Maass form invariants
Level: | \( 2 \) |
Weight: | \( 0 \) |
Character: | 2.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(17.4931127226685992093991119089 \pm 5 \cdot 10^{-6}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.68121955 \pm 6.5 \cdot 10^{-4} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.81602816 \pm 4.7 \cdot 10^{-4} \) | \(a_{6}= +1.18880175 \pm 6.5 \cdot 10^{-4} \) |
\(a_{7}= +0.33076893 \pm 5.4 \cdot 10^{-4} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +1.82649919 \pm 1.1 \cdot 10^{-3} \) |
\(a_{10}= -0.57701904 \pm 4.7 \cdot 10^{-4} \) | \(a_{11}= +0.79862660 \pm 1.5 \cdot 10^{-3} \) | \(a_{12}= -0.84060978 \pm 6.5 \cdot 10^{-4} \) |
\(a_{13}= -1.41850327 \pm 1.2 \cdot 10^{-3} \) | \(a_{14}= -0.23388895 \pm 5.4 \cdot 10^{-4} \) | \(a_{15}= -1.37192250 \pm 3.5 \cdot 10^{-4} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.48398811 \pm 9.0 \cdot 10^{-4} \) | \(a_{18}= -1.29152996 \pm 1.1 \cdot 10^{-3} \) |
\(a_{19}= +0.79258632 \pm 6.4 \cdot 10^{-4} \) | \(a_{20}= +0.40801408 \pm 4.7 \cdot 10^{-4} \) | \(a_{21}= -0.55609520 \pm 2.7 \cdot 10^{-4} \) |
\(a_{22}= -0.56471428 \pm 1.5 \cdot 10^{-3} \) | \(a_{23}= +0.07303840 \pm 6.5 \cdot 10^{-4} \) | \(a_{24}= +0.59440087 \pm 6.5 \cdot 10^{-4} \) |
\(a_{25}= -0.33409804 \pm 1.2 \cdot 10^{-3} \) | \(a_{26}= +1.00303328 \pm 1.2 \cdot 10^{-3} \) | \(a_{27}= -1.38952659 \pm 1.0 \cdot 10^{-3} \) |
\(a_{28}= +0.16538447 \pm 5.4 \cdot 10^{-4} \) | \(a_{29}= -0.41502370 \pm 1.1 \cdot 10^{-3} \) | \(a_{30}= +0.97009570 \pm 1.1 \cdot 10^{-3} \) |
\(a_{31}= +0.49763209 \pm 1.2 \cdot 10^{-3} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -1.34266665 \pm 6.2 \cdot 10^{-4} \) |
\(a_{34}= +0.34223128 \pm 9.0 \cdot 10^{-4} \) | \(a_{35}= +0.26991676 \pm 1.3 \cdot 10^{-4} \) | \(a_{36}= +0.91324959 \pm 1.1 \cdot 10^{-3} \) |
\(a_{37}= -1.21954370 \pm 1.6 \cdot 10^{-3} \) | \(a_{38}= -0.56044316 \pm 6.4 \cdot 10^{-4} \) | \(a_{39}= +2.38481544 \pm 4.9 \cdot 10^{-4} \) |
\(a_{40}= -0.28850952 \pm 4.7 \cdot 10^{-4} \) | \(a_{41}= -1.86645137 \pm 1.6 \cdot 10^{-3} \) | \(a_{42}= +0.39321868 \pm 1.1 \cdot 10^{-3} \) |
\(a_{43}= -0.58566433 \pm 3.7 \cdot 10^{-4} \) | \(a_{44}= +0.39931330 \pm 1.5 \cdot 10^{-3} \) | \(a_{45}= +1.49047477 \pm 2.8 \cdot 10^{-4} \) |
\(a_{46}= -0.05164594 \pm 6.5 \cdot 10^{-4} \) | \(a_{47}= -0.34943216 \pm 1.1 \cdot 10^{-3} \) | \(a_{48}= -0.42030489 \pm 6.5 \cdot 10^{-4} \) |
\(a_{49}= -0.89059191 \pm 1.1 \cdot 10^{-3} \) | \(a_{50}= +0.23624299 \pm 1.2 \cdot 10^{-3} \) | \(a_{51}= +0.81369028 \pm 6.7 \cdot 10^{-4} \) |
\(a_{52}= -0.70925164 \pm 1.2 \cdot 10^{-3} \) | \(a_{53}= -0.13143755 \pm 1.3 \cdot 10^{-3} \) | \(a_{54}= +0.98254368 \pm 1.0 \cdot 10^{-3} \) |
\(a_{55}= +0.65170179 \pm 3.9 \cdot 10^{-4} \) | \(a_{56}= -0.11694448 \pm 5.4 \cdot 10^{-4} \) | \(a_{57}= -1.33251162 \pm 5.5 \cdot 10^{-4} \) |
\(a_{58}= +0.29346607 \pm 1.1 \cdot 10^{-3} \) | \(a_{59}= -0.38820915 \pm 1.1 \cdot 10^{-3} \) | \(a_{60}= -0.68596125 \pm 1.1 \cdot 10^{-3} \) |
\(a_{61}= +1.41758772 \pm 5.9 \cdot 10^{-4} \) | \(a_{62}= -0.35187903 \pm 1.2 \cdot 10^{-3} \) | \(a_{63}= +0.60414918 \pm 4.4 \cdot 10^{-4} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.15753861 \pm 3.1 \cdot 10^{-4} \) | \(a_{66}= +0.94940869 \pm 2.2 \cdot 10^{-3} \) |
\(a_{67}= +0.09198829 \pm 2.1 \cdot 10^{-3} \) | \(a_{68}= -0.24199406 \pm 9.0 \cdot 10^{-4} \) | \(a_{69}= -0.12279358 \pm 4.7 \cdot 10^{-4} \) |
\(a_{70}= -0.19085997 \pm 1.0 \cdot 10^{-3} \) | \(a_{71}= -0.96256100 \pm 9.3 \cdot 10^{-4} \) | \(a_{72}= -0.64576498 \pm 1.1 \cdot 10^{-3} \) |
\(a_{73}= +1.26980636 \pm 2.0 \cdot 10^{-3} \) | \(a_{74}= +0.86234762 \pm 1.6 \cdot 10^{-3} \) | \(a_{75}= +0.56169217 \pm 5.0 \cdot 10^{-4} \) |
\(a_{76}= +0.39629316 \pm 6.4 \cdot 10^{-4} \) | \(a_{77}= +0.26416087 \pm 6.3 \cdot 10^{-4} \) | \(a_{78}= -1.68631917 \pm 1.8 \cdot 10^{-3} \) |
\(a_{79}= -1.55148365 \pm 6.5 \cdot 10^{-4} \) | \(a_{80}= +0.20400704 \pm 4.7 \cdot 10^{-4} \) | \(a_{81}= +0.50960009 \pm 8.6 \cdot 10^{-4} \) |
\(a_{82}= +1.31978042 \pm 1.6 \cdot 10^{-3} \) | \(a_{83}= -0.22393921 \pm 7.0 \cdot 10^{-4} \) | \(a_{84}= -0.27804760 \pm 1.1 \cdot 10^{-3} \) |
\(a_{85}= -0.39494793 \pm 6.0 \cdot 10^{-4} \) | \(a_{86}= +0.41412722 \pm 3.7 \cdot 10^{-4} \) | \(a_{87}= +0.69774596 \pm 4.8 \cdot 10^{-4} \) |
\(a_{88}= -0.28235714 \pm 1.5 \cdot 10^{-3} \) | \(a_{89}= +0.82671363 \pm 6.6 \cdot 10^{-4} \) | \(a_{90}= -1.05392482 \pm 1.5 \cdot 10^{-3} \) |
\(a_{91}= -0.46919681 \pm 5.0 \cdot 10^{-4} \) | \(a_{92}= +0.03651920 \pm 6.5 \cdot 10^{-4} \) | \(a_{93}= -0.83662881 \pm 5.2 \cdot 10^{-4} \) |
\(a_{94}= +0.24708585 \pm 1.1 \cdot 10^{-3} \) | \(a_{95}= +0.64677276 \pm 4.9 \cdot 10^{-4} \) | \(a_{96}= +0.29720044 \pm 6.5 \cdot 10^{-4} \) |
\(a_{97}= -0.78598253 \pm 3.2 \cdot 10^{-4} \) | \(a_{98}= +0.62974358 \pm 1.1 \cdot 10^{-3} \) | \(a_{99}= +1.45869083 \pm 1.3 \cdot 10^{-3} \) |
\(a_{100}= -0.16704902 \pm 1.2 \cdot 10^{-3} \) | \(a_{101}= -1.38972244 \pm 6.2 \cdot 10^{-4} \) | \(a_{102}= -0.57536592 \pm 1.5 \cdot 10^{-3} \) |
\(a_{103}= +1.03835343 \pm 2.1 \cdot 10^{-3} \) | \(a_{104}= +0.50151664 \pm 1.2 \cdot 10^{-3} \) | \(a_{105}= -0.45378934 \pm 6.7 \cdot 10^{-5} \) |
\(a_{106}= +0.09294039 \pm 1.3 \cdot 10^{-3} \) | \(a_{107}= -1.71110606 \pm 7.9 \cdot 10^{-4} \) | \(a_{108}= -0.69476330 \pm 1.0 \cdot 10^{-3} \) |
\(a_{109}= +1.12507107 \pm 1.6 \cdot 10^{-3} \) | \(a_{110}= -0.46082276 \pm 2.0 \cdot 10^{-3} \) | \(a_{111}= +2.05032071 \pm 6.7 \cdot 10^{-4} \) |
\(a_{112}= +0.08269223 \pm 5.4 \cdot 10^{-4} \) | \(a_{113}= -0.23667705 \pm 1.0 \cdot 10^{-3} \) | \(a_{114}= +0.94222800 \pm 1.2 \cdot 10^{-3} \) |
\(a_{115}= +0.05960139 \pm 2.9 \cdot 10^{-4} \) | \(a_{116}= -0.20751185 \pm 1.1 \cdot 10^{-3} \) | \(a_{117}= -2.59089507 \pm 1.0 \cdot 10^{-3} \) |
\(a_{118}= +0.27450532 \pm 1.1 \cdot 10^{-3} \) | \(a_{119}= -0.16008823 \pm 2.5 \cdot 10^{-4} \) | \(a_{120}= +0.48504785 \pm 1.1 \cdot 10^{-3} \) |
\(a_{121}= -0.36219556 \pm 7.0 \cdot 10^{-4} \) | \(a_{122}= -1.00238589 \pm 5.9 \cdot 10^{-4} \) | \(a_{123}= +3.13791453 \pm 7.5 \cdot 10^{-4} \) |
\(a_{124}= +0.24881605 \pm 1.2 \cdot 10^{-3} \) | \(a_{125}= -1.08866157 \pm 7.7 \cdot 10^{-4} \) | \(a_{126}= -0.42719799 \pm 1.6 \cdot 10^{-3} \) |
\(a_{127}= -0.39074181 \pm 1.6 \cdot 10^{-3} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.98463032 \pm 2.9 \cdot 10^{-4} \) |
\(a_{130}= +0.81850340 \pm 1.7 \cdot 10^{-3} \) | \(a_{131}= -0.38490917 \pm 1.0 \cdot 10^{-3} \) | \(a_{132}= -0.67133332 \pm 2.2 \cdot 10^{-3} \) |
\(a_{133}= +0.26216293 \pm 1.5 \cdot 10^{-4} \) | \(a_{134}= -0.06504554 \pm 2.1 \cdot 10^{-3} \) | \(a_{135}= -1.13389283 \pm 4.2 \cdot 10^{-4} \) |
\(a_{136}= +0.17111564 \pm 9.0 \cdot 10^{-4} \) | \(a_{137}= -1.41632975 \pm 5.8 \cdot 10^{-4} \) | \(a_{138}= +0.08682817 \pm 1.3 \cdot 10^{-3} \) |
\(a_{139}= +1.90119243 \pm 2.0 \cdot 10^{-3} \) | \(a_{140}= +0.13495838 \pm 1.0 \cdot 10^{-3} \) | \(a_{141}= +0.58747218 \pm 5.1 \cdot 10^{-4} \) |
\(a_{142}= +0.68063341 \pm 9.3 \cdot 10^{-4} \) | \(a_{143}= -1.13285444 \pm 1.4 \cdot 10^{-3} \) | \(a_{144}= +0.45662480 \pm 1.1 \cdot 10^{-3} \) |
\(a_{145}= -0.33867103 \pm 3.4 \cdot 10^{-4} \) | \(a_{146}= -0.89788869 \pm 2.0 \cdot 10^{-3} \) | \(a_{147}= +1.49728054 \pm 5.5 \cdot 10^{-4} \) |
\(a_{148}= -0.60977185 \pm 1.6 \cdot 10^{-3} \) | \(a_{149}= +0.27444810 \pm 1.6 \cdot 10^{-4} \) | \(a_{150}= -0.39717634 \pm 1.8 \cdot 10^{-3} \) |
\(a_{151}= -0.69139971 \pm 1.5 \cdot 10^{-3} \) | \(a_{152}= -0.28022158 \pm 6.4 \cdot 10^{-4} \) | \(a_{153}= -0.88400390 \pm 5.3 \cdot 10^{-4} \) |
\(a_{154}= -0.18678994 \pm 2.1 \cdot 10^{-3} \) | \(a_{155}= +0.40608180 \pm 3.2 \cdot 10^{-4} \) | \(a_{156}= +1.19240772 \pm 1.8 \cdot 10^{-3} \) |
\(a_{157}= +0.16620219 \pm 1.2 \cdot 10^{-3} \) | \(a_{158}= +1.09706461 \pm 6.5 \cdot 10^{-4} \) | \(a_{159}= +0.22097539 \pm 5.5 \cdot 10^{-4} \) |
\(a_{160}= -0.14425476 \pm 4.7 \cdot 10^{-4} \) | \(a_{161}= +0.02415883 \pm 3.3 \cdot 10^{-4} \) | \(a_{162}= -0.36034168 \pm 8.6 \cdot 10^{-4} \) |
\(a_{163}= +0.50719851 \pm 1.4 \cdot 10^{-3} \) | \(a_{164}= -0.93322568 \pm 1.6 \cdot 10^{-3} \) | \(a_{165}= -1.09565379 \pm 1.5 \cdot 10^{-4} \) |
\(a_{166}= +0.15834894 \pm 7.0 \cdot 10^{-4} \) | \(a_{167}= -1.31071033 \pm 1.4 \cdot 10^{-3} \) | \(a_{168}= +0.19660934 \pm 1.1 \cdot 10^{-3} \) |
\(a_{169}= +1.01215153 \pm 4.2 \cdot 10^{-4} \) | \(a_{170}= +0.27927036 \pm 1.3 \cdot 10^{-3} \) | \(a_{171}= +1.44765827 \pm 2.6 \cdot 10^{-4} \) |
\(a_{172}= -0.29283216 \pm 3.7 \cdot 10^{-4} \) | \(a_{173}= -0.71504113 \pm 2.0 \cdot 10^{-3} \) | \(a_{174}= -0.49338090 \pm 1.7 \cdot 10^{-3} \) |
\(a_{175}= -0.11050925 \pm 5.0 \cdot 10^{-4} \) | \(a_{176}= +0.19965665 \pm 1.5 \cdot 10^{-3} \) | \(a_{177}= +0.65266481 \pm 4.9 \cdot 10^{-4} \) |
\(a_{178}= -0.58457482 \pm 6.6 \cdot 10^{-4} \) | \(a_{179}= +0.22233901 \pm 2.5 \cdot 10^{-3} \) | \(a_{180}= +0.74523738 \pm 1.5 \cdot 10^{-3} \) |
\(a_{181}= +1.36593718 \pm 8.3 \cdot 10^{-4} \) | \(a_{182}= +0.33177225 \pm 1.7 \cdot 10^{-3} \) | \(a_{183}= -2.38327619 \pm 5.7 \cdot 10^{-4} \) |
\(a_{184}= -0.02582297 \pm 6.5 \cdot 10^{-4} \) | \(a_{185}= -0.99518200 \pm 4.5 \cdot 10^{-4} \) | \(a_{186}= +0.59158590 \pm 1.9 \cdot 10^{-3} \) |
\(a_{187}= -0.38652578 \pm 7.4 \cdot 10^{-4} \) | \(a_{188}= -0.17471608 \pm 1.1 \cdot 10^{-3} \) | \(a_{189}= -0.45961223 \pm 3.8 \cdot 10^{-4} \) |
\(a_{190}= -0.45733740 \pm 1.1 \cdot 10^{-3} \) | \(a_{191}= +1.39424068 \pm 7.7 \cdot 10^{-4} \) | \(a_{192}= -0.21015244 \pm 6.5 \cdot 10^{-4} \) |
\(a_{193}= +0.67051644 \pm 1.1 \cdot 10^{-3} \) | \(a_{194}= +0.55577358 \pm 3.2 \cdot 10^{-4} \) | \(a_{195}= +1.94607655 \pm 1.2 \cdot 10^{-4} \) |
\(a_{196}= -0.44529596 \pm 1.1 \cdot 10^{-3} \) | \(a_{197}= -0.80066989 \pm 1.7 \cdot 10^{-3} \) | \(a_{198}= -1.03145018 \pm 2.6 \cdot 10^{-3} \) |
\(a_{199}= -0.49700871 \pm 1.3 \cdot 10^{-3} \) | \(a_{200}= +0.11812150 \pm 1.2 \cdot 10^{-3} \) | \(a_{201}= -0.15465251 \pm 8.9 \cdot 10^{-4} \) |
\(a_{202}= +0.98268216 \pm 6.2 \cdot 10^{-4} \) | \(a_{203}= -0.13727695 \pm 4.4 \cdot 10^{-4} \) | \(a_{204}= +0.40684514 \pm 1.5 \cdot 10^{-3} \) |
\(a_{205}= -1.52307687 \pm 5.5 \cdot 10^{-4} \) | \(a_{206}= -0.73422675 \pm 2.1 \cdot 10^{-3} \) | \(a_{207}= +0.13340457 \pm 4.6 \cdot 10^{-4} \) |
\(a_{208}= -0.35462582 \pm 1.2 \cdot 10^{-3} \) | \(a_{209}= +0.63298052 \pm 3.7 \cdot 10^{-4} \) | \(a_{210}= +0.32087752 \pm 1.6 \cdot 10^{-3} \) |
\(a_{211}= -0.29440785 \pm 6.1 \cdot 10^{-4} \) | \(a_{212}= -0.06571878 \pm 1.3 \cdot 10^{-3} \) | \(a_{213}= +1.61827637 \pm 4.7 \cdot 10^{-4} \) |
\(a_{214}= +1.20993470 \pm 7.9 \cdot 10^{-4} \) | \(a_{215}= -0.47791858 \pm 1.7 \cdot 10^{-4} \) | \(a_{216}= +0.49127184 \pm 1.0 \cdot 10^{-3} \) |
\(a_{217}= +0.16460124 \pm 5.3 \cdot 10^{-4} \) | \(a_{218}= -0.79554538 \pm 1.6 \cdot 10^{-3} \) | \(a_{219}= -2.13482328 \pm 8.4 \cdot 10^{-4} \) |
\(a_{220}= +0.32585090 \pm 2.0 \cdot 10^{-3} \) | \(a_{221}= +0.68653872 \pm 5.8 \cdot 10^{-4} \) | \(a_{222}= -1.44979568 \pm 2.2 \cdot 10^{-3} \) |
\(a_{223}= +1.08294843 \pm 2.0 \cdot 10^{-3} \) | \(a_{224}= -0.05847224 \pm 5.4 \cdot 10^{-4} \) | \(a_{225}= -0.61022981 \pm 1.0 \cdot 10^{-3} \) |
\(a_{226}= +0.16735595 \pm 1.0 \cdot 10^{-3} \) | \(a_{227}= +1.79761661 \pm 1.2 \cdot 10^{-3} \) | \(a_{228}= -0.66625581 \pm 1.2 \cdot 10^{-3} \) |
\(a_{229}= -0.62862837 \pm 1.1 \cdot 10^{-3} \) | \(a_{230}= -0.04214455 \pm 1.1 \cdot 10^{-3} \) | \(a_{231}= -0.44411241 \pm 2.8 \cdot 10^{-4} \) |
\(a_{232}= +0.14673304 \pm 1.1 \cdot 10^{-3} \) | \(a_{233}= -1.30100904 \pm 1.0 \cdot 10^{-3} \) | \(a_{234}= +1.83203947 \pm 2.3 \cdot 10^{-3} \) |
\(a_{235}= -0.28514648 \pm 3.7 \cdot 10^{-4} \) | \(a_{236}= -0.19410458 \pm 1.1 \cdot 10^{-3} \) | \(a_{237}= +2.60838464 \pm 3.4 \cdot 10^{-4} \) |
\(a_{238}= +0.11319947 \pm 1.4 \cdot 10^{-3} \) | \(a_{239}= -0.51794472 \pm 1.3 \cdot 10^{-3} \) | \(a_{240}= -0.34298062 \pm 1.1 \cdot 10^{-3} \) |
\(a_{241}= -1.33097190 \pm 1.3 \cdot 10^{-3} \) | \(a_{242}= +0.25611094 \pm 7.0 \cdot 10^{-4} \) | \(a_{243}= +0.53277695 \pm 1.2 \cdot 10^{-3} \) |
\(a_{244}= +0.70879386 \pm 5.9 \cdot 10^{-4} \) | \(a_{245}= -0.72674808 \pm 4.4 \cdot 10^{-4} \) | \(a_{246}= -2.21884065 \pm 2.3 \cdot 10^{-3} \) |
\(a_{247}= -1.12428629 \pm 2.9 \cdot 10^{-4} \) | \(a_{248}= -0.17593951 \pm 1.2 \cdot 10^{-3} \) | \(a_{249}= +0.37649098 \pm 3.7 \cdot 10^{-4} \) |
\(a_{250}= +0.76979998 \pm 7.7 \cdot 10^{-4} \) | \(a_{251}= +1.48107998 \pm 1.9 \cdot 10^{-3} \) | \(a_{252}= +0.30207459 \pm 1.6 \cdot 10^{-3} \) |
\(a_{253}= +0.05833041 \pm 6.6 \cdot 10^{-4} \) | \(a_{254}= +0.27629618 \pm 1.6 \cdot 10^{-3} \) | \(a_{255}= +0.66399418 \pm 5.5 \cdot 10^{-4} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.57738824 \pm 4.3 \cdot 10^{-4} \) | \(a_{258}= -0.69623877 \pm 1.0 \cdot 10^{-3} \) |
\(a_{259}= -0.40338717 \pm 6.4 \cdot 10^{-4} \) | \(a_{260}= -0.57876931 \pm 1.7 \cdot 10^{-3} \) | \(a_{261}= -0.75804045 \pm 9.2 \cdot 10^{-4} \) |
\(a_{262}= +0.27217188 \pm 1.0 \cdot 10^{-3} \) | \(a_{263}= +0.83398127 \pm 7.3 \cdot 10^{-4} \) | \(a_{264}= +0.47470435 \pm 2.2 \cdot 10^{-3} \) |
\(a_{265}= -0.10725675 \pm 3.9 \cdot 10^{-4} \) | \(a_{266}= -0.18537719 \pm 1.1 \cdot 10^{-3} \) | \(a_{267}= -1.38988712 \pm 5.3 \cdot 10^{-4} \) |
\(a_{268}= +0.04599414 \pm 2.1 \cdot 10^{-3} \) | \(a_{269}= -0.68370540 \pm 1.7 \cdot 10^{-3} \) | \(a_{270}= +0.80178331 \pm 1.4 \cdot 10^{-3} \) |
\(a_{271}= -1.01127180 \pm 1.3 \cdot 10^{-3} \) | \(a_{272}= -0.12099703 \pm 9.0 \cdot 10^{-4} \) | \(a_{273}= +0.78882285 \pm 2.2 \cdot 10^{-4} \) |
\(a_{274}= +1.00149637 \pm 5.8 \cdot 10^{-4} \) | \(a_{275}= -0.26681958 \pm 1.4 \cdot 10^{-3} \) | \(a_{276}= -0.06139679 \pm 1.3 \cdot 10^{-3} \) |
\(a_{277}= +1.31446438 \pm 1.0 \cdot 10^{-3} \) | \(a_{278}= -1.34434606 \pm 2.0 \cdot 10^{-3} \) | \(a_{279}= +0.90892462 \pm 1.1 \cdot 10^{-3} \) |
\(a_{280}= -0.09542999 \pm 1.0 \cdot 10^{-3} \) | \(a_{281}= +1.42098207 \pm 1.0 \cdot 10^{-3} \) | \(a_{282}= -0.41540556 \pm 1.8 \cdot 10^{-3} \) |
\(a_{283}= -0.40207615 \pm 1.2 \cdot 10^{-3} \) | \(a_{284}= -0.48128050 \pm 9.3 \cdot 10^{-4} \) | \(a_{285}= -1.08736701 \pm 4.6 \cdot 10^{-4} \) |
\(a_{286}= +0.80104906 \pm 2.8 \cdot 10^{-3} \) | \(a_{287}= -0.61736412 \pm 6.4 \cdot 10^{-4} \) | \(a_{288}= -0.32288249 \pm 1.1 \cdot 10^{-3} \) |
\(a_{289}= -0.76575550 \pm 1.2 \cdot 10^{-3} \) | \(a_{290}= +0.23947658 \pm 1.5 \cdot 10^{-3} \) | \(a_{291}= +1.32140920 \pm 2.5 \cdot 10^{-4} \) |
\(a_{292}= +0.63490318 \pm 2.0 \cdot 10^{-3} \) | \(a_{293}= -0.12837582 \pm 1.5 \cdot 10^{-3} \) | \(a_{294}= -1.05873722 \pm 1.8 \cdot 10^{-3} \) |
\(a_{295}= -0.31678960 \pm 3.4 \cdot 10^{-4} \) | \(a_{296}= +0.43117381 \pm 1.6 \cdot 10^{-3} \) | \(a_{297}= -1.10971289 \pm 1.1 \cdot 10^{-3} \) |
\(a_{298}= -0.19406411 \pm 1.6 \cdot 10^{-4} \) | \(a_{299}= -0.10360520 \pm 5.2 \cdot 10^{-4} \) | \(a_{300}= +0.28084608 \pm 1.8 \cdot 10^{-3} \) |
\(a_{301}= -0.19371956 \pm 2.0 \cdot 10^{-4} \) | \(a_{302}= +0.48889342 \pm 1.5 \cdot 10^{-3} \) | \(a_{303}= +2.33642854 \pm 5.7 \cdot 10^{-4} \) |
\(a_{304}= +0.19814658 \pm 6.4 \cdot 10^{-4} \) | \(a_{305}= +1.15679150 \pm 4.3 \cdot 10^{-4} \) | \(a_{306}= +0.62508515 \pm 2.0 \cdot 10^{-3} \) |
\(a_{307}= -0.98986300 \pm 8.8 \cdot 10^{-4} \) | \(a_{308}= +0.13208043 \pm 2.1 \cdot 10^{-3} \) | \(a_{309}= -1.74570008 \pm 8.3 \cdot 10^{-4} \) |
\(a_{310}= -0.28714320 \pm 1.7 \cdot 10^{-3} \) | \(a_{311}= -0.64366491 \pm 5.2 \cdot 10^{-4} \) | \(a_{312}= -0.84315958 \pm 1.8 \cdot 10^{-3} \) |
\(a_{313}= -0.17074058 \pm 7.3 \cdot 10^{-4} \) | \(a_{314}= -0.11752269 \pm 1.2 \cdot 10^{-3} \) | \(a_{315}= +0.49300275 \pm 1.1 \cdot 10^{-4} \) |
\(a_{316}= -0.77574182 \pm 6.5 \cdot 10^{-4} \) | \(a_{317}= +0.26390912 \pm 3.5 \cdot 10^{-4} \) | \(a_{318}= -0.15625319 \pm 1.9 \cdot 10^{-3} \) |
\(a_{319}= -0.33144897 \pm 1.3 \cdot 10^{-3} \) | \(a_{320}= +0.10200352 \pm 4.7 \cdot 10^{-4} \) | \(a_{321}= +2.87674496 \pm 3.7 \cdot 10^{-4} \) |
\(a_{322}= -0.01708287 \pm 1.2 \cdot 10^{-3} \) | \(a_{323}= -0.38360236 \pm 9.6 \cdot 10^{-4} \) | \(a_{324}= +0.25480005 \pm 8.6 \cdot 10^{-4} \) |
\(a_{325}= +0.47391917 \pm 1.1 \cdot 10^{-3} \) | \(a_{326}= -0.35864351 \pm 1.4 \cdot 10^{-3} \) | \(a_{327}= -1.89149148 \pm 8.5 \cdot 10^{-4} \) |
\(a_{328}= +0.65989021 \pm 1.6 \cdot 10^{-3} \) | \(a_{329}= -0.11558130 \pm 4.5 \cdot 10^{-4} \) | \(a_{330}= +0.77474423 \pm 2.7 \cdot 10^{-3} \) |
\(a_{331}= +1.31734841 \pm 1.3 \cdot 10^{-3} \) | \(a_{332}= -0.11196961 \pm 7.0 \cdot 10^{-4} \) | \(a_{333}= -2.22749557 \pm 1.3 \cdot 10^{-3} \) |
\(a_{334}= +0.92681216 \pm 1.4 \cdot 10^{-3} \) | \(a_{335}= +0.07506503 \pm 6.4 \cdot 10^{-4} \) | \(a_{336}= -0.13902380 \pm 1.1 \cdot 10^{-3} \) |
\(a_{337}= -0.03453036 \pm 1.4 \cdot 10^{-3} \) | \(a_{338}= -0.71569921 \pm 4.2 \cdot 10^{-4} \) | \(a_{339}= +0.39790608 \pm 5.1 \cdot 10^{-4} \) |
\(a_{340}= -0.19747396 \pm 1.3 \cdot 10^{-3} \) | \(a_{341}= +0.39742223 \pm 1.5 \cdot 10^{-3} \) | \(a_{342}= -1.02364898 \pm 1.7 \cdot 10^{-3} \) |
\(a_{343}= -0.62534907 \pm 9.7 \cdot 10^{-4} \) | \(a_{344}= +0.20706361 \pm 3.7 \cdot 10^{-4} \) | \(a_{345}= -0.10020302 \pm 2.6 \cdot 10^{-4} \) |
\(a_{346}= +0.50561043 \pm 2.0 \cdot 10^{-3} \) | \(a_{347}= -0.51968641 \pm 1.1 \cdot 10^{-3} \) | \(a_{348}= +0.34887298 \pm 1.7 \cdot 10^{-3} \) |
\(a_{349}= +0.49969582 \pm 1.2 \cdot 10^{-3} \) | \(a_{350}= +0.07814184 \pm 1.7 \cdot 10^{-3} \) | \(a_{351}= +1.97104802 \pm 8.7 \cdot 10^{-4} \) |
\(a_{352}= -0.14117857 \pm 1.5 \cdot 10^{-3} \) | \(a_{353}= +0.29223967 \pm 2.2 \cdot 10^{-3} \) | \(a_{354}= -0.46150372 \pm 1.7 \cdot 10^{-3} \) |
\(a_{355}= -0.78547688 \pm 3.7 \cdot 10^{-4} \) | \(a_{356}= +0.41335682 \pm 6.6 \cdot 10^{-4} \) | \(a_{357}= +0.26914347 \pm 1.1 \cdot 10^{-4} \) |
\(a_{358}= -0.15721742 \pm 2.5 \cdot 10^{-3} \) | \(a_{359}= -0.12365992 \pm 4.6 \cdot 10^{-4} \) | \(a_{360}= -0.52696241 \pm 1.5 \cdot 10^{-3} \) |
\(a_{361}= -0.37180692 \pm 1.3 \cdot 10^{-3} \) | \(a_{362}= -0.96586344 \pm 8.3 \cdot 10^{-4} \) | \(a_{363}= +0.60893026 \pm 4.3 \cdot 10^{-4} \) |
\(a_{364}= -0.23459841 \pm 1.7 \cdot 10^{-3} \) | \(a_{365}= +1.03619775 \pm 5.9 \cdot 10^{-4} \) | \(a_{366}= +1.68523076 \pm 1.2 \cdot 10^{-3} \) |
\(a_{367}= -1.29066342 \pm 1.5 \cdot 10^{-3} \) | \(a_{368}= +0.01825960 \pm 6.5 \cdot 10^{-4} \) | \(a_{369}= -3.40907190 \pm 1.3 \cdot 10^{-3} \) |
\(a_{370}= +0.70369994 \pm 2.0 \cdot 10^{-3} \) | \(a_{371}= -0.04347546 \pm 5.2 \cdot 10^{-4} \) | \(a_{372}= -0.41831440 \pm 1.9 \cdot 10^{-3} \) |
\(a_{373}= +0.17994011 \pm 1.0 \cdot 10^{-3} \) | \(a_{374}= +0.27331500 \pm 2.4 \cdot 10^{-3} \) | \(a_{375}= +1.83027912 \pm 4.7 \cdot 10^{-4} \) |
\(a_{376}= +0.12354293 \pm 1.1 \cdot 10^{-3} \) | \(a_{377}= +0.58871248 \pm 1.0 \cdot 10^{-3} \) | \(a_{378}= +0.32499492 \pm 1.5 \cdot 10^{-3} \) |
\(a_{379}= +0.28473131 \pm 5.7 \cdot 10^{-4} \) | \(a_{380}= +0.32338638 \pm 1.1 \cdot 10^{-3} \) | \(a_{381}= +0.65692277 \pm 8.5 \cdot 10^{-4} \) |
\(a_{382}= -0.98587704 \pm 7.7 \cdot 10^{-4} \) | \(a_{383}= +0.53767593 \pm 7.6 \cdot 10^{-4} \) | \(a_{384}= +0.14860022 \pm 6.5 \cdot 10^{-4} \) |
\(a_{385}= +0.21556270 \pm 1.6 \cdot 10^{-4} \) | \(a_{386}= -0.47412672 \pm 1.1 \cdot 10^{-3} \) | \(a_{387}= -1.06971541 \pm 2.4 \cdot 10^{-4} \) |
\(a_{388}= -0.39299127 \pm 3.2 \cdot 10^{-4} \) | \(a_{389}= -1.05621417 \pm 2.2 \cdot 10^{-3} \) | \(a_{390}= -1.37608392 \pm 2.3 \cdot 10^{-3} \) |
\(a_{391}= -0.03534972 \pm 5.6 \cdot 10^{-4} \) | \(a_{392}= +0.31487179 \pm 1.1 \cdot 10^{-3} \) | \(a_{393}= +0.64711682 \pm 5.1 \cdot 10^{-4} \) |
\(a_{394}= +0.56615911 \pm 1.7 \cdot 10^{-3} \) | \(a_{395}= -1.26605434 \pm 2.4 \cdot 10^{-4} \) | \(a_{396}= +0.72934541 \pm 2.6 \cdot 10^{-3} \) |
\(a_{397}= +1.80621029 \pm 9.8 \cdot 10^{-4} \) | \(a_{398}= +0.35143823 \pm 1.3 \cdot 10^{-3} \) | \(a_{399}= -0.44075345 \pm 1.2 \cdot 10^{-4} \) |
\(a_{400}= -0.08352451 \pm 1.2 \cdot 10^{-3} \) | \(a_{401}= +0.44300822 \pm 6.8 \cdot 10^{-4} \) | \(a_{402}= +0.10935584 \pm 2.7 \cdot 10^{-3} \) |
\(a_{403}= -0.70589275 \pm 1.2 \cdot 10^{-3} \) | \(a_{404}= -0.69486122 \pm 6.2 \cdot 10^{-4} \) | \(a_{405}= +0.41584803 \pm 3.6 \cdot 10^{-4} \) |
\(a_{406}= +0.09706946 \pm 1.6 \cdot 10^{-3} \) | \(a_{407}= -0.97396003 \pm 1.9 \cdot 10^{-3} \) | \(a_{408}= -0.28768296 \pm 1.5 \cdot 10^{-3} \) |
\(a_{409}= -0.19576490 \pm 5.4 \cdot 10^{-4} \) | \(a_{410}= +1.07697798 \pm 2.1 \cdot 10^{-3} \) | \(a_{411}= +2.38116127 \pm 4.3 \cdot 10^{-4} \) |
\(a_{412}= +0.51917671 \pm 2.1 \cdot 10^{-3} \) | \(a_{413}= -0.12840753 \pm 4.4 \cdot 10^{-4} \) | \(a_{414}= -0.09433128 \pm 1.7 \cdot 10^{-3} \) |
\(a_{415}= -0.18274070 \pm 2.7 \cdot 10^{-4} \) | \(a_{416}= +0.25075832 \pm 1.2 \cdot 10^{-3} \) | \(a_{417}= -3.19632189 \pm 8.2 \cdot 10^{-4} \) |
\(a_{418}= -0.44758482 \pm 2.2 \cdot 10^{-3} \) | \(a_{419}= +0.42042401 \pm 2.0 \cdot 10^{-3} \) | \(a_{420}= -0.22689467 \pm 1.6 \cdot 10^{-3} \) |
\(a_{421}= +0.41294251 \pm 4.0 \cdot 10^{-4} \) | \(a_{422}= +0.20817778 \pm 6.1 \cdot 10^{-4} \) | \(a_{423}= -0.63823756 \pm 9.7 \cdot 10^{-4} \) |
\(a_{424}= +0.04647019 \pm 1.3 \cdot 10^{-3} \) | \(a_{425}= +0.16169948 \pm 6.0 \cdot 10^{-4} \) | \(a_{426}= -1.14429420 \pm 1.5 \cdot 10^{-3} \) |
\(a_{427}= +0.46889398 \pm 2.5 \cdot 10^{-4} \) | \(a_{428}= -0.85555303 \pm 7.9 \cdot 10^{-4} \) | \(a_{429}= +1.90457703 \pm 5.7 \cdot 10^{-4} \) |
\(a_{430}= +0.33793947 \pm 8.5 \cdot 10^{-4} \) | \(a_{431}= +1.39472469 \pm 2.0 \cdot 10^{-3} \) | \(a_{432}= -0.34738165 \pm 1.0 \cdot 10^{-3} \) |
\(a_{433}= -0.97097800 \pm 9.0 \cdot 10^{-4} \) | \(a_{434}= -0.11639065 \pm 1.8 \cdot 10^{-3} \) | \(a_{435}= +0.56938035 \pm 2.1 \cdot 10^{-4} \) |
\(a_{436}= +0.56253553 \pm 1.6 \cdot 10^{-3} \) | \(a_{437}= +0.05788923 \pm 4.7 \cdot 10^{-4} \) | \(a_{438}= +1.50954802 \pm 2.6 \cdot 10^{-3} \) |
\(a_{439}= -0.30964005 \pm 3.6 \cdot 10^{-4} \) | \(a_{440}= -0.23041138 \pm 2.0 \cdot 10^{-3} \) | \(a_{441}= -1.62666541 \pm 9.3 \cdot 10^{-4} \) |
\(a_{442}= -0.48545619 \pm 2.1 \cdot 10^{-3} \) | \(a_{443}= -0.34969047 \pm 1.1 \cdot 10^{-3} \) | \(a_{444}= +1.02516036 \pm 2.2 \cdot 10^{-3} \) |
\(a_{445}= +0.67462160 \pm 4.5 \cdot 10^{-4} \) | \(a_{446}= -0.76576018 \pm 2.0 \cdot 10^{-3} \) | \(a_{447}= -0.46140751 \pm 7.0 \cdot 10^{-5} \) |
\(a_{448}= +0.04134612 \pm 5.4 \cdot 10^{-4} \) | \(a_{449}= -0.36478686 \pm 1.8 \cdot 10^{-3} \) | \(a_{450}= +0.43149763 \pm 2.3 \cdot 10^{-3} \) |
\(a_{451}= -1.49059770 \pm 1.9 \cdot 10^{-3} \) | \(a_{452}= -0.11833852 \pm 1.0 \cdot 10^{-3} \) | \(a_{453}= +1.16239471 \pm 6.6 \cdot 10^{-4} \) |
\(a_{454}= -1.27110689 \pm 1.2 \cdot 10^{-3} \) | \(a_{455}= -0.38287781 \pm 1.2 \cdot 10^{-4} \) | \(a_{456}= +0.47111400 \pm 1.2 \cdot 10^{-3} \) |
\(a_{457}= -0.42832952 \pm 1.0 \cdot 10^{-3} \) | \(a_{458}= +0.44450738 \pm 1.1 \cdot 10^{-3} \) | \(a_{459}= +0.67251436 \pm 8.2 \cdot 10^{-4} \) |
\(a_{460}= +0.02980069 \pm 1.1 \cdot 10^{-3} \) | \(a_{461}= +1.60664805 \pm 8.1 \cdot 10^{-4} \) | \(a_{462}= +0.31403490 \pm 2.7 \cdot 10^{-3} \) |
\(a_{463}= +0.64912565 \pm 1.1 \cdot 10^{-3} \) | \(a_{464}= -0.10375593 \pm 1.1 \cdot 10^{-3} \) | \(a_{465}= -0.68271267 \pm 1.3 \cdot 10^{-4} \) |
\(a_{466}= +0.91995232 \pm 1.0 \cdot 10^{-3} \) | \(a_{467}= +0.52594464 \pm 9.1 \cdot 10^{-4} \) | \(a_{468}= -1.29544754 \pm 2.3 \cdot 10^{-3} \) |
\(a_{469}= +0.03042687 \pm 8.3 \cdot 10^{-4} \) | \(a_{470}= +0.20162901 \pm 1.6 \cdot 10^{-3} \) | \(a_{471}= -0.27942237 \pm 6.4 \cdot 10^{-4} \) |
\(a_{472}= +0.13725266 \pm 1.1 \cdot 10^{-3} \) | \(a_{473}= -0.46772711 \pm 3.6 \cdot 10^{-4} \) | \(a_{474}= -1.84440647 \pm 1.3 \cdot 10^{-3} \) |
\(a_{475}= -0.26480154 \pm 3.2 \cdot 10^{-4} \) | \(a_{476}= -0.08004412 \pm 1.4 \cdot 10^{-3} \) | \(a_{477}= -0.24007059 \pm 1.1 \cdot 10^{-3} \) |
\(a_{478}= +0.36624222 \pm 1.3 \cdot 10^{-3} \) | \(a_{479}= -0.26558679 \pm 7.7 \cdot 10^{-4} \) | \(a_{480}= +0.24252393 \pm 1.1 \cdot 10^{-3} \) |
\(a_{481}= +1.72992672 \pm 1.5 \cdot 10^{-3} \) | \(a_{482}= +0.94113926 \pm 1.3 \cdot 10^{-3} \) | \(a_{483}= -0.04061630 \pm 3.2 \cdot 10^{-4} \) |
\(a_{484}= -0.18109778 \pm 7.0 \cdot 10^{-4} \) | \(a_{485}= -0.64138388 \pm 2.0 \cdot 10^{-4} \) | \(a_{486}= -0.37673020 \pm 1.2 \cdot 10^{-3} \) |
\(a_{487}= -0.46158718 \pm 1.2 \cdot 10^{-3} \) | \(a_{488}= -0.50119294 \pm 5.9 \cdot 10^{-4} \) | \(a_{489}= -0.85271205 \pm 7.6 \cdot 10^{-4} \) |
\(a_{490}= +0.51388850 \pm 1.6 \cdot 10^{-3} \) | \(a_{491}= -1.53029220 \pm 8.1 \cdot 10^{-4} \) | \(a_{492}= +1.56895727 \pm 2.3 \cdot 10^{-3} \) |
\(a_{493}= +0.20086654 \pm 6.4 \cdot 10^{-4} \) | \(a_{494}= +0.79499046 \pm 1.8 \cdot 10^{-3} \) | \(a_{495}= +1.19033279 \pm 3.4 \cdot 10^{-4} \) |
\(a_{496}= +0.12440802 \pm 1.2 \cdot 10^{-3} \) | \(a_{497}= -0.31838527 \pm 3.5 \cdot 10^{-4} \) | \(a_{498}= -0.26621933 \pm 1.3 \cdot 10^{-3} \) |
\(a_{499}= +0.77287565 \pm 1.8 \cdot 10^{-3} \) | \(a_{500}= -0.54433079 \pm 7.7 \cdot 10^{-4} \) | \(a_{501}= +2.20359184 \pm 5.9 \cdot 10^{-4} \) |
\(a_{502}= -1.04728170 \pm 1.9 \cdot 10^{-3} \) | \(a_{503}= +0.80621260 \pm 2.3 \cdot 10^{-3} \) | \(a_{504}= -0.21359899 \pm 1.6 \cdot 10^{-3} \) |
\(a_{505}= -1.13405264 \pm 5.2 \cdot 10^{-4} \) | \(a_{506}= -0.04124583 \pm 2.2 \cdot 10^{-3} \) | \(a_{507}= -1.70164894 \pm 3.8 \cdot 10^{-4} \) |
\(a_{508}= -0.19537090 \pm 1.6 \cdot 10^{-3} \) | \(a_{509}= -0.56977965 \pm 1.4 \cdot 10^{-3} \) | \(a_{510}= -0.46951479 \pm 2.0 \cdot 10^{-3} \) |
\(a_{511}= +0.42001249 \pm 7.9 \cdot 10^{-4} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -1.10131977 \pm 6.2 \cdot 10^{-4} \) |
\(a_{514}= -0.40827514 \pm 4.3 \cdot 10^{-4} \) | \(a_{515}= +0.84732563 \pm 5.6 \cdot 10^{-4} \) | \(a_{516}= +0.49231516 \pm 1.0 \cdot 10^{-3} \) |
\(a_{517}= -0.27906582 \pm 1.3 \cdot 10^{-3} \) | \(a_{518}= +0.28523780 \pm 2.1 \cdot 10^{-3} \) | \(a_{519}= +1.20214113 \pm 8.1 \cdot 10^{-4} \) |
\(a_{520}= +0.40925170 \pm 1.7 \cdot 10^{-3} \) | \(a_{521}= -0.59676904 \pm 1.6 \cdot 10^{-3} \) | \(a_{522}= +0.53601554 \pm 2.2 \cdot 10^{-3} \) |
\(a_{523}= +1.70913801 \pm 1.7 \cdot 10^{-3} \) | \(a_{524}= -0.19245458 \pm 1.0 \cdot 10^{-3} \) | \(a_{525}= +0.18579032 \pm 2.5 \cdot 10^{-4} \) |
\(a_{526}= -0.58971381 \pm 7.3 \cdot 10^{-4} \) | \(a_{527}= -0.24084802 \pm 6.1 \cdot 10^{-4} \) | \(a_{528}= -0.33566666 \pm 2.2 \cdot 10^{-3} \) |
\(a_{529}= -0.99466539 \pm 1.1 \cdot 10^{-3} \) | \(a_{530}= +0.07584197 \pm 1.8 \cdot 10^{-3} \) | \(a_{531}= -0.70906370 \pm 9.1 \cdot 10^{-4} \) |
\(a_{532}= +0.13108147 \pm 1.1 \cdot 10^{-3} \) | \(a_{533}= +2.64756737 \pm 1.5 \cdot 10^{-3} \) | \(a_{534}= +0.98279861 \pm 1.3 \cdot 10^{-3} \) |
\(a_{535}= -1.39631072 \pm 2.1 \cdot 10^{-4} \) | \(a_{536}= -0.03252277 \pm 2.1 \cdot 10^{-3} \) | \(a_{537}= -0.37380069 \pm 1.0 \cdot 10^{-3} \) |
\(a_{538}= +0.48345273 \pm 1.7 \cdot 10^{-3} \) | \(a_{539}= -0.71125039 \pm 1.3 \cdot 10^{-3} \) | \(a_{540}= -0.56694641 \pm 1.4 \cdot 10^{-3} \) |
\(a_{541}= -1.27511812 \pm 1.2 \cdot 10^{-3} \) | \(a_{542}= +0.71507715 \pm 1.3 \cdot 10^{-3} \) | \(a_{543}= -2.29644029 \pm 5.9 \cdot 10^{-4} \) |
\(a_{544}= +0.08555782 \pm 9.0 \cdot 10^{-4} \) | \(a_{545}= +0.91808967 \pm 6.1 \cdot 10^{-4} \) | \(a_{546}= -0.55778199 \pm 2.4 \cdot 10^{-3} \) |
\(a_{547}= +0.48581722 \pm 2.1 \cdot 10^{-3} \) | \(a_{548}= -0.70816487 \pm 5.8 \cdot 10^{-4} \) | \(a_{549}= +2.58922282 \pm 2.0 \cdot 10^{-4} \) |
\(a_{550}= +0.18866994 \pm 2.8 \cdot 10^{-3} \) | \(a_{551}= -0.32894211 \pm 4.1 \cdot 10^{-4} \) | \(a_{552}= +0.04341409 \pm 1.3 \cdot 10^{-3} \) |
\(a_{553}= -0.51318259 \pm 2.6 \cdot 10^{-4} \) | \(a_{554}= -0.92946668 \pm 1.0 \cdot 10^{-3} \) | \(a_{555}= +1.67311943 \pm 2.5 \cdot 10^{-4} \) |
\(a_{556}= +0.95059621 \pm 2.0 \cdot 10^{-3} \) | \(a_{557}= -0.21656851 \pm 5.9 \cdot 10^{-4} \) | \(a_{558}= -0.64270676 \pm 2.4 \cdot 10^{-3} \) |
\(a_{559}= +0.83076676 \pm 2.8 \cdot 10^{-4} \) | \(a_{560}= +0.06747919 \pm 1.0 \cdot 10^{-3} \) | \(a_{561}= +0.64983470 \pm 2.8 \cdot 10^{-4} \) |
\(a_{562}= -1.00478606 \pm 1.0 \cdot 10^{-3} \) | \(a_{563}= -0.93202111 \pm 2.3 \cdot 10^{-3} \) | \(a_{564}= +0.29373609 \pm 1.8 \cdot 10^{-3} \) |
\(a_{565}= -0.19313514 \pm 2.6 \cdot 10^{-4} \) | \(a_{566}= +0.28431077 \pm 1.2 \cdot 10^{-3} \) | \(a_{567}= +0.16855988 \pm 3.6 \cdot 10^{-4} \) |
\(a_{568}= +0.34031670 \pm 9.3 \cdot 10^{-4} \) | \(a_{569}= -0.94874267 \pm 4.5 \cdot 10^{-4} \) | \(a_{570}= +0.76888458 \pm 1.7 \cdot 10^{-3} \) |
\(a_{571}= +0.53016017 \pm 6.0 \cdot 10^{-4} \) | \(a_{572}= -0.56642722 \pm 2.8 \cdot 10^{-3} \) | \(a_{573}= -2.34402469 \pm 3.5 \cdot 10^{-4} \) |
\(a_{574}= +0.43654236 \pm 2.1 \cdot 10^{-3} \) | \(a_{575}= -0.02440199 \pm 5.5 \cdot 10^{-4} \) | \(a_{576}= +0.22831240 \pm 1.1 \cdot 10^{-3} \) |
\(a_{577}= +1.95115243 \pm 7.4 \cdot 10^{-4} \) | \(a_{578}= +0.54147091 \pm 1.2 \cdot 10^{-3} \) | \(a_{579}= -1.12728534 \pm 6.6 \cdot 10^{-4} \) |
\(a_{580}= -0.16933551 \pm 1.5 \cdot 10^{-3} \) | \(a_{581}= -0.07407213 \pm 2.8 \cdot 10^{-4} \) | \(a_{582}= -0.93437741 \pm 9.7 \cdot 10^{-4} \) |
\(a_{583}= -0.10496953 \pm 1.5 \cdot 10^{-3} \) | \(a_{584}= -0.44894434 \pm 2.0 \cdot 10^{-3} \) | \(a_{585}= -2.11424333 \pm 2.6 \cdot 10^{-4} \) |
\(a_{586}= +0.09077541 \pm 1.5 \cdot 10^{-3} \) | \(a_{587}= +1.16681697 \pm 3.0 \cdot 10^{-4} \) | \(a_{588}= +0.74864027 \pm 1.8 \cdot 10^{-3} \) |
\(a_{589}= +0.39441639 \pm 3.1 \cdot 10^{-4} \) | \(a_{590}= +0.22400407 \pm 1.5 \cdot 10^{-3} \) | \(a_{591}= +1.34610187 \pm 7.1 \cdot 10^{-4} \) |
\(a_{592}= -0.30488592 \pm 1.6 \cdot 10^{-3} \) | \(a_{593}= +1.47079147 \pm 8.4 \cdot 10^{-4} \) | \(a_{594}= +0.78468551 \pm 2.5 \cdot 10^{-3} \) |
\(a_{595}= -0.13063650 \pm 7.2 \cdot 10^{-5} \) | \(a_{596}= +0.13722405 \pm 1.6 \cdot 10^{-4} \) | \(a_{597}= +0.83558075 \pm 8.5 \cdot 10^{-4} \) |
\(a_{598}= +0.07325994 \pm 1.9 \cdot 10^{-3} \) | \(a_{599}= -1.24171481 \pm 1.4 \cdot 10^{-3} \) | \(a_{600}= -0.19858817 \pm 1.8 \cdot 10^{-3} \) |
\(a_{601}= -1.09027923 \pm 6.7 \cdot 10^{-4} \) | \(a_{602}= +0.13698042 \pm 9.1 \cdot 10^{-4} \) | \(a_{603}= +0.16801653 \pm 1.7 \cdot 10^{-3} \) |
\(a_{604}= -0.34569985 \pm 1.5 \cdot 10^{-3} \) | \(a_{605}= -0.29556178 \pm 3.7 \cdot 10^{-4} \) | \(a_{606}= -1.65210447 \pm 1.2 \cdot 10^{-3} \) |
\(a_{607}= -0.92131878 \pm 2.7 \cdot 10^{-4} \) | \(a_{608}= -0.14011079 \pm 6.4 \cdot 10^{-4} \) | \(a_{609}= +0.23079269 \pm 1.9 \cdot 10^{-4} \) |
\(a_{610}= -0.81797511 \pm 1.0 \cdot 10^{-3} \) | \(a_{611}= +0.49567066 \pm 1.0 \cdot 10^{-3} \) | \(a_{612}= -0.44200195 \pm 2.0 \cdot 10^{-3} \) |
\(a_{613}= +0.72073068 \pm 6.7 \cdot 10^{-4} \) | \(a_{614}= +0.69993884 \pm 8.8 \cdot 10^{-4} \) | \(a_{615}= +2.56062662 \pm 3.9 \cdot 10^{-4} \) |
\(a_{616}= -0.09339497 \pm 2.1 \cdot 10^{-3} \) | \(a_{617}= -1.48733947 \pm 1.1 \cdot 10^{-3} \) | \(a_{618}= +1.23439637 \pm 2.8 \cdot 10^{-3} \) |
\(a_{619}= -1.25264254 \pm 8.9 \cdot 10^{-4} \) | \(a_{620}= +0.20304090 \pm 1.7 \cdot 10^{-3} \) | \(a_{621}= -0.10148879 \pm 5.1 \cdot 10^{-4} \) |
\(a_{622}= +0.45513982 \pm 5.2 \cdot 10^{-4} \) | \(a_{623}= +0.27345119 \pm 2.0 \cdot 10^{-4} \) | \(a_{624}= +0.59620386 \pm 1.8 \cdot 10^{-3} \) |
\(a_{625}= -0.55428045 \pm 1.1 \cdot 10^{-3} \) | \(a_{626}= +0.12073182 \pm 7.3 \cdot 10^{-4} \) | \(a_{627}= -1.06417922 \pm 1.7 \cdot 10^{-4} \) |
\(a_{628}= +0.08310109 \pm 1.2 \cdot 10^{-3} \) | \(a_{629}= +0.59024465 \pm 8.6 \cdot 10^{-4} \) | \(a_{630}= -0.34860559 \pm 2.1 \cdot 10^{-3} \) |
\(a_{631}= +0.62208480 \pm 1.3 \cdot 10^{-4} \) | \(a_{632}= +0.54853230 \pm 6.5 \cdot 10^{-4} \) | \(a_{633}= +0.49496423 \pm 6.1 \cdot 10^{-4} \) |
\(a_{634}= -0.18661193 \pm 3.5 \cdot 10^{-4} \) | \(a_{635}= -0.31885632 \pm 6.8 \cdot 10^{-4} \) | \(a_{636}= +0.11048769 \pm 1.9 \cdot 10^{-3} \) |
\(a_{637}= +1.26330754 \pm 1.0 \cdot 10^{-3} \) | \(a_{638}= +0.23436981 \pm 2.6 \cdot 10^{-3} \) | \(a_{639}= -1.75811688 \pm 7.4 \cdot 10^{-4} \) |
\(a_{640}= -0.07212738 \pm 4.7 \cdot 10^{-4} \) | \(a_{641}= -0.64219693 \pm 6.4 \cdot 10^{-4} \) | \(a_{642}= -2.03416587 \pm 1.4 \cdot 10^{-3} \) |
\(a_{643}= -0.18319448 \pm 2.3 \cdot 10^{-3} \) | \(a_{644}= +0.01207942 \pm 1.2 \cdot 10^{-3} \) | \(a_{645}= +0.80348606 \pm 1.5 \cdot 10^{-4} \) |
\(a_{646}= +0.27124783 \pm 1.5 \cdot 10^{-3} \) | \(a_{647}= +0.74426312 \pm 1.4 \cdot 10^{-3} \) | \(a_{648}= -0.18017084 \pm 8.6 \cdot 10^{-4} \) |
\(a_{649}= -0.31003415 \pm 1.2 \cdot 10^{-3} \) | \(a_{650}= -0.33511146 \pm 2.4 \cdot 10^{-3} \) | \(a_{651}= -0.27673082 \pm 2.7 \cdot 10^{-4} \) |
\(a_{652}= +0.25359925 \pm 1.4 \cdot 10^{-3} \) | \(a_{653}= -1.16269045 \pm 2.0 \cdot 10^{-3} \) | \(a_{654}= +1.33748645 \pm 2.3 \cdot 10^{-3} \) |
\(a_{655}= -0.31409672 \pm 4.0 \cdot 10^{-4} \) | \(a_{656}= -0.46661284 \pm 1.6 \cdot 10^{-3} \) | \(a_{657}= +2.31930028 \pm 1.7 \cdot 10^{-3} \) |
\(a_{658}= +0.08172832 \pm 1.7 \cdot 10^{-3} \) | \(a_{659}= +0.95308704 \pm 2.2 \cdot 10^{-3} \) | \(a_{660}= -0.54782690 \pm 2.7 \cdot 10^{-3} \) |
\(a_{661}= +0.75408696 \pm 4.6 \cdot 10^{-4} \) | \(a_{662}= -0.93150600 \pm 1.3 \cdot 10^{-3} \) | \(a_{663}= -1.15422233 \pm 2.3 \cdot 10^{-4} \) |
\(a_{664}= +0.07917447 \pm 7.0 \cdot 10^{-4} \) | \(a_{665}= +0.21393233 \pm 4.7 \cdot 10^{-5} \) | \(a_{666}= +1.57507722 \pm 2.7 \cdot 10^{-3} \) |
\(a_{667}= -0.03031267 \pm 4.9 \cdot 10^{-4} \) | \(a_{668}= -0.65535517 \pm 1.4 \cdot 10^{-3} \) | \(a_{669}= -1.82067408 \pm 9.2 \cdot 10^{-4} \) |
\(a_{670}= -0.05307899 \pm 2.6 \cdot 10^{-3} \) | \(a_{671}= +1.13212326 \pm 3.1 \cdot 10^{-4} \) | \(a_{672}= +0.09830467 \pm 1.1 \cdot 10^{-3} \) |
\(a_{673}= +0.80194710 \pm 6.6 \cdot 10^{-4} \) | \(a_{674}= +0.02441665 \pm 1.4 \cdot 10^{-3} \) | \(a_{675}= +0.46423812 \pm 8.7 \cdot 10^{-4} \) |
\(a_{676}= +0.50607576 \pm 4.2 \cdot 10^{-4} \) | \(a_{677}= -0.13857464 \pm 1.1 \cdot 10^{-3} \) | \(a_{678}= -0.28136209 \pm 1.6 \cdot 10^{-3} \) |
\(a_{679}= -0.25997860 \pm 1.1 \cdot 10^{-4} \) | \(a_{680}= +0.13963518 \pm 1.3 \cdot 10^{-3} \) | \(a_{681}= -3.02218819 \pm 6.3 \cdot 10^{-4} \) |
\(a_{682}= -0.28101995 \pm 2.8 \cdot 10^{-3} \) | \(a_{683}= -1.15930955 \pm 1.3 \cdot 10^{-3} \) | \(a_{684}= +0.72382914 \pm 1.7 \cdot 10^{-3} \) |
\(a_{685}= -1.15576496 \pm 2.2 \cdot 10^{-4} \) | \(a_{686}= +0.44218857 \pm 9.7 \cdot 10^{-4} \) | \(a_{687}= +1.05686230 \pm 4.6 \cdot 10^{-4} \) |
\(a_{688}= -0.14641608 \pm 3.7 \cdot 10^{-4} \) | \(a_{689}= +0.18644460 \pm 1.2 \cdot 10^{-3} \) | \(a_{690}= +0.07085423 \pm 1.7 \cdot 10^{-3} \) |
\(a_{691}= +0.49252652 \pm 2.0 \cdot 10^{-3} \) | \(a_{692}= -0.35752056 \pm 2.0 \cdot 10^{-3} \) | \(a_{693}= +0.48248961 \pm 5.3 \cdot 10^{-4} \) |
\(a_{694}= +0.36747379 \pm 1.1 \cdot 10^{-3} \) | \(a_{695}= +1.55142656 \pm 5.2 \cdot 10^{-4} \) | \(a_{696}= -0.24669045 \pm 1.7 \cdot 10^{-3} \) |
\(a_{697}= +0.90334028 \pm 1.0 \cdot 10^{-3} \) | \(a_{698}= -0.35333830 \pm 1.2 \cdot 10^{-3} \) | \(a_{699}= +2.18728184 \pm 4.4 \cdot 10^{-4} \) |
\(a_{700}= -0.05525463 \pm 1.7 \cdot 10^{-3} \) | \(a_{701}= -0.16492671 \pm 1.6 \cdot 10^{-3} \) | \(a_{702}= -1.39374142 \pm 2.2 \cdot 10^{-3} \) |
\(a_{703}= -0.96659365 \pm 5.1 \cdot 10^{-4} \) | \(a_{704}= +0.09982832 \pm 1.5 \cdot 10^{-3} \) | \(a_{705}= +0.47939384 \pm 2.5 \cdot 10^{-4} \) |
\(a_{706}= -0.20664465 \pm 2.2 \cdot 10^{-3} \) | \(a_{707}= -0.45967701 \pm 7.7 \cdot 10^{-5} \) | \(a_{708}= +0.32633241 \pm 1.7 \cdot 10^{-3} \) |
\(a_{709}= +0.48154708 \pm 2.3 \cdot 10^{-4} \) | \(a_{710}= +0.55541603 \pm 1.4 \cdot 10^{-3} \) | \(a_{711}= -2.83378362 \pm 5.2 \cdot 10^{-4} \) |
\(a_{712}= -0.29228741 \pm 6.6 \cdot 10^{-4} \) | \(a_{713}= +0.03634625 \pm 5.8 \cdot 10^{-4} \) | \(a_{714}= -0.19031317 \pm 2.1 \cdot 10^{-3} \) |
\(a_{715}= -0.92444112 \pm 3.7 \cdot 10^{-4} \) | \(a_{716}= +0.11116951 \pm 2.5 \cdot 10^{-3} \) | \(a_{717}= +0.87077879 \pm 8.4 \cdot 10^{-4} \) |
\(a_{718}= +0.08744077 \pm 4.6 \cdot 10^{-4} \) | \(a_{719}= -1.07737783 \pm 1.2 \cdot 10^{-3} \) | \(a_{720}= +0.37261869 \pm 1.5 \cdot 10^{-3} \) |
\(a_{721}= +0.34345505 \pm 8.5 \cdot 10^{-4} \) | \(a_{722}= +0.26290720 \pm 1.3 \cdot 10^{-3} \) | \(a_{723}= +2.23765599 \pm 5.8 \cdot 10^{-4} \) |
\(a_{724}= +0.68296859 \pm 8.3 \cdot 10^{-4} \) | \(a_{725}= +0.13865861 \pm 1.0 \cdot 10^{-3} \) | \(a_{726}= -0.43057871 \pm 1.3 \cdot 10^{-3} \) |
\(a_{727}= -0.73614909 \pm 8.9 \cdot 10^{-4} \) | \(a_{728}= +0.16588612 \pm 1.7 \cdot 10^{-3} \) | \(a_{729}= -1.40531512 \pm 5.2 \cdot 10^{-4} \) |
\(a_{730}= -0.73270245 \pm 2.5 \cdot 10^{-3} \) | \(a_{731}= +0.28345457 \pm 3.2 \cdot 10^{-4} \) | \(a_{732}= -1.19163810 \pm 1.2 \cdot 10^{-3} \) |
\(a_{733}= -0.34827811 \pm 1.8 \cdot 10^{-3} \) | \(a_{734}= +0.91263686 \pm 1.5 \cdot 10^{-3} \) | \(a_{735}= +1.22182308 \pm 3.4 \cdot 10^{-4} \) |
\(a_{736}= -0.01291149 \pm 6.5 \cdot 10^{-4} \) | \(a_{737}= +0.07346429 \pm 2.5 \cdot 10^{-3} \) | \(a_{738}= +2.41057786 \pm 2.7 \cdot 10^{-3} \) |
\(a_{739}= -1.38483699 \pm 1.0 \cdot 10^{-3} \) | \(a_{740}= -0.49759100 \pm 2.0 \cdot 10^{-3} \) | \(a_{741}= +1.89017210 \pm 1.4 \cdot 10^{-4} \) |
\(a_{742}= +0.03074179 \pm 1.8 \cdot 10^{-3} \) | \(a_{743}= -0.32117763 \pm 5.6 \cdot 10^{-4} \) | \(a_{744}= +0.29579295 \pm 1.9 \cdot 10^{-3} \) |
\(a_{745}= +0.22395738 \pm 6.1 \cdot 10^{-5} \) | \(a_{746}= -0.12723688 \pm 1.0 \cdot 10^{-3} \) | \(a_{747}= -0.40902479 \pm 5.5 \cdot 10^{-4} \) |
\(a_{748}= -0.19326289 \pm 2.4 \cdot 10^{-3} \) | \(a_{749}= -0.56598072 \pm 3.5 \cdot 10^{-4} \) | \(a_{750}= -1.29420278 \pm 1.4 \cdot 10^{-3} \) |
\(a_{751}= +1.61911724 \pm 8.9 \cdot 10^{-4} \) | \(a_{752}= -0.08735804 \pm 1.1 \cdot 10^{-3} \) | \(a_{753}= -2.49002063 \pm 7.7 \cdot 10^{-4} \) |
\(a_{754}= -0.41628258 \pm 2.3 \cdot 10^{-3} \) | \(a_{755}= -0.56420163 \pm 4.2 \cdot 10^{-4} \) | \(a_{756}= -0.22980611 \pm 1.5 \cdot 10^{-3} \) |
\(a_{757}= +0.96224678 \pm 2.4 \cdot 10^{-3} \) | \(a_{758}= -0.20133544 \pm 5.7 \cdot 10^{-4} \) | \(a_{759}= -0.09806622 \pm 3.6 \cdot 10^{-4} \) |
\(a_{760}= -0.22866870 \pm 1.1 \cdot 10^{-3} \) | \(a_{761}= +1.43868249 \pm 4.2 \cdot 10^{-4} \) | \(a_{762}= -0.46451454 \pm 2.2 \cdot 10^{-3} \) |
\(a_{763}= +0.37213856 \pm 6.6 \cdot 10^{-4} \) | \(a_{764}= +0.69712034 \pm 7.7 \cdot 10^{-4} \) | \(a_{765}= -0.72137207 \pm 1.4 \cdot 10^{-4} \) |
\(a_{766}= -0.38019429 \pm 7.6 \cdot 10^{-4} \) | \(a_{767}= +0.55067595 \pm 1.0 \cdot 10^{-3} \) | \(a_{768}= -0.10507622 \pm 6.5 \cdot 10^{-4} \) |
\(a_{769}= +1.21497272 \pm 5.1 \cdot 10^{-4} \) | \(a_{770}= -0.15242585 \pm 2.5 \cdot 10^{-3} \) | \(a_{771}= -0.97071640 \pm 3.4 \cdot 10^{-4} \) |
\(a_{772}= +0.33525822 \pm 1.1 \cdot 10^{-3} \) | \(a_{773}= -0.06240173 \pm 2.1 \cdot 10^{-3} \) | \(a_{774}= +0.75640302 \pm 1.4 \cdot 10^{-3} \) |
\(a_{775}= -0.16625791 \pm 1.2 \cdot 10^{-3} \) | \(a_{776}= +0.27788679 \pm 3.2 \cdot 10^{-4} \) | \(a_{777}= +0.67818239 \pm 2.9 \cdot 10^{-4} \) |
\(a_{778}= +0.74685620 \pm 2.2 \cdot 10^{-3} \) | \(a_{779}= -1.47932383 \pm 7.2 \cdot 10^{-4} \) | \(a_{780}= +0.97303827 \pm 2.3 \cdot 10^{-3} \) |
\(a_{781}= -0.76872681 \pm 1.0 \cdot 10^{-3} \) | \(a_{782}= +0.02499602 \pm 1.5 \cdot 10^{-3} \) | \(a_{783}= +0.57668647 \pm 8.0 \cdot 10^{-4} \) |
\(a_{784}= -0.22264798 \pm 1.1 \cdot 10^{-3} \) | \(a_{785}= +0.13562566 \pm 5.1 \cdot 10^{-4} \) | \(a_{786}= -0.45758069 \pm 1.7 \cdot 10^{-3} \) |
\(a_{787}= +1.79121809 \pm 1.2 \cdot 10^{-3} \) | \(a_{788}= -0.40033494 \pm 1.7 \cdot 10^{-3} \) | \(a_{789}= -1.40210562 \pm 6.8 \cdot 10^{-4} \) |
\(a_{790}= +0.89523561 \pm 1.1 \cdot 10^{-3} \) | \(a_{791}= -0.07828541 \pm 4.8 \cdot 10^{-4} \) | \(a_{792}= -0.51572509 \pm 2.6 \cdot 10^{-3} \) |
\(a_{793}= -2.01085282 \pm 2.5 \cdot 10^{-4} \) | \(a_{794}= -1.27718355 \pm 9.8 \cdot 10^{-4} \) | \(a_{795}= +0.18032214 \pm 2.3 \cdot 10^{-4} \) |
\(a_{796}= -0.24850435 \pm 1.3 \cdot 10^{-3} \) | \(a_{797}= -1.31743759 \pm 1.4 \cdot 10^{-3} \) | \(a_{798}= +0.31165975 \pm 1.8 \cdot 10^{-3} \) |
\(a_{799}= +0.16912101 \pm 7.1 \cdot 10^{-4} \) | \(a_{800}= +0.05906075 \pm 1.2 \cdot 10^{-3} \) | \(a_{801}= +1.50999178 \pm 3.5 \cdot 10^{-4} \) |
\(a_{802}= -0.31325412 \pm 6.8 \cdot 10^{-4} \) | \(a_{803}= +1.01410113 \pm 2.3 \cdot 10^{-3} \) | \(a_{804}= -0.07732625 \pm 2.7 \cdot 10^{-3} \) |
\(a_{805}= +0.01971429 \pm 7.9 \cdot 10^{-5} \) | \(a_{806}= +0.49914155 \pm 2.5 \cdot 10^{-3} \) | \(a_{807}= +1.14945889 \pm 7.0 \cdot 10^{-4} \) |
\(a_{808}= +0.49134108 \pm 6.2 \cdot 10^{-4} \) | \(a_{809}= +0.06430253 \pm 5.4 \cdot 10^{-4} \) | \(a_{810}= -0.29404896 \pm 1.3 \cdot 10^{-3} \) |
\(a_{811}= -1.24753904 \pm 7.3 \cdot 10^{-4} \) | \(a_{812}= -0.06863847 \pm 1.6 \cdot 10^{-3} \) | \(a_{813}= +1.70016993 \pm 5.9 \cdot 10^{-4} \) |
\(a_{814}= +0.68869374 \pm 3.1 \cdot 10^{-3} \) | \(a_{815}= +0.41388827 \pm 6.1 \cdot 10^{-4} \) | \(a_{816}= +0.20342257 \pm 1.5 \cdot 10^{-3} \) |
\(a_{817}= -0.46418953 \pm 2.7 \cdot 10^{-4} \) | \(a_{818}= +0.13842669 \pm 5.4 \cdot 10^{-4} \) | \(a_{819}= -0.85698759 \pm 4.2 \cdot 10^{-4} \) |
\(a_{820}= -0.76153844 \pm 2.1 \cdot 10^{-3} \) | \(a_{821}= -0.11537500 \pm 3.7 \cdot 10^{-4} \) | \(a_{822}= -1.68373528 \pm 1.2 \cdot 10^{-3} \) |
\(a_{823}= -0.31989673 \pm 1.5 \cdot 10^{-3} \) | \(a_{824}= -0.36711337 \pm 2.1 \cdot 10^{-3} \) | \(a_{825}= +0.44858230 \pm 5.8 \cdot 10^{-4} \) |
\(a_{826}= +0.09079783 \pm 1.6 \cdot 10^{-3} \) | \(a_{827}= +1.69678490 \pm 2.3 \cdot 10^{-3} \) | \(a_{828}= +0.06670229 \pm 1.7 \cdot 10^{-3} \) |
\(a_{829}= +0.55741366 \pm 2.4 \cdot 10^{-3} \) | \(a_{830}= +0.12921719 \pm 1.1 \cdot 10^{-3} \) | \(a_{831}= -2.20990322 \pm 6.7 \cdot 10^{-4} \) |
\(a_{832}= -0.17731291 \pm 1.2 \cdot 10^{-3} \) | \(a_{833}= +0.43103590 \pm 8.4 \cdot 10^{-4} \) | \(a_{834}= +2.26014088 \pm 2.6 \cdot 10^{-3} \) |
\(a_{835}= -1.06957654 \pm 4.1 \cdot 10^{-4} \) | \(a_{836}= +0.31649026 \pm 2.2 \cdot 10^{-3} \) | \(a_{837}= -0.69147303 \pm 9.1 \cdot 10^{-4} \) |
\(a_{838}= -0.29728467 \pm 2.0 \cdot 10^{-3} \) | \(a_{839}= +0.58493619 \pm 1.6 \cdot 10^{-4} \) | \(a_{840}= +0.16043876 \pm 1.6 \cdot 10^{-3} \) |
\(a_{841}= -0.82775533 \pm 4.9 \cdot 10^{-4} \) | \(a_{842}= -0.29199445 \pm 4.0 \cdot 10^{-4} \) | \(a_{843}= -2.38898284 \pm 4.6 \cdot 10^{-4} \) |
\(a_{844}= -0.14720392 \pm 6.1 \cdot 10^{-4} \) | \(a_{845}= +0.82594415 \pm 3.4 \cdot 10^{-4} \) | \(a_{846}= +0.45130211 \pm 2.2 \cdot 10^{-3} \) |
\(a_{847}= -0.11980304 \pm 2.3 \cdot 10^{-4} \) | \(a_{848}= -0.03285939 \pm 1.3 \cdot 10^{-3} \) | \(a_{849}= +0.67597828 \pm 5.9 \cdot 10^{-4} \) |
\(a_{850}= -0.11433880 \pm 2.1 \cdot 10^{-3} \) | \(a_{851}= -0.08907352 \pm 7.0 \cdot 10^{-4} \) | \(a_{852}= +0.80913819 \pm 1.5 \cdot 10^{-3} \) |
\(a_{853}= +1.71314343 \pm 1.3 \cdot 10^{-3} \) | \(a_{854}= -0.33155811 \pm 1.1 \cdot 10^{-3} \) | \(a_{855}= +1.18132992 \pm 8.2 \cdot 10^{-5} \) |
\(a_{856}= +0.60496735 \pm 7.9 \cdot 10^{-4} \) | \(a_{857}= -0.75885018 \pm 1.0 \cdot 10^{-3} \) | \(a_{858}= -1.34673934 \pm 3.4 \cdot 10^{-3} \) |
\(a_{859}= +1.86299340 \pm 7.9 \cdot 10^{-4} \) | \(a_{860}= -0.23895929 \pm 8.5 \cdot 10^{-4} \) | \(a_{861}= +1.03792464 \pm 2.9 \cdot 10^{-4} \) |
\(a_{862}= -0.98621929 \pm 2.0 \cdot 10^{-3} \) | \(a_{863}= -1.32569022 \pm 9.6 \cdot 10^{-4} \) | \(a_{864}= +0.24563592 \pm 1.0 \cdot 10^{-3} \) |
\(a_{865}= -0.58349369 \pm 5.3 \cdot 10^{-4} \) | \(a_{866}= +0.68658513 \pm 9.0 \cdot 10^{-4} \) | \(a_{867}= +1.28740313 \pm 8.1 \cdot 10^{-4} \) |
\(a_{868}= +0.08230062 \pm 1.8 \cdot 10^{-3} \) | \(a_{869}= -1.23905610 \pm 7.3 \cdot 10^{-4} \) | \(a_{870}= -0.40261271 \pm 2.2 \cdot 10^{-3} \) |
\(a_{871}= -0.13048569 \pm 1.9 \cdot 10^{-3} \) | \(a_{872}= -0.39777269 \pm 1.6 \cdot 10^{-3} \) | \(a_{873}= -1.43559646 \pm 1.8 \cdot 10^{-4} \) |
\(a_{874}= -0.04093387 \pm 1.3 \cdot 10^{-3} \) | \(a_{875}= -0.36009542 \pm 2.6 \cdot 10^{-4} \) | \(a_{876}= -1.06741164 \pm 2.6 \cdot 10^{-3} \) |
\(a_{877}= -1.09437233 \pm 2.3 \cdot 10^{-3} \) | \(a_{878}= +0.21894858 \pm 3.6 \cdot 10^{-4} \) | \(a_{879}= +0.21582794 \pm 6.1 \cdot 10^{-4} \) |
\(a_{880}= +0.16292545 \pm 2.0 \cdot 10^{-3} \) | \(a_{881}= +0.90928350 \pm 4.8 \cdot 10^{-4} \) | \(a_{882}= +1.15022614 \pm 2.2 \cdot 10^{-3} \) |
\(a_{883}= +1.30353580 \pm 1.0 \cdot 10^{-3} \) | \(a_{884}= +0.34326936 \pm 2.1 \cdot 10^{-3} \) | \(a_{885}= +0.53259287 \pm 2.2 \cdot 10^{-4} \) |
\(a_{886}= +0.24726850 \pm 1.1 \cdot 10^{-3} \) | \(a_{887}= -0.92366890 \pm 1.8 \cdot 10^{-3} \) | \(a_{888}= -0.72489784 \pm 2.2 \cdot 10^{-3} \) |
\(a_{889}= -0.12924525 \pm 6.0 \cdot 10^{-4} \) | \(a_{890}= -0.47702951 \pm 1.1 \cdot 10^{-3} \) | \(a_{891}= +0.40698019 \pm 9.3 \cdot 10^{-4} \) |
\(a_{892}= +0.54147422 \pm 2.0 \cdot 10^{-3} \) | \(a_{893}= -0.27695515 \pm 4.7 \cdot 10^{-4} \) | \(a_{894}= +0.32626438 \pm 8.1 \cdot 10^{-4} \) |
\(a_{895}= +0.18143489 \pm 6.8 \cdot 10^{-4} \) | \(a_{896}= -0.02923612 \pm 5.4 \cdot 10^{-4} \) | \(a_{897}= +0.17418309 \pm 2.9 \cdot 10^{-4} \) |
\(a_{898}= +0.25794326 \pm 1.8 \cdot 10^{-3} \) | \(a_{899}= -0.20652911 \pm 1.0 \cdot 10^{-3} \) | \(a_{900}= -0.30511490 \pm 2.3 \cdot 10^{-3} \) |
\(a_{901}= +0.06361421 \pm 7.4 \cdot 10^{-4} \) | \(a_{902}= +1.05401174 \pm 3.2 \cdot 10^{-3} \) | \(a_{903}= +0.32568512 \pm 2.1 \cdot 10^{-4} \) |
\(a_{904}= +0.08367797 \pm 1.0 \cdot 10^{-3} \) | \(a_{905}= +1.11464320 \pm 3.8 \cdot 10^{-4} \) | \(a_{906}= -0.82193718 \pm 2.2 \cdot 10^{-3} \) |
\(a_{907}= +1.01822864 \pm 2.0 \cdot 10^{-3} \) | \(a_{908}= +0.89880830 \pm 1.2 \cdot 10^{-3} \) | \(a_{909}= -2.53832691 \pm 1.5 \cdot 10^{-4} \) |
\(a_{910}= +0.27073550 \pm 2.2 \cdot 10^{-3} \) | \(a_{911}= -1.53890245 \pm 1.5 \cdot 10^{-3} \) | \(a_{912}= -0.33312791 \pm 1.2 \cdot 10^{-3} \) |
\(a_{913}= -0.17884381 \pm 7.8 \cdot 10^{-4} \) | \(a_{914}= +0.30287471 \pm 1.0 \cdot 10^{-3} \) | \(a_{915}= -1.94482048 \pm 4.1 \cdot 10^{-4} \) |
\(a_{916}= -0.31431418 \pm 1.1 \cdot 10^{-3} \) | \(a_{917}= -0.12731599 \pm 4.0 \cdot 10^{-4} \) | \(a_{918}= -0.47553946 \pm 1.9 \cdot 10^{-3} \) |
\(a_{919}= +0.07431908 \pm 2.3 \cdot 10^{-3} \) | \(a_{920}= -0.02107227 \pm 1.1 \cdot 10^{-3} \) | \(a_{921}= +1.66417703 \pm 4.9 \cdot 10^{-4} \) |
\(a_{922}= -1.13607173 \pm 8.1 \cdot 10^{-4} \) | \(a_{923}= +1.36539593 \pm 8.2 \cdot 10^{-4} \) | \(a_{924}= -0.22205621 \pm 2.7 \cdot 10^{-3} \) |
\(a_{925}= +0.40744716 \pm 1.4 \cdot 10^{-3} \) | \(a_{926}= -0.45900115 \pm 1.1 \cdot 10^{-3} \) | \(a_{927}= +1.89655169 \pm 1.8 \cdot 10^{-3} \) |
\(a_{928}= +0.07336652 \pm 1.1 \cdot 10^{-3} \) | \(a_{929}= +0.08042693 \pm 1.5 \cdot 10^{-3} \) | \(a_{930}= +0.48275076 \pm 2.4 \cdot 10^{-3} \) |
\(a_{931}= -0.70587097 \pm 6.1 \cdot 10^{-4} \) | \(a_{932}= -0.65050452 \pm 1.0 \cdot 10^{-3} \) | \(a_{933}= +1.08214204 \pm 4.2 \cdot 10^{-4} \) |
\(a_{934}= -0.37189902 \pm 9.1 \cdot 10^{-4} \) | \(a_{935}= -0.31541592 \pm 1.9 \cdot 10^{-4} \) | \(a_{936}= +0.91601974 \pm 2.3 \cdot 10^{-3} \) |
\(a_{937}= -1.56598445 \pm 2.4 \cdot 10^{-3} \) | \(a_{938}= -0.02151504 \pm 2.6 \cdot 10^{-3} \) | \(a_{939}= +0.28705240 \pm 3.5 \cdot 10^{-4} \) |
\(a_{940}= -0.14257324 \pm 1.6 \cdot 10^{-3} \) | \(a_{941}= +0.87705257 \pm 4.1 \cdot 10^{-4} \) | \(a_{942}= +0.19758145 \pm 1.9 \cdot 10^{-3} \) |
\(a_{943}= -0.13632261 \pm 7.5 \cdot 10^{-4} \) | \(a_{944}= -0.09705229 \pm 1.1 \cdot 10^{-3} \) | \(a_{945}= -0.37505652 \pm 9.8 \cdot 10^{-5} \) |
\(a_{946}= +0.33073301 \pm 1.9 \cdot 10^{-3} \) | \(a_{947}= -0.14481529 \pm 9.3 \cdot 10^{-4} \) | \(a_{948}= +1.30419232 \pm 1.3 \cdot 10^{-3} \) |
\(a_{949}= -1.80122447 \pm 1.8 \cdot 10^{-3} \) | \(a_{950}= +0.18724296 \pm 1.8 \cdot 10^{-3} \) | \(a_{951}= -0.44368918 \pm 2.5 \cdot 10^{-4} \) |
\(a_{952}= +0.05659974 \pm 1.4 \cdot 10^{-3} \) | \(a_{953}= +1.04244904 \pm 4.0 \cdot 10^{-4} \) | \(a_{954}= +0.16975554 \pm 2.4 \cdot 10^{-3} \) |
\(a_{955}= +1.13773965 \pm 2.7 \cdot 10^{-4} \) | \(a_{956}= -0.25897236 \pm 1.3 \cdot 10^{-3} \) | \(a_{957}= +0.55723848 \pm 5.0 \cdot 10^{-4} \) |
\(a_{958}= +0.18779822 \pm 7.7 \cdot 10^{-4} \) | \(a_{959}= -0.46847788 \pm 3.3 \cdot 10^{-4} \) | \(a_{960}= -0.17149031 \pm 1.1 \cdot 10^{-3} \) |
\(a_{961}= -0.75236230 \pm 3.9 \cdot 10^{-4} \) | \(a_{962}= -1.22324292 \pm 2.8 \cdot 10^{-3} \) | \(a_{963}= -3.12533382 \pm 6.6 \cdot 10^{-4} \) |
\(a_{964}= -0.66548595 \pm 1.3 \cdot 10^{-3} \) | \(a_{965}= +0.54716029 \pm 5.5 \cdot 10^{-4} \) | \(a_{966}= +0.02872006 \pm 1.8 \cdot 10^{-3} \) |
\(a_{967}= +0.83003398 \pm 5.4 \cdot 10^{-4} \) | \(a_{968}= +0.12805547 \pm 7.0 \cdot 10^{-4} \) | \(a_{969}= +0.64491979 \pm 9.0 \cdot 10^{-4} \) |
\(a_{970}= +0.45352689 \pm 8.0 \cdot 10^{-4} \) | \(a_{971}= -1.31522291 \pm 8.3 \cdot 10^{-4} \) | \(a_{972}= +0.26638848 \pm 1.2 \cdot 10^{-3} \) |
\(a_{973}= +0.62885539 \pm 8.3 \cdot 10^{-4} \) | \(a_{974}= +0.32639142 \pm 1.2 \cdot 10^{-3} \) | \(a_{975}= -0.79676217 \pm 4.5 \cdot 10^{-4} \) |
\(a_{976}= +0.35439693 \pm 5.9 \cdot 10^{-4} \) | \(a_{977}= +0.91063912 \pm 9.2 \cdot 10^{-4} \) | \(a_{978}= +0.60295847 \pm 2.1 \cdot 10^{-3} \) |
\(a_{979}= +0.66023549 \pm 5.0 \cdot 10^{-4} \) | \(a_{980}= -0.36337404 \pm 1.6 \cdot 10^{-3} \) | \(a_{981}= +2.05494139 \pm 1.3 \cdot 10^{-3} \) |
\(a_{982}= +1.08207999 \pm 8.1 \cdot 10^{-4} \) | \(a_{983}= +1.01435193 \pm 7.5 \cdot 10^{-4} \) | \(a_{984}= -1.10942032 \pm 2.3 \cdot 10^{-3} \) |
\(a_{985}= -0.65336918 \pm 4.8 \cdot 10^{-4} \) | \(a_{986}= -0.14203409 \pm 2.0 \cdot 10^{-3} \) | \(a_{987}= +0.19431755 \pm 1.9 \cdot 10^{-4} \) |
\(a_{988}= -0.56214315 \pm 1.8 \cdot 10^{-3} \) | \(a_{989}= -0.04277598 \pm 3.5 \cdot 10^{-4} \) | \(a_{990}= -0.84169239 \pm 3.1 \cdot 10^{-3} \) |
\(a_{991}= +1.24620752 \pm 1.3 \cdot 10^{-4} \) | \(a_{992}= -0.08796976 \pm 1.2 \cdot 10^{-3} \) | \(a_{993}= -2.21475191 \pm 6.0 \cdot 10^{-4} \) |
\(a_{994}= +0.22513239 \pm 1.4 \cdot 10^{-3} \) | \(a_{995}= -0.40557310 \pm 7.1 \cdot 10^{-4} \) | \(a_{996}= +0.18824549 \pm 1.3 \cdot 10^{-3} \) |
\(a_{997}= -1.32511910 \pm 7.2 \cdot 10^{-4} \) | \(a_{998}= -0.54650561 \pm 1.8 \cdot 10^{-3} \) | \(a_{999}= +1.69458840 \pm 1.1 \cdot 10^{-3} \) |
\(a_{1000}= +0.38489999 \pm 7.7 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000