Maass form invariants
Level: | \( 2 \) |
Weight: | \( 0 \) |
Character: | 2.1 |
Symmetry: | even |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(22.0890454668192578773032661018 \pm 3 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= \pm0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.16040571 \pm 1.2 \cdot 10^{-4} \) |
\(a_{4}= \pm0.5 \) | \(a_{5}= +1.62780155 \pm 9.9 \cdot 10^{-5} \) | \(a_{6}= \pm0.82053075 \pm 8.6 \cdot 10^{-5} \) |
\(a_{7}= -1.26807218 \pm 9.1 \cdot 10^{-5} \) | \(a_{8}= \pm0.35355339 \pm 1.0 \cdot 10^{-8} \) | \(a_{9}= +0.34654142 \pm 2.6 \cdot 10^{-5} \) |
\(a_{10}= \pm1.15102951 \pm 7.0 \cdot 10^{-5} \) | \(a_{11}= -0.74934386 \pm 6.2 \cdot 10^{-5} \) | \(a_{12}= \pm0.58020286 \pm 6.1 \cdot 10^{-5} \) |
\(a_{13}= +0.32035835 \pm 9.2 \cdot 10^{-5} \) | \(a_{14}= \pm0.89666244 \pm 6.4 \cdot 10^{-5} \) | \(a_{15}= -1.88891021 \pm 1.1 \cdot 10^{-4} \) |
\(a_{16}= \pm0.25 \) | \(a_{17}= -0.57721923 \pm 3.8 \cdot 10^{-5} \) | \(a_{18}= \pm0.24504179 \pm 1.9 \cdot 10^{-5} \) |
\(a_{19}= -0.00850153 \pm 8.1 \cdot 10^{-5} \) | \(a_{20}= \pm0.81390077 \pm 4.9 \cdot 10^{-5} \) | \(a_{21}= +1.47147820 \pm 1.0 \cdot 10^{-4} \) |
\(a_{22}= \pm0.52986612 \pm 4.4 \cdot 10^{-5} \) | \(a_{23}= +0.33903249 \pm 1.0 \cdot 10^{-5} \) | \(a_{24}= \pm0.41026537 \pm 4.3 \cdot 10^{-5} \) |
\(a_{25}= +1.64973787 \pm 2.0 \cdot 10^{-5} \) | \(a_{26}= \pm0.22652756 \pm 6.5 \cdot 10^{-5} \) | \(a_{27}= +0.75827707 \pm 9.4 \cdot 10^{-5} \) |
\(a_{28}= \pm0.63403609 \pm 4.5 \cdot 10^{-5} \) | \(a_{29}= +0.01999078 \pm 1.9 \cdot 10^{-4} \) | \(a_{30}= \pm1.33566122 \pm 7.8 \cdot 10^{-5} \) |
\(a_{31}= -0.72455230 \pm 1.7 \cdot 10^{-4} \) | \(a_{32}= \pm0.17677670 \pm 1.0 \cdot 10^{-8} \) | \(a_{33}= +0.86954289 \pm 6.8 \cdot 10^{-5} \) |
\(a_{34}= \pm0.40815563 \pm 2.6 \cdot 10^{-5} \) | \(a_{35}= -2.06416986 \pm 8.2 \cdot 10^{-5} \) | \(a_{36}= \pm0.17327071 \pm 1.3 \cdot 10^{-5} \) |
\(a_{37}= +1.78875846 \pm 8.4 \cdot 10^{-5} \) | \(a_{38}= \pm0.00601149 \pm 5.7 \cdot 10^{-5} \) | \(a_{39}= -0.37174566 \pm 1.0 \cdot 10^{-4} \) |
\(a_{40}= \pm0.57551476 \pm 3.5 \cdot 10^{-5} \) | \(a_{41}= -0.00732486 \pm 8.2 \cdot 10^{-5} \) | \(a_{42}= \pm1.04049222 \pm 7.1 \cdot 10^{-5} \) |
\(a_{43}= +1.68710967 \pm 8.8 \cdot 10^{-5} \) | \(a_{44}= \pm0.37467193 \pm 3.1 \cdot 10^{-5} \) | \(a_{45}= +0.56410065 \pm 2.4 \cdot 10^{-5} \) |
\(a_{46}= \pm0.23973217 \pm 7.7 \cdot 10^{-6} \) | \(a_{47}= -0.47062990 \pm 1.1 \cdot 10^{-4} \) | \(a_{48}= \pm0.29010143 \pm 3.0 \cdot 10^{-5} \) |
\(a_{49}= +0.60800706 \pm 3.6 \cdot 10^{-5} \) | \(a_{50}= \pm1.16654084 \pm 1.4 \cdot 10^{-5} \) | \(a_{51}= +0.66980849 \pm 4.4 \cdot 10^{-5} \) |
\(a_{52}= \pm0.16017918 \pm 4.6 \cdot 10^{-5} \) | \(a_{53}= +1.29190537 \pm 1.2 \cdot 10^{-4} \) | \(a_{54}= \pm0.53618286 \pm 6.7 \cdot 10^{-5} \) |
\(a_{55}= -1.21978309 \pm 5.6 \cdot 10^{-5} \) | \(a_{56}= \pm0.44833122 \pm 3.2 \cdot 10^{-5} \) | \(a_{57}= +0.00986522 \pm 8.9 \cdot 10^{-5} \) |
\(a_{58}= \pm0.01413562 \pm 1.3 \cdot 10^{-4} \) | \(a_{59}= +0.09414930 \pm 1.7 \cdot 10^{-5} \) | \(a_{60}= \pm0.94445511 \pm 5.5 \cdot 10^{-5} \) |
\(a_{61}= +1.09390267 \pm 1.0 \cdot 10^{-5} \) | \(a_{62}= \pm0.51233584 \pm 1.2 \cdot 10^{-4} \) | \(a_{63}= -0.43943953 \pm 2.0 \cdot 10^{-5} \) |
\(a_{64}= \pm0.125 \) | \(a_{65}= +0.52147982 \pm 8.3 \cdot 10^{-5} \) | \(a_{66}= \pm0.61485967 \pm 4.8 \cdot 10^{-5} \) |
\(a_{67}= -0.94627209 \pm 1.0 \cdot 10^{-4} \) | \(a_{68}= \pm0.28860961 \pm 1.9 \cdot 10^{-5} \) | \(a_{69}= -0.39341524 \pm 1.3 \cdot 10^{-5} \) |
\(a_{70}= \pm1.45958851 \pm 5.8 \cdot 10^{-5} \) | \(a_{71}= +0.60401975 \pm 1.2 \cdot 10^{-4} \) | \(a_{72}= \pm0.12252089 \pm 9.5 \cdot 10^{-6} \) |
\(a_{73}= +1.43414501 \pm 1.5 \cdot 10^{-4} \) | \(a_{74}= \pm1.26484324 \pm 5.9 \cdot 10^{-5} \) | \(a_{75}= -1.91436525 \pm 2.2 \cdot 10^{-5} \) |
\(a_{76}= \pm0.00425076 \pm 4.0 \cdot 10^{-5} \) | \(a_{77}= +0.95022210 \pm 5.1 \cdot 10^{-5} \) | \(a_{78}= \pm0.26286388 \pm 7.2 \cdot 10^{-5} \) |
\(a_{79}= +0.01151997 \pm 7.6 \cdot 10^{-5} \) | \(a_{80}= \pm0.40695039 \pm 2.4 \cdot 10^{-5} \) | \(a_{81}= -1.22645046 \pm 1.2 \cdot 10^{-4} \) |
\(a_{82}= \pm0.00517945 \pm 5.8 \cdot 10^{-5} \) | \(a_{83}= +1.68778635 \pm 3.2 \cdot 10^{-5} \) | \(a_{84}= \pm0.73573910 \pm 5.0 \cdot 10^{-5} \) |
\(a_{85}= -0.93959835 \pm 3.4 \cdot 10^{-5} \) | \(a_{86}= \pm1.19296669 \pm 6.2 \cdot 10^{-5} \) | \(a_{87}= -0.02319742 \pm 2.1 \cdot 10^{-4} \) |
\(a_{88}= \pm0.26493306 \pm 2.2 \cdot 10^{-5} \) | \(a_{89}= +0.27455726 \pm 9.8 \cdot 10^{-5} \) | \(a_{90}= \pm0.39887940 \pm 1.7 \cdot 10^{-5} \) |
\(a_{91}= -0.40623752 \pm 7.5 \cdot 10^{-5} \) | \(a_{92}= \pm0.16951625 \pm 5.4 \cdot 10^{-6} \) | \(a_{93}= +0.84077462 \pm 1.9 \cdot 10^{-4} \) |
\(a_{94}= \pm0.33278560 \pm 7.7 \cdot 10^{-5} \) | \(a_{95}= -0.01383880 \pm 7.3 \cdot 10^{-5} \) | \(a_{96}= \pm0.20513269 \pm 2.1 \cdot 10^{-5} \) |
\(a_{97}= -0.28158678 \pm 1.6 \cdot 10^{-4} \) | \(a_{98}= \pm0.42992592 \pm 2.5 \cdot 10^{-5} \) | \(a_{99}= -0.25967868 \pm 1.3 \cdot 10^{-5} \) |
\(a_{100}= \pm0.82486894 \pm 1.0 \cdot 10^{-5} \) | \(a_{101}= -0.64354343 \pm 9.9 \cdot 10^{-5} \) | \(a_{102}= \pm0.47362612 \pm 3.1 \cdot 10^{-5} \) |
\(a_{103}= -1.16285938 \pm 6.2 \cdot 10^{-5} \) | \(a_{104}= \pm0.11326378 \pm 3.2 \cdot 10^{-5} \) | \(a_{105}= +2.39527450 \pm 9.1 \cdot 10^{-5} \) |
\(a_{106}= \pm0.91351505 \pm 9.0 \cdot 10^{-5} \) | \(a_{107}= +1.62682073 \pm 3.2 \cdot 10^{-5} \) | \(a_{108}= \pm0.37913854 \pm 4.7 \cdot 10^{-5} \) |
\(a_{109}= -1.01177752 \pm 3.5 \cdot 10^{-5} \) | \(a_{110}= \pm0.86251689 \pm 3.9 \cdot 10^{-5} \) | \(a_{111}= -2.07568553 \pm 9.4 \cdot 10^{-5} \) |
\(a_{112}= \pm0.31701805 \pm 2.2 \cdot 10^{-5} \) | \(a_{113}= -0.04974444 \pm 1.2 \cdot 10^{-4} \) | \(a_{114}= \pm0.00697576 \pm 6.3 \cdot 10^{-5} \) |
\(a_{115}= +0.55187761 \pm 9.5 \cdot 10^{-6} \) | \(a_{116}= \pm0.00999539 \pm 9.6 \cdot 10^{-5} \) | \(a_{117}= +0.11101744 \pm 2.5 \cdot 10^{-5} \) |
\(a_{118}= \pm0.06657361 \pm 1.2 \cdot 10^{-5} \) | \(a_{119}= +0.73195565 \pm 2.8 \cdot 10^{-5} \) | \(a_{120}= \pm0.66783061 \pm 3.9 \cdot 10^{-5} \) |
\(a_{121}= -0.43848379 \pm 7.5 \cdot 10^{-5} \) | \(a_{122}= \pm0.77350599 \pm 7.4 \cdot 10^{-6} \) | \(a_{123}= +0.00849980 \pm 9.1 \cdot 10^{-5} \) |
\(a_{124}= \pm0.36227615 \pm 8.7 \cdot 10^{-5} \) | \(a_{125}= +1.05764432 \pm 1.1 \cdot 10^{-4} \) | \(a_{126}= \pm0.31073067 \pm 1.4 \cdot 10^{-5} \) |
\(a_{127}= -0.23792326 \pm 7.0 \cdot 10^{-5} \) | \(a_{128}= \pm0.08838835 \pm 1.0 \cdot 10^{-8} \) | \(a_{129}= -1.95773170 \pm 9.8 \cdot 10^{-5} \) |
\(a_{130}= \pm0.36874192 \pm 5.9 \cdot 10^{-5} \) | \(a_{131}= +0.78109924 \pm 9.9 \cdot 10^{-5} \) | \(a_{132}= \pm0.43477145 \pm 3.4 \cdot 10^{-5} \) |
\(a_{133}= +0.01078055 \pm 6.7 \cdot 10^{-5} \) | \(a_{134}= \pm0.66911541 \pm 7.3 \cdot 10^{-5} \) | \(a_{135}= +1.23432459 \pm 8.5 \cdot 10^{-5} \) |
\(a_{136}= \pm0.20407782 \pm 1.3 \cdot 10^{-5} \) | \(a_{137}= -1.51224567 \pm 4.0 \cdot 10^{-5} \) | \(a_{138}= \pm0.27818658 \pm 9.7 \cdot 10^{-6} \) |
\(a_{139}= +0.45967658 \pm 5.7 \cdot 10^{-5} \) | \(a_{140}= \pm1.03208493 \pm 4.1 \cdot 10^{-5} \) | \(a_{141}= +0.54612163 \pm 1.2 \cdot 10^{-4} \) |
\(a_{142}= \pm0.42710646 \pm 8.6 \cdot 10^{-5} \) | \(a_{143}= -0.24005856 \pm 5.1 \cdot 10^{-5} \) | \(a_{144}= \pm0.08663535 \pm 6.7 \cdot 10^{-6} \) |
\(a_{145}= +0.03254103 \pm 1.7 \cdot 10^{-4} \) | \(a_{146}= \pm1.01409366 \pm 1.1 \cdot 10^{-4} \) | \(a_{147}= -0.70553487 \pm 4.1 \cdot 10^{-5} \) |
\(a_{148}= \pm0.89437923 \pm 4.2 \cdot 10^{-5} \) | \(a_{149}= +0.76814896 \pm 1.4 \cdot 10^{-4} \) | \(a_{150}= \pm1.35366065 \pm 1.6 \cdot 10^{-5} \) |
\(a_{151}= +0.52275222 \pm 8.6 \cdot 10^{-5} \) | \(a_{152}= \pm0.00300574 \pm 2.8 \cdot 10^{-5} \) | \(a_{153}= -0.20003037 \pm 1.7 \cdot 10^{-5} \) |
\(a_{154}= \pm0.67190849 \pm 3.6 \cdot 10^{-5} \) | \(a_{155}= -1.17942735 \pm 1.5 \cdot 10^{-4} \) | \(a_{156}= \pm0.18587283 \pm 5.1 \cdot 10^{-5} \) |
\(a_{157}= +1.10542588 \pm 1.9 \cdot 10^{-4} \) | \(a_{158}= \pm0.00814585 \pm 5.3 \cdot 10^{-5} \) | \(a_{159}= -1.49913437 \pm 1.4 \cdot 10^{-4} \) |
\(a_{160}= \pm0.28775738 \pm 1.7 \cdot 10^{-5} \) | \(a_{161}= -0.42991767 \pm 7.7 \cdot 10^{-6} \) | \(a_{162}= \pm0.86723144 \pm 9.1 \cdot 10^{-5} \) |
\(a_{163}= +1.05939783 \pm 3.9 \cdot 10^{-5} \) | \(a_{164}= \pm0.00366243 \pm 4.1 \cdot 10^{-5} \) | \(a_{165}= +1.41544326 \pm 6.2 \cdot 10^{-5} \) |
\(a_{166}= \pm1.19344517 \pm 2.2 \cdot 10^{-5} \) | \(a_{167}= +0.21264571 \pm 3.0 \cdot 10^{-5} \) | \(a_{168}= \pm0.52024611 \pm 3.5 \cdot 10^{-5} \) |
\(a_{169}= -0.89737053 \pm 3.5 \cdot 10^{-5} \) | \(a_{170}= \pm0.66439637 \pm 2.4 \cdot 10^{-5} \) | \(a_{171}= -0.00294613 \pm 1.8 \cdot 10^{-5} \) |
\(a_{172}= \pm0.84355484 \pm 4.4 \cdot 10^{-5} \) | \(a_{173}= +1.06109451 \pm 1.7 \cdot 10^{-5} \) | \(a_{174}= \pm0.01640305 \pm 1.4 \cdot 10^{-4} \) |
\(a_{175}= -2.09198671 \pm 1.6 \cdot 10^{-5} \) | \(a_{176}= \pm0.18733596 \pm 1.5 \cdot 10^{-5} \) | \(a_{177}= -0.10925138 \pm 2.0 \cdot 10^{-5} \) |
\(a_{178}= \pm0.19414130 \pm 6.9 \cdot 10^{-5} \) | \(a_{179}= -1.00314867 \pm 1.5 \cdot 10^{-4} \) | \(a_{180}= \pm0.28205033 \pm 1.2 \cdot 10^{-5} \) |
\(a_{181}= +1.52925348 \pm 3.6 \cdot 10^{-5} \) | \(a_{182}= \pm0.28725330 \pm 5.3 \cdot 10^{-5} \) | \(a_{183}= -1.26937090 \pm 1.2 \cdot 10^{-5} \) |
\(a_{184}= \pm0.11986609 \pm 3.8 \cdot 10^{-6} \) | \(a_{185}= +2.91174379 \pm 7.6 \cdot 10^{-5} \) | \(a_{186}= \pm0.59451744 \pm 1.3 \cdot 10^{-4} \) |
\(a_{187}= +0.43253568 \pm 1.9 \cdot 10^{-5} \) | \(a_{188}= \pm0.23531495 \pm 5.5 \cdot 10^{-5} \) | \(a_{189}= -0.96155006 \pm 7.8 \cdot 10^{-5} \) |
\(a_{190}= \pm0.00978551 \pm 5.1 \cdot 10^{-5} \) | \(a_{191}= +0.19515122 \pm 1.0 \cdot 10^{-4} \) | \(a_{192}= \pm0.14505071 \pm 1.5 \cdot 10^{-5} \) |
\(a_{193}= -1.77138870 \pm 1.9 \cdot 10^{-4} \) | \(a_{194}= \pm0.19911193 \pm 1.1 \cdot 10^{-4} \) | \(a_{195}= -0.60512817 \pm 9.2 \cdot 10^{-5} \) |
\(a_{196}= \pm0.30400353 \pm 1.8 \cdot 10^{-5} \) | \(a_{197}= +1.72785439 \pm 3.0 \cdot 10^{-5} \) | \(a_{198}= \pm0.18362056 \pm 9.8 \cdot 10^{-6} \) |
\(a_{199}= -1.24998324 \pm 8.8 \cdot 10^{-5} \) | \(a_{200}= \pm0.58327042 \pm 7.1 \cdot 10^{-6} \) | \(a_{201}= +1.09805954 \pm 1.1 \cdot 10^{-4} \) |
\(a_{202}= \pm0.45505393 \pm 7.0 \cdot 10^{-5} \) | \(a_{203}= -0.02534976 \pm 1.5 \cdot 10^{-4} \) | \(a_{204}= \pm0.33490424 \pm 2.2 \cdot 10^{-5} \) |
\(a_{205}= -0.01192341 \pm 7.4 \cdot 10^{-5} \) | \(a_{206}= \pm0.82226575 \pm 4.4 \cdot 10^{-5} \) | \(a_{207}= +0.11748880 \pm 7.9 \cdot 10^{-6} \) |
\(a_{208}= \pm0.08008959 \pm 2.3 \cdot 10^{-5} \) | \(a_{209}= +0.00637057 \pm 4.5 \cdot 10^{-5} \) | \(a_{210}= \pm1.69371484 \pm 6.4 \cdot 10^{-5} \) |
\(a_{211}= -1.36989796 \pm 1.3 \cdot 10^{-4} \) | \(a_{212}= \pm0.64595269 \pm 6.3 \cdot 10^{-5} \) | \(a_{213}= -0.70090796 \pm 1.3 \cdot 10^{-4} \) |
\(a_{214}= \pm1.15033597 \pm 2.2 \cdot 10^{-5} \) | \(a_{215}= +2.74627974 \pm 7.9 \cdot 10^{-5} \) | \(a_{216}= \pm0.26809143 \pm 3.3 \cdot 10^{-5} \) |
\(a_{217}= +0.91878461 \pm 1.4 \cdot 10^{-4} \) | \(a_{218}= \pm0.71543475 \pm 2.5 \cdot 10^{-5} \) | \(a_{219}= -1.66419006 \pm 1.7 \cdot 10^{-4} \) |
\(a_{220}= \pm0.60989154 \pm 2.8 \cdot 10^{-5} \) | \(a_{221}= -0.18491700 \pm 3.5 \cdot 10^{-5} \) | \(a_{222}= \pm1.46773132 \pm 6.6 \cdot 10^{-5} \) |
\(a_{223}= -0.57759700 \pm 3.7 \cdot 10^{-5} \) | \(a_{224}= \pm0.22416561 \pm 1.6 \cdot 10^{-5} \) | \(a_{225}= +0.57170250 \pm 5.5 \cdot 10^{-6} \) |
\(a_{226}= \pm0.03517463 \pm 8.7 \cdot 10^{-5} \) | \(a_{227}= -0.36221623 \pm 3.3 \cdot 10^{-6} \) | \(a_{228}= \pm0.00493261 \pm 4.4 \cdot 10^{-5} \) |
\(a_{229}= +1.49270752 \pm 1.5 \cdot 10^{-4} \) | \(a_{230}= \pm0.39023640 \pm 6.7 \cdot 10^{-6} \) | \(a_{231}= -1.10264315 \pm 5.7 \cdot 10^{-5} \) |
\(a_{232}= \pm0.00706781 \pm 6.7 \cdot 10^{-5} \) | \(a_{233}= -0.82334806 \pm 1.1 \cdot 10^{-4} \) | \(a_{234}= \pm0.07850118 \pm 1.8 \cdot 10^{-5} \) |
\(a_{235}= -0.76609208 \pm 9.9 \cdot 10^{-5} \) | \(a_{236}= \pm0.04707465 \pm 8.8 \cdot 10^{-6} \) | \(a_{237}= -0.01336784 \pm 8.4 \cdot 10^{-5} \) |
\(a_{238}= \pm0.51757080 \pm 2.0 \cdot 10^{-5} \) | \(a_{239}= +1.52325142 \pm 2.3 \cdot 10^{-5} \) | \(a_{240}= \pm0.47222755 \pm 2.7 \cdot 10^{-5} \) |
\(a_{241}= +0.24618930 \pm 1.6 \cdot 10^{-4} \) | \(a_{242}= \pm0.31005486 \pm 5.3 \cdot 10^{-5} \) | \(a_{243}= +0.66490305 \pm 5.0 \cdot 10^{-5} \) |
\(a_{244}= \pm0.54695133 \pm 5.2 \cdot 10^{-6} \) | \(a_{245}= +0.98971483 \pm 3.2 \cdot 10^{-5} \) | \(a_{246}= \pm0.00601027 \pm 6.4 \cdot 10^{-5} \) |
\(a_{247}= -0.00272353 \pm 6.7 \cdot 10^{-5} \) | \(a_{248}= \pm0.25616792 \pm 6.1 \cdot 10^{-5} \) | \(a_{249}= -1.95851692 \pm 3.9 \cdot 10^{-5} \) |
\(a_{250}= \pm0.74786747 \pm 8.3 \cdot 10^{-5} \) | \(a_{251}= -0.43527889 \pm 1.3 \cdot 10^{-4} \) | \(a_{252}= \pm0.21971977 \pm 1.0 \cdot 10^{-5} \) |
\(a_{253}= -0.25405192 \pm 4.5 \cdot 10^{-6} \) | \(a_{254}= \pm0.16823715 \pm 5.0 \cdot 10^{-5} \) | \(a_{255}= +1.09031529 \pm 3.9 \cdot 10^{-5} \) |
\(a_{256}= \pm0.0625 \) | \(a_{257}= -0.27171481 \pm 2.6 \cdot 10^{-5} \) | \(a_{258}= \pm1.38432536 \pm 6.9 \cdot 10^{-5} \) |
\(a_{259}= -2.26827484 \pm 6.8 \cdot 10^{-5} \) | \(a_{260}= \pm0.26073991 \pm 4.1 \cdot 10^{-5} \) | \(a_{261}= +0.00692763 \pm 4.1 \cdot 10^{-5} \) |
\(a_{262}= \pm0.55232057 \pm 7.0 \cdot 10^{-5} \) | \(a_{263}= +1.53904771 \pm 1.5 \cdot 10^{-4} \) | \(a_{264}= \pm0.30742984 \pm 2.4 \cdot 10^{-5} \) |
\(a_{265}= +2.10296556 \pm 1.1 \cdot 10^{-4} \) | \(a_{266}= \pm0.00762300 \pm 4.7 \cdot 10^{-5} \) | \(a_{267}= -0.31859782 \pm 1.0 \cdot 10^{-4} \) |
\(a_{268}= \pm0.47313604 \pm 5.2 \cdot 10^{-5} \) | \(a_{269}= -0.27544789 \pm 1.3 \cdot 10^{-5} \) | \(a_{270}= \pm0.87279929 \pm 6.0 \cdot 10^{-5} \) |
\(a_{271}= -0.01154691 \pm 1.6 \cdot 10^{-4} \) | \(a_{272}= \pm0.14430481 \pm 9.5 \cdot 10^{-6} \) | \(a_{273}= +0.47140034 \pm 8.3 \cdot 10^{-5} \) |
\(a_{274}= \pm1.06931917 \pm 2.8 \cdot 10^{-5} \) | \(a_{275}= -1.23622094 \pm 1.1 \cdot 10^{-5} \) | \(a_{276}= \pm0.19670762 \pm 6.8 \cdot 10^{-6} \) |
\(a_{277}= -0.82888651 \pm 6.8 \cdot 10^{-5} \) | \(a_{278}= \pm0.32504043 \pm 4.0 \cdot 10^{-5} \) | \(a_{279}= -0.25108738 \pm 3.8 \cdot 10^{-5} \) |
\(a_{280}= \pm0.72979425 \pm 2.9 \cdot 10^{-5} \) | \(a_{281}= +0.46191098 \pm 2.7 \cdot 10^{-5} \) | \(a_{282}= \pm0.38616631 \pm 8.6 \cdot 10^{-5} \) |
\(a_{283}= +0.66509687 \pm 8.4 \cdot 10^{-5} \) | \(a_{284}= \pm0.30200987 \pm 6.1 \cdot 10^{-5} \) | \(a_{285}= +0.01605862 \pm 8.0 \cdot 10^{-5} \) |
\(a_{286}= \pm0.16974704 \pm 3.6 \cdot 10^{-5} \) | \(a_{287}= +0.00928845 \pm 6.7 \cdot 10^{-5} \) | \(a_{288}= \pm0.06126045 \pm 4.7 \cdot 10^{-6} \) |
\(a_{289}= -0.66681796 \pm 9.9 \cdot 10^{-5} \) | \(a_{290}= \pm0.02300998 \pm 1.2 \cdot 10^{-4} \) | \(a_{291}= +0.32675491 \pm 1.8 \cdot 10^{-4} \) |
\(a_{292}= \pm0.71707251 \pm 7.8 \cdot 10^{-5} \) | \(a_{293}= +0.64855183 \pm 8.7 \cdot 10^{-5} \) | \(a_{294}= \pm0.49888849 \pm 2.9 \cdot 10^{-5} \) |
\(a_{295}= +0.15325637 \pm 1.5 \cdot 10^{-5} \) | \(a_{296}= \pm0.63242162 \pm 2.9 \cdot 10^{-5} \) | \(a_{297}= -0.56821027 \pm 5.3 \cdot 10^{-5} \) |
\(a_{298}= \pm0.54316334 \pm 1.0 \cdot 10^{-4} \) | \(a_{299}= +0.10861189 \pm 1.2 \cdot 10^{-5} \) | \(a_{300}= \pm0.95718263 \pm 1.1 \cdot 10^{-5} \) |
\(a_{301}= -2.13937685 \pm 7.2 \cdot 10^{-5} \) | \(a_{302}= \pm0.36964164 \pm 6.0 \cdot 10^{-5} \) | \(a_{303}= +0.74677148 \pm 1.0 \cdot 10^{-4} \) |
\(a_{304}= \pm0.00212538 \pm 2.0 \cdot 10^{-5} \) | \(a_{305}= +1.78065645 \pm 9.1 \cdot 10^{-6} \) | \(a_{306}= \pm0.14144283 \pm 1.2 \cdot 10^{-5} \) |
\(a_{307}= -0.06655668 \pm 1.4 \cdot 10^{-4} \) | \(a_{308}= \pm0.47511105 \pm 2.5 \cdot 10^{-5} \) | \(a_{309}= +1.34938867 \pm 7.0 \cdot 10^{-5} \) |
\(a_{310}= \pm0.83398108 \pm 1.1 \cdot 10^{-4} \) | \(a_{311}= -0.50861186 \pm 1.3 \cdot 10^{-4} \) | \(a_{312}= \pm0.13143194 \pm 3.6 \cdot 10^{-5} \) |
\(a_{313}= -0.36685487 \pm 1.4 \cdot 10^{-4} \) | \(a_{314}= \pm0.78165414 \pm 1.3 \cdot 10^{-4} \) | \(a_{315}= -0.71532035 \pm 1.8 \cdot 10^{-5} \) |
\(a_{316}= \pm0.00575998 \pm 3.8 \cdot 10^{-5} \) | \(a_{317}= -0.19986229 \pm 5.1 \cdot 10^{-5} \) | \(a_{318}= \pm1.06004808 \pm 1.0 \cdot 10^{-4} \) |
\(a_{319}= -0.01497997 \pm 1.0 \cdot 10^{-4} \) | \(a_{320}= \pm0.20347519 \pm 1.2 \cdot 10^{-5} \) | \(a_{321}= -1.88777207 \pm 3.6 \cdot 10^{-5} \) |
\(a_{322}= \pm0.30399770 \pm 5.4 \cdot 10^{-6} \) | \(a_{323}= +0.00490724 \pm 2.6 \cdot 10^{-5} \) | \(a_{324}= \pm0.61322523 \pm 6.4 \cdot 10^{-5} \) |
\(a_{325}= +0.52850731 \pm 1.7 \cdot 10^{-5} \) | \(a_{326}= \pm0.74910739 \pm 2.7 \cdot 10^{-5} \) | \(a_{327}= +1.17407241 \pm 4.0 \cdot 10^{-5} \) |
\(a_{328}= \pm0.00258973 \pm 2.9 \cdot 10^{-5} \) | \(a_{329}= +0.59679269 \pm 9.0 \cdot 10^{-5} \) | \(a_{330}= \pm1.00086953 \pm 4.4 \cdot 10^{-5} \) |
\(a_{331}= -0.17063869 \pm 5.9 \cdot 10^{-5} \) | \(a_{332}= \pm0.84389317 \pm 1.6 \cdot 10^{-5} \) | \(a_{333}= +0.61987889 \pm 2.3 \cdot 10^{-5} \) |
\(a_{334}= \pm0.15036322 \pm 2.1 \cdot 10^{-5} \) | \(a_{335}= -1.54034317 \pm 9.4 \cdot 10^{-5} \) | \(a_{336}= \pm0.36786955 \pm 2.5 \cdot 10^{-5} \) |
\(a_{337}= +1.22813109 \pm 1.7 \cdot 10^{-4} \) | \(a_{338}= \pm0.63453678 \pm 2.5 \cdot 10^{-5} \) | \(a_{339}= +0.05772373 \pm 1.3 \cdot 10^{-4} \) |
\(a_{340}= \pm0.46979918 \pm 1.7 \cdot 10^{-5} \) | \(a_{341}= +0.54293881 \pm 9.8 \cdot 10^{-5} \) | \(a_{342}= \pm0.00208323 \pm 1.2 \cdot 10^{-5} \) |
\(a_{343}= +0.49707534 \pm 1.1 \cdot 10^{-4} \) | \(a_{344}= \pm0.59648335 \pm 3.1 \cdot 10^{-5} \) | \(a_{345}= -0.64040194 \pm 1.1 \cdot 10^{-5} \) |
\(a_{346}= \pm0.75030712 \pm 1.2 \cdot 10^{-5} \) | \(a_{347}= -1.13975975 \pm 3.0 \cdot 10^{-5} \) | \(a_{348}= \pm0.01159871 \pm 1.0 \cdot 10^{-4} \) |
\(a_{349}= -0.55722073 \pm 8.1 \cdot 10^{-5} \) | \(a_{350}= \pm1.47925799 \pm 1.1 \cdot 10^{-5} \) | \(a_{351}= +0.24292039 \pm 7.8 \cdot 10^{-5} \) |
\(a_{352}= \pm0.13246653 \pm 1.1 \cdot 10^{-5} \) | \(a_{353}= -1.42154333 \pm 5.7 \cdot 10^{-5} \) | \(a_{354}= \pm0.07725239 \pm 1.4 \cdot 10^{-5} \) |
\(a_{355}= +0.98322428 \pm 1.1 \cdot 10^{-4} \) | \(a_{356}= \pm0.13727863 \pm 4.9 \cdot 10^{-5} \) | \(a_{357}= -0.84936551 \pm 3.2 \cdot 10^{-5} \) |
\(a_{358}= \pm0.70933322 \pm 1.0 \cdot 10^{-4} \) | \(a_{359}= +1.70955300 \pm 1.3 \cdot 10^{-4} \) | \(a_{360}= \pm0.19943970 \pm 8.5 \cdot 10^{-6} \) |
\(a_{361}= -0.99992772 \pm 5.1 \cdot 10^{-5} \) | \(a_{362}= \pm1.08134551 \pm 2.6 \cdot 10^{-5} \) | \(a_{363}= +0.50881909 \pm 8.3 \cdot 10^{-5} \) |
\(a_{364}= \pm0.20311876 \pm 3.7 \cdot 10^{-5} \) | \(a_{365}= +2.33450347 \pm 1.4 \cdot 10^{-4} \) | \(a_{366}= \pm0.89758077 \pm 8.5 \cdot 10^{-6} \) |
\(a_{367}= +0.08049337 \pm 1.9 \cdot 10^{-4} \) | \(a_{368}= \pm0.08475812 \pm 2.7 \cdot 10^{-6} \) | \(a_{369}= -0.00253837 \pm 2.2 \cdot 10^{-5} \) |
\(a_{370}= \pm2.05891378 \pm 5.3 \cdot 10^{-5} \) | \(a_{371}= -1.63822926 \pm 1.0 \cdot 10^{-4} \) | \(a_{372}= \pm0.42038731 \pm 9.6 \cdot 10^{-5} \) |
\(a_{373}= -0.15847982 \pm 3.3 \cdot 10^{-5} \) | \(a_{374}= \pm0.30584891 \pm 1.3 \cdot 10^{-5} \) | \(a_{375}= -1.22729651 \pm 1.3 \cdot 10^{-4} \) |
\(a_{376}= \pm0.16639280 \pm 3.8 \cdot 10^{-5} \) | \(a_{377}= +0.00640421 \pm 1.5 \cdot 10^{-4} \) | \(a_{378}= \pm0.67991857 \pm 5.5 \cdot 10^{-5} \) |
\(a_{379}= +0.95307123 \pm 2.0 \cdot 10^{-4} \) | \(a_{380}= \pm0.00691940 \pm 3.6 \cdot 10^{-5} \) | \(a_{381}= +0.27608751 \pm 7.9 \cdot 10^{-5} \) |
\(a_{382}= \pm0.13799275 \pm 7.2 \cdot 10^{-5} \) | \(a_{383}= -0.96564188 \pm 3.4 \cdot 10^{-5} \) | \(a_{384}= \pm0.10256634 \pm 1.0 \cdot 10^{-5} \) |
\(a_{385}= +1.54677300 \pm 4.6 \cdot 10^{-5} \) | \(a_{386}= \pm1.25256097 \pm 1.4 \cdot 10^{-4} \) | \(a_{387}= +0.58465338 \pm 2.5 \cdot 10^{-5} \) |
\(a_{388}= \pm0.14079339 \pm 8.1 \cdot 10^{-5} \) | \(a_{389}= -0.92362622 \pm 2.3 \cdot 10^{-5} \) | \(a_{390}= \pm0.42789023 \pm 6.5 \cdot 10^{-5} \) |
\(a_{391}= -0.19569607 \pm 1.0 \cdot 10^{-5} \) | \(a_{392}= \pm0.21496296 \pm 1.2 \cdot 10^{-5} \) | \(a_{393}= -0.90639202 \pm 1.1 \cdot 10^{-4} \) |
\(a_{394}= \pm1.22177756 \pm 2.1 \cdot 10^{-5} \) | \(a_{395}= +0.01875222 \pm 6.8 \cdot 10^{-5} \) | \(a_{396}= \pm0.12983934 \pm 6.9 \cdot 10^{-6} \) |
\(a_{397}= -0.04792591 \pm 2.7 \cdot 10^{-5} \) | \(a_{398}= \pm0.88387163 \pm 6.2 \cdot 10^{-5} \) | \(a_{399}= -0.01250981 \pm 7.4 \cdot 10^{-5} \) |
\(a_{400}= \pm0.41243447 \pm 5.0 \cdot 10^{-6} \) | \(a_{401}= +1.91695993 \pm 5.3 \cdot 10^{-5} \) | \(a_{402}= \pm0.77644535 \pm 8.1 \cdot 10^{-5} \) |
\(a_{403}= -0.23211638 \pm 1.4 \cdot 10^{-4} \) | \(a_{404}= \pm0.32177172 \pm 4.9 \cdot 10^{-5} \) | \(a_{405}= -1.99641796 \pm 1.1 \cdot 10^{-4} \) |
\(a_{406}= \pm0.01792498 \pm 1.1 \cdot 10^{-4} \) | \(a_{407}= -1.34039516 \pm 4.7 \cdot 10^{-5} \) | \(a_{408}= \pm0.23681306 \pm 1.5 \cdot 10^{-5} \) |
\(a_{409}= +1.24816186 \pm 2.8 \cdot 10^{-5} \) | \(a_{410}= \pm0.00843112 \pm 5.2 \cdot 10^{-5} \) | \(a_{411}= +1.75481851 \pm 4.4 \cdot 10^{-5} \) |
\(a_{412}= \pm0.58142969 \pm 3.1 \cdot 10^{-5} \) | \(a_{413}= -0.11938810 \pm 1.4 \cdot 10^{-5} \) | \(a_{414}= \pm0.08307713 \pm 5.6 \cdot 10^{-6} \) |
\(a_{415}= +2.74738123 \pm 2.8 \cdot 10^{-5} \) | \(a_{416}= \pm0.05663189 \pm 1.6 \cdot 10^{-5} \) | \(a_{417}= -0.53341133 \pm 6.3 \cdot 10^{-5} \) |
\(a_{418}= \pm0.00450467 \pm 3.2 \cdot 10^{-5} \) | \(a_{419}= -1.77606419 \pm 1.1 \cdot 10^{-4} \) | \(a_{420}= \pm1.19763725 \pm 4.5 \cdot 10^{-5} \) |
\(a_{421}= -0.34763948 \pm 8.2 \cdot 10^{-5} \) | \(a_{422}= \pm0.96866414 \pm 9.4 \cdot 10^{-5} \) | \(a_{423}= -0.16309275 \pm 3.0 \cdot 10^{-5} \) |
\(a_{424}= \pm0.45675752 \pm 4.5 \cdot 10^{-5} \) | \(a_{425}= -0.95226042 \pm 7.7 \cdot 10^{-6} \) | \(a_{426}= \pm0.49561677 \pm 9.5 \cdot 10^{-5} \) |
\(a_{427}= -1.38714754 \pm 9.8 \cdot 10^{-6} \) | \(a_{428}= \pm0.81341036 \pm 1.6 \cdot 10^{-5} \) | \(a_{429}= +0.27856533 \pm 5.7 \cdot 10^{-5} \) |
\(a_{430}= \pm1.94191302 \pm 5.6 \cdot 10^{-5} \) | \(a_{431}= +0.68031549 \pm 2.8 \cdot 10^{-5} \) | \(a_{432}= \pm0.18956927 \pm 2.3 \cdot 10^{-5} \) |
\(a_{433}= +0.06963401 \pm 6.9 \cdot 10^{-5} \) | \(a_{434}= \pm0.64967883 \pm 1.0 \cdot 10^{-4} \) | \(a_{435}= -0.03776079 \pm 1.9 \cdot 10^{-4} \) |
\(a_{436}= \pm0.50588876 \pm 1.7 \cdot 10^{-5} \) | \(a_{437}= -0.00288229 \pm 6.1 \cdot 10^{-6} \) | \(a_{438}= \pm1.17676008 \pm 1.2 \cdot 10^{-4} \) |
\(a_{439}= +0.66694066 \pm 1.8 \cdot 10^{-4} \) | \(a_{440}= \pm0.43125845 \pm 1.9 \cdot 10^{-5} \) | \(a_{441}= +0.21069963 \pm 1.3 \cdot 10^{-5} \) |
\(a_{442}= \pm0.13075607 \pm 2.5 \cdot 10^{-5} \) | \(a_{443}= +0.99593848 \pm 2.1 \cdot 10^{-4} \) | \(a_{444}= \pm1.03784277 \pm 4.7 \cdot 10^{-5} \) |
\(a_{445}= +0.44692474 \pm 8.9 \cdot 10^{-5} \) | \(a_{446}= \pm0.40842276 \pm 2.6 \cdot 10^{-5} \) | \(a_{447}= -0.89136444 \pm 1.6 \cdot 10^{-4} \) |
\(a_{448}= \pm0.15850902 \pm 1.1 \cdot 10^{-5} \) | \(a_{449}= +1.14490829 \pm 1.5 \cdot 10^{-4} \) | \(a_{450}= \pm0.40425472 \pm 3.9 \cdot 10^{-6} \) |
\(a_{451}= +0.00548884 \pm 4.6 \cdot 10^{-5} \) | \(a_{452}= \pm0.02487222 \pm 6.2 \cdot 10^{-5} \) | \(a_{453}= -0.60660466 \pm 9.5 \cdot 10^{-5} \) |
\(a_{454}= \pm0.25612555 \pm 2.3 \cdot 10^{-6} \) | \(a_{455}= -0.66127406 \pm 6.8 \cdot 10^{-5} \) | \(a_{456}= \pm0.00348788 \pm 3.1 \cdot 10^{-5} \) |
\(a_{457}= -0.31180010 \pm 2.9 \cdot 10^{-5} \) | \(a_{458}= \pm1.05550361 \pm 1.1 \cdot 10^{-4} \) | \(a_{459}= -0.43769211 \pm 2.9 \cdot 10^{-5} \) |
\(a_{460}= \pm0.27593881 \pm 4.7 \cdot 10^{-6} \) | \(a_{461}= -1.04686011 \pm 1.2 \cdot 10^{-4} \) | \(a_{462}= \pm0.77968645 \pm 4.0 \cdot 10^{-5} \) |
\(a_{463}= -0.37946229 \pm 6.7 \cdot 10^{-5} \) | \(a_{464}= \pm0.00499770 \pm 4.8 \cdot 10^{-5} \) | \(a_{465}= +1.36861423 \pm 1.7 \cdot 10^{-4} \) |
\(a_{466}= \pm0.58219500 \pm 7.8 \cdot 10^{-5} \) | \(a_{467}= +0.60133389 \pm 7.2 \cdot 10^{-5} \) | \(a_{468}= \pm0.05550872 \pm 1.2 \cdot 10^{-5} \) |
\(a_{469}= +1.19994131 \pm 8.6 \cdot 10^{-5} \) | \(a_{470}= \pm0.54170891 \pm 7.0 \cdot 10^{-5} \) | \(a_{471}= -1.28274251 \pm 2.1 \cdot 10^{-4} \) |
\(a_{472}= \pm0.03328680 \pm 6.2 \cdot 10^{-6} \) | \(a_{473}= -1.26422527 \pm 4.9 \cdot 10^{-5} \) | \(a_{474}= \pm0.00945249 \pm 5.9 \cdot 10^{-5} \) |
\(a_{475}= -0.01402529 \pm 1.4 \cdot 10^{-5} \) | \(a_{476}= \pm0.36597782 \pm 1.4 \cdot 10^{-5} \) | \(a_{477}= +0.44769872 \pm 3.1 \cdot 10^{-5} \) |
\(a_{478}= \pm1.07710141 \pm 1.6 \cdot 10^{-5} \) | \(a_{479}= +0.58513943 \pm 1.1 \cdot 10^{-4} \) | \(a_{480}= \pm0.33391531 \pm 1.9 \cdot 10^{-5} \) |
\(a_{481}= +0.57304372 \pm 7.1 \cdot 10^{-5} \) | \(a_{482}= \pm0.17408213 \pm 1.1 \cdot 10^{-4} \) | \(a_{483}= +0.49887892 \pm 7.9 \cdot 10^{-6} \) |
\(a_{484}= \pm0.21924189 \pm 3.7 \cdot 10^{-5} \) | \(a_{485}= -0.45836740 \pm 1.4 \cdot 10^{-4} \) | \(a_{486}= \pm0.47015746 \pm 3.5 \cdot 10^{-5} \) |
\(a_{487}= +1.36037664 \pm 2.1 \cdot 10^{-5} \) | \(a_{488}= \pm0.38675300 \pm 3.7 \cdot 10^{-6} \) | \(a_{489}= -1.22933129 \pm 4.3 \cdot 10^{-5} \) |
\(a_{490}= \pm0.69983407 \pm 2.3 \cdot 10^{-5} \) | \(a_{491}= -0.54348441 \pm 6.5 \cdot 10^{-5} \) | \(a_{492}= \pm0.00424990 \pm 4.5 \cdot 10^{-5} \) |
\(a_{493}= -0.01153906 \pm 5.9 \cdot 10^{-5} \) | \(a_{494}= \pm0.00192583 \pm 4.7 \cdot 10^{-5} \) | \(a_{495}= -0.42270536 \pm 1.2 \cdot 10^{-5} \) |
\(a_{496}= \pm0.18113807 \pm 4.3 \cdot 10^{-5} \) | \(a_{497}= -0.76594064 \pm 1.0 \cdot 10^{-4} \) | \(a_{498}= \pm1.38488059 \pm 2.8 \cdot 10^{-5} \) |
\(a_{499}= +0.88993490 \pm 2.6 \cdot 10^{-5} \) | \(a_{500}= \pm0.52882216 \pm 5.9 \cdot 10^{-5} \) | \(a_{501}= -0.24675529 \pm 3.4 \cdot 10^{-5} \) |
\(a_{502}= \pm0.30778866 \pm 9.3 \cdot 10^{-5} \) | \(a_{503}= +1.37626519 \pm 1.7 \cdot 10^{-4} \) | \(a_{504}= \pm0.15536534 \pm 7.2 \cdot 10^{-6} \) |
\(a_{505}= -1.04756100 \pm 8.9 \cdot 10^{-5} \) | \(a_{506}= \pm0.17964183 \pm 3.2 \cdot 10^{-6} \) | \(a_{507}= +1.04131388 \pm 4.0 \cdot 10^{-5} \) |
\(a_{508}= \pm0.11896163 \pm 3.5 \cdot 10^{-5} \) | \(a_{509}= +1.73526014 \pm 1.6 \cdot 10^{-4} \) | \(a_{510}= \pm0.77096934 \pm 2.7 \cdot 10^{-5} \) |
\(a_{511}= -1.81859940 \pm 1.2 \cdot 10^{-4} \) | \(a_{512}= \pm0.04419417 \pm 1.0 \cdot 10^{-8} \) | \(a_{513}= -0.00644651 \pm 6.9 \cdot 10^{-5} \) |
\(a_{514}= \pm0.19213138 \pm 1.8 \cdot 10^{-5} \) | \(a_{515}= -1.89290429 \pm 5.6 \cdot 10^{-5} \) | \(a_{516}= \pm0.97886585 \pm 4.9 \cdot 10^{-5} \) |
\(a_{517}= +0.35266363 \pm 6.1 \cdot 10^{-5} \) | \(a_{518}= \pm1.60391252 \pm 4.8 \cdot 10^{-5} \) | \(a_{519}= -1.23130013 \pm 2.4 \cdot 10^{-5} \) |
\(a_{520}= \pm0.18437096 \pm 2.9 \cdot 10^{-5} \) | \(a_{521}= -0.32958707 \pm 1.3 \cdot 10^{-4} \) | \(a_{522}= \pm0.00489858 \pm 2.9 \cdot 10^{-5} \) |
\(a_{523}= +0.03727677 \pm 1.2 \cdot 10^{-4} \) | \(a_{524}= \pm0.39054962 \pm 4.9 \cdot 10^{-5} \) | \(a_{525}= +2.42755333 \pm 1.8 \cdot 10^{-5} \) |
\(a_{526}= \pm1.08827107 \pm 1.0 \cdot 10^{-4} \) | \(a_{527}= +0.41822552 \pm 5.4 \cdot 10^{-5} \) | \(a_{528}= \pm0.21738572 \pm 1.7 \cdot 10^{-5} \) |
\(a_{529}= -0.88505697 \pm 1.0 \cdot 10^{-4} \) | \(a_{530}= \pm1.48702121 \pm 8.1 \cdot 10^{-5} \) | \(a_{531}= +0.03262663 \pm 8.0 \cdot 10^{-6} \) |
\(a_{532}= \pm0.00539027 \pm 3.3 \cdot 10^{-5} \) | \(a_{533}= -0.00234658 \pm 6.9 \cdot 10^{-5} \) | \(a_{534}= \pm0.22528268 \pm 7.7 \cdot 10^{-5} \) |
\(a_{535}= +2.64814130 \pm 2.9 \cdot 10^{-5} \) | \(a_{536}= \pm0.33455771 \pm 3.6 \cdot 10^{-5} \) | \(a_{537}= +1.16405944 \pm 1.6 \cdot 10^{-4} \) |
\(a_{538}= \pm0.19477107 \pm 9.8 \cdot 10^{-6} \) | \(a_{539}= -0.45560636 \pm 1.9 \cdot 10^{-5} \) | \(a_{540}= \pm0.61716230 \pm 4.2 \cdot 10^{-5} \) |
\(a_{541}= -1.40011405 \pm 2.0 \cdot 10^{-4} \) | \(a_{542}= \pm0.00816490 \pm 1.1 \cdot 10^{-4} \) | \(a_{543}= -1.77455448 \pm 4.5 \cdot 10^{-5} \) |
\(a_{544}= \pm0.10203891 \pm 6.7 \cdot 10^{-6} \) | \(a_{545}= -1.64697301 \pm 3.1 \cdot 10^{-5} \) | \(a_{546}= \pm0.33333037 \pm 5.9 \cdot 10^{-5} \) |
\(a_{547}= +1.58706185 \pm 2.4 \cdot 10^{-5} \) | \(a_{548}= \pm0.75612283 \pm 2.0 \cdot 10^{-5} \) | \(a_{549}= +0.37908258 \pm 6.1 \cdot 10^{-6} \) |
\(a_{550}= \pm0.87414021 \pm 8.0 \cdot 10^{-6} \) | \(a_{551}= -0.00016995 \pm 1.4 \cdot 10^{-4} \) | \(a_{552}= \pm0.13909329 \pm 4.8 \cdot 10^{-6} \) |
\(a_{553}= -0.01460815 \pm 6.2 \cdot 10^{-5} \) | \(a_{554}= \pm0.58611127 \pm 4.8 \cdot 10^{-5} \) | \(a_{555}= -3.37880412 \pm 8.4 \cdot 10^{-5} \) |
\(a_{556}= \pm0.22983829 \pm 2.8 \cdot 10^{-5} \) | \(a_{557}= +1.56223405 \pm 4.4 \cdot 10^{-5} \) | \(a_{558}= \pm0.17754559 \pm 2.7 \cdot 10^{-5} \) |
\(a_{559}= +0.54047968 \pm 7.5 \cdot 10^{-5} \) | \(a_{560}= \pm0.51604247 \pm 2.0 \cdot 10^{-5} \) | \(a_{561}= -0.50191688 \pm 2.1 \cdot 10^{-5} \) |
\(a_{562}= \pm0.32662039 \pm 1.9 \cdot 10^{-5} \) | \(a_{563}= +1.18771532 \pm 1.3 \cdot 10^{-4} \) | \(a_{564}= \pm0.27306081 \pm 6.1 \cdot 10^{-5} \) |
\(a_{565}= -0.08097407 \pm 1.1 \cdot 10^{-4} \) | \(a_{566}= \pm0.47029451 \pm 5.9 \cdot 10^{-5} \) | \(a_{567}= +1.55522772 \pm 1.0 \cdot 10^{-4} \) |
\(a_{568}= \pm0.21355323 \pm 4.3 \cdot 10^{-5} \) | \(a_{569}= +0.33090936 \pm 1.3 \cdot 10^{-4} \) | \(a_{570}= \pm0.01135516 \pm 5.7 \cdot 10^{-5} \) |
\(a_{571}= -0.83138866 \pm 1.0 \cdot 10^{-5} \) | \(a_{572}= \pm0.12002928 \pm 2.5 \cdot 10^{-5} \) | \(a_{573}= -0.22645459 \pm 1.1 \cdot 10^{-4} \) |
\(a_{574}= \pm0.00656792 \pm 4.7 \cdot 10^{-5} \) | \(a_{575}= +0.55931474 \pm 2.6 \cdot 10^{-6} \) | \(a_{576}= \pm0.04331768 \pm 3.3 \cdot 10^{-6} \) |
\(a_{577}= -0.10162169 \pm 1.4 \cdot 10^{-4} \) | \(a_{578}= \pm0.47151150 \pm 7.0 \cdot 10^{-5} \) | \(a_{579}= +2.05552957 \pm 2.1 \cdot 10^{-4} \) |
\(a_{580}= \pm0.01627051 \pm 8.6 \cdot 10^{-5} \) | \(a_{581}= -2.14023492 \pm 2.1 \cdot 10^{-5} \) | \(a_{582}= \pm0.23105062 \pm 1.2 \cdot 10^{-4} \) |
\(a_{583}= -0.96808135 \pm 7.1 \cdot 10^{-5} \) | \(a_{584}= \pm0.50704683 \pm 5.5 \cdot 10^{-5} \) | \(a_{585}= +0.18071436 \pm 2.2 \cdot 10^{-5} \) |
\(a_{586}= \pm0.45859540 \pm 6.1 \cdot 10^{-5} \) | \(a_{587}= -0.22664869 \pm 6.4 \cdot 10^{-5} \) | \(a_{588}= \pm0.35276743 \pm 2.0 \cdot 10^{-5} \) |
\(a_{589}= +0.00615980 \pm 1.2 \cdot 10^{-4} \) | \(a_{590}= \pm0.10836862 \pm 1.1 \cdot 10^{-5} \) | \(a_{591}= -2.00501211 \pm 3.7 \cdot 10^{-5} \) |
\(a_{592}= \pm0.44718961 \pm 2.1 \cdot 10^{-5} \) | \(a_{593}= +0.75265847 \pm 1.0 \cdot 10^{-4} \) | \(a_{594}= \pm0.40178533 \pm 3.8 \cdot 10^{-5} \) |
\(a_{595}= +1.19147853 \pm 2.5 \cdot 10^{-5} \) | \(a_{596}= \pm0.38407448 \pm 7.3 \cdot 10^{-5} \) | \(a_{597}= +1.45048769 \pm 9.8 \cdot 10^{-5} \) |
\(a_{598}= \pm0.07680020 \pm 8.5 \cdot 10^{-6} \) | \(a_{599}= +0.75440787 \pm 4.7 \cdot 10^{-5} \) | \(a_{600}= \pm0.67683033 \pm 8.0 \cdot 10^{-6} \) |
\(a_{601}= -0.86845000 \pm 1.1 \cdot 10^{-4} \) | \(a_{602}= \pm1.51276788 \pm 5.1 \cdot 10^{-5} \) | \(a_{603}= -0.32792247 \pm 2.5 \cdot 10^{-5} \) |
\(a_{604}= \pm0.26137611 \pm 4.3 \cdot 10^{-5} \) | \(a_{605}= -0.71376458 \pm 6.8 \cdot 10^{-5} \) | \(a_{606}= \pm0.52804718 \pm 7.7 \cdot 10^{-5} \) |
\(a_{607}= -1.42413288 \pm 4.7 \cdot 10^{-5} \) | \(a_{608}= \pm0.00150287 \pm 1.4 \cdot 10^{-5} \) | \(a_{609}= +0.02941600 \pm 1.7 \cdot 10^{-4} \) |
\(a_{610}= \pm1.25911425 \pm 6.4 \cdot 10^{-6} \) | \(a_{611}= -0.15077022 \pm 9.3 \cdot 10^{-5} \) | \(a_{612}= \pm0.10001518 \pm 8.9 \cdot 10^{-6} \) |
\(a_{613}= +1.84475493 \pm 1.8 \cdot 10^{-4} \) | \(a_{614}= \pm0.04706268 \pm 1.0 \cdot 10^{-4} \) | \(a_{615}= +0.01383599 \pm 8.2 \cdot 10^{-5} \) |
\(a_{616}= \pm0.33595425 \pm 1.8 \cdot 10^{-5} \) | \(a_{617}= -0.20963771 \pm 1.5 \cdot 10^{-4} \) | \(a_{618}= \pm0.95416188 \pm 4.9 \cdot 10^{-5} \) |
\(a_{619}= +0.25684964 \pm 2.2 \cdot 10^{-5} \) | \(a_{620}= \pm0.58971368 \pm 7.8 \cdot 10^{-5} \) | \(a_{621}= +0.25708057 \pm 6.6 \cdot 10^{-6} \) |
\(a_{622}= \pm0.35964289 \pm 9.2 \cdot 10^{-5} \) | \(a_{623}= -0.34815843 \pm 8.1 \cdot 10^{-5} \) | \(a_{624}= \pm0.09293642 \pm 2.5 \cdot 10^{-5} \) |
\(a_{625}= +0.07189718 \pm 8.6 \cdot 10^{-5} \) | \(a_{626}= \pm0.25940557 \pm 1.0 \cdot 10^{-4} \) | \(a_{627}= -0.00739244 \pm 5.0 \cdot 10^{-5} \) |
\(a_{628}= \pm0.55271294 \pm 9.8 \cdot 10^{-5} \) | \(a_{629}= -1.03250578 \pm 3.3 \cdot 10^{-5} \) | \(a_{630}= \pm0.50580787 \pm 1.3 \cdot 10^{-5} \) |
\(a_{631}= +0.19052656 \pm 1.0 \cdot 10^{-4} \) | \(a_{632}= \pm0.00407292 \pm 2.6 \cdot 10^{-5} \) | \(a_{633}= +1.58963742 \pm 1.4 \cdot 10^{-4} \) |
\(a_{634}= \pm0.14132398 \pm 3.6 \cdot 10^{-5} \) | \(a_{635}= -0.38729185 \pm 6.3 \cdot 10^{-5} \) | \(a_{636}= \pm0.74956719 \pm 7.0 \cdot 10^{-5} \) |
\(a_{637}= +0.19478014 \pm 3.2 \cdot 10^{-5} \) | \(a_{638}= \pm0.01059244 \pm 7.7 \cdot 10^{-5} \) | \(a_{639}= +0.20931786 \pm 2.7 \cdot 10^{-5} \) |
\(a_{640}= \pm0.14387869 \pm 8.8 \cdot 10^{-6} \) | \(a_{641}= +1.35084196 \pm 1.8 \cdot 10^{-4} \) | \(a_{642}= \pm1.33485643 \pm 2.5 \cdot 10^{-5} \) |
\(a_{643}= -0.51449824 \pm 7.7 \cdot 10^{-5} \) | \(a_{644}= \pm0.21495884 \pm 3.8 \cdot 10^{-6} \) | \(a_{645}= -3.18679869 \pm 8.8 \cdot 10^{-5} \) |
\(a_{646}= \pm0.00346995 \pm 1.8 \cdot 10^{-5} \) | \(a_{647}= +1.47416478 \pm 1.3 \cdot 10^{-4} \) | \(a_{648}= \pm0.43361572 \pm 4.5 \cdot 10^{-5} \) |
\(a_{649}= -0.07055020 \pm 9.2 \cdot 10^{-6} \) | \(a_{650}= \pm0.37371110 \pm 1.2 \cdot 10^{-5} \) | \(a_{651}= -1.06616291 \pm 1.5 \cdot 10^{-4} \) |
\(a_{652}= \pm0.52969891 \pm 1.9 \cdot 10^{-5} \) | \(a_{653}= -1.66593130 \pm 8.6 \cdot 10^{-5} \) | \(a_{654}= \pm0.83019457 \pm 2.8 \cdot 10^{-5} \) |
\(a_{655}= +1.27147455 \pm 9.0 \cdot 10^{-5} \) | \(a_{656}= \pm0.00183121 \pm 2.0 \cdot 10^{-5} \) | \(a_{657}= +0.49699065 \pm 3.4 \cdot 10^{-5} \) |
\(a_{658}= \pm0.42199616 \pm 6.3 \cdot 10^{-5} \) | \(a_{659}= +0.74613542 \pm 2.1 \cdot 10^{-4} \) | \(a_{660}= \pm0.70772163 \pm 3.1 \cdot 10^{-5} \) |
\(a_{661}= -0.88521056 \pm 2.4 \cdot 10^{-5} \) | \(a_{662}= \pm0.12065978 \pm 4.2 \cdot 10^{-5} \) | \(a_{663}= +0.21457874 \pm 4.3 \cdot 10^{-5} \) |
\(a_{664}= \pm0.59672259 \pm 1.1 \cdot 10^{-5} \) | \(a_{665}= +0.01754859 \pm 6.0 \cdot 10^{-5} \) | \(a_{666}= \pm0.43832057 \pm 1.6 \cdot 10^{-5} \) |
\(a_{667}= +0.00677752 \pm 1.2 \cdot 10^{-5} \) | \(a_{668}= \pm0.10632285 \pm 1.5 \cdot 10^{-5} \) | \(a_{669}= +0.67024686 \pm 4.1 \cdot 10^{-5} \) |
\(a_{670}= \pm1.08918710 \pm 6.6 \cdot 10^{-5} \) | \(a_{671}= -0.81970924 \pm 5.0 \cdot 10^{-6} \) | \(a_{672}= \pm0.26012305 \pm 1.7 \cdot 10^{-5} \) |
\(a_{673}= +1.56727757 \pm 1.4 \cdot 10^{-5} \) | \(a_{674}= \pm0.86841983 \pm 1.2 \cdot 10^{-4} \) | \(a_{675}= +1.25095841 \pm 1.7 \cdot 10^{-5} \) |
\(a_{676}= \pm0.44868526 \pm 1.7 \cdot 10^{-5} \) | \(a_{677}= +1.03096932 \pm 8.0 \cdot 10^{-5} \) | \(a_{678}= \pm0.04081684 \pm 9.6 \cdot 10^{-5} \) |
\(a_{679}= +0.35707237 \pm 1.3 \cdot 10^{-4} \) | \(a_{680}= \pm0.33219818 \pm 1.2 \cdot 10^{-5} \) | \(a_{681}= +0.42031778 \pm 3.2 \cdot 10^{-6} \) |
\(a_{682}= \pm0.38391572 \pm 6.9 \cdot 10^{-5} \) | \(a_{683}= -0.85046607 \pm 1.7 \cdot 10^{-4} \) | \(a_{684}= \pm0.00147307 \pm 9.1 \cdot 10^{-6} \) |
\(a_{685}= -2.46163583 \pm 3.6 \cdot 10^{-5} \) | \(a_{686}= \pm0.35148535 \pm 8.4 \cdot 10^{-5} \) | \(a_{687}= -1.73214634 \pm 1.7 \cdot 10^{-4} \) |
\(a_{688}= \pm0.42177742 \pm 2.2 \cdot 10^{-5} \) | \(a_{689}= +0.41387268 \pm 1.0 \cdot 10^{-4} \) | \(a_{690}= \pm0.45283255 \pm 8.4 \cdot 10^{-6} \) |
\(a_{691}= -1.79737864 \pm 8.4 \cdot 10^{-5} \) | \(a_{692}= \pm0.53054725 \pm 8.9 \cdot 10^{-6} \) | \(a_{693}= +0.32929131 \pm 1.1 \cdot 10^{-5} \) |
\(a_{694}= \pm0.80593185 \pm 2.1 \cdot 10^{-5} \) | \(a_{695}= +0.74826225 \pm 5.2 \cdot 10^{-5} \) | \(a_{696}= \pm0.00820153 \pm 7.4 \cdot 10^{-5} \) |
\(a_{697}= +0.00422805 \pm 3.0 \cdot 10^{-5} \) | \(a_{698}= \pm0.39401455 \pm 5.7 \cdot 10^{-5} \) | \(a_{699}= +0.95541779 \pm 1.2 \cdot 10^{-4} \) |
\(a_{700}= \pm1.04599335 \pm 8.3 \cdot 10^{-6} \) | \(a_{701}= -0.07052935 \pm 6.6 \cdot 10^{-5} \) | \(a_{702}= \pm0.17177066 \pm 5.5 \cdot 10^{-5} \) |
\(a_{703}= -0.01520718 \pm 6.1 \cdot 10^{-5} \) | \(a_{704}= \pm0.09366798 \pm 7.7 \cdot 10^{-6} \) | \(a_{705}= +0.88897763 \pm 1.1 \cdot 10^{-4} \) |
\(a_{706}= \pm1.00518293 \pm 4.0 \cdot 10^{-5} \) | \(a_{707}= +0.81605953 \pm 8.2 \cdot 10^{-5} \) | \(a_{708}= \pm0.05462569 \pm 1.0 \cdot 10^{-5} \) |
\(a_{709}= +0.45274010 \pm 6.2 \cdot 10^{-5} \) | \(a_{710}= \pm0.69524455 \pm 7.8 \cdot 10^{-5} \) | \(a_{711}= +0.00399215 \pm 1.9 \cdot 10^{-5} \) |
\(a_{712}= \pm0.09707065 \pm 3.4 \cdot 10^{-5} \) | \(a_{713}= -0.24564677 \pm 1.1 \cdot 10^{-5} \) | \(a_{714}= \pm0.60059211 \pm 2.2 \cdot 10^{-5} \) |
\(a_{715}= -0.39076770 \pm 4.6 \cdot 10^{-5} \) | \(a_{716}= \pm0.50157433 \pm 7.5 \cdot 10^{-5} \) | \(a_{717}= -1.76758965 \pm 2.5 \cdot 10^{-5} \) |
\(a_{718}= \pm1.20883652 \pm 9.8 \cdot 10^{-5} \) | \(a_{719}= -0.36503987 \pm 7.6 \cdot 10^{-5} \) | \(a_{720}= \pm0.14102516 \pm 6.0 \cdot 10^{-6} \) |
\(a_{721}= +1.47458963 \pm 5.0 \cdot 10^{-5} \) | \(a_{722}= \pm0.70705567 \pm 3.6 \cdot 10^{-5} \) | \(a_{723}= -0.28567947 \pm 1.8 \cdot 10^{-4} \) |
\(a_{724}= \pm0.76462674 \pm 1.8 \cdot 10^{-5} \) | \(a_{725}= +0.03297955 \pm 3.5 \cdot 10^{-5} \) | \(a_{726}= \pm0.35978943 \pm 5.9 \cdot 10^{-5} \) |
\(a_{727}= +1.36448031 \pm 6.1 \cdot 10^{-6} \) | \(a_{728}= \pm0.14362665 \pm 2.6 \cdot 10^{-5} \) | \(a_{729}= +0.45489316 \pm 7.7 \cdot 10^{-5} \) |
\(a_{730}= \pm1.65074323 \pm 9.9 \cdot 10^{-5} \) | \(a_{731}= -0.97383214 \pm 3.5 \cdot 10^{-5} \) | \(a_{732}= \pm0.63468545 \pm 6.0 \cdot 10^{-6} \) |
\(a_{733}= -0.76595715 \pm 1.2 \cdot 10^{-4} \) | \(a_{734}= \pm0.05691741 \pm 1.3 \cdot 10^{-4} \) | \(a_{735}= -1.14847075 \pm 3.6 \cdot 10^{-5} \) |
\(a_{736}= \pm0.05993304 \pm 1.9 \cdot 10^{-6} \) | \(a_{737}= +0.70908318 \pm 5.8 \cdot 10^{-5} \) | \(a_{738}= \pm0.00179490 \pm 1.5 \cdot 10^{-5} \) |
\(a_{739}= +0.90349833 \pm 4.1 \cdot 10^{-5} \) | \(a_{740}= \pm1.45587189 \pm 3.8 \cdot 10^{-5} \) | \(a_{741}= +0.00316041 \pm 7.4 \cdot 10^{-5} \) |
\(a_{742}= \pm1.15840302 \pm 7.4 \cdot 10^{-5} \) | \(a_{743}= -0.58076661 \pm 1.2 \cdot 10^{-4} \) | \(a_{744}= \pm0.29725872 \pm 6.8 \cdot 10^{-5} \) |
\(a_{745}= +1.25039407 \pm 1.3 \cdot 10^{-4} \) | \(a_{746}= \pm0.11206216 \pm 2.3 \cdot 10^{-5} \) | \(a_{747}= +0.58488787 \pm 2.0 \cdot 10^{-5} \) |
\(a_{748}= \pm0.21626784 \pm 9.8 \cdot 10^{-6} \) | \(a_{749}= -2.06292611 \pm 2.6 \cdot 10^{-5} \) | \(a_{750}= \pm0.86782968 \pm 9.2 \cdot 10^{-5} \) |
\(a_{751}= +0.04925866 \pm 1.6 \cdot 10^{-4} \) | \(a_{752}= \pm0.11765748 \pm 2.7 \cdot 10^{-5} \) | \(a_{753}= +0.50510011 \pm 1.4 \cdot 10^{-4} \) |
\(a_{754}= \pm0.00452846 \pm 1.1 \cdot 10^{-4} \) | \(a_{755}= +0.85093687 \pm 7.7 \cdot 10^{-5} \) | \(a_{756}= \pm0.48077503 \pm 3.9 \cdot 10^{-5} \) |
\(a_{757}= -1.83254826 \pm 3.1 \cdot 10^{-5} \) | \(a_{758}= \pm0.67392313 \pm 1.4 \cdot 10^{-4} \) | \(a_{759}= +0.29480329 \pm 5.1 \cdot 10^{-6} \) |
\(a_{760}= \pm0.00489275 \pm 2.5 \cdot 10^{-5} \) | \(a_{761}= -1.10534822 \pm 1.1 \cdot 10^{-4} \) | \(a_{762}= \pm0.19522335 \pm 5.5 \cdot 10^{-5} \) |
\(a_{763}= +1.28300693 \pm 2.8 \cdot 10^{-5} \) | \(a_{764}= \pm0.09757561 \pm 5.1 \cdot 10^{-5} \) | \(a_{765}= -0.32560974 \pm 1.5 \cdot 10^{-5} \) |
\(a_{766}= \pm0.68281192 \pm 2.4 \cdot 10^{-5} \) | \(a_{767}= +0.03016151 \pm 1.6 \cdot 10^{-5} \) | \(a_{768}= \pm0.07252536 \pm 7.6 \cdot 10^{-6} \) |
\(a_{769}= -0.98220964 \pm 1.3 \cdot 10^{-4} \) | \(a_{770}= \pm1.09373368 \pm 3.3 \cdot 10^{-5} \) | \(a_{771}= +0.31529941 \pm 3.0 \cdot 10^{-5} \) |
\(a_{772}= \pm0.88569435 \pm 9.9 \cdot 10^{-5} \) | \(a_{773}= +1.25414057 \pm 9.4 \cdot 10^{-5} \) | \(a_{774}= \pm0.41341237 \pm 1.7 \cdot 10^{-5} \) |
\(a_{775}= -1.19532137 \pm 3.1 \cdot 10^{-5} \) | \(a_{776}= \pm0.09955596 \pm 5.7 \cdot 10^{-5} \) | \(a_{777}= +2.63211909 \pm 7.6 \cdot 10^{-5} \) |
\(a_{778}= \pm0.65310236 \pm 1.6 \cdot 10^{-5} \) | \(a_{779}= +0.00006227 \pm 6.0 \cdot 10^{-5} \) | \(a_{780}= \pm0.30256408 \pm 4.6 \cdot 10^{-5} \) |
\(a_{781}= -0.45261849 \pm 6.9 \cdot 10^{-5} \) | \(a_{782}= \pm0.13837802 \pm 7.7 \cdot 10^{-6} \) | \(a_{783}= +0.01515855 \pm 1.6 \cdot 10^{-4} \) |
\(a_{784}= \pm0.15200177 \pm 9.1 \cdot 10^{-6} \) | \(a_{785}= +1.79941396 \pm 1.7 \cdot 10^{-4} \) | \(a_{786}= \pm0.64091595 \pm 7.8 \cdot 10^{-5} \) |
\(a_{787}= -0.03786475 \pm 6.7 \cdot 10^{-5} \) | \(a_{788}= \pm0.86392720 \pm 1.5 \cdot 10^{-5} \) | \(a_{789}= -1.78591975 \pm 1.6 \cdot 10^{-4} \) |
\(a_{790}= \pm0.01325982 \pm 4.8 \cdot 10^{-5} \) | \(a_{791}= +0.06307954 \pm 1.0 \cdot 10^{-4} \) | \(a_{792}= \pm0.09181028 \pm 4.9 \cdot 10^{-6} \) |
\(a_{793}= +0.35044086 \pm 1.0 \cdot 10^{-5} \) | \(a_{794}= \pm0.03388874 \pm 1.9 \cdot 10^{-5} \) | \(a_{795}= -2.44029325 \pm 1.2 \cdot 10^{-4} \) |
\(a_{796}= \pm0.62499162 \pm 4.4 \cdot 10^{-5} \) | \(a_{797}= +1.01790667 \pm 4.4 \cdot 10^{-5} \) | \(a_{798}= \pm0.00884577 \pm 5.2 \cdot 10^{-5} \) |
\(a_{799}= +0.27165663 \pm 4.2 \cdot 10^{-5} \) | \(a_{800}= \pm0.29163521 \pm 3.5 \cdot 10^{-6} \) | \(a_{801}= +0.09514546 \pm 2.3 \cdot 10^{-5} \) |
\(a_{802}= \pm1.35549536 \pm 3.8 \cdot 10^{-5} \) | \(a_{803}= -1.07466775 \pm 8.8 \cdot 10^{-5} \) | \(a_{804}= \pm0.54902977 \pm 5.7 \cdot 10^{-5} \) |
\(a_{805}= -0.69982065 \pm 6.6 \cdot 10^{-6} \) | \(a_{806}= \pm0.16413107 \pm 1.0 \cdot 10^{-4} \) | \(a_{807}= +0.31963131 \pm 1.7 \cdot 10^{-5} \) |
\(a_{808}= \pm0.22752696 \pm 3.5 \cdot 10^{-5} \) | \(a_{809}= -0.62074006 \pm 1.5 \cdot 10^{-4} \) | \(a_{810}= \pm1.41168068 \pm 8.2 \cdot 10^{-5} \) |
\(a_{811}= +0.15426496 \pm 1.7 \cdot 10^{-5} \) | \(a_{812}= \pm0.01267488 \pm 7.9 \cdot 10^{-5} \) | \(a_{813}= +0.01339910 \pm 1.7 \cdot 10^{-4} \) |
\(a_{814}= \pm0.94780251 \pm 3.3 \cdot 10^{-5} \) | \(a_{815}= +1.72448942 \pm 3.5 \cdot 10^{-5} \) | \(a_{816}= \pm0.16745212 \pm 1.1 \cdot 10^{-5} \) |
\(a_{817}= -0.01434301 \pm 6.4 \cdot 10^{-5} \) | \(a_{818}= \pm0.88258372 \pm 1.9 \cdot 10^{-5} \) | \(a_{819}= -0.14077812 \pm 1.7 \cdot 10^{-5} \) |
\(a_{820}= \pm0.00596171 \pm 3.7 \cdot 10^{-5} \) | \(a_{821}= -0.71546164 \pm 2.9 \cdot 10^{-5} \) | \(a_{822}= \pm1.24084407 \pm 3.1 \cdot 10^{-5} \) |
\(a_{823}= -0.72418983 \pm 3.9 \cdot 10^{-5} \) | \(a_{824}= \pm0.41113288 \pm 2.2 \cdot 10^{-5} \) | \(a_{825}= +1.43451784 \pm 1.2 \cdot 10^{-5} \) |
\(a_{826}= \pm0.08442014 \pm 1.0 \cdot 10^{-5} \) | \(a_{827}= -0.28007608 \pm 4.4 \cdot 10^{-5} \) | \(a_{828}= \pm0.05874440 \pm 3.9 \cdot 10^{-6} \) |
\(a_{829}= +1.95350124 \pm 1.3 \cdot 10^{-5} \) | \(a_{830}= \pm1.94269189 \pm 2.0 \cdot 10^{-5} \) | \(a_{831}= +0.96184464 \pm 7.5 \cdot 10^{-5} \) |
\(a_{832}= \pm0.04004479 \pm 1.1 \cdot 10^{-5} \) | \(a_{833}= -0.35095337 \pm 1.8 \cdot 10^{-5} \) | \(a_{834}= \pm0.37717877 \pm 4.5 \cdot 10^{-5} \) |
\(a_{835}= +0.34614501 \pm 2.7 \cdot 10^{-5} \) | \(a_{836}= \pm0.00318528 \pm 2.2 \cdot 10^{-5} \) | \(a_{837}= -0.54941139 \pm 1.5 \cdot 10^{-4} \) |
\(a_{838}= \pm1.25586703 \pm 7.8 \cdot 10^{-5} \) | \(a_{839}= -0.11247573 \pm 4.0 \cdot 10^{-5} \) | \(a_{840}= \pm0.84685742 \pm 3.2 \cdot 10^{-5} \) |
\(a_{841}= -0.99960037 \pm 2.2 \cdot 10^{-4} \) | \(a_{842}= \pm0.24581823 \pm 5.8 \cdot 10^{-5} \) | \(a_{843}= -0.53600414 \pm 3.5 \cdot 10^{-5} \) |
\(a_{844}= \pm0.68494898 \pm 6.6 \cdot 10^{-5} \) | \(a_{845}= -1.46074113 \pm 3.2 \cdot 10^{-5} \) | \(a_{846}= \pm0.11532399 \pm 2.1 \cdot 10^{-5} \) |
\(a_{847}= +0.55602909 \pm 6.1 \cdot 10^{-5} \) | \(a_{848}= \pm0.32297634 \pm 3.1 \cdot 10^{-5} \) | \(a_{849}= -0.77178221 \pm 9.4 \cdot 10^{-5} \) |
\(a_{850}= \pm0.67334980 \pm 5.4 \cdot 10^{-6} \) | \(a_{851}= +0.60644724 \pm 1.1 \cdot 10^{-5} \) | \(a_{852}= \pm0.35045398 \pm 6.7 \cdot 10^{-5} \) |
\(a_{853}= -1.34321933 \pm 1.2 \cdot 10^{-4} \) | \(a_{854}= \pm0.98086143 \pm 6.9 \cdot 10^{-6} \) | \(a_{855}= -0.00479572 \pm 1.6 \cdot 10^{-5} \) |
\(a_{856}= \pm0.57516798 \pm 1.1 \cdot 10^{-5} \) | \(a_{857}= +1.10223149 \pm 2.9 \cdot 10^{-5} \) | \(a_{858}= \pm0.19697543 \pm 4.0 \cdot 10^{-5} \) |
\(a_{859}= +0.95118478 \pm 1.5 \cdot 10^{-4} \) | \(a_{860}= \pm1.37313987 \pm 3.9 \cdot 10^{-5} \) | \(a_{861}= -0.01077836 \pm 7.4 \cdot 10^{-5} \) |
\(a_{862}= \pm0.48105570 \pm 2.0 \cdot 10^{-5} \) | \(a_{863}= -0.93276191 \pm 1.5 \cdot 10^{-4} \) | \(a_{864}= \pm0.13404571 \pm 1.6 \cdot 10^{-5} \) |
\(a_{865}= +1.72725128 \pm 1.5 \cdot 10^{-5} \) | \(a_{866}= \pm0.04923868 \pm 4.9 \cdot 10^{-5} \) | \(a_{867}= +0.77377937 \pm 1.1 \cdot 10^{-4} \) |
\(a_{868}= \pm0.45939231 \pm 7.2 \cdot 10^{-5} \) | \(a_{869}= -0.00863242 \pm 4.2 \cdot 10^{-5} \) | \(a_{870}= \pm0.02670091 \pm 1.3 \cdot 10^{-4} \) |
\(a_{871}= -0.30314617 \pm 8.7 \cdot 10^{-5} \) | \(a_{872}= \pm0.35771737 \pm 1.2 \cdot 10^{-5} \) | \(a_{873}= -0.09758148 \pm 3.7 \cdot 10^{-5} \) |
\(a_{874}= \pm0.00203809 \pm 4.3 \cdot 10^{-6} \) | \(a_{875}= -1.34116934 \pm 9.7 \cdot 10^{-5} \) | \(a_{876}= \pm0.83209503 \pm 8.6 \cdot 10^{-5} \) |
\(a_{877}= -0.55600226 \pm 3.1 \cdot 10^{-5} \) | \(a_{878}= \pm0.47159826 \pm 1.3 \cdot 10^{-4} \) | \(a_{879}= -0.75258325 \pm 9.6 \cdot 10^{-5} \) |
\(a_{880}= \pm0.30494577 \pm 1.4 \cdot 10^{-5} \) | \(a_{881}= +0.34103560 \pm 7.3 \cdot 10^{-5} \) | \(a_{882}= \pm0.14898714 \pm 9.5 \cdot 10^{-6} \) |
\(a_{883}= +0.77978462 \pm 1.8 \cdot 10^{-4} \) | \(a_{884}= \pm0.09245850 \pm 1.7 \cdot 10^{-5} \) | \(a_{885}= -0.17783957 \pm 1.8 \cdot 10^{-5} \) |
\(a_{886}= \pm0.70423485 \pm 1.5 \cdot 10^{-4} \) | \(a_{887}= +0.30881600 \pm 9.9 \cdot 10^{-6} \) | \(a_{888}= \pm0.73386566 \pm 3.3 \cdot 10^{-5} \) |
\(a_{889}= +0.30170387 \pm 5.7 \cdot 10^{-5} \) | \(a_{890}= \pm0.31602351 \pm 6.3 \cdot 10^{-5} \) | \(a_{891}= +0.91903312 \pm 7.2 \cdot 10^{-5} \) |
\(a_{892}= \pm0.28879850 \pm 1.8 \cdot 10^{-5} \) | \(a_{893}= +0.00400107 \pm 8.0 \cdot 10^{-5} \) | \(a_{894}= \pm0.63028984 \pm 1.1 \cdot 10^{-4} \) |
\(a_{895}= -1.63292695 \pm 1.3 \cdot 10^{-4} \) | \(a_{896}= \pm0.11208280 \pm 8.0 \cdot 10^{-6} \) | \(a_{897}= -0.12603386 \pm 1.6 \cdot 10^{-5} \) |
\(a_{898}= \pm0.80957242 \pm 1.1 \cdot 10^{-4} \) | \(a_{899}= -0.01448437 \pm 3.0 \cdot 10^{-4} \) | \(a_{900}= \pm0.28585125 \pm 2.7 \cdot 10^{-6} \) |
\(a_{901}= -0.74571262 \pm 4.4 \cdot 10^{-5} \) | \(a_{902}= \pm0.00388119 \pm 3.2 \cdot 10^{-5} \) | \(a_{903}= +2.48254511 \pm 7.9 \cdot 10^{-5} \) |
\(a_{904}= \pm0.01758731 \pm 4.3 \cdot 10^{-5} \) | \(a_{905}= +2.48932119 \pm 3.2 \cdot 10^{-5} \) | \(a_{906}= \pm0.42893427 \pm 6.7 \cdot 10^{-5} \) |
\(a_{907}= +0.25173093 \pm 5.6 \cdot 10^{-5} \) | \(a_{908}= \pm0.18110811 \pm 1.6 \cdot 10^{-6} \) | \(a_{909}= -0.22301445 \pm 2.2 \cdot 10^{-5} \) |
\(a_{910}= \pm0.46759137 \pm 4.8 \cdot 10^{-5} \) | \(a_{911}= -0.54415426 \pm 1.2 \cdot 10^{-5} \) | \(a_{912}= \pm0.00246630 \pm 2.2 \cdot 10^{-5} \) |
\(a_{913}= -1.26473233 \pm 1.4 \cdot 10^{-5} \) | \(a_{914}= \pm0.22047597 \pm 2.1 \cdot 10^{-5} \) | \(a_{915}= -2.06628392 \pm 1.0 \cdot 10^{-5} \) |
\(a_{916}= \pm0.74635376 \pm 7.9 \cdot 10^{-5} \) | \(a_{917}= -0.99049022 \pm 8.2 \cdot 10^{-5} \) | \(a_{918}= \pm0.30949506 \pm 2.0 \cdot 10^{-5} \) |
\(a_{919}= -1.79589045 \pm 3.5 \cdot 10^{-5} \) | \(a_{920}= \pm0.19511820 \pm 3.3 \cdot 10^{-6} \) | \(a_{921}= +0.07723275 \pm 1.6 \cdot 10^{-4} \) |
\(a_{922}= \pm0.74024188 \pm 9.0 \cdot 10^{-5} \) | \(a_{923}= +0.19350277 \pm 1.0 \cdot 10^{-4} \) | \(a_{924}= \pm0.55132158 \pm 2.8 \cdot 10^{-5} \) |
\(a_{925}= +2.95098258 \pm 1.5 \cdot 10^{-5} \) | \(a_{926}= \pm0.26832036 \pm 4.7 \cdot 10^{-5} \) | \(a_{927}= -0.40297894 \pm 1.8 \cdot 10^{-5} \) |
\(a_{928}= \pm0.00353390 \pm 3.3 \cdot 10^{-5} \) | \(a_{929}= -1.15399343 \pm 2.7 \cdot 10^{-5} \) | \(a_{930}= \pm0.96775641 \pm 1.2 \cdot 10^{-4} \) |
\(a_{931}= -0.00516899 \pm 2.5 \cdot 10^{-5} \) | \(a_{932}= \pm0.41167403 \pm 5.5 \cdot 10^{-5} \) | \(a_{933}= +0.59019610 \pm 1.4 \cdot 10^{-4} \) |
\(a_{934}= \pm0.42520727 \pm 5.1 \cdot 10^{-5} \) | \(a_{935}= +0.70408225 \pm 1.7 \cdot 10^{-5} \) | \(a_{936}= \pm0.03925059 \pm 9.0 \cdot 10^{-6} \) |
\(a_{937}= +0.82057546 \pm 8.6 \cdot 10^{-5} \) | \(a_{938}= \pm0.84848664 \pm 6.1 \cdot 10^{-5} \) | \(a_{939}= +0.42570048 \pm 1.6 \cdot 10^{-4} \) |
\(a_{940}= \pm0.38304604 \pm 4.9 \cdot 10^{-5} \) | \(a_{941}= -0.40066890 \pm 7.3 \cdot 10^{-5} \) | \(a_{942}= \pm0.90703593 \pm 1.5 \cdot 10^{-4} \) |
\(a_{943}= -0.00248336 \pm 1.0 \cdot 10^{-5} \) | \(a_{944}= \pm0.02353732 \pm 4.4 \cdot 10^{-6} \) | \(a_{945}= -1.56521268 \pm 7.1 \cdot 10^{-5} \) |
\(a_{946}= \pm0.89394226 \pm 3.4 \cdot 10^{-5} \) | \(a_{947}= +0.95600145 \pm 3.1 \cdot 10^{-5} \) | \(a_{948}= \pm0.00668392 \pm 4.2 \cdot 10^{-5} \) |
\(a_{949}= +0.45944034 \pm 1.2 \cdot 10^{-4} \) | \(a_{950}= \pm0.00991738 \pm 1.0 \cdot 10^{-5} \) | \(a_{951}= +0.23192134 \pm 5.7 \cdot 10^{-5} \) |
\(a_{952}= \pm0.25878540 \pm 1.0 \cdot 10^{-5} \) | \(a_{953}= +0.36236421 \pm 5.4 \cdot 10^{-5} \) | \(a_{954}= \pm0.31657080 \pm 2.2 \cdot 10^{-5} \) |
\(a_{955}= +0.31766746 \pm 9.2 \cdot 10^{-5} \) | \(a_{956}= \pm0.76162571 \pm 1.1 \cdot 10^{-5} \) | \(a_{957}= +0.01738284 \pm 1.2 \cdot 10^{-4} \) |
\(a_{958}= \pm0.41375606 \pm 8.3 \cdot 10^{-5} \) | \(a_{959}= +1.91763666 \pm 3.3 \cdot 10^{-5} \) | \(a_{960}= \pm0.23611378 \pm 1.3 \cdot 10^{-5} \) |
\(a_{961}= -0.47502397 \pm 1.6 \cdot 10^{-4} \) | \(a_{962}= \pm0.40520310 \pm 5.0 \cdot 10^{-5} \) | \(a_{963}= +0.56376076 \pm 8.6 \cdot 10^{-6} \) |
\(a_{964}= \pm0.12309465 \pm 8.3 \cdot 10^{-5} \) | \(a_{965}= -2.88346927 \pm 1.7 \cdot 10^{-4} \) | \(a_{966}= \pm0.35276067 \pm 5.6 \cdot 10^{-6} \) |
\(a_{967}= -1.63006968 \pm 1.0 \cdot 10^{-4} \) | \(a_{968}= \pm0.15502743 \pm 2.6 \cdot 10^{-5} \) | \(a_{969}= -0.00569439 \pm 2.9 \cdot 10^{-5} \) |
\(a_{970}= \pm0.32411470 \pm 1.0 \cdot 10^{-4} \) | \(a_{971}= +0.50092514 \pm 8.6 \cdot 10^{-5} \) | \(a_{972}= \pm0.33245153 \pm 2.5 \cdot 10^{-5} \) |
\(a_{973}= -0.58290308 \pm 4.8 \cdot 10^{-5} \) | \(a_{974}= \pm0.96193155 \pm 1.5 \cdot 10^{-5} \) | \(a_{975}= -0.61328290 \pm 1.9 \cdot 10^{-5} \) |
\(a_{976}= \pm0.27347567 \pm 2.6 \cdot 10^{-6} \) | \(a_{977}= -0.18015768 \pm 1.0 \cdot 10^{-4} \) | \(a_{978}= \pm0.86926849 \pm 3.0 \cdot 10^{-5} \) |
\(a_{979}= -0.20573780 \pm 5.5 \cdot 10^{-5} \) | \(a_{980}= \pm0.49485742 \pm 1.6 \cdot 10^{-5} \) | \(a_{981}= -0.35062282 \pm 1.3 \cdot 10^{-5} \) |
\(a_{982}= \pm0.38430151 \pm 4.6 \cdot 10^{-5} \) | \(a_{983}= +0.54247318 \pm 5.1 \cdot 10^{-5} \) | \(a_{984}= \pm0.00300513 \pm 3.2 \cdot 10^{-5} \) |
\(a_{985}= +2.81260406 \pm 2.7 \cdot 10^{-5} \) | \(a_{986}= \pm0.00815935 \pm 4.2 \cdot 10^{-5} \) | \(a_{987}= -0.69252164 \pm 9.9 \cdot 10^{-5} \) |
\(a_{988}= \pm0.00136177 \pm 3.3 \cdot 10^{-5} \) | \(a_{989}= +0.57198500 \pm 1.2 \cdot 10^{-5} \) | \(a_{990}= \pm0.29889783 \pm 8.8 \cdot 10^{-6} \) |
\(a_{991}= +0.62359043 \pm 2.0 \cdot 10^{-4} \) | \(a_{992}= \pm0.12808396 \pm 3.0 \cdot 10^{-5} \) | \(a_{993}= +0.19801011 \pm 6.5 \cdot 10^{-5} \) |
\(a_{994}= \pm0.54160182 \pm 7.1 \cdot 10^{-5} \) | \(a_{995}= -2.03472465 \pm 7.9 \cdot 10^{-5} \) | \(a_{996}= \pm0.97925846 \pm 1.9 \cdot 10^{-5} \) |
\(a_{997}= -0.74893957 \pm 9.0 \cdot 10^{-5} \) | \(a_{998}= \pm0.62927900 \pm 1.8 \cdot 10^{-5} \) | \(a_{999}= +1.35637453 \pm 7.1 \cdot 10^{-5} \) |
\(a_{1000}= \pm0.37393373 \pm 4.1 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000