Maass form invariants
Level: | \( 15 = 3 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 15.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(8.4854397033297492137005702893 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.17225154 \pm 1.0 \cdot 10^{-6} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.37417368 \pm 1.0 \cdot 10^{-6} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.67679974 \pm 1.0 \cdot 10^{-6} \) |
\(a_{7}= -1.42437306 \pm 9.2 \cdot 10^{-7} \) | \(a_{8}= +0.73362587 \pm 7.7 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.52424683 \pm 1.0 \cdot 10^{-6} \) | \(a_{11}= +1.41031972 \pm 9.3 \cdot 10^{-7} \) | \(a_{12}= -0.21602928 \pm 1.0 \cdot 10^{-6} \) |
\(a_{13}= +1.41020145 \pm 9.2 \cdot 10^{-7} \) | \(a_{14}= +1.66972351 \pm 1.0 \cdot 10^{-6} \) | \(a_{15}= +0.25819889 \pm 1.0 \cdot 10^{-8} \) |
\(a_{16}= -1.23416774 \pm 8.9 \cdot 10^{-7} \) | \(a_{17}= -1.31860169 \pm 8.1 \cdot 10^{-7} \) | \(a_{18}= -0.39075051 \pm 1.0 \cdot 10^{-6} \) |
\(a_{19}= +1.11387576 \pm 8.0 \cdot 10^{-7} \) | \(a_{20}= -0.16733556 \pm 1.0 \cdot 10^{-6} \) | \(a_{21}= +0.82236217 \pm 9.3 \cdot 10^{-7} \) |
\(a_{22}= -1.65324947 \pm 1.1 \cdot 10^{-6} \) | \(a_{23}= +0.22922865 \pm 7.1 \cdot 10^{-7} \) | \(a_{24}= -0.42355909 \pm 7.8 \cdot 10^{-7} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -1.65311083 \pm 1.1 \cdot 10^{-6} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.53296291 \pm 1.1 \cdot 10^{-6} \) | \(a_{29}= -1.61169906 \pm 5.9 \cdot 10^{-7} \) | \(a_{30}= -0.30267405 \pm 1.0 \cdot 10^{-6} \) |
\(a_{31}= +0.61776986 \pm 4.8 \cdot 10^{-7} \) | \(a_{32}= +0.71312917 \pm 8.1 \cdot 10^{-7} \) | \(a_{33}= -0.81424847 \pm 9.4 \cdot 10^{-7} \) |
\(a_{34}= +1.54573286 \pm 1.0 \cdot 10^{-6} \) | \(a_{35}= +0.63699900 \pm 9.3 \cdot 10^{-7} \) | \(a_{36}= +0.12472456 \pm 1.0 \cdot 10^{-6} \) |
\(a_{37}= +0.07025205 \pm 6.9 \cdot 10^{-7} \) | \(a_{38}= -1.30574258 \pm 9.0 \cdot 10^{-7} \) | \(a_{39}= -0.81418019 \pm 9.3 \cdot 10^{-7} \) |
\(a_{40}= -0.32808746 \pm 7.8 \cdot 10^{-7} \) | \(a_{41}= +0.92699518 \pm 8.1 \cdot 10^{-7} \) | \(a_{42}= -0.96401532 \pm 2.0 \cdot 10^{-6} \) |
\(a_{43}= -0.53247815 \pm 8.8 \cdot 10^{-7} \) | \(a_{44}= +0.52770452 \pm 8.7 \cdot 10^{-7} \) | \(a_{45}= -0.14907120 \pm 1.4 \cdot 10^{-7} \) |
\(a_{46}= -0.26871364 \pm 5.3 \cdot 10^{-7} \) | \(a_{47}= -1.32097964 \pm 1.0 \cdot 10^{-6} \) | \(a_{48}= +0.71254708 \pm 9.0 \cdot 10^{-7} \) |
\(a_{49}= +1.02883860 \pm 6.9 \cdot 10^{-7} \) | \(a_{50}= -0.23445031 \pm 1.0 \cdot 10^{-6} \) | \(a_{51}= +0.76129504 \pm 8.2 \cdot 10^{-7} \) |
\(a_{52}= +0.52766027 \pm 9.5 \cdot 10^{-7} \) | \(a_{53}= +0.17515534 \pm 1.1 \cdot 10^{-6} \) | \(a_{54}= +0.22559991 \pm 1.0 \cdot 10^{-6} \) |
\(a_{55}= -0.63071415 \pm 9.4 \cdot 10^{-7} \) | \(a_{56}= -1.04495692 \pm 7.9 \cdot 10^{-7} \) | \(a_{57}= -0.64309647 \pm 8.1 \cdot 10^{-7} \) |
\(a_{58}= +1.88931671 \pm 7.8 \cdot 10^{-7} \) | \(a_{59}= -0.40724118 \pm 7.5 \cdot 10^{-7} \) | \(a_{60}= +0.09661123 \pm 1.0 \cdot 10^{-6} \) |
\(a_{61}= +0.47558382 \pm 9.6 \cdot 10^{-7} \) | \(a_{62}= -0.72418167 \pm 5.5 \cdot 10^{-7} \) | \(a_{63}= -0.47479102 \pm 9.3 \cdot 10^{-7} \) |
\(a_{64}= +0.39820097 \pm 9.9 \cdot 10^{-7} \) | \(a_{65}= -0.63066126 \pm 9.3 \cdot 10^{-7} \) | \(a_{66}= +0.95450403 \pm 2.0 \cdot 10^{-6} \) |
\(a_{67}= -0.13916957 \pm 8.0 \cdot 10^{-7} \) | \(a_{68}= -0.49338605 \pm 1.0 \cdot 10^{-6} \) | \(a_{69}= -0.13234522 \pm 7.2 \cdot 10^{-7} \) |
\(a_{70}= -0.74672306 \pm 2.0 \cdot 10^{-6} \) | \(a_{71}= +0.28535350 \pm 1.0 \cdot 10^{-6} \) | \(a_{72}= +0.24454196 \pm 7.8 \cdot 10^{-7} \) |
\(a_{73}= +0.19224282 \pm 8.9 \cdot 10^{-7} \) | \(a_{74}= -0.08235307 \pm 7.5 \cdot 10^{-7} \) | \(a_{75}= -0.11547005 \pm 2.2 \cdot 10^{-7} \) |
\(a_{76}= +0.41678299 \pm 1.0 \cdot 10^{-6} \) | \(a_{77}= -2.00882141 \pm 7.2 \cdot 10^{-7} \) | \(a_{78}= +0.95442398 \pm 2.0 \cdot 10^{-6} \) |
\(a_{79}= +1.11817521 \pm 9.2 \cdot 10^{-7} \) | \(a_{80}= +0.55193659 \pm 9.0 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.08667153 \pm 1.0 \cdot 10^{-6} \) | \(a_{83}= -0.72221182 \pm 6.0 \cdot 10^{-7} \) | \(a_{84}= +0.30770628 \pm 2.0 \cdot 10^{-6} \) |
\(a_{85}= +0.58969660 \pm 8.2 \cdot 10^{-7} \) | \(a_{86}= +0.62419833 \pm 9.3 \cdot 10^{-7} \) | \(a_{87}= +0.93051489 \pm 6.0 \cdot 10^{-7} \) |
\(a_{88}= +1.03464703 \pm 8.0 \cdot 10^{-7} \) | \(a_{89}= -0.49479409 \pm 8.5 \cdot 10^{-7} \) | \(a_{90}= +0.17474894 \pm 1.0 \cdot 10^{-6} \) |
\(a_{91}= -2.00865295 \pm 7.3 \cdot 10^{-7} \) | \(a_{92}= +0.08577133 \pm 6.9 \cdot 10^{-7} \) | \(a_{93}= -0.35666959 \pm 4.9 \cdot 10^{-7} \) |
\(a_{94}= +1.54852042 \pm 1.2 \cdot 10^{-6} \) | \(a_{95}= -0.49814038 \pm 8.1 \cdot 10^{-7} \) | \(a_{96}= -0.41172532 \pm 8.2 \cdot 10^{-7} \) |
\(a_{97}= +0.65060088 \pm 7.8 \cdot 10^{-7} \) | \(a_{98}= -1.20605764 \pm 7.8 \cdot 10^{-7} \) | \(a_{99}= +0.47010657 \pm 9.4 \cdot 10^{-7} \) |
\(a_{100}= +0.07483474 \pm 1.0 \cdot 10^{-6} \) | \(a_{101}= -0.14429867 \pm 8.4 \cdot 10^{-7} \) | \(a_{102}= -0.89242928 \pm 1.8 \cdot 10^{-6} \) |
\(a_{103}= -1.40263405 \pm 9.1 \cdot 10^{-7} \) | \(a_{104}= +1.03456026 \pm 6.4 \cdot 10^{-7} \) | \(a_{105}= -0.36777154 \pm 9.3 \cdot 10^{-7} \) |
\(a_{106}= -0.20532612 \pm 1.0 \cdot 10^{-6} \) | \(a_{107}= -1.01246881 \pm 8.4 \cdot 10^{-7} \) | \(a_{108}= -0.07200976 \pm 1.0 \cdot 10^{-6} \) |
\(a_{109}= +0.14686434 \pm 8.3 \cdot 10^{-7} \) | \(a_{110}= +0.73935564 \pm 2.0 \cdot 10^{-6} \) | \(a_{111}= -0.04056004 \pm 7.0 \cdot 10^{-7} \) |
\(a_{112}= +1.75791527 \pm 7.8 \cdot 10^{-7} \) | \(a_{113}= -0.54715488 \pm 1.0 \cdot 10^{-6} \) | \(a_{114}= +0.75387083 \pm 1.8 \cdot 10^{-6} \) |
\(a_{115}= -0.10251417 \pm 7.2 \cdot 10^{-7} \) | \(a_{116}= -0.60305537 \pm 7.0 \cdot 10^{-7} \) | \(a_{117}= +0.47006715 \pm 9.3 \cdot 10^{-7} \) |
\(a_{118}= +0.47738910 \pm 1.1 \cdot 10^{-6} \) | \(a_{119}= +1.87818071 \pm 9.0 \cdot 10^{-7} \) | \(a_{120}= +0.18942138 \pm 7.8 \cdot 10^{-7} \) |
\(a_{121}= +0.98900171 \pm 8.8 \cdot 10^{-7} \) | \(a_{122}= -0.55750386 \pm 1.1 \cdot 10^{-6} \) | \(a_{123}= -0.53520092 \pm 8.2 \cdot 10^{-7} \) |
\(a_{124}= +0.23115322 \pm 6.3 \cdot 10^{-7} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.55657450 \pm 2.0 \cdot 10^{-6} \) |
\(a_{127}= -1.55997907 \pm 7.9 \cdot 10^{-7} \) | \(a_{128}= -1.17992087 \pm 1.0 \cdot 10^{-6} \) | \(a_{129}= +0.30742640 \pm 8.9 \cdot 10^{-7} \) |
\(a_{130}= +0.73929364 \pm 2.0 \cdot 10^{-6} \) | \(a_{131}= -1.28608065 \pm 1.0 \cdot 10^{-6} \) | \(a_{132}= -0.30467035 \pm 2.0 \cdot 10^{-6} \) |
\(a_{133}= -1.58657462 \pm 7.7 \cdot 10^{-7} \) | \(a_{134}= +0.16314174 \pm 8.5 \cdot 10^{-7} \) | \(a_{135}= +0.08606630 \pm 3.3 \cdot 10^{-7} \) |
\(a_{136}= -0.96736031 \pm 7.5 \cdot 10^{-7} \) | \(a_{137}= +0.34194443 \pm 8.1 \cdot 10^{-7} \) | \(a_{138}= +0.15514189 \pm 1.7 \cdot 10^{-6} \) |
\(a_{139}= -0.76034233 \pm 1.0 \cdot 10^{-6} \) | \(a_{140}= +0.23834826 \pm 2.0 \cdot 10^{-6} \) | \(a_{141}= +0.76266795 \pm 1.0 \cdot 10^{-6} \) |
\(a_{142}= -0.33450608 \pm 8.1 \cdot 10^{-7} \) | \(a_{143}= +1.98883491 \pm 9.8 \cdot 10^{-7} \) | \(a_{144}= -0.41138925 \pm 9.0 \cdot 10^{-7} \) |
\(a_{145}= +0.72077373 \pm 6.0 \cdot 10^{-7} \) | \(a_{146}= -0.22535694 \pm 1.3 \cdot 10^{-6} \) | \(a_{147}= -0.59400024 \pm 7.0 \cdot 10^{-7} \) |
\(a_{148}= +0.02628647 \pm 8.7 \cdot 10^{-7} \) | \(a_{149}= +0.13790337 \pm 6.0 \cdot 10^{-7} \) | \(a_{150}= +0.13535995 \pm 1.0 \cdot 10^{-6} \) |
\(a_{151}= +0.27977014 \pm 1.0 \cdot 10^{-6} \) | \(a_{152}= +0.81716807 \pm 6.9 \cdot 10^{-7} \) | \(a_{153}= -0.43953390 \pm 8.2 \cdot 10^{-7} \) |
\(a_{154}= +2.35484400 \pm 9.7 \cdot 10^{-7} \) | \(a_{155}= -0.27627508 \pm 4.9 \cdot 10^{-7} \) | \(a_{156}= -0.30464480 \pm 1.9 \cdot 10^{-6} \) |
\(a_{157}= -0.55124367 \pm 8.2 \cdot 10^{-7} \) | \(a_{158}= -1.31078261 \pm 1.3 \cdot 10^{-6} \) | \(a_{159}= -0.10112598 \pm 1.1 \cdot 10^{-6} \) |
\(a_{160}= -0.31892106 \pm 8.2 \cdot 10^{-7} \) | \(a_{161}= -0.32650712 \pm 7.2 \cdot 10^{-7} \) | \(a_{162}= -0.13025017 \pm 1.0 \cdot 10^{-6} \) |
\(a_{163}= -0.51749148 \pm 9.6 \cdot 10^{-7} \) | \(a_{164}= +0.34685720 \pm 7.5 \cdot 10^{-7} \) | \(a_{165}= +0.36414299 \pm 9.4 \cdot 10^{-7} \) |
\(a_{166}= +0.84661392 \pm 7.7 \cdot 10^{-7} \) | \(a_{167}= +1.00859058 \pm 1.1 \cdot 10^{-6} \) | \(a_{168}= +0.60330616 \pm 1.7 \cdot 10^{-6} \) |
\(a_{169}= +0.98866813 \pm 1.0 \cdot 10^{-6} \) | \(a_{170}= -0.69127275 \pm 1.8 \cdot 10^{-6} \) | \(a_{171}= +0.37129192 \pm 8.1 \cdot 10^{-7} \) |
\(a_{172}= -0.19923931 \pm 9.8 \cdot 10^{-7} \) | \(a_{173}= -1.98571229 \pm 7.5 \cdot 10^{-7} \) | \(a_{174}= -1.09079751 \pm 1.6 \cdot 10^{-6} \) |
\(a_{175}= -0.28487461 \pm 9.3 \cdot 10^{-7} \) | \(a_{176}= -1.74057110 \pm 1.0 \cdot 10^{-6} \) | \(a_{177}= +0.23512080 \pm 7.6 \cdot 10^{-7} \) |
\(a_{178}= +0.58002314 \pm 1.1 \cdot 10^{-6} \) | \(a_{179}= +1.27382883 \pm 8.0 \cdot 10^{-7} \) | \(a_{180}= -0.05577852 \pm 1.0 \cdot 10^{-6} \) |
\(a_{181}= -0.45219233 \pm 8.2 \cdot 10^{-7} \) | \(a_{182}= +2.35464652 \pm 1.0 \cdot 10^{-6} \) | \(a_{183}= -0.27457845 \pm 9.7 \cdot 10^{-7} \) |
\(a_{184}= +0.16816807 \pm 5.3 \cdot 10^{-7} \) | \(a_{185}= -0.03141767 \pm 7.0 \cdot 10^{-7} \) | \(a_{186}= +0.41810648 \pm 1.5 \cdot 10^{-6} \) |
\(a_{187}= -1.85964996 \pm 7.2 \cdot 10^{-7} \) | \(a_{188}= -0.49427582 \pm 1.4 \cdot 10^{-6} \) | \(a_{189}= +0.27412072 \pm 9.3 \cdot 10^{-7} \) |
\(a_{190}= +0.58394583 \pm 1.8 \cdot 10^{-6} \) | \(a_{191}= -1.64167167 \pm 6.6 \cdot 10^{-7} \) | \(a_{192}= -0.22990144 \pm 1.0 \cdot 10^{-6} \) |
\(a_{193}= +1.28466421 \pm 7.0 \cdot 10^{-7} \) | \(a_{194}= -0.76266789 \pm 7.4 \cdot 10^{-7} \) | \(a_{195}= +0.36411245 \pm 9.3 \cdot 10^{-7} \) |
\(a_{196}= +0.38496433 \pm 7.7 \cdot 10^{-7} \) | \(a_{197}= -0.25947243 \pm 5.2 \cdot 10^{-7} \) | \(a_{198}= -0.55108316 \pm 2.0 \cdot 10^{-6} \) |
\(a_{199}= -1.90246488 \pm 9.4 \cdot 10^{-7} \) | \(a_{200}= +0.14672517 \pm 7.8 \cdot 10^{-7} \) | \(a_{201}= +0.08034959 \pm 8.1 \cdot 10^{-7} \) |
\(a_{202}= +0.16915434 \pm 5.9 \cdot 10^{-7} \) | \(a_{203}= +2.29566072 \pm 6.5 \cdot 10^{-7} \) | \(a_{204}= +0.28485657 \pm 1.8 \cdot 10^{-6} \) |
\(a_{205}= -0.41456485 \pm 8.2 \cdot 10^{-7} \) | \(a_{206}= +1.64423993 \pm 1.1 \cdot 10^{-6} \) | \(a_{207}= +0.07640955 \pm 7.2 \cdot 10^{-7} \) |
\(a_{208}= -1.74042513 \pm 9.2 \cdot 10^{-7} \) | \(a_{209}= +1.57092095 \pm 7.9 \cdot 10^{-7} \) | \(a_{210}= +0.43112076 \pm 2.0 \cdot 10^{-6} \) |
\(a_{211}= +0.37034047 \pm 8.3 \cdot 10^{-7} \) | \(a_{212}= +0.06553852 \pm 1.2 \cdot 10^{-6} \) | \(a_{213}= -0.16474892 \pm 1.0 \cdot 10^{-6} \) |
\(a_{214}= +1.18686812 \pm 9.3 \cdot 10^{-7} \) | \(a_{215}= +0.23813147 \pm 8.9 \cdot 10^{-7} \) | \(a_{216}= -0.14118636 \pm 7.8 \cdot 10^{-7} \) |
\(a_{217}= -0.87993474 \pm 4.7 \cdot 10^{-7} \) | \(a_{218}= -0.17216195 \pm 8.6 \cdot 10^{-7} \) | \(a_{219}= -0.11099144 \pm 9.0 \cdot 10^{-7} \) |
\(a_{220}= -0.23599664 \pm 2.0 \cdot 10^{-6} \) | \(a_{221}= -1.85949401 \pm 9.4 \cdot 10^{-7} \) | \(a_{222}= +0.04754657 \pm 1.7 \cdot 10^{-6} \) |
\(a_{223}= +1.83448234 \pm 7.8 \cdot 10^{-7} \) | \(a_{224}= -1.01576197 \pm 7.3 \cdot 10^{-7} \) | \(a_{225}= +0.06666667 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= +0.64140315 \pm 1.0 \cdot 10^{-6} \) | \(a_{227}= +0.25492620 \pm 8.4 \cdot 10^{-7} \) | \(a_{228}= -0.24062977 \pm 1.8 \cdot 10^{-6} \) |
\(a_{229}= -0.14072092 \pm 1.2 \cdot 10^{-6} \) | \(a_{230}= +0.12017239 \pm 1.7 \cdot 10^{-6} \) | \(a_{231}= +1.15979358 \pm 1.8 \cdot 10^{-6} \) |
\(a_{232}= -1.18238412 \pm 5.1 \cdot 10^{-7} \) | \(a_{233}= -0.66830100 \pm 1.2 \cdot 10^{-6} \) | \(a_{234}= -0.55103694 \pm 2.0 \cdot 10^{-6} \) |
\(a_{235}= +0.59076005 \pm 1.0 \cdot 10^{-6} \) | \(a_{236}= -0.15237893 \pm 1.2 \cdot 10^{-6} \) | \(a_{237}= -0.64557876 \pm 9.3 \cdot 10^{-7} \) |
\(a_{238}= -2.20170024 \pm 1.1 \cdot 10^{-6} \) | \(a_{239}= -0.57263610 \pm 7.2 \cdot 10^{-7} \) | \(a_{240}= -0.31866074 \pm 9.0 \cdot 10^{-7} \) |
\(a_{241}= +0.89615120 \pm 9.8 \cdot 10^{-7} \) | \(a_{242}= -1.15935878 \pm 9.5 \cdot 10^{-7} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.17795095 \pm 1.1 \cdot 10^{-6} \) | \(a_{245}= -0.46011061 \pm 7.0 \cdot 10^{-7} \) | \(a_{246}= +0.62739010 \pm 1.8 \cdot 10^{-6} \) |
\(a_{247}= +1.57078921 \pm 6.2 \cdot 10^{-7} \) | \(a_{248}= +0.45321195 \pm 5.0 \cdot 10^{-7} \) | \(a_{249}= +0.41696919 \pm 6.1 \cdot 10^{-7} \) |
\(a_{250}= +0.10484937 \pm 1.0 \cdot 10^{-6} \) | \(a_{251}= -1.49895781 \pm 7.1 \cdot 10^{-7} \) | \(a_{252}= -0.17765430 \pm 2.0 \cdot 10^{-6} \) |
\(a_{253}= +0.32328569 \pm 7.3 \cdot 10^{-7} \) | \(a_{254}= +1.82868787 \pm 7.3 \cdot 10^{-7} \) | \(a_{255}= -0.34046149 \pm 8.2 \cdot 10^{-7} \) |
\(a_{256}= +0.98496309 \pm 9.0 \cdot 10^{-7} \) | \(a_{257}= +0.96543510 \pm 9.4 \cdot 10^{-7} \) | \(a_{258}= -0.36038107 \pm 1.9 \cdot 10^{-6} \) |
\(a_{259}= -0.10006512 \pm 7.3 \cdot 10^{-7} \) | \(a_{260}= -0.23597685 \pm 1.9 \cdot 10^{-6} \) | \(a_{261}= -0.53723302 \pm 6.0 \cdot 10^{-7} \) |
\(a_{262}= +1.50761003 \pm 1.0 \cdot 10^{-6} \) | \(a_{263}= -0.40191699 \pm 7.4 \cdot 10^{-7} \) | \(a_{264}= -0.59735374 \pm 1.7 \cdot 10^{-6} \) |
\(a_{265}= -0.07833185 \pm 1.1 \cdot 10^{-6} \) | \(a_{266}= +1.85986455 \pm 8.8 \cdot 10^{-7} \) | \(a_{267}= +0.28566950 \pm 8.6 \cdot 10^{-7} \) |
\(a_{268}= -0.05207359 \pm 1.0 \cdot 10^{-6} \) | \(a_{269}= -0.64574280 \pm 8.5 \cdot 10^{-7} \) | \(a_{270}= -0.10089135 \pm 1.0 \cdot 10^{-6} \) |
\(a_{271}= -1.46647405 \pm 8.7 \cdot 10^{-7} \) | \(a_{272}= +1.62737566 \pm 8.4 \cdot 10^{-7} \) | \(a_{273}= +1.15969632 \pm 1.8 \cdot 10^{-6} \) |
\(a_{274}= -0.40084488 \pm 1.2 \cdot 10^{-6} \) | \(a_{275}= +0.28206394 \pm 9.4 \cdot 10^{-7} \) | \(a_{276}= -0.04952010 \pm 1.7 \cdot 10^{-6} \) |
\(a_{277}= -0.65094968 \pm 8.9 \cdot 10^{-7} \) | \(a_{278}= +0.89131246 \pm 1.4 \cdot 10^{-6} \) | \(a_{279}= +0.20592329 \pm 4.9 \cdot 10^{-7} \) |
\(a_{280}= +0.46731894 \pm 1.7 \cdot 10^{-6} \) | \(a_{281}= -1.83354986 \pm 9.5 \cdot 10^{-7} \) | \(a_{282}= -0.89403868 \pm 2.1 \cdot 10^{-6} \) |
\(a_{283}= -1.07800345 \pm 9.0 \cdot 10^{-7} \) | \(a_{284}= +0.10677177 \pm 1.0 \cdot 10^{-6} \) | \(a_{285}= +0.28760148 \pm 8.1 \cdot 10^{-7} \) |
\(a_{286}= -2.33141480 \pm 1.1 \cdot 10^{-6} \) | \(a_{287}= -1.32038695 \pm 7.2 \cdot 10^{-7} \) | \(a_{288}= +0.23770972 \pm 8.2 \cdot 10^{-7} \) |
\(a_{289}= +0.73871041 \pm 6.9 \cdot 10^{-7} \) | \(a_{290}= -0.84492812 \pm 1.6 \cdot 10^{-6} \) | \(a_{291}= -0.37562459 \pm 7.9 \cdot 10^{-7} \) |
\(a_{292}= +0.07193220 \pm 1.3 \cdot 10^{-6} \) | \(a_{293}= +1.21630294 \pm 7.1 \cdot 10^{-7} \) | \(a_{294}= +0.69631770 \pm 1.7 \cdot 10^{-6} \) |
\(a_{295}= +0.18212379 \pm 7.6 \cdot 10^{-7} \) | \(a_{296}= +0.05153872 \pm 5.5 \cdot 10^{-7} \) | \(a_{297}= -0.27141616 \pm 9.4 \cdot 10^{-7} \) |
\(a_{298}= -0.16165744 \pm 8.1 \cdot 10^{-7} \) | \(a_{299}= +0.32325858 \pm 5.7 \cdot 10^{-7} \) | \(a_{300}= -0.04320586 \pm 1.0 \cdot 10^{-6} \) |
\(a_{301}= +0.75844752 \pm 9.2 \cdot 10^{-7} \) | \(a_{302}= -0.32796097 \pm 1.2 \cdot 10^{-6} \) | \(a_{303}= +0.08331088 \pm 8.5 \cdot 10^{-7} \) |
\(a_{304}= -1.37470953 \pm 7.9 \cdot 10^{-7} \) | \(a_{305}= -0.21268755 \pm 9.7 \cdot 10^{-7} \) | \(a_{306}= +0.51524429 \pm 1.8 \cdot 10^{-6} \) |
\(a_{307}= +1.38774415 \pm 8.9 \cdot 10^{-7} \) | \(a_{308}= -0.75164810 \pm 8.7 \cdot 10^{-7} \) | \(a_{309}= +0.80981114 \pm 9.2 \cdot 10^{-7} \) |
\(a_{310}= +0.32386389 \pm 1.5 \cdot 10^{-6} \) | \(a_{311}= +0.81282288 \pm 8.0 \cdot 10^{-7} \) | \(a_{312}= -0.59730365 \pm 1.7 \cdot 10^{-6} \) |
\(a_{313}= +0.82379135 \pm 8.5 \cdot 10^{-7} \) | \(a_{314}= +0.64619624 \pm 8.5 \cdot 10^{-7} \) | \(a_{315}= +0.21233300 \pm 9.3 \cdot 10^{-7} \) |
\(a_{316}= +0.41839173 \pm 1.1 \cdot 10^{-6} \) | \(a_{317}= -0.50647663 \pm 1.0 \cdot 10^{-6} \) | \(a_{318}= +0.11854509 \pm 2.2 \cdot 10^{-6} \) |
\(a_{319}= -2.27301097 \pm 7.0 \cdot 10^{-7} \) | \(a_{320}= -0.17808089 \pm 1.0 \cdot 10^{-6} \) | \(a_{321}= +0.58454914 \pm 8.6 \cdot 10^{-7} \) |
\(a_{322}= +0.38274847 \pm 5.5 \cdot 10^{-7} \) | \(a_{323}= -1.46875845 \pm 5.3 \cdot 10^{-7} \) | \(a_{324}= +0.04157485 \pm 1.0 \cdot 10^{-6} \) |
\(a_{325}= +0.28204029 \pm 9.3 \cdot 10^{-7} \) | \(a_{326}= +0.60663019 \pm 9.4 \cdot 10^{-7} \) | \(a_{327}= -0.08479217 \pm 8.4 \cdot 10^{-7} \) |
\(a_{328}= +0.68006764 \pm 6.1 \cdot 10^{-7} \) | \(a_{329}= +1.88156781 \pm 1.0 \cdot 10^{-6} \) | \(a_{330}= -0.42686718 \pm 2.0 \cdot 10^{-6} \) |
\(a_{331}= -0.27741145 \pm 1.0 \cdot 10^{-6} \) | \(a_{332}= -0.27023266 \pm 7.9 \cdot 10^{-7} \) | \(a_{333}= +0.02341735 \pm 7.0 \cdot 10^{-7} \) |
\(a_{334}= -1.18232187 \pm 1.1 \cdot 10^{-6} \) | \(a_{335}= +0.06223852 \pm 8.1 \cdot 10^{-7} \) | \(a_{336}= -1.01493286 \pm 1.8 \cdot 10^{-6} \) |
\(a_{337}= +0.68495934 \pm 8.1 \cdot 10^{-7} \) | \(a_{338}= -1.15896774 \pm 1.3 \cdot 10^{-6} \) | \(a_{339}= +0.31590002 \pm 1.0 \cdot 10^{-6} \) |
\(a_{340}= +0.22064895 \pm 1.8 \cdot 10^{-6} \) | \(a_{341}= +0.87125301 \pm 4.3 \cdot 10^{-7} \) | \(a_{342}= -0.43524753 \pm 1.8 \cdot 10^{-6} \) |
\(a_{343}= -0.04107693 \pm 8.6 \cdot 10^{-7} \) | \(a_{344}= -0.39063974 \pm 6.5 \cdot 10^{-7} \) | \(a_{345}= +0.05918658 \pm 7.2 \cdot 10^{-7} \) |
\(a_{346}= +2.32775430 \pm 1.0 \cdot 10^{-6} \) | \(a_{347}= -0.39866953 \pm 9.9 \cdot 10^{-7} \) | \(a_{348}= +0.34817418 \pm 1.6 \cdot 10^{-6} \) |
\(a_{349}= +0.45188106 \pm 8.5 \cdot 10^{-7} \) | \(a_{350}= +0.33394470 \pm 2.0 \cdot 10^{-6} \) | \(a_{351}= -0.27139340 \pm 9.3 \cdot 10^{-7} \) |
\(a_{352}= +1.00574013 \pm 7.6 \cdot 10^{-7} \) | \(a_{353}= +0.97633528 \pm 1.0 \cdot 10^{-6} \) | \(a_{354}= -0.27562072 \pm 1.8 \cdot 10^{-6} \) |
\(a_{355}= -0.12761397 \pm 1.0 \cdot 10^{-6} \) | \(a_{356}= -0.18513893 \pm 1.0 \cdot 10^{-6} \) | \(a_{357}= -1.08436814 \pm 1.7 \cdot 10^{-6} \) |
\(a_{358}= -1.49324782 \pm 1.0 \cdot 10^{-6} \) | \(a_{359}= -1.35463823 \pm 9.2 \cdot 10^{-7} \) | \(a_{360}= -0.10936249 \pm 7.8 \cdot 10^{-7} \) |
\(a_{361}= +0.24071921 \pm 7.1 \cdot 10^{-7} \) | \(a_{362}= +0.53008315 \pm 1.1 \cdot 10^{-6} \) | \(a_{363}= -0.57100040 \pm 8.9 \cdot 10^{-7} \) |
\(a_{364}= -0.75158507 \pm 9.6 \cdot 10^{-7} \) | \(a_{365}= -0.08597360 \pm 9.0 \cdot 10^{-7} \) | \(a_{366}= +0.32187501 \pm 2.0 \cdot 10^{-6} \) |
\(a_{367}= -0.84973304 \pm 7.6 \cdot 10^{-7} \) | \(a_{368}= -0.28290661 \pm 7.7 \cdot 10^{-7} \) | \(a_{369}= +0.30899839 \pm 8.2 \cdot 10^{-7} \) |
\(a_{370}= +0.03682941 \pm 1.7 \cdot 10^{-6} \) | \(a_{371}= -0.24948655 \pm 1.2 \cdot 10^{-6} \) | \(a_{372}= -0.13345638 \pm 1.5 \cdot 10^{-6} \) |
\(a_{373}= -0.57744483 \pm 7.8 \cdot 10^{-7} \) | \(a_{374}= +2.17997754 \pm 8.3 \cdot 10^{-7} \) | \(a_{375}= +0.05163978 \pm 7.7 \cdot 10^{-7} \) |
\(a_{376}= -0.96910483 \pm 9.2 \cdot 10^{-7} \) | \(a_{377}= -2.27282035 \pm 5.0 \cdot 10^{-7} \) | \(a_{378}= -0.32133844 \pm 2.0 \cdot 10^{-6} \) |
\(a_{379}= -0.80285228 \pm 8.4 \cdot 10^{-7} \) | \(a_{380}= -0.18639102 \pm 1.8 \cdot 10^{-6} \) | \(a_{381}= +0.90065434 \pm 8.0 \cdot 10^{-7} \) |
\(a_{382}= +1.92445215 \pm 7.6 \cdot 10^{-7} \) | \(a_{383}= +1.20138924 \pm 1.1 \cdot 10^{-6} \) | \(a_{384}= +0.68122763 \pm 1.0 \cdot 10^{-6} \) |
\(a_{385}= +0.89837224 \pm 1.8 \cdot 10^{-6} \) | \(a_{386}= -1.50594961 \pm 9.5 \cdot 10^{-7} \) | \(a_{387}= -0.17749272 \pm 8.9 \cdot 10^{-7} \) |
\(a_{388}= +0.24343773 \pm 7.8 \cdot 10^{-7} \) | \(a_{389}= -1.02292226 \pm 1.0 \cdot 10^{-6} \) | \(a_{390}= -0.42683138 \pm 2.0 \cdot 10^{-6} \) |
\(a_{391}= -0.30226129 \pm 5.9 \cdot 10^{-7} \) | \(a_{392}= +0.75478261 \pm 6.1 \cdot 10^{-7} \) | \(a_{393}= +0.74251901 \pm 1.0 \cdot 10^{-6} \) |
\(a_{394}= +0.30416696 \pm 7.2 \cdot 10^{-7} \) | \(a_{395}= -0.50006316 \pm 9.3 \cdot 10^{-7} \) | \(a_{396}= +0.17590151 \pm 2.0 \cdot 10^{-6} \) |
\(a_{397}= +1.34528832 \pm 9.3 \cdot 10^{-7} \) | \(a_{398}= +2.23016739 \pm 1.1 \cdot 10^{-6} \) | \(a_{399}= +0.91600928 \pm 1.7 \cdot 10^{-6} \) |
\(a_{400}= -0.24683355 \pm 9.0 \cdot 10^{-7} \) | \(a_{401}= -0.69116491 \pm 5.7 \cdot 10^{-7} \) | \(a_{402}= -0.09418993 \pm 1.8 \cdot 10^{-6} \) |
\(a_{403}= +0.87117995 \pm 4.7 \cdot 10^{-7} \) | \(a_{404}= -0.05399276 \pm 8.7 \cdot 10^{-7} \) | \(a_{405}= -0.04969040 \pm 8.2 \cdot 10^{-7} \) |
\(a_{406}= -2.69109182 \pm 7.8 \cdot 10^{-7} \) | \(a_{407}= +0.09907785 \pm 5.8 \cdot 10^{-7} \) | \(a_{408}= +0.55850573 \pm 1.5 \cdot 10^{-6} \) |
\(a_{409}= +0.99586528 \pm 9.9 \cdot 10^{-7} \) | \(a_{410}= +0.48597428 \pm 1.8 \cdot 10^{-6} \) | \(a_{411}= -0.19742171 \pm 8.2 \cdot 10^{-7} \) |
\(a_{412}= -0.52482875 \pm 8.7 \cdot 10^{-7} \) | \(a_{413}= +0.58006336 \pm 8.3 \cdot 10^{-7} \) | \(a_{414}= -0.08957121 \pm 1.7 \cdot 10^{-6} \) |
\(a_{415}= +0.32298294 \pm 6.1 \cdot 10^{-7} \) | \(a_{416}= +1.00565579 \pm 9.7 \cdot 10^{-7} \) | \(a_{417}= +0.43898385 \pm 1.0 \cdot 10^{-6} \) |
\(a_{418}= -1.84151451 \pm 9.5 \cdot 10^{-7} \) | \(a_{419}= -0.40757985 \pm 8.0 \cdot 10^{-7} \) | \(a_{420}= -0.13761043 \pm 2.0 \cdot 10^{-6} \) |
\(a_{421}= +0.72660991 \pm 1.1 \cdot 10^{-6} \) | \(a_{422}= -0.43413219 \pm 9.4 \cdot 10^{-7} \) | \(a_{423}= -0.44032655 \pm 1.0 \cdot 10^{-6} \) |
\(a_{424}= +0.12849849 \pm 6.7 \cdot 10^{-7} \) | \(a_{425}= -0.26372034 \pm 8.2 \cdot 10^{-7} \) | \(a_{426}= +0.19312718 \pm 2.1 \cdot 10^{-6} \) |
\(a_{427}= -0.67740878 \pm 7.8 \cdot 10^{-7} \) | \(a_{428}= -0.37883918 \pm 1.0 \cdot 10^{-6} \) | \(a_{429}= -1.14825437 \pm 1.8 \cdot 10^{-6} \) |
\(a_{430}= -0.27914998 \pm 1.9 \cdot 10^{-6} \) | \(a_{431}= +0.01330545 \pm 8.4 \cdot 10^{-7} \) | \(a_{432}= +0.23751569 \pm 9.0 \cdot 10^{-7} \) |
\(a_{433}= -1.75083100 \pm 7.8 \cdot 10^{-7} \) | \(a_{434}= +1.03150486 \pm 5.4 \cdot 10^{-7} \) | \(a_{435}= -0.41613891 \pm 6.0 \cdot 10^{-7} \) |
\(a_{436}= +0.05495277 \pm 6.9 \cdot 10^{-7} \) | \(a_{437}= +0.25533224 \pm 6.9 \cdot 10^{-7} \) | \(a_{438}= +0.13010989 \pm 1.9 \cdot 10^{-6} \) |
\(a_{439}= -1.93552541 \pm 7.1 \cdot 10^{-7} \) | \(a_{440}= -0.46270822 \pm 1.7 \cdot 10^{-6} \) | \(a_{441}= +0.34294620 \pm 7.0 \cdot 10^{-7} \) |
\(a_{442}= +2.17979472 \pm 1.2 \cdot 10^{-6} \) | \(a_{443}= -0.40615396 \pm 7.8 \cdot 10^{-7} \) | \(a_{444}= -0.01517650 \pm 1.7 \cdot 10^{-6} \) |
\(a_{445}= +0.22127864 \pm 8.6 \cdot 10^{-7} \) | \(a_{446}= -2.15047476 \pm 1.1 \cdot 10^{-6} \) | \(a_{447}= -0.07961855 \pm 6.1 \cdot 10^{-7} \) |
\(a_{448}= -0.56718673 \pm 1.0 \cdot 10^{-6} \) | \(a_{449}= +0.45562150 \pm 7.2 \cdot 10^{-7} \) | \(a_{450}= -0.07815010 \pm 1.0 \cdot 10^{-6} \) |
\(a_{451}= +1.30735958 \pm 1.0 \cdot 10^{-6} \) | \(a_{452}= -0.20473096 \pm 9.7 \cdot 10^{-7} \) | \(a_{453}= -0.16152536 \pm 1.1 \cdot 10^{-6} \) |
\(a_{454}= -0.29883763 \pm 8.2 \cdot 10^{-7} \) | \(a_{455}= +0.89829691 \pm 1.8 \cdot 10^{-6} \) | \(a_{456}= -0.47179220 \pm 1.5 \cdot 10^{-6} \) |
\(a_{457}= +1.04383733 \pm 1.0 \cdot 10^{-6} \) | \(a_{458}= +0.16496031 \pm 1.5 \cdot 10^{-6} \) | \(a_{459}= +0.25376501 \pm 8.2 \cdot 10^{-7} \) |
\(a_{460}= -0.03835810 \pm 1.7 \cdot 10^{-6} \) | \(a_{461}= +1.13260221 \pm 8.5 \cdot 10^{-7} \) | \(a_{462}= -1.35956982 \pm 2.9 \cdot 10^{-6} \) |
\(a_{463}= +0.54196925 \pm 8.0 \cdot 10^{-7} \) | \(a_{464}= +1.98910698 \pm 6.5 \cdot 10^{-7} \) | \(a_{465}= +0.15950749 \pm 4.9 \cdot 10^{-7} \) |
\(a_{466}= +0.78341688 \pm 1.2 \cdot 10^{-6} \) | \(a_{467}= -0.15429510 \pm 1.0 \cdot 10^{-6} \) | \(a_{468}= +0.17588676 \pm 1.9 \cdot 10^{-6} \) |
\(a_{469}= +0.19822938 \pm 9.5 \cdot 10^{-7} \) | \(a_{470}= -0.69251939 \pm 2.1 \cdot 10^{-6} \) | \(a_{471}= +0.31826068 \pm 8.3 \cdot 10^{-7} \) |
\(a_{472}= -0.29876266 \pm 8.2 \cdot 10^{-7} \) | \(a_{473}= -0.75096443 \pm 7.8 \cdot 10^{-7} \) | \(a_{474}= +0.75678069 \pm 2.0 \cdot 10^{-6} \) |
\(a_{475}= +0.22277515 \pm 8.1 \cdot 10^{-7} \) | \(a_{476}= +0.70276579 \pm 1.2 \cdot 10^{-6} \) | \(a_{477}= +0.05838511 \pm 1.1 \cdot 10^{-6} \) |
\(a_{478}= +0.67127355 \pm 7.9 \cdot 10^{-7} \) | \(a_{479}= -1.83301413 \pm 6.4 \cdot 10^{-7} \) | \(a_{480}= +0.18412916 \pm 8.2 \cdot 10^{-7} \) |
\(a_{481}= +0.09906954 \pm 6.4 \cdot 10^{-7} \) | \(a_{482}= -1.05051463 \pm 9.9 \cdot 10^{-7} \) | \(a_{483}= +0.18850897 \pm 1.6 \cdot 10^{-6} \) |
\(a_{484}= +0.37005841 \pm 6.9 \cdot 10^{-7} \) | \(a_{485}= -0.29095756 \pm 7.9 \cdot 10^{-7} \) | \(a_{486}= +0.07519997 \pm 1.0 \cdot 10^{-6} \) |
\(a_{487}= -1.07462825 \pm 7.2 \cdot 10^{-7} \) | \(a_{488}= +0.34890059 \pm 8.9 \cdot 10^{-7} \) | \(a_{489}= +0.29877385 \pm 9.8 \cdot 10^{-7} \) |
\(a_{490}= +0.53936537 \pm 1.7 \cdot 10^{-6} \) | \(a_{491}= +1.65676351 \pm 1.0 \cdot 10^{-6} \) | \(a_{492}= -0.20025810 \pm 1.8 \cdot 10^{-6} \) |
\(a_{493}= +2.12518910 \pm 4.4 \cdot 10^{-7} \) | \(a_{494}= -1.84136008 \pm 7.0 \cdot 10^{-7} \) | \(a_{495}= -0.21023805 \pm 9.4 \cdot 10^{-7} \) |
\(a_{496}= -0.76243163 \pm 5.7 \cdot 10^{-7} \) | \(a_{497}= -0.40644984 \pm 1.1 \cdot 10^{-6} \) | \(a_{498}= -0.48879277 \pm 1.6 \cdot 10^{-6} \) |
\(a_{499}= -0.36712731 \pm 9.9 \cdot 10^{-7} \) | \(a_{500}= -0.03346711 \pm 1.0 \cdot 10^{-6} \) | \(a_{501}= -0.58231004 \pm 1.1 \cdot 10^{-6} \) |
\(a_{502}= +1.75715561 \pm 8.7 \cdot 10^{-7} \) | \(a_{503}= -1.77828952 \pm 1.0 \cdot 10^{-6} \) | \(a_{504}= -0.34831897 \pm 1.7 \cdot 10^{-6} \) |
\(a_{505}= +0.06453233 \pm 8.5 \cdot 10^{-7} \) | \(a_{506}= -0.37897215 \pm 6.7 \cdot 10^{-7} \) | \(a_{507}= -0.57080781 \pm 1.0 \cdot 10^{-6} \) |
\(a_{508}= -0.58370311 \pm 1.0 \cdot 10^{-6} \) | \(a_{509}= +1.47494386 \pm 9.5 \cdot 10^{-7} \) | \(a_{510}= +0.39910651 \pm 1.8 \cdot 10^{-6} \) |
\(a_{511}= -0.27382549 \pm 9.3 \cdot 10^{-7} \) | \(a_{512}= +0.02529636 \pm 7.2 \cdot 10^{-7} \) | \(a_{513}= -0.21436549 \pm 8.1 \cdot 10^{-7} \) |
\(a_{514}= -1.13173278 \pm 9.8 \cdot 10^{-7} \) | \(a_{515}= +0.62727702 \pm 9.2 \cdot 10^{-7} \) | \(a_{516}= +0.11503087 \pm 1.9 \cdot 10^{-6} \) |
\(a_{517}= -1.86300364 \pm 1.0 \cdot 10^{-6} \) | \(a_{518}= +0.11730149 \pm 8.6 \cdot 10^{-7} \) | \(a_{519}= +1.14645153 \pm 7.6 \cdot 10^{-7} \) |
\(a_{520}= -0.46266941 \pm 1.7 \cdot 10^{-6} \) | \(a_{521}= +0.53788628 \pm 9.5 \cdot 10^{-7} \) | \(a_{522}= +0.62977224 \pm 1.6 \cdot 10^{-6} \) |
\(a_{523}= +0.18594794 \pm 9.9 \cdot 10^{-7} \) | \(a_{524}= -0.48121753 \pm 1.0 \cdot 10^{-6} \) | \(a_{525}= +0.16447243 \pm 9.3 \cdot 10^{-7} \) |
\(a_{526}= +0.47114781 \pm 9.8 \cdot 10^{-7} \) | \(a_{527}= -0.81459238 \pm 5.0 \cdot 10^{-7} \) | \(a_{528}= +1.00491919 \pm 1.8 \cdot 10^{-6} \) |
\(a_{529}= -0.94745422 \pm 6.6 \cdot 10^{-7} \) | \(a_{530}= +0.09182463 \pm 2.2 \cdot 10^{-6} \) | \(a_{531}= -0.13574706 \pm 7.6 \cdot 10^{-7} \) |
\(a_{532}= -0.59365447 \pm 1.0 \cdot 10^{-6} \) | \(a_{533}= +1.30724994 \pm 9.7 \cdot 10^{-7} \) | \(a_{534}= -0.33487651 \pm 1.9 \cdot 10^{-6} \) |
\(a_{535}= +0.45278981 \pm 8.6 \cdot 10^{-7} \) | \(a_{536}= -0.10209839 \pm 6.6 \cdot 10^{-7} \) | \(a_{537}= -0.73544542 \pm 8.1 \cdot 10^{-7} \) |
\(a_{538}= +0.75697299 \pm 1.1 \cdot 10^{-6} \) | \(a_{539}= +1.45099137 \pm 7.1 \cdot 10^{-7} \) | \(a_{540}= +0.03220374 \pm 1.0 \cdot 10^{-6} \) |
\(a_{541}= -0.79761321 \pm 1.2 \cdot 10^{-6} \) | \(a_{542}= +1.71907647 \pm 9.9 \cdot 10^{-7} \) | \(a_{543}= +0.26107336 \pm 8.3 \cdot 10^{-7} \) |
\(a_{544}= -0.94033332 \pm 8.3 \cdot 10^{-7} \) | \(a_{545}= -0.06567973 \pm 8.4 \cdot 10^{-7} \) | \(a_{546}= -1.35945580 \pm 2.9 \cdot 10^{-6} \) |
\(a_{547}= +0.37600797 \pm 1.1 \cdot 10^{-6} \) | \(a_{548}= +0.12794661 \pm 1.2 \cdot 10^{-6} \) | \(a_{549}= +0.15852794 \pm 9.7 \cdot 10^{-7} \) |
\(a_{550}= -0.33064989 \pm 2.0 \cdot 10^{-6} \) | \(a_{551}= -1.79523251 \pm 6.7 \cdot 10^{-7} \) | \(a_{552}= -0.09709188 \pm 1.4 \cdot 10^{-6} \) |
\(a_{553}= -1.59269864 \pm 8.4 \cdot 10^{-7} \) | \(a_{554}= +0.76307677 \pm 1.1 \cdot 10^{-6} \) | \(a_{555}= +0.01813900 \pm 7.0 \cdot 10^{-7} \) |
\(a_{556}= -0.28450009 \pm 1.3 \cdot 10^{-6} \) | \(a_{557}= +1.02846598 \pm 5.4 \cdot 10^{-7} \) | \(a_{558}= -0.24139389 \pm 1.5 \cdot 10^{-6} \) |
\(a_{559}= -0.75090145 \pm 8.6 \cdot 10^{-7} \) | \(a_{560}= -0.78616361 \pm 1.8 \cdot 10^{-6} \) | \(a_{561}= +1.07366941 \pm 1.7 \cdot 10^{-6} \) |
\(a_{562}= +2.14938166 \pm 1.1 \cdot 10^{-6} \) | \(a_{563}= -1.66112069 \pm 7.4 \cdot 10^{-7} \) | \(a_{564}= +0.28537028 \pm 2.1 \cdot 10^{-6} \) |
\(a_{565}= +0.24469510 \pm 1.0 \cdot 10^{-6} \) | \(a_{566}= +1.26369121 \pm 9.5 \cdot 10^{-7} \) | \(a_{567}= -0.15826367 \pm 9.3 \cdot 10^{-7} \) |
\(a_{568}= +0.20934271 \pm 7.3 \cdot 10^{-7} \) | \(a_{569}= +0.48468519 \pm 9.3 \cdot 10^{-7} \) | \(a_{570}= -0.33714128 \pm 1.8 \cdot 10^{-6} \) |
\(a_{571}= +0.45940509 \pm 8.3 \cdot 10^{-7} \) | \(a_{572}= +0.74416968 \pm 7.7 \cdot 10^{-7} \) | \(a_{573}= +0.94781958 \pm 6.7 \cdot 10^{-7} \) |
\(a_{574}= +1.54782564 \pm 9.6 \cdot 10^{-7} \) | \(a_{575}= +0.04584573 \pm 7.2 \cdot 10^{-7} \) | \(a_{576}= +0.13273366 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= -0.30661316 \pm 1.0 \cdot 10^{-6} \) | \(a_{578}= -0.86595442 \pm 1.0 \cdot 10^{-6} \) | \(a_{579}= -0.74170123 \pm 7.1 \cdot 10^{-7} \) |
\(a_{580}= +0.26969456 \pm 1.6 \cdot 10^{-6} \) | \(a_{581}= +1.02869906 \pm 6.2 \cdot 10^{-7} \) | \(a_{582}= +0.44032651 \pm 1.8 \cdot 10^{-6} \) |
\(a_{583}= +0.24702503 \pm 8.6 \cdot 10^{-7} \) | \(a_{584}= +0.14103431 \pm 9.2 \cdot 10^{-7} \) | \(a_{585}= -0.21022042 \pm 9.3 \cdot 10^{-7} \) |
\(a_{586}= -1.42581300 \pm 9.5 \cdot 10^{-7} \) | \(a_{587}= -1.29018096 \pm 9.6 \cdot 10^{-7} \) | \(a_{588}= -0.22225926 \pm 1.7 \cdot 10^{-6} \) |
\(a_{589}= +0.68811887 \pm 5.1 \cdot 10^{-7} \) | \(a_{590}= -0.21349489 \pm 1.8 \cdot 10^{-6} \) | \(a_{591}= +0.14980648 \pm 5.3 \cdot 10^{-7} \) |
\(a_{592}= -0.08670281 \pm 5.9 \cdot 10^{-7} \) | \(a_{593}= -0.05057328 \pm 5.9 \cdot 10^{-7} \) | \(a_{594}= +0.31816801 \pm 2.0 \cdot 10^{-6} \) |
\(a_{595}= -0.83994795 \pm 1.7 \cdot 10^{-6} \) | \(a_{596}= +0.05159981 \pm 8.4 \cdot 10^{-7} \) | \(a_{597}= +1.09838861 \pm 9.5 \cdot 10^{-7} \) |
\(a_{598}= -0.37894037 \pm 4.8 \cdot 10^{-7} \) | \(a_{599}= -0.65183073 \pm 7.6 \cdot 10^{-7} \) | \(a_{600}= -0.08471182 \pm 7.8 \cdot 10^{-7} \) |
\(a_{601}= +1.60013733 \pm 9.3 \cdot 10^{-7} \) | \(a_{602}= -0.88909128 \pm 9.2 \cdot 10^{-7} \) | \(a_{603}= -0.04638986 \pm 8.1 \cdot 10^{-7} \) |
\(a_{604}= +0.10468262 \pm 1.4 \cdot 10^{-6} \) | \(a_{605}= -0.44229501 \pm 8.9 \cdot 10^{-7} \) | \(a_{606}= -0.09766130 \pm 1.9 \cdot 10^{-6} \) |
\(a_{607}= +0.98697670 \pm 1.2 \cdot 10^{-6} \) | \(a_{608}= +0.79433729 \pm 7.7 \cdot 10^{-7} \) | \(a_{609}= -1.32540033 \pm 1.5 \cdot 10^{-6} \) |
\(a_{610}= +0.24932331 \pm 2.0 \cdot 10^{-6} \) | \(a_{611}= -1.86284740 \pm 9.3 \cdot 10^{-7} \) | \(a_{612}= -0.16446202 \pm 1.8 \cdot 10^{-6} \) |
\(a_{613}= -0.54746867 \pm 9.9 \cdot 10^{-7} \) | \(a_{614}= -1.62678522 \pm 1.3 \cdot 10^{-6} \) | \(a_{615}= +0.23934913 \pm 8.2 \cdot 10^{-7} \) |
\(a_{616}= -1.47372335 \pm 6.9 \cdot 10^{-7} \) | \(a_{617}= -0.75218627 \pm 6.1 \cdot 10^{-7} \) | \(a_{618}= -0.94930236 \pm 1.9 \cdot 10^{-6} \) |
\(a_{619}= +1.50063860 \pm 7.2 \cdot 10^{-7} \) | \(a_{620}= -0.10337486 \pm 1.5 \cdot 10^{-6} \) | \(a_{621}= -0.04411507 \pm 7.2 \cdot 10^{-7} \) |
\(a_{622}= -0.95283288 \pm 8.8 \cdot 10^{-7} \) | \(a_{623}= +0.70477137 \pm 8.3 \cdot 10^{-7} \) | \(a_{624}= +1.00483492 \pm 1.8 \cdot 10^{-6} \) |
\(a_{625}= +0.04 \) | \(a_{626}= -0.96569068 \pm 1.0 \cdot 10^{-6} \) | \(a_{627}= -0.90697163 \pm 1.7 \cdot 10^{-6} \) |
\(a_{628}= -0.20626087 \pm 9.2 \cdot 10^{-7} \) | \(a_{629}= -0.09263447 \pm 6.8 \cdot 10^{-7} \) | \(a_{630}= -0.24890769 \pm 2.0 \cdot 10^{-6} \) |
\(a_{631}= -1.08835066 \pm 9.5 \cdot 10^{-7} \) | \(a_{632}= +0.82032226 \pm 8.7 \cdot 10^{-7} \) | \(a_{633}= -0.21381617 \pm 8.4 \cdot 10^{-7} \) |
\(a_{634}= +0.59371801 \pm 1.3 \cdot 10^{-6} \) | \(a_{635}= +0.69764385 \pm 8.0 \cdot 10^{-7} \) | \(a_{636}= -0.03783868 \pm 2.2 \cdot 10^{-6} \) |
\(a_{637}= +1.45086969 \pm 6.0 \cdot 10^{-7} \) | \(a_{638}= +2.66454061 \pm 9.4 \cdot 10^{-7} \) | \(a_{639}= +0.09511783 \pm 1.0 \cdot 10^{-6} \) |
\(a_{640}= +0.52767665 \pm 1.0 \cdot 10^{-6} \) | \(a_{641}= +1.56434068 \pm 8.5 \cdot 10^{-7} \) | \(a_{642}= -0.68523863 \pm 1.9 \cdot 10^{-6} \) |
\(a_{643}= +0.53323558 \pm 7.1 \cdot 10^{-7} \) | \(a_{644}= -0.12217037 \pm 6.9 \cdot 10^{-7} \) | \(a_{645}= -0.13748527 \pm 8.9 \cdot 10^{-7} \) |
\(a_{646}= +1.72175437 \pm 5.2 \cdot 10^{-7} \) | \(a_{647}= +0.34038326 \pm 6.5 \cdot 10^{-7} \) | \(a_{648}= +0.08151399 \pm 7.8 \cdot 10^{-7} \) |
\(a_{649}= -0.57434026 \pm 7.2 \cdot 10^{-7} \) | \(a_{650}= -0.33062217 \pm 2.0 \cdot 10^{-6} \) | \(a_{651}= +0.50803056 \pm 1.4 \cdot 10^{-6} \) |
\(a_{652}= -0.19363169 \pm 9.6 \cdot 10^{-7} \) | \(a_{653}= -0.41927220 \pm 8.8 \cdot 10^{-7} \) | \(a_{654}= +0.09939775 \pm 1.9 \cdot 10^{-6} \) |
\(a_{655}= +0.57515275 \pm 1.0 \cdot 10^{-6} \) | \(a_{656}= -1.14406754 \pm 8.8 \cdot 10^{-7} \) | \(a_{657}= +0.06408094 \pm 9.0 \cdot 10^{-7} \) |
\(a_{658}= -2.20567077 \pm 1.4 \cdot 10^{-6} \) | \(a_{659}= +0.89132704 \pm 1.1 \cdot 10^{-6} \) | \(a_{660}= +0.13625272 \pm 2.0 \cdot 10^{-6} \) |
\(a_{661}= +1.21442099 \pm 9.8 \cdot 10^{-7} \) | \(a_{662}= +0.32519600 \pm 1.2 \cdot 10^{-6} \) | \(a_{663}= +1.07357937 \pm 1.7 \cdot 10^{-6} \) |
\(a_{664}= -0.52983327 \pm 6.8 \cdot 10^{-7} \) | \(a_{665}= +0.70953774 \pm 1.7 \cdot 10^{-6} \) | \(a_{666}= -0.02745102 \pm 1.7 \cdot 10^{-6} \) |
\(a_{667}= -0.36944761 \pm 3.0 \cdot 10^{-7} \) | \(a_{668}= +0.37738805 \pm 1.0 \cdot 10^{-6} \) | \(a_{669}= -1.05913887 \pm 7.9 \cdot 10^{-7} \) |
\(a_{670}= -0.07295920 \pm 1.8 \cdot 10^{-6} \) | \(a_{671}= +0.67072524 \pm 1.1 \cdot 10^{-6} \) | \(a_{672}= +0.58645045 \pm 1.7 \cdot 10^{-6} \) |
\(a_{673}= +0.26400371 \pm 1.0 \cdot 10^{-6} \) | \(a_{674}= -0.80294464 \pm 8.9 \cdot 10^{-7} \) | \(a_{675}= -0.03849002 \pm 1.2 \cdot 10^{-6} \) |
\(a_{676}= +0.36993359 \pm 1.0 \cdot 10^{-6} \) | \(a_{677}= -1.39800966 \pm 9.9 \cdot 10^{-7} \) | \(a_{678}= -0.37031428 \pm 2.1 \cdot 10^{-6} \) |
\(a_{679}= -0.92669837 \pm 8.1 \cdot 10^{-7} \) | \(a_{680}= +0.43261668 \pm 1.5 \cdot 10^{-6} \) | \(a_{681}= -0.14718171 \pm 8.5 \cdot 10^{-7} \) |
\(a_{682}= -1.02132769 \pm 4.4 \cdot 10^{-7} \) | \(a_{683}= +0.32545637 \pm 6.7 \cdot 10^{-7} \) | \(a_{684}= +0.13892766 \pm 1.8 \cdot 10^{-6} \) |
\(a_{685}= -0.15292220 \pm 8.2 \cdot 10^{-7} \) | \(a_{686}= +0.04815249 \pm 9.5 \cdot 10^{-7} \) | \(a_{687}= +0.08124526 \pm 1.2 \cdot 10^{-6} \) |
\(a_{688}= +0.65716735 \pm 9.3 \cdot 10^{-7} \) | \(a_{689}= +0.24700431 \pm 8.2 \cdot 10^{-7} \) | \(a_{690}= -0.06938156 \pm 1.7 \cdot 10^{-6} \) |
\(a_{691}= -0.58562017 \pm 1.0 \cdot 10^{-6} \) | \(a_{692}= -0.74300128 \pm 9.5 \cdot 10^{-7} \) | \(a_{693}= -0.66960714 \pm 1.8 \cdot 10^{-6} \) |
\(a_{694}= +0.46734098 \pm 1.2 \cdot 10^{-6} \) | \(a_{695}= +0.34003543 \pm 1.0 \cdot 10^{-6} \) | \(a_{696}= +0.68264979 \pm 1.3 \cdot 10^{-6} \) |
\(a_{697}= -1.22233740 \pm 7.0 \cdot 10^{-7} \) | \(a_{698}= -0.52971827 \pm 1.1 \cdot 10^{-6} \) | \(a_{699}= +0.38584376 \pm 1.2 \cdot 10^{-6} \) |
\(a_{700}= -0.10659258 \pm 2.0 \cdot 10^{-6} \) | \(a_{701}= -1.13501784 \pm 7.4 \cdot 10^{-7} \) | \(a_{702}= +0.31814133 \pm 2.0 \cdot 10^{-6} \) |
\(a_{703}= +0.07825205 \pm 6.6 \cdot 10^{-7} \) | \(a_{704}= +0.56159068 \pm 8.6 \cdot 10^{-7} \) | \(a_{705}= -0.34107548 \pm 1.0 \cdot 10^{-6} \) |
\(a_{706}= -1.14451054 \pm 1.2 \cdot 10^{-6} \) | \(a_{707}= +0.20553514 \pm 9.0 \cdot 10^{-7} \) | \(a_{708}= +0.08797602 \pm 1.8 \cdot 10^{-6} \) |
\(a_{709}= -1.85993688 \pm 4.6 \cdot 10^{-7} \) | \(a_{710}= +0.14959567 \pm 2.1 \cdot 10^{-6} \) | \(a_{711}= +0.37272507 \pm 9.3 \cdot 10^{-7} \) |
\(a_{712}= -0.36299374 \pm 6.5 \cdot 10^{-7} \) | \(a_{713}= +0.14161055 \pm 4.4 \cdot 10^{-7} \) | \(a_{714}= +1.27115223 \pm 2.8 \cdot 10^{-6} \) |
\(a_{715}= -0.88943401 \pm 1.8 \cdot 10^{-6} \) | \(a_{716}= +0.47663322 \pm 9.2 \cdot 10^{-7} \) | \(a_{717}= +0.33061161 \pm 7.3 \cdot 10^{-7} \) |
\(a_{718}= +1.58797676 \pm 1.1 \cdot 10^{-6} \) | \(a_{719}= -1.06839304 \pm 8.3 \cdot 10^{-7} \) | \(a_{720}= +0.18397886 \pm 9.0 \cdot 10^{-7} \) |
\(a_{721}= +1.99787414 \pm 7.8 \cdot 10^{-7} \) | \(a_{722}= -0.28218346 \pm 8.5 \cdot 10^{-7} \) | \(a_{723}= -0.51739314 \pm 9.9 \cdot 10^{-7} \) |
\(a_{724}= -0.16919847 \pm 1.1 \cdot 10^{-6} \) | \(a_{725}= -0.32233981 \pm 6.0 \cdot 10^{-7} \) | \(a_{726}= +0.66935610 \pm 1.9 \cdot 10^{-6} \) |
\(a_{727}= +1.39059936 \pm 8.9 \cdot 10^{-7} \) | \(a_{728}= -1.47359976 \pm 6.2 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.10078269 \pm 1.9 \cdot 10^{-6} \) | \(a_{731}= +0.70212658 \pm 8.4 \cdot 10^{-7} \) | \(a_{732}= -0.10274003 \pm 2.0 \cdot 10^{-6} \) |
\(a_{733}= -1.18780779 \pm 1.2 \cdot 10^{-6} \) | \(a_{734}= +0.99610087 \pm 9.4 \cdot 10^{-7} \) | \(a_{735}= +0.26564498 \pm 7.0 \cdot 10^{-7} \) |
\(a_{736}= +0.16346964 \pm 5.3 \cdot 10^{-7} \) | \(a_{737}= -0.19627359 \pm 4.6 \cdot 10^{-7} \) | \(a_{738}= -0.36222384 \pm 1.8 \cdot 10^{-6} \) |
\(a_{739}= -0.60372080 \pm 5.3 \cdot 10^{-7} \) | \(a_{740}= -0.01175567 \pm 1.7 \cdot 10^{-6} \) | \(a_{741}= -0.90689557 \pm 1.7 \cdot 10^{-6} \) |
\(a_{742}= +0.29246099 \pm 1.1 \cdot 10^{-6} \) | \(a_{743}= -1.19795906 \pm 7.4 \cdot 10^{-7} \) | \(a_{744}= -0.26166204 \pm 1.2 \cdot 10^{-6} \) |
\(a_{745}= -0.06167226 \pm 6.1 \cdot 10^{-7} \) | \(a_{746}= +0.67691059 \pm 1.0 \cdot 10^{-6} \) | \(a_{747}= -0.24073727 \pm 6.1 \cdot 10^{-7} \) |
\(a_{748}= -0.69583207 \pm 6.0 \cdot 10^{-7} \) | \(a_{749}= +1.44213329 \pm 8.4 \cdot 10^{-7} \) | \(a_{750}= -0.06053481 \pm 1.0 \cdot 10^{-6} \) |
\(a_{751}= +0.64878375 \pm 7.3 \cdot 10^{-7} \) | \(a_{752}= +1.63031045 \pm 7.9 \cdot 10^{-7} \) | \(a_{753}= +0.86542370 \pm 7.2 \cdot 10^{-7} \) |
\(a_{754}= +2.66431717 \pm 7.0 \cdot 10^{-7} \) | \(a_{755}= -0.12511701 \pm 1.1 \cdot 10^{-6} \) | \(a_{756}= +0.10256876 \pm 2.0 \cdot 10^{-6} \) |
\(a_{757}= +1.39802187 \pm 1.0 \cdot 10^{-6} \) | \(a_{758}= +0.94114482 \pm 1.1 \cdot 10^{-6} \) | \(a_{759}= -0.18664908 \pm 1.6 \cdot 10^{-6} \) |
\(a_{760}= -0.36544867 \pm 1.5 \cdot 10^{-6} \) | \(a_{761}= -1.60348552 \pm 1.0 \cdot 10^{-6} \) | \(a_{762}= -1.05579344 \pm 1.8 \cdot 10^{-6} \) |
\(a_{763}= -0.20918961 \pm 7.1 \cdot 10^{-7} \) | \(a_{764}= -0.61427034 \pm 7.9 \cdot 10^{-7} \) | \(a_{765}= +0.19656553 \pm 8.2 \cdot 10^{-7} \) |
\(a_{766}= -1.40833039 \pm 1.0 \cdot 10^{-6} \) | \(a_{767}= -0.57429210 \pm 6.0 \cdot 10^{-7} \) | \(a_{768}= -0.56866871 \pm 9.1 \cdot 10^{-7} \) |
\(a_{769}= -1.52318347 \pm 9.4 \cdot 10^{-7} \) | \(a_{770}= -1.05311825 \pm 2.9 \cdot 10^{-6} \) | \(a_{771}= -0.55739421 \pm 9.5 \cdot 10^{-7} \) |
\(a_{772}= +0.48068754 \pm 9.6 \cdot 10^{-7} \) | \(a_{773}= +1.07046659 \pm 1.0 \cdot 10^{-6} \) | \(a_{774}= +0.20806611 \pm 1.9 \cdot 10^{-6} \) |
\(a_{775}= +0.12355397 \pm 4.9 \cdot 10^{-7} \) | \(a_{776}= +0.47729764 \pm 5.6 \cdot 10^{-7} \) | \(a_{777}= +0.05777262 \pm 1.6 \cdot 10^{-6} \) |
\(a_{778}= +1.19912220 \pm 9.6 \cdot 10^{-7} \) | \(a_{779}= +1.03255746 \pm 6.1 \cdot 10^{-7} \) | \(a_{780}= +0.13624130 \pm 1.9 \cdot 10^{-6} \) |
\(a_{781}= +0.40243967 \pm 7.9 \cdot 10^{-7} \) | \(a_{782}= +0.35432626 \pm 5.4 \cdot 10^{-7} \) | \(a_{783}= +0.31017163 \pm 6.0 \cdot 10^{-7} \) |
\(a_{784}= -1.26975941 \pm 6.9 \cdot 10^{-7} \) | \(a_{785}= +0.24652366 \pm 8.3 \cdot 10^{-7} \) | \(a_{786}= -0.87041906 \pm 2.0 \cdot 10^{-6} \) |
\(a_{787}= -0.96859911 \pm 1.0 \cdot 10^{-6} \) | \(a_{788}= -0.09708775 \pm 6.7 \cdot 10^{-7} \) | \(a_{789}= +0.23204688 \pm 7.5 \cdot 10^{-7} \) |
\(a_{790}= +0.58619981 \pm 2.0 \cdot 10^{-6} \) | \(a_{791}= +0.77935267 \pm 1.0 \cdot 10^{-6} \) | \(a_{792}= +0.34488234 \pm 1.7 \cdot 10^{-6} \) |
\(a_{793}= +0.67066899 \pm 9.7 \cdot 10^{-7} \) | \(a_{794}= -1.57701631 \pm 8.0 \cdot 10^{-7} \) | \(a_{795}= +0.04522491 \pm 1.1 \cdot 10^{-6} \) |
\(a_{796}= -0.71185229 \pm 1.0 \cdot 10^{-6} \) | \(a_{797}= +0.00579849 \pm 1.0 \cdot 10^{-6} \) | \(a_{798}= -1.07379330 \pm 2.8 \cdot 10^{-6} \) |
\(a_{799}= +1.74184598 \pm 8.2 \cdot 10^{-7} \) | \(a_{800}= +0.14262583 \pm 8.2 \cdot 10^{-7} \) | \(a_{801}= -0.16493136 \pm 8.6 \cdot 10^{-7} \) |
\(a_{802}= +0.81021913 \pm 6.5 \cdot 10^{-7} \) | \(a_{803}= +0.27112384 \pm 8.7 \cdot 10^{-7} \) | \(a_{804}= +0.03006470 \pm 1.8 \cdot 10^{-6} \) |
\(a_{805}= +0.14601842 \pm 1.6 \cdot 10^{-6} \) | \(a_{806}= -1.02124204 \pm 5.9 \cdot 10^{-7} \) | \(a_{807}= +0.37281978 \pm 8.6 \cdot 10^{-7} \) |
\(a_{808}= -0.10586124 \pm 6.0 \cdot 10^{-7} \) | \(a_{809}= +0.23324889 \pm 8.7 \cdot 10^{-7} \) | \(a_{810}= +0.05824965 \pm 1.0 \cdot 10^{-6} \) |
\(a_{811}= -1.68686909 \pm 8.4 \cdot 10^{-7} \) | \(a_{812}= +0.85897582 \pm 8.0 \cdot 10^{-7} \) | \(a_{813}= +0.84666919 \pm 8.8 \cdot 10^{-7} \) |
\(a_{814}= -0.11614416 \pm 6.0 \cdot 10^{-7} \) | \(a_{815}= +0.23142923 \pm 9.8 \cdot 10^{-7} \) | \(a_{816}= -0.93956578 \pm 1.7 \cdot 10^{-6} \) |
\(a_{817}= -0.59311450 \pm 8.3 \cdot 10^{-7} \) | \(a_{818}= -1.16740461 \pm 9.8 \cdot 10^{-7} \) | \(a_{819}= -0.66955098 \pm 1.8 \cdot 10^{-6} \) |
\(a_{820}= -0.15511925 \pm 1.8 \cdot 10^{-6} \) | \(a_{821}= -1.05653571 \pm 5.8 \cdot 10^{-7} \) | \(a_{822}= +0.23142790 \pm 1.8 \cdot 10^{-6} \) |
\(a_{823}= +1.80240396 \pm 7.4 \cdot 10^{-7} \) | \(a_{824}= -1.02900862 \pm 8.5 \cdot 10^{-7} \) | \(a_{825}= -0.16284969 \pm 9.4 \cdot 10^{-7} \) |
\(a_{826}= -0.67998017 \pm 1.2 \cdot 10^{-6} \) | \(a_{827}= +0.07042749 \pm 7.5 \cdot 10^{-7} \) | \(a_{828}= +0.02859044 \pm 1.7 \cdot 10^{-6} \) |
\(a_{829}= +0.48405195 \pm 7.5 \cdot 10^{-7} \) | \(a_{830}= -0.37861726 \pm 1.6 \cdot 10^{-6} \) | \(a_{831}= +0.37582597 \pm 9.0 \cdot 10^{-7} \) |
\(a_{832}= +0.56154358 \pm 9.2 \cdot 10^{-7} \) | \(a_{833}= -1.35662832 \pm 7.8 \cdot 10^{-7} \) | \(a_{834}= -0.51459949 \pm 2.1 \cdot 10^{-6} \) |
\(a_{835}= -0.45105542 \pm 1.1 \cdot 10^{-6} \) | \(a_{836}= +0.58779728 \pm 9.4 \cdot 10^{-7} \) | \(a_{837}= -0.11888986 \pm 4.9 \cdot 10^{-7} \) |
\(a_{838}= +0.47778611 \pm 1.1 \cdot 10^{-6} \) | \(a_{839}= +0.34326747 \pm 7.0 \cdot 10^{-7} \) | \(a_{840}= -0.26980672 \pm 1.7 \cdot 10^{-6} \) |
\(a_{841}= +1.59757386 \pm 8.6 \cdot 10^{-7} \) | \(a_{842}= -0.85176959 \pm 1.4 \cdot 10^{-6} \) | \(a_{843}= +1.05860051 \pm 9.6 \cdot 10^{-7} \) |
\(a_{844}= +0.13857166 \pm 1.0 \cdot 10^{-6} \) | \(a_{845}= -0.44214583 \pm 1.0 \cdot 10^{-6} \) | \(a_{846}= +0.51617347 \pm 2.1 \cdot 10^{-6} \) |
\(a_{847}= -1.40870739 \pm 7.6 \cdot 10^{-7} \) | \(a_{848}= -0.21617107 \pm 1.0 \cdot 10^{-6} \) | \(a_{849}= +0.62238558 \pm 9.1 \cdot 10^{-7} \) |
\(a_{850}= +0.30914657 \pm 1.8 \cdot 10^{-6} \) | \(a_{851}= +0.01610378 \pm 6.1 \cdot 10^{-7} \) | \(a_{852}= -0.06164471 \pm 2.1 \cdot 10^{-6} \) |
\(a_{853}= -1.19663107 \pm 1.0 \cdot 10^{-6} \) | \(a_{854}= +0.79409348 \pm 1.0 \cdot 10^{-6} \) | \(a_{855}= -0.16604679 \pm 8.1 \cdot 10^{-7} \) |
\(a_{856}= -0.74277331 \pm 6.7 \cdot 10^{-7} \) | \(a_{857}= +0.36845593 \pm 5.6 \cdot 10^{-7} \) | \(a_{858}= +1.34604296 \pm 2.9 \cdot 10^{-6} \) |
\(a_{859}= -0.64325586 \pm 9.1 \cdot 10^{-7} \) | \(a_{860}= +0.08910253 \pm 1.9 \cdot 10^{-6} \) | \(a_{861}= +0.76232576 \pm 1.7 \cdot 10^{-6} \) |
\(a_{862}= -0.01559734 \pm 9.7 \cdot 10^{-7} \) | \(a_{863}= -0.60292808 \pm 8.0 \cdot 10^{-7} \) | \(a_{864}= -0.13724177 \pm 8.2 \cdot 10^{-7} \) |
\(a_{865}= +0.88803753 \pm 7.6 \cdot 10^{-7} \) | \(a_{866}= +2.05241435 \pm 7.6 \cdot 10^{-7} \) | \(a_{867}= -0.42649465 \pm 7.0 \cdot 10^{-7} \) |
\(a_{868}= -0.32924842 \pm 6.7 \cdot 10^{-7} \) | \(a_{869}= +1.57698455 \pm 1.1 \cdot 10^{-6} \) | \(a_{870}= +0.48781948 \pm 1.6 \cdot 10^{-6} \) |
\(a_{871}= -0.19625713 \pm 6.9 \cdot 10^{-7} \) | \(a_{872}= +0.10774348 \pm 6.2 \cdot 10^{-7} \) | \(a_{873}= +0.21686696 \pm 7.9 \cdot 10^{-7} \) |
\(a_{874}= -0.29931361 \pm 3.9 \cdot 10^{-7} \) | \(a_{875}= +0.12739980 \pm 9.3 \cdot 10^{-7} \) | \(a_{876}= -0.04153008 \pm 1.9 \cdot 10^{-6} \) |
\(a_{877}= -0.67022051 \pm 7.1 \cdot 10^{-7} \) | \(a_{878}= +2.26892264 \pm 9.9 \cdot 10^{-7} \) | \(a_{879}= -0.70223283 \pm 7.2 \cdot 10^{-7} \) |
\(a_{880}= +0.77840706 \pm 1.8 \cdot 10^{-6} \) | \(a_{881}= +0.27229396 \pm 8.3 \cdot 10^{-7} \) | \(a_{882}= -0.40201921 \pm 1.7 \cdot 10^{-6} \) |
\(a_{883}= -1.30350059 \pm 9.0 \cdot 10^{-7} \) | \(a_{884}= -0.69577372 \pm 9.9 \cdot 10^{-7} \) | \(a_{885}= -0.10514922 \pm 7.6 \cdot 10^{-7} \) |
\(a_{886}= +0.47611460 \pm 8.7 \cdot 10^{-7} \) | \(a_{887}= +0.58898064 \pm 1.0 \cdot 10^{-6} \) | \(a_{888}= -0.02975589 \pm 1.4 \cdot 10^{-6} \) |
\(a_{889}= +2.22199215 \pm 8.7 \cdot 10^{-7} \) | \(a_{890}= -0.25939423 \pm 1.9 \cdot 10^{-6} \) | \(a_{891}= +0.15670219 \pm 9.4 \cdot 10^{-7} \) |
\(a_{892}= +0.68641501 \pm 1.0 \cdot 10^{-6} \) | \(a_{893}= -1.47140720 \pm 1.1 \cdot 10^{-6} \) | \(a_{894}= +0.09333296 \pm 1.6 \cdot 10^{-6} \) |
\(a_{895}= -0.56967357 \pm 8.1 \cdot 10^{-7} \) | \(a_{896}= +1.68064749 \pm 1.1 \cdot 10^{-6} \) | \(a_{897}= -0.18663343 \pm 1.6 \cdot 10^{-6} \) |
\(a_{898}= -0.53410301 \pm 8.2 \cdot 10^{-7} \) | \(a_{899}= -0.99565910 \pm 3.1 \cdot 10^{-7} \) | \(a_{900}= +0.02494491 \pm 1.0 \cdot 10^{-6} \) |
\(a_{901}= -0.23096013 \pm 8.4 \cdot 10^{-7} \) | \(a_{902}= -1.53255428 \pm 1.3 \cdot 10^{-6} \) | \(a_{903}= -0.43788988 \pm 1.8 \cdot 10^{-6} \) |
\(a_{904}= -0.40140697 \pm 7.3 \cdot 10^{-7} \) | \(a_{905}= +0.20222656 \pm 8.3 \cdot 10^{-7} \) | \(a_{906}= +0.18934836 \pm 2.1 \cdot 10^{-6} \) |
\(a_{907}= -0.20951621 \pm 6.9 \cdot 10^{-7} \) | \(a_{908}= +0.09538668 \pm 9.2 \cdot 10^{-7} \) | \(a_{909}= -0.04809956 \pm 8.5 \cdot 10^{-7} \) |
\(a_{910}= -1.05302994 \pm 2.9 \cdot 10^{-6} \) | \(a_{911}= -0.37085131 \pm 9.5 \cdot 10^{-7} \) | \(a_{912}= +0.79368891 \pm 1.7 \cdot 10^{-6} \) |
\(a_{913}= -1.01854957 \pm 5.8 \cdot 10^{-7} \) | \(a_{914}= -1.22363992 \pm 1.1 \cdot 10^{-6} \) | \(a_{915}= +0.12279521 \pm 9.7 \cdot 10^{-7} \) |
\(a_{916}= -0.05265406 \pm 1.4 \cdot 10^{-6} \) | \(a_{917}= +1.83185863 \pm 9.1 \cdot 10^{-7} \) | \(a_{918}= -0.29747643 \pm 1.8 \cdot 10^{-6} \) |
\(a_{919}= -1.13587461 \pm 5.8 \cdot 10^{-7} \) | \(a_{920}= -0.07520705 \pm 1.4 \cdot 10^{-6} \) | \(a_{921}= -0.80121446 \pm 9.0 \cdot 10^{-7} \) |
\(a_{922}= -1.32769469 \pm 7.5 \cdot 10^{-7} \) | \(a_{923}= +0.40240592 \pm 6.5 \cdot 10^{-7} \) | \(a_{924}= +0.43396423 \pm 2.9 \cdot 10^{-6} \) |
\(a_{925}= +0.01405041 \pm 7.0 \cdot 10^{-7} \) | \(a_{926}= -0.63532429 \pm 1.0 \cdot 10^{-6} \) | \(a_{927}= -0.46754468 \pm 9.2 \cdot 10^{-7} \) |
\(a_{928}= -1.14934961 \pm 6.5 \cdot 10^{-7} \) | \(a_{929}= -0.75985461 \pm 1.1 \cdot 10^{-6} \) | \(a_{930}= -0.18698290 \pm 1.5 \cdot 10^{-6} \) |
\(a_{931}= +1.14599838 \pm 4.4 \cdot 10^{-7} \) | \(a_{932}= -0.25006064 \pm 1.3 \cdot 10^{-6} \) | \(a_{933}= -0.46928351 \pm 8.1 \cdot 10^{-7} \) |
\(a_{934}= +0.18087267 \pm 1.0 \cdot 10^{-6} \) | \(a_{935}= +0.83166074 \pm 1.7 \cdot 10^{-6} \) | \(a_{936}= +0.34485342 \pm 1.7 \cdot 10^{-6} \) |
\(a_{937}= -0.60255692 \pm 9.5 \cdot 10^{-7} \) | \(a_{938}= -0.23237470 \pm 1.0 \cdot 10^{-6} \) | \(a_{939}= -0.47561616 \pm 8.6 \cdot 10^{-7} \) |
\(a_{940}= +0.22104686 \pm 2.1 \cdot 10^{-6} \) | \(a_{941}= +1.18512803 \pm 9.0 \cdot 10^{-7} \) | \(a_{942}= -0.37308157 \pm 1.9 \cdot 10^{-6} \) |
\(a_{943}= +0.21249386 \pm 4.9 \cdot 10^{-7} \) | \(a_{944}= +0.50260392 \pm 3.7 \cdot 10^{-7} \) | \(a_{945}= -0.12259051 \pm 9.3 \cdot 10^{-7} \) |
\(a_{946}= +0.88031921 \pm 9.2 \cdot 10^{-7} \) | \(a_{947}= -0.84154777 \pm 1.1 \cdot 10^{-6} \) | \(a_{948}= -0.24155858 \pm 2.0 \cdot 10^{-6} \) |
\(a_{949}= +0.27110110 \pm 8.3 \cdot 10^{-7} \) | \(a_{950}= -0.26114852 \pm 1.8 \cdot 10^{-6} \) | \(a_{951}= +0.29241442 \pm 1.0 \cdot 10^{-6} \) |
\(a_{952}= +1.37788195 \pm 8.4 \cdot 10^{-7} \) | \(a_{953}= -0.12731409 \pm 1.1 \cdot 10^{-6} \) | \(a_{954}= -0.06844204 \pm 2.2 \cdot 10^{-6} \) |
\(a_{955}= +0.73417789 \pm 6.7 \cdot 10^{-7} \) | \(a_{956}= -0.21426536 \pm 6.9 \cdot 10^{-7} \) | \(a_{957}= +1.31232349 \pm 1.5 \cdot 10^{-6} \) |
\(a_{958}= +2.14875365 \pm 8.8 \cdot 10^{-7} \) | \(a_{959}= -0.48705643 \pm 9.5 \cdot 10^{-7} \) | \(a_{960}= +0.10281505 \pm 1.0 \cdot 10^{-6} \) |
\(a_{961}= -0.61836040 \pm 8.0 \cdot 10^{-7} \) | \(a_{962}= -0.11613442 \pm 8.0 \cdot 10^{-7} \) | \(a_{963}= -0.33748960 \pm 8.6 \cdot 10^{-7} \) |
\(a_{964}= +0.33531620 \pm 9.9 \cdot 10^{-7} \) | \(a_{965}= -0.57451930 \pm 7.1 \cdot 10^{-7} \) | \(a_{966}= -0.22097993 \pm 2.7 \cdot 10^{-6} \) |
\(a_{967}= +1.68229483 \pm 1.0 \cdot 10^{-6} \) | \(a_{968}= +0.72555724 \pm 6.6 \cdot 10^{-7} \) | \(a_{969}= +0.84798809 \pm 1.6 \cdot 10^{-6} \) |
\(a_{970}= +0.34107545 \pm 1.8 \cdot 10^{-6} \) | \(a_{971}= +0.60045425 \pm 7.4 \cdot 10^{-7} \) | \(a_{972}= -0.02400325 \pm 1.0 \cdot 10^{-6} \) |
\(a_{973}= +1.08301112 \pm 9.6 \cdot 10^{-7} \) | \(a_{974}= +1.25973462 \pm 7.9 \cdot 10^{-7} \) | \(a_{975}= -0.16283604 \pm 9.3 \cdot 10^{-7} \) |
\(a_{976}= -0.58695020 \pm 9.5 \cdot 10^{-7} \) | \(a_{977}= -1.62962283 \pm 1.1 \cdot 10^{-6} \) | \(a_{978}= -0.35023810 \pm 2.0 \cdot 10^{-6} \) |
\(a_{979}= -0.69781786 \pm 8.4 \cdot 10^{-7} \) | \(a_{980}= -0.17216128 \pm 1.7 \cdot 10^{-6} \) | \(a_{981}= +0.04895478 \pm 8.4 \cdot 10^{-7} \) |
\(a_{982}= -1.94214359 \pm 1.3 \cdot 10^{-6} \) | \(a_{983}= +1.36493274 \pm 9.5 \cdot 10^{-7} \) | \(a_{984}= -0.39263724 \pm 1.6 \cdot 10^{-6} \) |
\(a_{985}= +0.11603960 \pm 5.3 \cdot 10^{-7} \) | \(a_{986}= -2.49125620 \pm 5.3 \cdot 10^{-7} \) | \(a_{987}= -1.08632368 \pm 2.0 \cdot 10^{-6} \) |
\(a_{988}= +0.58774798 \pm 8.0 \cdot 10^{-7} \) | \(a_{989}= -0.12205925 \pm 7.4 \cdot 10^{-7} \) | \(a_{990}= +0.24645188 \pm 2.0 \cdot 10^{-6} \) |
\(a_{991}= -0.29311823 \pm 1.2 \cdot 10^{-6} \) | \(a_{992}= +0.44054970 \pm 5.3 \cdot 10^{-7} \) | \(a_{993}= +0.16016357 \pm 1.0 \cdot 10^{-6} \) |
\(a_{994}= +0.47646145 \pm 9.1 \cdot 10^{-7} \) | \(a_{995}= +0.85080816 \pm 9.5 \cdot 10^{-7} \) | \(a_{996}= +0.15601890 \pm 1.6 \cdot 10^{-6} \) |
\(a_{997}= +1.32534102 \pm 8.4 \cdot 10^{-7} \) | \(a_{998}= +0.43036555 \pm 1.1 \cdot 10^{-6} \) | \(a_{999}= -0.01352001 \pm 7.0 \cdot 10^{-7} \) |
\(a_{1000}= -0.06561749 \pm 7.8 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000