Maass form invariants
Level: | \( 15 = 3 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 15.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(8.66501125743234703233038713886 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.78430801 \pm 2.2 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +2.18375508 \pm 2.3 \cdot 10^{-8} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -1.03017071 \pm 3.2 \cdot 10^{-8} \) |
\(a_{7}= -0.86471208 \pm 1.5 \cdot 10^{-8} \) | \(a_{8}= -2.11218367 \pm 2.3 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.79796680 \pm 3.2 \cdot 10^{-8} \) | \(a_{11}= +1.49839490 \pm 1.2 \cdot 10^{-8} \) | \(a_{12}= +1.26079158 \pm 3.3 \cdot 10^{-8} \) |
\(a_{13}= -1.32980681 \pm 1.3 \cdot 10^{-8} \) | \(a_{14}= +1.54291270 \pm 1.5 \cdot 10^{-8} \) | \(a_{15}= -0.25819889 \pm 1.0 \cdot 10^{-8} \) |
\(a_{16}= +1.58503116 \pm 1.8 \cdot 10^{-8} \) | \(a_{17}= +1.28573655 \pm 1.7 \cdot 10^{-8} \) | \(a_{18}= -0.59476934 \pm 3.2 \cdot 10^{-8} \) |
\(a_{19}= +0.27539008 \pm 1.4 \cdot 10^{-8} \) | \(a_{20}= -0.97660496 \pm 3.3 \cdot 10^{-8} \) | \(a_{21}= -0.49924175 \pm 2.5 \cdot 10^{-8} \) |
\(a_{22}= -2.67359803 \pm 1.4 \cdot 10^{-8} \) | \(a_{23}= +0.54590729 \pm 1.9 \cdot 10^{-8} \) | \(a_{24}= -1.21946981 \pm 3.4 \cdot 10^{-8} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +2.37278494 \pm 1.5 \cdot 10^{-8} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -1.88831940 \pm 1.3 \cdot 10^{-8} \) | \(a_{29}= -1.09434703 \pm 1.9 \cdot 10^{-8} \) | \(a_{30}= +0.46070635 \pm 3.2 \cdot 10^{-8} \) |
\(a_{31}= +0.59510980 \pm 1.6 \cdot 10^{-8} \) | \(a_{32}= -0.71600013 \pm 1.6 \cdot 10^{-8} \) | \(a_{33}= +0.86509870 \pm 2.3 \cdot 10^{-8} \) |
\(a_{34}= -2.29415002 \pm 2.2 \cdot 10^{-8} \) | \(a_{35}= +0.38671100 \pm 2.5 \cdot 10^{-8} \) | \(a_{36}= +0.72791836 \pm 3.3 \cdot 10^{-8} \) |
\(a_{37}= -1.83037580 \pm 1.5 \cdot 10^{-8} \) | \(a_{38}= -0.49138073 \pm 1.3 \cdot 10^{-8} \) | \(a_{39}= -0.76776432 \pm 2.3 \cdot 10^{-8} \) |
\(a_{40}= +0.94459725 \pm 3.4 \cdot 10^{-8} \) | \(a_{41}= -0.61025692 \pm 1.4 \cdot 10^{-8} \) | \(a_{42}= +0.89080106 \pm 4.7 \cdot 10^{-8} \) |
\(a_{43}= +0.20796810 \pm 1.6 \cdot 10^{-8} \) | \(a_{44}= +3.27212748 \pm 1.3 \cdot 10^{-8} \) | \(a_{45}= -0.14907120 \pm 1.4 \cdot 10^{-7} \) |
\(a_{46}= -0.97406675 \pm 2.9 \cdot 10^{-8} \) | \(a_{47}= -1.16144440 \pm 1.1 \cdot 10^{-8} \) | \(a_{48}= +0.91511817 \pm 2.8 \cdot 10^{-8} \) |
\(a_{49}= -0.25227301 \pm 1.7 \cdot 10^{-8} \) | \(a_{50}= -0.35686160 \pm 3.2 \cdot 10^{-8} \) | \(a_{51}= +0.74232034 \pm 2.7 \cdot 10^{-8} \) |
\(a_{52}= -2.90397236 \pm 1.7 \cdot 10^{-8} \) | \(a_{53}= -0.80364722 \pm 1.2 \cdot 10^{-8} \) | \(a_{54}= -0.34339024 \pm 3.2 \cdot 10^{-8} \) |
\(a_{55}= -0.67010257 \pm 2.3 \cdot 10^{-8} \) | \(a_{56}= +1.82643074 \pm 1.7 \cdot 10^{-8} \) | \(a_{57}= +0.15899654 \pm 2.5 \cdot 10^{-8} \) |
\(a_{58}= +1.95265216 \pm 2.8 \cdot 10^{-8} \) | \(a_{59}= +0.29886782 \pm 1.7 \cdot 10^{-8} \) | \(a_{60}= -0.56384314 \pm 3.3 \cdot 10^{-8} \) |
\(a_{61}= +1.08532497 \pm 1.5 \cdot 10^{-8} \) | \(a_{62}= -1.06185918 \pm 2.0 \cdot 10^{-8} \) | \(a_{63}= -0.28823736 \pm 2.5 \cdot 10^{-8} \) |
\(a_{64}= -0.30746640 \pm 1.9 \cdot 10^{-8} \) | \(a_{65}= +0.59470768 \pm 2.3 \cdot 10^{-8} \) | \(a_{66}= -1.54360254 \pm 4.5 \cdot 10^{-8} \) |
\(a_{67}= -1.49860892 \pm 1.4 \cdot 10^{-8} \) | \(a_{68}= +2.80773372 \pm 2.2 \cdot 10^{-8} \) | \(a_{69}= +0.31517972 \pm 3.0 \cdot 10^{-8} \) |
\(a_{70}= -0.69001153 \pm 4.7 \cdot 10^{-8} \) | \(a_{71}= -0.73247818 \pm 1.4 \cdot 10^{-8} \) | \(a_{72}= -0.70406122 \pm 3.4 \cdot 10^{-8} \) |
\(a_{73}= -0.92599192 \pm 1 \cdot 10^{-8} \) | \(a_{74}= +3.26595421 \pm 1.8 \cdot 10^{-8} \) | \(a_{75}= +0.11547005 \pm 2.2 \cdot 10^{-7} \) |
\(a_{76}= +0.60138449 \pm 1.2 \cdot 10^{-8} \) | \(a_{77}= -1.29568018 \pm 1.1 \cdot 10^{-8} \) | \(a_{78}= +1.36992802 \pm 4.5 \cdot 10^{-8} \) |
\(a_{79}= -0.69286237 \pm 1.7 \cdot 10^{-8} \) | \(a_{80}= -0.70884748 \pm 2.8 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +1.08888632 \pm 1.8 \cdot 10^{-8} \) | \(a_{83}= +0.83822107 \pm 1.3 \cdot 10^{-8} \) | \(a_{84}= -1.09022171 \pm 4.9 \cdot 10^{-8} \) |
\(a_{85}= -0.57499886 \pm 2.7 \cdot 10^{-8} \) | \(a_{86}= -0.37107914 \pm 2.4 \cdot 10^{-8} \) | \(a_{87}= -0.63182155 \pm 2.9 \cdot 10^{-8} \) |
\(a_{88}= -3.16488524 \pm 1.5 \cdot 10^{-8} \) | \(a_{89}= -0.49881381 \pm 1.4 \cdot 10^{-8} \) | \(a_{90}= +0.26598893 \pm 3.2 \cdot 10^{-8} \) |
\(a_{91}= +1.14990001 \pm 1.6 \cdot 10^{-8} \) | \(a_{92}= +1.19212782 \pm 3.3 \cdot 10^{-8} \) | \(a_{93}= +0.34358680 \pm 2.7 \cdot 10^{-8} \) |
\(a_{94}= +2.07237454 \pm 1.8 \cdot 10^{-8} \) | \(a_{95}= -0.12315819 \pm 2.5 \cdot 10^{-8} \) | \(a_{96}= -0.41338287 \pm 2.6 \cdot 10^{-8} \) |
\(a_{97}= -1.32236275 \pm 1.2 \cdot 10^{-8} \) | \(a_{98}= +0.45013276 \pm 2.2 \cdot 10^{-8} \) | \(a_{99}= +0.49946497 \pm 2.3 \cdot 10^{-8} \) |
\(a_{100}= +0.43675102 \pm 3.3 \cdot 10^{-8} \) | \(a_{101}= -0.74550764 \pm 1.4 \cdot 10^{-8} \) | \(a_{102}= -1.32452813 \pm 4.9 \cdot 10^{-8} \) |
\(a_{103}= -1.03462042 \pm 1.1 \cdot 10^{-8} \) | \(a_{104}= +2.80879621 \pm 1.8 \cdot 10^{-8} \) | \(a_{105}= +0.22326770 \pm 2.5 \cdot 10^{-8} \) |
\(a_{106}= +1.43395418 \pm 1.5 \cdot 10^{-8} \) | \(a_{107}= +1.12798787 \pm 1.4 \cdot 10^{-8} \) | \(a_{108}= +0.42026386 \pm 3.3 \cdot 10^{-8} \) |
\(a_{109}= -0.01022097 \pm 1.9 \cdot 10^{-8} \) | \(a_{110}= +1.19566939 \pm 4.5 \cdot 10^{-8} \) | \(a_{111}= -1.05676796 \pm 2.6 \cdot 10^{-8} \) |
\(a_{112}= -1.37059559 \pm 1.2 \cdot 10^{-8} \) | \(a_{113}= -0.82165420 \pm 1.4 \cdot 10^{-8} \) | \(a_{114}= -0.28369880 \pm 4.7 \cdot 10^{-8} \) |
\(a_{115}= -0.24413716 \pm 3.0 \cdot 10^{-8} \) | \(a_{116}= -2.38978587 \pm 2.8 \cdot 10^{-8} \) | \(a_{117}= -0.44326894 \pm 2.3 \cdot 10^{-8} \) |
\(a_{118}= -0.53327224 \pm 2.2 \cdot 10^{-8} \) | \(a_{119}= -1.11179193 \pm 1.0 \cdot 10^{-8} \) | \(a_{120}= +0.54536348 \pm 3.4 \cdot 10^{-8} \) |
\(a_{121}= +1.24518729 \pm 1.4 \cdot 10^{-8} \) | \(a_{122}= -1.93655405 \pm 2.1 \cdot 10^{-8} \) | \(a_{123}= -0.35233200 \pm 2.5 \cdot 10^{-8} \) |
\(a_{124}= +1.29957405 \pm 1.9 \cdot 10^{-8} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.51430423 \pm 4.7 \cdot 10^{-8} \) |
\(a_{127}= +0.97934150 \pm 1.7 \cdot 10^{-8} \) | \(a_{128}= +1.26461488 \pm 1.8 \cdot 10^{-8} \) | \(a_{129}= +0.12007044 \pm 2.7 \cdot 10^{-8} \) |
\(a_{130}= -1.06114168 \pm 4.5 \cdot 10^{-8} \) | \(a_{131}= +0.58619803 \pm 1.9 \cdot 10^{-8} \) | \(a_{132}= +1.88916368 \pm 4.6 \cdot 10^{-8} \) |
\(a_{133}= -0.23813313 \pm 1.6 \cdot 10^{-8} \) | \(a_{134}= +2.67397991 \pm 1.9 \cdot 10^{-8} \) | \(a_{135}= -0.08606630 \pm 3.3 \cdot 10^{-7} \) |
\(a_{136}= -2.71571174 \pm 1.9 \cdot 10^{-8} \) | \(a_{137}= +0.13216030 \pm 1.0 \cdot 10^{-8} \) | \(a_{138}= -0.56237770 \pm 5.2 \cdot 10^{-8} \) |
\(a_{139}= +0.05077442 \pm 1.9 \cdot 10^{-8} \) | \(a_{140}= +0.84448211 \pm 4.9 \cdot 10^{-8} \) | \(a_{141}= -0.67056024 \pm 2.2 \cdot 10^{-8} \) |
\(a_{142}= +1.30696668 \pm 1.3 \cdot 10^{-8} \) | \(a_{143}= -1.99257574 \pm 1 \cdot 10^{-8} \) | \(a_{144}= +0.52834372 \pm 2.8 \cdot 10^{-8} \) |
\(a_{145}= +0.48940687 \pm 2.9 \cdot 10^{-8} \) | \(a_{146}= +1.65225481 \pm 1.0 \cdot 10^{-8} \) | \(a_{147}= -0.14564989 \pm 2.7 \cdot 10^{-8} \) |
\(a_{148}= -3.99709245 \pm 1.8 \cdot 10^{-8} \) | \(a_{149}= -0.42594099 \pm 1.7 \cdot 10^{-8} \) | \(a_{150}= -0.20603414 \pm 3.2 \cdot 10^{-8} \) |
\(a_{151}= +1.33458605 \pm 1.7 \cdot 10^{-8} \) | \(a_{152}= -0.58167444 \pm 1.5 \cdot 10^{-8} \) | \(a_{153}= +0.42857885 \pm 2.7 \cdot 10^{-8} \) |
\(a_{154}= +2.31189252 \pm 1.0 \cdot 10^{-8} \) | \(a_{155}= -0.26614119 \pm 2.7 \cdot 10^{-8} \) | \(a_{156}= -1.67660923 \pm 4.7 \cdot 10^{-8} \) |
\(a_{157}= -0.93174473 \pm 1.2 \cdot 10^{-8} \) | \(a_{158}= +1.23627988 \pm 2.0 \cdot 10^{-8} \) | \(a_{159}= -0.46398594 \pm 2.2 \cdot 10^{-8} \) |
\(a_{160}= +0.32020499 \pm 2.6 \cdot 10^{-8} \) | \(a_{161}= -0.47205263 \pm 1.1 \cdot 10^{-8} \) | \(a_{162}= -0.19825645 \pm 3.2 \cdot 10^{-8} \) |
\(a_{163}= +1.57965443 \pm 1.5 \cdot 10^{-8} \) | \(a_{164}= -1.33265165 \pm 1.9 \cdot 10^{-8} \) | \(a_{165}= -0.38688390 \pm 2.3 \cdot 10^{-8} \) |
\(a_{166}= -1.49564457 \pm 1.9 \cdot 10^{-8} \) | \(a_{167}= -1.15376754 \pm 1.5 \cdot 10^{-8} \) | \(a_{168}= +1.05449028 \pm 4.9 \cdot 10^{-8} \) |
\(a_{169}= +0.76838614 \pm 1.3 \cdot 10^{-8} \) | \(a_{170}= +1.02597508 \pm 4.9 \cdot 10^{-8} \) | \(a_{171}= +0.09179669 \pm 2.5 \cdot 10^{-8} \) |
\(a_{172}= +0.45415139 \pm 2.6 \cdot 10^{-8} \) | \(a_{173}= -0.34749144 \pm 1.5 \cdot 10^{-8} \) | \(a_{174}= +1.12736425 \pm 5.1 \cdot 10^{-8} \) |
\(a_{175}= -0.17294242 \pm 2.5 \cdot 10^{-8} \) | \(a_{176}= +2.37500261 \pm 1.2 \cdot 10^{-8} \) | \(a_{177}= +0.17255141 \pm 2.8 \cdot 10^{-8} \) |
\(a_{178}= +0.89003748 \pm 2.2 \cdot 10^{-8} \) | \(a_{179}= -1.51272826 \pm 1.3 \cdot 10^{-8} \) | \(a_{180}= -0.32553499 \pm 3.3 \cdot 10^{-8} \) |
\(a_{181}= -0.88837907 \pm 1.1 \cdot 10^{-8} \) | \(a_{182}= -2.05177580 \pm 1.7 \cdot 10^{-8} \) | \(a_{183}= +0.62661267 \pm 2.5 \cdot 10^{-8} \) |
\(a_{184}= -1.15305646 \pm 3.4 \cdot 10^{-8} \) | \(a_{185}= +0.81856894 \pm 2.6 \cdot 10^{-8} \) | \(a_{186}= -0.61306468 \pm 4.9 \cdot 10^{-8} \) |
\(a_{187}= +1.92654109 \pm 1.3 \cdot 10^{-8} \) | \(a_{188}= -2.53631010 \pm 2.2 \cdot 10^{-8} \) | \(a_{189}= -0.16641392 \pm 2.5 \cdot 10^{-8} \) |
\(a_{190}= +0.21975214 \pm 4.7 \cdot 10^{-8} \) | \(a_{191}= +1.81279812 \pm 1.7 \cdot 10^{-8} \) | \(a_{192}= -0.17751581 \pm 3.0 \cdot 10^{-8} \) |
\(a_{193}= -0.38329605 \pm 2.1 \cdot 10^{-8} \) | \(a_{194}= +2.35950245 \pm 1.5 \cdot 10^{-8} \) | \(a_{195}= +0.34335464 \pm 2.3 \cdot 10^{-8} \) |
\(a_{196}= -0.55090248 \pm 2.2 \cdot 10^{-8} \) | \(a_{197}= -0.63485563 \pm 1.1 \cdot 10^{-8} \) | \(a_{198}= -0.89119934 \pm 4.5 \cdot 10^{-8} \) |
\(a_{199}= +0.08145804 \pm 1 \cdot 10^{-8} \) | \(a_{200}= -0.42243673 \pm 3.4 \cdot 10^{-8} \) | \(a_{201}= -0.86522227 \pm 2.4 \cdot 10^{-8} \) |
\(a_{202}= +1.33021526 \pm 2.0 \cdot 10^{-8} \) | \(a_{203}= +0.94629510 \pm 1.1 \cdot 10^{-8} \) | \(a_{204}= +1.62104582 \pm 5.1 \cdot 10^{-8} \) |
\(a_{205}= +0.27291519 \pm 2.5 \cdot 10^{-8} \) | \(a_{206}= +1.84608151 \pm 1.2 \cdot 10^{-8} \) | \(a_{207}= +0.18196910 \pm 3.0 \cdot 10^{-8} \) |
\(a_{208}= -2.10778522 \pm 1.5 \cdot 10^{-8} \) | \(a_{209}= +0.41264310 \pm 1.3 \cdot 10^{-8} \) | \(a_{210}= -0.39837834 \pm 4.7 \cdot 10^{-8} \) |
\(a_{211}= -0.79995706 \pm 1.5 \cdot 10^{-8} \) | \(a_{212}= -1.75496871 \pm 1.5 \cdot 10^{-8} \) | \(a_{213}= -0.42289647 \pm 2.5 \cdot 10^{-8} \) |
\(a_{214}= -2.01267780 \pm 2.1 \cdot 10^{-8} \) | \(a_{215}= -0.09300616 \pm 2.7 \cdot 10^{-8} \) | \(a_{216}= -0.40648994 \pm 3.4 \cdot 10^{-8} \) |
\(a_{217}= -0.51459863 \pm 1.5 \cdot 10^{-8} \) | \(a_{218}= +0.01823736 \pm 2.7 \cdot 10^{-8} \) | \(a_{219}= -0.53462169 \pm 1.9 \cdot 10^{-8} \) |
\(a_{220}= -1.46333989 \pm 4.6 \cdot 10^{-8} \) | \(a_{221}= -1.70978121 \pm 1.0 \cdot 10^{-8} \) | \(a_{222}= +1.88559954 \pm 4.8 \cdot 10^{-8} \) |
\(a_{223}= +0.10847714 \pm 1.7 \cdot 10^{-8} \) | \(a_{224}= +0.61913396 \pm 1 \cdot 10^{-8} \) | \(a_{225}= +0.06666667 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= +1.46608418 \pm 1.7 \cdot 10^{-8} \) | \(a_{227}= +0.94330526 \pm 2.0 \cdot 10^{-8} \) | \(a_{228}= +0.34720950 \pm 4.8 \cdot 10^{-8} \) |
\(a_{229}= -0.31227209 \pm 1.4 \cdot 10^{-8} \) | \(a_{230}= +0.43561589 \pm 5.2 \cdot 10^{-8} \) | \(a_{231}= -0.74806130 \pm 3.8 \cdot 10^{-8} \) |
\(a_{232}= +2.31146191 \pm 2.1 \cdot 10^{-8} \) | \(a_{233}= +1.46110388 \pm 1.6 \cdot 10^{-8} \) | \(a_{234}= +0.79092831 \pm 4.5 \cdot 10^{-8} \) |
\(a_{235}= +0.51941372 \pm 2.2 \cdot 10^{-8} \) | \(a_{236}= +0.65265411 \pm 2.6 \cdot 10^{-8} \) | \(a_{237}= -0.40002428 \pm 2.8 \cdot 10^{-8} \) |
\(a_{238}= +1.98377924 \pm 1 \cdot 10^{-8} \) | \(a_{239}= -1.41076007 \pm 1.9 \cdot 10^{-8} \) | \(a_{240}= -0.40925329 \pm 2.8 \cdot 10^{-8} \) |
\(a_{241}= -1.05507292 \pm 2.0 \cdot 10^{-8} \) | \(a_{242}= -2.22179765 \pm 1.7 \cdot 10^{-8} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +2.37008392 \pm 2.3 \cdot 10^{-8} \) | \(a_{245}= +0.11281992 \pm 2.7 \cdot 10^{-8} \) | \(a_{246}= +0.62866881 \pm 4.7 \cdot 10^{-8} \) |
\(a_{247}= -0.36621561 \pm 1.3 \cdot 10^{-8} \) | \(a_{248}= -1.25698120 \pm 2.3 \cdot 10^{-8} \) | \(a_{249}= +0.48394716 \pm 2.4 \cdot 10^{-8} \) |
\(a_{250}= +0.15959336 \pm 3.2 \cdot 10^{-8} \) | \(a_{251}= -0.19922319 \pm 1 \cdot 10^{-8} \) | \(a_{252}= -0.62943980 \pm 4.9 \cdot 10^{-8} \) |
\(a_{253}= +0.81798470 \pm 1.4 \cdot 10^{-8} \) | \(a_{254}= -1.74744688 \pm 2.4 \cdot 10^{-8} \) | \(a_{255}= -0.33197575 \pm 2.7 \cdot 10^{-8} \) |
\(a_{256}= -1.94899607 \pm 1.6 \cdot 10^{-8} \) | \(a_{257}= -0.33798998 \pm 1.2 \cdot 10^{-8} \) | \(a_{258}= -0.21424264 \pm 4.9 \cdot 10^{-8} \) |
\(a_{259}= +1.58274807 \pm 1.8 \cdot 10^{-8} \) | \(a_{260}= +1.29869592 \pm 4.7 \cdot 10^{-8} \) | \(a_{261}= -0.36478234 \pm 2.9 \cdot 10^{-8} \) |
\(a_{262}= -1.04595784 \pm 2.5 \cdot 10^{-8} \) | \(a_{263}= +0.55281164 \pm 1.7 \cdot 10^{-8} \) | \(a_{264}= -1.82724734 \pm 4.7 \cdot 10^{-8} \) |
\(a_{265}= +0.35940196 \pm 2.2 \cdot 10^{-8} \) | \(a_{266}= +0.42490286 \pm 1.2 \cdot 10^{-8} \) | \(a_{267}= -0.28799029 \pm 2.4 \cdot 10^{-8} \) |
\(a_{268}= -3.27259485 \pm 2.3 \cdot 10^{-8} \) | \(a_{269}= +0.85315988 \pm 1.2 \cdot 10^{-8} \) | \(a_{270}= +0.15356878 \pm 3.2 \cdot 10^{-8} \) |
\(a_{271}= -0.67937944 \pm 1.4 \cdot 10^{-8} \) | \(a_{272}= +2.03793249 \pm 1.2 \cdot 10^{-8} \) | \(a_{273}= +0.66389508 \pm 3.9 \cdot 10^{-8} \) |
\(a_{274}= -0.23581469 \pm 1.3 \cdot 10^{-8} \) | \(a_{275}= +0.29967898 \pm 2.3 \cdot 10^{-8} \) | \(a_{276}= +0.68827532 \pm 5.3 \cdot 10^{-8} \) |
\(a_{277}= -0.06067199 \pm 1.5 \cdot 10^{-8} \) | \(a_{278}= -0.09059720 \pm 2.5 \cdot 10^{-8} \) | \(a_{279}= +0.19836993 \pm 2.7 \cdot 10^{-8} \) |
\(a_{280}= -0.81680466 \pm 4.9 \cdot 10^{-8} \) | \(a_{281}= +0.05419087 \pm 1.0 \cdot 10^{-8} \) | \(a_{282}= +1.19648600 \pm 4.4 \cdot 10^{-8} \) |
\(a_{283}= +0.16924651 \pm 1.5 \cdot 10^{-8} \) | \(a_{284}= -1.59955293 \pm 1.1 \cdot 10^{-8} \) | \(a_{285}= -0.07110541 \pm 2.5 \cdot 10^{-8} \) |
\(a_{286}= +3.55536886 \pm 1.0 \cdot 10^{-8} \) | \(a_{287}= +0.52769653 \pm 1.3 \cdot 10^{-8} \) | \(a_{288}= -0.23866671 \pm 2.6 \cdot 10^{-8} \) |
\(a_{289}= +0.65311847 \pm 1.3 \cdot 10^{-8} \) | \(a_{290}= -0.87325260 \pm 5.1 \cdot 10^{-8} \) | \(a_{291}= -0.76346649 \pm 2.3 \cdot 10^{-8} \) |
\(a_{292}= -2.02213956 \pm 1.0 \cdot 10^{-8} \) | \(a_{293}= +1.06763825 \pm 2.0 \cdot 10^{-8} \) | \(a_{294}= +0.25988427 \pm 4.9 \cdot 10^{-8} \) |
\(a_{295}= -0.13365775 \pm 2.8 \cdot 10^{-8} \) | \(a_{296}= +3.86608987 \pm 2.3 \cdot 10^{-8} \) | \(a_{297}= +0.28836623 \pm 2.3 \cdot 10^{-8} \) |
\(a_{298}= +0.76000993 \pm 2.7 \cdot 10^{-8} \) | \(a_{299}= -0.72595123 \pm 1.2 \cdot 10^{-8} \) | \(a_{300}= +0.25215832 \pm 3.3 \cdot 10^{-8} \) |
\(a_{301}= -0.17983253 \pm 1.1 \cdot 10^{-8} \) | \(a_{302}= -2.38131258 \pm 2.2 \cdot 10^{-8} \) | \(a_{303}= -0.43041904 \pm 2.5 \cdot 10^{-8} \) |
\(a_{304}= +0.43650186 \pm 1.0 \cdot 10^{-8} \) | \(a_{305}= -0.48537208 \pm 2.5 \cdot 10^{-8} \) | \(a_{306}= -0.76471667 \pm 4.9 \cdot 10^{-8} \) |
\(a_{307}= -0.34788605 \pm 1.5 \cdot 10^{-8} \) | \(a_{308}= -2.82944816 \pm 1 \cdot 10^{-8} \) | \(a_{309}= -0.59733838 \pm 2.1 \cdot 10^{-8} \) |
\(a_{310}= +0.47487786 \pm 4.9 \cdot 10^{-8} \) | \(a_{311}= -0.15379670 \pm 2.3 \cdot 10^{-8} \) | \(a_{312}= +1.62165925 \pm 4.7 \cdot 10^{-8} \) |
\(a_{313}= +0.19381316 \pm 1.8 \cdot 10^{-8} \) | \(a_{314}= +1.66251959 \pm 1.4 \cdot 10^{-8} \) | \(a_{315}= +0.12890367 \pm 2.5 \cdot 10^{-8} \) |
\(a_{316}= -1.51304173 \pm 2.1 \cdot 10^{-8} \) | \(a_{317}= -0.01827906 \pm 1.5 \cdot 10^{-8} \) | \(a_{318}= +0.82789383 \pm 4.4 \cdot 10^{-8} \) |
\(a_{319}= -1.63976401 \pm 1.2 \cdot 10^{-8} \) | \(a_{320}= +0.13750315 \pm 3.0 \cdot 10^{-8} \) | \(a_{321}= +0.65124410 \pm 2.5 \cdot 10^{-8} \) |
\(a_{322}= +0.84228729 \pm 1.1 \cdot 10^{-8} \) | \(a_{323}= +0.35407910 \pm 1.4 \cdot 10^{-8} \) | \(a_{324}= +0.24263945 \pm 3.3 \cdot 10^{-8} \) |
\(a_{325}= -0.26596136 \pm 2.3 \cdot 10^{-8} \) | \(a_{326}= -2.81859006 \pm 1.6 \cdot 10^{-8} \) | \(a_{327}= -0.00590108 \pm 3.0 \cdot 10^{-8} \) |
\(a_{328}= +1.28897470 \pm 2.4 \cdot 10^{-8} \) | \(a_{329}= +1.00431500 \pm 1 \cdot 10^{-8} \) | \(a_{330}= +0.69032004 \pm 4.5 \cdot 10^{-8} \) |
\(a_{331}= -1.41222862 \pm 1.8 \cdot 10^{-8} \) | \(a_{332}= +1.83046951 \pm 2.0 \cdot 10^{-8} \) | \(a_{333}= -0.61012527 \pm 2.6 \cdot 10^{-8} \) |
\(a_{334}= +2.05867666 \pm 2.4 \cdot 10^{-8} \) | \(a_{335}= +0.67019829 \pm 2.4 \cdot 10^{-8} \) | \(a_{336}= -0.79131373 \pm 4.4 \cdot 10^{-8} \) |
\(a_{337}= -0.70713987 \pm 1.4 \cdot 10^{-8} \) | \(a_{338}= -1.37103755 \pm 1.8 \cdot 10^{-8} \) | \(a_{339}= -0.47438228 \pm 2.4 \cdot 10^{-8} \) |
\(a_{340}= -1.25565669 \pm 5.1 \cdot 10^{-8} \) | \(a_{341}= +0.89170949 \pm 1.6 \cdot 10^{-8} \) | \(a_{342}= -0.16379358 \pm 4.7 \cdot 10^{-8} \) |
\(a_{343}= +1.08285561 \pm 1.4 \cdot 10^{-8} \) | \(a_{344}= -0.43926682 \pm 2.1 \cdot 10^{-8} \) | \(a_{345}= -0.14095266 \pm 3.0 \cdot 10^{-8} \) |
\(a_{346}= +0.62003177 \pm 1.9 \cdot 10^{-8} \) | \(a_{347}= -0.54395182 \pm 1.6 \cdot 10^{-8} \) | \(a_{348}= -1.37974352 \pm 5.3 \cdot 10^{-8} \) |
\(a_{349}= -1.11084625 \pm 1.4 \cdot 10^{-8} \) | \(a_{350}= +0.30858254 \pm 4.7 \cdot 10^{-8} \) | \(a_{351}= -0.25592144 \pm 2.3 \cdot 10^{-8} \) |
\(a_{352}= -1.07285094 \pm 1.0 \cdot 10^{-8} \) | \(a_{353}= +0.83045994 \pm 1.4 \cdot 10^{-8} \) | \(a_{354}= -0.30788487 \pm 5.0 \cdot 10^{-8} \) |
\(a_{355}= +0.32757420 \pm 2.5 \cdot 10^{-8} \) | \(a_{356}= -1.08928719 \pm 2.5 \cdot 10^{-8} \) | \(a_{357}= -0.64189337 \pm 4.2 \cdot 10^{-8} \) |
\(a_{358}= +2.69917315 \pm 2.2 \cdot 10^{-8} \) | \(a_{359}= -0.23331695 \pm 1.7 \cdot 10^{-8} \) | \(a_{360}= +0.31486575 \pm 3.4 \cdot 10^{-8} \) |
\(a_{361}= -0.92416030 \pm 1.2 \cdot 10^{-8} \) | \(a_{362}= +1.58514189 \pm 1.0 \cdot 10^{-8} \) | \(a_{363}= +0.71890921 \pm 2.4 \cdot 10^{-8} \) |
\(a_{364}= +2.51109999 \pm 1.7 \cdot 10^{-8} \) | \(a_{365}= +0.41411618 \pm 1.9 \cdot 10^{-8} \) | \(a_{366}= -1.11807000 \pm 4.7 \cdot 10^{-8} \) |
\(a_{367}= +1.15795972 \pm 2.2 \cdot 10^{-8} \) | \(a_{368}= +0.86528006 \pm 2.9 \cdot 10^{-8} \) | \(a_{369}= -0.20341897 \pm 2.5 \cdot 10^{-8} \) |
\(a_{370}= -1.46057912 \pm 4.8 \cdot 10^{-8} \) | \(a_{371}= +0.69492346 \pm 1.2 \cdot 10^{-8} \) | \(a_{372}= +0.75030943 \pm 5.0 \cdot 10^{-8} \) |
\(a_{373}= +0.31314703 \pm 1.6 \cdot 10^{-8} \) | \(a_{374}= -3.43754270 \pm 1.4 \cdot 10^{-8} \) | \(a_{375}= -0.05163978 \pm 7.7 \cdot 10^{-7} \) |
\(a_{376}= +2.45318388 \pm 2.3 \cdot 10^{-8} \) | \(a_{377}= +1.45527012 \pm 1.1 \cdot 10^{-8} \) | \(a_{378}= +0.29693369 \pm 4.7 \cdot 10^{-8} \) |
\(a_{379}= -0.99964355 \pm 1.5 \cdot 10^{-8} \) | \(a_{380}= -0.26894732 \pm 4.8 \cdot 10^{-8} \) | \(a_{381}= +0.56542308 \pm 2.8 \cdot 10^{-8} \) |
\(a_{382}= -3.23459021 \pm 2.0 \cdot 10^{-8} \) | \(a_{383}= -1.70887889 \pm 1.4 \cdot 10^{-8} \) | \(a_{384}= +0.73012574 \pm 2.9 \cdot 10^{-8} \) |
\(a_{385}= +0.57944579 \pm 3.8 \cdot 10^{-8} \) | \(a_{386}= +0.68391821 \pm 2.9 \cdot 10^{-8} \) | \(a_{387}= +0.06932270 \pm 2.7 \cdot 10^{-8} \) |
\(a_{388}= -2.88771637 \pm 1.6 \cdot 10^{-8} \) | \(a_{389}= +1.71433315 \pm 1.2 \cdot 10^{-8} \) | \(a_{390}= -0.61265044 \pm 4.5 \cdot 10^{-8} \) |
\(a_{391}= +0.70189296 \pm 2.0 \cdot 10^{-8} \) | \(a_{392}= +0.53284694 \pm 2.4 \cdot 10^{-8} \) | \(a_{393}= +0.33844159 \pm 2.9 \cdot 10^{-8} \) |
\(a_{394}= +1.13277798 \pm 1.6 \cdot 10^{-8} \) | \(a_{395}= +0.30985747 \pm 2.8 \cdot 10^{-8} \) | \(a_{396}= +1.09070916 \pm 4.6 \cdot 10^{-8} \) |
\(a_{397}= +0.39374750 \pm 1.7 \cdot 10^{-8} \) | \(a_{398}= -0.14534624 \pm 1.0 \cdot 10^{-8} \) | \(a_{399}= -0.13748623 \pm 4.0 \cdot 10^{-8} \) |
\(a_{400}= +0.31700623 \pm 2.8 \cdot 10^{-8} \) | \(a_{401}= -1.41037743 \pm 1.8 \cdot 10^{-8} \) | \(a_{402}= +1.54382302 \pm 4.6 \cdot 10^{-8} \) |
\(a_{403}= -0.79138106 \pm 1.2 \cdot 10^{-8} \) | \(a_{404}= -1.62800610 \pm 2.0 \cdot 10^{-8} \) | \(a_{405}= -0.04969040 \pm 8.2 \cdot 10^{-7} \) |
\(a_{406}= -1.68848192 \pm 1.1 \cdot 10^{-8} \) | \(a_{407}= -2.74262577 \pm 1.2 \cdot 10^{-8} \) | \(a_{408}= -1.56791690 \pm 5.1 \cdot 10^{-8} \) |
\(a_{409}= +1.82765924 \pm 1.7 \cdot 10^{-8} \) | \(a_{410}= -0.48696476 \pm 4.7 \cdot 10^{-8} \) | \(a_{411}= +0.07630279 \pm 2.1 \cdot 10^{-8} \) |
\(a_{412}= -2.25935760 \pm 1.1 \cdot 10^{-8} \) | \(a_{413}= -0.25843461 \pm 2.0 \cdot 10^{-8} \) | \(a_{414}= -0.32468892 \pm 5.2 \cdot 10^{-8} \) |
\(a_{415}= -0.37486386 \pm 2.4 \cdot 10^{-8} \) | \(a_{416}= +0.95214184 \pm 1.2 \cdot 10^{-8} \) | \(a_{417}= +0.02931462 \pm 2.9 \cdot 10^{-8} \) |
\(a_{418}= -0.73628238 \pm 1.1 \cdot 10^{-8} \) | \(a_{419}= -0.11848073 \pm 1.9 \cdot 10^{-8} \) | \(a_{420}= +0.48756197 \pm 4.9 \cdot 10^{-8} \) |
\(a_{421}= +1.64607622 \pm 1 \cdot 10^{-8} \) | \(a_{422}= +1.42736980 \pm 1.8 \cdot 10^{-8} \) | \(a_{423}= -0.38714813 \pm 2.2 \cdot 10^{-8} \) |
\(a_{424}= +1.69745054 \pm 1.3 \cdot 10^{-8} \) | \(a_{425}= +0.25714731 \pm 2.7 \cdot 10^{-8} \) | \(a_{426}= +0.75457756 \pm 4.7 \cdot 10^{-8} \) |
\(a_{427}= -0.93849362 \pm 1.2 \cdot 10^{-8} \) | \(a_{428}= +2.46324925 \pm 2.6 \cdot 10^{-8} \) | \(a_{429}= -1.15041414 \pm 3.6 \cdot 10^{-8} \) |
\(a_{430}= +0.16595164 \pm 4.9 \cdot 10^{-8} \) | \(a_{431}= +0.66858852 \pm 1.5 \cdot 10^{-8} \) | \(a_{432}= +0.30503939 \pm 2.8 \cdot 10^{-8} \) |
\(a_{433}= +0.12000408 \pm 1.5 \cdot 10^{-8} \) | \(a_{434}= +0.91820246 \pm 1.6 \cdot 10^{-8} \) | \(a_{435}= +0.28255919 \pm 2.9 \cdot 10^{-8} \) |
\(a_{436}= -0.02232010 \pm 2.7 \cdot 10^{-8} \) | \(a_{437}= +0.15033745 \pm 1.3 \cdot 10^{-8} \) | \(a_{438}= +0.95392976 \pm 4.1 \cdot 10^{-8} \) |
\(a_{439}= -1.05620346 \pm 1.7 \cdot 10^{-8} \) | \(a_{440}= +1.41537971 \pm 4.7 \cdot 10^{-8} \) | \(a_{441}= -0.08409100 \pm 2.7 \cdot 10^{-8} \) |
\(a_{442}= +3.05077632 \pm 1 \cdot 10^{-8} \) | \(a_{443}= +0.94572895 \pm 1.6 \cdot 10^{-8} \) | \(a_{444}= -2.30772240 \pm 4.9 \cdot 10^{-8} \) |
\(a_{445}= +0.22307632 \pm 2.4 \cdot 10^{-8} \) | \(a_{446}= -0.19355663 \pm 2.5 \cdot 10^{-8} \) | \(a_{447}= -0.24591715 \pm 2.8 \cdot 10^{-8} \) |
\(a_{448}= +0.26586991 \pm 1.5 \cdot 10^{-8} \) | \(a_{449}= +0.23435835 \pm 1.7 \cdot 10^{-8} \) | \(a_{450}= -0.11895387 \pm 3.2 \cdot 10^{-8} \) |
\(a_{451}= -0.91440586 \pm 1.2 \cdot 10^{-8} \) | \(a_{452}= -1.79429154 \pm 1.7 \cdot 10^{-8} \) | \(a_{453}= +0.77052362 \pm 2.7 \cdot 10^{-8} \) |
\(a_{454}= -1.68314713 \pm 3.0 \cdot 10^{-8} \) | \(a_{455}= -0.51425092 \pm 3.9 \cdot 10^{-8} \) | \(a_{456}= -0.33582989 \pm 4.8 \cdot 10^{-8} \) |
\(a_{457}= -1.39180797 \pm 1.8 \cdot 10^{-8} \) | \(a_{458}= +0.55718959 \pm 2.1 \cdot 10^{-8} \) | \(a_{459}= +0.24744011 \pm 2.7 \cdot 10^{-8} \) |
\(a_{460}= -0.53313577 \pm 5.3 \cdot 10^{-8} \) | \(a_{461}= +0.58486478 \pm 1.8 \cdot 10^{-8} \) | \(a_{462}= +1.33477177 \pm 6.0 \cdot 10^{-8} \) |
\(a_{463}= +0.25002338 \pm 1.5 \cdot 10^{-8} \) | \(a_{464}= -1.73457413 \pm 1.0 \cdot 10^{-8} \) | \(a_{465}= -0.15365669 \pm 2.7 \cdot 10^{-8} \) |
\(a_{466}= -2.60705935 \pm 1.5 \cdot 10^{-8} \) | \(a_{467}= -1.00034258 \pm 1.0 \cdot 10^{-8} \) | \(a_{468}= -0.96799079 \pm 4.7 \cdot 10^{-8} \) |
\(a_{469}= +1.29586524 \pm 1.4 \cdot 10^{-8} \) | \(a_{470}= -0.92679407 \pm 4.4 \cdot 10^{-8} \) | \(a_{471}= -0.53794307 \pm 2.3 \cdot 10^{-8} \) |
\(a_{472}= -0.63126372 \pm 2.9 \cdot 10^{-8} \) | \(a_{473}= +0.31161834 \pm 1.3 \cdot 10^{-8} \) | \(a_{474}= +0.71376652 \pm 5.0 \cdot 10^{-8} \) |
\(a_{475}= +0.05507802 \pm 2.5 \cdot 10^{-8} \) | \(a_{476}= -2.42788127 \pm 1 \cdot 10^{-8} \) | \(a_{477}= -0.26788241 \pm 2.2 \cdot 10^{-8} \) |
\(a_{478}= +2.51723050 \pm 2.8 \cdot 10^{-8} \) | \(a_{479}= +0.64922113 \pm 1 \cdot 10^{-8} \) | \(a_{480}= +0.18487044 \pm 2.6 \cdot 10^{-8} \) |
\(a_{481}= +2.43404620 \pm 1.4 \cdot 10^{-8} \) | \(a_{482}= +1.88257506 \pm 2.7 \cdot 10^{-8} \) | \(a_{483}= -0.27253971 \pm 4.5 \cdot 10^{-8} \) |
\(a_{484}= +2.71918406 \pm 1.7 \cdot 10^{-8} \) | \(a_{485}= +0.59137860 \pm 2.3 \cdot 10^{-8} \) | \(a_{486}= -0.11446341 \pm 3.2 \cdot 10^{-8} \) |
\(a_{487}= -0.07876707 \pm 2.0 \cdot 10^{-8} \) | \(a_{488}= -2.29240568 \pm 2.3 \cdot 10^{-8} \) | \(a_{489}= +0.91201391 \pm 2.6 \cdot 10^{-8} \) |
\(a_{490}= -0.20130549 \pm 4.9 \cdot 10^{-8} \) | \(a_{491}= -0.38922798 \pm 1.2 \cdot 10^{-8} \) | \(a_{492}= -0.76940679 \pm 4.8 \cdot 10^{-8} \) |
\(a_{493}= -1.40704197 \pm 2.4 \cdot 10^{-8} \) | \(a_{494}= +0.65344144 \pm 1 \cdot 10^{-8} \) | \(a_{495}= -0.22336752 \pm 2.3 \cdot 10^{-8} \) |
\(a_{496}= +0.94326757 \pm 1.7 \cdot 10^{-8} \) | \(a_{497}= +0.63338273 \pm 1.4 \cdot 10^{-8} \) | \(a_{498}= -0.86351079 \pm 4.6 \cdot 10^{-8} \) |
\(a_{499}= -1.67498209 \pm 1.3 \cdot 10^{-8} \) | \(a_{500}= -0.19532099 \pm 3.3 \cdot 10^{-8} \) | \(a_{501}= -0.66612800 \pm 2.5 \cdot 10^{-8} \) |
\(a_{502}= +0.35547553 \pm 1 \cdot 10^{-8} \) | \(a_{503}= -0.96654901 \pm 1.4 \cdot 10^{-8} \) | \(a_{504}= +0.60881025 \pm 4.9 \cdot 10^{-8} \) |
\(a_{505}= +0.33340115 \pm 2.5 \cdot 10^{-8} \) | \(a_{506}= -1.45953666 \pm 1.8 \cdot 10^{-8} \) | \(a_{507}= +0.44362795 \pm 2.3 \cdot 10^{-8} \) |
\(a_{508}= +2.13864197 \pm 2.4 \cdot 10^{-8} \) | \(a_{509}= -1.31796177 \pm 1.6 \cdot 10^{-8} \) | \(a_{510}= +0.59234699 \pm 4.9 \cdot 10^{-8} \) |
\(a_{511}= +0.80071640 \pm 1.1 \cdot 10^{-8} \) | \(a_{512}= +2.21299441 \pm 1.8 \cdot 10^{-8} \) | \(a_{513}= +0.05299885 \pm 2.5 \cdot 10^{-8} \) |
\(a_{514}= +0.60307824 \pm 1.8 \cdot 10^{-8} \) | \(a_{515}= +0.46269632 \pm 2.1 \cdot 10^{-8} \) | \(a_{516}= +0.26220443 \pm 5.0 \cdot 10^{-8} \) |
\(a_{517}= -1.74030237 \pm 1 \cdot 10^{-8} \) | \(a_{518}= -2.82411006 \pm 1.8 \cdot 10^{-8} \) | \(a_{519}= -0.20062428 \pm 2.6 \cdot 10^{-8} \) |
\(a_{520}= -1.25613185 \pm 4.7 \cdot 10^{-8} \) | \(a_{521}= +1.79368252 \pm 1.7 \cdot 10^{-8} \) | \(a_{522}= +0.65088405 \pm 5.1 \cdot 10^{-8} \) |
\(a_{523}= +0.24273685 \pm 1.3 \cdot 10^{-8} \) | \(a_{524}= +1.28011292 \pm 2.3 \cdot 10^{-8} \) | \(a_{525}= -0.09984835 \pm 2.5 \cdot 10^{-8} \) |
\(a_{526}= -0.98638623 \pm 2.0 \cdot 10^{-8} \) | \(a_{527}= +0.76515442 \pm 1.6 \cdot 10^{-8} \) | \(a_{528}= +1.37120840 \pm 4.1 \cdot 10^{-8} \) |
\(a_{529}= -0.70198523 \pm 1.8 \cdot 10^{-8} \) | \(a_{530}= -0.64128380 \pm 4.4 \cdot 10^{-8} \) | \(a_{531}= +0.09962261 \pm 2.8 \cdot 10^{-8} \) |
\(a_{532}= -0.52002444 \pm 1.0 \cdot 10^{-8} \) | \(a_{533}= +0.81152381 \pm 1.2 \cdot 10^{-8} \) | \(a_{534}= +0.51386338 \pm 4.6 \cdot 10^{-8} \) |
\(a_{535}= -0.50445151 \pm 2.5 \cdot 10^{-8} \) | \(a_{536}= +3.16533729 \pm 2.4 \cdot 10^{-8} \) | \(a_{537}= -0.87337407 \pm 2.4 \cdot 10^{-8} \) |
\(a_{538}= -1.52230001 \pm 2.0 \cdot 10^{-8} \) | \(a_{539}= -0.37800460 \pm 1 \cdot 10^{-8} \) | \(a_{540}= -0.18794771 \pm 3.3 \cdot 10^{-8} \) |
\(a_{541}= -1.37393945 \pm 1.4 \cdot 10^{-8} \) | \(a_{542}= +1.21222218 \pm 2.1 \cdot 10^{-8} \) | \(a_{543}= -0.51290589 \pm 2.1 \cdot 10^{-8} \) |
\(a_{544}= -0.92058753 \pm 1.4 \cdot 10^{-8} \) | \(a_{545}= +0.00457096 \pm 3.0 \cdot 10^{-8} \) | \(a_{546}= -1.18459331 \pm 6.1 \cdot 10^{-8} \) |
\(a_{547}= +1.26392103 \pm 1.0 \cdot 10^{-8} \) | \(a_{548}= +0.28860573 \pm 1.4 \cdot 10^{-8} \) | \(a_{549}= +0.36177499 \pm 2.5 \cdot 10^{-8} \) |
\(a_{550}= -0.53471961 \pm 4.5 \cdot 10^{-8} \) | \(a_{551}= -0.30137232 \pm 1.4 \cdot 10^{-8} \) | \(a_{552}= -0.66571746 \pm 5.3 \cdot 10^{-8} \) |
\(a_{553}= +0.59912647 \pm 1.8 \cdot 10^{-8} \) | \(a_{554}= +0.10825752 \pm 2.5 \cdot 10^{-8} \) | \(a_{555}= +0.47260100 \pm 2.6 \cdot 10^{-8} \) |
\(a_{556}= +0.11087889 \pm 2.5 \cdot 10^{-8} \) | \(a_{557}= +0.27740900 \pm 2.3 \cdot 10^{-8} \) | \(a_{558}= -0.35395306 \pm 4.9 \cdot 10^{-8} \) |
\(a_{559}= -0.27655739 \pm 1.2 \cdot 10^{-8} \) | \(a_{560}= +0.61294898 \pm 4.4 \cdot 10^{-8} \) | \(a_{561}= +1.11228902 \pm 4.0 \cdot 10^{-8} \) |
\(a_{562}= -0.09669321 \pm 1.6 \cdot 10^{-8} \) | \(a_{563}= +1.07790906 \pm 1.9 \cdot 10^{-8} \) | \(a_{564}= -1.46433932 \pm 4.5 \cdot 10^{-8} \) |
\(a_{565}= +0.36745493 \pm 2.4 \cdot 10^{-8} \) | \(a_{566}= -0.30198790 \pm 1.7 \cdot 10^{-8} \) | \(a_{567}= -0.09607912 \pm 2.5 \cdot 10^{-8} \) |
\(a_{568}= +1.54712844 \pm 1.6 \cdot 10^{-8} \) | \(a_{569}= -1.60544400 \pm 1.3 \cdot 10^{-8} \) | \(a_{570}= +0.12687396 \pm 4.7 \cdot 10^{-8} \) |
\(a_{571}= +1.25589545 \pm 1.4 \cdot 10^{-8} \) | \(a_{572}= -4.35129739 \pm 1.1 \cdot 10^{-8} \) | \(a_{573}= +1.04661948 \pm 2.8 \cdot 10^{-8} \) |
\(a_{574}= -0.94157315 \pm 1.2 \cdot 10^{-8} \) | \(a_{575}= +0.10918146 \pm 3.0 \cdot 10^{-8} \) | \(a_{576}= -0.10248880 \pm 3.0 \cdot 10^{-8} \) |
\(a_{577}= +0.79142490 \pm 1.9 \cdot 10^{-8} \) | \(a_{578}= -1.16536452 \pm 1.8 \cdot 10^{-8} \) | \(a_{579}= -0.22129608 \pm 3.2 \cdot 10^{-8} \) |
\(a_{580}= +1.06874473 \pm 5.3 \cdot 10^{-8} \) | \(a_{581}= -0.72481988 \pm 1.2 \cdot 10^{-8} \) | \(a_{582}= +1.36225937 \pm 4.5 \cdot 10^{-8} \) |
\(a_{583}= -1.20418091 \pm 1 \cdot 10^{-8} \) | \(a_{584}= +1.95586501 \pm 1.1 \cdot 10^{-8} \) | \(a_{585}= +0.19823589 \pm 2.3 \cdot 10^{-8} \) |
\(a_{586}= -1.90499549 \pm 2.7 \cdot 10^{-8} \) | \(a_{587}= -0.25084419 \pm 1.8 \cdot 10^{-8} \) | \(a_{588}= -0.31806369 \pm 5.1 \cdot 10^{-8} \) |
\(a_{589}= +0.16388734 \pm 1.6 \cdot 10^{-8} \) | \(a_{590}= +0.23848659 \pm 5.0 \cdot 10^{-8} \) | \(a_{591}= -0.36653407 \pm 2.1 \cdot 10^{-8} \) |
\(a_{592}= -2.90120268 \pm 1.9 \cdot 10^{-8} \) | \(a_{593}= +0.43659493 \pm 2.1 \cdot 10^{-8} \) | \(a_{594}= -0.51453418 \pm 4.5 \cdot 10^{-8} \) |
\(a_{595}= +0.49720847 \pm 4.2 \cdot 10^{-8} \) | \(a_{596}= -0.93015081 \pm 3.1 \cdot 10^{-8} \) | \(a_{597}= +0.04702982 \pm 1.8 \cdot 10^{-8} \) |
\(a_{598}= +1.29532060 \pm 1.8 \cdot 10^{-8} \) | \(a_{599}= +0.53352520 \pm 1.2 \cdot 10^{-8} \) | \(a_{600}= -0.24389396 \pm 3.4 \cdot 10^{-8} \) |
\(a_{601}= -0.22339402 \pm 1.4 \cdot 10^{-8} \) | \(a_{602}= +0.32087662 \pm 1.4 \cdot 10^{-8} \) | \(a_{603}= -0.49953631 \pm 2.4 \cdot 10^{-8} \) |
\(a_{604}= +2.91440906 \pm 2.6 \cdot 10^{-8} \) | \(a_{605}= -0.55686468 \pm 2.4 \cdot 10^{-8} \) | \(a_{606}= +0.76800014 \pm 4.7 \cdot 10^{-8} \) |
\(a_{607}= -0.80587461 \pm 1.4 \cdot 10^{-8} \) | \(a_{608}= -0.19717933 \pm 1.0 \cdot 10^{-8} \) | \(a_{609}= +0.54634373 \pm 4.4 \cdot 10^{-8} \) |
\(a_{610}= +0.86605330 \pm 4.7 \cdot 10^{-8} \) | \(a_{611}= +1.54449666 \pm 1.1 \cdot 10^{-8} \) | \(a_{612}= +0.93591124 \pm 5.1 \cdot 10^{-8} \) |
\(a_{613}= +0.17781689 \pm 1.0 \cdot 10^{-8} \) | \(a_{614}= +0.62073587 \pm 2.1 \cdot 10^{-8} \) | \(a_{615}= +0.15756766 \pm 2.5 \cdot 10^{-8} \) |
\(a_{616}= +2.73671451 \pm 1.1 \cdot 10^{-8} \) | \(a_{617}= -0.68333562 \pm 1.9 \cdot 10^{-8} \) | \(a_{618}= +1.06583566 \pm 4.3 \cdot 10^{-8} \) |
\(a_{619}= +0.98509854 \pm 1.7 \cdot 10^{-8} \) | \(a_{620}= -0.58118718 \pm 5.0 \cdot 10^{-8} \) | \(a_{621}= +0.10505991 \pm 3.0 \cdot 10^{-8} \) |
\(a_{622}= +0.27442068 \pm 3.3 \cdot 10^{-8} \) | \(a_{623}= +0.43133033 \pm 1 \cdot 10^{-8} \) | \(a_{624}= -1.21693036 \pm 4.2 \cdot 10^{-8} \) |
\(a_{625}= +0.04 \) | \(a_{626}= -0.34582237 \pm 2.6 \cdot 10^{-8} \) | \(a_{627}= +0.23823960 \pm 3.8 \cdot 10^{-8} \) |
\(a_{628}= -2.03470229 \pm 1.4 \cdot 10^{-8} \) | \(a_{629}= -2.35338107 \pm 1.3 \cdot 10^{-8} \) | \(a_{630}= -0.23000384 \pm 4.7 \cdot 10^{-8} \) |
\(a_{631}= +0.20710701 \pm 1.4 \cdot 10^{-8} \) | \(a_{632}= +1.46345259 \pm 1.8 \cdot 10^{-8} \) | \(a_{633}= -0.46185543 \pm 2.5 \cdot 10^{-8} \) |
\(a_{634}= +0.03261547 \pm 1.7 \cdot 10^{-8} \) | \(a_{635}= -0.43797483 \pm 2.8 \cdot 10^{-8} \) | \(a_{636}= -1.01323165 \pm 4.6 \cdot 10^{-8} \) |
\(a_{637}= +0.33547437 \pm 1.5 \cdot 10^{-8} \) | \(a_{638}= +2.92584405 \pm 1.6 \cdot 10^{-8} \) | \(a_{639}= -0.24415939 \pm 2.5 \cdot 10^{-8} \) |
\(a_{640}= -0.56555297 \pm 2.9 \cdot 10^{-8} \) | \(a_{641}= +0.14953818 \pm 2.1 \cdot 10^{-8} \) | \(a_{642}= -1.16202007 \pm 4.7 \cdot 10^{-8} \) |
\(a_{643}= -1.30110434 \pm 1.4 \cdot 10^{-8} \) | \(a_{644}= -1.03084733 \pm 1 \cdot 10^{-8} \) | \(a_{645}= -0.05369713 \pm 2.7 \cdot 10^{-8} \) |
\(a_{646}= -0.63178617 \pm 1.4 \cdot 10^{-8} \) | \(a_{647}= -1.97046565 \pm 1.1 \cdot 10^{-8} \) | \(a_{648}= -0.23468707 \pm 3.4 \cdot 10^{-8} \) |
\(a_{649}= +0.44782201 \pm 1.0 \cdot 10^{-8} \) | \(a_{650}= +0.47455699 \pm 4.5 \cdot 10^{-8} \) | \(a_{651}= -0.29710366 \pm 4.2 \cdot 10^{-8} \) |
\(a_{652}= +3.44957838 \pm 1.4 \cdot 10^{-8} \) | \(a_{653}= +0.49232075 \pm 1.5 \cdot 10^{-8} \) | \(a_{654}= +0.01052935 \pm 5.2 \cdot 10^{-8} \) |
\(a_{655}= -0.26215573 \pm 2.9 \cdot 10^{-8} \) | \(a_{656}= -0.96727624 \pm 2.1 \cdot 10^{-8} \) | \(a_{657}= -0.30866397 \pm 1.9 \cdot 10^{-8} \) |
\(a_{658}= -1.79200731 \pm 1.1 \cdot 10^{-8} \) | \(a_{659}= -1.57940188 \pm 1.5 \cdot 10^{-8} \) | \(a_{660}= -0.84485968 \pm 4.6 \cdot 10^{-8} \) |
\(a_{661}= -1.16786464 \pm 1.5 \cdot 10^{-8} \) | \(a_{662}= +2.51985085 \pm 2.7 \cdot 10^{-8} \) | \(a_{663}= -0.98714264 \pm 4.1 \cdot 10^{-8} \) |
\(a_{664}= -1.77047685 \pm 1.9 \cdot 10^{-8} \) | \(a_{665}= +0.10649637 \pm 4.0 \cdot 10^{-8} \) | \(a_{666}= +1.08865140 \pm 4.8 \cdot 10^{-8} \) |
\(a_{667}= -0.59741202 \pm 2.1 \cdot 10^{-8} \) | \(a_{668}= -2.51954572 \pm 3.1 \cdot 10^{-8} \) | \(a_{669}= +0.06262931 \pm 2.8 \cdot 10^{-8} \) |
\(a_{670}= -1.19584017 \pm 4.6 \cdot 10^{-8} \) | \(a_{671}= +1.62624541 \pm 1.1 \cdot 10^{-8} \) | \(a_{672}= +0.35745716 \pm 4.2 \cdot 10^{-8} \) |
\(a_{673}= +1.45181455 \pm 2.1 \cdot 10^{-8} \) | \(a_{674}= +1.26175533 \pm 2.1 \cdot 10^{-8} \) | \(a_{675}= +0.03849002 \pm 1.2 \cdot 10^{-6} \) |
\(a_{676}= +1.67796714 \pm 1.8 \cdot 10^{-8} \) | \(a_{677}= +1.50230999 \pm 1.3 \cdot 10^{-8} \) | \(a_{678}= +0.84644410 \pm 4.6 \cdot 10^{-8} \) |
\(a_{679}= +1.14346305 \pm 1.6 \cdot 10^{-8} \) | \(a_{680}= +1.21450321 \pm 5.1 \cdot 10^{-8} \) | \(a_{681}= +0.54461754 \pm 3.1 \cdot 10^{-8} \) |
\(a_{682}= -1.59108439 \pm 1.6 \cdot 10^{-8} \) | \(a_{683}= -0.89957031 \pm 2.2 \cdot 10^{-8} \) | \(a_{684}= +0.20046150 \pm 4.8 \cdot 10^{-8} \) |
\(a_{685}= -0.05910388 \pm 2.1 \cdot 10^{-8} \) | \(a_{686}= -1.93214793 \pm 1.3 \cdot 10^{-8} \) | \(a_{687}= -0.18029037 \pm 2.4 \cdot 10^{-8} \) |
\(a_{688}= +0.32963591 \pm 1.4 \cdot 10^{-8} \) | \(a_{689}= +1.06869555 \pm 1.0 \cdot 10^{-8} \) | \(a_{690}= +0.25150295 \pm 5.2 \cdot 10^{-8} \) |
\(a_{691}= -1.50324458 \pm 1.9 \cdot 10^{-8} \) | \(a_{692}= -0.75883621 \pm 2.2 \cdot 10^{-8} \) | \(a_{693}= -0.43189339 \pm 3.8 \cdot 10^{-8} \) |
\(a_{694}= +0.97057759 \pm 2.0 \cdot 10^{-8} \) | \(a_{695}= -0.02270701 \pm 2.9 \cdot 10^{-8} \) | \(a_{696}= +1.33452316 \pm 5.3 \cdot 10^{-8} \) |
\(a_{697}= -0.78462963 \pm 1.5 \cdot 10^{-8} \) | \(a_{698}= +1.98209186 \pm 1.8 \cdot 10^{-8} \) | \(a_{699}= +0.84356872 \pm 2.7 \cdot 10^{-8} \) |
\(a_{700}= -0.37766388 \pm 4.9 \cdot 10^{-8} \) | \(a_{701}= +0.66467632 \pm 1.6 \cdot 10^{-8} \) | \(a_{702}= +0.45664267 \pm 4.5 \cdot 10^{-8} \) |
\(a_{703}= -0.50406735 \pm 1.4 \cdot 10^{-8} \) | \(a_{704}= -0.46070608 \pm 1.3 \cdot 10^{-8} \) | \(a_{705}= +0.29988365 \pm 2.2 \cdot 10^{-8} \) |
\(a_{706}= -1.48179632 \pm 1.2 \cdot 10^{-8} \) | \(a_{707}= +0.64464947 \pm 1.4 \cdot 10^{-8} \) | \(a_{708}= +0.37681003 \pm 5.1 \cdot 10^{-8} \) |
\(a_{709}= +1.68990792 \pm 1.6 \cdot 10^{-8} \) | \(a_{710}= -0.58449327 \pm 4.7 \cdot 10^{-8} \) | \(a_{711}= -0.23095412 \pm 2.8 \cdot 10^{-8} \) |
\(a_{712}= +1.05358638 \pm 2.5 \cdot 10^{-8} \) | \(a_{713}= +0.32487478 \pm 2.0 \cdot 10^{-8} \) | \(a_{714}= +1.14533548 \pm 6.4 \cdot 10^{-8} \) |
\(a_{715}= +0.89110696 \pm 3.6 \cdot 10^{-8} \) | \(a_{716}= -3.30342802 \pm 2.7 \cdot 10^{-8} \) | \(a_{717}= -0.81450271 \pm 3.0 \cdot 10^{-8} \) |
\(a_{718}= +0.41630931 \pm 2.2 \cdot 10^{-8} \) | \(a_{719}= +1.92860572 \pm 2.0 \cdot 10^{-8} \) | \(a_{720}= -0.23628249 \pm 2.8 \cdot 10^{-8} \) |
\(a_{721}= +0.89464878 \pm 1 \cdot 10^{-8} \) | \(a_{722}= +1.64898663 \pm 1.7 \cdot 10^{-8} \) | \(a_{723}= -0.60914663 \pm 3.0 \cdot 10^{-8} \) |
\(a_{724}= -1.94000230 \pm 1 \cdot 10^{-8} \) | \(a_{725}= -0.21886941 \pm 2.9 \cdot 10^{-8} \) | \(a_{726}= -1.28275547 \pm 4.6 \cdot 10^{-8} \) |
\(a_{727}= -0.16608596 \pm 1.5 \cdot 10^{-8} \) | \(a_{728}= -2.42880002 \pm 1.9 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.73891081 \pm 4.1 \cdot 10^{-8} \) | \(a_{731}= +0.26739218 \pm 1.9 \cdot 10^{-8} \) | \(a_{732}= +1.36836859 \pm 4.9 \cdot 10^{-8} \) |
\(a_{733}= +0.53613422 \pm 1.4 \cdot 10^{-8} \) | \(a_{734}= -2.06615680 \pm 3.3 \cdot 10^{-8} \) | \(a_{735}= +0.06513661 \pm 2.7 \cdot 10^{-8} \) |
\(a_{736}= -0.39086969 \pm 2.4 \cdot 10^{-8} \) | \(a_{737}= -2.24550797 \pm 1.0 \cdot 10^{-8} \) | \(a_{738}= +0.36296211 \pm 4.7 \cdot 10^{-8} \) |
\(a_{739}= -1.19144297 \pm 1.4 \cdot 10^{-8} \) | \(a_{740}= +1.78755409 \pm 4.9 \cdot 10^{-8} \) | \(a_{741}= -0.21143468 \pm 3.8 \cdot 10^{-8} \) |
\(a_{742}= -1.23995751 \pm 1.1 \cdot 10^{-8} \) | \(a_{743}= +1.14960956 \pm 1.8 \cdot 10^{-8} \) | \(a_{744}= -0.72571843 \pm 5.0 \cdot 10^{-8} \) |
\(a_{745}= +0.19048660 \pm 2.8 \cdot 10^{-8} \) | \(a_{746}= -0.55875075 \pm 1.8 \cdot 10^{-8} \) | \(a_{747}= +0.27940702 \pm 2.4 \cdot 10^{-8} \) |
\(a_{748}= +4.20709389 \pm 1.3 \cdot 10^{-8} \) | \(a_{749}= -0.97538474 \pm 1.0 \cdot 10^{-8} \) | \(a_{750}= +0.09214127 \pm 3.2 \cdot 10^{-8} \) |
\(a_{751}= +0.90806843 \pm 1.5 \cdot 10^{-8} \) | \(a_{752}= -1.84092556 \pm 2.0 \cdot 10^{-8} \) | \(a_{753}= -0.11502156 \pm 1.9 \cdot 10^{-8} \) |
\(a_{754}= -2.59665014 \pm 1.1 \cdot 10^{-8} \) | \(a_{755}= -0.59684503 \pm 2.7 \cdot 10^{-8} \) | \(a_{756}= -0.36340724 \pm 4.9 \cdot 10^{-8} \) |
\(a_{757}= +1.46106849 \pm 1.6 \cdot 10^{-8} \) | \(a_{758}= +1.78367199 \pm 1.8 \cdot 10^{-8} \) | \(a_{759}= +0.47226369 \pm 4.3 \cdot 10^{-8} \) |
\(a_{760}= +0.26013272 \pm 4.8 \cdot 10^{-8} \) | \(a_{761}= -0.43270633 \pm 1.6 \cdot 10^{-8} \) | \(a_{762}= -1.00888893 \pm 5.0 \cdot 10^{-8} \) |
\(a_{763}= +0.00883820 \pm 1.5 \cdot 10^{-8} \) | \(a_{764}= +3.95870710 \pm 2.2 \cdot 10^{-8} \) | \(a_{765}= -0.19166629 \pm 2.7 \cdot 10^{-8} \) |
\(a_{766}= +3.04916629 \pm 1.6 \cdot 10^{-8} \) | \(a_{767}= -0.39743645 \pm 1.7 \cdot 10^{-8} \) | \(a_{768}= -1.12525340 \pm 2.6 \cdot 10^{-8} \) |
\(a_{769}= -0.57202774 \pm 1.7 \cdot 10^{-8} \) | \(a_{770}= -1.03390977 \pm 6.0 \cdot 10^{-8} \) | \(a_{771}= -0.19513861 \pm 2.2 \cdot 10^{-8} \) |
\(a_{772}= -0.83702469 \pm 3.0 \cdot 10^{-8} \) | \(a_{773}= +1.84054849 \pm 1.5 \cdot 10^{-8} \) | \(a_{774}= -0.12369305 \pm 4.9 \cdot 10^{-8} \) |
\(a_{775}= +0.11902196 \pm 2.7 \cdot 10^{-8} \) | \(a_{776}= +2.79307300 \pm 1.7 \cdot 10^{-8} \) | \(a_{777}= +0.91380003 \pm 4.1 \cdot 10^{-8} \) |
\(a_{778}= -3.05889838 \pm 1.8 \cdot 10^{-8} \) | \(a_{779}= -0.16805870 \pm 1.3 \cdot 10^{-8} \) | \(a_{780}= +0.74980244 \pm 4.7 \cdot 10^{-8} \) |
\(a_{781}= -1.09754157 \pm 1.4 \cdot 10^{-8} \) | \(a_{782}= -1.25239322 \pm 2.8 \cdot 10^{-8} \) | \(a_{783}= -0.21060718 \pm 2.9 \cdot 10^{-8} \) |
\(a_{784}= -0.39986059 \pm 1.8 \cdot 10^{-8} \) | \(a_{785}= +0.41668891 \pm 2.3 \cdot 10^{-8} \) | \(a_{786}= -0.60388404 \pm 5.1 \cdot 10^{-8} \) |
\(a_{787}= -0.95775789 \pm 1.8 \cdot 10^{-8} \) | \(a_{788}= -1.38636919 \pm 1.7 \cdot 10^{-8} \) | \(a_{789}= +0.31916595 \pm 2.7 \cdot 10^{-8} \) |
\(a_{790}= -0.55288117 \pm 5.0 \cdot 10^{-8} \) | \(a_{791}= +0.71049432 \pm 1.4 \cdot 10^{-8} \) | \(a_{792}= -1.05496175 \pm 4.7 \cdot 10^{-8} \) |
\(a_{793}= -1.44327254 \pm 1.1 \cdot 10^{-8} \) | \(a_{794}= -0.70256681 \pm 2.0 \cdot 10^{-8} \) | \(a_{795}= +0.20750082 \pm 2.2 \cdot 10^{-8} \) |
\(a_{796}= +0.17788442 \pm 1.0 \cdot 10^{-8} \) | \(a_{797}= +0.76274321 \pm 1.3 \cdot 10^{-8} \) | \(a_{798}= +0.24531778 \pm 6.2 \cdot 10^{-8} \) |
\(a_{799}= -1.49331151 \pm 1.0 \cdot 10^{-8} \) | \(a_{800}= -0.14320003 \pm 2.6 \cdot 10^{-8} \) | \(a_{801}= -0.16627127 \pm 2.4 \cdot 10^{-8} \) |
\(a_{802}= +2.51654774 \pm 2.1 \cdot 10^{-8} \) | \(a_{803}= -1.38750158 \pm 1 \cdot 10^{-8} \) | \(a_{804}= -1.88943352 \pm 4.8 \cdot 10^{-8} \) |
\(a_{805}= +0.21110835 \pm 4.5 \cdot 10^{-8} \) | \(a_{806}= +1.41206757 \pm 1.6 \cdot 10^{-8} \) | \(a_{807}= +0.49257209 \pm 2.3 \cdot 10^{-8} \) |
\(a_{808}= +1.57464907 \pm 2.0 \cdot 10^{-8} \) | \(a_{809}= -1.71890379 \pm 1.5 \cdot 10^{-8} \) | \(a_{810}= +0.08866298 \pm 3.2 \cdot 10^{-8} \) |
\(a_{811}= -0.73624846 \pm 1.8 \cdot 10^{-8} \) | \(a_{812}= +2.06647672 \pm 1.2 \cdot 10^{-8} \) | \(a_{813}= -0.39223990 \pm 2.4 \cdot 10^{-8} \) |
\(a_{814}= +4.89368914 \pm 1.2 \cdot 10^{-8} \) | \(a_{815}= -0.70644294 \pm 2.6 \cdot 10^{-8} \) | \(a_{816}= +1.17660087 \pm 4.5 \cdot 10^{-8} \) |
\(a_{817}= +0.05727235 \pm 1.2 \cdot 10^{-8} \) | \(a_{818}= -3.26110703 \pm 2.4 \cdot 10^{-8} \) | \(a_{819}= +0.38330000 \pm 3.9 \cdot 10^{-8} \) |
\(a_{820}= +0.59597994 \pm 4.8 \cdot 10^{-8} \) | \(a_{821}= +0.00585418 \pm 1.6 \cdot 10^{-8} \) | \(a_{822}= -0.13614767 \pm 4.3 \cdot 10^{-8} \) |
\(a_{823}= +0.82393275 \pm 1.6 \cdot 10^{-8} \) | \(a_{824}= +2.18530836 \pm 1.3 \cdot 10^{-8} \) | \(a_{825}= +0.17301974 \pm 2.3 \cdot 10^{-8} \) |
\(a_{826}= +0.46112695 \pm 1.7 \cdot 10^{-8} \) | \(a_{827}= +0.03822748 \pm 1.8 \cdot 10^{-8} \) | \(a_{828}= +0.39737594 \pm 5.3 \cdot 10^{-8} \) |
\(a_{829}= +1.48075893 \pm 1.8 \cdot 10^{-8} \) | \(a_{830}= +0.66887258 \pm 4.6 \cdot 10^{-8} \) | \(a_{831}= -0.03502899 \pm 2.6 \cdot 10^{-8} \) |
\(a_{832}= +0.40887091 \pm 1.2 \cdot 10^{-8} \) | \(a_{833}= -0.32435664 \pm 1.4 \cdot 10^{-8} \) | \(a_{834}= -0.05230632 \pm 5.2 \cdot 10^{-8} \) |
\(a_{835}= +0.51598053 \pm 2.5 \cdot 10^{-8} \) | \(a_{836}= +0.90111146 \pm 1 \cdot 10^{-8} \) | \(a_{837}= +0.11452893 \pm 2.7 \cdot 10^{-8} \) |
\(a_{838}= +0.21140611 \pm 2.8 \cdot 10^{-8} \) | \(a_{839}= -1.40998863 \pm 1.2 \cdot 10^{-8} \) | \(a_{840}= -0.47158239 \pm 4.9 \cdot 10^{-8} \) |
\(a_{841}= +0.19759541 \pm 2.2 \cdot 10^{-8} \) | \(a_{842}= -2.93710698 \pm 1.3 \cdot 10^{-8} \) | \(a_{843}= +0.03128712 \pm 2.1 \cdot 10^{-8} \) |
\(a_{844}= -1.74691030 \pm 2.0 \cdot 10^{-8} \) | \(a_{845}= -0.34363273 \pm 2.3 \cdot 10^{-8} \) | \(a_{846}= +0.69079151 \pm 4.4 \cdot 10^{-8} \) |
\(a_{847}= -1.07672849 \pm 1.3 \cdot 10^{-8} \) | \(a_{848}= -1.27380589 \pm 1 \cdot 10^{-8} \) | \(a_{849}= +0.09771452 \pm 2.5 \cdot 10^{-8} \) |
\(a_{850}= -0.45883000 \pm 4.9 \cdot 10^{-8} \) | \(a_{851}= -0.99921550 \pm 1.8 \cdot 10^{-8} \) | \(a_{852}= -0.92350232 \pm 4.8 \cdot 10^{-8} \) |
\(a_{853}= -0.47815259 \pm 1.7 \cdot 10^{-8} \) | \(a_{854}= +1.67456168 \pm 1.3 \cdot 10^{-8} \) | \(a_{855}= -0.04105273 \pm 2.5 \cdot 10^{-8} \) |
\(a_{856}= -2.38251756 \pm 2.7 \cdot 10^{-8} \) | \(a_{857}= +1.98610938 \pm 1.5 \cdot 10^{-8} \) | \(a_{858}= +2.05269317 \pm 5.8 \cdot 10^{-8} \) |
\(a_{859}= +0.35126608 \pm 1.9 \cdot 10^{-8} \) | \(a_{860}= -0.20310267 \pm 5.0 \cdot 10^{-8} \) | \(a_{861}= +0.30466574 \pm 4.0 \cdot 10^{-8} \) |
\(a_{862}= -1.19296786 \pm 1.5 \cdot 10^{-8} \) | \(a_{863}= +1.03583794 \pm 1.2 \cdot 10^{-8} \) | \(a_{864}= -0.13779429 \pm 2.6 \cdot 10^{-8} \) |
\(a_{865}= +0.15540290 \pm 2.6 \cdot 10^{-8} \) | \(a_{866}= -0.21412423 \pm 1.8 \cdot 10^{-8} \) | \(a_{867}= +0.37707813 \pm 2.4 \cdot 10^{-8} \) |
\(a_{868}= -1.12375738 \pm 1.4 \cdot 10^{-8} \) | \(a_{869}= -1.03818145 \pm 1.1 \cdot 10^{-8} \) | \(a_{870}= -0.50417262 \pm 5.1 \cdot 10^{-8} \) |
\(a_{871}= +1.99286035 \pm 1.4 \cdot 10^{-8} \) | \(a_{872}= +0.02158857 \pm 2.2 \cdot 10^{-8} \) | \(a_{873}= -0.44078758 \pm 2.3 \cdot 10^{-8} \) |
\(a_{874}= -0.26824832 \pm 1.5 \cdot 10^{-8} \) | \(a_{875}= +0.07734220 \pm 2.5 \cdot 10^{-8} \) | \(a_{876}= -1.16748282 \pm 4.3 \cdot 10^{-8} \) |
\(a_{877}= -1.54827805 \pm 2.3 \cdot 10^{-8} \) | \(a_{878}= +1.88459230 \pm 2.0 \cdot 10^{-8} \) | \(a_{879}= +0.61640123 \pm 3.0 \cdot 10^{-8} \) |
\(a_{880}= -1.06213346 \pm 4.1 \cdot 10^{-8} \) | \(a_{881}= +1.01425700 \pm 1.6 \cdot 10^{-8} \) | \(a_{882}= +0.15004425 \pm 4.9 \cdot 10^{-8} \) |
\(a_{883}= -0.45636274 \pm 1.4 \cdot 10^{-8} \) | \(a_{884}= -3.73374340 \pm 1 \cdot 10^{-8} \) | \(a_{885}= -0.07716734 \pm 2.8 \cdot 10^{-8} \) |
\(a_{886}= -1.68747174 \pm 1.6 \cdot 10^{-8} \) | \(a_{887}= +1.73888742 \pm 1.1 \cdot 10^{-8} \) | \(a_{888}= +2.23208803 \pm 4.9 \cdot 10^{-8} \) |
\(a_{889}= -0.84684843 \pm 1.3 \cdot 10^{-8} \) | \(a_{890}= -0.39803686 \pm 4.6 \cdot 10^{-8} \) | \(a_{891}= +0.16648832 \pm 2.3 \cdot 10^{-8} \) |
\(a_{892}= +0.23688751 \pm 2.6 \cdot 10^{-8} \) | \(a_{893}= -0.31985027 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +0.43879194 \pm 5.0 \cdot 10^{-8} \) |
\(a_{895}= +0.67651264 \pm 2.4 \cdot 10^{-8} \) | \(a_{896}= -1.09352777 \pm 1.3 \cdot 10^{-8} \) | \(a_{897}= -0.41912814 \pm 4.3 \cdot 10^{-8} \) |
\(a_{898}= -0.41816747 \pm 2.4 \cdot 10^{-8} \) | \(a_{899}= -0.65125664 \pm 1.3 \cdot 10^{-8} \) | \(a_{900}= +0.14558367 \pm 3.3 \cdot 10^{-8} \) |
\(a_{901}= -1.03327861 \pm 1.2 \cdot 10^{-8} \) | \(a_{902}= +1.63158170 \pm 1.2 \cdot 10^{-8} \) | \(a_{903}= -0.10382636 \pm 4.2 \cdot 10^{-8} \) |
\(a_{904}= +1.73548459 \pm 1.8 \cdot 10^{-8} \) | \(a_{905}= +0.39729520 \pm 2.1 \cdot 10^{-8} \) | \(a_{906}= -1.37485146 \pm 4.9 \cdot 10^{-8} \) |
\(a_{907}= +0.98457909 \pm 1.6 \cdot 10^{-8} \) | \(a_{908}= +2.05994764 \pm 3.1 \cdot 10^{-8} \) | \(a_{909}= -0.24850255 \pm 2.5 \cdot 10^{-8} \) |
\(a_{910}= +0.91758203 \pm 6.1 \cdot 10^{-8} \) | \(a_{911}= -0.03644166 \pm 1.8 \cdot 10^{-8} \) | \(a_{912}= +0.25201447 \pm 4.3 \cdot 10^{-8} \) |
\(a_{913}= +1.25598618 \pm 1.0 \cdot 10^{-8} \) | \(a_{914}= +2.48341411 \pm 2.6 \cdot 10^{-8} \) | \(a_{915}= -0.28022970 \pm 2.5 \cdot 10^{-8} \) |
\(a_{916}= -0.68192576 \pm 2.4 \cdot 10^{-8} \) | \(a_{917}= -0.50689252 \pm 1.5 \cdot 10^{-8} \) | \(a_{918}= -0.44150938 \pm 4.9 \cdot 10^{-8} \) |
\(a_{919}= +0.39050017 \pm 1.8 \cdot 10^{-8} \) | \(a_{920}= +0.51566253 \pm 5.3 \cdot 10^{-8} \) | \(a_{921}= -0.20085211 \pm 2.6 \cdot 10^{-8} \) |
\(a_{922}= -1.04357892 \pm 2.6 \cdot 10^{-8} \) | \(a_{923}= +0.97405446 \pm 1.3 \cdot 10^{-8} \) | \(a_{924}= -1.63358266 \pm 6.2 \cdot 10^{-8} \) |
\(a_{925}= -0.36607516 \pm 2.6 \cdot 10^{-8} \) | \(a_{926}= -0.44611871 \pm 1.8 \cdot 10^{-8} \) | \(a_{927}= -0.34487347 \pm 2.1 \cdot 10^{-8} \) |
\(a_{928}= +0.78355261 \pm 1.7 \cdot 10^{-8} \) | \(a_{929}= +0.42108867 \pm 2.0 \cdot 10^{-8} \) | \(a_{930}= +0.27417086 \pm 4.9 \cdot 10^{-8} \) |
\(a_{931}= -0.06947349 \pm 1.3 \cdot 10^{-8} \) | \(a_{932}= +3.19069301 \pm 1.3 \cdot 10^{-8} \) | \(a_{933}= -0.08879456 \pm 3.3 \cdot 10^{-8} \) |
\(a_{934}= +1.78491928 \pm 1.2 \cdot 10^{-8} \) | \(a_{935}= -0.86157537 \pm 4.0 \cdot 10^{-8} \) | \(a_{936}= +0.93626540 \pm 4.7 \cdot 10^{-8} \) |
\(a_{937}= -1.25088563 \pm 2.0 \cdot 10^{-8} \) | \(a_{938}= -2.31222274 \pm 1.3 \cdot 10^{-8} \) | \(a_{939}= +0.11189808 \pm 2.8 \cdot 10^{-8} \) |
\(a_{940}= +1.13427236 \pm 4.5 \cdot 10^{-8} \) | \(a_{941}= +0.23020829 \pm 1.7 \cdot 10^{-8} \) | \(a_{942}= +0.95985613 \pm 4.5 \cdot 10^{-8} \) |
\(a_{943}= -0.33314370 \pm 2.0 \cdot 10^{-8} \) | \(a_{944}= +0.47371480 \pm 2.5 \cdot 10^{-8} \) | \(a_{945}= +0.07442257 \pm 2.5 \cdot 10^{-8} \) |
\(a_{946}= -0.55602309 \pm 1.5 \cdot 10^{-8} \) | \(a_{947}= -0.32033803 \pm 1.6 \cdot 10^{-8} \) | \(a_{948}= -0.87355505 \pm 5.1 \cdot 10^{-8} \) |
\(a_{949}= +1.23139036 \pm 1.1 \cdot 10^{-8} \) | \(a_{950}= -0.09827615 \pm 4.7 \cdot 10^{-8} \) | \(a_{951}= -0.01055342 \pm 2.5 \cdot 10^{-8} \) |
\(a_{952}= +2.34830875 \pm 1.0 \cdot 10^{-8} \) | \(a_{953}= +1.57683009 \pm 2.2 \cdot 10^{-8} \) | \(a_{954}= +0.47798473 \pm 4.4 \cdot 10^{-8} \) |
\(a_{955}= -0.81070796 \pm 2.8 \cdot 10^{-8} \) | \(a_{956}= -3.08075447 \pm 2.8 \cdot 10^{-8} \) | \(a_{957}= -0.94671819 \pm 4.2 \cdot 10^{-8} \) |
\(a_{958}= -1.15841046 \pm 1.2 \cdot 10^{-8} \) | \(a_{959}= -0.11428061 \pm 1 \cdot 10^{-8} \) | \(a_{960}= +0.07938748 \pm 3.0 \cdot 10^{-8} \) |
\(a_{961}= -0.64584433 \pm 1.5 \cdot 10^{-8} \) | \(a_{962}= -4.34308813 \pm 1.7 \cdot 10^{-8} \) | \(a_{963}= +0.37599596 \pm 2.5 \cdot 10^{-8} \) |
\(a_{964}= -2.30402084 \pm 2.8 \cdot 10^{-8} \) | \(a_{965}= +0.17141520 \pm 3.2 \cdot 10^{-8} \) | \(a_{966}= +0.48629479 \pm 6.7 \cdot 10^{-8} \) |
\(a_{967}= +1.51286388 \pm 1.2 \cdot 10^{-8} \) | \(a_{968}= -2.63006425 \pm 1.8 \cdot 10^{-8} \) | \(a_{969}= +0.20442766 \pm 4.2 \cdot 10^{-8} \) |
\(a_{970}= -1.05520157 \pm 4.5 \cdot 10^{-8} \) | \(a_{971}= +0.94632209 \pm 1.3 \cdot 10^{-8} \) | \(a_{972}= +0.14008795 \pm 3.3 \cdot 10^{-8} \) |
\(a_{973}= -0.04390525 \pm 1.6 \cdot 10^{-8} \) | \(a_{974}= +0.14054472 \pm 3.0 \cdot 10^{-8} \) | \(a_{975}= -0.15355286 \pm 2.3 \cdot 10^{-8} \) |
\(a_{976}= +1.72027390 \pm 1.8 \cdot 10^{-8} \) | \(a_{977}= -1.77694009 \pm 1.5 \cdot 10^{-8} \) | \(a_{978}= -1.62731373 \pm 4.8 \cdot 10^{-8} \) |
\(a_{979}= -0.74742007 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +0.24637108 \pm 5.1 \cdot 10^{-8} \) | \(a_{981}= -0.00340699 \pm 3.0 \cdot 10^{-8} \) |
\(a_{982}= +0.69450260 \pm 1.1 \cdot 10^{-8} \) | \(a_{983}= -0.37955643 \pm 1.5 \cdot 10^{-8} \) | \(a_{984}= +0.74418989 \pm 4.8 \cdot 10^{-8} \) |
\(a_{985}= +0.28391607 \pm 2.1 \cdot 10^{-8} \) | \(a_{986}= +2.51059625 \pm 3.6 \cdot 10^{-8} \) | \(a_{987}= +0.57984154 \pm 3.7 \cdot 10^{-8} \) |
\(a_{988}= -0.79972519 \pm 1.0 \cdot 10^{-8} \) | \(a_{989}= +0.11353130 \pm 1.9 \cdot 10^{-8} \) | \(a_{990}= +0.39855646 \pm 4.5 \cdot 10^{-8} \) |
\(a_{991}= +0.40561584 \pm 1.3 \cdot 10^{-8} \) | \(a_{992}= -0.42609869 \pm 1.3 \cdot 10^{-8} \) | \(a_{993}= -0.81535058 \pm 2.9 \cdot 10^{-8} \) |
\(a_{994}= -1.13014988 \pm 1.1 \cdot 10^{-8} \) | \(a_{995}= -0.03642914 \pm 1.8 \cdot 10^{-8} \) | \(a_{996}= +1.05682207 \pm 4.7 \cdot 10^{-8} \) |
\(a_{997}= -0.19353122 \pm 1.7 \cdot 10^{-8} \) | \(a_{998}= +2.98868396 \pm 1.7 \cdot 10^{-8} \) | \(a_{999}= -0.35225599 \pm 2.6 \cdot 10^{-8} \) |
\(a_{1000}= +0.18891945 \pm 3.4 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000