0.05732849 \pm 1.8 \cdot 10^{-8} \) | \(a_{218}= +0.43801527 \pm 3.3 \cdot 10^{-8} \) | \(a_{219}= -0.74846464 \pm 4.5 \cdot 10^{-8} \) |
\(a_{220}= -0.16054678 \pm 8.8 \cdot 10^{-8} \) | \(a_{221}= -0.36862492 \pm 3.6 \cdot 10^{-8} \) | \(a_{222}= +0.09913494 \pm 7.9 \cdot 10^{-8} \) |
\(a_{223}= +0.32238211 \pm 3.0 \cdot 10^{-8} \) | \(a_{224}= +0.88036336 \pm 2.8 \cdot 10^{-8} \) | \(a_{225}= +0.06666667 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= -1.11263597 \pm 4.0 \cdot 10^{-8} \) | \(a_{227}= -0.26504785 \pm 3.2 \cdot 10^{-8} \) | \(a_{228}= +0.07485025 \pm 8.3 \cdot 10^{-8} \) |
\(a_{229}= +0.72756183 \pm 5.0 \cdot 10^{-8} \) | \(a_{230}= +0.74328653 \pm 8.0 \cdot 10^{-8} \) | \(a_{231}= +1.29562632 \pm 8.2 \cdot 10^{-8} \) |
\(a_{232}= +0.47449818 \pm 2.0 \cdot 10^{-8} \) | \(a_{233}= +0.64235219 \pm 4.8 \cdot 10^{-8} \) | \(a_{234}= -0.15007140 \pm 8.8 \cdot 10^{-8} \) |
\(a_{235}= +0.13344864 \pm 5.2 \cdot 10^{-8} \) | \(a_{236}= -0.07146462 \pm 4.6 \cdot 10^{-8} \) | \(a_{237}= +0.98994137 \pm 4.6 \cdot 10^{-8} \) |
\(a_{238}= -1.74510313 \pm 4.6 \cdot 10^{-8} \) | \(a_{239}= -1.38730745 \pm 2.8 \cdot 10^{-8} \) | \(a_{240}= -0.30893964 \pm 4.5 \cdot 10^{-8} \) |
\(a_{241}= +1.72012829 \pm 3.8 \cdot 10^{-8} \) | \(a_{242}= +0.88363452 \pm 3.7 \cdot 10^{-8} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.09033885 \pm 4.3 \cdot 10^{-8} \) | \(a_{245}= -0.81485221 \pm 3.7 \cdot 10^{-8} \) | \(a_{246}= +0.13575176 \pm 8.4 \cdot 10^{-8} \) |
\(a_{247}= +0.19282233 \pm 2.4 \cdot 10^{-8} \) | \(a_{248}= -0.02810903 \pm 1.9 \cdot 10^{-8} \) | \(a_{249}= +0.46105229 \pm 3.4 \cdot 10^{-8} \) |
\(a_{250}= -0.10074675 \pm 5.2 \cdot 10^{-8} \) | \(a_{251}= +1.08450014 \pm 2.7 \cdot 10^{-8} \) | \(a_{252}= -0.15048457 \pm 8.8 \cdot 10^{-8} \) |
\(a_{253}= -1.97111566 \pm 2.8 \cdot 10^{-8} \) | \(a_{254}= -0.47811126 \pm 2.8 \cdot 10^{-8} \) | \(a_{255}= +0.23812551 \pm 4.2 \cdot 10^{-8} \) |
\(a_{256}= +0.75320584 \pm 3.5 \cdot 10^{-8} \) | \(a_{257}= -1.06760392 \pm 3.6 \cdot 10^{-8} \) | \(a_{258}= +0.21378232 \pm 8.6 \cdot 10^{-8} \) |
\(a_{259}= +0.25608540 \pm 2.8 \cdot 10^{-8} \) | \(a_{260}= +0.04803722 \pm 8.8 \cdot 10^{-8} \) | \(a_{261}= -0.19202355 \pm 3.3 \cdot 10^{-8} \) |
\(a_{262}= -1.08370347 \pm 4.1 \cdot 10^{-8} \) | \(a_{263}= +1.09634101 \pm 2.9 \cdot 10^{-8} \) | \(a_{264}= +0.63526521 \pm 7.7 \cdot 10^{-8} \) |
\(a_{265}= +0.79097715 \pm 5.5 \cdot 10^{-8} \) | \(a_{266}= +0.91283803 \pm 3.4 \cdot 10^{-8} \) | \(a_{267}= -0.65417785 \pm 4.3 \cdot 10^{-8} \) |
\(a_{268}= +0.26769250 \pm 3.9 \cdot 10^{-8} \) | \(a_{269}= +0.54845032 \pm 3.3 \cdot 10^{-8} \) | \(a_{270}= +0.09694360 \pm 5.2 \cdot 10^{-8} \) |
\(a_{271}= +0.22703610 \pm 3.4 \cdot 10^{-8} \) | \(a_{272}= -1.10349614 \pm 3.2 \cdot 10^{-8} \) | \(a_{273}= -0.38766448 \pm 8.2 \cdot 10^{-8} \) |
\(a_{274}= -1.39744826 \pm 4.8 \cdot 10^{-8} \) | \(a_{275}= +0.26716950 \pm 4.6 \cdot 10^{-8} \) | \(a_{276}= +0.22894139 \pm 8.0 \cdot 10^{-8} \) |
\(a_{277}= -0.07209184 \pm 3.4 \cdot 10^{-8} \) | \(a_{278}= -0.33845965 \pm 5.4 \cdot 10^{-8} \) | \(a_{279}= +0.01137538 \pm 2.9 \cdot 10^{-8} \) |
\(a_{280}= -0.61880998 \pm 7.6 \cdot 10^{-8} \) | \(a_{281}= -1.02344332 \pm 3.7 \cdot 10^{-8} \) | \(a_{282}= +0.19405488 \pm 9.4 \cdot 10^{-8} \) |
\(a_{283}= +1.01410320 \pm 3.5 \cdot 10^{-8} \) | \(a_{284}= +0.22758360 \pm 4.1 \cdot 10^{-8} \) | \(a_{285}= -0.12455999 \pm 4.2 \cdot 10^{-8} \) |
\(a_{286}= -0.60141751 \pm 4.5 \cdot 10^{-8} \) | \(a_{287}= +0.35067398 \pm 2.8 \cdot 10^{-8} \) | \(a_{288}= -0.17468564 \pm 4.2 \cdot 10^{-8} \) |
\(a_{289}= -0.14944361 \pm 2.7 \cdot 10^{-8} \) | \(a_{290}= +0.29018622 \pm 7.5 \cdot 10^{-8} \) | \(a_{291}= -0.93298925 \pm 4.1 \cdot 10^{-8} \) |
\(a_{292}= +0.34838675 \pm 5.2 \cdot 10^{-8} \) | \(a_{293}= -1.06951626 \pm 2.8 \cdot 10^{-8} \) | \(a_{294}= -1.18492063 \pm 7.9 \cdot 10^{-8} \) |
\(a_{295}= +0.11892587 \pm 4.0 \cdot 10^{-8} \) | \(a_{296}= +0.12556255 \pm 2.1 \cdot 10^{-8} \) | \(a_{297}= -0.25708397 \pm 4.6 \cdot 10^{-8} \) |
\(a_{298}= +1.59649945 \pm 3.1 \cdot 10^{-8} \) | \(a_{299}= +0.58977771 \pm 2.2 \cdot 10^{-8} \) | \(a_{300}= -0.03103124 \pm 5.2 \cdot 10^{-8} \) |
\(a_{301}= +0.55224257 \pm 3.6 \cdot 10^{-8} \) | \(a_{302}= +0.81899317 \pm 5.0 \cdot 10^{-8} \) | \(a_{303}= -0.30050733 \pm 4.3 \cdot 10^{-8} \) |
\(a_{304}= +0.57722276 \pm 3.0 \cdot 10^{-8} \) | \(a_{305}= +0.15033490 \pm 4.8 \cdot 10^{-8} \) | \(a_{306}= +0.34627118 \pm 8.3 \cdot 10^{-8} \) |
\(a_{307}= -1.04007955 \pm 3.4 \cdot 10^{-8} \) | \(a_{308}= -0.60307331 \pm 3.4 \cdot 10^{-8} \) | \(a_{309}= +0.85306970 \pm 4.6 \cdot 10^{-8} \) |
\(a_{310}= -0.01719048 \pm 7.1 \cdot 10^{-8} \) | \(a_{311}= +0.41707643 \pm 3.1 \cdot 10^{-8} \) | \(a_{312}= -0.19007777 \pm 7.6 \cdot 10^{-8} \) |
\(a_{313}= +1.63149615 \pm 3.3 \cdot 10^{-8} \) | \(a_{314}= -0.19533547 \pm 3.3 \cdot 10^{-8} \) | \(a_{315}= +0.25042475 \pm 4.6 \cdot 10^{-8} \) |
\(a_{316}= -0.46078658 \pm 4.3 \cdot 10^{-8} \) | \(a_{317}= +0.01870012 \pm 3.9 \cdot 10^{-8} \) | \(a_{318}= +1.15020262 \pm 9.6 \cdot 10^{-8} \) |
\(a_{319}= -0.76954254 \pm 2.7 \cdot 10^{-8} \) | \(a_{320}= -0.27111400 \pm 4.9 \cdot 10^{-8} \) | \(a_{321}= -0.06588439 \pm 4.3 \cdot 10^{-8} \) |
\(a_{322}= +2.79206011 \pm 2.1 \cdot 10^{-8} \) | \(a_{323}= -0.44491366 \pm 2.0 \cdot 10^{-8} \) | \(a_{324}= +0.02985982 \pm 5.2 \cdot 10^{-8} \) |
\(a_{325}= -0.07993981 \pm 4.6 \cdot 10^{-8} \) | \(a_{326}= -0.97712155 \pm 3.6 \cdot 10^{-8} \) | \(a_{327}= -0.22451356 \pm 4.2 \cdot 10^{-8} \) |
\(a_{328}= +0.17194077 \pm 2.4 \cdot 10^{-8} \) | \(a_{329}= +0.50128262 \pm 4.2 \cdot 10^{-8} \) | \(a_{330}= +0.38850561 \pm 8.8 \cdot 10^{-8} \) |
\(a_{331}= -1.24793992 \pm 4.0 \cdot 10^{-8} \) | \(a_{332}= -0.21460534 \pm 3.0 \cdot 10^{-8} \) | \(a_{333}= -0.05081361 \pm 3.7 \cdot 10^{-8} \) |
\(a_{334}= -0.90756344 \pm 4.3 \cdot 10^{-8} \) | \(a_{335}= -0.44547310 \pm 4.1 \cdot 10^{-8} \) | \(a_{336}= -1.16049196 \pm 8.1 \cdot 10^{-8} \) |
\(a_{337}= -0.12461839 \pm 3.1 \cdot 10^{-8} \) | \(a_{338}= -0.94643269 \pm 5.1 \cdot 10^{-8} \) | \(a_{339}= +0.57030401 \pm 5.2 \cdot 10^{-8} \) |
\(a_{340}= -0.11083994 \pm 8.3 \cdot 10^{-8} \) | \(a_{341}= +0.04558730 \pm 1.6 \cdot 10^{-8} \) | \(a_{342}= -0.18112941 \pm 8.3 \cdot 10^{-8} \) |
\(a_{343}= -1.38098709 \pm 3.3 \cdot 10^{-8} \) | \(a_{344}= +0.27077290 \pm 2.5 \cdot 10^{-8} \) | \(a_{345}= -0.38098650 \pm 3.8 \cdot 10^{-8} \) |
\(a_{346}= +0.67888863 \pm 4.0 \cdot 10^{-8} \) | \(a_{347}= +1.01016701 \pm 3.8 \cdot 10^{-8} \) | \(a_{348}= +0.08938092 \pm 7.5 \cdot 10^{-8} \) |
\(a_{349}= +0.93504878 \pm 3.3 \cdot 10^{-8} \) | \(a_{350}= -0.37844218 \pm 8.8 \cdot 10^{-8} \) | \(a_{351}= +0.07692212 \pm 4.6 \cdot 10^{-8} \) |
\(a_{352}= -0.70006013 \pm 2.9 \cdot 10^{-8} \) | \(a_{353}= -0.43942834 \pm 3.9 \cdot 10^{-8} \) | \(a_{354}= +0.17293654 \pm 8.1 \cdot 10^{-8} \) |
\(a_{355}= -0.37872698 \pm 5.0 \cdot 10^{-8} \) | \(a_{356}= +0.30449922 \pm 4.0 \cdot 10^{-8} \) | \(a_{357}= +0.89448781 \pm 7.8 \cdot 10^{-8} \) |
\(a_{358}= -1.61754964 \pm 4.0 \cdot 10^{-8} \) | \(a_{359}= -1.04702353 \pm 3.6 \cdot 10^{-8} \) | \(a_{360}= +0.12278705 \pm 4.0 \cdot 10^{-8} \) |
\(a_{361}= -0.76727215 \pm 2.7 \cdot 10^{-8} \) | \(a_{362}= +1.00352753 \pm 4.6 \cdot 10^{-8} \) | \(a_{363}= -0.45292470 \pm 4.5 \cdot 10^{-8} \) |
\(a_{364}= +0.18044562 \pm 3.7 \cdot 10^{-8} \) | \(a_{365}= -0.57975821 \pm 4.5 \cdot 10^{-8} \) | \(a_{366}= +0.21861011 \pm 8.9 \cdot 10^{-8} \) |
\(a_{367}= -1.57545378 \pm 3.0 \cdot 10^{-8} \) | \(a_{368}= +1.76552749 \pm 3.0 \cdot 10^{-8} \) | \(a_{369}= -0.06958230 \pm 4.2 \cdot 10^{-8} \) |
\(a_{370}= +0.07678959 \pm 7.9 \cdot 10^{-8} \) | \(a_{371}= +2.97120378 \pm 4.9 \cdot 10^{-8} \) | \(a_{372}= -0.00529488 \pm 7.1 \cdot 10^{-8} \) |
\(a_{373}= +0.87317584 \pm 3.0 \cdot 10^{-8} \) | \(a_{374}= +1.38769647 \pm 3.2 \cdot 10^{-8} \) | \(a_{375}= +0.05163978 \pm 7.7 \cdot 10^{-7} \) |
\(a_{376}= +0.24578646 \pm 3.6 \cdot 10^{-8} \) | \(a_{377}= +0.23025490 \pm 1.9 \cdot 10^{-8} \) | \(a_{378}= +0.36415616 \pm 8.8 \cdot 10^{-8} \) |
\(a_{379}= +1.00540129 \pm 3.2 \cdot 10^{-8} \) | \(a_{380}= +0.05797876 \pm 8.3 \cdot 10^{-8} \) | \(a_{381}= +0.24506557 \pm 4.1 \cdot 10^{-8} \) |
\(a_{382}= +0.16109345 \pm 2.9 \cdot 10^{-8} \) | \(a_{383}= -0.45004465 \pm 4.3 \cdot 10^{-8} \) | \(a_{384}= -0.69680592 \pm 5.1 \cdot 10^{-8} \) |
\(a_{385}= +1.00358783 \pm 8.2 \cdot 10^{-8} \) | \(a_{386}= -1.07602926 \pm 3.7 \cdot 10^{-8} \) | \(a_{387}= -0.10957844 \pm 4.5 \cdot 10^{-8} \) |
\(a_{388}= +0.43427716 \pm 3.0 \cdot 10^{-8} \) | \(a_{389}= -0.91900260 \pm 4.1 \cdot 10^{-8} \) | \(a_{390}= -0.11624480 \pm 8.8 \cdot 10^{-8} \) |
\(a_{391}= -1.36083909 \pm 2.3 \cdot 10^{-8} \) | \(a_{392}= -1.50079944 \pm 2.4 \cdot 10^{-8} \) | \(a_{393}= +0.55547408 \pm 5.0 \cdot 10^{-8} \) |
\(a_{394}= -0.24431415 \pm 2.8 \cdot 10^{-8} \) | \(a_{395}= +0.76680529 \pm 4.6 \cdot 10^{-8} \) | \(a_{396}= +0.11966451 \pm 8.8 \cdot 10^{-8} \) |
\(a_{397}= +1.02187718 \pm 3.6 \cdot 10^{-8} \) | \(a_{398}= -0.46017029 \pm 4.3 \cdot 10^{-8} \) | \(a_{399}= -0.46789355 \pm 7.8 \cdot 10^{-8} \) |
\(a_{400}= -0.23930361 \pm 4.5 \cdot 10^{-8} \) | \(a_{401}= -0.80410192 \pm 2.2 \cdot 10^{-8} \) | \(a_{402}= -0.64778651 \pm 8.3 \cdot 10^{-8} \) |
\(a_{403}= -0.01364018 \pm 1.8 \cdot 10^{-8} \) | \(a_{404}= +0.13987671 \pm 3.4 \cdot 10^{-8} \) | \(a_{405}= -0.04969040 \pm 8.2 \cdot 10^{-7} \) |
\(a_{406}= +1.09004715 \pm 3.0 \cdot 10^{-8} \) | \(a_{407}= -0.20363771 \pm 2.2 \cdot 10^{-8} \) | \(a_{408}= +0.43858093 \pm 7.2 \cdot 10^{-8} \) |
\(a_{409}= -1.70076910 \pm 3.8 \cdot 10^{-8} \) | \(a_{410}= +0.10515286 \pm 8.4 \cdot 10^{-8} \) | \(a_{411}= +0.71629030 \pm 4.2 \cdot 10^{-8} \) |
\(a_{412}= -0.39707712 \pm 3.4 \cdot 10^{-8} \) | \(a_{413}= +0.44672972 \pm 3.2 \cdot 10^{-8} \) | \(a_{414}= -0.55401307 \pm 8.0 \cdot 10^{-8} \) |
\(a_{415}= +0.35712957 \pm 3.4 \cdot 10^{-8} \) | \(a_{416}= +0.20946506 \pm 3.8 \cdot 10^{-8} \) | \(a_{417}= +0.17348432 \pm 5.0 \cdot 10^{-8} \) |
\(a_{418}= -0.72588381 \pm 3.7 \cdot 10^{-8} \) | \(a_{419}= -0.83508596 \pm 3.1 \cdot 10^{-8} \) | \(a_{420}= -0.11656484 \pm 8.8 \cdot 10^{-8} \) |
\(a_{421}= +1.35281188 \pm 4.3 \cdot 10^{-8} \) | \(a_{422}= -1.81326707 \pm 3.7 \cdot 10^{-8} \) | \(a_{423}= -0.09946674 \pm 5.2 \cdot 10^{-8} \) |
\(a_{424}= +1.45682623 \pm 2.6 \cdot 10^{-8} \) | \(a_{425}= +0.18445123 \pm 4.2 \cdot 10^{-8} \) | \(a_{426}= -0.55072738 \pm 9.2 \cdot 10^{-8} \) |
\(a_{427}= +0.56471370 \pm 3.0 \cdot 10^{-8} \) | \(a_{428}= +0.03066711 \pm 4.1 \cdot 10^{-8} \) | \(a_{429}= +0.30826868 \pm 8.2 \cdot 10^{-8} \) |
\(a_{430}= +0.16559508 \pm 8.6 \cdot 10^{-8} \) | \(a_{431}= -1.46225651 \pm 3.2 \cdot 10^{-8} \) | \(a_{432}= +0.23027001 \pm 4.5 \cdot 10^{-8} \) |
\(a_{433}= -0.05736161 \pm 3.0 \cdot 10^{-8} \) | \(a_{434}= -0.06457383 \pm 2.1 \cdot 10^{-8} \) | \(a_{435}= -0.14874080 \pm 3.3 \cdot 10^{-8} \) |
\(a_{436}= +0.10450400 \pm 2.7 \cdot 10^{-8} \) | \(a_{437}= +0.71183511 \pm 2.7 \cdot 10^{-8} \) | \(a_{438}= -0.84305775 \pm 8.7 \cdot 10^{-8} \) |
\(a_{439}= +1.79018350 \pm 2.7 \cdot 10^{-8} \) | \(a_{440}= +0.49207432 \pm 7.7 \cdot 10^{-8} \) | \(a_{441}= +0.60735497 \pm 3.7 \cdot 10^{-8} \) |
\(a_{442}= -0.41521280 \pm 4.9 \cdot 10^{-8} \) | \(a_{443}= +1.35354427 \pm 3.0 \cdot 10^{-8} \) | \(a_{444}= +0.02365214 \pm 7.9 \cdot 10^{-8} \) |
\(a_{445}= -0.50672399 \pm 4.3 \cdot 10^{-8} \) | \(a_{446}= +0.36312569 \pm 4.3 \cdot 10^{-8} \) | \(a_{447}= -0.81831800 \pm 3.3 \cdot 10^{-8} \) |
\(a_{448}= -1.01840481 \pm 4.1 \cdot 10^{-8} \) | \(a_{449}= -1.36579945 \pm 2.8 \cdot 10^{-8} \) | \(a_{450}= +0.07509219 \pm 5.2 \cdot 10^{-8} \) |
\(a_{451}= -0.27885403 \pm 4.1 \cdot 10^{-8} \) | \(a_{452}= -0.26545858 \pm 3.8 \cdot 10^{-8} \) | \(a_{453}= -0.41979147 \pm 5.3 \cdot 10^{-8} \) |
\(a_{454}= -0.29854536 \pm 3.2 \cdot 10^{-8} \) | \(a_{455}= -0.30028361 \pm 8.2 \cdot 10^{-8} \) | \(a_{456}= -0.22941529 \pm 7.2 \cdot 10^{-8} \) |
\(a_{457}= -1.11654786 \pm 4.0 \cdot 10^{-8} \) | \(a_{458}= +0.81951319 \pm 6.1 \cdot 10^{-8} \) | \(a_{459}= -0.17748828 \pm 4.2 \cdot 10^{-8} \) |
\(a_{460}= +0.17733724 \pm 8.0 \cdot 10^{-8} \) | \(a_{461}= +1.13309654 \pm 3.3 \cdot 10^{-8} \) | \(a_{462}= +1.45937130 \pm 1.2 \cdot 10^{-7} \) |
\(a_{463}= +1.85857246 \pm 3.1 \cdot 10^{-8} \) | \(a_{464}= +0.68927893 \pm 2.5 \cdot 10^{-8} \) | \(a_{465}= +0.00881133 \pm 2.9 \cdot 10^{-8} \) |
\(a_{466}= +0.72353451 \pm 4.9 \cdot 10^{-8} \) | \(a_{467}= +0.54908404 \pm 4.1 \cdot 10^{-8} \) | \(a_{468}= -0.03580483 \pm 8.8 \cdot 10^{-8} \) |
\(a_{469}= -1.67336232 \pm 3.7 \cdot 10^{-8} \) | \(a_{470}= +0.15031426 \pm 9.4 \cdot 10^{-8} \) | \(a_{471}= +0.10012313 \pm 4.2 \cdot 10^{-8} \) |
\(a_{472}= +0.21903835 \pm 3.2 \cdot 10^{-8} \) | \(a_{473}= -0.43914027 \pm 3.0 \cdot 10^{-8} \) | \(a_{474}= +1.11505302 \pm 8.8 \cdot 10^{-8} \) |
\(a_{475}= -0.09648375 \pm 4.2 \cdot 10^{-8} \) | \(a_{476}= -0.41635595 \pm 4.8 \cdot 10^{-8} \) | \(a_{477}= -0.58955956 \pm 5.5 \cdot 10^{-8} \) |
\(a_{478}= -1.56263936 \pm 3.1 \cdot 10^{-8} \) | \(a_{479}= +1.62005100 \pm 2.5 \cdot 10^{-8} \) | \(a_{480}= -0.13531091 \pm 4.2 \cdot 10^{-8} \) |
\(a_{481}= +0.06093046 \pm 2.5 \cdot 10^{-8} \) | \(a_{482}= +1.93752306 \pm 3.8 \cdot 10^{-8} \) | \(a_{483}= -1.43112673 \pm 7.4 \cdot 10^{-8} \) |
\(a_{484}= +0.21082220 \pm 2.7 \cdot 10^{-8} \) | \(a_{485}= -0.72269036 \pm 4.1 \cdot 10^{-8} \) | \(a_{486}= -0.07225750 \pm 5.2 \cdot 10^{-8} \) |
\(a_{487}= +1.05981141 \pm 2.8 \cdot 10^{-8} \) | \(a_{488}= +0.27688768 \pm 3.4 \cdot 10^{-8} \) | \(a_{489}= +0.50084336 \pm 4.8 \cdot 10^{-8} \) |
\(a_{490}= -0.91783558 \pm 7.9 \cdot 10^{-8} \) | \(a_{491}= -0.66024399 \pm 4.2 \cdot 10^{-8} \) | \(a_{492}= +0.03238837 \pm 8.4 \cdot 10^{-8} \) |
\(a_{493}= -0.53128469 \pm 1.7 \cdot 10^{-8} \) | \(a_{494}= +0.21719177 \pm 2.7 \cdot 10^{-8} \) | \(a_{495}= -0.19913639 \pm 4.6 \cdot 10^{-8} \) |
\(a_{496}= -0.04083253 \pm 2.2 \cdot 10^{-8} \) | \(a_{497}= -1.42263914 \pm 4.4 \cdot 10^{-8} \) | \(a_{498}= +0.51932141 \pm 7.5 \cdot 10^{-8} \) |
\(a_{499}= -0.71325438 \pm 3.9 \cdot 10^{-8} \) | \(a_{500}= -0.02403669 \pm 5.2 \cdot 10^{-8} \) | \(a_{501}= +0.46518995 \pm 5.3 \cdot 10^{-8} \) |
\(a_{502}= +1.22156239 \pm 3.4 \cdot 10^{-8} \) | \(a_{503}= -0.55830044 \pm 4.1 \cdot 10^{-8} \) | \(a_{504}= +0.46123373 \pm 7.6 \cdot 10^{-8} \) |
\(a_{505}= -0.23277198 \pm 4.3 \cdot 10^{-8} \) | \(a_{506}= -2.22023094 \pm 2.6 \cdot 10^{-8} \) | \(a_{507}= +0.48511317 \pm 5.1 \cdot 10^{-8} \) |
\(a_{508}= -0.11407032 \pm 3.9 \cdot 10^{-8} \) | \(a_{509}= -0.82677561 \pm 3.7 \cdot 10^{-8} \) | \(a_{510}= +0.26822050 \pm 8.3 \cdot 10^{-8} \) |
\(a_{511}= -2.17778706 \pm 3.6 \cdot 10^{-8} \) | \(a_{512}= -0.35850509 \pm 2.8 \cdot 10^{-8} \) | \(a_{513}= +0.09284153 \pm 4.2 \cdot 10^{-8} \) |
\(a_{514}= -1.20253078 \pm 3.8 \cdot 10^{-8} \) | \(a_{515}= +0.66078495 \pm 4.6 \cdot 10^{-8} \) | \(a_{516}= +0.05100532 \pm 8.6 \cdot 10^{-8} \) |
\(a_{517}= -0.39861720 \pm 3.9 \cdot 10^{-8} \) | \(a_{518}= +0.28845021 \pm 3.3 \cdot 10^{-8} \) | \(a_{519}= -0.34797807 \pm 3.9 \cdot 10^{-8} \) |
\(a_{520}= -0.14723361 \pm 7.6 \cdot 10^{-8} \) | \(a_{521}= +0.45117517 \pm 3.7 \cdot 10^{-8} \) | \(a_{522}= -0.21629204 \pm 7.5 \cdot 10^{-8} \) |
\(a_{523}= +0.87197903 \pm 3.8 \cdot 10^{-8} \) | \(a_{524}= -0.25855572 \pm 4.0 \cdot 10^{-8} \) | \(a_{525}= +0.19397817 \pm 4.6 \cdot 10^{-8} \) |
\(a_{526}= +1.23489974 \pm 3.8 \cdot 10^{-8} \) | \(a_{527}= +0.03147303 \pm 1.9 \cdot 10^{-8} \) | \(a_{528}= +0.92281686 \pm 8.1 \cdot 10^{-8} \) |
\(a_{529}= +1.17726075 \pm 2.6 \cdot 10^{-8} \) | \(a_{530}= +0.89094312 \pm 9.6 \cdot 10^{-8} \) | \(a_{531}= -0.08864211 \pm 4.0 \cdot 10^{-8} \) |
\(a_{532}= +0.21778973 \pm 3.9 \cdot 10^{-8} \) | \(a_{533}= +0.08343594 \pm 3.8 \cdot 10^{-8} \) | \(a_{534}= -0.73685473 \pm 8.5 \cdot 10^{-8} \) |
\(a_{535}= -0.05103383 \pm 4.3 \cdot 10^{-8} \) | \(a_{536}= -0.82047490 \pm 2.6 \cdot 10^{-8} \) | \(a_{537}= +0.82910770 \pm 4.1 \cdot 10^{-8} \) |
\(a_{538}= +0.61776505 \pm 4.6 \cdot 10^{-8} \) | \(a_{539}= +2.43400091 \pm 2.8 \cdot 10^{-8} \) | \(a_{540}= +0.02312932 \pm 5.2 \cdot 10^{-8} \) |
\(a_{541}= -0.24894088 \pm 4.8 \cdot 10^{-8} \) | \(a_{542}= +0.25572958 \pm 3.8 \cdot 10^{-8} \) | \(a_{543}= -0.51437828 \pm 4.2 \cdot 10^{-8} \) |
\(a_{544}= -0.48331471 \pm 3.2 \cdot 10^{-8} \) | \(a_{545}= -0.17390746 \pm 4.2 \cdot 10^{-8} \) | \(a_{546}= -0.43665863 \pm 1.2 \cdot 10^{-7} \) |
\(a_{547}= +0.38892497 \pm 4.3 \cdot 10^{-8} \) | \(a_{548}= -0.33341061 \pm 4.7 \cdot 10^{-8} \) | \(a_{549}= -0.11205302 \pm 4.8 \cdot 10^{-8} \) |
\(a_{550}= +0.30093516 \pm 8.8 \cdot 10^{-8} \) | \(a_{551}= +0.27790728 \pm 2.6 \cdot 10^{-8} \) | \(a_{552}= -0.70170312 \pm 6.8 \cdot 10^{-8} \) |
\(a_{553}= +2.88040531 \pm 3.3 \cdot 10^{-8} \) | \(a_{554}= -0.08120302 \pm 4.6 \cdot 10^{-8} \) | \(a_{555}= -0.03936005 \pm 3.7 \cdot 10^{-8} \) |
\(a_{556}= -0.08075150 \pm 5.3 \cdot 10^{-8} \) | \(a_{557}= +0.20534829 \pm 2.1 \cdot 10^{-8} \) | \(a_{558}= +0.01281303 \pm 7.1 \cdot 10^{-8} \) |
\(a_{559}= +0.13139520 \pm 3.3 \cdot 10^{-8} \) | \(a_{560}= -0.89891320 \pm 8.1 \cdot 10^{-8} \) | \(a_{561}= -0.71129182 \pm 7.8 \cdot 10^{-8} \) |
\(a_{562}= -1.15278904 \pm 4.3 \cdot 10^{-8} \) | \(a_{563}= -0.47591814 \pm 2.8 \cdot 10^{-8} \) | \(a_{564}= +0.04629864 \pm 9.4 \cdot 10^{-8} \) |
\(a_{565}= +0.44175559 \pm 5.2 \cdot 10^{-8} \) | \(a_{566}= +1.14226849 \pm 3.7 \cdot 10^{-8} \) | \(a_{567}= -0.18665559 \pm 4.6 \cdot 10^{-8} \) |
\(a_{568}= -0.69754152 \pm 2.8 \cdot 10^{-8} \) | \(a_{569}= -1.02929748 \pm 3.6 \cdot 10^{-8} \) | \(a_{570}= -0.14030224 \pm 8.3 \cdot 10^{-8} \) |
\(a_{571}= +1.08808636 \pm 3.2 \cdot 10^{-8} \) | \(a_{572}= -0.14348938 \pm 3.0 \cdot 10^{-8} \) | \(a_{573}= -0.08257170 \pm 3.6 \cdot 10^{-8} \) |
\(a_{574}= +0.39499317 \pm 3.7 \cdot 10^{-8} \) | \(a_{575}= -0.29511088 \pm 3.8 \cdot 10^{-8} \) | \(a_{576}= +0.20207644 \pm 4.9 \cdot 10^{-8} \) |
\(a_{577}= -0.49406735 \pm 4.1 \cdot 10^{-8} \) | \(a_{578}= -0.16833073 \pm 4.0 \cdot 10^{-8} \) | \(a_{579}= +0.55154051 \pm 3.7 \cdot 10^{-8} \) |
\(a_{580}= +0.06923417 \pm 7.5 \cdot 10^{-8} \) | \(a_{581}= +1.34151124 \pm 2.4 \cdot 10^{-8} \) | \(a_{582}= -1.05090312 \pm 8.2 \cdot 10^{-8} \) |
\(a_{583}= -2.36268501 \pm 3.3 \cdot 10^{-8} \) | \(a_{584}= -1.06780199 \pm 3.6 \cdot 10^{-8} \) | \(a_{585}= +0.05958362 \pm 4.6 \cdot 10^{-8} \) |
\(a_{586}= -1.20468480 \pm 3.7 \cdot 10^{-8} \) | \(a_{587}= -0.75551423 \pm 3.7 \cdot 10^{-8} \) | \(a_{588}= -0.28270464 \pm 7.9 \cdot 10^{-8} \) |
\(a_{589}= -0.01646308 \pm 2.0 \cdot 10^{-8} \) | \(a_{590}= +0.13395607 \pm 8.1 \cdot 10^{-8} \) | \(a_{591}= +0.12522815 \pm 3.0 \cdot 10^{-8} \) |
\(a_{592}= +0.18239821 \pm 2.3 \cdot 10^{-8} \) | \(a_{593}= +0.30528753 \pm 2.3 \cdot 10^{-8} \) | \(a_{594}= -0.28957499 \pm 8.8 \cdot 10^{-8} \) |
\(a_{595}= +0.69286728 \pm 7.8 \cdot 10^{-8} \) | \(a_{596}= +0.38090130 \pm 3.2 \cdot 10^{-8} \) | \(a_{597}= +0.23586957 \pm 4.7 \cdot 10^{-8} \) |
\(a_{598}= +0.66431552 \pm 1.9 \cdot 10^{-8} \) | \(a_{599}= -0.09973596 \pm 2.9 \cdot 10^{-8} \) | \(a_{600}= +0.09511044 \pm 4.0 \cdot 10^{-8} \) |
\(a_{601}= +0.15602829 \pm 3.6 \cdot 10^{-8} \) | \(a_{602}= +0.62203657 \pm 3.6 \cdot 10^{-8} \) | \(a_{603}= +0.33203604 \pm 4.1 \cdot 10^{-8} \) |
\(a_{604}= +0.19539973 \pm 5.7 \cdot 10^{-8} \) | \(a_{605}= -0.35083396 \pm 4.5 \cdot 10^{-8} \) | \(a_{606}= -0.33848631 \pm 8.5 \cdot 10^{-8} \) |
\(a_{607}= -0.75621231 \pm 4.8 \cdot 10^{-8} \) | \(a_{608}= +0.25281489 \pm 3.0 \cdot 10^{-8} \) | \(a_{609}= -0.55872566 \pm 6.9 \cdot 10^{-8} \) |
\(a_{610}= +0.16933466 \pm 8.9 \cdot 10^{-8} \) | \(a_{611}= +0.11927029 \pm 3.6 \cdot 10^{-8} \) | \(a_{612}= +0.08261521 \pm 8.3 \cdot 10^{-8} \) |
\(a_{613}= -0.75170682 \pm 3.8 \cdot 10^{-8} \) | \(a_{614}= -1.17152780 \pm 5.1 \cdot 10^{-8} \) | \(a_{615}= -0.05389822 \pm 4.2 \cdot 10^{-8} \) |
\(a_{616}= +1.84841379 \pm 2.7 \cdot 10^{-8} \) | \(a_{617}= -0.80080951 \pm 2.3 \cdot 10^{-8} \) | \(a_{618}= +0.96088311 \pm 8.7 \cdot 10^{-8} \) |
\(a_{619}= +1.44700803 \pm 2.8 \cdot 10^{-8} \) | \(a_{620}= -0.00410140 \pm 7.1 \cdot 10^{-8} \) | \(a_{621}= +0.28397057 \pm 3.8 \cdot 10^{-8} \) |
\(a_{622}= +0.46978775 \pm 3.4 \cdot 10^{-8} \) | \(a_{623}= -1.90344339 \pm 3.2 \cdot 10^{-8} \) | \(a_{624}= -0.27611613 \pm 8.1 \cdot 10^{-8} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +1.83768933 \pm 4.1 \cdot 10^{-8} \) | \(a_{627}= +0.37206639 \pm 7.8 \cdot 10^{-8} \) |
\(a_{628}= -0.04660417 \pm 3.6 \cdot 10^{-8} \) | \(a_{629}= -0.14058949 \pm 2.6 \cdot 10^{-8} \) | \(a_{630}= +0.28207415 \pm 8.8 \cdot 10^{-8} \) |
\(a_{631}= -0.52119095 \pm 3.7 \cdot 10^{-8} \) | \(a_{632}= +1.41230636 \pm 3.4 \cdot 10^{-8} \) | \(a_{633}= +0.92942662 \pm 4.3 \cdot 10^{-8} \) |
\(a_{634}= +0.02106349 \pm 5.2 \cdot 10^{-8} \) | \(a_{635}= +0.18982697 \pm 4.1 \cdot 10^{-8} \) | \(a_{636}= +0.27442143 \pm 9.6 \cdot 10^{-8} \) |
\(a_{637}= -0.72827765 \pm 2.3 \cdot 10^{-8} \) | \(a_{638}= -0.86679954 \pm 3.7 \cdot 10^{-8} \) | \(a_{639}= +0.28228643 \pm 5.0 \cdot 10^{-8} \) |
\(a_{640}= -0.53974354 \pm 5.1 \cdot 10^{-8} \) | \(a_{641}= +0.37366925 \pm 3.3 \cdot 10^{-8} \) | \(a_{642}= -0.07421105 \pm 8.5 \cdot 10^{-8} \) |
\(a_{643}= -1.35692749 \pm 2.8 \cdot 10^{-8} \) | \(a_{644}= +0.66614449 \pm 2.7 \cdot 10^{-8} \) | \(a_{645}= -0.08487910 \pm 4.5 \cdot 10^{-8} \) |
\(a_{646}= -0.50114313 \pm 2.0 \cdot 10^{-8} \) | \(a_{647}= +0.73312852 \pm 2.5 \cdot 10^{-8} \) | \(a_{648}= -0.09152006 \pm 4.0 \cdot 10^{-8} \) |
\(a_{649}= -0.35523703 \pm 2.8 \cdot 10^{-8} \) | \(a_{650}= -0.09004284 \pm 8.8 \cdot 10^{-8} \) | \(a_{651}= +0.03309862 \pm 6.5 \cdot 10^{-8} \) |
\(a_{652}= -0.23312684 \pm 3.7 \cdot 10^{-8} \) | \(a_{653}= -0.09652035 \pm 3.4 \cdot 10^{-8} \) | \(a_{654}= -0.25288823 \pm 8.4 \cdot 10^{-8} \) |
\(a_{655}= +0.43026837 \pm 5.0 \cdot 10^{-8} \) | \(a_{656}= +0.24976944 \pm 3.4 \cdot 10^{-8} \) | \(a_{657}= +0.43212626 \pm 4.5 \cdot 10^{-8} \) |
\(a_{658}= +0.56463616 \pm 5.6 \cdot 10^{-8} \) | \(a_{659}= +0.85982394 \pm 4.3 \cdot 10^{-8} \) | \(a_{660}= +0.09269173 \pm 8.8 \cdot 10^{-8} \) |
\(a_{661}= -1.60452030 \pm 3.8 \cdot 10^{-8} \) | \(a_{662}= -1.40565816 \pm 4.9 \cdot 10^{-8} \) | \(a_{663}= +0.21282570 \pm 7.8 \cdot 10^{-8} \) |
\(a_{664}= +0.65776328 \pm 2.6 \cdot 10^{-8} \) | \(a_{665}= -0.36242878 \pm 7.8 \cdot 10^{-8} \) | \(a_{666}= -0.05723558 \pm 7.9 \cdot 10^{-8} \) |
\(a_{667}= +0.85002356 \pm 1.2 \cdot 10^{-8} \) | \(a_{668}= -0.21653129 \pm 4.1 \cdot 10^{-8} \) | \(a_{669}= -0.18612740 \pm 4.1 \cdot 10^{-8} \) |
\(a_{670}= -0.50177327 \pm 8.3 \cdot 10^{-8} \) | \(a_{671}= -0.44905725 \pm 4.5 \cdot 10^{-8} \) | \(a_{672}= -0.50827802 \pm 7.8 \cdot 10^{-8} \) |
\(a_{673}= +1.61514824 \pm 3.9 \cdot 10^{-8} \) | \(a_{674}= -0.14036802 \pm 3.4 \cdot 10^{-8} \) | \(a_{675}= -0.03849002 \pm 1.2 \cdot 10^{-6} \) |
\(a_{676}= -0.22580493 \pm 4.0 \cdot 10^{-8} \) | \(a_{677}= +1.41059715 \pm 3.8 \cdot 10^{-8} \) | \(a_{678}= +0.64238068 \pm 9.4 \cdot 10^{-8} \) |
\(a_{679}= -2.71469327 \pm 3.1 \cdot 10^{-8} \) | \(a_{680}= +0.33972332 \pm 7.2 \cdot 10^{-8} \) | \(a_{681}= +0.15302545 \pm 4.3 \cdot 10^{-8} \) |
\(a_{682}= +0.05134876 \pm 1.7 \cdot 10^{-8} \) | \(a_{683}= +1.33817898 \pm 2.6 \cdot 10^{-8} \) | \(a_{684}= -0.04321481 \pm 8.3 \cdot 10^{-8} \) |
\(a_{685}= +0.55483608 \pm 4.2 \cdot 10^{-8} \) | \(a_{686}= -1.55552022 \pm 3.7 \cdot 10^{-8} \) | \(a_{687}= -0.42005802 \pm 6.0 \cdot 10^{-8} \) |
\(a_{688}= +0.39333776 \pm 3.6 \cdot 10^{-8} \) | \(a_{689}= +0.70693922 \pm 3.2 \cdot 10^{-8} \) | \(a_{690}= -0.42913668 \pm 8.0 \cdot 10^{-8} \) |
\(a_{691}= -1.65863548 \pm 4.0 \cdot 10^{-8} \) | \(a_{692}= +0.16197285 \pm 3.7 \cdot 10^{-8} \) | \(a_{693}= -0.74803020 \pm 8.2 \cdot 10^{-8} \) |
\(a_{694}= +1.13783483 \pm 4.7 \cdot 10^{-8} \) | \(a_{695}= +0.13438038 \pm 5.0 \cdot 10^{-8} \) | \(a_{696}= -0.27395165 \pm 6.3 \cdot 10^{-8} \) |
\(a_{697}= -0.19251811 \pm 2.7 \cdot 10^{-8} \) | \(a_{698}= +1.05322293 \pm 4.6 \cdot 10^{-8} \) | \(a_{699}= -0.37086221 \pm 5.8 \cdot 10^{-8} \) |
\(a_{700}= -0.09029074 \pm 8.8 \cdot 10^{-8} \) | \(a_{701}= -0.76815627 \pm 2.8 \cdot 10^{-8} \) | \(a_{702}= +0.08664376 \pm 8.8 \cdot 10^{-8} \) |
\(a_{703}= +0.07354032 \pm 2.5 \cdot 10^{-8} \) | \(a_{704}= +0.80982994 \pm 3.3 \cdot 10^{-8} \) | \(a_{705}= -0.07704661 \pm 5.2 \cdot 10^{-8} \) |
\(a_{706}= -0.49496456 \pm 4.8 \cdot 10^{-8} \) | \(a_{707}= -0.87437795 \pm 3.5 \cdot 10^{-8} \) | \(a_{708}= +0.04126012 \pm 8.1 \cdot 10^{-8} \) |
\(a_{709}= -0.36822884 \pm 1.8 \cdot 10^{-8} \) | \(a_{710}= -0.42659159 \pm 9.2 \cdot 10^{-8} \) | \(a_{711}= -0.57154292 \pm 4.6 \cdot 10^{-8} \) |
\(a_{712}= -0.93328713 \pm 2.5 \cdot 10^{-8} \) | \(a_{713}= -0.05035496 \pm 1.7 \cdot 10^{-8} \) | \(a_{714}= +1.00753576 \pm 1.1 \cdot 10^{-7} \) |
\(a_{715}= +0.23878389 \pm 8.2 \cdot 10^{-8} \) | \(a_{716}= -0.38592356 \pm 3.6 \cdot 10^{-8} \) | \(a_{717}= +0.80096233 \pm 3.8 \cdot 10^{-8} \) |
\(a_{718}= -1.17934938 \pm 4.6 \cdot 10^{-8} \) | \(a_{719}= +0.21151319 \pm 3.2 \cdot 10^{-8} \) | \(a_{720}= +0.17836638 \pm 4.5 \cdot 10^{-8} \) |
\(a_{721}= +2.48215357 \pm 3.0 \cdot 10^{-8} \) | \(a_{722}= -0.86424221 \pm 3.3 \cdot 10^{-8} \) | \(a_{723}= -0.99311653 \pm 4.8 \cdot 10^{-8} \) |
\(a_{724}= +0.23942691 \pm 4.4 \cdot 10^{-8} \) | \(a_{725}= -0.11521413 \pm 3.3 \cdot 10^{-8} \) | \(a_{726}= -0.51016663 \pm 8.6 \cdot 10^{-8} \) |
\(a_{727}= -0.07517436 \pm 3.5 \cdot 10^{-8} \) | \(a_{728}= -0.55306408 \pm 2.4 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.65302973 \pm 8.7 \cdot 10^{-8} \) | \(a_{731}= -0.30317817 \pm 3.2 \cdot 10^{-8} \) | \(a_{732}= +0.05215716 \pm 8.9 \cdot 10^{-8} \) |
\(a_{733}= +1.67353239 \pm 4.8 \cdot 10^{-8} \) | \(a_{734}= -1.77456417 \pm 3.6 \cdot 10^{-8} \) | \(a_{735}= +0.47045514 \pm 3.7 \cdot 10^{-8} \) |
\(a_{736}= +0.77327448 \pm 2.1 \cdot 10^{-8} \) | \(a_{737}= +1.33064857 \pm 1.8 \cdot 10^{-8} \) | \(a_{738}= -0.07837631 \pm 8.4 \cdot 10^{-8} \) |
\(a_{739}= +1.77788525 \pm 2.0 \cdot 10^{-8} \) | \(a_{740}= +0.01832087 \pm 7.9 \cdot 10^{-8} \) | \(a_{741}= -0.11132602 \pm 7.7 \cdot 10^{-8} \) |
\(a_{742}= +3.34671307 \pm 4.3 \cdot 10^{-8} \) | \(a_{743}= -0.07139439 \pm 2.8 \cdot 10^{-8} \) | \(a_{744}= +0.01622876 \pm 5.9 \cdot 10^{-8} \) |
\(a_{745}= -0.63386640 \pm 3.3 \cdot 10^{-8} \) | \(a_{746}= +0.98353032 \pm 4.1 \cdot 10^{-8} \) | \(a_{747}= -0.26618867 \pm 3.4 \cdot 10^{-8} \) |
\(a_{748}= +0.33108398 \pm 2.3 \cdot 10^{-8} \) | \(a_{749}= -0.19170201 \pm 3.3 \cdot 10^{-8} \) | \(a_{750}= +0.05816616 \pm 5.2 \cdot 10^{-8} \) |
\(a_{751}= +0.20997529 \pm 2.8 \cdot 10^{-8} \) | \(a_{752}= +0.35704126 \pm 3.1 \cdot 10^{-8} \) | \(a_{753}= -0.62613645 \pm 3.8 \cdot 10^{-8} \) |
\(a_{754}= +0.25935518 \pm 2.7 \cdot 10^{-8} \) | \(a_{755}= -0.32516907 \pm 5.3 \cdot 10^{-8} \) | \(a_{756}= +0.08688231 \pm 8.8 \cdot 10^{-8} \) |
\(a_{757}= +0.36168000 \pm 4.1 \cdot 10^{-8} \) | \(a_{758}= +1.13246680 \pm 4.3 \cdot 10^{-8} \) | \(a_{759}= +1.13802416 \pm 7.4 \cdot 10^{-8} \) |
\(a_{760}= -0.17770432 \pm 7.2 \cdot 10^{-8} \) | \(a_{761}= -1.39967561 \pm 3.9 \cdot 10^{-8} \) | \(a_{762}= +0.27603766 \pm 8.3 \cdot 10^{-8} \) |
\(a_{763}= -0.65326096 \pm 2.7 \cdot 10^{-8} \) | \(a_{764}= +0.03843453 \pm 3.1 \cdot 10^{-8} \) | \(a_{765}= -0.13748183 \pm 4.2 \cdot 10^{-8} \) |
\(a_{766}= -0.50692259 \pm 4.0 \cdot 10^{-8} \) | \(a_{767}= +0.10629051 \pm 2.3 \cdot 10^{-8} \) | \(a_{768}= -0.43486359 \pm 4.5 \cdot 10^{-8} \) |
\(a_{769}= -1.28327112 \pm 3.6 \cdot 10^{-8} \) | \(a_{770}= +1.13042415 \pm 1.2 \cdot 10^{-7} \) | \(a_{771}= +0.61638141 \pm 4.7 \cdot 10^{-8} \) |
\(a_{772}= -0.25672476 \pm 3.7 \cdot 10^{-8} \) | \(a_{773}= -1.42611178 \pm 4.1 \cdot 10^{-8} \) | \(a_{774}= -0.12342728 \pm 8.6 \cdot 10^{-8} \) |
\(a_{775}= +0.00682523 \pm 2.9 \cdot 10^{-8} \) | \(a_{776}= -1.33105524 \pm 2.2 \cdot 10^{-8} \) | \(a_{777}= -0.14785097 \pm 7.3 \cdot 10^{-8} \) |
\(a_{778}= -1.03514880 \pm 3.7 \cdot 10^{-8} \) | \(a_{779}= +0.10070342 \pm 2.4 \cdot 10^{-8} \) | \(a_{780}= -0.02773430 \pm 8.8 \cdot 10^{-8} \) |
\(a_{781}= +1.13127487 \pm 3.0 \cdot 10^{-8} \) | \(a_{782}= -1.53282586 \pm 2.1 \cdot 10^{-8} \) | \(a_{783}= +0.11086485 \pm 3.3 \cdot 10^{-8} \) |
\(a_{784}= -2.18013361 \pm 2.7 \cdot 10^{-8} \) | \(a_{785}= +0.07755505 \pm 4.2 \cdot 10^{-8} \) | \(a_{786}= +0.62567649 \pm 9.1 \cdot 10^{-8} \) |
\(a_{787}= -0.71218453 \pm 3.9 \cdot 10^{-8} \) | \(a_{788}= -0.05828977 \pm 2.6 \cdot 10^{-8} \) | \(a_{789}= -0.63297278 \pm 3.9 \cdot 10^{-8} \) |
\(a_{790}= +0.86371635 \pm 8.8 \cdot 10^{-8} \) | \(a_{791}= +1.65939797 \pm 3.9 \cdot 10^{-8} \) | \(a_{792}= -0.36677054 \pm 7.7 \cdot 10^{-8} \) |
\(a_{793}= +0.13436246 \pm 3.8 \cdot 10^{-8} \) | \(a_{794}= +1.15102496 \pm 3.1 \cdot 10^{-8} \) | \(a_{795}= -0.45667087 \pm 5.5 \cdot 10^{-8} \) |
\(a_{796}= -0.10978987 \pm 4.1 \cdot 10^{-8} \) | \(a_{797}= -1.03469871 \pm 4.0 \cdot 10^{-8} \) | \(a_{798}= -0.52702728 \pm 1.1 \cdot 10^{-7} \) |
\(a_{799}= -0.27520144 \pm 3.2 \cdot 10^{-8} \) | \(a_{800}= -0.10481138 \pm 4.2 \cdot 10^{-8} \) | \(a_{801}= +0.37768976 \pm 4.3 \cdot 10^{-8} \) |
\(a_{802}= -0.90572664 \pm 2.5 \cdot 10^{-8} \) | \(a_{803}= +1.73176437 \pm 3.4 \cdot 10^{-8} \) | \(a_{804}= -0.15455234 \pm 8.3 \cdot 10^{-8} \) |
\(a_{805}= -1.10854600 \pm 7.4 \cdot 10^{-8} \) | \(a_{806}= -0.01536407 \pm 2.3 \cdot 10^{-8} \) | \(a_{807}= -0.31664794 \pm 4.3 \cdot 10^{-8} \) |
\(a_{808}= -0.42872075 \pm 2.3 \cdot 10^{-8} \) | \(a_{809}= -0.73212019 \pm 3.3 \cdot 10^{-8} \) | \(a_{810}= -0.05597042 \pm 5.2 \cdot 10^{-8} \) |
\(a_{811}= +0.67839296 \pm 3.2 \cdot 10^{-8} \) | \(a_{812}= +0.26006922 \pm 3.1 \cdot 10^{-8} \) | \(a_{813}= -0.13107935 \pm 4.4 \cdot 10^{-8} \) |
\(a_{814}= -0.22937403 \pm 2.3 \cdot 10^{-8} \) | \(a_{815}= +0.38795160 \pm 4.8 \cdot 10^{-8} \) | \(a_{816}= +0.63710379 \pm 7.7 \cdot 10^{-8} \) |
\(a_{817}= +0.15858809 \pm 3.2 \cdot 10^{-8} \) | \(a_{818}= -1.91571720 \pm 3.8 \cdot 10^{-8} \) | \(a_{819}= +0.22381819 \pm 8.2 \cdot 10^{-8} \) |
\(a_{820}= +0.02508793 \pm 8.4 \cdot 10^{-8} \) | \(a_{821}= +0.50210221 \pm 2.2 \cdot 10^{-8} \) | \(a_{822}= +0.80681713 \pm 8.4 \cdot 10^{-8} \) |
\(a_{823}= +0.60355480 \pm 2.9 \cdot 10^{-8} \) | \(a_{824}= +1.21703750 \pm 3.3 \cdot 10^{-8} \) | \(a_{825}= -0.15425038 \pm 4.6 \cdot 10^{-8} \) |
\(a_{826}= +0.50318871 \pm 4.8 \cdot 10^{-8} \) | \(a_{827}= -0.28391756 \pm 2.9 \cdot 10^{-8} \) | \(a_{828}= -0.13217937 \pm 8.0 \cdot 10^{-8} \) |
\(a_{829}= +1.22570912 \pm 2.9 \cdot 10^{-8} \) | \(a_{830}= +0.40226464 \pm 7.5 \cdot 10^{-8} \) | \(a_{831}= +0.04162225 \pm 4.5 \cdot 10^{-8} \) |
\(a_{832}= -0.24230930 \pm 3.5 \cdot 10^{-8} \) | \(a_{833}= +1.68041056 \pm 3.0 \cdot 10^{-8} \) | \(a_{834}= +0.19540977 \pm 9.2 \cdot 10^{-8} \) |
\(a_{835}= +0.36033458 \pm 5.3 \cdot 10^{-8} \) | \(a_{836}= -0.17318521 \pm 3.7 \cdot 10^{-8} \) | \(a_{837}= -0.00656758 \pm 2.9 \cdot 10^{-8} \) |
\(a_{838}= -0.94062653 \pm 4.5 \cdot 10^{-8} \) | \(a_{839}= -0.34611171 \pm 2.7 \cdot 10^{-8} \) | \(a_{840}= +0.35727011 \pm 7.6 \cdot 10^{-8} \) |
\(a_{841}= -0.66814262 \pm 3.3 \cdot 10^{-8} \) | \(a_{842}= +1.52378414 \pm 5.7 \cdot 10^{-8} \) | \(a_{843}= +0.59088528 \pm 4.7 \cdot 10^{-8} \) |
\(a_{844}= -0.43261886 \pm 4.1 \cdot 10^{-8} \) | \(a_{845}= +0.37576704 \pm 5.1 \cdot 10^{-8} \) | \(a_{846}= -0.11203763 \pm 9.4 \cdot 10^{-8} \) |
\(a_{847}= -1.31786260 \pm 2.9 \cdot 10^{-8} \) | \(a_{848}= +2.11625599 \pm 3.9 \cdot 10^{-8} \) | \(a_{849}= -0.58549276 \pm 4.5 \cdot 10^{-8} \) |
\(a_{850}= +0.20776271 \pm 8.3 \cdot 10^{-8} \) | \(a_{851}= +0.22493474 \pm 2.4 \cdot 10^{-8} \) | \(a_{852}= -0.13139546 \pm 9.2 \cdot 10^{-8} \) |
\(a_{853}= +0.43127292 \pm 4.1 \cdot 10^{-8} \) | \(a_{854}= +0.63608384 \pm 3.9 \cdot 10^{-8} \) | \(a_{855}= +0.07191474 \pm 4.2 \cdot 10^{-8} \) |
\(a_{856}= -0.09399440 \pm 2.6 \cdot 10^{-8} \) | \(a_{857}= -0.93337337 \pm 2.2 \cdot 10^{-8} \) | \(a_{858}= +0.34722856 \pm 1.2 \cdot 10^{-7} \) |
\(a_{859}= -0.06606722 \pm 3.5 \cdot 10^{-8} \) | \(a_{860}= +0.03950855 \pm 8.6 \cdot 10^{-8} \) | \(a_{861}= -0.20246172 \pm 7.8 \cdot 10^{-8} \) |
\(a_{862}= -1.64706070 \pm 3.8 \cdot 10^{-8} \) | \(a_{863}= -1.82269176 \pm 3.1 \cdot 10^{-8} \) | \(a_{864}= +0.10085480 \pm 4.2 \cdot 10^{-8} \) |
\(a_{865}= -0.26954265 \pm 3.9 \cdot 10^{-8} \) | \(a_{866}= -0.06461114 \pm 2.9 \cdot 10^{-8} \) | \(a_{867}= +0.08628131 \pm 3.7 \cdot 10^{-8} \) |
\(a_{868}= -0.01540637 \pm 2.6 \cdot 10^{-8} \) | \(a_{869}= -2.29048257 \pm 4.3 \cdot 10^{-8} \) | \(a_{870}= -0.16753909 \pm 7.5 \cdot 10^{-8} \) |
\(a_{871}= -0.39814349 \pm 2.7 \cdot 10^{-8} \) | \(a_{872}= -0.32030375 \pm 2.4 \cdot 10^{-8} \) | \(a_{873}= +0.53866159 \pm 4.1 \cdot 10^{-8} \) |
\(a_{874}= +0.80179888 \pm 1.5 \cdot 10^{-8} \) | \(a_{875}= +0.15025485 \pm 4.6 \cdot 10^{-8} \) | \(a_{876}= -0.20114119 \pm 8.7 \cdot 10^{-8} \) |
\(a_{877}= +1.39763100 \pm 2.8 \cdot 10^{-8} \) | \(a_{878}= +2.01643204 \pm 3.8 \cdot 10^{-8} \) | \(a_{879}= +0.61748550 \pm 3.8 \cdot 10^{-8} \) |
\(a_{880}= +0.71481087 \pm 8.1 \cdot 10^{-8} \) | \(a_{881}= -1.24630759 \pm 3.2 \cdot 10^{-8} \) | \(a_{882}= +0.68411425 \pm 7.9 \cdot 10^{-8} \) |
\(a_{883}= +0.19943930 \pm 3.5 \cdot 10^{-8} \) | \(a_{884}= -0.09906367 \pm 3.8 \cdot 10^{-8} \) | \(a_{885}= -0.06866188 \pm 4.0 \cdot 10^{-8} \) |
\(a_{886}= +1.52460910 \pm 3.4 \cdot 10^{-8} \) | \(a_{887}= -1.11568982 \pm 4.1 \cdot 10^{-8} \) | \(a_{888}= -0.07249357 \pm 6.7 \cdot 10^{-8} \) |
\(a_{889}= +0.71306058 \pm 3.3 \cdot 10^{-8} \) | \(a_{890}= -0.57076522 \pm 8.5 \cdot 10^{-8} \) | \(a_{891}= +0.14842750 \pm 4.6 \cdot 10^{-8} \) |
\(a_{892}= +0.08663645 \pm 4.1 \cdot 10^{-8} \) | \(a_{893}= +0.14395386 \pm 4.3 \cdot 10^{-8} \) | \(a_{894}= -0.92173939 \pm 7.5 \cdot 10^{-8} \) |
\(a_{895}= +0.64222406 \pm 4.1 \cdot 10^{-8} \) | \(a_{896}= -2.02747711 \pm 4.3 \cdot 10^{-8} \) | \(a_{897}= -0.34050832 \pm 7.4 \cdot 10^{-8} \) |
\(a_{898}= -1.53841312 \pm 3.2 \cdot 10^{-8} \) | \(a_{899}= -0.01965906 \pm 1.2 \cdot 10^{-8} \) | \(a_{900}= +0.01791589 \pm 5.2 \cdot 10^{-8} \) |
\(a_{901}= -1.63117476 \pm 3.3 \cdot 10^{-8} \) | \(a_{902}= -0.31409641 \pm 5.1 \cdot 10^{-8} \) | \(a_{903}= -0.31883739 \pm 8.1 \cdot 10^{-8} \) |
\(a_{904}= +0.81362797 \pm 2.8 \cdot 10^{-8} \) | \(a_{905}= -0.39843570 \pm 4.2 \cdot 10^{-8} \) | \(a_{906}= -0.47284592 \pm 9.4 \cdot 10^{-8} \) |
\(a_{907}= +1.43496969 \pm 2.7 \cdot 10^{-8} \) | \(a_{908}= -0.07122853 \pm 3.6 \cdot 10^{-8} \) | \(a_{909}= +0.17349799 \pm 4.3 \cdot 10^{-8} \) |
\(a_{910}= -0.33823432 \pm 1.2 \cdot 10^{-7} \) | \(a_{911}= +1.69845529 \pm 3.7 \cdot 10^{-8} \) | \(a_{912}= -0.33325971 \pm 7.7 \cdot 10^{-8} \) |
\(a_{913}= -1.06676241 \pm 2.2 \cdot 10^{-8} \) | \(a_{914}= -1.25766040 \pm 4.6 \cdot 10^{-8} \) | \(a_{915}= -0.08679590 \pm 4.8 \cdot 10^{-8} \) |
\(a_{916}= +0.19552380 \pm 5.6 \cdot 10^{-8} \) | \(a_{917}= +1.61624772 \pm 3.5 \cdot 10^{-8} \) | \(a_{918}= -0.19991976 \pm 8.3 \cdot 10^{-8} \) |
\(a_{919}= +0.18945170 \pm 2.2 \cdot 10^{-8} \) | \(a_{920}= -0.54353690 \pm 6.8 \cdot 10^{-8} \) | \(a_{921}= +0.60049021 \pm 4.5 \cdot 10^{-8} \) |
\(a_{922}= +1.27630054 \pm 2.9 \cdot 10^{-8} \) | \(a_{923}= -0.33848887 \pm 2.5 \cdot 10^{-8} \) | \(a_{924}= +0.34818454 \pm 1.2 \cdot 10^{-7} \) |
\(a_{925}= -0.03048817 \pm 3.7 \cdot 10^{-8} \) | \(a_{926}= +2.09346420 \pm 4.0 \cdot 10^{-8} \) | \(a_{927}= -0.49252002 \pm 4.6 \cdot 10^{-8} \) |
\(a_{928}= +0.30189381 \pm 2.5 \cdot 10^{-8} \) | \(a_{929}= -0.44005481 \pm 4.3 \cdot 10^{-8} \) | \(a_{930}= +0.00992493 \pm 7.1 \cdot 10^{-8} \) |
\(a_{931}= -0.87899829 \pm 1.7 \cdot 10^{-8} \) | \(a_{932}= +0.17262470 \pm 5.3 \cdot 10^{-8} \) | \(a_{933}= -0.24079919 \pm 4.1 \cdot 10^{-8} \) |
\(a_{934}= +0.61847887 \pm 4.1 \cdot 10^{-8} \) | \(a_{935}= -0.55096428 \pm 7.8 \cdot 10^{-8} \) | \(a_{936}= +0.10974145 \pm 7.6 \cdot 10^{-8} \) |
\(a_{937}= -0.77047383 \pm 3.7 \cdot 10^{-8} \) | \(a_{938}= -1.88484667 \pm 4.1 \cdot 10^{-8} \) | \(a_{939}= -0.94194474 \pm 4.3 \cdot 10^{-8} \) |
\(a_{940}= +0.03586277 \pm 9.4 \cdot 10^{-8} \) | \(a_{941}= -0.29963859 \pm 3.5 \cdot 10^{-8} \) | \(a_{942}= +0.11277698 \pm 8.4 \cdot 10^{-8} \) |
\(a_{943}= +0.30801741 \pm 1.9 \cdot 10^{-8} \) | \(a_{944}= +0.31818566 \pm 1.4 \cdot 10^{-8} \) | \(a_{945}= -0.14458280 \pm 4.6 \cdot 10^{-8} \) |
\(a_{946}= -0.49464008 \pm 3.6 \cdot 10^{-8} \) | \(a_{947}= +1.05650158 \pm 4.3 \cdot 10^{-8} \) | \(a_{948}= +0.26603526 \pm 8.8 \cdot 10^{-8} \) |
\(a_{949}= -0.51816139 \pm 3.2 \cdot 10^{-8} \) | \(a_{950}= -0.10867765 \pm 8.3 \cdot 10^{-8} \) | \(a_{951}= -0.01079652 \pm 5.0 \cdot 10^{-8} \) |
\(a_{952}= +1.27612691 \pm 3.2 \cdot 10^{-8} \) | \(a_{953}= +0.39549676 \pm 4.3 \cdot 10^{-8} \) | \(a_{954}= -0.66406979 \pm 9.6 \cdot 10^{-8} \) |
\(a_{955}= -0.06395976 \pm 3.6 \cdot 10^{-8} \) | \(a_{956}= -0.37282278 \pm 2.6 \cdot 10^{-8} \) | \(a_{957}= +0.44429559 \pm 7.0 \cdot 10^{-8} \) |
\(a_{958}= +1.82479772 \pm 3.4 \cdot 10^{-8} \) | \(a_{959}= +2.08417027 \pm 3.7 \cdot 10^{-8} \) | \(a_{960}= +0.15652774 \pm 4.9 \cdot 10^{-8} \) |
\(a_{961}= -0.99883541 \pm 3.1 \cdot 10^{-8} \) | \(a_{962}= +0.06863103 \pm 3.1 \cdot 10^{-8} \) | \(a_{963}= +0.03803837 \pm 4.3 \cdot 10^{-8} \) |
\(a_{964}= +0.46226452 \pm 3.9 \cdot 10^{-8} \) | \(a_{965}= +0.42722144 \pm 3.7 \cdot 10^{-8} \) | \(a_{966}= -1.61199665 \pm 1.1 \cdot 10^{-7} \) |
\(a_{967}= -0.43984838 \pm 3.9 \cdot 10^{-8} \) | \(a_{968}= -0.64616800 \pm 2.5 \cdot 10^{-8} \) | \(a_{969}= +0.25687102 \pm 7.3 \cdot 10^{-8} \) |
\(a_{970}= -0.81402605 \pm 8.2 \cdot 10^{-8} \) | \(a_{971}= +0.28738535 \pm 2.9 \cdot 10^{-8} \) | \(a_{972}= -0.01723958 \pm 5.2 \cdot 10^{-8} \) |
\(a_{973}= +0.50478258 \pm 3.7 \cdot 10^{-8} \) | \(a_{974}= +1.19375343 \pm 3.1 \cdot 10^{-8} \) | \(a_{975}= +0.04615327 \pm 4.6 \cdot 10^{-8} \) |
\(a_{976}= +0.40222039 \pm 3.7 \cdot 10^{-8} \) | \(a_{977}= +0.85414039 \pm 4.5 \cdot 10^{-8} \) | \(a_{978}= +0.56414139 \pm 9.0 \cdot 10^{-8} \) |
\(a_{979}= +1.51360778 \pm 3.3 \cdot 10^{-8} \) | \(a_{980}= -0.21898207 \pm 7.9 \cdot 10^{-8} \) | \(a_{981}= +0.12962297 \pm 4.2 \cdot 10^{-8} \) |
\(a_{982}= -0.74368753 \pm 5.2 \cdot 10^{-8} \) | \(a_{983}= -1.67250529 \pm 3.7 \cdot 10^{-8} \) | \(a_{984}= -0.09927005 \pm 7.2 \cdot 10^{-8} \) |
\(a_{985}= +0.09700131 \pm 3.0 \cdot 10^{-8} \) | \(a_{986}= -0.59842997 \pm 2.0 \cdot 10^{-8} \) | \(a_{987}= -0.28941565 \pm 8.8 \cdot 10^{-8} \) |
\(a_{988}= +0.05181876 \pm 3.1 \cdot 10^{-8} \) | \(a_{989}= +0.48506686 \pm 2.8 \cdot 10^{-8} \) | \(a_{990}= -0.22430382 \pm 8.8 \cdot 10^{-8} \) |
\(a_{991}= +0.74113672 \pm 4.9 \cdot 10^{-8} \) | \(a_{992}= -0.01788403 \pm 2.0 \cdot 10^{-8} \) | \(a_{993}= +0.72049845 \pm 5.1 \cdot 10^{-8} \) |
\(a_{994}= -1.60243637 \pm 3.5 \cdot 10^{-8} \) | \(a_{995}= +0.18270378 \pm 4.7 \cdot 10^{-8} \) | \(a_{996}= +0.12390245 \pm 7.5 \cdot 10^{-8} \) |
\(a_{997}= -0.63222480 \pm 3.3 \cdot 10^{-8} \) | \(a_{998}= -0.80339752 \pm 4.6 \cdot 10^{-8} \) | \(a_{999}= +0.02933725 \pm 3.7 \cdot 10^{-8} \) |
\(a_{1000}= +0.07367223 \pm 4.0 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000