Maass form invariants
Level: | \( 15 = 3 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 15.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(9.82417896066128541274978863687 \pm 9 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.83201443 \pm 3.1 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.30775199 \pm 3.3 \cdot 10^{-8} \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -0.48036376 \pm 4.1 \cdot 10^{-8} \) |
\(a_{7}= -1.15946452 \pm 2.1 \cdot 10^{-8} \) | \(a_{8}= +1.08806853 \pm 3.3 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.37208816 \pm 4.1 \cdot 10^{-8} \) | \(a_{11}= +1.51253669 \pm 1.8 \cdot 10^{-8} \) | \(a_{12}= -0.17768069 \pm 4.3 \cdot 10^{-8} \) |
\(a_{13}= -1.59511180 \pm 1.9 \cdot 10^{-8} \) | \(a_{14}= +0.96469121 \pm 2.1 \cdot 10^{-8} \) | \(a_{15}= +0.25819889 \pm 1.0 \cdot 10^{-8} \) |
\(a_{16}= -0.59753673 \pm 2.6 \cdot 10^{-8} \) | \(a_{17}= -1.25518491 \pm 2.4 \cdot 10^{-8} \) | \(a_{18}= -0.27733814 \pm 4.1 \cdot 10^{-8} \) |
\(a_{19}= -0.53242184 \pm 2.0 \cdot 10^{-8} \) | \(a_{20}= -0.13763087 \pm 4.3 \cdot 10^{-8} \) | \(a_{21}= -0.66941715 \pm 3.2 \cdot 10^{-8} \) |
\(a_{22}= -1.25845235 \pm 2.0 \cdot 10^{-8} \) | \(a_{23}= +0.99607643 \pm 2.7 \cdot 10^{-8} \) | \(a_{24}= +0.62819666 \pm 4.4 \cdot 10^{-8} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +1.32715604 \pm 2.2 \cdot 10^{-8} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.35682751 \pm 1.9 \cdot 10^{-8} \) | \(a_{29}= +0.88766924 \pm 2.7 \cdot 10^{-8} \) | \(a_{30}= -0.21482520 \pm 4.1 \cdot 10^{-8} \) |
\(a_{31}= -0.35798668 \pm 2.3 \cdot 10^{-8} \) | \(a_{32}= -0.59090935 \pm 2.3 \cdot 10^{-8} \) | \(a_{33}= +0.87326346 \pm 2.9 \cdot 10^{-8} \) |
\(a_{34}= +1.04433196 \pm 3.2 \cdot 10^{-8} \) | \(a_{35}= -0.51852829 \pm 3.2 \cdot 10^{-8} \) | \(a_{36}= -0.10258400 \pm 4.3 \cdot 10^{-8} \) |
\(a_{37}= +1.48711680 \pm 2.2 \cdot 10^{-8} \) | \(a_{38}= +0.44298266 \pm 1.9 \cdot 10^{-8} \) | \(a_{39}= -0.92093823 \pm 2.9 \cdot 10^{-8} \) |
\(a_{40}= +0.48659904 \pm 4.4 \cdot 10^{-8} \) | \(a_{41}= +1.49189814 \pm 2.1 \cdot 10^{-8} \) | \(a_{42}= +0.55696473 \pm 6.3 \cdot 10^{-8} \) |
\(a_{43}= +0.70822630 \pm 2.3 \cdot 10^{-8} \) | \(a_{44}= -0.46548617 \pm 1.9 \cdot 10^{-8} \) | \(a_{45}= +0.14907120 \pm 1.4 \cdot 10^{-7} \) |
\(a_{46}= -0.82874996 \pm 4.2 \cdot 10^{-8} \) | \(a_{47}= -0.55768184 \pm 1.6 \cdot 10^{-8} \) | \(a_{48}= -0.34498799 \pm 3.6 \cdot 10^{-8} \) |
\(a_{49}= +0.34435796 \pm 2.4 \cdot 10^{-8} \) | \(a_{50}= -0.16640289 \pm 4.1 \cdot 10^{-8} \) | \(a_{51}= -0.72468135 \pm 3.4 \cdot 10^{-8} \) |
\(a_{52}= +0.49089883 \pm 2.5 \cdot 10^{-8} \) | \(a_{53}= +1.60533090 \pm 1.7 \cdot 10^{-8} \) | \(a_{54}= -0.16012125 \pm 4.1 \cdot 10^{-8} \) |
\(a_{55}= +0.67642697 \pm 2.9 \cdot 10^{-8} \) | \(a_{56}= -1.26157684 \pm 2.4 \cdot 10^{-8} \) | \(a_{57}= -0.30739390 \pm 3.1 \cdot 10^{-8} \) |
\(a_{58}= -0.73855361 \pm 4.0 \cdot 10^{-8} \) | \(a_{59}= +1.13460463 \pm 2.5 \cdot 10^{-8} \) | \(a_{60}= -0.07946122 \pm 4.3 \cdot 10^{-8} \) |
\(a_{61}= +0.88801741 \pm 2.1 \cdot 10^{-8} \) | \(a_{62}= +0.29785009 \pm 2.8 \cdot 10^{-8} \) | \(a_{63}= -0.38648817 \pm 3.2 \cdot 10^{-8} \) |
\(a_{64}= +1.08918183 \pm 2.8 \cdot 10^{-8} \) | \(a_{65}= -0.71335569 \pm 2.9 \cdot 10^{-8} \) | \(a_{66}= -0.72656780 \pm 6.0 \cdot 10^{-8} \) |
\(a_{67}= -1.02801431 \pm 2.0 \cdot 10^{-8} \) | \(a_{68}= +0.38628565 \pm 3.2 \cdot 10^{-8} \) | \(a_{69}= +0.57508499 \pm 3.8 \cdot 10^{-8} \) |
\(a_{70}= +0.43142302 \pm 6.3 \cdot 10^{-8} \) | \(a_{71}= +0.43835235 \pm 2.1 \cdot 10^{-8} \) | \(a_{72}= +0.36268951 \pm 4.4 \cdot 10^{-8} \) |
\(a_{73}= +0.42969186 \pm 1.3 \cdot 10^{-8} \) | \(a_{74}= -1.23730264 \pm 2.6 \cdot 10^{-8} \) | \(a_{75}= +0.11547005 \pm 2.2 \cdot 10^{-7} \) |
\(a_{76}= +0.16385388 \pm 1.7 \cdot 10^{-8} \) | \(a_{77}= -1.75373262 \pm 1.5 \cdot 10^{-8} \) | \(a_{78}= +0.76623390 \pm 6.1 \cdot 10^{-8} \) |
\(a_{79}= -0.00430976 \pm 2.5 \cdot 10^{-8} \) | \(a_{80}= -0.26722655 \pm 3.6 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.24128078 \pm 2.5 \cdot 10^{-8} \) | \(a_{83}= +0.54185674 \pm 1.9 \cdot 10^{-8} \) | \(a_{84}= +0.20601446 \pm 6.5 \cdot 10^{-8} \) |
\(a_{85}= -0.56133576 \pm 3.4 \cdot 10^{-8} \) | \(a_{86}= -0.58925451 \pm 3.4 \cdot 10^{-8} \) | \(a_{87}= +0.51249607 \pm 3.7 \cdot 10^{-8} \) |
\(a_{88}= +1.64574356 \pm 2.2 \cdot 10^{-8} \) | \(a_{89}= +0.03599981 \pm 2.0 \cdot 10^{-8} \) | \(a_{90}= -0.12402939 \pm 4.1 \cdot 10^{-8} \) |
\(a_{91}= +1.84947554 \pm 2.3 \cdot 10^{-8} \) | \(a_{92}= -0.30654450 \pm 4.7 \cdot 10^{-8} \) | \(a_{93}= -0.20668371 \pm 3.4 \cdot 10^{-8} \) |
\(a_{94}= +0.46399934 \pm 2.6 \cdot 10^{-8} \) | \(a_{95}= -0.23810629 \pm 3.1 \cdot 10^{-8} \) | \(a_{96}= -0.34116167 \pm 3.3 \cdot 10^{-8} \) |
\(a_{97}= +0.17057641 \pm 1.8 \cdot 10^{-8} \) | \(a_{98}= -0.28651079 \pm 3.1 \cdot 10^{-8} \) | \(a_{99}= +0.50417890 \pm 2.9 \cdot 10^{-8} \) |
\(a_{100}= -0.06155040 \pm 4.3 \cdot 10^{-8} \) | \(a_{101}= -0.60890132 \pm 2.1 \cdot 10^{-8} \) | \(a_{102}= +0.60294534 \pm 6.6 \cdot 10^{-8} \) |
\(a_{103}= +0.39309080 \pm 1.5 \cdot 10^{-8} \) | \(a_{104}= -1.73559095 \pm 2.6 \cdot 10^{-8} \) | \(a_{105}= -0.29937245 \pm 3.2 \cdot 10^{-8} \) |
\(a_{106}= -1.33565847 \pm 2.2 \cdot 10^{-8} \) | \(a_{107}= -0.72654812 \pm 2.0 \cdot 10^{-8} \) | \(a_{108}= -0.05922690 \pm 4.3 \cdot 10^{-8} \) |
\(a_{109}= +0.45192160 \pm 2.8 \cdot 10^{-8} \) | \(a_{110}= -0.56279700 \pm 6.0 \cdot 10^{-8} \) | \(a_{111}= +0.85858728 \pm 3.2 \cdot 10^{-8} \) |
\(a_{112}= +0.69282263 \pm 1.7 \cdot 10^{-8} \) | \(a_{113}= -0.08074388 \pm 2.0 \cdot 10^{-8} \) | \(a_{114}= +0.25575616 \pm 6.2 \cdot 10^{-8} \) |
\(a_{115}= +0.44545892 \pm 3.8 \cdot 10^{-8} \) | \(a_{116}= -0.27318197 \pm 4.1 \cdot 10^{-8} \) | \(a_{117}= -0.53170393 \pm 2.9 \cdot 10^{-8} \) |
\(a_{118}= -0.94400742 \pm 3.2 \cdot 10^{-8} \) | \(a_{119}= +1.45534237 \pm 1.4 \cdot 10^{-8} \) | \(a_{120}= +0.28093809 \pm 4.4 \cdot 10^{-8} \) |
\(a_{121}= +1.28776723 \pm 2.0 \cdot 10^{-8} \) | \(a_{122}= -0.73884330 \pm 3.1 \cdot 10^{-8} \) | \(a_{123}= +0.86134779 \pm 3.1 \cdot 10^{-8} \) |
\(a_{124}= +0.11017111 \pm 2.8 \cdot 10^{-8} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.32156374 \pm 6.3 \cdot 10^{-8} \) |
\(a_{127}= -1.15554055 \pm 2.5 \cdot 10^{-8} \) | \(a_{128}= -0.31530565 \pm 2.6 \cdot 10^{-8} \) | \(a_{129}= +0.40889465 \pm 3.4 \cdot 10^{-8} \) |
\(a_{130}= +0.59352222 \pm 6.1 \cdot 10^{-8} \) | \(a_{131}= -0.43217826 \pm 2.7 \cdot 10^{-8} \) | \(a_{132}= -0.26874857 \pm 6.2 \cdot 10^{-8} \) |
\(a_{133}= +0.61732424 \pm 2.3 \cdot 10^{-8} \) | \(a_{134}= +0.85532274 \pm 2.7 \cdot 10^{-8} \) | \(a_{135}= +0.08606630 \pm 3.3 \cdot 10^{-7} \) |
\(a_{136}= -1.36572720 \pm 2.8 \cdot 10^{-8} \) | \(a_{137}= +0.66266809 \pm 1.5 \cdot 10^{-8} \) | \(a_{138}= -0.47847901 \pm 6.9 \cdot 10^{-8} \) |
\(a_{139}= +0.03475630 \pm 2.7 \cdot 10^{-8} \) | \(a_{140}= +0.15957811 \pm 6.5 \cdot 10^{-8} \) | \(a_{141}= -0.32197776 \pm 2.7 \cdot 10^{-8} \) |
\(a_{142}= -0.36471548 \pm 1.9 \cdot 10^{-8} \) | \(a_{143}= -2.41266513 \pm 1.2 \cdot 10^{-8} \) | \(a_{144}= -0.19917891 \pm 3.6 \cdot 10^{-8} \) |
\(a_{145}= +0.39697775 \pm 3.7 \cdot 10^{-8} \) | \(a_{146}= -0.35750983 \pm 1.4 \cdot 10^{-8} \) | \(a_{147}= +0.19881516 \pm 3.5 \cdot 10^{-8} \) |
\(a_{148}= -0.45766315 \pm 2.6 \cdot 10^{-8} \) | \(a_{149}= +0.88690318 \pm 2.5 \cdot 10^{-8} \) | \(a_{150}= -0.09607275 \pm 4.1 \cdot 10^{-8} \) |
\(a_{151}= +1.01158980 \pm 2.4 \cdot 10^{-8} \) | \(a_{152}= -0.57931145 \pm 2.1 \cdot 10^{-8} \) | \(a_{153}= -0.41839497 \pm 3.4 \cdot 10^{-8} \) |
\(a_{154}= +1.45913084 \pm 1.4 \cdot 10^{-8} \) | \(a_{155}= -0.16009651 \pm 3.4 \cdot 10^{-8} \) | \(a_{156}= +0.28342057 \pm 6.3 \cdot 10^{-8} \) |
\(a_{157}= +0.72264569 \pm 1.8 \cdot 10^{-8} \) | \(a_{158}= +0.00358578 \pm 2.8 \cdot 10^{-8} \) | \(a_{159}= +0.92683823 \pm 2.7 \cdot 10^{-8} \) |
\(a_{160}= -0.26426269 \pm 3.3 \cdot 10^{-8} \) | \(a_{161}= -1.15491527 \pm 1.6 \cdot 10^{-8} \) | \(a_{162}= -0.09244605 \pm 4.1 \cdot 10^{-8} \) |
\(a_{163}= -0.55963604 \pm 2.2 \cdot 10^{-8} \) | \(a_{164}= -0.45913462 \pm 2.8 \cdot 10^{-8} \) | \(a_{165}= +0.39053529 \pm 2.9 \cdot 10^{-8} \) |
\(a_{166}= -0.45083262 \pm 2.7 \cdot 10^{-8} \) | \(a_{167}= +1.48686024 \pm 2.1 \cdot 10^{-8} \) | \(a_{168}= -0.72837173 \pm 6.5 \cdot 10^{-8} \) |
\(a_{169}= +1.54438167 \pm 1.8 \cdot 10^{-8} \) | \(a_{170}= +0.46703945 \pm 6.6 \cdot 10^{-8} \) | \(a_{171}= -0.17747395 \pm 3.1 \cdot 10^{-8} \) |
\(a_{172}= -0.21795805 \pm 3.7 \cdot 10^{-8} \) | \(a_{173}= -0.07155022 \pm 2.2 \cdot 10^{-8} \) | \(a_{174}= -0.42640413 \pm 6.9 \cdot 10^{-8} \) |
\(a_{175}= -0.23189290 \pm 3.2 \cdot 10^{-8} \) | \(a_{176}= -0.90379622 \pm 1.7 \cdot 10^{-8} \) | \(a_{177}= +0.65506429 \pm 3.5 \cdot 10^{-8} \) |
\(a_{178}= -0.02995236 \pm 3.1 \cdot 10^{-8} \) | \(a_{179}= +1.44061236 \pm 1.9 \cdot 10^{-8} \) | \(a_{180}= -0.04587696 \pm 4.3 \cdot 10^{-8} \) |
\(a_{181}= -1.39219382 \pm 1.5 \cdot 10^{-8} \) | \(a_{182}= -1.53879033 \pm 2.4 \cdot 10^{-8} \) | \(a_{183}= +0.51269709 \pm 3.2 \cdot 10^{-8} \) |
\(a_{184}= +1.08379941 \pm 4.9 \cdot 10^{-8} \) | \(a_{185}= +0.66505885 \pm 3.2 \cdot 10^{-8} \) | \(a_{186}= +0.17196383 \pm 6.5 \cdot 10^{-8} \) |
\(a_{187}= -1.89851323 \pm 1.9 \cdot 10^{-8} \) | \(a_{188}= +0.17162770 \pm 3.2 \cdot 10^{-8} \) | \(a_{189}= -0.22313905 \pm 3.2 \cdot 10^{-8} \) |
\(a_{190}= +0.19810787 \pm 6.2 \cdot 10^{-8} \) | \(a_{191}= +1.59851509 \pm 2.5 \cdot 10^{-8} \) | \(a_{192}= +0.62883942 \pm 3.8 \cdot 10^{-8} \) |
\(a_{193}= -1.52255472 \pm 3.0 \cdot 10^{-8} \) | \(a_{194}= -0.14192203 \pm 2.2 \cdot 10^{-8} \) | \(a_{195}= -0.41185610 \pm 2.9 \cdot 10^{-8} \) |
\(a_{196}= -0.10597685 \pm 3.2 \cdot 10^{-8} \) | \(a_{197}= -0.27688542 \pm 1.5 \cdot 10^{-8} \) | \(a_{198}= -0.41948412 \pm 6.0 \cdot 10^{-8} \) |
\(a_{199}= -0.34835934 \pm 1.1 \cdot 10^{-8} \) | \(a_{200}= +0.21761371 \pm 4.4 \cdot 10^{-8} \) | \(a_{201}= -0.59352434 \pm 3.1 \cdot 10^{-8} \) |
\(a_{202}= +0.50661469 \pm 2.8 \cdot 10^{-8} \) | \(a_{203}= -1.02922098 \pm 1.6 \cdot 10^{-8} \) | \(a_{204}= +0.22302213 \pm 6.8 \cdot 10^{-8} \) |
\(a_{205}= +0.66719713 \pm 3.1 \cdot 10^{-8} \) | \(a_{206}= -0.32705721 \pm 1.7 \cdot 10^{-8} \) | \(a_{207}= +0.33202548 \pm 3.8 \cdot 10^{-8} \) |
\(a_{208}= +0.95313788 \pm 2.1 \cdot 10^{-8} \) | \(a_{209}= -0.80530757 \pm 1.8 \cdot 10^{-8} \) | \(a_{210}= +0.24908220 \pm 6.3 \cdot 10^{-8} \) |
\(a_{211}= +0.55307669 \pm 2.1 \cdot 10^{-8} \) | \(a_{212}= -0.49404378 \pm 2.1 \cdot 10^{-8} \) | \(a_{213}= +0.25308285 \pm 3.1 \cdot 10^{-8} \) |
\(a_{214}= +0.60449852 \pm 3.0 \cdot 10^{-8} \) | \(a_{215}= +0.31672843 \pm 3.4 \cdot 10^{-8} \) | \(a_{216}= +0.20939889 \pm 4.4 \cdot 10^{-8} \) |
\(a_{217}= +0.41507285 \pm 2.2 \cdot 10^{-8} \) | \(a_{218}= -0.37600529 \pm 3.9 \cdot 10^{-8} \) | \(a_{219}= +0.24808271 \pm 2.3 \cdot 10^{-8} \) |
\(a_{220}= -0.20817175 \pm 6.2 \cdot 10^{-8} \) | \(a_{221}= +2.00216027 \pm 1.4 \cdot 10^{-8} \) | \(a_{222}= -0.71435701 \pm 6.4 \cdot 10^{-8} \) |
\(a_{223}= -0.11965686 \pm 2.5 \cdot 10^{-8} \) | \(a_{224}= +0.68513842 \pm 1.4 \cdot 10^{-8} \) | \(a_{225}= +0.06666667 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= +0.06718007 \pm 2.4 \cdot 10^{-8} \) | \(a_{227}= -0.18789389 \pm 2.9 \cdot 10^{-8} \) | \(a_{228}= +0.09460108 \pm 6.4 \cdot 10^{-8} \) |
\(a_{229}= +0.91052412 \pm 2.0 \cdot 10^{-8} \) | \(a_{230}= -0.37062825 \pm 6.9 \cdot 10^{-8} \) | \(a_{231}= -1.01251800 \pm 5.0 \cdot 10^{-8} \) |
\(a_{232}= +0.96584496 \pm 3.0 \cdot 10^{-8} \) | \(a_{233}= -1.08897611 \pm 2.3 \cdot 10^{-8} \) | \(a_{234}= +0.44238535 \pm 6.1 \cdot 10^{-8} \) |
\(a_{235}= -0.24940290 \pm 2.7 \cdot 10^{-8} \) | \(a_{236}= -0.34917683 \pm 3.7 \cdot 10^{-8} \) | \(a_{237}= -0.00248824 \pm 3.5 \cdot 10^{-8} \) |
\(a_{238}= -1.21086585 \pm 1.2 \cdot 10^{-8} \) | \(a_{239}= -0.50343935 \pm 2.8 \cdot 10^{-8} \) | \(a_{240}= -0.15428332 \pm 3.6 \cdot 10^{-8} \) |
\(a_{241}= -1.58414380 \pm 2.8 \cdot 10^{-8} \) | \(a_{242}= -1.07144092 \pm 2.4 \cdot 10^{-8} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.27328912 \pm 3.3 \cdot 10^{-8} \) | \(a_{245}= +0.15400156 \pm 3.5 \cdot 10^{-8} \) | \(a_{246}= -0.71665379 \pm 6.3 \cdot 10^{-8} \) |
\(a_{247}= +0.84927237 \pm 1.9 \cdot 10^{-8} \) | \(a_{248}= -0.38951404 \pm 3.3 \cdot 10^{-8} \) | \(a_{249}= +0.31284113 \pm 2.9 \cdot 10^{-8} \) |
\(a_{250}= -0.07441763 \pm 4.1 \cdot 10^{-8} \) | \(a_{251}= +1.35539223 \pm 1.2 \cdot 10^{-8} \) | \(a_{252}= +0.11894250 \pm 6.5 \cdot 10^{-8} \) |
\(a_{253}= +1.50660214 \pm 2.1 \cdot 10^{-8} \) | \(a_{254}= +0.96142641 \pm 3.4 \cdot 10^{-8} \) | \(a_{255}= -0.32408735 \pm 3.4 \cdot 10^{-8} \) |
\(a_{256}= -0.82684298 \pm 2.3 \cdot 10^{-8} \) | \(a_{257}= -0.39390946 \pm 1.7 \cdot 10^{-8} \) | \(a_{258}= -0.34020625 \pm 6.5 \cdot 10^{-8} \) |
\(a_{259}= -1.72425916 \pm 2.6 \cdot 10^{-8} \) | \(a_{260}= +0.21953663 \pm 6.3 \cdot 10^{-8} \) | \(a_{261}= +0.29588975 \pm 3.7 \cdot 10^{-8} \) |
\(a_{262}= +0.35957855 \pm 3.6 \cdot 10^{-8} \) | \(a_{263}= +0.98545632 \pm 2.4 \cdot 10^{-8} \) | \(a_{264}= +0.95017049 \pm 6.2 \cdot 10^{-8} \) |
\(a_{265}= +0.71792580 \pm 2.7 \cdot 10^{-8} \) | \(a_{266}= -0.51362267 \pm 1.7 \cdot 10^{-8} \) | \(a_{267}= +0.02078450 \pm 3.0 \cdot 10^{-8} \) |
\(a_{268}= +0.31637345 \pm 3.3 \cdot 10^{-8} \) | \(a_{269}= +1.19548701 \pm 1.8 \cdot 10^{-8} \) | \(a_{270}= -0.07160840 \pm 4.1 \cdot 10^{-8} \) |
\(a_{271}= -1.12409389 \pm 2.0 \cdot 10^{-8} \) | \(a_{272}= +0.75001908 \pm 1.7 \cdot 10^{-8} \) | \(a_{273}= +1.06779520 \pm 5.1 \cdot 10^{-8} \) |
\(a_{274}= -0.55134941 \pm 1.9 \cdot 10^{-8} \) | \(a_{275}= +0.30250734 \pm 2.9 \cdot 10^{-8} \) | \(a_{276}= -0.17698355 \pm 7.1 \cdot 10^{-8} \) |
\(a_{277}= +1.09981548 \pm 2.2 \cdot 10^{-8} \) | \(a_{278}= -0.02891774 \pm 3.5 \cdot 10^{-8} \) | \(a_{279}= -0.11932889 \pm 3.4 \cdot 10^{-8} \) |
\(a_{280}= -0.56419432 \pm 6.5 \cdot 10^{-8} \) | \(a_{281}= -1.31531424 \pm 1.5 \cdot 10^{-8} \) | \(a_{282}= +0.26789014 \pm 5.8 \cdot 10^{-8} \) |
\(a_{283}= -1.69494246 \pm 2.2 \cdot 10^{-8} \) | \(a_{284}= -0.13490381 \pm 1.6 \cdot 10^{-8} \) | \(a_{285}= -0.13747073 \pm 3.1 \cdot 10^{-8} \) |
\(a_{286}= +2.00737220 \pm 1.4 \cdot 10^{-8} \) | \(a_{287}= -1.72980295 \pm 1.9 \cdot 10^{-8} \) | \(a_{288}= -0.19696978 \pm 3.3 \cdot 10^{-8} \) |
\(a_{289}= +0.57548917 \pm 1.9 \cdot 10^{-8} \) | \(a_{290}= -0.33029122 \pm 6.9 \cdot 10^{-8} \) | \(a_{291}= +0.09848233 \pm 2.8 \cdot 10^{-8} \) |
\(a_{292}= -0.13223852 \pm 1.4 \cdot 10^{-8} \) | \(a_{293}= +0.26390448 \pm 2.8 \cdot 10^{-8} \) | \(a_{294}= -0.16541708 \pm 6.6 \cdot 10^{-8} \) |
\(a_{295}= +0.50741061 \pm 3.5 \cdot 10^{-8} \) | \(a_{296}= +1.61808498 \pm 3.3 \cdot 10^{-8} \) | \(a_{297}= +0.29108782 \pm 2.9 \cdot 10^{-8} \) |
\(a_{298}= -0.73791625 \pm 3.9 \cdot 10^{-8} \) | \(a_{299}= -1.58885327 \pm 1.7 \cdot 10^{-8} \) | \(a_{300}= -0.03553614 \pm 4.3 \cdot 10^{-8} \) |
\(a_{301}= -0.82116327 \pm 1.6 \cdot 10^{-8} \) | \(a_{302}= -0.84165731 \pm 3.2 \cdot 10^{-8} \) | \(a_{303}= -0.35154934 \pm 3.1 \cdot 10^{-8} \) |
\(a_{304}= +0.31814161 \pm 1.5 \cdot 10^{-8} \) | \(a_{305}= +0.39713346 \pm 3.2 \cdot 10^{-8} \) | \(a_{306}= +0.34811065 \pm 6.6 \cdot 10^{-8} \) |
\(a_{307}= +0.31813275 \pm 2.2 \cdot 10^{-8} \) | \(a_{308}= +0.53971470 \pm 1.2 \cdot 10^{-8} \) | \(a_{309}= +0.22695108 \pm 2.6 \cdot 10^{-8} \) |
\(a_{310}= +0.13320261 \pm 6.5 \cdot 10^{-8} \) | \(a_{311}= +0.97064632 \pm 3.3 \cdot 10^{-8} \) | \(a_{312}= -1.00204390 \pm 6.3 \cdot 10^{-8} \) |
\(a_{313}= -1.30707694 \pm 2.5 \cdot 10^{-8} \) | \(a_{314}= -0.60125164 \pm 1.9 \cdot 10^{-8} \) | \(a_{315}= -0.17284276 \pm 3.2 \cdot 10^{-8} \) |
\(a_{316}= +0.00132634 \pm 3.0 \cdot 10^{-8} \) | \(a_{317}= -0.99310536 \pm 2.1 \cdot 10^{-8} \) | \(a_{318}= -0.77114278 \pm 5.9 \cdot 10^{-8} \) |
\(a_{319}= +1.34263229 \pm 1.8 \cdot 10^{-8} \) | \(a_{320}= +0.48709692 \pm 3.8 \cdot 10^{-8} \) | \(a_{321}= -0.41947275 \pm 3.1 \cdot 10^{-8} \) |
\(a_{322}= +0.96090617 \pm 1.5 \cdot 10^{-8} \) | \(a_{323}= +0.66828787 \pm 2.0 \cdot 10^{-8} \) | \(a_{324}= -0.03419467 \pm 4.3 \cdot 10^{-8} \) |
\(a_{325}= -0.31902236 \pm 2.9 \cdot 10^{-8} \) | \(a_{326}= +0.46562526 \pm 2.3 \cdot 10^{-8} \) | \(a_{327}= +0.26091706 \pm 3.8 \cdot 10^{-8} \) |
\(a_{328}= +1.62328741 \pm 3.4 \cdot 10^{-8} \) | \(a_{329}= +0.64661231 \pm 1.2 \cdot 10^{-8} \) | \(a_{330}= -0.32493100 \pm 6.0 \cdot 10^{-8} \) |
\(a_{331}= +0.63301951 \pm 2.7 \cdot 10^{-8} \) | \(a_{332}= -0.16675749 \pm 2.9 \cdot 10^{-8} \) | \(a_{333}= +0.49570560 \pm 3.2 \cdot 10^{-8} \) |
\(a_{334}= -1.23708918 \pm 3.5 \cdot 10^{-8} \) | \(a_{335}= -0.45974198 \pm 3.1 \cdot 10^{-8} \) | \(a_{336}= +0.40000133 \pm 5.8 \cdot 10^{-8} \) |
\(a_{337}= -0.92867223 \pm 2.0 \cdot 10^{-8} \) | \(a_{338}= -1.28494783 \pm 2.6 \cdot 10^{-8} \) | \(a_{339}= -0.04661750 \pm 3.0 \cdot 10^{-8} \) |
\(a_{340}= +0.17275220 \pm 6.8 \cdot 10^{-8} \) | \(a_{341}= -0.54146799 \pm 2.3 \cdot 10^{-8} \) | \(a_{342}= +0.14766089 \pm 6.2 \cdot 10^{-8} \) |
\(a_{343}= +0.76019368 \pm 2.0 \cdot 10^{-8} \) | \(a_{344}= +0.77059875 \pm 3.1 \cdot 10^{-8} \) | \(a_{345}= +0.25718583 \pm 3.8 \cdot 10^{-8} \) |
\(a_{346}= +0.05953081 \pm 2.7 \cdot 10^{-8} \) | \(a_{347}= +1.43643195 \pm 2.3 \cdot 10^{-8} \) | \(a_{348}= -0.15772169 \pm 7.1 \cdot 10^{-8} \) |
\(a_{349}= +0.84936890 \pm 2.0 \cdot 10^{-8} \) | \(a_{350}= +0.19293824 \pm 6.3 \cdot 10^{-8} \) | \(a_{351}= -0.30697941 \pm 2.9 \cdot 10^{-8} \) |
\(a_{352}= -0.89377207 \pm 1.5 \cdot 10^{-8} \) | \(a_{353}= +0.29539834 \pm 2.0 \cdot 10^{-8} \) | \(a_{354}= -0.54502294 \pm 6.7 \cdot 10^{-8} \) |
\(a_{355}= +0.19603713 \pm 3.1 \cdot 10^{-8} \) | \(a_{356}= -0.01107901 \pm 3.6 \cdot 10^{-8} \) | \(a_{357}= +0.84024231 \pm 5.6 \cdot 10^{-8} \) |
\(a_{358}= -1.19861027 \pm 3.1 \cdot 10^{-8} \) | \(a_{359}= -1.89328783 \pm 2.4 \cdot 10^{-8} \) | \(a_{360}= +0.16219968 \pm 4.4 \cdot 10^{-8} \) |
\(a_{361}= -0.71652698 \pm 1.8 \cdot 10^{-8} \) | \(a_{362}= +1.15832535 \pm 1.4 \cdot 10^{-8} \) | \(a_{363}= +0.74349276 \pm 3.0 \cdot 10^{-8} \) |
\(a_{364}= -0.56917977 \pm 2.5 \cdot 10^{-8} \) | \(a_{365}= +0.19216404 \pm 2.3 \cdot 10^{-8} \) | \(a_{366}= -0.42657138 \pm 6.3 \cdot 10^{-8} \) |
\(a_{367}= +0.64277941 \pm 3.2 \cdot 10^{-8} \) | \(a_{368}= -0.59519225 \pm 4.2 \cdot 10^{-8} \) | \(a_{369}= +0.49729938 \pm 3.1 \cdot 10^{-8} \) |
\(a_{370}= -0.55333856 \pm 6.4 \cdot 10^{-8} \) | \(a_{371}= -1.86132421 \pm 1.7 \cdot 10^{-8} \) | \(a_{372}= +0.06360732 \pm 6.7 \cdot 10^{-8} \) |
\(a_{373}= +1.65932333 \pm 2.2 \cdot 10^{-8} \) | \(a_{374}= +1.57959040 \pm 2.0 \cdot 10^{-8} \) | \(a_{375}= +0.05163978 \pm 7.7 \cdot 10^{-7} \) |
\(a_{376}= -0.60679606 \pm 3.3 \cdot 10^{-8} \) | \(a_{377}= -1.41593168 \pm 1.7 \cdot 10^{-8} \) | \(a_{378}= +0.18565491 \pm 6.3 \cdot 10^{-8} \) |
\(a_{379}= +0.22284495 \pm 2.1 \cdot 10^{-8} \) | \(a_{380}= +0.07327768 \pm 6.4 \cdot 10^{-8} \) | \(a_{381}= -0.66715165 \pm 3.5 \cdot 10^{-8} \) |
\(a_{382}= -1.32998762 \pm 2.9 \cdot 10^{-8} \) | \(a_{383}= -0.59699437 \pm 2.0 \cdot 10^{-8} \) | \(a_{384}= -0.18204180 \pm 3.7 \cdot 10^{-8} \) |
\(a_{385}= -0.78429307 \pm 5.0 \cdot 10^{-8} \) | \(a_{386}= +1.26678750 \pm 4.1 \cdot 10^{-8} \) | \(a_{387}= +0.23607543 \pm 3.4 \cdot 10^{-8} \) |
\(a_{388}= -0.05249523 \pm 2.3 \cdot 10^{-8} \) | \(a_{389}= -0.13470689 \pm 1.8 \cdot 10^{-8} \) | \(a_{390}= +0.34267022 \pm 6.1 \cdot 10^{-8} \) |
\(a_{391}= -1.25026011 \pm 2.9 \cdot 10^{-8} \) | \(a_{392}= +0.37468506 \pm 3.4 \cdot 10^{-8} \) | \(a_{393}= -0.24951823 \pm 3.7 \cdot 10^{-8} \) |
\(a_{394}= +0.23037266 \pm 2.3 \cdot 10^{-8} \) | \(a_{395}= -0.00192738 \pm 3.5 \cdot 10^{-8} \) | \(a_{396}= -0.15516206 \pm 6.2 \cdot 10^{-8} \) |
\(a_{397}= +0.19178412 \pm 2.4 \cdot 10^{-8} \) | \(a_{398}= +0.28984000 \pm 1.4 \cdot 10^{-8} \) | \(a_{399}= +0.35641231 \pm 5.3 \cdot 10^{-8} \) |
\(a_{400}= -0.11950735 \pm 3.6 \cdot 10^{-8} \) | \(a_{401}= +1.49595210 \pm 2.6 \cdot 10^{-8} \) | \(a_{402}= +0.49382082 \pm 6.2 \cdot 10^{-8} \) |
\(a_{403}= +0.57102878 \pm 1.7 \cdot 10^{-8} \) | \(a_{404}= +0.18739059 \pm 2.9 \cdot 10^{-8} \) | \(a_{405}= +0.04969040 \pm 8.2 \cdot 10^{-7} \) |
\(a_{406}= +0.85632671 \pm 1.5 \cdot 10^{-8} \) | \(a_{407}= +2.24931872 \pm 1.7 \cdot 10^{-8} \) | \(a_{408}= -0.78850296 \pm 6.8 \cdot 10^{-8} \) |
\(a_{409}= +0.70637505 \pm 2.4 \cdot 10^{-8} \) | \(a_{410}= -0.55511764 \pm 6.3 \cdot 10^{-8} \) | \(a_{411}= +0.38259160 \pm 2.5 \cdot 10^{-8} \) |
\(a_{412}= -0.12097447 \pm 1.6 \cdot 10^{-8} \) | \(a_{413}= -1.31553380 \pm 2.9 \cdot 10^{-8} \) | \(a_{414}= -0.27624999 \pm 6.9 \cdot 10^{-8} \) |
\(a_{415}= +0.24232570 \pm 2.9 \cdot 10^{-8} \) | \(a_{416}= +0.94256648 \pm 1.7 \cdot 10^{-8} \) | \(a_{417}= +0.02006656 \pm 3.8 \cdot 10^{-8} \) |
\(a_{418}= +0.67002752 \pm 1.6 \cdot 10^{-8} \) | \(a_{419}= -1.07341798 \pm 2.7 \cdot 10^{-8} \) | \(a_{420}= +0.09213247 \pm 6.5 \cdot 10^{-8} \) |
\(a_{421}= +0.35694730 \pm 1.3 \cdot 10^{-8} \) | \(a_{422}= -0.46016778 \pm 2.6 \cdot 10^{-8} \) | \(a_{423}= -0.18589395 \pm 2.7 \cdot 10^{-8} \) |
\(a_{424}= +1.74671003 \pm 1.9 \cdot 10^{-8} \) | \(a_{425}= -0.25103698 \pm 3.4 \cdot 10^{-8} \) | \(a_{426}= -0.21056858 \pm 6.3 \cdot 10^{-8} \) |
\(a_{427}= -1.02962468 \pm 1.7 \cdot 10^{-8} \) | \(a_{428}= +0.22359663 \pm 3.7 \cdot 10^{-8} \) | \(a_{429}= -1.39295286 \pm 4.8 \cdot 10^{-8} \) |
\(a_{430}= -0.26352263 \pm 6.5 \cdot 10^{-8} \) | \(a_{431}= -1.24628214 \pm 2.2 \cdot 10^{-8} \) | \(a_{432}= -0.11499600 \pm 3.6 \cdot 10^{-8} \) |
\(a_{433}= +0.35460882 \pm 2.2 \cdot 10^{-8} \) | \(a_{434}= -0.34534660 \pm 2.4 \cdot 10^{-8} \) | \(a_{435}= +0.22919521 \pm 3.7 \cdot 10^{-8} \) |
\(a_{436}= -0.13907977 \pm 3.9 \cdot 10^{-8} \) | \(a_{437}= -0.53033285 \pm 1.9 \cdot 10^{-8} \) | \(a_{438}= -0.20640839 \pm 5.5 \cdot 10^{-8} \) |
\(a_{439}= +0.11192374 \pm 2.5 \cdot 10^{-8} \) | \(a_{440}= +0.73599890 \pm 6.2 \cdot 10^{-8} \) | \(a_{441}= +0.11478599 \pm 3.5 \cdot 10^{-8} \) |
\(a_{442}= -1.66582624 \pm 1.3 \cdot 10^{-8} \) | \(a_{443}= -0.08429668 \pm 2.3 \cdot 10^{-8} \) | \(a_{444}= -0.26423194 \pm 6.6 \cdot 10^{-8} \) |
\(a_{445}= +0.01609960 \pm 3.0 \cdot 10^{-8} \) | \(a_{446}= +0.09955623 \pm 3.6 \cdot 10^{-8} \) | \(a_{447}= +0.51205379 \pm 3.5 \cdot 10^{-8} \) |
\(a_{448}= -1.26286768 \pm 2.1 \cdot 10^{-8} \) | \(a_{449}= -1.33528184 \pm 2.4 \cdot 10^{-8} \) | \(a_{450}= -0.05546763 \pm 4.1 \cdot 10^{-8} \) |
\(a_{451}= +2.25655067 \pm 1.7 \cdot 10^{-8} \) | \(a_{452}= +0.02484909 \pm 2.4 \cdot 10^{-8} \) | \(a_{453}= +0.58404164 \pm 3.5 \cdot 10^{-8} \) |
\(a_{454}= +0.15633043 \pm 4.3 \cdot 10^{-8} \) | \(a_{455}= +0.82711060 \pm 5.1 \cdot 10^{-8} \) | \(a_{456}= -0.33446562 \pm 6.4 \cdot 10^{-8} \) |
\(a_{457}= -1.41791820 \pm 2.6 \cdot 10^{-8} \) | \(a_{458}= -0.75756921 \pm 3.0 \cdot 10^{-8} \) | \(a_{459}= -0.24156045 \pm 3.4 \cdot 10^{-8} \) |
\(a_{460}= -0.13709087 \pm 7.1 \cdot 10^{-8} \) | \(a_{461}= -0.71220888 \pm 2.6 \cdot 10^{-8} \) | \(a_{462}= +0.84242959 \pm 8.2 \cdot 10^{-8} \) |
\(a_{463}= +0.81701423 \pm 2.2 \cdot 10^{-8} \) | \(a_{464}= -0.53041497 \pm 1.5 \cdot 10^{-8} \) | \(a_{465}= -0.09243176 \pm 3.4 \cdot 10^{-8} \) |
\(a_{466}= +0.90604384 \pm 2.1 \cdot 10^{-8} \) | \(a_{467}= -0.40516562 \pm 1.4 \cdot 10^{-8} \) | \(a_{468}= +0.16363294 \pm 6.3 \cdot 10^{-8} \) |
\(a_{469}= +1.19194612 \pm 2.0 \cdot 10^{-8} \) | \(a_{470}= +0.20750681 \pm 5.8 \cdot 10^{-8} \) | \(a_{471}= +0.41721969 \pm 2.8 \cdot 10^{-8} \) |
\(a_{472}= +1.23452758 \pm 4.1 \cdot 10^{-8} \) | \(a_{473}= +1.07121827 \pm 1.9 \cdot 10^{-8} \) | \(a_{474}= +0.00207025 \pm 6.7 \cdot 10^{-8} \) |
\(a_{475}= -0.10648437 \pm 3.1 \cdot 10^{-8} \) | \(a_{476}= -0.44788451 \pm 1.1 \cdot 10^{-8} \) | \(a_{477}= +0.53511030 \pm 2.7 \cdot 10^{-8} \) |
\(a_{478}= +0.41886880 \pm 3.9 \cdot 10^{-8} \) | \(a_{479}= +1.04699697 \pm 1.2 \cdot 10^{-8} \) | \(a_{480}= -0.15257214 \pm 3.3 \cdot 10^{-8} \) |
\(a_{481}= -2.37211756 \pm 2.0 \cdot 10^{-8} \) | \(a_{482}= +1.31803050 \pm 3.9 \cdot 10^{-8} \) | \(a_{483}= -0.66679064 \pm 6.0 \cdot 10^{-8} \) |
\(a_{484}= -0.39631293 \pm 2.5 \cdot 10^{-8} \) | \(a_{485}= +0.07628409 \pm 2.8 \cdot 10^{-8} \) | \(a_{486}= -0.05337375 \pm 4.1 \cdot 10^{-8} \) |
\(a_{487}= -1.45528940 \pm 2.9 \cdot 10^{-8} \) | \(a_{488}= +0.96622380 \pm 3.3 \cdot 10^{-8} \) | \(a_{489}= -0.32310602 \pm 3.2 \cdot 10^{-8} \) |
\(a_{490}= -0.12813152 \pm 6.6 \cdot 10^{-8} \) | \(a_{491}= +1.53700739 \pm 1.7 \cdot 10^{-8} \) | \(a_{492}= -0.26508150 \pm 6.5 \cdot 10^{-8} \) |
\(a_{493}= -1.11418903 \pm 3.4 \cdot 10^{-8} \) | \(a_{494}= -0.70660687 \pm 1.3 \cdot 10^{-8} \) | \(a_{495}= +0.22547566 \pm 2.9 \cdot 10^{-8} \) |
\(a_{496}= +0.21391019 \pm 2.5 \cdot 10^{-8} \) | \(a_{497}= -0.50825400 \pm 2.1 \cdot 10^{-8} \) | \(a_{498}= -0.26028834 \pm 6.1 \cdot 10^{-8} \) |
\(a_{499}= +1.87716821 \pm 1.9 \cdot 10^{-8} \) | \(a_{500}= -0.02752617 \pm 4.3 \cdot 10^{-8} \) | \(a_{501}= +0.85843916 \pm 3.2 \cdot 10^{-8} \) |
\(a_{502}= -1.12770590 \pm 1.4 \cdot 10^{-8} \) | \(a_{503}= +0.43723460 \pm 2.0 \cdot 10^{-8} \) | \(a_{504}= -0.42052561 \pm 6.5 \cdot 10^{-8} \) |
\(a_{505}= -0.27230895 \pm 3.1 \cdot 10^{-8} \) | \(a_{506}= -1.25351472 \pm 2.6 \cdot 10^{-8} \) | \(a_{507}= +0.89164917 \pm 2.9 \cdot 10^{-8} \) |
\(a_{508}= +0.35561990 \pm 3.4 \cdot 10^{-8} \) | \(a_{509}= -0.79490983 \pm 2.3 \cdot 10^{-8} \) | \(a_{510}= +0.26964535 \pm 6.6 \cdot 10^{-8} \) |
\(a_{511}= -0.49821246 \pm 1.7 \cdot 10^{-8} \) | \(a_{512}= +1.00325094 \pm 2.5 \cdot 10^{-8} \) | \(a_{513}= -0.10246463 \pm 3.1 \cdot 10^{-8} \) |
\(a_{514}= +0.32773836 \pm 2.5 \cdot 10^{-8} \) | \(a_{515}= +0.17579555 \pm 2.6 \cdot 10^{-8} \) | \(a_{516}= -0.12583814 \pm 6.7 \cdot 10^{-8} \) |
\(a_{517}= -0.84351425 \pm 1.0 \cdot 10^{-8} \) | \(a_{518}= +1.43460850 \pm 2.7 \cdot 10^{-8} \) | \(a_{519}= -0.04130954 \pm 3.2 \cdot 10^{-8} \) |
\(a_{520}= -0.77617987 \pm 6.3 \cdot 10^{-8} \) | \(a_{521}= -0.16818340 \pm 2.5 \cdot 10^{-8} \) | \(a_{522}= -0.24618454 \pm 6.9 \cdot 10^{-8} \) |
\(a_{523}= +0.99919038 \pm 1.9 \cdot 10^{-8} \) | \(a_{524}= +0.13300372 \pm 3.3 \cdot 10^{-8} \) | \(a_{525}= -0.13388343 \pm 3.2 \cdot 10^{-8} \) |
\(a_{526}= -0.81991388 \pm 2.9 \cdot 10^{-8} \) | \(a_{527}= +0.44933948 \pm 2.3 \cdot 10^{-8} \) | \(a_{528}= -0.52180699 \pm 5.5 \cdot 10^{-8} \) |
\(a_{529}= -0.00783175 \pm 2.6 \cdot 10^{-8} \) | \(a_{530}= -0.59732463 \pm 5.9 \cdot 10^{-8} \) | \(a_{531}= +0.37820154 \pm 3.5 \cdot 10^{-8} \) |
\(a_{532}= -0.18998276 \pm 1.4 \cdot 10^{-8} \) | \(a_{533}= -2.37974434 \pm 1.7 \cdot 10^{-8} \) | \(a_{534}= -0.01729300 \pm 6.1 \cdot 10^{-8} \) |
\(a_{535}= -0.32492220 \pm 3.1 \cdot 10^{-8} \) | \(a_{536}= -1.11855002 \pm 3.4 \cdot 10^{-8} \) | \(a_{537}= +0.83173794 \pm 2.9 \cdot 10^{-8} \) |
\(a_{538}= -0.99466244 \pm 2.9 \cdot 10^{-8} \) | \(a_{539}= +0.52085405 \pm 1.1 \cdot 10^{-8} \) | \(a_{540}= -0.02648707 \pm 4.3 \cdot 10^{-8} \) |
\(a_{541}= +1.64713119 \pm 2.0 \cdot 10^{-8} \) | \(a_{542}= +0.93526233 \pm 3.0 \cdot 10^{-8} \) | \(a_{543}= -0.80378348 \pm 2.6 \cdot 10^{-8} \) |
\(a_{544}= +0.74170050 \pm 2.0 \cdot 10^{-8} \) | \(a_{545}= +0.20210548 \pm 3.8 \cdot 10^{-8} \) | \(a_{546}= -0.88842101 \pm 8.2 \cdot 10^{-8} \) |
\(a_{547}= +1.42522772 \pm 1.5 \cdot 10^{-8} \) | \(a_{548}= -0.20393742 \pm 2.0 \cdot 10^{-8} \) | \(a_{549}= +0.29600580 \pm 3.2 \cdot 10^{-8} \) |
\(a_{550}= -0.25169047 \pm 6.0 \cdot 10^{-8} \) | \(a_{551}= -0.47261449 \pm 2.1 \cdot 10^{-8} \) | \(a_{552}= +0.62573188 \pm 7.2 \cdot 10^{-8} \) |
\(a_{553}= +0.00499701 \pm 2.6 \cdot 10^{-8} \) | \(a_{554}= -0.91506235 \pm 3.5 \cdot 10^{-8} \) | \(a_{555}= +0.38397191 \pm 3.2 \cdot 10^{-8} \) |
\(a_{556}= -0.01069632 \pm 3.5 \cdot 10^{-8} \) | \(a_{557}= -1.04913995 \pm 3.2 \cdot 10^{-8} \) | \(a_{558}= +0.09928336 \pm 6.5 \cdot 10^{-8} \) |
\(a_{559}= -1.12970014 \pm 1.7 \cdot 10^{-8} \) | \(a_{560}= +0.30983970 \pm 5.8 \cdot 10^{-8} \) | \(a_{561}= -1.09610712 \pm 5.3 \cdot 10^{-8} \) |
\(a_{562}= +1.09436043 \pm 2.3 \cdot 10^{-8} \) | \(a_{563}= -0.00682900 \pm 2.8 \cdot 10^{-8} \) | \(a_{564}= +0.09908930 \pm 6.0 \cdot 10^{-8} \) |
\(a_{565}= -0.03610976 \pm 3.0 \cdot 10^{-8} \) | \(a_{566}= +1.41021658 \pm 2.5 \cdot 10^{-8} \) | \(a_{567}= -0.12882939 \pm 3.2 \cdot 10^{-8} \) |
\(a_{568}= +0.47695740 \pm 2.3 \cdot 10^{-8} \) | \(a_{569}= +0.30099010 \pm 1.9 \cdot 10^{-8} \) | \(a_{570}= +0.11437763 \pm 6.2 \cdot 10^{-8} \) |
\(a_{571}= +0.96050243 \pm 2.1 \cdot 10^{-8} \) | \(a_{572}= +0.74250249 \pm 1.6 \cdot 10^{-8} \) | \(a_{573}= +0.92290312 \pm 3.5 \cdot 10^{-8} \) |
\(a_{574}= +1.43922102 \pm 1.7 \cdot 10^{-8} \) | \(a_{575}= +0.19921529 \pm 3.8 \cdot 10^{-8} \) | \(a_{576}= +0.36306061 \pm 3.8 \cdot 10^{-8} \) |
\(a_{577}= -1.75032220 \pm 2.8 \cdot 10^{-8} \) | \(a_{578}= -0.47881529 \pm 2.6 \cdot 10^{-8} \) | \(a_{579}= -0.87904738 \pm 4.1 \cdot 10^{-8} \) |
\(a_{580}= -0.12217069 \pm 7.1 \cdot 10^{-8} \) | \(a_{581}= -0.62826366 \pm 1.7 \cdot 10^{-8} \) | \(a_{582}= -0.08193872 \pm 5.9 \cdot 10^{-8} \) |
\(a_{583}= +2.42812188 \pm 1.0 \cdot 10^{-8} \) | \(a_{584}= +0.46753418 \pm 1.6 \cdot 10^{-8} \) | \(a_{585}= -0.23778523 \pm 2.9 \cdot 10^{-8} \) |
\(a_{586}= -0.21957233 \pm 3.9 \cdot 10^{-8} \) | \(a_{587}= -0.26346170 \pm 2.6 \cdot 10^{-8} \) | \(a_{588}= -0.06118576 \pm 6.8 \cdot 10^{-8} \) |
\(a_{589}= +0.19059993 \pm 2.2 \cdot 10^{-8} \) | \(a_{590}= -0.42217295 \pm 6.7 \cdot 10^{-8} \) | \(a_{591}= -0.15985987 \pm 2.6 \cdot 10^{-8} \) |
\(a_{592}= -0.88860690 \pm 2.7 \cdot 10^{-8} \) | \(a_{593}= -1.26083821 \pm 3.0 \cdot 10^{-8} \) | \(a_{594}= -0.24218927 \pm 6.0 \cdot 10^{-8} \) |
\(a_{595}= +0.65084889 \pm 5.6 \cdot 10^{-8} \) | \(a_{596}= -0.27294622 \pm 4.4 \cdot 10^{-8} \) | \(a_{597}= -0.20112536 \pm 2.2 \cdot 10^{-8} \) |
\(a_{598}= +1.32194885 \pm 2.6 \cdot 10^{-8} \) | \(a_{599}= +0.32342252 \pm 1.7 \cdot 10^{-8} \) | \(a_{600}= +0.12563933 \pm 4.4 \cdot 10^{-8} \) |
\(a_{601}= +0.39313769 \pm 1.9 \cdot 10^{-8} \) | \(a_{602}= +0.68321969 \pm 2.0 \cdot 10^{-8} \) | \(a_{603}= -0.34267144 \pm 3.1 \cdot 10^{-8} \) |
\(a_{604}= -0.31131877 \pm 3.7 \cdot 10^{-8} \) | \(a_{605}= +0.57590701 \pm 3.0 \cdot 10^{-8} \) | \(a_{606}= +0.29249412 \pm 6.3 \cdot 10^{-8} \) |
\(a_{607}= -1.73819864 \pm 2.1 \cdot 10^{-8} \) | \(a_{608}= +0.31461304 \pm 1.5 \cdot 10^{-8} \) | \(a_{609}= -0.59422101 \pm 5.9 \cdot 10^{-8} \) |
\(a_{610}= -0.33042077 \pm 6.3 \cdot 10^{-8} \) | \(a_{611}= +0.88956489 \pm 1.6 \cdot 10^{-8} \) | \(a_{612}= +0.12876188 \pm 6.8 \cdot 10^{-8} \) |
\(a_{613}= -0.87159567 \pm 1.4 \cdot 10^{-8} \) | \(a_{614}= -0.26469104 \pm 3.1 \cdot 10^{-8} \) | \(a_{615}= +0.38520644 \pm 3.1 \cdot 10^{-8} \) |
\(a_{616}= -1.90818126 \pm 1.6 \cdot 10^{-8} \) | \(a_{617}= +0.20967068 \pm 2.7 \cdot 10^{-8} \) | \(a_{618}= -0.18882657 \pm 5.7 \cdot 10^{-8} \) |
\(a_{619}= -1.32851669 \pm 2.5 \cdot 10^{-8} \) | \(a_{620}= +0.04927002 \pm 6.7 \cdot 10^{-8} \) | \(a_{621}= +0.19169500 \pm 3.8 \cdot 10^{-8} \) |
\(a_{622}= -0.80759175 \pm 4.7 \cdot 10^{-8} \) | \(a_{623}= -0.04174050 \pm 1.1 \cdot 10^{-8} \) | \(a_{624}= +0.55029441 \pm 5.5 \cdot 10^{-8} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +1.08750688 \pm 3.7 \cdot 10^{-8} \) | \(a_{627}= -0.46494454 \pm 4.9 \cdot 10^{-8} \) |
\(a_{628}= -0.22239565 \pm 2.1 \cdot 10^{-8} \) | \(a_{629}= -1.86660657 \pm 1.9 \cdot 10^{-8} \) | \(a_{630}= +0.14380767 \pm 6.3 \cdot 10^{-8} \) |
\(a_{631}= +0.88439215 \pm 2.0 \cdot 10^{-8} \) | \(a_{632}= -0.00468931 \pm 2.6 \cdot 10^{-8} \) | \(a_{633}= +0.31931897 \pm 3.2 \cdot 10^{-8} \) |
\(a_{634}= +0.82627799 \pm 2.4 \cdot 10^{-8} \) | \(a_{635}= -0.51677344 \pm 3.5 \cdot 10^{-8} \) | \(a_{636}= -0.28523631 \pm 6.1 \cdot 10^{-8} \) |
\(a_{637}= -0.54928945 \pm 2.2 \cdot 10^{-8} \) | \(a_{638}= -1.11708944 \pm 2.4 \cdot 10^{-8} \) | \(a_{639}= +0.14611745 \pm 3.1 \cdot 10^{-8} \) |
\(a_{640}= -0.14100897 \pm 3.7 \cdot 10^{-8} \) | \(a_{641}= +1.54730314 \pm 3.0 \cdot 10^{-8} \) | \(a_{642}= +0.34900738 \pm 6.2 \cdot 10^{-8} \) |
\(a_{643}= -0.29062781 \pm 2.0 \cdot 10^{-8} \) | \(a_{644}= +0.35542747 \pm 1.0 \cdot 10^{-8} \) | \(a_{645}= +0.18286325 \pm 3.4 \cdot 10^{-8} \) |
\(a_{646}= -0.55602515 \pm 2.0 \cdot 10^{-8} \) | \(a_{647}= -0.32572264 \pm 1.6 \cdot 10^{-8} \) | \(a_{648}= +0.12089650 \pm 4.4 \cdot 10^{-8} \) |
\(a_{649}= +1.71613112 \pm 1.4 \cdot 10^{-8} \) | \(a_{650}= +0.26543121 \pm 6.1 \cdot 10^{-8} \) | \(a_{651}= +0.23964242 \pm 5.5 \cdot 10^{-8} \) |
\(a_{652}= +0.17222910 \pm 2.1 \cdot 10^{-8} \) | \(a_{653}= +1.74011659 \pm 2.1 \cdot 10^{-8} \) | \(a_{654}= -0.21708676 \pm 7.0 \cdot 10^{-8} \) |
\(a_{655}= -0.19327599 \pm 3.7 \cdot 10^{-8} \) | \(a_{656}= -0.89146393 \pm 2.9 \cdot 10^{-8} \) | \(a_{657}= +0.14323062 \pm 2.3 \cdot 10^{-8} \) |
\(a_{658}= -0.53799077 \pm 1.5 \cdot 10^{-8} \) | \(a_{659}= -0.14638658 \pm 2.1 \cdot 10^{-8} \) | \(a_{660}= -0.12018801 \pm 6.2 \cdot 10^{-8} \) |
\(a_{661}= +0.38220562 \pm 2.2 \cdot 10^{-8} \) | \(a_{662}= -0.52668137 \pm 3.9 \cdot 10^{-8} \) | \(a_{663}= +1.15594777 \pm 5.4 \cdot 10^{-8} \) |
\(a_{664}= +0.58957726 \pm 2.7 \cdot 10^{-8} \) | \(a_{665}= +0.27607579 \pm 5.3 \cdot 10^{-8} \) | \(a_{666}= -0.41243421 \pm 6.4 \cdot 10^{-8} \) |
\(a_{667}= +0.88418640 \pm 3.0 \cdot 10^{-8} \) | \(a_{668}= -0.45758420 \pm 4.4 \cdot 10^{-8} \) | \(a_{669}= -0.06908392 \pm 3.6 \cdot 10^{-8} \) |
\(a_{670}= +0.38251196 \pm 6.2 \cdot 10^{-8} \) | \(a_{671}= +1.34315892 \pm 1.6 \cdot 10^{-8} \) | \(a_{672}= +0.39556485 \pm 5.5 \cdot 10^{-8} \) |
\(a_{673}= -0.40146386 \pm 3.0 \cdot 10^{-8} \) | \(a_{674}= +0.77266869 \pm 3.1 \cdot 10^{-8} \) | \(a_{675}= +0.03849002 \pm 1.2 \cdot 10^{-6} \) |
\(a_{676}= -0.47528653 \pm 2.6 \cdot 10^{-8} \) | \(a_{677}= +1.53972915 \pm 1.9 \cdot 10^{-8} \) | \(a_{678}= +0.03878643 \pm 6.2 \cdot 10^{-8} \) |
\(a_{679}= -0.19777729 \pm 2.3 \cdot 10^{-8} \) | \(a_{680}= -0.61077177 \pm 6.8 \cdot 10^{-8} \) | \(a_{681}= -0.10848059 \pm 3.9 \cdot 10^{-8} \) |
\(a_{682}= +0.45050918 \pm 2.3 \cdot 10^{-8} \) | \(a_{683}= -0.55260746 \pm 3.2 \cdot 10^{-8} \) | \(a_{684}= +0.05461796 \pm 6.4 \cdot 10^{-8} \) |
\(a_{685}= +0.29635418 \pm 2.5 \cdot 10^{-8} \) | \(a_{686}= -0.63249211 \pm 1.9 \cdot 10^{-8} \) | \(a_{687}= +0.52569135 \pm 3.1 \cdot 10^{-8} \) |
\(a_{688}= -0.42319123 \pm 2.0 \cdot 10^{-8} \) | \(a_{689}= -2.56068227 \pm 1.5 \cdot 10^{-8} \) | \(a_{690}= -0.21398232 \pm 6.9 \cdot 10^{-8} \) |
\(a_{691}= +1.29068261 \pm 2.8 \cdot 10^{-8} \) | \(a_{692}= +0.02201972 \pm 3.2 \cdot 10^{-8} \) | \(a_{693}= -0.58457754 \pm 5.0 \cdot 10^{-8} \) |
\(a_{694}= -1.19513211 \pm 2.9 \cdot 10^{-8} \) | \(a_{695}= +0.01554349 \pm 3.8 \cdot 10^{-8} \) | \(a_{696}= +0.55763085 \pm 7.1 \cdot 10^{-8} \) |
\(a_{697}= -1.87260804 \pm 2.1 \cdot 10^{-8} \) | \(a_{698}= -0.70668718 \pm 2.6 \cdot 10^{-8} \) | \(a_{699}= -0.62872065 \pm 3.4 \cdot 10^{-8} \) |
\(a_{700}= +0.07136550 \pm 6.5 \cdot 10^{-8} \) | \(a_{701}= -1.54141398 \pm 2.3 \cdot 10^{-8} \) | \(a_{702}= +0.25541130 \pm 6.1 \cdot 10^{-8} \) |
\(a_{703}= -0.79177347 \pm 2.0 \cdot 10^{-8} \) | \(a_{704}= +1.64742748 \pm 1.9 \cdot 10^{-8} \) | \(a_{705}= -0.14399283 \pm 2.7 \cdot 10^{-8} \) |
\(a_{706}= -0.24577568 \pm 1.7 \cdot 10^{-8} \) | \(a_{707}= +0.70599947 \pm 2.0 \cdot 10^{-8} \) | \(a_{708}= -0.20159734 \pm 6.9 \cdot 10^{-8} \) |
\(a_{709}= +1.87580272 \pm 2.3 \cdot 10^{-8} \) | \(a_{710}= -0.16310572 \pm 6.3 \cdot 10^{-8} \) | \(a_{711}= -0.00143659 \pm 3.5 \cdot 10^{-8} \) |
\(a_{712}= +0.03917026 \pm 3.5 \cdot 10^{-8} \) | \(a_{713}= -0.35658210 \pm 2.8 \cdot 10^{-8} \) | \(a_{714}= -0.69909372 \pm 8.8 \cdot 10^{-8} \) |
\(a_{715}= -1.07897665 \pm 4.8 \cdot 10^{-8} \) | \(a_{716}= -0.44335132 \pm 3.9 \cdot 10^{-8} \) | \(a_{717}= -0.29066084 \pm 3.8 \cdot 10^{-8} \) |
\(a_{718}= +1.57524280 \pm 3.1 \cdot 10^{-8} \) | \(a_{719}= +1.01976749 \pm 2.8 \cdot 10^{-8} \) | \(a_{720}= -0.08907552 \pm 3.6 \cdot 10^{-8} \) |
\(a_{721}= -0.45577483 \pm 1.2 \cdot 10^{-8} \) | \(a_{722}= +0.59616079 \pm 2.4 \cdot 10^{-8} \) | \(a_{723}= -0.91460585 \pm 3.9 \cdot 10^{-8} \) |
\(a_{724}= +0.42845042 \pm 1.1 \cdot 10^{-8} \) | \(a_{725}= +0.17753385 \pm 3.7 \cdot 10^{-8} \) | \(a_{726}= -0.61859670 \pm 6.2 \cdot 10^{-8} \) |
\(a_{727}= +1.02385188 \pm 2.1 \cdot 10^{-8} \) | \(a_{728}= +2.01235612 \pm 2.8 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.15988325 \pm 5.5 \cdot 10^{-8} \) | \(a_{731}= -0.88895497 \pm 2.7 \cdot 10^{-8} \) | \(a_{732}= -0.15778355 \pm 6.5 \cdot 10^{-8} \) |
\(a_{733}= +0.81422496 \pm 2.0 \cdot 10^{-8} \) | \(a_{734}= -0.53480174 \pm 4.8 \cdot 10^{-8} \) | \(a_{735}= +0.08891284 \pm 3.5 \cdot 10^{-8} \) |
\(a_{736}= -0.58859087 \pm 3.4 \cdot 10^{-8} \) | \(a_{737}= -1.55490937 \pm 1.4 \cdot 10^{-8} \) | \(a_{738}= -0.41376026 \pm 6.3 \cdot 10^{-8} \) |
\(a_{739}= -1.01045095 \pm 2.0 \cdot 10^{-8} \) | \(a_{740}= -0.20467318 \pm 6.6 \cdot 10^{-8} \) | \(a_{741}= +0.49032763 \pm 5.0 \cdot 10^{-8} \) |
\(a_{742}= +1.54864861 \pm 1.6 \cdot 10^{-8} \) | \(a_{743}= +0.47348246 \pm 2.5 \cdot 10^{-8} \) | \(a_{744}= -0.22488604 \pm 6.7 \cdot 10^{-8} \) |
\(a_{745}= +0.39663516 \pm 3.5 \cdot 10^{-8} \) | \(a_{746}= -1.38058095 \pm 2.5 \cdot 10^{-8} \) | \(a_{747}= +0.18061891 \pm 2.9 \cdot 10^{-8} \) |
\(a_{748}= +0.58427122 \pm 1.8 \cdot 10^{-8} \) | \(a_{749}= +0.84240676 \pm 1.4 \cdot 10^{-8} \) | \(a_{750}= -0.04296504 \pm 4.1 \cdot 10^{-8} \) |
\(a_{751}= -0.56348941 \pm 2.2 \cdot 10^{-8} \) | \(a_{752}= +0.33323538 \pm 2.8 \cdot 10^{-8} \) | \(a_{753}= +0.78253607 \pm 2.3 \cdot 10^{-8} \) |
\(a_{754}= +1.17807559 \pm 1.7 \cdot 10^{-8} \) | \(a_{755}= +0.45239671 \pm 3.5 \cdot 10^{-8} \) | \(a_{756}= +0.06867149 \pm 6.5 \cdot 10^{-8} \) |
\(a_{757}= -1.53958386 \pm 2.3 \cdot 10^{-8} \) | \(a_{758}= -0.18541021 \pm 2.6 \cdot 10^{-8} \) | \(a_{759}= +0.86983715 \pm 5.6 \cdot 10^{-8} \) |
\(a_{760}= -0.25907596 \pm 6.4 \cdot 10^{-8} \) | \(a_{761}= +0.90548089 \pm 2.3 \cdot 10^{-8} \) | \(a_{762}= +0.55507980 \pm 6.7 \cdot 10^{-8} \) |
\(a_{763}= -0.52398706 \pm 2.1 \cdot 10^{-8} \) | \(a_{764}= -0.49194620 \pm 3.2 \cdot 10^{-8} \) | \(a_{765}= -0.18711192 \pm 3.4 \cdot 10^{-8} \) |
\(a_{766}= +0.49670793 \pm 2.3 \cdot 10^{-8} \) | \(a_{767}= -1.80982123 \pm 2.5 \cdot 10^{-8} \) | \(a_{768}= -0.47737802 \pm 3.3 \cdot 10^{-8} \) |
\(a_{769}= -0.25401872 \pm 2.5 \cdot 10^{-8} \) | \(a_{770}= +0.65254315 \pm 8.2 \cdot 10^{-8} \) | \(a_{771}= -0.22742373 \pm 2.7 \cdot 10^{-8} \) |
\(a_{772}= +0.46856924 \pm 4.3 \cdot 10^{-8} \) | \(a_{773}= +0.78600020 \pm 2.1 \cdot 10^{-8} \) | \(a_{774}= -0.19641817 \pm 6.5 \cdot 10^{-8} \) |
\(a_{775}= -0.07159734 \pm 3.4 \cdot 10^{-8} \) | \(a_{776}= +0.18559882 \pm 2.5 \cdot 10^{-8} \) | \(a_{777}= -0.99550149 \pm 5.4 \cdot 10^{-8} \) |
\(a_{778}= +0.11207808 \pm 2.6 \cdot 10^{-8} \) | \(a_{779}= -0.79431916 \pm 1.9 \cdot 10^{-8} \) | \(a_{780}= +0.12674953 \pm 6.3 \cdot 10^{-8} \) |
\(a_{781}= +0.66302401 \pm 2.0 \cdot 10^{-8} \) | \(a_{782}= +1.04023445 \pm 4.1 \cdot 10^{-8} \) | \(a_{783}= +0.17083202 \pm 3.7 \cdot 10^{-8} \) |
\(a_{784}= -0.20576653 \pm 2.6 \cdot 10^{-8} \) | \(a_{785}= +0.32317698 \pm 2.8 \cdot 10^{-8} \) | \(a_{786}= +0.20760277 \pm 6.9 \cdot 10^{-8} \) |
\(a_{787}= +1.13621960 \pm 2.5 \cdot 10^{-8} \) | \(a_{788}= +0.08521204 \pm 2.5 \cdot 10^{-8} \) | \(a_{789}= +0.56895347 \pm 3.5 \cdot 10^{-8} \) |
\(a_{790}= +0.00160361 \pm 6.7 \cdot 10^{-8} \) | \(a_{791}= +0.09361966 \pm 2.0 \cdot 10^{-8} \) | \(a_{792}= +0.54858119 \pm 6.2 \cdot 10^{-8} \) |
\(a_{793}= -1.41648706 \pm 1.6 \cdot 10^{-8} \) | \(a_{794}= -0.15956715 \pm 2.9 \cdot 10^{-8} \) | \(a_{795}= +0.41449466 \pm 2.7 \cdot 10^{-8} \) |
\(a_{796}= +0.10720828 \pm 1.5 \cdot 10^{-8} \) | \(a_{797}= +0.37442930 \pm 1.9 \cdot 10^{-8} \) | \(a_{798}= -0.29654019 \pm 8.4 \cdot 10^{-8} \) |
\(a_{799}= +0.69999384 \pm 1.4 \cdot 10^{-8} \) | \(a_{800}= -0.11818187 \pm 3.3 \cdot 10^{-8} \) | \(a_{801}= +0.01199994 \pm 3.0 \cdot 10^{-8} \) |
\(a_{802}= -1.24465373 \pm 3.0 \cdot 10^{-8} \) | \(a_{803}= +0.64992470 \pm 1.0 \cdot 10^{-8} \) | \(a_{804}= +0.18265830 \pm 6.4 \cdot 10^{-8} \) |
\(a_{805}= -0.51649381 \pm 6.0 \cdot 10^{-8} \) | \(a_{806}= -0.47510419 \pm 2.3 \cdot 10^{-8} \) | \(a_{807}= +0.69021475 \pm 2.8 \cdot 10^{-8} \) |
\(a_{808}= -0.66252636 \pm 2.9 \cdot 10^{-8} \) | \(a_{809}= -1.23174786 \pm 2.1 \cdot 10^{-8} \) | \(a_{810}= -0.04134313 \pm 4.1 \cdot 10^{-8} \) |
\(a_{811}= +0.65435676 \pm 2.6 \cdot 10^{-8} \) | \(a_{812}= +0.31674480 \pm 1.7 \cdot 10^{-8} \) | \(a_{813}= -0.64899591 \pm 3.0 \cdot 10^{-8} \) |
\(a_{814}= -1.87146563 \pm 1.8 \cdot 10^{-8} \) | \(a_{815}= -0.25027684 \pm 3.2 \cdot 10^{-8} \) | \(a_{816}= +0.43302372 \pm 6.1 \cdot 10^{-8} \) |
\(a_{817}= -0.37707516 \pm 1.7 \cdot 10^{-8} \) | \(a_{818}= -0.58771423 \pm 3.4 \cdot 10^{-8} \) | \(a_{819}= +0.61649185 \pm 5.1 \cdot 10^{-8} \) |
\(a_{820}= -0.20533124 \pm 6.5 \cdot 10^{-8} \) | \(a_{821}= -0.21732737 \pm 2.2 \cdot 10^{-8} \) | \(a_{822}= -0.31832173 \pm 5.7 \cdot 10^{-8} \) |
\(a_{823}= +0.55311366 \pm 2.2 \cdot 10^{-8} \) | \(a_{824}= +0.42770972 \pm 1.9 \cdot 10^{-8} \) | \(a_{825}= +0.17465269 \pm 2.9 \cdot 10^{-8} \) |
\(a_{826}= +1.09454311 \pm 2.5 \cdot 10^{-8} \) | \(a_{827}= -0.60993977 \pm 2.6 \cdot 10^{-8} \) | \(a_{828}= -0.10218150 \pm 7.1 \cdot 10^{-8} \) |
\(a_{829}= -1.28872351 \pm 2.5 \cdot 10^{-8} \) | \(a_{830}= -0.20161848 \pm 6.1 \cdot 10^{-8} \) | \(a_{831}= +0.63497876 \pm 3.3 \cdot 10^{-8} \) |
\(a_{832}= -1.73736679 \pm 1.7 \cdot 10^{-8} \) | \(a_{833}= -0.43223292 \pm 2.0 \cdot 10^{-8} \) | \(a_{834}= -0.01669567 \pm 6.9 \cdot 10^{-8} \) |
\(a_{835}= +0.66494412 \pm 3.2 \cdot 10^{-8} \) | \(a_{836}= +0.24783501 \pm 1.1 \cdot 10^{-8} \) | \(a_{837}= -0.06889457 \pm 3.4 \cdot 10^{-8} \) |
\(a_{838}= +0.89309925 \pm 4.1 \cdot 10^{-8} \) | \(a_{839}= +0.95789973 \pm 1.7 \cdot 10^{-8} \) | \(a_{840}= -0.32573774 \pm 6.5 \cdot 10^{-8} \) |
\(a_{841}= -0.21204332 \pm 3.2 \cdot 10^{-8} \) | \(a_{842}= -0.29698531 \pm 1.8 \cdot 10^{-8} \) | \(a_{843}= -0.75939703 \pm 2.5 \cdot 10^{-8} \) |
\(a_{844}= -0.17021045 \pm 2.8 \cdot 10^{-8} \) | \(a_{845}= +0.69066848 \pm 2.9 \cdot 10^{-8} \) | \(a_{846}= +0.15466645 \pm 5.8 \cdot 10^{-8} \) |
\(a_{847}= -1.49312041 \pm 1.9 \cdot 10^{-8} \) | \(a_{848}= -0.95924417 \pm 1.0 \cdot 10^{-8} \) | \(a_{849}= -0.97857548 \pm 3.2 \cdot 10^{-8} \) |
\(a_{850}= +0.20886639 \pm 6.6 \cdot 10^{-8} \) | \(a_{851}= +1.48128199 \pm 2.6 \cdot 10^{-8} \) | \(a_{852}= -0.07788675 \pm 6.5 \cdot 10^{-8} \) |
\(a_{853}= +0.26993544 \pm 2.4 \cdot 10^{-8} \) | \(a_{854}= +0.85666259 \pm 1.8 \cdot 10^{-8} \) | \(a_{855}= -0.07936876 \pm 3.1 \cdot 10^{-8} \) |
\(a_{856}= -0.79053414 \pm 3.9 \cdot 10^{-8} \) | \(a_{857}= +0.86602319 \pm 2.2 \cdot 10^{-8} \) | \(a_{858}= +1.15895688 \pm 7.9 \cdot 10^{-8} \) |
\(a_{859}= +0.53477854 \pm 2.7 \cdot 10^{-8} \) | \(a_{860}= -0.09747380 \pm 6.7 \cdot 10^{-8} \) | \(a_{861}= -0.99870220 \pm 5.3 \cdot 10^{-8} \) |
\(a_{862}= +1.03692472 \pm 2.2 \cdot 10^{-8} \) | \(a_{863}= -0.13163469 \pm 1.8 \cdot 10^{-8} \) | \(a_{864}= -0.11372056 \pm 3.3 \cdot 10^{-8} \) |
\(a_{865}= -0.03199823 \pm 3.2 \cdot 10^{-8} \) | \(a_{866}= -0.29503965 \pm 2.6 \cdot 10^{-8} \) | \(a_{867}= +0.33225882 \pm 3.0 \cdot 10^{-8} \) |
\(a_{868}= -0.12773950 \pm 2.1 \cdot 10^{-8} \) | \(a_{869}= -0.00651866 \pm 1.6 \cdot 10^{-8} \) | \(a_{870}= -0.19069372 \pm 6.9 \cdot 10^{-8} \) |
\(a_{871}= +1.63979777 \pm 2.1 \cdot 10^{-8} \) | \(a_{872}= +0.49172167 \pm 3.1 \cdot 10^{-8} \) | \(a_{873}= +0.05685880 \pm 2.8 \cdot 10^{-8} \) |
\(a_{874}= +0.44124458 \pm 2.2 \cdot 10^{-8} \) | \(a_{875}= -0.10370566 \pm 3.2 \cdot 10^{-8} \) | \(a_{876}= -0.07634795 \pm 5.7 \cdot 10^{-8} \) |
\(a_{877}= +1.83962515 \pm 3.3 \cdot 10^{-8} \) | \(a_{878}= -0.09312217 \pm 2.9 \cdot 10^{-8} \) | \(a_{879}= +0.15236532 \pm 3.9 \cdot 10^{-8} \) |
\(a_{880}= -0.40418996 \pm 5.5 \cdot 10^{-8} \) | \(a_{881}= +1.71256997 \pm 2.2 \cdot 10^{-8} \) | \(a_{882}= -0.09550360 \pm 6.6 \cdot 10^{-8} \) |
\(a_{883}= -1.30739887 \pm 2.1 \cdot 10^{-8} \) | \(a_{884}= -0.61616880 \pm 1.4 \cdot 10^{-8} \) | \(a_{885}= +0.29295366 \pm 3.5 \cdot 10^{-8} \) |
\(a_{886}= +0.07013605 \pm 2.3 \cdot 10^{-8} \) | \(a_{887}= -0.61907867 \pm 1.6 \cdot 10^{-8} \) | \(a_{888}= +0.93420180 \pm 6.6 \cdot 10^{-8} \) |
\(a_{889}= +1.33980826 \pm 1.8 \cdot 10^{-8} \) | \(a_{890}= -0.01339510 \pm 6.1 \cdot 10^{-8} \) | \(a_{891}= +0.16805963 \pm 2.9 \cdot 10^{-8} \) |
\(a_{892}= +0.03682464 \pm 3.8 \cdot 10^{-8} \) | \(a_{893}= +0.29692200 \pm 1.2 \cdot 10^{-8} \) | \(a_{894}= -0.42603614 \pm 6.7 \cdot 10^{-8} \) |
\(a_{895}= +0.64426143 \pm 2.9 \cdot 10^{-8} \) | \(a_{896}= +0.36558571 \pm 1.9 \cdot 10^{-8} \) | \(a_{897}= -0.91732486 \pm 5.7 \cdot 10^{-8} \) |
\(a_{898}= +1.11097376 \pm 3.4 \cdot 10^{-8} \) | \(a_{899}= -0.31777377 \pm 1.9 \cdot 10^{-8} \) | \(a_{900}= -0.02051680 \pm 4.3 \cdot 10^{-8} \) |
\(a_{901}= -2.01498713 \pm 1.8 \cdot 10^{-8} \) | \(a_{902}= -1.87748272 \pm 1.7 \cdot 10^{-8} \) | \(a_{903}= -0.47409883 \pm 5.6 \cdot 10^{-8} \) |
\(a_{904}= -0.08785487 \pm 2.6 \cdot 10^{-8} \) | \(a_{905}= -0.62260800 \pm 2.6 \cdot 10^{-8} \) | \(a_{906}= -0.48593107 \pm 6.6 \cdot 10^{-8} \) |
\(a_{907}= -0.50664632 \pm 2.3 \cdot 10^{-8} \) | \(a_{908}= +0.05782472 \pm 4.4 \cdot 10^{-8} \) | \(a_{909}= -0.20296711 \pm 3.1 \cdot 10^{-8} \) |
\(a_{910}= -0.68816796 \pm 8.2 \cdot 10^{-8} \) | \(a_{911}= -1.51691401 \pm 2.5 \cdot 10^{-8} \) | \(a_{912}= +0.18367914 \pm 5.7 \cdot 10^{-8} \) |
\(a_{913}= +0.81957819 \pm 1.4 \cdot 10^{-8} \) | \(a_{914}= +1.17972840 \pm 3.8 \cdot 10^{-8} \) | \(a_{915}= +0.22928511 \pm 3.2 \cdot 10^{-8} \) |
\(a_{916}= -0.28021561 \pm 3.5 \cdot 10^{-8} \) | \(a_{917}= +0.50109535 \pm 2.2 \cdot 10^{-8} \) | \(a_{918}= +0.20098178 \pm 6.6 \cdot 10^{-8} \) |
\(a_{919}= +0.97780858 \pm 2.6 \cdot 10^{-8} \) | \(a_{920}= +0.48468983 \pm 7.2 \cdot 10^{-8} \) | \(a_{921}= +0.18367403 \pm 3.2 \cdot 10^{-8} \) |
\(a_{922}= +0.59256806 \pm 3.7 \cdot 10^{-8} \) | \(a_{923}= -0.69922101 \pm 1.9 \cdot 10^{-8} \) | \(a_{924}= +0.31160443 \pm 8.4 \cdot 10^{-8} \) |
\(a_{925}= +0.29742336 \pm 3.2 \cdot 10^{-8} \) | \(a_{926}= -0.67976763 \pm 2.6 \cdot 10^{-8} \) | \(a_{927}= +0.13103027 \pm 2.6 \cdot 10^{-8} \) |
\(a_{928}= -0.52453205 \pm 2.4 \cdot 10^{-8} \) | \(a_{929}= -1.36564872 \pm 2.9 \cdot 10^{-8} \) | \(a_{930}= +0.07690456 \pm 6.5 \cdot 10^{-8} \) |
\(a_{931}= -0.18334370 \pm 1.9 \cdot 10^{-8} \) | \(a_{932}= +0.33513456 \pm 1.9 \cdot 10^{-8} \) | \(a_{933}= +0.56040292 \pm 4.3 \cdot 10^{-8} \) |
\(a_{934}= +0.33710364 \pm 1.7 \cdot 10^{-8} \) | \(a_{935}= -0.84904093 \pm 5.3 \cdot 10^{-8} \) | \(a_{936}= -0.57853032 \pm 6.3 \cdot 10^{-8} \) |
\(a_{937}= -0.46650274 \pm 2.9 \cdot 10^{-8} \) | \(a_{938}= -0.99171637 \pm 1.9 \cdot 10^{-8} \) | \(a_{939}= -0.75464122 \pm 3.6 \cdot 10^{-8} \) |
\(a_{940}= +0.07675424 \pm 6.0 \cdot 10^{-8} \) | \(a_{941}= -1.32568533 \pm 2.5 \cdot 10^{-8} \) | \(a_{942}= -0.34713280 \pm 6.0 \cdot 10^{-8} \) |
\(a_{943}= +1.48604457 \pm 2.8 \cdot 10^{-8} \) | \(a_{944}= -0.67796793 \pm 3.6 \cdot 10^{-8} \) | \(a_{945}= -0.09979082 \pm 3.2 \cdot 10^{-8} \) |
\(a_{946}= -0.89126906 \pm 2.2 \cdot 10^{-8} \) | \(a_{947}= +1.14095706 \pm 2.3 \cdot 10^{-8} \) | \(a_{948}= +0.00076576 \pm 6.9 \cdot 10^{-8} \) |
\(a_{949}= -0.68540655 \pm 1.5 \cdot 10^{-8} \) | \(a_{950}= +0.08859653 \pm 6.2 \cdot 10^{-8} \) | \(a_{951}= -0.57336964 \pm 3.1 \cdot 10^{-8} \) |
\(a_{952}= +1.58351222 \pm 1.4 \cdot 10^{-8} \) | \(a_{953}= +0.80208378 \pm 3.2 \cdot 10^{-8} \) | \(a_{954}= -0.44521949 \pm 5.9 \cdot 10^{-8} \) |
\(a_{955}= +0.71487768 \pm 3.5 \cdot 10^{-8} \) | \(a_{956}= +0.15493446 \pm 4.1 \cdot 10^{-8} \) | \(a_{957}= +0.77516911 \pm 5.6 \cdot 10^{-8} \) |
\(a_{958}= -0.87111658 \pm 1.7 \cdot 10^{-8} \) | \(a_{959}= -0.76834014 \pm 1.2 \cdot 10^{-8} \) | \(a_{960}= +0.28122554 \pm 3.8 \cdot 10^{-8} \) |
\(a_{961}= -0.87184554 \pm 2.2 \cdot 10^{-8} \) | \(a_{962}= +1.97363604 \pm 2.5 \cdot 10^{-8} \) | \(a_{963}= -0.24218271 \pm 3.1 \cdot 10^{-8} \) |
\(a_{964}= +0.48752340 \pm 4.0 \cdot 10^{-8} \) | \(a_{965}= -0.68090717 \pm 4.1 \cdot 10^{-8} \) | \(a_{966}= +0.55477944 \pm 9.1 \cdot 10^{-8} \) |
\(a_{967}= -1.13329910 \pm 1.8 \cdot 10^{-8} \) | \(a_{968}= +1.40117899 \pm 2.6 \cdot 10^{-8} \) | \(a_{969}= +0.38583618 \pm 5.5 \cdot 10^{-8} \) |
\(a_{970}= -0.06346946 \pm 5.9 \cdot 10^{-8} \) | \(a_{971}= +1.04578586 \pm 1.9 \cdot 10^{-8} \) | \(a_{972}= -0.01974230 \pm 4.3 \cdot 10^{-8} \) |
\(a_{973}= -0.04029869 \pm 2.3 \cdot 10^{-8} \) | \(a_{974}= +1.21082178 \pm 4.2 \cdot 10^{-8} \) | \(a_{975}= -0.18418765 \pm 2.9 \cdot 10^{-8} \) |
\(a_{976}= -0.53062302 \pm 2.6 \cdot 10^{-8} \) | \(a_{977}= +0.14225788 \pm 2.1 \cdot 10^{-8} \) | \(a_{978}= +0.26882887 \pm 6.4 \cdot 10^{-8} \) |
\(a_{979}= +0.05445103 \pm 1.2 \cdot 10^{-8} \) | \(a_{980}= -0.04739429 \pm 6.8 \cdot 10^{-8} \) | \(a_{981}= +0.15064053 \pm 3.8 \cdot 10^{-8} \) |
\(a_{982}= -1.27881232 \pm 1.6 \cdot 10^{-8} \) | \(a_{983}= -0.86073349 \pm 2.2 \cdot 10^{-8} \) | \(a_{984}= +0.93720542 \pm 6.5 \cdot 10^{-8} \) |
\(a_{985}= -0.12382692 \pm 2.6 \cdot 10^{-8} \) | \(a_{986}= +0.92702135 \pm 5.2 \cdot 10^{-8} \) | \(a_{987}= +0.37332179 \pm 4.9 \cdot 10^{-8} \) |
\(a_{988}= -0.26136526 \pm 1.4 \cdot 10^{-8} \) | \(a_{989}= +0.70544753 \pm 2.7 \cdot 10^{-8} \) | \(a_{990}= -0.18759900 \pm 6.0 \cdot 10^{-8} \) |
\(a_{991}= +1.31009066 \pm 1.9 \cdot 10^{-8} \) | \(a_{992}= +0.21153768 \pm 1.9 \cdot 10^{-8} \) | \(a_{993}= +0.36547398 \pm 3.7 \cdot 10^{-8} \) |
\(a_{994}= +0.42287466 \pm 1.6 \cdot 10^{-8} \) | \(a_{995}= -0.15579103 \pm 2.2 \cdot 10^{-8} \) | \(a_{996}= -0.09627748 \pm 6.3 \cdot 10^{-8} \) |
\(a_{997}= +0.88842723 \pm 2.5 \cdot 10^{-8} \) | \(a_{998}= -1.56183104 \pm 2.4 \cdot 10^{-8} \) | \(a_{999}= +0.28619576 \pm 3.2 \cdot 10^{-8} \) |
\(a_{1000}= +0.09731981 \pm 4.4 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000