Maass form invariants
Level: | \( 15 = 3 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 15.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(12.2254089157236274658501505337 \pm 2 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.08727140 \pm 6.3 \cdot 10^{-5} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.99238370 \pm 6.3 \cdot 10^{-5} \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.05038616 \pm 6.3 \cdot 10^{-5} \) |
\(a_{7}= -0.44505338 \pm 5.4 \cdot 10^{-5} \) | \(a_{8}= -0.17387811 \pm 4.5 \cdot 10^{-5} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.03902895 \pm 6.3 \cdot 10^{-5} \) | \(a_{11}= +0.71673436 \pm 5.5 \cdot 10^{-5} \) | \(a_{12}= -0.57295300 \pm 6.3 \cdot 10^{-5} \) |
\(a_{13}= +0.24291178 \pm 5.4 \cdot 10^{-5} \) | \(a_{14}= -0.03884043 \pm 6.4 \cdot 10^{-5} \) | \(a_{15}= +0.25819889 \pm 1.0 \cdot 10^{-8} \) |
\(a_{16}= +0.97720912 \pm 5.3 \cdot 10^{-5} \) | \(a_{17}= -0.03834011 \pm 4.7 \cdot 10^{-5} \) | \(a_{18}= +0.02909047 \pm 6.3 \cdot 10^{-5} \) |
\(a_{19}= -1.36361919 \pm 4.7 \cdot 10^{-5} \) | \(a_{20}= -0.44380748 \pm 6.3 \cdot 10^{-5} \) | \(a_{21}= -0.25695169 \pm 5.4 \cdot 10^{-5} \) |
\(a_{22}= +0.06255041 \pm 6.5 \cdot 10^{-5} \) | \(a_{23}= -0.11093054 \pm 4.2 \cdot 10^{-5} \) | \(a_{24}= -0.10038857 \pm 4.5 \cdot 10^{-5} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +0.02119925 \pm 7.0 \cdot 10^{-5} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.44166372 \pm 7.0 \cdot 10^{-5} \) | \(a_{29}= -0.55720135 \pm 3.5 \cdot 10^{-5} \) | \(a_{30}= +0.02253338 \pm 6.3 \cdot 10^{-5} \) |
\(a_{31}= +0.51708233 \pm 2.8 \cdot 10^{-5} \) | \(a_{32}= +0.25916051 \pm 4.8 \cdot 10^{-5} \) | \(a_{33}= +0.41380678 \pm 5.5 \cdot 10^{-5} \) |
\(a_{34}= -0.00334599 \pm 6.0 \cdot 10^{-5} \) | \(a_{35}= -0.19903392 \pm 5.4 \cdot 10^{-5} \) | \(a_{36}= -0.33079457 \pm 6.3 \cdot 10^{-5} \) |
\(a_{37}= +1.36437633 \pm 4.1 \cdot 10^{-5} \) | \(a_{38}= -0.11900495 \pm 5.3 \cdot 10^{-5} \) | \(a_{39}= +0.14024518 \pm 5.4 \cdot 10^{-5} \) |
\(a_{40}= -0.07776065 \pm 4.5 \cdot 10^{-5} \) | \(a_{41}= -1.42026118 \pm 4.8 \cdot 10^{-5} \) | \(a_{42}= -0.02242453 \pm 1.1 \cdot 10^{-4} \) |
\(a_{43}= -1.28002518 \pm 5.2 \cdot 10^{-5} \) | \(a_{44}= -0.71127550 \pm 5.1 \cdot 10^{-5} \) | \(a_{45}= +0.14907120 \pm 1.4 \cdot 10^{-7} \) |
\(a_{46}= -0.00968106 \pm 3.1 \cdot 10^{-5} \) | \(a_{47}= -1.62606054 \pm 6.3 \cdot 10^{-5} \) | \(a_{48}= +0.56419195 \pm 5.3 \cdot 10^{-5} \) |
\(a_{49}= -0.80192749 \pm 4.0 \cdot 10^{-5} \) | \(a_{50}= +0.01745428 \pm 6.3 \cdot 10^{-5} \) | \(a_{51}= -0.02213567 \pm 4.8 \cdot 10^{-5} \) |
\(a_{52}= -0.24106169 \pm 5.6 \cdot 10^{-5} \) | \(a_{53}= -0.51990822 \pm 6.7 \cdot 10^{-5} \) | \(a_{54}= +0.01679539 \pm 6.3 \cdot 10^{-5} \) |
\(a_{55}= +0.32053335 \pm 5.5 \cdot 10^{-5} \) | \(a_{56}= +0.07738504 \pm 4.6 \cdot 10^{-5} \) | \(a_{57}= -0.78728591 \pm 4.7 \cdot 10^{-5} \) |
\(a_{58}= -0.04862774 \pm 4.6 \cdot 10^{-5} \) | \(a_{59}= -1.10187802 \pm 4.4 \cdot 10^{-5} \) | \(a_{60}= -0.25623237 \pm 6.3 \cdot 10^{-5} \) |
\(a_{61}= +0.14771956 \pm 5.7 \cdot 10^{-5} \) | \(a_{62}= +0.04512650 \pm 3.2 \cdot 10^{-5} \) | \(a_{63}= -0.14835113 \pm 5.4 \cdot 10^{-5} \) |
\(a_{64}= -0.95459182 \pm 5.8 \cdot 10^{-5} \) | \(a_{65}= +0.10863345 \pm 5.4 \cdot 10^{-5} \) | \(a_{66}= +0.03611350 \pm 1.1 \cdot 10^{-4} \) |
\(a_{67}= -1.01555406 \pm 4.7 \cdot 10^{-5} \) | \(a_{68}= +0.03804810 \pm 5.9 \cdot 10^{-5} \) | \(a_{69}= -0.06404578 \pm 4.2 \cdot 10^{-5} \) |
\(a_{70}= -0.01736997 \pm 1.1 \cdot 10^{-4} \) | \(a_{71}= +0.69063133 \pm 6.0 \cdot 10^{-5} \) | \(a_{72}= -0.05795937 \pm 4.5 \cdot 10^{-5} \) |
\(a_{73}= -1.40382898 \pm 5.2 \cdot 10^{-5} \) | \(a_{74}= +0.11907103 \pm 4.4 \cdot 10^{-5} \) | \(a_{75}= +0.11547005 \pm 2.2 \cdot 10^{-7} \) |
\(a_{76}= +1.35323347 \pm 6.1 \cdot 10^{-5} \) | \(a_{77}= -0.31898505 \pm 4.3 \cdot 10^{-5} \) | \(a_{78}= +0.01223939 \pm 1.1 \cdot 10^{-4} \) |
\(a_{79}= +1.13419741 \pm 5.4 \cdot 10^{-5} \) | \(a_{80}= +0.43702120 \pm 5.3 \cdot 10^{-5} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.12394818 \pm 6.0 \cdot 10^{-5} \) | \(a_{83}= -1.51552650 \pm 3.5 \cdot 10^{-5} \) | \(a_{84}= +0.25499467 \pm 1.1 \cdot 10^{-4} \) |
\(a_{85}= -0.01714622 \pm 4.8 \cdot 10^{-5} \) | \(a_{86}= -0.11170958 \pm 5.4 \cdot 10^{-5} \) | \(a_{87}= -0.32170035 \pm 3.5 \cdot 10^{-5} \) |
\(a_{88}= -0.12462441 \pm 4.7 \cdot 10^{-5} \) | \(a_{89}= -1.30123143 \pm 5.0 \cdot 10^{-5} \) | \(a_{90}= +0.01300965 \pm 6.3 \cdot 10^{-5} \) |
\(a_{91}= -0.10810871 \pm 4.3 \cdot 10^{-5} \) | \(a_{92}= +0.11008566 \pm 4.1 \cdot 10^{-5} \) | \(a_{93}= +0.29853762 \pm 2.8 \cdot 10^{-5} \) |
\(a_{94}= -0.14190857 \pm 7.6 \cdot 10^{-5} \) | \(a_{95}= -0.60982904 \pm 4.7 \cdot 10^{-5} \) | \(a_{96}= +0.14962639 \pm 4.8 \cdot 10^{-5} \) |
\(a_{97}= +1.18526743 \pm 4.6 \cdot 10^{-5} \) | \(a_{98}= -0.06998533 \pm 4.6 \cdot 10^{-5} \) | \(a_{99}= +0.23891145 \pm 5.5 \cdot 10^{-5} \) |
\(a_{100}= -0.19847674 \pm 6.3 \cdot 10^{-5} \) | \(a_{101}= +0.53500168 \pm 4.9 \cdot 10^{-5} \) | \(a_{102}= -0.00193181 \pm 1.1 \cdot 10^{-4} \) |
\(a_{103}= +0.53271491 \pm 5.3 \cdot 10^{-5} \) | \(a_{104}= -0.04223704 \pm 3.7 \cdot 10^{-5} \) | \(a_{105}= -0.11491229 \pm 5.4 \cdot 10^{-5} \) |
\(a_{106}= -0.04537312 \pm 6.3 \cdot 10^{-5} \) | \(a_{107}= -0.43689281 \pm 5.0 \cdot 10^{-5} \) | \(a_{108}= -0.19098433 \pm 6.3 \cdot 10^{-5} \) |
\(a_{109}= -0.39580383 \pm 4.9 \cdot 10^{-5} \) | \(a_{110}= +0.02797339 \pm 1.1 \cdot 10^{-4} \) | \(a_{111}= +0.78772304 \pm 4.1 \cdot 10^{-5} \) |
\(a_{112}= -0.43491022 \pm 4.6 \cdot 10^{-5} \) | \(a_{113}= +0.67771268 \pm 6.3 \cdot 10^{-5} \) | \(a_{114}= -0.06870754 \pm 1.1 \cdot 10^{-4} \) |
\(a_{115}= -0.04960965 \pm 4.2 \cdot 10^{-5} \) | \(a_{116}= +0.55295753 \pm 4.1 \cdot 10^{-5} \) | \(a_{117}= +0.08097059 \pm 5.4 \cdot 10^{-5} \) |
\(a_{118}= -0.09616243 \pm 6.8 \cdot 10^{-5} \) | \(a_{119}= +0.01706339 \pm 5.3 \cdot 10^{-5} \) | \(a_{120}= -0.04489513 \pm 4.5 \cdot 10^{-5} \) |
\(a_{121}= -0.48629185 \pm 5.2 \cdot 10^{-5} \) | \(a_{122}= +0.01289169 \pm 6.5 \cdot 10^{-5} \) | \(a_{123}= -0.81998818 \pm 4.8 \cdot 10^{-5} \) |
\(a_{124}= -0.51314408 \pm 3.7 \cdot 10^{-5} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.01294681 \pm 1.1 \cdot 10^{-4} \) |
\(a_{127}= -0.72037903 \pm 4.6 \cdot 10^{-5} \) | \(a_{128}= -0.34246907 \pm 6.1 \cdot 10^{-5} \) | \(a_{129}= -0.73902288 \pm 5.2 \cdot 10^{-5} \) |
\(a_{130}= +0.00948059 \pm 1.1 \cdot 10^{-4} \) | \(a_{131}= +0.94095687 \pm 6.0 \cdot 10^{-5} \) | \(a_{132}= -0.41065510 \pm 1.1 \cdot 10^{-4} \) |
\(a_{133}= +0.60688333 \pm 4.5 \cdot 10^{-5} \) | \(a_{134}= -0.08862882 \pm 5.0 \cdot 10^{-5} \) | \(a_{135}= +0.08606630 \pm 3.3 \cdot 10^{-7} \) |
\(a_{136}= +0.00666650 \pm 4.4 \cdot 10^{-5} \) | \(a_{137}= +1.46146742 \pm 4.8 \cdot 10^{-5} \) | \(a_{138}= -0.00558936 \pm 1.0 \cdot 10^{-4} \) |
\(a_{139}= +1.74033641 \pm 6.0 \cdot 10^{-5} \) | \(a_{140}= +0.19751802 \pm 1.1 \cdot 10^{-4} \) | \(a_{141}= -0.93880649 \pm 6.3 \cdot 10^{-5} \) |
\(a_{142}= +0.06027236 \pm 4.8 \cdot 10^{-5} \) | \(a_{143}= +0.17410322 \pm 5.8 \cdot 10^{-5} \) | \(a_{144}= +0.32573637 \pm 5.3 \cdot 10^{-5} \) |
\(a_{145}= -0.24918802 \pm 3.5 \cdot 10^{-5} \) | \(a_{146}= -0.12251412 \pm 7.7 \cdot 10^{-5} \) | \(a_{147}= -0.46299305 \pm 4.0 \cdot 10^{-5} \) |
\(a_{148}= -1.35398483 \pm 5.1 \cdot 10^{-5} \) | \(a_{149}= +1.82430437 \pm 3.5 \cdot 10^{-5} \) | \(a_{150}= +0.01007723 \pm 6.3 \cdot 10^{-5} \) |
\(a_{151}= -1.14775485 \pm 6.4 \cdot 10^{-5} \) | \(a_{152}= +0.23710353 \pm 4.1 \cdot 10^{-5} \) | \(a_{153}= -0.01278004 \pm 4.8 \cdot 10^{-5} \) |
\(a_{154}= -0.02783827 \pm 5.7 \cdot 10^{-5} \) | \(a_{155}= +0.23124625 \pm 2.8 \cdot 10^{-5} \) | \(a_{156}= -0.13917703 \pm 1.1 \cdot 10^{-4} \) |
\(a_{157}= -0.54841807 \pm 4.8 \cdot 10^{-5} \) | \(a_{158}= +0.09898299 \pm 7.6 \cdot 10^{-5} \) | \(a_{159}= -0.30016915 \pm 6.7 \cdot 10^{-5} \) |
\(a_{160}= +0.11590010 \pm 4.8 \cdot 10^{-5} \) | \(a_{161}= +0.04937001 \pm 4.2 \cdot 10^{-5} \) | \(a_{162}= +0.00969682 \pm 6.3 \cdot 10^{-5} \) |
\(a_{163}= -1.87136990 \pm 5.7 \cdot 10^{-5} \) | \(a_{164}= +1.40944405 \pm 4.4 \cdot 10^{-5} \) | \(a_{165}= +0.18506002 \pm 5.5 \cdot 10^{-5} \) |
\(a_{166}= -0.13226211 \pm 4.6 \cdot 10^{-5} \) | \(a_{167}= -0.60224267 \pm 6.5 \cdot 10^{-5} \) | \(a_{168}= +0.04467827 \pm 1.0 \cdot 10^{-4} \) |
\(a_{169}= -0.94099387 \pm 6.1 \cdot 10^{-5} \) | \(a_{170}= -0.00149637 \pm 1.1 \cdot 10^{-4} \) | \(a_{171}= -0.45453973 \pm 4.7 \cdot 10^{-5} \) |
\(a_{172}= +1.27027613 \pm 5.8 \cdot 10^{-5} \) | \(a_{173}= +0.79481004 \pm 4.4 \cdot 10^{-5} \) | \(a_{174}= -0.02807524 \pm 9.8 \cdot 10^{-5} \) |
\(a_{175}= -0.08901068 \pm 5.4 \cdot 10^{-5} \) | \(a_{176}= +0.70039936 \pm 5.9 \cdot 10^{-5} \) | \(a_{177}= -0.63616957 \pm 4.4 \cdot 10^{-5} \) |
\(a_{178}= -0.11356028 \pm 6.6 \cdot 10^{-5} \) | \(a_{179}= -0.56487841 \pm 4.7 \cdot 10^{-5} \) | \(a_{180}= -0.14793583 \pm 6.3 \cdot 10^{-5} \) |
\(a_{181}= +1.54868900 \pm 4.8 \cdot 10^{-5} \) | \(a_{182}= -0.00943480 \pm 6.2 \cdot 10^{-5} \) | \(a_{183}= +0.08528593 \pm 5.7 \cdot 10^{-5} \) |
\(a_{184}= +0.01928839 \pm 3.1 \cdot 10^{-5} \) | \(a_{185}= +0.61016764 \pm 4.1 \cdot 10^{-5} \) | \(a_{186}= +0.02605380 \pm 9.1 \cdot 10^{-5} \) |
\(a_{187}= -0.02747967 \pm 4.2 \cdot 10^{-5} \) | \(a_{188}= +1.61367598 \pm 8.3 \cdot 10^{-5} \) | \(a_{189}= -0.08565056 \pm 5.4 \cdot 10^{-5} \) |
\(a_{190}= -0.05322063 \pm 1.1 \cdot 10^{-4} \) | \(a_{191}= -0.59244226 \pm 3.9 \cdot 10^{-5} \) | \(a_{192}= -0.55113384 \pm 5.8 \cdot 10^{-5} \) |
\(a_{193}= -1.27628180 \pm 4.1 \cdot 10^{-5} \) | \(a_{194}= +0.10343994 \pm 4.3 \cdot 10^{-5} \) | \(a_{195}= +0.06271955 \pm 5.4 \cdot 10^{-5} \) |
\(a_{196}= +0.79581977 \pm 4.6 \cdot 10^{-5} \) | \(a_{197}= -0.27642458 \pm 3.0 \cdot 10^{-5} \) | \(a_{198}= +0.02085014 \pm 1.1 \cdot 10^{-4} \) |
\(a_{199}= -0.14176836 \pm 5.6 \cdot 10^{-5} \) | \(a_{200}= -0.03477562 \pm 4.5 \cdot 10^{-5} \) | \(a_{201}= -0.58633041 \pm 4.7 \cdot 10^{-5} \) |
\(a_{202}= +0.04669034 \pm 3.5 \cdot 10^{-5} \) | \(a_{203}= +0.24798434 \pm 3.8 \cdot 10^{-5} \) | \(a_{204}= +0.02196708 \pm 1.1 \cdot 10^{-4} \) |
\(a_{205}= -0.63516011 \pm 4.8 \cdot 10^{-5} \) | \(a_{206}= +0.04649077 \pm 6.8 \cdot 10^{-5} \) | \(a_{207}= -0.03697685 \pm 4.2 \cdot 10^{-5} \) |
\(a_{208}= +0.23737561 \pm 5.4 \cdot 10^{-5} \) | \(a_{209}= -0.97735274 \pm 4.6 \cdot 10^{-5} \) | \(a_{210}= -0.01002856 \pm 1.1 \cdot 10^{-4} \) |
\(a_{211}= -0.22070536 \pm 4.9 \cdot 10^{-5} \) | \(a_{212}= +0.51594845 \pm 7.4 \cdot 10^{-5} \) | \(a_{213}= +0.39873618 \pm 6.0 \cdot 10^{-5} \) |
\(a_{214}= -0.03812825 \pm 5.5 \cdot 10^{-5} \) | \(a_{215}= -0.57244466 \pm 5.2 \cdot 10^{-5} \) | \(a_{216}= -0.03346286 \pm 4.5 \cdot 10^{-5} \) |
\(a_{217}= -0.23012924 \pm 2.7 \cdot 10^{-5} \) | \(a_{218}= -0.03454235 \pm 5.1 \cdot 10^{-5} \) | \(a_{219}= -0.81050104 \pm 5.2 \cdot 10^{-5} \) |
\(a_{220}= -0.31809207 \pm 1.1 \cdot 10^{-4} \) | \(a_{221}= -0.00931326 \pm 5.5 \cdot 10^{-5} \) | \(a_{222}= +0.06874569 \pm 1.0 \cdot 10^{-4} \) |
\(a_{223}= +1.19501725 \pm 4.6 \cdot 10^{-5} \) | \(a_{224}= -0.11534026 \pm 4.3 \cdot 10^{-5} \) | \(a_{225}= +0.06666667 \pm 4.9 \cdot 10^{-7} \) |
\(a_{226}= +0.05914493 \pm 6.1 \cdot 10^{-5} \) | \(a_{227}= +1.59430167 \pm 4.9 \cdot 10^{-5} \) | \(a_{228}= +0.78128971 \pm 1.1 \cdot 10^{-4} \) |
\(a_{229}= -1.36479253 \pm 7.5 \cdot 10^{-5} \) | \(a_{230}= -0.00432950 \pm 1.0 \cdot 10^{-4} \) | \(a_{231}= -0.18416611 \pm 1.0 \cdot 10^{-4} \) |
\(a_{232}= +0.09688512 \pm 3.0 \cdot 10^{-5} \) | \(a_{233}= +1.63618184 \pm 7.3 \cdot 10^{-5} \) | \(a_{234}= +0.00706642 \pm 1.1 \cdot 10^{-4} \) |
\(a_{235}= -0.72719638 \pm 6.3 \cdot 10^{-5} \) | \(a_{236}= +1.09348579 \pm 7.1 \cdot 10^{-5} \) | \(a_{237}= +0.65482918 \pm 5.4 \cdot 10^{-5} \) |
\(a_{238}= +0.00148915 \pm 7.0 \cdot 10^{-5} \) | \(a_{239}= -1.05830029 \pm 4.2 \cdot 10^{-5} \) | \(a_{240}= +0.25231431 \pm 5.3 \cdot 10^{-5} \) |
\(a_{241}= +0.21284379 \pm 5.7 \cdot 10^{-5} \) | \(a_{242}= -0.04243937 \pm 5.6 \cdot 10^{-5} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.14659449 \pm 6.5 \cdot 10^{-5} \) | \(a_{245}= -0.35863288 \pm 4.0 \cdot 10^{-5} \) | \(a_{246}= -0.07156151 \pm 1.1 \cdot 10^{-4} \) |
\(a_{247}= -0.33123917 \pm 3.7 \cdot 10^{-5} \) | \(a_{248}= -0.08990930 \pm 2.9 \cdot 10^{-5} \) | \(a_{249}= -0.87498963 \pm 3.5 \cdot 10^{-5} \) |
\(a_{250}= +0.00780579 \pm 6.3 \cdot 10^{-5} \) | \(a_{251}= -0.14147974 \pm 4.2 \cdot 10^{-5} \) | \(a_{252}= +0.14722124 \pm 1.1 \cdot 10^{-4} \) |
\(a_{253}= -0.07950773 \pm 4.3 \cdot 10^{-5} \) | \(a_{254}= -0.06286848 \pm 4.3 \cdot 10^{-5} \) | \(a_{255}= -0.00989937 \pm 4.8 \cdot 10^{-5} \) |
\(a_{256}= +0.92470406 \pm 5.3 \cdot 10^{-5} \) | \(a_{257}= -1.04798733 \pm 5.5 \cdot 10^{-5} \) | \(a_{258}= -0.06449556 \pm 1.1 \cdot 10^{-4} \) |
\(a_{259}= -0.60722030 \pm 4.3 \cdot 10^{-5} \) | \(a_{260}= -0.10780607 \pm 1.1 \cdot 10^{-4} \) | \(a_{261}= -0.18573378 \pm 3.5 \cdot 10^{-5} \) |
\(a_{262}= +0.08211862 \pm 6.2 \cdot 10^{-5} \) | \(a_{263}= +0.76389470 \pm 4.4 \cdot 10^{-5} \) | \(a_{264}= -0.07195194 \pm 1.0 \cdot 10^{-4} \) |
\(a_{265}= -0.23251003 \pm 6.7 \cdot 10^{-5} \) | \(a_{266}= +0.05296356 \pm 5.2 \cdot 10^{-5} \) | \(a_{267}= -0.75126632 \pm 5.0 \cdot 10^{-5} \) |
\(a_{268}= +1.00781930 \pm 5.9 \cdot 10^{-5} \) | \(a_{269}= -1.60378319 \pm 5.0 \cdot 10^{-5} \) | \(a_{270}= +0.00751113 \pm 6.3 \cdot 10^{-5} \) |
\(a_{271}= +1.23209805 \pm 5.1 \cdot 10^{-5} \) | \(a_{272}= -0.03746630 \pm 4.9 \cdot 10^{-5} \) | \(a_{273}= -0.06241659 \pm 1.0 \cdot 10^{-4} \) |
\(a_{274}= +0.12754430 \pm 7.2 \cdot 10^{-5} \) | \(a_{275}= +0.14334687 \pm 5.5 \cdot 10^{-5} \) | \(a_{276}= +0.06355799 \pm 1.0 \cdot 10^{-4} \) |
\(a_{277}= -0.93839840 \pm 5.2 \cdot 10^{-5} \) | \(a_{278}= +0.15188159 \pm 8.2 \cdot 10^{-5} \) | \(a_{279}= +0.17236078 \pm 2.8 \cdot 10^{-5} \) |
\(a_{280}= +0.03460764 \pm 1.0 \cdot 10^{-4} \) | \(a_{281}= +0.61060937 \pm 5.6 \cdot 10^{-5} \) | \(a_{282}= -0.08193095 \pm 1.2 \cdot 10^{-4} \) |
\(a_{283}= +0.48706623 \pm 5.3 \cdot 10^{-5} \) | \(a_{284}= -0.68537127 \pm 6.3 \cdot 10^{-5} \) | \(a_{285}= -0.35208496 \pm 4.7 \cdot 10^{-5} \) |
\(a_{286}= +0.01519423 \pm 6.8 \cdot 10^{-5} \) | \(a_{287}= +0.63209204 \pm 4.2 \cdot 10^{-5} \) | \(a_{288}= +0.08638684 \pm 4.8 \cdot 10^{-5} \) |
\(a_{289}= -0.99853004 \pm 4.1 \cdot 10^{-5} \) | \(a_{290}= -0.02174699 \pm 9.8 \cdot 10^{-5} \) | \(a_{291}= +0.68431447 \pm 4.6 \cdot 10^{-5} \) |
\(a_{292}= +1.39313701 \pm 7.9 \cdot 10^{-5} \) | \(a_{293}= +1.64869356 \pm 4.2 \cdot 10^{-5} \) | \(a_{294}= -0.04040605 \pm 1.0 \cdot 10^{-4} \) |
\(a_{295}= -0.49277483 \pm 4.4 \cdot 10^{-5} \) | \(a_{296}= -0.23723517 \pm 3.3 \cdot 10^{-5} \) | \(a_{297}= +0.13793559 \pm 5.5 \cdot 10^{-5} \) |
\(a_{298}= +0.15920959 \pm 4.8 \cdot 10^{-5} \) | \(a_{299}= -0.02694634 \pm 3.3 \cdot 10^{-5} \) | \(a_{300}= -0.11459060 \pm 6.3 \cdot 10^{-5} \) |
\(a_{301}= +0.56967953 \pm 5.4 \cdot 10^{-5} \) | \(a_{302}= -0.10016617 \pm 7.6 \cdot 10^{-5} \) | \(a_{303}= +0.30888336 \pm 4.9 \cdot 10^{-5} \) |
\(a_{304}= -1.33254111 \pm 4.6 \cdot 10^{-5} \) | \(a_{305}= +0.06606220 \pm 5.7 \cdot 10^{-5} \) | \(a_{306}= -0.00111533 \pm 1.1 \cdot 10^{-4} \) |
\(a_{307}= +0.98636497 \pm 5.2 \cdot 10^{-5} \) | \(a_{308}= +0.31655557 \pm 5.1 \cdot 10^{-5} \) | \(a_{309}= +0.30756310 \pm 5.4 \cdot 10^{-5} \) |
\(a_{310}= +0.02018118 \pm 9.1 \cdot 10^{-5} \) | \(a_{311}= -0.46288681 \pm 4.7 \cdot 10^{-5} \) | \(a_{312}= -0.02438557 \pm 1.0 \cdot 10^{-4} \) |
\(a_{313}= -1.48803877 \pm 5.0 \cdot 10^{-5} \) | \(a_{314}= -0.04786121 \pm 5.0 \cdot 10^{-5} \) | \(a_{315}= -0.06634464 \pm 5.4 \cdot 10^{-5} \) |
\(a_{316}= -1.12555903 \pm 6.5 \cdot 10^{-5} \) | \(a_{317}= -1.05340325 \pm 6.0 \cdot 10^{-5} \) | \(a_{318}= -0.02619618 \pm 1.3 \cdot 10^{-4} \) |
\(a_{319}= -0.39936535 \pm 4.1 \cdot 10^{-5} \) | \(a_{320}= -0.42690644 \pm 5.8 \cdot 10^{-5} \) | \(a_{321}= -0.25224018 \pm 5.0 \cdot 10^{-5} \) |
\(a_{322}= +0.00430859 \pm 3.2 \cdot 10^{-5} \) | \(a_{323}= +0.05228130 \pm 3.1 \cdot 10^{-5} \) | \(a_{324}= -0.11026486 \pm 6.3 \cdot 10^{-5} \) |
\(a_{325}= +0.04858236 \pm 5.4 \cdot 10^{-5} \) | \(a_{326}= -0.16331706 \pm 5.6 \cdot 10^{-5} \) | \(a_{327}= -0.22851745 \pm 4.9 \cdot 10^{-5} \) |
\(a_{328}= +0.24695233 \pm 3.6 \cdot 10^{-5} \) | \(a_{329}= +0.72368374 \pm 6.4 \cdot 10^{-5} \) | \(a_{330}= +0.01615045 \pm 1.1 \cdot 10^{-4} \) |
\(a_{331}= -0.59949017 \pm 6.1 \cdot 10^{-5} \) | \(a_{332}= +1.50398380 \pm 4.6 \cdot 10^{-5} \) | \(a_{333}= +0.45479211 \pm 4.1 \cdot 10^{-5} \) |
\(a_{334}= -0.05255856 \pm 6.6 \cdot 10^{-5} \) | \(a_{335}= -0.45416958 \pm 4.7 \cdot 10^{-5} \) | \(a_{336}= -0.25109553 \pm 1.0 \cdot 10^{-4} \) |
\(a_{337}= +0.79550456 \pm 4.8 \cdot 10^{-5} \) | \(a_{338}= -0.08212185 \pm 7.7 \cdot 10^{-5} \) | \(a_{339}= +0.39127760 \pm 6.3 \cdot 10^{-5} \) |
\(a_{340}= +0.01701563 \pm 1.1 \cdot 10^{-4} \) | \(a_{341}= +0.37061068 \pm 2.5 \cdot 10^{-5} \) | \(a_{342}= -0.03966832 \pm 1.1 \cdot 10^{-4} \) |
\(a_{343}= +0.80195392 \pm 5.1 \cdot 10^{-5} \) | \(a_{344}= +0.22256836 \pm 3.8 \cdot 10^{-5} \) | \(a_{345}= -0.02864214 \pm 4.2 \cdot 10^{-5} \) |
\(a_{346}= +0.06936418 \pm 6.0 \cdot 10^{-5} \) | \(a_{347}= -1.65642588 \pm 5.8 \cdot 10^{-5} \) | \(a_{348}= +0.31925018 \pm 9.8 \cdot 10^{-5} \) |
\(a_{349}= -0.74325779 \pm 5.0 \cdot 10^{-5} \) | \(a_{350}= -0.00776809 \pm 1.1 \cdot 10^{-4} \) | \(a_{351}= +0.04674839 \pm 5.4 \cdot 10^{-5} \) |
\(a_{352}= +0.18574924 \pm 4.4 \cdot 10^{-5} \) | \(a_{353}= +0.63029067 \pm 6.0 \cdot 10^{-5} \) | \(a_{354}= -0.05551941 \pm 1.0 \cdot 10^{-4} \) |
\(a_{355}= +0.30885972 \pm 6.0 \cdot 10^{-5} \) | \(a_{356}= +1.29132087 \pm 6.1 \cdot 10^{-5} \) | \(a_{357}= +0.00985155 \pm 1.0 \cdot 10^{-4} \) |
\(a_{358}= -0.04929773 \pm 6.0 \cdot 10^{-5} \) | \(a_{359}= -0.84321202 \pm 5.4 \cdot 10^{-5} \) | \(a_{360}= -0.02592022 \pm 4.5 \cdot 10^{-5} \) |
\(a_{361}= +0.85945731 \pm 4.1 \cdot 10^{-5} \) | \(a_{362}= +0.13515625 \pm 6.9 \cdot 10^{-5} \) | \(a_{363}= -0.28076073 \pm 5.2 \cdot 10^{-5} \) |
\(a_{364}= +0.10728532 \pm 5.6 \cdot 10^{-5} \) | \(a_{365}= -0.62781141 \pm 5.2 \cdot 10^{-5} \) | \(a_{366}= +0.00744302 \pm 1.2 \cdot 10^{-4} \) |
\(a_{367}= +0.16752598 \pm 4.5 \cdot 10^{-5} \) | \(a_{368}= -0.10840234 \pm 4.6 \cdot 10^{-5} \) | \(a_{369}= -0.47342039 \pm 4.8 \cdot 10^{-5} \) |
\(a_{370}= +0.05325018 \pm 1.0 \cdot 10^{-4} \) | \(a_{371}= +0.23138691 \pm 7.5 \cdot 10^{-5} \) | \(a_{372}= -0.29626387 \pm 9.1 \cdot 10^{-5} \) |
\(a_{373}= +1.60284844 \pm 4.6 \cdot 10^{-5} \) | \(a_{374}= -0.00239819 \pm 4.9 \cdot 10^{-5} \) | \(a_{375}= +0.05163978 \pm 7.7 \cdot 10^{-7} \) |
\(a_{376}= +0.28273633 \pm 5.4 \cdot 10^{-5} \) | \(a_{377}= -0.13535077 \pm 3.0 \cdot 10^{-5} \) | \(a_{378}= -0.00747484 \pm 1.1 \cdot 10^{-4} \) |
\(a_{379}= -0.16993236 \pm 4.9 \cdot 10^{-5} \) | \(a_{380}= +0.60518440 \pm 1.1 \cdot 10^{-4} \) | \(a_{381}= -0.41591103 \pm 4.6 \cdot 10^{-5} \) |
\(a_{382}= -0.05170326 \pm 4.5 \cdot 10^{-5} \) | \(a_{383}= -1.62727994 \pm 6.6 \cdot 10^{-5} \) | \(a_{384}= -0.19772461 \pm 6.1 \cdot 10^{-5} \) |
\(a_{385}= -0.14265445 \pm 1.0 \cdot 10^{-4} \) | \(a_{386}= -0.11138289 \pm 5.6 \cdot 10^{-5} \) | \(a_{387}= -0.42667506 \pm 5.2 \cdot 10^{-5} \) |
\(a_{388}= -1.17624008 \pm 4.6 \cdot 10^{-5} \) | \(a_{389}= -0.93030296 \pm 6.2 \cdot 10^{-5} \) | \(a_{390}= +0.00547362 \pm 1.1 \cdot 10^{-4} \) |
\(a_{391}= +0.00425309 \pm 3.4 \cdot 10^{-5} \) | \(a_{392}= +0.13943763 \pm 3.6 \cdot 10^{-5} \) | \(a_{393}= +0.54326170 \pm 6.0 \cdot 10^{-5} \) |
\(a_{394}= -0.02412396 \pm 4.2 \cdot 10^{-5} \) | \(a_{395}= +0.50722850 \pm 5.4 \cdot 10^{-5} \) | \(a_{396}= -0.23709183 \pm 1.1 \cdot 10^{-4} \) |
\(a_{397}= -1.34608256 \pm 5.5 \cdot 10^{-5} \) | \(a_{398}= -0.01237232 \pm 6.5 \cdot 10^{-5} \) | \(a_{399}= +0.35038426 \pm 1.0 \cdot 10^{-4} \) |
\(a_{400}= +0.19544182 \pm 5.3 \cdot 10^{-5} \) | \(a_{401}= +0.46359067 \pm 3.4 \cdot 10^{-5} \) | \(a_{402}= -0.05116987 \pm 1.1 \cdot 10^{-4} \) |
\(a_{403}= +0.12560539 \pm 2.7 \cdot 10^{-5} \) | \(a_{404}= -0.53092695 \pm 5.1 \cdot 10^{-5} \) | \(a_{405}= +0.04969040 \pm 8.2 \cdot 10^{-7} \) |
\(a_{406}= +0.02164194 \pm 4.6 \cdot 10^{-5} \) | \(a_{407}= +0.97789540 \pm 3.4 \cdot 10^{-5} \) | \(a_{408}= +0.00384891 \pm 9.3 \cdot 10^{-5} \) |
\(a_{409}= +0.44274183 \pm 5.8 \cdot 10^{-5} \) | \(a_{410}= -0.05543131 \pm 1.1 \cdot 10^{-4} \) | \(a_{411}= +0.84377861 \pm 4.8 \cdot 10^{-5} \) |
\(a_{412}= -0.52865759 \pm 5.1 \cdot 10^{-5} \) | \(a_{413}= +0.49039454 \pm 4.9 \cdot 10^{-5} \) | \(a_{414}= -0.00322702 \pm 1.0 \cdot 10^{-4} \) |
\(a_{415}= -0.67776406 \pm 3.5 \cdot 10^{-5} \) | \(a_{416}= +0.06295314 \pm 5.7 \cdot 10^{-5} \) | \(a_{417}= +1.00478370 \pm 6.0 \cdot 10^{-5} \) |
\(a_{418}= -0.08529494 \pm 5.6 \cdot 10^{-5} \) | \(a_{419}= +0.96038666 \pm 4.7 \cdot 10^{-5} \) | \(a_{420}= +0.11403708 \pm 1.1 \cdot 10^{-4} \) |
\(a_{421}= -0.16449804 \pm 6.5 \cdot 10^{-5} \) | \(a_{422}= -0.01926127 \pm 5.6 \cdot 10^{-5} \) | \(a_{423}= -0.54202018 \pm 6.3 \cdot 10^{-5} \) |
\(a_{424}= +0.09040066 \pm 3.9 \cdot 10^{-5} \) | \(a_{425}= -0.00766802 \pm 4.8 \cdot 10^{-5} \) | \(a_{426}= +0.03479826 \pm 1.2 \cdot 10^{-4} \) |
\(a_{427}= -0.06574309 \pm 4.6 \cdot 10^{-5} \) | \(a_{428}= +0.43356530 \pm 6.2 \cdot 10^{-5} \) | \(a_{429}= +0.10051854 \pm 1.0 \cdot 10^{-4} \) |
\(a_{430}= -0.04995804 \pm 1.1 \cdot 10^{-4} \) | \(a_{431}= -0.87154871 \pm 4.9 \cdot 10^{-5} \) | \(a_{432}= +0.18806398 \pm 5.3 \cdot 10^{-5} \) |
\(a_{433}= +0.33583006 \pm 4.6 \cdot 10^{-5} \) | \(a_{434}= -0.02008370 \pm 3.2 \cdot 10^{-5} \) | \(a_{435}= -0.14386877 \pm 3.5 \cdot 10^{-5} \) |
\(a_{436}= +0.39278927 \pm 4.1 \cdot 10^{-5} \) | \(a_{437}= +0.15126701 \pm 4.1 \cdot 10^{-5} \) | \(a_{438}= -0.07073356 \pm 1.1 \cdot 10^{-4} \) |
\(a_{439}= +0.76238065 \pm 4.2 \cdot 10^{-5} \) | \(a_{440}= -0.05573373 \pm 1.0 \cdot 10^{-4} \) | \(a_{441}= -0.26730916 \pm 4.0 \cdot 10^{-5} \) |
\(a_{442}= -0.00081278 \pm 7.5 \cdot 10^{-5} \) | \(a_{443}= +1.58820789 \pm 4.6 \cdot 10^{-5} \) | \(a_{444}= -0.78172351 \pm 1.0 \cdot 10^{-4} \) |
\(a_{445}= -0.58192839 \pm 5.0 \cdot 10^{-5} \) | \(a_{446}= +0.10429082 \pm 6.5 \cdot 10^{-5} \) | \(a_{447}= +1.05326262 \pm 3.5 \cdot 10^{-5} \) |
\(a_{448}= +0.42484432 \pm 6.2 \cdot 10^{-5} \) | \(a_{449}= -0.76605017 \pm 4.2 \cdot 10^{-5} \) | \(a_{450}= +0.00581809 \pm 6.3 \cdot 10^{-5} \) |
\(a_{451}= -1.01794999 \pm 6.3 \cdot 10^{-5} \) | \(a_{452}= -0.67255102 \pm 5.7 \cdot 10^{-5} \) | \(a_{453}= -0.66265657 \pm 6.4 \cdot 10^{-5} \) |
\(a_{454}= +0.13913693 \pm 4.8 \cdot 10^{-5} \) | \(a_{455}= -0.04834769 \pm 1.0 \cdot 10^{-4} \) | \(a_{456}= +0.13689178 \pm 9.3 \cdot 10^{-5} \) |
\(a_{457}= -0.47188663 \pm 6.0 \cdot 10^{-5} \) | \(a_{458}= -0.11910735 \pm 9.3 \cdot 10^{-5} \) | \(a_{459}= -0.00737856 \pm 4.8 \cdot 10^{-5} \) |
\(a_{460}= +0.04923180 \pm 1.0 \cdot 10^{-4} \) | \(a_{461}= -1.45300475 \pm 5.0 \cdot 10^{-5} \) | \(a_{462}= -0.01607243 \pm 1.7 \cdot 10^{-4} \) |
\(a_{463}= -0.26160869 \pm 4.7 \cdot 10^{-5} \) | \(a_{464}= -0.54450224 \pm 3.8 \cdot 10^{-5} \) | \(a_{465}= +0.13351008 \pm 2.8 \cdot 10^{-5} \) |
\(a_{466}= +0.14279187 \pm 7.5 \cdot 10^{-5} \) | \(a_{467}= +0.93046448 \pm 6.3 \cdot 10^{-5} \) | \(a_{468}= -0.08035390 \pm 1.1 \cdot 10^{-4} \) |
\(a_{469}= +0.45197577 \pm 5.6 \cdot 10^{-5} \) | \(a_{470}= -0.06346344 \pm 1.2 \cdot 10^{-4} \) | \(a_{471}= -0.31662932 \pm 4.8 \cdot 10^{-5} \) |
\(a_{472}= +0.19159246 \pm 4.8 \cdot 10^{-5} \) | \(a_{473}= -0.91743803 \pm 4.6 \cdot 10^{-5} \) | \(a_{474}= +0.05714786 \pm 1.1 \cdot 10^{-4} \) |
\(a_{475}= -0.27272384 \pm 4.7 \cdot 10^{-5} \) | \(a_{476}= -0.01693343 \pm 7.4 \cdot 10^{-5} \) | \(a_{477}= -0.17330274 \pm 6.7 \cdot 10^{-5} \) |
\(a_{478}= -0.09235934 \pm 4.7 \cdot 10^{-5} \) | \(a_{479}= +0.52190596 \pm 3.8 \cdot 10^{-5} \) | \(a_{480}= +0.06691496 \pm 4.8 \cdot 10^{-5} \) |
\(a_{481}= +0.33142309 \pm 3.8 \cdot 10^{-5} \) | \(a_{482}= +0.01857517 \pm 5.8 \cdot 10^{-5} \) | \(a_{483}= +0.02850379 \pm 9.6 \cdot 10^{-5} \) |
\(a_{484}= +0.48258811 \pm 4.1 \cdot 10^{-5} \) | \(a_{485}= +0.53006771 \pm 4.6 \cdot 10^{-5} \) | \(a_{486}= +0.00559846 \pm 6.3 \cdot 10^{-5} \) |
\(a_{487}= -0.00272964 \pm 4.3 \cdot 10^{-5} \) | \(a_{488}= -0.02568520 \pm 5.2 \cdot 10^{-5} \) | \(a_{489}= -1.08043592 \pm 5.7 \cdot 10^{-5} \) |
\(a_{490}= -0.03129839 \pm 1.0 \cdot 10^{-4} \) | \(a_{491}= +0.27239558 \pm 6.4 \cdot 10^{-5} \) | \(a_{492}= +0.81374290 \pm 1.1 \cdot 10^{-4} \) |
\(a_{493}= +0.02136316 \pm 2.6 \cdot 10^{-5} \) | \(a_{494}= -0.02890770 \pm 4.1 \cdot 10^{-5} \) | \(a_{495}= +0.10684445 \pm 5.5 \cdot 10^{-5} \) |
\(a_{496}= +0.50529757 \pm 3.4 \cdot 10^{-5} \) | \(a_{497}= -0.30736781 \pm 6.7 \cdot 10^{-5} \) | \(a_{498}= -0.07636157 \pm 9.9 \cdot 10^{-5} \) |
\(a_{499}= +1.08845108 \pm 5.9 \cdot 10^{-5} \) | \(a_{500}= -0.08876150 \pm 6.3 \cdot 10^{-5} \) | \(a_{501}= -0.34770496 \pm 6.5 \cdot 10^{-5} \) |
\(a_{502}= -0.01234713 \pm 5.1 \cdot 10^{-5} \) | \(a_{503}= -0.10691745 \pm 6.2 \cdot 10^{-5} \) | \(a_{504}= +0.02579501 \pm 1.0 \cdot 10^{-4} \) |
\(a_{505}= +0.23926003 \pm 4.9 \cdot 10^{-5} \) | \(a_{506}= -0.00693875 \pm 4.0 \cdot 10^{-5} \) | \(a_{507}= -0.54328306 \pm 6.1 \cdot 10^{-5} \) |
\(a_{508}= +0.71489241 \pm 5.9 \cdot 10^{-5} \) | \(a_{509}= -0.10739118 \pm 5.6 \cdot 10^{-5} \) | \(a_{510}= -0.00086393 \pm 1.1 \cdot 10^{-4} \) |
\(a_{511}= +0.62477884 \pm 5.5 \cdot 10^{-5} \) | \(a_{512}= +0.42316929 \pm 4.3 \cdot 10^{-5} \) | \(a_{513}= -0.26242864 \pm 4.7 \cdot 10^{-5} \) |
\(a_{514}= -0.09145932 \pm 5.8 \cdot 10^{-5} \) | \(a_{515}= +0.23823735 \pm 5.4 \cdot 10^{-5} \) | \(a_{516}= +0.73339426 \pm 1.1 \cdot 10^{-4} \) |
\(a_{517}= -1.16545346 \pm 6.0 \cdot 10^{-5} \) | \(a_{518}= -0.05299296 \pm 5.1 \cdot 10^{-5} \) | \(a_{519}= +0.45888379 \pm 4.4 \cdot 10^{-5} \) |
\(a_{520}= -0.01888898 \pm 1.0 \cdot 10^{-4} \) | \(a_{521}= +1.47880784 \pm 5.6 \cdot 10^{-5} \) | \(a_{522}= -0.01620925 \pm 9.8 \cdot 10^{-5} \) |
\(a_{523}= +0.74926693 \pm 5.8 \cdot 10^{-5} \) | \(a_{524}= -0.93379026 \pm 6.1 \cdot 10^{-5} \) | \(a_{525}= -0.05139034 \pm 5.4 \cdot 10^{-5} \) |
\(a_{526}= +0.06666616 \pm 5.8 \cdot 10^{-5} \) | \(a_{527}= -0.01982499 \pm 2.9 \cdot 10^{-5} \) | \(a_{528}= +0.40437576 \pm 1.0 \cdot 10^{-4} \) |
\(a_{529}= -0.98769442 \pm 3.9 \cdot 10^{-5} \) | \(a_{530}= -0.02029147 \pm 1.3 \cdot 10^{-4} \) | \(a_{531}= -0.36729267 \pm 4.4 \cdot 10^{-5} \) |
\(a_{532}= -0.60226113 \pm 5.9 \cdot 10^{-5} \) | \(a_{533}= -0.34499818 \pm 5.7 \cdot 10^{-5} \) | \(a_{534}= -0.06556406 \pm 1.1 \cdot 10^{-4} \) |
\(a_{535}= -0.19538440 \pm 5.0 \cdot 10^{-5} \) | \(a_{536}= +0.17658262 \pm 3.9 \cdot 10^{-5} \) | \(a_{537}= -0.32613270 \pm 4.7 \cdot 10^{-5} \) |
\(a_{538}= -0.13996440 \pm 7.0 \cdot 10^{-5} \) | \(a_{539}= -0.57476899 \pm 4.2 \cdot 10^{-5} \) | \(a_{540}= -0.08541079 \pm 6.3 \cdot 10^{-5} \) |
\(a_{541}= -0.14035795 \pm 7.2 \cdot 10^{-5} \) | \(a_{542}= +0.10752692 \pm 5.8 \cdot 10^{-5} \) | \(a_{543}= +0.89413601 \pm 4.8 \cdot 10^{-5} \) |
\(a_{544}= -0.00993624 \pm 4.9 \cdot 10^{-5} \) | \(a_{545}= -0.17700886 \pm 4.9 \cdot 10^{-5} \) | \(a_{546}= -0.00544718 \pm 1.7 \cdot 10^{-4} \) |
\(a_{547}= -1.54045581 \pm 6.6 \cdot 10^{-5} \) | \(a_{548}= -1.45033645 \pm 7.1 \cdot 10^{-5} \) | \(a_{549}= +0.04923985 \pm 5.7 \cdot 10^{-5} \) |
\(a_{550}= +0.01251008 \pm 1.1 \cdot 10^{-4} \) | \(a_{551}= +0.75981045 \pm 3.9 \cdot 10^{-5} \) | \(a_{552}= +0.01113616 \pm 8.7 \cdot 10^{-5} \) |
\(a_{553}= -0.50477839 \pm 5.0 \cdot 10^{-5} \) | \(a_{554}= -0.08189534 \pm 7.0 \cdot 10^{-5} \) | \(a_{555}= +0.35228045 \pm 4.1 \cdot 10^{-5} \) |
\(a_{556}= -1.72708149 \pm 8.1 \cdot 10^{-5} \) | \(a_{557}= +0.58402760 \pm 3.2 \cdot 10^{-5} \) | \(a_{558}= +0.01504217 \pm 9.1 \cdot 10^{-5} \) |
\(a_{559}= -0.31093320 \pm 5.0 \cdot 10^{-5} \) | \(a_{560}= -0.19449776 \pm 1.0 \cdot 10^{-4} \) | \(a_{561}= -0.01586540 \pm 1.0 \cdot 10^{-4} \) |
\(a_{562}= +0.05328873 \pm 6.5 \cdot 10^{-5} \) | \(a_{563}= +0.64943387 \pm 4.3 \cdot 10^{-5} \) | \(a_{564}= +0.93165626 \pm 1.2 \cdot 10^{-4} \) |
\(a_{565}= +0.30308232 \pm 6.3 \cdot 10^{-5} \) | \(a_{566}= +0.04250695 \pm 5.6 \cdot 10^{-5} \) | \(a_{567}= -0.04945038 \pm 5.4 \cdot 10^{-5} \) |
\(a_{568}= -0.12008567 \pm 4.3 \cdot 10^{-5} \) | \(a_{569}= +1.37726400 \pm 5.5 \cdot 10^{-5} \) | \(a_{570}= -0.03072695 \pm 1.1 \cdot 10^{-4} \) |
\(a_{571}= +0.94366641 \pm 4.9 \cdot 10^{-5} \) | \(a_{572}= -0.17277720 \pm 4.5 \cdot 10^{-5} \) | \(a_{573}= -0.34204670 \pm 3.9 \cdot 10^{-5} \) |
\(a_{574}= +0.05516356 \pm 5.7 \cdot 10^{-5} \) | \(a_{575}= -0.02218611 \pm 4.2 \cdot 10^{-5} \) | \(a_{576}= -0.31819727 \pm 5.8 \cdot 10^{-5} \) |
\(a_{577}= +1.50090805 \pm 6.2 \cdot 10^{-5} \) | \(a_{578}= -0.08714311 \pm 6.0 \cdot 10^{-5} \) | \(a_{579}= -0.73686164 \pm 4.1 \cdot 10^{-5} \) |
\(a_{580}= +0.24729013 \pm 9.8 \cdot 10^{-5} \) | \(a_{581}= +0.67449019 \pm 3.6 \cdot 10^{-5} \) | \(a_{582}= +0.05972108 \pm 1.0 \cdot 10^{-4} \) |
\(a_{583}= -0.37263609 \pm 5.1 \cdot 10^{-5} \) | \(a_{584}= +0.24409513 \pm 5.4 \cdot 10^{-5} \) | \(a_{585}= +0.03621115 \pm 5.4 \cdot 10^{-5} \) |
\(a_{586}= +0.14388379 \pm 5.6 \cdot 10^{-5} \) | \(a_{587}= -0.63848379 \pm 5.7 \cdot 10^{-5} \) | \(a_{588}= +0.45946676 \pm 1.0 \cdot 10^{-4} \) |
\(a_{589}= -0.70510340 \pm 3.0 \cdot 10^{-5} \) | \(a_{590}= -0.04300515 \pm 1.0 \cdot 10^{-4} \) | \(a_{591}= -0.15959381 \pm 3.0 \cdot 10^{-5} \) |
\(a_{592}= +1.33328099 \pm 3.5 \cdot 10^{-5} \) | \(a_{593}= +0.63360979 \pm 3.5 \cdot 10^{-5} \) | \(a_{594}= +0.01203783 \pm 1.1 \cdot 10^{-4} \) |
\(a_{595}= +0.00763098 \pm 1.0 \cdot 10^{-4} \) | \(a_{596}= -1.81040992 \pm 4.9 \cdot 10^{-5} \) | \(a_{597}= -0.08185000 \pm 5.6 \cdot 10^{-5} \) |
\(a_{598}= -0.00235164 \pm 2.8 \cdot 10^{-5} \) | \(a_{599}= +0.51787824 \pm 4.5 \cdot 10^{-5} \) | \(a_{600}= -0.02007771 \pm 4.5 \cdot 10^{-5} \) |
\(a_{601}= -0.86015087 \pm 5.5 \cdot 10^{-5} \) | \(a_{602}= +0.04971673 \pm 5.4 \cdot 10^{-5} \) | \(a_{603}= -0.33851802 \pm 4.7 \cdot 10^{-5} \) |
\(a_{604}= +1.13901321 \pm 8.6 \cdot 10^{-5} \) | \(a_{605}= -0.21747633 \pm 5.2 \cdot 10^{-5} \) | \(a_{606}= +0.02695668 \pm 1.1 \cdot 10^{-4} \) |
\(a_{607}= +1.62934304 \pm 7.3 \cdot 10^{-5} \) | \(a_{608}= -0.35339625 \pm 4.5 \cdot 10^{-5} \) | \(a_{609}= +0.14317383 \pm 8.9 \cdot 10^{-5} \) |
\(a_{610}= +0.00576534 \pm 1.2 \cdot 10^{-4} \) | \(a_{611}= -0.39498926 \pm 5.5 \cdot 10^{-5} \) | \(a_{612}= +0.01268270 \pm 1.1 \cdot 10^{-4} \) |
\(a_{613}= +0.70698985 \pm 5.8 \cdot 10^{-5} \) | \(a_{614}= +0.08608145 \pm 7.8 \cdot 10^{-5} \) | \(a_{615}= -0.36670986 \pm 4.8 \cdot 10^{-5} \) |
\(a_{616}= +0.05546452 \pm 4.1 \cdot 10^{-5} \) | \(a_{617}= +0.01871878 \pm 3.6 \cdot 10^{-5} \) | \(a_{618}= +0.02684146 \pm 1.1 \cdot 10^{-4} \) |
\(a_{619}= -1.52577681 \pm 4.2 \cdot 10^{-5} \) | \(a_{620}= -0.22948501 \pm 9.1 \cdot 10^{-5} \) | \(a_{621}= -0.02134859 \pm 4.2 \cdot 10^{-5} \) |
\(a_{622}= -0.04039678 \pm 5.2 \cdot 10^{-5} \) | \(a_{623}= +0.57911745 \pm 4.9 \cdot 10^{-5} \) | \(a_{624}= +0.13704887 \pm 1.0 \cdot 10^{-4} \) |
\(a_{625}= +0.04 \) | \(a_{626}= -0.12986322 \pm 6.2 \cdot 10^{-5} \) | \(a_{627}= -0.56427487 \pm 1.0 \cdot 10^{-4} \) |
\(a_{628}= +0.54424116 \pm 5.4 \cdot 10^{-5} \) | \(a_{629}= -0.05231033 \pm 4.0 \cdot 10^{-5} \) | \(a_{630}= -0.00578999 \pm 1.1 \cdot 10^{-4} \) |
\(a_{631}= -0.33523659 \pm 5.6 \cdot 10^{-5} \) | \(a_{632}= -0.19721210 \pm 5.1 \cdot 10^{-5} \) | \(a_{633}= -0.12742430 \pm 4.9 \cdot 10^{-5} \) |
\(a_{634}= -0.09193197 \pm 8.0 \cdot 10^{-5} \) | \(a_{635}= -0.32216330 \pm 4.6 \cdot 10^{-5} \) | \(a_{636}= +0.29788298 \pm 1.3 \cdot 10^{-4} \) |
\(a_{637}= -0.19479764 \pm 3.5 \cdot 10^{-5} \) | \(a_{638}= -0.03485317 \pm 5.6 \cdot 10^{-5} \) | \(a_{639}= +0.23021044 \pm 6.0 \cdot 10^{-5} \) |
\(a_{640}= -0.15315683 \pm 6.1 \cdot 10^{-5} \) | \(a_{641}= +0.80621101 \pm 5.0 \cdot 10^{-5} \) | \(a_{642}= -0.02201335 \pm 1.1 \cdot 10^{-4} \) |
\(a_{643}= -1.85103576 \pm 4.2 \cdot 10^{-5} \) | \(a_{644}= -0.04899400 \pm 4.1 \cdot 10^{-5} \) | \(a_{645}= -0.33050108 \pm 5.2 \cdot 10^{-5} \) |
\(a_{646}= +0.00456266 \pm 3.1 \cdot 10^{-5} \) | \(a_{647}= -1.86350792 \pm 3.8 \cdot 10^{-5} \) | \(a_{648}= -0.01931979 \pm 4.5 \cdot 10^{-5} \) |
\(a_{649}= -0.78975384 \pm 4.2 \cdot 10^{-5} \) | \(a_{650}= +0.00423985 \pm 1.1 \cdot 10^{-4} \) | \(a_{651}= -0.13286518 \pm 8.3 \cdot 10^{-5} \) |
\(a_{652}= +1.85711699 \pm 5.7 \cdot 10^{-5} \) | \(a_{653}= +0.24386626 \pm 5.2 \cdot 10^{-5} \) | \(a_{654}= -0.01994304 \pm 1.1 \cdot 10^{-4} \) |
\(a_{655}= +0.42080870 \pm 6.0 \cdot 10^{-5} \) | \(a_{656}= -1.38789218 \pm 5.2 \cdot 10^{-5} \) | \(a_{657}= -0.46794299 \pm 5.2 \cdot 10^{-5} \) |
\(a_{658}= +0.06315689 \pm 8.5 \cdot 10^{-5} \) | \(a_{659}= +0.79334966 \pm 6.6 \cdot 10^{-5} \) | \(a_{660}= -0.18365054 \pm 1.1 \cdot 10^{-4} \) |
\(a_{661}= +0.36968327 \pm 5.8 \cdot 10^{-5} \) | \(a_{662}= -0.05231834 \pm 7.4 \cdot 10^{-5} \) | \(a_{663}= -0.00537702 \pm 1.0 \cdot 10^{-4} \) |
\(a_{664}= +0.26351688 \pm 4.0 \cdot 10^{-5} \) | \(a_{665}= +0.27140648 \pm 1.0 \cdot 10^{-4} \) | \(a_{666}= +0.03969034 \pm 1.0 \cdot 10^{-4} \) |
\(a_{667}= +0.06181065 \pm 1.8 \cdot 10^{-5} \) | \(a_{668}= +0.59765581 \pm 6.3 \cdot 10^{-5} \) | \(a_{669}= +0.68994353 \pm 4.6 \cdot 10^{-5} \) |
\(a_{670}= -0.03963601 \pm 1.1 \cdot 10^{-4} \) | \(a_{671}= +0.10587569 \pm 6.9 \cdot 10^{-5} \) | \(a_{672}= -0.06659173 \pm 1.0 \cdot 10^{-4} \) |
\(a_{673}= +0.21114543 \pm 5.9 \cdot 10^{-5} \) | \(a_{674}= +0.06942479 \pm 5.2 \cdot 10^{-5} \) | \(a_{675}= +0.03849002 \pm 1.2 \cdot 10^{-6} \) |
\(a_{676}= +0.93382698 \pm 6.1 \cdot 10^{-5} \) | \(a_{677}= +0.75391398 \pm 5.8 \cdot 10^{-5} \) | \(a_{678}= +0.03414734 \pm 1.2 \cdot 10^{-4} \) |
\(a_{679}= -0.52750728 \pm 4.7 \cdot 10^{-5} \) | \(a_{680}= +0.00298135 \pm 9.3 \cdot 10^{-5} \) | \(a_{681}= +0.92047050 \pm 4.9 \cdot 10^{-5} \) |
\(a_{682}= +0.03234371 \pm 2.6 \cdot 10^{-5} \) | \(a_{683}= +1.39377507 \pm 3.9 \cdot 10^{-5} \) | \(a_{684}= +0.45107782 \pm 1.1 \cdot 10^{-4} \) |
\(a_{685}= +0.65358810 \pm 4.8 \cdot 10^{-5} \) | \(a_{686}= +0.06998764 \pm 5.6 \cdot 10^{-5} \) | \(a_{687}= -0.78796333 \pm 7.5 \cdot 10^{-5} \) |
\(a_{688}= -1.25085228 \pm 5.5 \cdot 10^{-5} \) | \(a_{689}= -0.12629183 \pm 4.8 \cdot 10^{-5} \) | \(a_{690}= -0.00249964 \pm 1.0 \cdot 10^{-4} \) |
\(a_{691}= -0.20426329 \pm 6.1 \cdot 10^{-5} \) | \(a_{692}= -0.78875653 \pm 5.6 \cdot 10^{-5} \) | \(a_{693}= -0.10632835 \pm 1.0 \cdot 10^{-4} \) |
\(a_{694}= -0.14455860 \pm 7.2 \cdot 10^{-5} \) | \(a_{695}= +0.77830210 \pm 6.0 \cdot 10^{-5} \) | \(a_{696}= +0.05593665 \pm 8.0 \cdot 10^{-5} \) |
\(a_{697}= +0.05445296 \pm 4.1 \cdot 10^{-5} \) | \(a_{698}= -0.06486515 \pm 7.0 \cdot 10^{-5} \) | \(a_{699}= +0.94465003 \pm 7.3 \cdot 10^{-5} \) |
\(a_{700}= +0.08833274 \pm 1.1 \cdot 10^{-4} \) | \(a_{701}= +0.67311478 \pm 4.3 \cdot 10^{-5} \) | \(a_{702}= +0.00407980 \pm 1.1 \cdot 10^{-4} \) |
\(a_{703}= -1.86048975 \pm 3.9 \cdot 10^{-5} \) | \(a_{704}= -0.68418876 \pm 5.1 \cdot 10^{-5} \) | \(a_{705}= -0.41984703 \pm 6.3 \cdot 10^{-5} \) |
\(a_{706}= +0.05500635 \pm 7.3 \cdot 10^{-5} \) | \(a_{707}= -0.23810431 \pm 5.3 \cdot 10^{-5} \) | \(a_{708}= +0.63132431 \pm 1.0 \cdot 10^{-4} \) |
\(a_{709}= -1.00871242 \pm 2.7 \cdot 10^{-5} \) | \(a_{710}= +0.02695462 \pm 1.2 \cdot 10^{-4} \) | \(a_{711}= +0.37806580 \pm 5.4 \cdot 10^{-5} \) |
\(a_{712}= +0.22625566 \pm 3.8 \cdot 10^{-5} \) | \(a_{713}= -0.05736022 \pm 2.6 \cdot 10^{-5} \) | \(a_{714}= +0.00085976 \pm 1.6 \cdot 10^{-4} \) |
\(a_{715}= +0.07786133 \pm 1.0 \cdot 10^{-4} \) | \(a_{716}= +0.56057613 \pm 5.4 \cdot 10^{-5} \) | \(a_{717}= -0.61100996 \pm 4.2 \cdot 10^{-5} \) |
\(a_{718}= -0.07358829 \pm 7.0 \cdot 10^{-5} \) | \(a_{719}= +0.51516056 \pm 4.9 \cdot 10^{-5} \) | \(a_{720}= +0.14567373 \pm 5.3 \cdot 10^{-5} \) |
\(a_{721}= -0.23708657 \pm 4.6 \cdot 10^{-5} \) | \(a_{722}= +0.07500604 \pm 5.0 \cdot 10^{-5} \) | \(a_{723}= +0.12288542 \pm 5.7 \cdot 10^{-5} \) |
\(a_{724}= -1.53689372 \pm 6.7 \cdot 10^{-5} \) | \(a_{725}= -0.11144027 \pm 3.5 \cdot 10^{-5} \) | \(a_{726}= -0.02450238 \pm 1.1 \cdot 10^{-4} \) |
\(a_{727}= +0.81613729 \pm 5.3 \cdot 10^{-5} \) | \(a_{728}= +0.01879774 \pm 3.6 \cdot 10^{-5} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.05478998 \pm 1.1 \cdot 10^{-4} \) | \(a_{731}= +0.04907630 \pm 4.9 \cdot 10^{-5} \) | \(a_{732}= -0.08463637 \pm 1.2 \cdot 10^{-4} \) |
\(a_{733}= +1.13908500 \pm 7.2 \cdot 10^{-5} \) | \(a_{734}= +0.01462023 \pm 5.5 \cdot 10^{-5} \) | \(a_{735}= -0.20705679 \pm 4.0 \cdot 10^{-5} \) |
\(a_{736}= -0.02874882 \pm 3.1 \cdot 10^{-5} \) | \(a_{737}= -0.72788249 \pm 2.7 \cdot 10^{-5} \) | \(a_{738}= -0.04131606 \pm 1.1 \cdot 10^{-4} \) |
\(a_{739}= -1.38096126 \pm 3.1 \cdot 10^{-5} \) | \(a_{740}= -0.60552042 \pm 1.0 \cdot 10^{-4} \) | \(a_{741}= -0.19124102 \pm 1.0 \cdot 10^{-4} \) |
\(a_{742}= +0.02019346 \pm 6.5 \cdot 10^{-5} \) | \(a_{743}= -0.42249701 \pm 4.3 \cdot 10^{-5} \) | \(a_{744}= -0.05190916 \pm 7.4 \cdot 10^{-5} \) |
\(a_{745}= +0.81585371 \pm 3.5 \cdot 10^{-5} \) | \(a_{746}= +0.13988282 \pm 6.2 \cdot 10^{-5} \) | \(a_{747}= -0.50517550 \pm 3.5 \cdot 10^{-5} \) |
\(a_{748}= +0.02727038 \pm 3.5 \cdot 10^{-5} \) | \(a_{749}= +0.19444062 \pm 5.0 \cdot 10^{-5} \) | \(a_{750}= +0.00450668 \pm 6.3 \cdot 10^{-5} \) |
\(a_{751}= -0.37120108 \pm 4.3 \cdot 10^{-5} \) | \(a_{752}= -1.58900118 \pm 4.7 \cdot 10^{-5} \) | \(a_{753}= -0.08168337 \pm 4.2 \cdot 10^{-5} \) |
\(a_{754}= -0.01181225 \pm 4.1 \cdot 10^{-5} \) | \(a_{755}= -0.51329158 \pm 6.4 \cdot 10^{-5} \) | \(a_{756}= +0.08499822 \pm 1.1 \cdot 10^{-4} \) |
\(a_{757}= +1.44898185 \pm 6.3 \cdot 10^{-5} \) | \(a_{758}= -0.01483023 \pm 6.5 \cdot 10^{-5} \) | \(a_{759}= -0.04590381 \pm 9.7 \cdot 10^{-5} \) |
\(a_{760}= +0.10603592 \pm 9.3 \cdot 10^{-5} \) | \(a_{761}= +0.08123636 \pm 6.0 \cdot 10^{-5} \) | \(a_{762}= -0.03629714 \pm 1.0 \cdot 10^{-4} \) |
\(a_{763}= +0.17615383 \pm 4.2 \cdot 10^{-5} \) | \(a_{764}= +0.58793004 \pm 4.7 \cdot 10^{-5} \) | \(a_{765}= -0.00571541 \pm 4.8 \cdot 10^{-5} \) |
\(a_{766}= -0.14201499 \pm 6.0 \cdot 10^{-5} \) | \(a_{767}= -0.26765915 \pm 3.5 \cdot 10^{-5} \) | \(a_{768}= +0.53387814 \pm 5.3 \cdot 10^{-5} \) |
\(a_{769}= +1.11039268 \pm 5.5 \cdot 10^{-5} \) | \(a_{770}= -0.01244965 \pm 1.7 \cdot 10^{-4} \) | \(a_{771}= -0.60505577 \pm 5.5 \cdot 10^{-5} \) |
\(a_{772}= +1.26656126 \pm 5.7 \cdot 10^{-5} \) | \(a_{773}= +0.03000386 \pm 6.2 \cdot 10^{-5} \) | \(a_{774}= -0.03723653 \pm 1.1 \cdot 10^{-4} \) |
\(a_{775}= +0.10341647 \pm 2.8 \cdot 10^{-5} \) | \(a_{776}= -0.20609206 \pm 3.3 \cdot 10^{-5} \) | \(a_{777}= -0.35057880 \pm 9.5 \cdot 10^{-5} \) |
\(a_{778}= -0.08118884 \pm 5.7 \cdot 10^{-5} \) | \(a_{779}= +1.93669541 \pm 3.6 \cdot 10^{-5} \) | \(a_{780}= -0.06224186 \pm 1.1 \cdot 10^{-4} \) |
\(a_{781}= +0.49499921 \pm 4.6 \cdot 10^{-5} \) | \(a_{782}= +0.00037117 \pm 3.2 \cdot 10^{-5} \) | \(a_{783}= -0.10723345 \pm 3.5 \cdot 10^{-5} \) |
\(a_{784}= -0.78365085 \pm 4.1 \cdot 10^{-5} \) | \(a_{785}= -0.24526002 \pm 4.8 \cdot 10^{-5} \) | \(a_{786}= +0.04741121 \pm 1.2 \cdot 10^{-4} \) |
\(a_{787}= +0.94770204 \pm 5.9 \cdot 10^{-5} \) | \(a_{788}= +0.27431925 \pm 4.0 \cdot 10^{-5} \) | \(a_{789}= +0.44103481 \pm 4.4 \cdot 10^{-5} \) |
\(a_{790}= +0.04426654 \pm 1.1 \cdot 10^{-4} \) | \(a_{791}= -0.30161832 \pm 5.9 \cdot 10^{-5} \) | \(a_{792}= -0.04154147 \pm 1.0 \cdot 10^{-4} \) |
\(a_{793}= +0.03588282 \pm 5.7 \cdot 10^{-5} \) | \(a_{794}= -0.11747450 \pm 4.7 \cdot 10^{-5} \) | \(a_{795}= -0.13423973 \pm 6.7 \cdot 10^{-5} \) |
\(a_{796}= +0.14068861 \pm 6.2 \cdot 10^{-5} \) | \(a_{797}= +0.79704639 \pm 6.0 \cdot 10^{-5} \) | \(a_{798}= +0.03057852 \pm 1.6 \cdot 10^{-4} \) |
\(a_{799}= +0.06234333 \pm 4.8 \cdot 10^{-5} \) | \(a_{800}= +0.05183210 \pm 4.8 \cdot 10^{-5} \) | \(a_{801}= -0.43374381 \pm 5.0 \cdot 10^{-5} \) |
\(a_{802}= +0.04045821 \pm 3.8 \cdot 10^{-5} \) | \(a_{803}= -1.00617247 \pm 5.1 \cdot 10^{-5} \) | \(a_{804}= +0.58186474 \pm 1.1 \cdot 10^{-4} \) |
\(a_{805}= +0.02207894 \pm 9.6 \cdot 10^{-5} \) | \(a_{806}= +0.01096176 \pm 3.5 \cdot 10^{-5} \) | \(a_{807}= -0.92594466 \pm 5.0 \cdot 10^{-5} \) |
\(a_{808}= -0.09302508 \pm 3.5 \cdot 10^{-5} \) | \(a_{809}= +0.88172279 \pm 5.1 \cdot 10^{-5} \) | \(a_{810}= +0.00433655 \pm 6.3 \cdot 10^{-5} \) |
\(a_{811}= -1.86933639 \pm 4.9 \cdot 10^{-5} \) | \(a_{812}= -0.24609562 \pm 4.7 \cdot 10^{-5} \) | \(a_{813}= +0.71135214 \pm 5.1 \cdot 10^{-5} \) |
\(a_{814}= +0.08534230 \pm 3.5 \cdot 10^{-5} \) | \(a_{815}= -0.83690206 \pm 5.7 \cdot 10^{-5} \) | \(a_{816}= -0.02163118 \pm 1.0 \cdot 10^{-4} \) |
\(a_{817}= +1.74546690 \pm 4.9 \cdot 10^{-5} \) | \(a_{818}= +0.03863870 \pm 5.8 \cdot 10^{-5} \) | \(a_{819}= -0.03603624 \pm 1.0 \cdot 10^{-4} \) |
\(a_{820}= +0.63032254 \pm 1.1 \cdot 10^{-4} \) | \(a_{821}= -0.18086689 \pm 3.4 \cdot 10^{-5} \) | \(a_{822}= +0.07363774 \pm 1.1 \cdot 10^{-4} \) |
\(a_{823}= -0.97792310 \pm 4.4 \cdot 10^{-5} \) | \(a_{824}= -0.09262746 \pm 5.0 \cdot 10^{-5} \) | \(a_{825}= +0.08276136 \pm 5.5 \cdot 10^{-5} \) |
\(a_{826}= +0.04279742 \pm 7.3 \cdot 10^{-5} \) | \(a_{827}= +0.32333690 \pm 4.4 \cdot 10^{-5} \) | \(a_{828}= +0.03669522 \pm 1.0 \cdot 10^{-4} \) |
\(a_{829}= -1.74895592 \pm 4.4 \cdot 10^{-5} \) | \(a_{830}= -0.05914942 \pm 9.9 \cdot 10^{-5} \) | \(a_{831}= -0.54178457 \pm 5.2 \cdot 10^{-5} \) |
\(a_{832}= -0.23188160 \pm 5.4 \cdot 10^{-5} \) | \(a_{833}= +0.03074598 \pm 4.6 \cdot 10^{-5} \) | \(a_{834}= +0.08768888 \pm 1.2 \cdot 10^{-4} \) |
\(a_{835}= -0.26933111 \pm 6.5 \cdot 10^{-5} \) | \(a_{836}= +0.96990893 \pm 5.6 \cdot 10^{-5} \) | \(a_{837}= +0.09951254 \pm 2.8 \cdot 10^{-5} \) |
\(a_{838}= +0.08381429 \pm 6.9 \cdot 10^{-5} \) | \(a_{839}= -1.31194150 \pm 4.1 \cdot 10^{-5} \) | \(a_{840}= +0.01998073 \pm 1.0 \cdot 10^{-4} \) |
\(a_{841}= -0.68952666 \pm 5.0 \cdot 10^{-5} \) | \(a_{842}= -0.01435597 \pm 8.6 \cdot 10^{-5} \) | \(a_{843}= +0.35253548 \pm 5.6 \cdot 10^{-5} \) |
\(a_{844}= +0.21902441 \pm 6.3 \cdot 10^{-5} \) | \(a_{845}= -0.42082525 \pm 6.1 \cdot 10^{-5} \) | \(a_{846}= -0.04730286 \pm 1.2 \cdot 10^{-4} \) |
\(a_{847}= +0.21642583 \pm 4.5 \cdot 10^{-5} \) | \(a_{848}= -0.50805906 \pm 6.0 \cdot 10^{-5} \) | \(a_{849}= +0.28120782 \pm 5.3 \cdot 10^{-5} \) |
\(a_{850}= -0.00066920 \pm 1.1 \cdot 10^{-4} \) | \(a_{851}= -0.15135100 \pm 3.6 \cdot 10^{-5} \) | \(a_{852}= -0.39569929 \pm 1.2 \cdot 10^{-4} \) |
\(a_{853}= +0.56621175 \pm 6.2 \cdot 10^{-5} \) | \(a_{854}= -0.00573749 \pm 5.9 \cdot 10^{-5} \) | \(a_{855}= -0.20327635 \pm 4.7 \cdot 10^{-5} \) |
\(a_{856}= +0.07596609 \pm 3.9 \cdot 10^{-5} \) | \(a_{857}= -0.14124877 \pm 3.3 \cdot 10^{-5} \) | \(a_{858}= +0.00877239 \pm 1.7 \cdot 10^{-4} \) |
\(a_{859}= -1.59561135 \pm 5.4 \cdot 10^{-5} \) | \(a_{860}= +0.56808475 \pm 1.1 \cdot 10^{-4} \) | \(a_{861}= +0.36493851 \pm 1.0 \cdot 10^{-4} \) |
\(a_{862}= -0.07606127 \pm 5.7 \cdot 10^{-5} \) | \(a_{863}= +0.02911883 \pm 4.7 \cdot 10^{-5} \) | \(a_{864}= +0.04987546 \pm 4.8 \cdot 10^{-5} \) |
\(a_{865}= +0.35544985 \pm 4.4 \cdot 10^{-5} \) | \(a_{866}= +0.02930836 \pm 4.5 \cdot 10^{-5} \) | \(a_{867}= -0.57650159 \pm 4.1 \cdot 10^{-5} \) |
\(a_{868}= +0.22837651 \pm 3.9 \cdot 10^{-5} \) | \(a_{869}= +0.81291826 \pm 6.6 \cdot 10^{-5} \) | \(a_{870}= -0.01255563 \pm 9.8 \cdot 10^{-5} \) |
\(a_{871}= -0.24669005 \pm 4.1 \cdot 10^{-5} \) | \(a_{872}= +0.06882162 \pm 3.7 \cdot 10^{-5} \) | \(a_{873}= +0.39508914 \pm 4.6 \cdot 10^{-5} \) |
\(a_{874}= +0.01320128 \pm 2.3 \cdot 10^{-5} \) | \(a_{875}= -0.03980678 \pm 5.4 \cdot 10^{-5} \) | \(a_{876}= +0.80432803 \pm 1.1 \cdot 10^{-4} \) |
\(a_{877}= +0.70557080 \pm 4.2 \cdot 10^{-5} \) | \(a_{878}= +0.06653402 \pm 5.8 \cdot 10^{-5} \) | \(a_{879}= +0.95187367 \pm 4.2 \cdot 10^{-5} \) |
\(a_{880}= +0.31322811 \pm 1.0 \cdot 10^{-4} \) | \(a_{881}= +0.79431770 \pm 4.9 \cdot 10^{-5} \) | \(a_{882}= -0.02332844 \pm 1.0 \cdot 10^{-4} \) |
\(a_{883}= -0.83186807 \pm 5.3 \cdot 10^{-5} \) | \(a_{884}= +0.00924233 \pm 5.8 \cdot 10^{-5} \) | \(a_{885}= -0.28450368 \pm 4.4 \cdot 10^{-5} \) |
\(a_{886}= +0.13860512 \pm 5.1 \cdot 10^{-5} \) | \(a_{887}= +0.08948614 \pm 6.3 \cdot 10^{-5} \) | \(a_{888}= -0.13696779 \pm 8.6 \cdot 10^{-5} \) |
\(a_{889}= +0.32060713 \pm 5.1 \cdot 10^{-5} \) | \(a_{890}= -0.05078570 \pm 1.1 \cdot 10^{-4} \) | \(a_{891}= +0.07963715 \pm 5.5 \cdot 10^{-5} \) |
\(a_{892}= -1.18591564 \pm 6.2 \cdot 10^{-5} \) | \(a_{893}= +2.21732736 \pm 6.6 \cdot 10^{-5} \) | \(a_{894}= +0.09191970 \pm 9.8 \cdot 10^{-5} \) |
\(a_{895}= -0.25262131 \pm 4.7 \cdot 10^{-5} \) | \(a_{896}= +0.15241702 \pm 6.5 \cdot 10^{-5} \) | \(a_{897}= -0.01555747 \pm 9.6 \cdot 10^{-5} \) |
\(a_{898}= -0.06685427 \pm 4.8 \cdot 10^{-5} \) | \(a_{899}= -0.28811897 \pm 1.8 \cdot 10^{-5} \) | \(a_{900}= -0.06615891 \pm 6.3 \cdot 10^{-5} \) |
\(a_{901}= +0.01993334 \pm 5.0 \cdot 10^{-5} \) | \(a_{902}= -0.08883792 \pm 7.8 \cdot 10^{-5} \) | \(a_{903}= +0.32890463 \pm 1.0 \cdot 10^{-4} \) |
\(a_{904}= -0.11783940 \pm 4.3 \cdot 10^{-5} \) | \(a_{905}= +0.69259477 \pm 4.8 \cdot 10^{-5} \) | \(a_{906}= -0.05783096 \pm 1.2 \cdot 10^{-4} \) |
\(a_{907}= +0.17997399 \pm 4.1 \cdot 10^{-5} \) | \(a_{908}= -1.58215900 \pm 5.4 \cdot 10^{-5} \) | \(a_{909}= +0.17833389 \pm 4.9 \cdot 10^{-5} \) |
\(a_{910}= -0.00421937 \pm 1.7 \cdot 10^{-4} \) | \(a_{911}= -0.06775308 \pm 5.6 \cdot 10^{-5} \) | \(a_{912}= -0.76934297 \pm 1.0 \cdot 10^{-4} \) |
\(a_{913}= -1.08622992 \pm 3.4 \cdot 10^{-5} \) | \(a_{914}= -0.04118221 \pm 6.9 \cdot 10^{-5} \) | \(a_{915}= +0.03814103 \pm 5.7 \cdot 10^{-5} \) |
\(a_{916}= +1.35439786 \pm 8.5 \cdot 10^{-5} \) | \(a_{917}= -0.41877604 \pm 5.3 \cdot 10^{-5} \) | \(a_{918}= -0.00064394 \pm 1.1 \cdot 10^{-4} \) |
\(a_{919}= -0.42424592 \pm 3.4 \cdot 10^{-5} \) | \(a_{920}= +0.00862603 \pm 8.7 \cdot 10^{-5} \) | \(a_{921}= +0.56947808 \pm 5.2 \cdot 10^{-5} \) |
\(a_{922}= -0.12680575 \pm 4.4 \cdot 10^{-5} \) | \(a_{923}= +0.16776249 \pm 3.8 \cdot 10^{-5} \) | \(a_{924}= +0.18276344 \pm 1.7 \cdot 10^{-4} \) |
\(a_{925}= +0.27287527 \pm 4.1 \cdot 10^{-5} \) | \(a_{926}= -0.02283096 \pm 6.1 \cdot 10^{-5} \) | \(a_{927}= +0.17757164 \pm 5.4 \cdot 10^{-5} \) |
\(a_{928}= -0.14440459 \pm 3.8 \cdot 10^{-5} \) | \(a_{929}= +1.97196262 \pm 6.6 \cdot 10^{-5} \) | \(a_{930}= +0.01165161 \pm 9.1 \cdot 10^{-5} \) |
\(a_{931}= +1.09352372 \pm 2.6 \cdot 10^{-5} \) | \(a_{932}= -1.62372020 \pm 8.0 \cdot 10^{-5} \) | \(a_{933}= -0.26724782 \pm 4.7 \cdot 10^{-5} \) |
\(a_{934}= +0.08120293 \pm 6.3 \cdot 10^{-5} \) | \(a_{935}= -0.01228928 \pm 1.0 \cdot 10^{-4} \) | \(a_{936}= -0.01407901 \pm 1.0 \cdot 10^{-4} \) |
\(a_{937}= +1.23434968 \pm 5.6 \cdot 10^{-5} \) | \(a_{938}= +0.03944456 \pm 6.2 \cdot 10^{-5} \) | \(a_{939}= -0.85911958 \pm 5.0 \cdot 10^{-5} \) |
\(a_{940}= +0.72165784 \pm 1.2 \cdot 10^{-4} \) | \(a_{941}= -1.30398131 \pm 5.3 \cdot 10^{-5} \) | \(a_{942}= -0.02763268 \pm 1.1 \cdot 10^{-4} \) |
\(a_{943}= +0.15755034 \pm 2.9 \cdot 10^{-5} \) | \(a_{944}= -1.07676524 \pm 2.1 \cdot 10^{-5} \) | \(a_{945}= -0.03830410 \pm 5.4 \cdot 10^{-5} \) |
\(a_{946}= -0.08006610 \pm 5.4 \cdot 10^{-5} \) | \(a_{947}= -1.76029097 \pm 6.6 \cdot 10^{-5} \) | \(a_{948}= -0.64984181 \pm 1.1 \cdot 10^{-4} \) |
\(a_{949}= -0.34100660 \pm 4.9 \cdot 10^{-5} \) | \(a_{950}= -0.02380099 \pm 1.1 \cdot 10^{-4} \) | \(a_{951}= -0.60818265 \pm 6.0 \cdot 10^{-5} \) |
\(a_{952}= -0.00296695 \pm 4.9 \cdot 10^{-5} \) | \(a_{953}= +0.93479725 \pm 6.5 \cdot 10^{-5} \) | \(a_{954}= -0.01512437 \pm 1.3 \cdot 10^{-4} \) |
\(a_{955}= -0.26494823 \pm 3.9 \cdot 10^{-5} \) | \(a_{956}= +1.05023996 \pm 4.0 \cdot 10^{-5} \) | \(a_{957}= -0.23057369 \pm 9.0 \cdot 10^{-5} \) |
\(a_{958}= +0.04554746 \pm 5.2 \cdot 10^{-5} \) | \(a_{959}= -0.65043102 \pm 5.6 \cdot 10^{-5} \) | \(a_{960}= -0.24647455 \pm 5.8 \cdot 10^{-5} \) |
\(a_{961}= -0.73262586 \pm 4.7 \cdot 10^{-5} \) | \(a_{962}= +0.02892376 \pm 4.7 \cdot 10^{-5} \) | \(a_{963}= -0.14563094 \pm 5.0 \cdot 10^{-5} \) |
\(a_{964}= -0.21122271 \pm 5.9 \cdot 10^{-5} \) | \(a_{965}= -0.57077057 \pm 4.1 \cdot 10^{-5} \) | \(a_{966}= +0.00248757 \pm 1.5 \cdot 10^{-4} \) |
\(a_{967}= +1.46473215 \pm 5.9 \cdot 10^{-5} \) | \(a_{968}= +0.08455551 \pm 3.9 \cdot 10^{-5} \) | \(a_{969}= +0.03018462 \pm 9.5 \cdot 10^{-5} \) |
\(a_{970}= +0.04625975 \pm 1.0 \cdot 10^{-4} \) | \(a_{971}= -1.02153004 \pm 4.4 \cdot 10^{-5} \) | \(a_{972}= -0.06366144 \pm 6.3 \cdot 10^{-5} \) |
\(a_{973}= -0.77454260 \pm 5.6 \cdot 10^{-5} \) | \(a_{974}= -0.00023822 \pm 4.6 \cdot 10^{-5} \) | \(a_{975}= +0.02804904 \pm 5.4 \cdot 10^{-5} \) |
\(a_{976}= +0.14435290 \pm 5.6 \cdot 10^{-5} \) | \(a_{977}= +0.19823029 \pm 6.9 \cdot 10^{-5} \) | \(a_{978}= -0.09429115 \pm 1.2 \cdot 10^{-4} \) |
\(a_{979}= -0.93263728 \pm 5.0 \cdot 10^{-5} \) | \(a_{980}= +0.35590142 \pm 1.0 \cdot 10^{-4} \) | \(a_{981}= -0.13193461 \pm 4.9 \cdot 10^{-5} \) |
\(a_{982}= +0.02377234 \pm 8.0 \cdot 10^{-5} \) | \(a_{983}= +1.26752850 \pm 5.6 \cdot 10^{-5} \) | \(a_{984}= +0.14257799 \pm 9.3 \cdot 10^{-5} \) |
\(a_{985}= -0.12362083 \pm 3.0 \cdot 10^{-5} \) | \(a_{986}= +0.00186439 \pm 3.1 \cdot 10^{-5} \) | \(a_{987}= +0.41781900 \pm 1.1 \cdot 10^{-4} \) |
\(a_{988}= +0.32871635 \pm 4.7 \cdot 10^{-5} \) | \(a_{989}= +0.14199388 \pm 4.3 \cdot 10^{-5} \) | \(a_{990}= +0.00932446 \pm 1.1 \cdot 10^{-4} \) |
\(a_{991}= +1.05218520 \pm 7.5 \cdot 10^{-5} \) | \(a_{992}= +0.13400732 \pm 3.1 \cdot 10^{-5} \) | \(a_{993}= -0.34611581 \pm 6.1 \cdot 10^{-5} \) |
\(a_{994}= -0.02682442 \pm 5.4 \cdot 10^{-5} \) | \(a_{995}= -0.06340074 \pm 5.6 \cdot 10^{-5} \) | \(a_{996}= +0.86832545 \pm 9.9 \cdot 10^{-5} \) |
\(a_{997}= +1.09214816 \pm 4.9 \cdot 10^{-5} \) | \(a_{998}= +0.09499065 \pm 7.0 \cdot 10^{-5} \) | \(a_{999}= +0.26257435 \pm 4.1 \cdot 10^{-5} \) |
\(a_{1000}= -0.01555213 \pm 4.5 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000