Maass form invariants
Level: | \( 2 \) |
Weight: | \( 0 \) |
Character: | 2.1 |
Symmetry: | even |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(22.7582184886991529054041038537 \pm 6 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= \pm0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.69564349 \pm 1.4 \cdot 10^{-4} \) |
\(a_{4}= \pm0.5 \) | \(a_{5}= -0.25510796 \pm 1.1 \cdot 10^{-4} \) | \(a_{6}= \pm0.49189423 \pm 1.0 \cdot 10^{-4} \) |
\(a_{7}= -1.48407981 \pm 1.0 \cdot 10^{-4} \) | \(a_{8}= \pm0.35355339 \pm 1.0 \cdot 10^{-8} \) | \(a_{9}= -0.51608013 \pm 3.2 \cdot 10^{-5} \) |
\(a_{10}= \pm0.18038857 \pm 8.4 \cdot 10^{-5} \) | \(a_{11}= -0.77208940 \pm 7.4 \cdot 10^{-5} \) | \(a_{12}= \pm0.34782175 \pm 7.3 \cdot 10^{-5} \) |
\(a_{13}= -0.90792109 \pm 1.1 \cdot 10^{-4} \) | \(a_{14}= \pm1.04940289 \pm 7.7 \cdot 10^{-5} \) | \(a_{15}= -0.17746419 \pm 1.3 \cdot 10^{-4} \) |
\(a_{16}= \pm0.25 \) | \(a_{17}= +1.01066209 \pm 4.5 \cdot 10^{-5} \) | \(a_{18}= \pm0.36492376 \pm 2.2 \cdot 10^{-5} \) |
\(a_{19}= +0.94531266 \pm 9.6 \cdot 10^{-5} \) | \(a_{20}= \pm0.12755398 \pm 5.9 \cdot 10^{-5} \) | \(a_{21}= -1.03239046 \pm 1.2 \cdot 10^{-4} \) |
\(a_{22}= \pm0.54594965 \pm 5.2 \cdot 10^{-5} \) | \(a_{23}= -1.54522778 \pm 1.3 \cdot 10^{-5} \) | \(a_{24}= \pm0.24594712 \pm 5.1 \cdot 10^{-5} \) |
\(a_{25}= -0.93491993 \pm 2.4 \cdot 10^{-5} \) | \(a_{26}= \pm0.64199716 \pm 7.8 \cdot 10^{-5} \) | \(a_{27}= -1.05465128 \pm 1.1 \cdot 10^{-4} \) |
\(a_{28}= \pm0.74203990 \pm 5.4 \cdot 10^{-5} \) | \(a_{29}= +1.26706849 \pm 2.2 \cdot 10^{-4} \) | \(a_{30}= \pm0.12548614 \pm 9.3 \cdot 10^{-5} \) |
\(a_{31}= -1.34507150 \pm 2.0 \cdot 10^{-4} \) | \(a_{32}= \pm0.17677670 \pm 1.0 \cdot 10^{-8} \) | \(a_{33}= -0.53709897 \pm 8.2 \cdot 10^{-5} \) |
\(a_{34}= \pm0.71464602 \pm 3.2 \cdot 10^{-5} \) | \(a_{35}= +0.37860058 \pm 9.8 \cdot 10^{-5} \) | \(a_{36}= \pm0.25804007 \pm 1.6 \cdot 10^{-5} \) |
\(a_{37}= -0.68704600 \pm 1.0 \cdot 10^{-4} \) | \(a_{38}= \pm0.66843699 \pm 6.8 \cdot 10^{-5} \) | \(a_{39}= -0.63158940 \pm 1.2 \cdot 10^{-4} \) |
\(a_{40}= \pm0.09019429 \pm 4.2 \cdot 10^{-5} \) | \(a_{41}= +0.70790335 \pm 9.8 \cdot 10^{-5} \) | \(a_{42}= \pm0.73001030 \pm 8.5 \cdot 10^{-5} \) |
\(a_{43}= +1.12779579 \pm 1.0 \cdot 10^{-4} \) | \(a_{44}= \pm0.38604470 \pm 3.7 \cdot 10^{-5} \) | \(a_{45}= +0.13165615 \pm 2.8 \cdot 10^{-5} \) |
\(a_{46}= \pm1.09264104 \pm 9.2 \cdot 10^{-6} \) | \(a_{47}= -0.04620758 \pm 1.3 \cdot 10^{-4} \) | \(a_{48}= \pm0.17391087 \pm 3.6 \cdot 10^{-5} \) |
\(a_{49}= +1.20249287 \pm 4.3 \cdot 10^{-5} \) | \(a_{50}= \pm0.66108822 \pm 1.7 \cdot 10^{-5} \) | \(a_{51}= +0.70306051 \pm 5.3 \cdot 10^{-5} \) |
\(a_{52}= \pm0.45396055 \pm 5.5 \cdot 10^{-5} \) | \(a_{53}= -0.10428699 \pm 1.5 \cdot 10^{-4} \) | \(a_{54}= \pm0.74575107 \pm 8.0 \cdot 10^{-5} \) |
\(a_{55}= +0.19696615 \pm 6.7 \cdot 10^{-5} \) | \(a_{56}= \pm0.52470145 \pm 3.8 \cdot 10^{-5} \) | \(a_{57}= +0.65760060 \pm 1.0 \cdot 10^{-4} \) |
\(a_{58}= \pm0.89595272 \pm 1.6 \cdot 10^{-4} \) | \(a_{59}= +0.38767502 \pm 2.1 \cdot 10^{-5} \) | \(a_{60}= \pm0.08873210 \pm 6.6 \cdot 10^{-5} \) |
\(a_{61}= -1.09450310 \pm 1.2 \cdot 10^{-5} \) | \(a_{62}= \pm0.95110918 \pm 1.4 \cdot 10^{-4} \) | \(a_{63}= +0.76590410 \pm 2.4 \cdot 10^{-5} \) |
\(a_{64}= \pm0.125 \) | \(a_{65}= +0.23161790 \pm 9.9 \cdot 10^{-5} \) | \(a_{66}= \pm0.37978632 \pm 5.8 \cdot 10^{-5} \) |
\(a_{67}= +0.67581322 \pm 1.2 \cdot 10^{-4} \) | \(a_{68}= \pm0.50533104 \pm 2.2 \cdot 10^{-5} \) | \(a_{69}= -1.07492765 \pm 1.6 \cdot 10^{-5} \) |
\(a_{70}= \pm0.26771104 \pm 6.9 \cdot 10^{-5} \) | \(a_{71}= +0.47100392 \pm 1.4 \cdot 10^{-4} \) | \(a_{72}= \pm0.18246188 \pm 1.1 \cdot 10^{-5} \) |
\(a_{73}= -0.31258741 \pm 1.8 \cdot 10^{-4} \) | \(a_{74}= \pm0.48581489 \pm 7.1 \cdot 10^{-5} \) | \(a_{75}= -0.65037096 \pm 2.7 \cdot 10^{-5} \) |
\(a_{76}= \pm0.47265633 \pm 4.8 \cdot 10^{-5} \) | \(a_{77}= +1.14584229 \pm 6.1 \cdot 10^{-5} \) | \(a_{78}= \pm0.44660115 \pm 8.7 \cdot 10^{-5} \) |
\(a_{79}= +0.74109325 \pm 9.1 \cdot 10^{-5} \) | \(a_{80}= \pm0.06377699 \pm 2.9 \cdot 10^{-5} \) | \(a_{81}= -0.21758117 \pm 1.5 \cdot 10^{-4} \) |
\(a_{82}= \pm0.50056326 \pm 6.9 \cdot 10^{-5} \) | \(a_{83}= -1.52753294 \pm 3.8 \cdot 10^{-5} \) | \(a_{84}= \pm0.51619523 \pm 6.0 \cdot 10^{-5} \) |
\(a_{85}= -0.25782795 \pm 4.0 \cdot 10^{-5} \) | \(a_{86}= \pm0.79747205 \pm 7.4 \cdot 10^{-5} \) | \(a_{87}= +0.88142795 \pm 2.5 \cdot 10^{-4} \) |
\(a_{88}= \pm0.27297483 \pm 2.6 \cdot 10^{-5} \) | \(a_{89}= +0.00374418 \pm 1.1 \cdot 10^{-4} \) | \(a_{90}= \pm0.09309496 \pm 2.0 \cdot 10^{-5} \) |
\(a_{91}= +1.34742736 \pm 9.0 \cdot 10^{-5} \) | \(a_{92}= \pm0.77261389 \pm 6.5 \cdot 10^{-6} \) | \(a_{93}= -0.93569024 \pm 2.3 \cdot 10^{-4} \) |
\(a_{94}= \pm0.03267370 \pm 9.3 \cdot 10^{-5} \) | \(a_{95}= -0.24115679 \pm 8.7 \cdot 10^{-5} \) | \(a_{96}= \pm0.12297356 \pm 2.5 \cdot 10^{-5} \) |
\(a_{97}= -0.95808907 \pm 1.9 \cdot 10^{-4} \) | \(a_{98}= \pm0.85029086 \pm 3.0 \cdot 10^{-5} \) | \(a_{99}= +0.39846000 \pm 1.6 \cdot 10^{-5} \) |
\(a_{100}= \pm0.46745996 \pm 1.2 \cdot 10^{-5} \) | \(a_{101}= +1.58449558 \pm 1.1 \cdot 10^{-4} \) | \(a_{102}= \pm0.49713885 \pm 3.7 \cdot 10^{-5} \) |
\(a_{103}= -1.57915391 \pm 7.5 \cdot 10^{-5} \) | \(a_{104}= \pm0.32099858 \pm 3.9 \cdot 10^{-5} \) | \(a_{105}= +0.26337103 \pm 1.0 \cdot 10^{-4} \) |
\(a_{106}= \pm0.07374204 \pm 1.0 \cdot 10^{-4} \) | \(a_{107}= +0.77335461 \pm 3.8 \cdot 10^{-5} \) | \(a_{108}= \pm0.52732564 \pm 5.6 \cdot 10^{-5} \) |
\(a_{109}= -0.47778636 \pm 4.2 \cdot 10^{-5} \) | \(a_{110}= \pm0.13927610 \pm 4.7 \cdot 10^{-5} \) | \(a_{111}= -0.47793908 \pm 1.1 \cdot 10^{-4} \) |
\(a_{112}= \pm0.37101995 \pm 2.7 \cdot 10^{-5} \) | \(a_{113}= +0.46452291 \pm 1.4 \cdot 10^{-4} \) | \(a_{114}= \pm0.46499384 \pm 7.5 \cdot 10^{-5} \) |
\(a_{115}= +0.39419991 \pm 1.1 \cdot 10^{-5} \) | \(a_{116}= \pm0.63353424 \pm 1.1 \cdot 10^{-4} \) | \(a_{117}= +0.46856004 \pm 3.0 \cdot 10^{-5} \) |
\(a_{118}= \pm0.27412764 \pm 1.5 \cdot 10^{-5} \) | \(a_{119}= -1.49990320 \pm 3.4 \cdot 10^{-5} \) | \(a_{120}= \pm0.06274307 \pm 4.6 \cdot 10^{-5} \) |
\(a_{121}= -0.40387795 \pm 9.0 \cdot 10^{-5} \) | \(a_{122}= \pm0.77393057 \pm 8.8 \cdot 10^{-6} \) | \(a_{123}= +0.49244836 \pm 1.0 \cdot 10^{-4} \) |
\(a_{124}= \pm0.67253575 \pm 1.0 \cdot 10^{-4} \) | \(a_{125}= +0.49361348 \pm 1.4 \cdot 10^{-4} \) | \(a_{126}= \pm0.54157598 \pm 1.7 \cdot 10^{-5} \) |
\(a_{127}= +0.35170708 \pm 8.4 \cdot 10^{-5} \) | \(a_{128}= \pm0.08838835 \pm 1.0 \cdot 10^{-8} \) | \(a_{129}= +0.78454380 \pm 1.1 \cdot 10^{-4} \) |
\(a_{130}= \pm0.16377859 \pm 7.0 \cdot 10^{-5} \) | \(a_{131}= -0.10437914 \pm 1.1 \cdot 10^{-4} \) | \(a_{132}= \pm0.26854948 \pm 4.1 \cdot 10^{-5} \) |
\(a_{133}= -1.40291943 \pm 8.0 \cdot 10^{-5} \) | \(a_{134}= \pm0.47787211 \pm 8.8 \cdot 10^{-5} \) | \(a_{135}= +0.26904994 \pm 1.0 \cdot 10^{-4} \) |
\(a_{136}= \pm0.35732301 \pm 1.6 \cdot 10^{-5} \) | \(a_{137}= -1.28912443 \pm 4.8 \cdot 10^{-5} \) | \(a_{138}= \pm0.76008863 \pm 1.1 \cdot 10^{-5} \) |
\(a_{139}= +1.09320929 \pm 6.9 \cdot 10^{-5} \) | \(a_{140}= \pm0.18930029 \pm 4.9 \cdot 10^{-5} \) | \(a_{141}= -0.03214400 \pm 1.4 \cdot 10^{-4} \) |
\(a_{142}= \pm0.33305007 \pm 1.0 \cdot 10^{-4} \) | \(a_{143}= +0.70099626 \pm 6.1 \cdot 10^{-5} \) | \(a_{144}= \pm0.12902003 \pm 8.0 \cdot 10^{-6} \) |
\(a_{145}= -0.32323926 \pm 2.0 \cdot 10^{-4} \) | \(a_{146}= \pm0.22103268 \pm 1.3 \cdot 10^{-4} \) | \(a_{147}= +0.83650634 \pm 4.9 \cdot 10^{-5} \) |
\(a_{148}= \pm0.34352300 \pm 5.0 \cdot 10^{-5} \) | \(a_{149}= +0.33004577 \pm 1.7 \cdot 10^{-4} \) | \(a_{150}= \pm0.45988172 \pm 1.9 \cdot 10^{-5} \) |
\(a_{151}= -1.17417113 \pm 1.0 \cdot 10^{-4} \) | \(a_{152}= \pm0.33421850 \pm 3.4 \cdot 10^{-5} \) | \(a_{153}= -0.52158262 \pm 2.1 \cdot 10^{-5} \) |
\(a_{154}= \pm0.81023285 \pm 4.3 \cdot 10^{-5} \) | \(a_{155}= +0.34313845 \pm 1.8 \cdot 10^{-4} \) | \(a_{156}= \pm0.31579470 \pm 6.1 \cdot 10^{-5} \) |
\(a_{157}= -1.07446188 \pm 2.3 \cdot 10^{-4} \) | \(a_{158}= \pm0.52403206 \pm 6.4 \cdot 10^{-5} \) | \(a_{159}= -0.07254656 \pm 1.6 \cdot 10^{-4} \) |
\(a_{160}= \pm0.04509714 \pm 2.1 \cdot 10^{-5} \) | \(a_{161}= +2.29324134 \pm 9.2 \cdot 10^{-6} \) | \(a_{162}= \pm0.15385312 \pm 1.0 \cdot 10^{-4} \) |
\(a_{163}= -0.26666584 \pm 4.6 \cdot 10^{-5} \) | \(a_{164}= \pm0.35395168 \pm 4.9 \cdot 10^{-5} \) | \(a_{165}= +0.13701822 \pm 7.4 \cdot 10^{-5} \) |
\(a_{166}= \pm1.08012890 \pm 2.7 \cdot 10^{-5} \) | \(a_{167}= -0.94178433 \pm 3.6 \cdot 10^{-5} \) | \(a_{168}= \pm0.36500515 \pm 4.2 \cdot 10^{-5} \) |
\(a_{169}= -0.17567929 \pm 4.2 \cdot 10^{-5} \) | \(a_{170}= \pm0.18231189 \pm 2.8 \cdot 10^{-5} \) | \(a_{171}= -0.48785708 \pm 2.1 \cdot 10^{-5} \) |
\(a_{172}= \pm0.56389789 \pm 5.2 \cdot 10^{-5} \) | \(a_{173}= +0.23615798 \pm 2.1 \cdot 10^{-5} \) | \(a_{174}= \pm0.62326368 \pm 1.7 \cdot 10^{-4} \) |
\(a_{175}= +1.38749578 \pm 2.0 \cdot 10^{-5} \) | \(a_{176}= \pm0.19302235 \pm 1.8 \cdot 10^{-5} \) | \(a_{177}= +0.26968361 \pm 2.4 \cdot 10^{-5} \) |
\(a_{178}= \pm0.00264753 \pm 8.3 \cdot 10^{-5} \) | \(a_{179}= -1.55864738 \pm 1.8 \cdot 10^{-4} \) | \(a_{180}= \pm0.06582808 \pm 1.4 \cdot 10^{-5} \) |
\(a_{181}= +0.57548755 \pm 4.4 \cdot 10^{-5} \) | \(a_{182}= \pm0.95277502 \pm 6.4 \cdot 10^{-5} \) | \(a_{183}= -0.76138396 \pm 1.4 \cdot 10^{-5} \) |
\(a_{184}= \pm0.54632052 \pm 4.6 \cdot 10^{-6} \) | \(a_{185}= +0.17527091 \pm 9.1 \cdot 10^{-5} \) | \(a_{186}= \pm0.66163291 \pm 1.6 \cdot 10^{-4} \) |
\(a_{187}= -0.78032149 \pm 2.3 \cdot 10^{-5} \) | \(a_{188}= \pm0.02310379 \pm 6.5 \cdot 10^{-5} \) | \(a_{189}= +1.56518666 \pm 9.4 \cdot 10^{-5} \) |
\(a_{190}= \pm0.17052360 \pm 6.1 \cdot 10^{-5} \) | \(a_{191}= -0.85291336 \pm 1.2 \cdot 10^{-4} \) | \(a_{192}= \pm0.08695544 \pm 1.8 \cdot 10^{-5} \) |
\(a_{193}= +1.06046647 \pm 2.3 \cdot 10^{-4} \) | \(a_{194}= \pm0.67747128 \pm 1.3 \cdot 10^{-4} \) | \(a_{195}= +0.16112349 \pm 1.1 \cdot 10^{-4} \) |
\(a_{196}= \pm0.60124644 \pm 2.1 \cdot 10^{-5} \) | \(a_{197}= +0.78311298 \pm 3.6 \cdot 10^{-5} \) | \(a_{198}= \pm0.28175377 \pm 1.1 \cdot 10^{-5} \) |
\(a_{199}= -1.21184856 \pm 1.0 \cdot 10^{-4} \) | \(a_{200}= \pm0.33054411 \pm 8.6 \cdot 10^{-6} \) | \(a_{201}= +0.47012507 \pm 1.3 \cdot 10^{-4} \) |
\(a_{202}= \pm1.12040757 \pm 8.3 \cdot 10^{-5} \) | \(a_{203}= -1.88043075 \pm 1.9 \cdot 10^{-4} \) | \(a_{204}= \pm0.35153025 \pm 2.6 \cdot 10^{-5} \) |
\(a_{205}= -0.18059178 \pm 8.8 \cdot 10^{-5} \) | \(a_{206}= \pm1.11663044 \pm 5.3 \cdot 10^{-5} \) | \(a_{207}= +0.79746135 \pm 9.5 \cdot 10^{-6} \) |
\(a_{208}= \pm0.22698027 \pm 2.7 \cdot 10^{-5} \) | \(a_{209}= -0.72986589 \pm 5.4 \cdot 10^{-5} \) | \(a_{210}= \pm0.18623144 \pm 7.7 \cdot 10^{-5} \) |
\(a_{211}= +1.03466068 \pm 1.6 \cdot 10^{-4} \) | \(a_{212}= \pm0.05214349 \pm 7.6 \cdot 10^{-5} \) | \(a_{213}= +0.32765081 \pm 1.6 \cdot 10^{-4} \) |
\(a_{214}= \pm0.54684429 \pm 2.7 \cdot 10^{-5} \) | \(a_{215}= -0.28770969 \pm 9.5 \cdot 10^{-5} \) | \(a_{216}= \pm0.37287554 \pm 4.0 \cdot 10^{-5} \) |
\(a_{217}= +1.99619346 \pm 1.7 \cdot 10^{-4} \) | \(a_{218}= \pm0.33784598 \pm 3.0 \cdot 10^{-5} \) | \(a_{219}= -0.21744940 \pm 2.0 \cdot 10^{-4} \) |
\(a_{220}= \pm0.09848308 \pm 3.3 \cdot 10^{-5} \) | \(a_{221}= -0.91760143 \pm 4.2 \cdot 10^{-5} \) | \(a_{222}= \pm0.33795397 \pm 7.9 \cdot 10^{-5} \) |
\(a_{223}= -1.48826143 \pm 4.5 \cdot 10^{-5} \) | \(a_{224}= \pm0.26235072 \pm 1.9 \cdot 10^{-5} \) | \(a_{225}= +0.48249360 \pm 6.6 \cdot 10^{-6} \) |
\(a_{226}= \pm0.32846730 \pm 1.0 \cdot 10^{-4} \) | \(a_{227}= -0.96478821 \pm 4.0 \cdot 10^{-6} \) | \(a_{228}= \pm0.32880030 \pm 5.3 \cdot 10^{-5} \) |
\(a_{229}= +0.72017917 \pm 1.9 \cdot 10^{-4} \) | \(a_{230}= \pm0.27874143 \pm 8.0 \cdot 10^{-6} \) | \(a_{231}= +0.79709773 \pm 6.8 \cdot 10^{-5} \) |
\(a_{232}= \pm0.44797636 \pm 8.1 \cdot 10^{-5} \) | \(a_{233}= -0.46061627 \pm 1.3 \cdot 10^{-4} \) | \(a_{234}= \pm0.33132198 \pm 2.1 \cdot 10^{-5} \) |
\(a_{235}= +0.01178792 \pm 1.1 \cdot 10^{-4} \) | \(a_{236}= \pm0.19383751 \pm 1.0 \cdot 10^{-5} \) | \(a_{237}= +0.51553670 \pm 1.0 \cdot 10^{-4} \) |
\(a_{238}= \pm1.06059172 \pm 2.4 \cdot 10^{-5} \) | \(a_{239}= -1.30061924 \pm 2.7 \cdot 10^{-5} \) | \(a_{240}= \pm0.04436605 \pm 3.3 \cdot 10^{-5} \) |
\(a_{241}= +1.24306884 \pm 2.0 \cdot 10^{-4} \) | \(a_{242}= \pm0.28558484 \pm 6.3 \cdot 10^{-5} \) | \(a_{243}= +0.90329235 \pm 6.0 \cdot 10^{-5} \) |
\(a_{244}= \pm0.54725155 \pm 6.2 \cdot 10^{-6} \) | \(a_{245}= -0.30676551 \pm 3.9 \cdot 10^{-5} \) | \(a_{246}= \pm0.34821358 \pm 7.7 \cdot 10^{-5} \) |
\(a_{247}= -0.85826930 \pm 8.0 \cdot 10^{-5} \) | \(a_{248}= \pm0.47555459 \pm 7.3 \cdot 10^{-5} \) | \(a_{249}= -1.06261835 \pm 4.7 \cdot 10^{-5} \) |
\(a_{250}= \pm0.34903744 \pm 1.0 \cdot 10^{-4} \) | \(a_{251}= +0.47620239 \pm 1.5 \cdot 10^{-4} \) | \(a_{252}= \pm0.38295205 \pm 1.2 \cdot 10^{-5} \) |
\(a_{253}= +1.19305399 \pm 5.4 \cdot 10^{-6} \) | \(a_{254}= \pm0.24869446 \pm 5.9 \cdot 10^{-5} \) | \(a_{255}= -0.17935633 \pm 4.7 \cdot 10^{-5} \) |
\(a_{256}= \pm0.0625 \) | \(a_{257}= -0.61568248 \pm 3.2 \cdot 10^{-5} \) | \(a_{258}= \pm0.55475624 \pm 8.3 \cdot 10^{-5} \) |
\(a_{259}= +1.01963110 \pm 8.2 \cdot 10^{-5} \) | \(a_{260}= \pm0.11580895 \pm 4.9 \cdot 10^{-5} \) | \(a_{261}= -0.65390887 \pm 5.0 \cdot 10^{-5} \) |
\(a_{262}= \pm0.07380720 \pm 8.4 \cdot 10^{-5} \) | \(a_{263}= -0.67829204 \pm 1.8 \cdot 10^{-4} \) | \(a_{264}= \pm0.18989316 \pm 2.9 \cdot 10^{-5} \) |
\(a_{265}= +0.02660444 \pm 1.3 \cdot 10^{-4} \) | \(a_{266}= \pm0.99201384 \pm 5.6 \cdot 10^{-5} \) | \(a_{267}= +0.00260461 \pm 1.3 \cdot 10^{-4} \) |
\(a_{268}= \pm0.33790661 \pm 6.2 \cdot 10^{-5} \) | \(a_{269}= -0.41699292 \pm 1.6 \cdot 10^{-5} \) | \(a_{270}= \pm0.19024704 \pm 7.2 \cdot 10^{-5} \) |
\(a_{271}= -0.58882070 \pm 1.9 \cdot 10^{-4} \) | \(a_{272}= \pm0.25266552 \pm 1.1 \cdot 10^{-5} \) | \(a_{273}= +0.93732908 \pm 1.0 \cdot 10^{-4} \) |
\(a_{274}= \pm0.91154862 \pm 3.4 \cdot 10^{-5} \) | \(a_{275}= +0.72184177 \pm 1.3 \cdot 10^{-5} \) | \(a_{276}= \pm0.53746383 \pm 8.2 \cdot 10^{-6} \) |
\(a_{277}= +1.66838034 \pm 8.2 \cdot 10^{-5} \) | \(a_{278}= \pm0.77301570 \pm 4.8 \cdot 10^{-5} \) | \(a_{279}= +0.69416468 \pm 4.5 \cdot 10^{-5} \) |
\(a_{280}= \pm0.13385552 \pm 3.4 \cdot 10^{-5} \) | \(a_{281}= -1.23315349 \pm 3.3 \cdot 10^{-5} \) | \(a_{282}= \pm0.02272924 \pm 1.0 \cdot 10^{-4} \) |
\(a_{283}= -1.14465201 \pm 1.0 \cdot 10^{-4} \) | \(a_{284}= \pm0.23550196 \pm 7.3 \cdot 10^{-5} \) | \(a_{285}= -0.16775915 \pm 9.6 \cdot 10^{-5} \) |
\(a_{286}= \pm0.49567921 \pm 4.3 \cdot 10^{-5} \) | \(a_{287}= -1.05058507 \pm 8.0 \cdot 10^{-5} \) | \(a_{288}= \pm0.09123094 \pm 5.7 \cdot 10^{-6} \) |
\(a_{289}= +0.02143786 \pm 1.1 \cdot 10^{-4} \) | \(a_{290}= \pm0.22856467 \pm 1.4 \cdot 10^{-4} \) | \(a_{291}= -0.66648843 \pm 2.1 \cdot 10^{-4} \) |
\(a_{292}= \pm0.15629371 \pm 9.3 \cdot 10^{-5} \) | \(a_{293}= +0.81961814 \pm 1.0 \cdot 10^{-4} \) | \(a_{294}= \pm0.59149931 \pm 3.4 \cdot 10^{-5} \) |
\(a_{295}= -0.09889899 \pm 1.8 \cdot 10^{-5} \) | \(a_{296}= \pm0.24290744 \pm 3.5 \cdot 10^{-5} \) | \(a_{297}= +0.81428508 \pm 6.4 \cdot 10^{-5} \) |
\(a_{298}= \pm0.23337760 \pm 1.2 \cdot 10^{-4} \) | \(a_{299}= +1.40294490 \pm 1.4 \cdot 10^{-5} \) | \(a_{300}= \pm0.32518548 \pm 1.3 \cdot 10^{-5} \) |
\(a_{301}= -1.67373895 \pm 8.6 \cdot 10^{-5} \) | \(a_{302}= \pm0.83026437 \pm 7.2 \cdot 10^{-5} \) | \(a_{303}= +1.10224404 \pm 1.3 \cdot 10^{-4} \) |
\(a_{304}= \pm0.23632816 \pm 2.4 \cdot 10^{-5} \) | \(a_{305}= +0.27921646 \pm 1.0 \cdot 10^{-5} \) | \(a_{306}= \pm0.36881461 \pm 1.5 \cdot 10^{-5} \) |
\(a_{307}= +0.52839553 \pm 1.7 \cdot 10^{-4} \) | \(a_{308}= \pm0.57292115 \pm 3.0 \cdot 10^{-5} \) | \(a_{309}= -1.09852815 \pm 8.4 \cdot 10^{-5} \) |
\(a_{310}= \pm0.24263553 \pm 1.3 \cdot 10^{-4} \) | \(a_{311}= -0.57121070 \pm 1.5 \cdot 10^{-4} \) | \(a_{312}= \pm0.22330057 \pm 4.3 \cdot 10^{-5} \) |
\(a_{313}= +0.59248473 \pm 1.7 \cdot 10^{-4} \) | \(a_{314}= \pm0.75975928 \pm 1.6 \cdot 10^{-4} \) | \(a_{315}= -0.19538823 \pm 2.2 \cdot 10^{-5} \) |
\(a_{316}= \pm0.37054663 \pm 4.5 \cdot 10^{-5} \) | \(a_{317}= -0.89526853 \pm 6.2 \cdot 10^{-5} \) | \(a_{318}= \pm0.05129817 \pm 1.1 \cdot 10^{-4} \) |
\(a_{319}= -0.97829015 \pm 1.3 \cdot 10^{-4} \) | \(a_{320}= \pm0.03188850 \pm 1.4 \cdot 10^{-5} \) | \(a_{321}= +0.53797910 \pm 4.3 \cdot 10^{-5} \) |
\(a_{322}= \pm1.62156650 \pm 6.5 \cdot 10^{-6} \) | \(a_{323}= +0.95539167 \pm 3.1 \cdot 10^{-5} \) | \(a_{324}= \pm0.10879058 \pm 7.7 \cdot 10^{-5} \) |
\(a_{325}= +0.84883352 \pm 2.0 \cdot 10^{-5} \) | \(a_{326}= \pm0.18856123 \pm 3.3 \cdot 10^{-5} \) | \(a_{327}= -0.33236898 \pm 4.8 \cdot 10^{-5} \) |
\(a_{328}= \pm0.25028163 \pm 3.4 \cdot 10^{-5} \) | \(a_{329}= +0.06857574 \pm 1.0 \cdot 10^{-4} \) | \(a_{330}= \pm0.09688652 \pm 5.2 \cdot 10^{-5} \) |
\(a_{331}= -0.55303252 \pm 7.1 \cdot 10^{-5} \) | \(a_{332}= \pm0.76376647 \pm 1.9 \cdot 10^{-5} \) | \(a_{333}= +0.35457079 \pm 2.8 \cdot 10^{-5} \) |
\(a_{334}= \pm0.66594208 \pm 2.6 \cdot 10^{-5} \) | \(a_{335}= -0.17240533 \pm 1.1 \cdot 10^{-4} \) | \(a_{336}= \pm0.25809762 \pm 3.0 \cdot 10^{-5} \) |
\(a_{337}= -0.85700334 \pm 2.1 \cdot 10^{-4} \) | \(a_{338}= \pm0.12422401 \pm 3.0 \cdot 10^{-5} \) | \(a_{339}= +0.32314234 \pm 1.6 \cdot 10^{-4} \) |
\(a_{340}= \pm0.12891397 \pm 2.0 \cdot 10^{-5} \) | \(a_{341}= +1.03851545 \pm 1.1 \cdot 10^{-4} \) | \(a_{342}= \pm0.34496705 \pm 1.5 \cdot 10^{-5} \) |
\(a_{343}= -0.30051558 \pm 1.4 \cdot 10^{-4} \) | \(a_{344}= \pm0.39873602 \pm 3.7 \cdot 10^{-5} \) | \(a_{345}= +0.27422260 \pm 1.4 \cdot 10^{-5} \) |
\(a_{346}= \pm0.16698891 \pm 1.5 \cdot 10^{-5} \) | \(a_{347}= -0.43712252 \pm 3.6 \cdot 10^{-5} \) | \(a_{348}= \pm0.44071397 \pm 1.2 \cdot 10^{-4} \) |
\(a_{349}= -0.02587951 \pm 9.7 \cdot 10^{-5} \) | \(a_{350}= \pm0.98110768 \pm 1.4 \cdot 10^{-5} \) | \(a_{351}= +0.95754014 \pm 9.3 \cdot 10^{-5} \) |
\(a_{352}= \pm0.13648741 \pm 1.3 \cdot 10^{-5} \) | \(a_{353}= -0.39181008 \pm 6.8 \cdot 10^{-5} \) | \(a_{354}= \pm0.19069511 \pm 1.7 \cdot 10^{-5} \) |
\(a_{355}= -0.12015685 \pm 1.3 \cdot 10^{-4} \) | \(a_{356}= \pm0.00187209 \pm 5.8 \cdot 10^{-5} \) | \(a_{357}= -1.04339790 \pm 3.8 \cdot 10^{-5} \) |
\(a_{358}= \pm1.10213013 \pm 1.2 \cdot 10^{-4} \) | \(a_{359}= -0.13167415 \pm 1.6 \cdot 10^{-4} \) | \(a_{360}= \pm0.04654748 \pm 1.0 \cdot 10^{-5} \) |
\(a_{361}= -0.10638398 \pm 6.1 \cdot 10^{-5} \) | \(a_{362}= \pm0.40693115 \pm 3.1 \cdot 10^{-5} \) | \(a_{363}= -0.28095507 \pm 1.0 \cdot 10^{-4} \) |
\(a_{364}= \pm0.67371368 \pm 4.5 \cdot 10^{-5} \) | \(a_{365}= +0.07974354 \pm 1.6 \cdot 10^{-4} \) | \(a_{366}= \pm0.53837976 \pm 1.0 \cdot 10^{-5} \) |
\(a_{367}= +0.51545496 \pm 2.3 \cdot 10^{-4} \) | \(a_{368}= \pm0.38630694 \pm 3.2 \cdot 10^{-6} \) | \(a_{369}= -0.36533486 \pm 2.6 \cdot 10^{-5} \) |
\(a_{370}= \pm0.12393525 \pm 6.4 \cdot 10^{-5} \) | \(a_{371}= +0.15477021 \pm 1.2 \cdot 10^{-4} \) | \(a_{372}= \pm0.46784512 \pm 1.1 \cdot 10^{-4} \) |
\(a_{373}= +1.76946996 \pm 4.0 \cdot 10^{-5} \) | \(a_{374}= \pm0.55177062 \pm 1.6 \cdot 10^{-5} \) | \(a_{375}= +0.34337901 \pm 1.5 \cdot 10^{-4} \) |
\(a_{376}= \pm0.01633685 \pm 4.6 \cdot 10^{-5} \) | \(a_{377}= -1.15039821 \pm 1.9 \cdot 10^{-4} \) | \(a_{378}= \pm1.10675410 \pm 6.6 \cdot 10^{-5} \) |
\(a_{379}= +0.54026844 \pm 2.4 \cdot 10^{-4} \) | \(a_{380}= \pm0.12057839 \pm 4.3 \cdot 10^{-5} \) | \(a_{381}= +0.24466274 \pm 9.4 \cdot 10^{-5} \) |
\(a_{382}= \pm0.60310082 \pm 8.6 \cdot 10^{-5} \) | \(a_{383}= +0.53356701 \pm 4.0 \cdot 10^{-5} \) | \(a_{384}= \pm0.06148678 \pm 1.2 \cdot 10^{-5} \) |
\(a_{385}= -0.29231349 \pm 5.5 \cdot 10^{-5} \) | \(a_{386}= \pm0.74986303 \pm 1.6 \cdot 10^{-4} \) | \(a_{387}= -0.58203300 \pm 3.0 \cdot 10^{-5} \) |
\(a_{388}= \pm0.47904453 \pm 9.7 \cdot 10^{-5} \) | \(a_{389}= -1.31454512 \pm 2.7 \cdot 10^{-5} \) | \(a_{390}= \pm0.11393151 \pm 7.8 \cdot 10^{-5} \) |
\(a_{391}= -1.56170313 \pm 1.3 \cdot 10^{-5} \) | \(a_{392}= \pm0.42514543 \pm 1.5 \cdot 10^{-5} \) | \(a_{393}= -0.07261067 \pm 1.3 \cdot 10^{-4} \) |
\(a_{394}= \pm0.55374450 \pm 2.6 \cdot 10^{-5} \) | \(a_{395}= -0.18905879 \pm 8.2 \cdot 10^{-5} \) | \(a_{396}= \pm0.19923000 \pm 8.3 \cdot 10^{-6} \) |
\(a_{397}= +1.82572409 \pm 3.3 \cdot 10^{-5} \) | \(a_{398}= \pm0.85690634 \pm 7.4 \cdot 10^{-5} \) | \(a_{399}= -0.97593177 \pm 8.8 \cdot 10^{-5} \) |
\(a_{400}= \pm0.23372998 \pm 6.0 \cdot 10^{-6} \) | \(a_{401}= +1.79778689 \pm 6.4 \cdot 10^{-5} \) | \(a_{402}= \pm0.33242863 \pm 9.7 \cdot 10^{-5} \) |
\(a_{403}= +1.22121879 \pm 1.7 \cdot 10^{-4} \) | \(a_{404}= \pm0.79224779 \pm 5.9 \cdot 10^{-5} \) | \(a_{405}= +0.05550669 \pm 1.3 \cdot 10^{-4} \) |
\(a_{406}= \pm1.32966534 \pm 1.3 \cdot 10^{-4} \) | \(a_{407}= +0.53046094 \pm 5.6 \cdot 10^{-5} \) | \(a_{408}= \pm0.24856943 \pm 1.8 \cdot 10^{-5} \) |
\(a_{409}= -1.22335425 \pm 3.3 \cdot 10^{-5} \) | \(a_{410}= \pm0.12769767 \pm 6.2 \cdot 10^{-5} \) | \(a_{411}= -0.89677102 \pm 5.3 \cdot 10^{-5} \) |
\(a_{412}= \pm0.78957696 \pm 3.7 \cdot 10^{-5} \) | \(a_{413}= -0.57534067 \pm 1.7 \cdot 10^{-5} \) | \(a_{414}= \pm0.56389033 \pm 6.7 \cdot 10^{-6} \) |
\(a_{415}= +0.38968582 \pm 3.4 \cdot 10^{-5} \) | \(a_{416}= \pm0.16049929 \pm 1.9 \cdot 10^{-5} \) | \(a_{417}= +0.76048393 \pm 7.6 \cdot 10^{-5} \) |
\(a_{418}= \pm0.51609312 \pm 3.8 \cdot 10^{-5} \) | \(a_{419}= -0.06630981 \pm 1.3 \cdot 10^{-4} \) | \(a_{420}= \pm0.13168551 \pm 5.4 \cdot 10^{-5} \) |
\(a_{421}= -0.84404743 \pm 9.8 \cdot 10^{-5} \) | \(a_{422}= \pm0.73161558 \pm 1.1 \cdot 10^{-4} \) | \(a_{423}= +0.02384682 \pm 3.6 \cdot 10^{-5} \) |
\(a_{424}= \pm0.03687102 \pm 5.3 \cdot 10^{-5} \) | \(a_{425}= -0.94488813 \pm 9.2 \cdot 10^{-6} \) | \(a_{426}= \pm0.23168411 \pm 1.1 \cdot 10^{-4} \) |
\(a_{427}= +1.62432995 \pm 1.1 \cdot 10^{-5} \) | \(a_{428}= \pm0.38667730 \pm 1.9 \cdot 10^{-5} \) | \(a_{429}= +0.48764348 \pm 6.8 \cdot 10^{-5} \) |
\(a_{430}= \pm0.20344147 \pm 6.7 \cdot 10^{-5} \) | \(a_{431}= -1.10162244 \pm 3.4 \cdot 10^{-5} \) | \(a_{432}= \pm0.26366282 \pm 2.8 \cdot 10^{-5} \) |
\(a_{433}= +0.80309457 \pm 8.3 \cdot 10^{-5} \) | \(a_{434}= \pm1.41152193 \pm 1.2 \cdot 10^{-4} \) | \(a_{435}= -0.22485929 \pm 2.2 \cdot 10^{-4} \) |
\(a_{436}= \pm0.23889318 \pm 2.1 \cdot 10^{-5} \) | \(a_{437}= -1.46072338 \pm 7.3 \cdot 10^{-6} \) | \(a_{438}= \pm0.15375994 \pm 1.4 \cdot 10^{-4} \) |
\(a_{439}= +1.44978616 \pm 2.2 \cdot 10^{-4} \) | \(a_{440}= \pm0.06963805 \pm 2.3 \cdot 10^{-5} \) | \(a_{441}= -0.62058268 \pm 1.6 \cdot 10^{-5} \) |
\(a_{442}= \pm0.64884219 \pm 3.0 \cdot 10^{-5} \) | \(a_{443}= -0.39942193 \pm 2.5 \cdot 10^{-4} \) | \(a_{444}= \pm0.23896954 \pm 5.6 \cdot 10^{-5} \) |
\(a_{445}= -0.00095517 \pm 1.0 \cdot 10^{-4} \) | \(a_{446}= \pm1.05235975 \pm 3.1 \cdot 10^{-5} \) | \(a_{447}= +0.22959420 \pm 1.9 \cdot 10^{-4} \) |
\(a_{448}= \pm0.18550998 \pm 1.3 \cdot 10^{-5} \) | \(a_{449}= +1.69910676 \pm 1.8 \cdot 10^{-4} \) | \(a_{450}= \pm0.34117449 \pm 4.6 \cdot 10^{-6} \) |
\(a_{451}= -0.54656468 \pm 5.5 \cdot 10^{-5} \) | \(a_{452}= \pm0.23226145 \pm 7.4 \cdot 10^{-5} \) | \(a_{453}= -0.81680451 \pm 1.1 \cdot 10^{-4} \) |
\(a_{454}= \pm0.68220829 \pm 2.8 \cdot 10^{-6} \) | \(a_{455}= -0.34373945 \pm 8.1 \cdot 10^{-5} \) | \(a_{456}= \pm0.23249692 \pm 3.7 \cdot 10^{-5} \) |
\(a_{457}= +1.65758077 \pm 3.5 \cdot 10^{-5} \) | \(a_{458}= \pm0.50924357 \pm 1.3 \cdot 10^{-4} \) | \(a_{459}= -1.06589606 \pm 3.5 \cdot 10^{-5} \) |
\(a_{460}= \pm0.19709996 \pm 5.7 \cdot 10^{-6} \) | \(a_{461}= +0.23726155 \pm 1.5 \cdot 10^{-4} \) | \(a_{462}= \pm0.56363321 \pm 4.8 \cdot 10^{-5} \) |
\(a_{463}= +0.91266631 \pm 8.0 \cdot 10^{-5} \) | \(a_{464}= \pm0.31676712 \pm 5.7 \cdot 10^{-5} \) | \(a_{465}= +0.23870203 \pm 2.0 \cdot 10^{-4} \) |
\(a_{466}= \pm0.32570488 \pm 9.4 \cdot 10^{-5} \) | \(a_{467}= -0.07125803 \pm 8.6 \cdot 10^{-5} \) | \(a_{468}= \pm0.23428002 \pm 1.5 \cdot 10^{-5} \) |
\(a_{469}= -1.00296075 \pm 1.0 \cdot 10^{-4} \) | \(a_{470}= \pm0.00833532 \pm 8.3 \cdot 10^{-5} \) | \(a_{471}= -0.74744242 \pm 2.6 \cdot 10^{-4} \) |
\(a_{472}= \pm0.13706382 \pm 7.5 \cdot 10^{-6} \) | \(a_{473}= -0.87075918 \pm 5.9 \cdot 10^{-5} \) | \(a_{474}= \pm0.36453949 \pm 7.1 \cdot 10^{-5} \) |
\(a_{475}= -0.88379164 \pm 1.7 \cdot 10^{-5} \) | \(a_{476}= \pm0.74995160 \pm 1.7 \cdot 10^{-5} \) | \(a_{477}= +0.05382044 \pm 3.7 \cdot 10^{-5} \) |
\(a_{478}= \pm0.91967668 \pm 1.9 \cdot 10^{-5} \) | \(a_{479}= +0.26414321 \pm 1.4 \cdot 10^{-4} \) | \(a_{480}= \pm0.03137153 \pm 2.3 \cdot 10^{-5} \) |
\(a_{481}= +0.62378356 \pm 8.5 \cdot 10^{-5} \) | \(a_{482}= \pm0.87898240 \pm 1.4 \cdot 10^{-4} \) | \(a_{483}= +1.59527842 \pm 9.5 \cdot 10^{-6} \) |
\(a_{484}= \pm0.20193898 \pm 4.5 \cdot 10^{-5} \) | \(a_{485}= +0.24441615 \pm 1.7 \cdot 10^{-4} \) | \(a_{486}= \pm0.63872415 \pm 4.2 \cdot 10^{-5} \) |
\(a_{487}= -0.54069207 \pm 2.6 \cdot 10^{-5} \) | \(a_{488}= \pm0.38696528 \pm 4.4 \cdot 10^{-6} \) | \(a_{489}= -0.18550436 \pm 5.1 \cdot 10^{-5} \) |
\(a_{490}= \pm0.21691597 \pm 2.7 \cdot 10^{-5} \) | \(a_{491}= +0.83524410 \pm 7.8 \cdot 10^{-5} \) | \(a_{492}= \pm0.24622418 \pm 5.4 \cdot 10^{-5} \) |
\(a_{493}= +1.28057808 \pm 7.1 \cdot 10^{-5} \) | \(a_{494}= \pm0.60688805 \pm 5.6 \cdot 10^{-5} \) | \(a_{495}= -0.10165032 \pm 1.4 \cdot 10^{-5} \) |
\(a_{496}= \pm0.33626788 \pm 5.2 \cdot 10^{-5} \) | \(a_{497}= -0.69900741 \pm 1.2 \cdot 10^{-4} \) | \(a_{498}= \pm0.75138464 \pm 3.3 \cdot 10^{-5} \) |
\(a_{499}= -0.32544613 \pm 3.1 \cdot 10^{-5} \) | \(a_{500}= \pm0.24680674 \pm 7.0 \cdot 10^{-5} \) | \(a_{501}= -0.65514614 \pm 4.1 \cdot 10^{-5} \) |
\(a_{502}= \pm0.33672594 \pm 1.1 \cdot 10^{-4} \) | \(a_{503}= -0.16497741 \pm 2.0 \cdot 10^{-4} \) | \(a_{504}= \pm0.27078799 \pm 8.6 \cdot 10^{-6} \) |
\(a_{505}= -0.40421744 \pm 1.0 \cdot 10^{-4} \) | \(a_{506}= \pm0.84361657 \pm 3.8 \cdot 10^{-6} \) | \(a_{507}= -0.12221015 \pm 4.7 \cdot 10^{-5} \) |
\(a_{508}= \pm0.17585354 \pm 4.2 \cdot 10^{-5} \) | \(a_{509}= -0.58960658 \pm 2.0 \cdot 10^{-4} \) | \(a_{510}= \pm0.12682408 \pm 3.3 \cdot 10^{-5} \) |
\(a_{511}= +0.46390467 \pm 1.5 \cdot 10^{-4} \) | \(a_{512}= \pm0.04419417 \pm 1.0 \cdot 10^{-8} \) | \(a_{513}= -0.99697520 \pm 8.3 \cdot 10^{-5} \) |
\(a_{514}= \pm0.43535326 \pm 2.2 \cdot 10^{-5} \) | \(a_{515}= +0.40285474 \pm 6.7 \cdot 10^{-5} \) | \(a_{516}= \pm0.39227190 \pm 5.9 \cdot 10^{-5} \) |
\(a_{517}= +0.03567639 \pm 7.3 \cdot 10^{-5} \) | \(a_{518}= \pm0.72098806 \pm 5.8 \cdot 10^{-5} \) | \(a_{519}= +0.16428176 \pm 2.8 \cdot 10^{-5} \) |
\(a_{520}= \pm0.08188929 \pm 3.5 \cdot 10^{-5} \) | \(a_{521}= +0.40745792 \pm 1.6 \cdot 10^{-4} \) | \(a_{522}= \pm0.46238340 \pm 3.5 \cdot 10^{-5} \) |
\(a_{523}= +1.07173103 \pm 1.5 \cdot 10^{-4} \) | \(a_{524}= \pm0.05218957 \pm 5.9 \cdot 10^{-5} \) | \(a_{525}= +0.96520241 \pm 2.2 \cdot 10^{-5} \) |
\(a_{526}= \pm0.47962490 \pm 1.2 \cdot 10^{-4} \) | \(a_{527}= -1.35941277 \pm 6.4 \cdot 10^{-5} \) | \(a_{528}= \pm0.13427474 \pm 2.0 \cdot 10^{-5} \) |
\(a_{529}= +1.38772889 \pm 1.3 \cdot 10^{-4} \) | \(a_{530}= \pm0.01881218 \pm 9.7 \cdot 10^{-5} \) | \(a_{531}= -0.20007138 \pm 9.6 \cdot 10^{-6} \) |
\(a_{532}= \pm0.70145971 \pm 4.0 \cdot 10^{-5} \) | \(a_{533}= -0.64272039 \pm 8.3 \cdot 10^{-5} \) | \(a_{534}= \pm0.00184174 \pm 9.2 \cdot 10^{-5} \) |
\(a_{535}= -0.19728892 \pm 3.4 \cdot 10^{-5} \) | \(a_{536}= \pm0.23893606 \pm 4.4 \cdot 10^{-5} \) | \(a_{537}= -1.08426291 \pm 1.9 \cdot 10^{-4} \) |
\(a_{538}= \pm0.29485852 \pm 1.1 \cdot 10^{-5} \) | \(a_{539}= -0.92843200 \pm 2.3 \cdot 10^{-5} \) | \(a_{540}= \pm0.13452497 \pm 5.1 \cdot 10^{-5} \) |
\(a_{541}= +1.29681293 \pm 2.4 \cdot 10^{-4} \) | \(a_{542}= \pm0.41635911 \pm 1.3 \cdot 10^{-4} \) | \(a_{543}= +0.40033417 \pm 5.4 \cdot 10^{-5} \) |
\(a_{544}= \pm0.17866150 \pm 8.0 \cdot 10^{-6} \) | \(a_{545}= +0.12188711 \pm 3.8 \cdot 10^{-5} \) | \(a_{546}= \pm0.66279175 \pm 7.0 \cdot 10^{-5} \) |
\(a_{547}= -0.96273744 \pm 2.8 \cdot 10^{-5} \) | \(a_{548}= \pm0.64456221 \pm 2.4 \cdot 10^{-5} \) | \(a_{549}= +0.56485130 \pm 7.3 \cdot 10^{-6} \) |
\(a_{550}= \pm0.51041921 \pm 9.6 \cdot 10^{-6} \) | \(a_{551}= +1.19777588 \pm 1.6 \cdot 10^{-4} \) | \(a_{552}= \pm0.38004432 \pm 5.8 \cdot 10^{-6} \) |
\(a_{553}= -1.09984153 \pm 7.4 \cdot 10^{-5} \) | \(a_{554}= \pm1.17972305 \pm 5.8 \cdot 10^{-5} \) | \(a_{555}= +0.12192607 \pm 1.0 \cdot 10^{-4} \) |
\(a_{556}= \pm0.54660464 \pm 3.4 \cdot 10^{-5} \) | \(a_{557}= +1.72641154 \pm 5.2 \cdot 10^{-5} \) | \(a_{558}= \pm0.49084855 \pm 3.2 \cdot 10^{-5} \) |
\(a_{559}= -1.02394959 \pm 9.0 \cdot 10^{-5} \) | \(a_{560}= \pm0.09465014 \pm 2.4 \cdot 10^{-5} \) | \(a_{561}= -0.54282557 \pm 2.6 \cdot 10^{-5} \) |
\(a_{562}= \pm0.87197120 \pm 2.3 \cdot 10^{-5} \) | \(a_{563}= -1.19767384 \pm 1.6 \cdot 10^{-4} \) | \(a_{564}= \pm0.01607200 \pm 7.3 \cdot 10^{-5} \) |
\(a_{565}= -0.11850349 \pm 1.3 \cdot 10^{-4} \) | \(a_{566}= \pm0.80939120 \pm 7.1 \cdot 10^{-5} \) | \(a_{567}= +0.32290782 \pm 1.2 \cdot 10^{-4} \) |
\(a_{568}= \pm0.16652503 \pm 5.1 \cdot 10^{-5} \) | \(a_{569}= -1.78486944 \pm 1.5 \cdot 10^{-4} \) | \(a_{570}= \pm0.11862363 \pm 6.8 \cdot 10^{-5} \) |
\(a_{571}= +1.52723860 \pm 1.2 \cdot 10^{-5} \) | \(a_{572}= \pm0.35049813 \pm 3.0 \cdot 10^{-5} \) | \(a_{573}= -0.59332363 \pm 1.3 \cdot 10^{-4} \) |
\(a_{574}= \pm0.74287583 \pm 5.7 \cdot 10^{-5} \) | \(a_{575}= +1.44466424 \pm 3.2 \cdot 10^{-6} \) | \(a_{576}= \pm0.06451002 \pm 4.0 \cdot 10^{-6} \) |
\(a_{577}= -0.58276671 \pm 1.7 \cdot 10^{-4} \) | \(a_{578}= \pm0.01515885 \pm 8.4 \cdot 10^{-5} \) | \(a_{579}= +0.73770660 \pm 2.6 \cdot 10^{-4} \) |
\(a_{580}= \pm0.16161963 \pm 1.0 \cdot 10^{-4} \) | \(a_{581}= +2.26698078 \pm 2.5 \cdot 10^{-5} \) | \(a_{582}= \pm0.47127848 \pm 1.5 \cdot 10^{-4} \) |
\(a_{583}= +0.08051888 \pm 8.6 \cdot 10^{-5} \) | \(a_{584}= \pm0.11051634 \pm 6.6 \cdot 10^{-5} \) | \(a_{585}= -0.11953340 \pm 2.7 \cdot 10^{-5} \) |
\(a_{586}= \pm0.57955755 \pm 7.4 \cdot 10^{-5} \) | \(a_{587}= -1.38748401 \pm 7.7 \cdot 10^{-5} \) | \(a_{588}= \pm0.41825317 \pm 2.4 \cdot 10^{-5} \) |
\(a_{589}= -1.27151312 \pm 1.5 \cdot 10^{-4} \) | \(a_{590}= \pm0.06993214 \pm 1.3 \cdot 10^{-5} \) | \(a_{591}= +0.54476745 \pm 4.4 \cdot 10^{-5} \) |
\(a_{592}= \pm0.17176150 \pm 2.5 \cdot 10^{-5} \) | \(a_{593}= +0.65025546 \pm 1.2 \cdot 10^{-4} \) | \(a_{594}= \pm0.57578650 \pm 4.5 \cdot 10^{-5} \) |
\(a_{595}= +0.38263725 \pm 3.1 \cdot 10^{-5} \) | \(a_{596}= \pm0.16502289 \pm 8.7 \cdot 10^{-5} \) | \(a_{597}= -0.84301457 \pm 1.1 \cdot 10^{-4} \) |
\(a_{598}= \pm0.99203185 \pm 1.0 \cdot 10^{-5} \) | \(a_{599}= -1.27758880 \pm 5.6 \cdot 10^{-5} \) | \(a_{600}= \pm0.22994086 \pm 9.5 \cdot 10^{-6} \) |
\(a_{601}= +0.70061291 \pm 1.3 \cdot 10^{-4} \) | \(a_{602}= \pm1.18351216 \pm 6.1 \cdot 10^{-5} \) | \(a_{603}= -0.34877378 \pm 3.0 \cdot 10^{-5} \) |
\(a_{604}= \pm0.58708557 \pm 5.1 \cdot 10^{-5} \) | \(a_{605}= +0.10303248 \pm 8.1 \cdot 10^{-5} \) | \(a_{606}= \pm0.77940424 \pm 9.2 \cdot 10^{-5} \) |
\(a_{607}= -0.30267734 \pm 5.6 \cdot 10^{-5} \) | \(a_{608}= \pm0.16710925 \pm 1.7 \cdot 10^{-5} \) | \(a_{609}= -1.30810942 \pm 2.1 \cdot 10^{-4} \) |
\(a_{610}= \pm0.19743585 \pm 7.7 \cdot 10^{-6} \) | \(a_{611}= +0.04195284 \pm 1.1 \cdot 10^{-4} \) | \(a_{612}= \pm0.26079131 \pm 1.0 \cdot 10^{-5} \) |
\(a_{613}= +1.24424095 \pm 2.1 \cdot 10^{-4} \) | \(a_{614}= \pm0.37363206 \pm 1.2 \cdot 10^{-4} \) | \(a_{615}= -0.12562750 \pm 9.8 \cdot 10^{-5} \) |
\(a_{616}= \pm0.40511643 \pm 2.1 \cdot 10^{-5} \) | \(a_{617}= -0.57105886 \pm 1.9 \cdot 10^{-4} \) | \(a_{618}= \pm0.77677670 \pm 5.9 \cdot 10^{-5} \) |
\(a_{619}= +1.43388420 \pm 2.6 \cdot 10^{-5} \) | \(a_{620}= \pm0.17156923 \pm 9.4 \cdot 10^{-5} \) | \(a_{621}= +1.62967645 \pm 7.9 \cdot 10^{-6} \) |
\(a_{622}= \pm0.40390696 \pm 1.1 \cdot 10^{-4} \) | \(a_{623}= -0.00555666 \pm 9.7 \cdot 10^{-5} \) | \(a_{624}= \pm0.15789735 \pm 3.0 \cdot 10^{-5} \) |
\(a_{625}= +0.80899520 \pm 1.0 \cdot 10^{-4} \) | \(a_{626}= \pm0.41894997 \pm 1.2 \cdot 10^{-4} \) | \(a_{627}= -0.50772646 \pm 6.0 \cdot 10^{-5} \) |
\(a_{628}= \pm0.53723094 \pm 1.1 \cdot 10^{-4} \) | \(a_{629}= -0.69437135 \pm 3.9 \cdot 10^{-5} \) | \(a_{630}= \pm0.13816035 \pm 1.5 \cdot 10^{-5} \) |
\(a_{631}= -0.91770631 \pm 1.2 \cdot 10^{-4} \) | \(a_{632}= \pm0.26201603 \pm 3.2 \cdot 10^{-5} \) | \(a_{633}= +0.71975497 \pm 1.7 \cdot 10^{-4} \) |
\(a_{634}= \pm0.63305045 \pm 4.3 \cdot 10^{-5} \) | \(a_{635}= -0.08972328 \pm 7.6 \cdot 10^{-5} \) | \(a_{636}= \pm0.03627328 \pm 8.4 \cdot 10^{-5} \) |
\(a_{637}= -1.09176864 \pm 3.8 \cdot 10^{-5} \) | \(a_{638}= \pm0.69175560 \pm 9.2 \cdot 10^{-5} \) | \(a_{639}= -0.24307577 \pm 3.3 \cdot 10^{-5} \) |
\(a_{640}= \pm0.02254857 \pm 1.0 \cdot 10^{-5} \) | \(a_{641}= +0.34128464 \pm 2.2 \cdot 10^{-4} \) | \(a_{642}= \pm0.38040867 \pm 3.0 \cdot 10^{-5} \) |
\(a_{643}= -0.81106550 \pm 9.2 \cdot 10^{-5} \) | \(a_{644}= \pm1.14662067 \pm 4.6 \cdot 10^{-6} \) | \(a_{645}= -0.20014337 \pm 1.0 \cdot 10^{-4} \) |
\(a_{646}= \pm0.67556393 \pm 2.2 \cdot 10^{-5} \) | \(a_{647}= +0.18451078 \pm 1.6 \cdot 10^{-4} \) | \(a_{648}= \pm0.07692656 \pm 5.4 \cdot 10^{-5} \) |
\(a_{649}= -0.29931978 \pm 1.1 \cdot 10^{-5} \) | \(a_{650}= \pm0.60021594 \pm 1.4 \cdot 10^{-5} \) | \(a_{651}= +1.38863899 \pm 1.9 \cdot 10^{-4} \) |
\(a_{652}= \pm0.13333292 \pm 2.3 \cdot 10^{-5} \) | \(a_{653}= -0.69762918 \pm 1.0 \cdot 10^{-4} \) | \(a_{654}= \pm0.23502036 \pm 3.4 \cdot 10^{-5} \) |
\(a_{655}= +0.02662795 \pm 1.0 \cdot 10^{-4} \) | \(a_{656}= \pm0.17697584 \pm 2.4 \cdot 10^{-5} \) | \(a_{657}= +0.16132015 \pm 4.0 \cdot 10^{-5} \) |
\(a_{658}= \pm0.04849037 \pm 7.6 \cdot 10^{-5} \) | \(a_{659}= +1.29101985 \pm 2.6 \cdot 10^{-4} \) | \(a_{660}= \pm0.06850911 \pm 3.7 \cdot 10^{-5} \) |
\(a_{661}= +0.51374755 \pm 2.9 \cdot 10^{-5} \) | \(a_{662}= \pm0.39105304 \pm 5.0 \cdot 10^{-5} \) | \(a_{663}= -0.63832346 \pm 5.2 \cdot 10^{-5} \) |
\(a_{664}= \pm0.54006445 \pm 1.3 \cdot 10^{-5} \) | \(a_{665}= +0.35789592 \pm 7.2 \cdot 10^{-5} \) | \(a_{666}= \pm0.25071941 \pm 2.0 \cdot 10^{-5} \) |
\(a_{667}= -1.95790942 \pm 1.4 \cdot 10^{-5} \) | \(a_{668}= \pm0.47089216 \pm 1.8 \cdot 10^{-5} \) | \(a_{669}= -1.03529938 \pm 4.9 \cdot 10^{-5} \) |
\(a_{670}= \pm0.12190898 \pm 7.9 \cdot 10^{-5} \) | \(a_{671}= +0.84505425 \pm 6.0 \cdot 10^{-6} \) | \(a_{672}= \pm0.18250257 \pm 2.1 \cdot 10^{-5} \) |
\(a_{673}= +0.69401341 \pm 1.7 \cdot 10^{-5} \) | \(a_{674}= \pm0.60599287 \pm 1.4 \cdot 10^{-4} \) | \(a_{675}= +0.98601450 \pm 2.0 \cdot 10^{-5} \) |
\(a_{676}= \pm0.08783964 \pm 2.1 \cdot 10^{-5} \) | \(a_{677}= -1.04841719 \pm 9.6 \cdot 10^{-5} \) | \(a_{678}= \pm0.22849614 \pm 1.1 \cdot 10^{-4} \) |
\(a_{679}= +1.42188064 \pm 1.6 \cdot 10^{-4} \) | \(a_{680}= \pm0.09115594 \pm 1.4 \cdot 10^{-5} \) | \(a_{681}= -0.67114864 \pm 3.8 \cdot 10^{-6} \) |
\(a_{682}= \pm0.73434132 \pm 8.3 \cdot 10^{-5} \) | \(a_{683}= -0.61301129 \pm 2.0 \cdot 10^{-4} \) | \(a_{684}= \pm0.24392854 \pm 1.0 \cdot 10^{-5} \) |
\(a_{685}= +0.32886591 \pm 4.3 \cdot 10^{-5} \) | \(a_{686}= \pm0.21249660 \pm 1.0 \cdot 10^{-4} \) | \(a_{687}= +0.50098795 \pm 2.1 \cdot 10^{-4} \) |
\(a_{688}= \pm0.28194895 \pm 2.6 \cdot 10^{-5} \) | \(a_{689}= +0.09468436 \pm 1.2 \cdot 10^{-4} \) | \(a_{690}= \pm0.19390466 \pm 1.0 \cdot 10^{-5} \) |
\(a_{691}= +0.18313487 \pm 1.0 \cdot 10^{-4} \) | \(a_{692}= \pm0.11807899 \pm 1.0 \cdot 10^{-5} \) | \(a_{693}= -0.59134644 \pm 1.3 \cdot 10^{-5} \) |
\(a_{694}= \pm0.30909230 \pm 2.5 \cdot 10^{-5} \) | \(a_{695}= -0.27888640 \pm 6.2 \cdot 10^{-5} \) | \(a_{696}= \pm0.31163184 \pm 8.9 \cdot 10^{-5} \) |
\(a_{697}= +0.71545108 \pm 3.6 \cdot 10^{-5} \) | \(a_{698}= \pm0.01829958 \pm 6.9 \cdot 10^{-5} \) | \(a_{699}= -0.32042471 \pm 1.4 \cdot 10^{-4} \) |
\(a_{700}= \pm0.69374789 \pm 1.0 \cdot 10^{-5} \) | \(a_{701}= +1.17650047 \pm 8.0 \cdot 10^{-5} \) | \(a_{702}= \pm0.67708313 \pm 6.6 \cdot 10^{-5} \) |
\(a_{703}= -0.64947328 \pm 7.3 \cdot 10^{-5} \) | \(a_{704}= \pm0.09651118 \pm 9.3 \cdot 10^{-6} \) | \(a_{705}= +0.00820019 \pm 1.3 \cdot 10^{-4} \) |
\(a_{706}= \pm0.27705157 \pm 4.8 \cdot 10^{-5} \) | \(a_{707}= -2.35151790 \pm 9.8 \cdot 10^{-5} \) | \(a_{708}= \pm0.13484180 \pm 1.2 \cdot 10^{-5} \) |
\(a_{709}= -1.54816583 \pm 7.4 \cdot 10^{-5} \) | \(a_{710}= \pm0.08496372 \pm 9.3 \cdot 10^{-5} \) | \(a_{711}= -0.38246350 \pm 2.3 \cdot 10^{-5} \) |
\(a_{712}= \pm0.00132377 \pm 4.1 \cdot 10^{-5} \) | \(a_{713}= +2.07844185 \pm 1.3 \cdot 10^{-5} \) | \(a_{714}= \pm0.73779373 \pm 2.7 \cdot 10^{-5} \) |
\(a_{715}= -0.17882973 \pm 5.5 \cdot 10^{-5} \) | \(a_{716}= \pm0.77932369 \pm 9.0 \cdot 10^{-5} \) | \(a_{717}= -0.90476731 \pm 3.1 \cdot 10^{-5} \) |
\(a_{718}= \pm0.09310768 \pm 1.1 \cdot 10^{-4} \) | \(a_{719}= +0.99048829 \pm 9.2 \cdot 10^{-5} \) | \(a_{720}= \pm0.03291404 \pm 7.2 \cdot 10^{-6} \) |
\(a_{721}= +2.34359044 \pm 6.0 \cdot 10^{-5} \) | \(a_{722}= \pm0.07522483 \pm 4.3 \cdot 10^{-5} \) | \(a_{723}= +0.86473275 \pm 2.2 \cdot 10^{-4} \) |
\(a_{724}= \pm0.28774377 \pm 2.2 \cdot 10^{-5} \) | \(a_{725}= -1.18460758 \pm 4.1 \cdot 10^{-5} \) | \(a_{726}= \pm0.19866524 \pm 7.0 \cdot 10^{-5} \) |
\(a_{727}= -0.01965457 \pm 7.3 \cdot 10^{-6} \) | \(a_{728}= \pm0.47638751 \pm 3.2 \cdot 10^{-5} \) | \(a_{729}= +0.84595062 \pm 9.2 \cdot 10^{-5} \) |
\(a_{730}= \pm0.05638720 \pm 1.1 \cdot 10^{-4} \) | \(a_{731}= +1.13982045 \pm 4.2 \cdot 10^{-5} \) | \(a_{732}= \pm0.38069198 \pm 7.2 \cdot 10^{-6} \) |
\(a_{733}= -0.45862851 \pm 1.4 \cdot 10^{-4} \) | \(a_{734}= \pm0.36448170 \pm 1.6 \cdot 10^{-4} \) | \(a_{735}= -0.21339943 \pm 4.4 \cdot 10^{-5} \) |
\(a_{736}= \pm0.27316026 \pm 2.3 \cdot 10^{-6} \) | \(a_{737}= -0.52178823 \pm 7.0 \cdot 10^{-5} \) | \(a_{738}= \pm0.25833075 \pm 1.8 \cdot 10^{-5} \) |
\(a_{739}= -0.84135626 \pm 5.0 \cdot 10^{-5} \) | \(a_{740}= \pm0.08763545 \pm 4.5 \cdot 10^{-5} \) | \(a_{741}= -0.59704946 \pm 8.9 \cdot 10^{-5} \) |
\(a_{742}= \pm0.10943907 \pm 8.8 \cdot 10^{-5} \) | \(a_{743}= -0.77543920 \pm 1.5 \cdot 10^{-4} \) | \(a_{744}= \pm0.33081646 \pm 8.1 \cdot 10^{-5} \) |
\(a_{745}= -0.08419731 \pm 1.5 \cdot 10^{-4} \) | \(a_{746}= \pm1.25120421 \pm 2.8 \cdot 10^{-5} \) | \(a_{747}= +0.78832940 \pm 2.4 \cdot 10^{-5} \) |
\(a_{748}= \pm0.39016074 \pm 1.1 \cdot 10^{-5} \) | \(a_{749}= -1.14771995 \pm 3.1 \cdot 10^{-5} \) | \(a_{750}= \pm0.24280562 \pm 1.1 \cdot 10^{-4} \) |
\(a_{751}= -0.52142961 \pm 1.9 \cdot 10^{-4} \) | \(a_{752}= \pm0.01155190 \pm 3.2 \cdot 10^{-5} \) | \(a_{753}= +0.33126710 \pm 1.7 \cdot 10^{-4} \) |
\(a_{754}= \pm0.81345437 \pm 1.3 \cdot 10^{-4} \) | \(a_{755}= +0.29954041 \pm 9.3 \cdot 10^{-5} \) | \(a_{756}= \pm0.78259333 \pm 4.7 \cdot 10^{-5} \) |
\(a_{757}= -0.59388784 \pm 3.7 \cdot 10^{-5} \) | \(a_{758}= \pm0.38202748 \pm 1.7 \cdot 10^{-4} \) | \(a_{759}= +0.82994025 \pm 6.1 \cdot 10^{-6} \) |
\(a_{760}= \pm0.08526180 \pm 3.0 \cdot 10^{-5} \) | \(a_{761}= +0.76589353 \pm 1.3 \cdot 10^{-4} \) | \(a_{762}= \pm0.17300269 \pm 6.6 \cdot 10^{-5} \) |
\(a_{763}= +0.70907309 \pm 3.4 \cdot 10^{-5} \) | \(a_{764}= \pm0.42645668 \pm 6.1 \cdot 10^{-5} \) | \(a_{765}= +0.13305988 \pm 1.8 \cdot 10^{-5} \) |
\(a_{766}= \pm0.37728885 \pm 2.8 \cdot 10^{-5} \) | \(a_{767}= -0.35197833 \pm 1.9 \cdot 10^{-5} \) | \(a_{768}= \pm0.04347772 \pm 9.1 \cdot 10^{-6} \) |
\(a_{769}= -0.39852321 \pm 1.5 \cdot 10^{-4} \) | \(a_{770}= \pm0.20669685 \pm 3.9 \cdot 10^{-5} \) | \(a_{771}= -0.42829551 \pm 3.5 \cdot 10^{-5} \) |
\(a_{772}= \pm0.53023323 \pm 1.1 \cdot 10^{-4} \) | \(a_{773}= -0.34116411 \pm 1.1 \cdot 10^{-4} \) | \(a_{774}= \pm0.41155948 \pm 2.1 \cdot 10^{-5} \) |
\(a_{775}= +1.25753415 \pm 3.8 \cdot 10^{-5} \) | \(a_{776}= \pm0.33873564 \pm 6.8 \cdot 10^{-5} \) | \(a_{777}= +0.70929974 \pm 9.1 \cdot 10^{-5} \) |
\(a_{778}= \pm0.92952377 \pm 1.9 \cdot 10^{-5} \) | \(a_{779}= +0.66919000 \pm 7.1 \cdot 10^{-5} \) | \(a_{780}= \pm0.08056174 \pm 5.5 \cdot 10^{-5} \) |
\(a_{781}= -0.36365714 \pm 8.3 \cdot 10^{-5} \) | \(a_{782}= \pm1.10429088 \pm 9.2 \cdot 10^{-6} \) | \(a_{783}= -1.33631540 \pm 1.9 \cdot 10^{-4} \) |
\(a_{784}= \pm0.30062322 \pm 1.0 \cdot 10^{-5} \) | \(a_{785}= +0.27410378 \pm 2.1 \cdot 10^{-4} \) | \(a_{786}= \pm0.05134350 \pm 9.3 \cdot 10^{-5} \) |
\(a_{787}= -0.01957921 \pm 8.0 \cdot 10^{-5} \) | \(a_{788}= \pm0.39155649 \pm 1.8 \cdot 10^{-5} \) | \(a_{789}= -0.47184944 \pm 2.0 \cdot 10^{-4} \) |
\(a_{790}= \pm0.13368475 \pm 5.8 \cdot 10^{-5} \) | \(a_{791}= -0.68938907 \pm 1.2 \cdot 10^{-4} \) | \(a_{792}= \pm0.14087688 \pm 5.8 \cdot 10^{-6} \) |
\(a_{793}= +0.99372246 \pm 1.2 \cdot 10^{-5} \) | \(a_{794}= \pm1.29098188 \pm 2.3 \cdot 10^{-5} \) | \(a_{795}= +0.01850721 \pm 1.5 \cdot 10^{-4} \) |
\(a_{796}= \pm0.60592428 \pm 5.2 \cdot 10^{-5} \) | \(a_{797}= -0.57828168 \pm 5.2 \cdot 10^{-5} \) | \(a_{798}= \pm0.69008797 \pm 6.2 \cdot 10^{-5} \) |
\(a_{799}= -0.04670025 \pm 5.1 \cdot 10^{-5} \) | \(a_{800}= \pm0.16527206 \pm 4.3 \cdot 10^{-6} \) | \(a_{801}= -0.00193230 \pm 2.7 \cdot 10^{-5} \) |
\(a_{802}= \pm1.27122730 \pm 4.5 \cdot 10^{-5} \) | \(a_{803}= +0.24134543 \pm 1.0 \cdot 10^{-4} \) | \(a_{804}= \pm0.23506254 \pm 6.9 \cdot 10^{-5} \) |
\(a_{805}= -0.58502413 \pm 8.0 \cdot 10^{-6} \) | \(a_{806}= \pm0.86353209 \pm 1.2 \cdot 10^{-4} \) | \(a_{807}= -0.29007841 \pm 2.0 \cdot 10^{-5} \) |
\(a_{808}= \pm0.56020379 \pm 4.1 \cdot 10^{-5} \) | \(a_{809}= +1.50690235 \pm 1.9 \cdot 10^{-4} \) | \(a_{810}= \pm0.03924916 \pm 9.8 \cdot 10^{-5} \) |
\(a_{811}= +0.10087362 \pm 2.0 \cdot 10^{-5} \) | \(a_{812}= \pm0.94021538 \pm 9.5 \cdot 10^{-5} \) | \(a_{813}= -0.40960929 \pm 2.1 \cdot 10^{-4} \) |
\(a_{814}= \pm0.37509253 \pm 3.9 \cdot 10^{-5} \) | \(a_{815}= +0.06802858 \pm 4.2 \cdot 10^{-5} \) | \(a_{816}= \pm0.17576513 \pm 1.3 \cdot 10^{-5} \) |
\(a_{817}= +1.06611964 \pm 7.6 \cdot 10^{-5} \) | \(a_{818}= \pm0.86504209 \pm 2.3 \cdot 10^{-5} \) | \(a_{819}= -0.69538049 \pm 2.0 \cdot 10^{-5} \) |
\(a_{820}= \pm0.09029589 \pm 4.4 \cdot 10^{-5} \) | \(a_{821}= -0.93671700 \pm 3.5 \cdot 10^{-5} \) | \(a_{822}= \pm0.63411287 \pm 3.7 \cdot 10^{-5} \) |
\(a_{823}= -0.53871764 \pm 4.7 \cdot 10^{-5} \) | \(a_{824}= \pm0.55831522 \pm 2.6 \cdot 10^{-5} \) | \(a_{825}= +0.50214453 \pm 1.5 \cdot 10^{-5} \) |
\(a_{826}= \pm0.40682729 \pm 1.2 \cdot 10^{-5} \) | \(a_{827}= -1.31380501 \pm 5.3 \cdot 10^{-5} \) | \(a_{828}= \pm0.39873068 \pm 4.7 \cdot 10^{-6} \) |
\(a_{829}= -1.42638521 \pm 1.5 \cdot 10^{-5} \) | \(a_{830}= \pm0.27554948 \pm 2.4 \cdot 10^{-5} \) | \(a_{831}= +1.16059793 \pm 9.0 \cdot 10^{-5} \) |
\(a_{832}= \pm0.11349014 \pm 1.3 \cdot 10^{-5} \) | \(a_{833}= +1.21531395 \pm 2.2 \cdot 10^{-5} \) | \(a_{834}= \pm0.53774334 \pm 5.4 \cdot 10^{-5} \) |
\(a_{835}= +0.24025668 \pm 3.3 \cdot 10^{-5} \) | \(a_{836}= \pm0.36493294 \pm 2.7 \cdot 10^{-5} \) | \(a_{837}= +1.41858138 \pm 1.7 \cdot 10^{-4} \) |
\(a_{838}= \pm0.04688812 \pm 9.3 \cdot 10^{-5} \) | \(a_{839}= +0.61364661 \pm 4.8 \cdot 10^{-5} \) | \(a_{840}= \pm0.09311572 \pm 3.8 \cdot 10^{-5} \) |
\(a_{841}= +0.60546255 \pm 2.7 \cdot 10^{-4} \) | \(a_{842}= \pm0.59683166 \pm 6.9 \cdot 10^{-5} \) | \(a_{843}= -0.85783520 \pm 4.1 \cdot 10^{-5} \) |
\(a_{844}= \pm0.51733034 \pm 8.0 \cdot 10^{-5} \) | \(a_{845}= +0.04481719 \pm 3.8 \cdot 10^{-5} \) | \(a_{846}= \pm0.01686225 \pm 2.5 \cdot 10^{-5} \) |
\(a_{847}= +0.59938712 \pm 7.4 \cdot 10^{-5} \) | \(a_{848}= \pm0.02607175 \pm 3.8 \cdot 10^{-5} \) | \(a_{849}= -0.79626972 \pm 1.1 \cdot 10^{-4} \) |
\(a_{850}= \pm0.66813680 \pm 6.5 \cdot 10^{-6} \) | \(a_{851}= +1.06164257 \pm 1.3 \cdot 10^{-5} \) | \(a_{852}= \pm0.16382541 \pm 8.1 \cdot 10^{-5} \) |
\(a_{853}= -1.68742018 \pm 1.4 \cdot 10^{-4} \) | \(a_{854}= \pm1.14857472 \pm 8.3 \cdot 10^{-6} \) | \(a_{855}= +0.12445623 \pm 1.9 \cdot 10^{-5} \) |
\(a_{856}= \pm0.27342214 \pm 1.3 \cdot 10^{-5} \) | \(a_{857}= -0.99190027 \pm 3.5 \cdot 10^{-5} \) | \(a_{858}= \pm0.34481601 \pm 4.8 \cdot 10^{-5} \) |
\(a_{859}= +0.03453947 \pm 1.8 \cdot 10^{-4} \) | \(a_{860}= \pm0.14385484 \pm 4.7 \cdot 10^{-5} \) | \(a_{861}= -0.73083267 \pm 8.9 \cdot 10^{-5} \) |
\(a_{862}= \pm0.77896469 \pm 2.4 \cdot 10^{-5} \) | \(a_{863}= +0.25302909 \pm 1.8 \cdot 10^{-4} \) | \(a_{864}= \pm0.18643777 \pm 2.0 \cdot 10^{-5} \) |
\(a_{865}= -0.06024578 \pm 1.8 \cdot 10^{-5} \) | \(a_{866}= \pm0.56787361 \pm 5.9 \cdot 10^{-5} \) | \(a_{867}= +0.01491310 \pm 1.3 \cdot 10^{-4} \) |
\(a_{868}= \pm0.99809673 \pm 8.6 \cdot 10^{-5} \) | \(a_{869}= -0.57219025 \pm 5.1 \cdot 10^{-5} \) | \(a_{870}= \pm0.15899953 \pm 1.6 \cdot 10^{-4} \) |
\(a_{871}= -0.61358508 \pm 1.0 \cdot 10^{-4} \) | \(a_{872}= \pm0.16892299 \pm 1.5 \cdot 10^{-5} \) | \(a_{873}= +0.49445073 \pm 4.5 \cdot 10^{-5} \) |
\(a_{874}= \pm1.03288741 \pm 5.2 \cdot 10^{-6} \) | \(a_{875}= -0.73256180 \pm 1.1 \cdot 10^{-4} \) | \(a_{876}= \pm0.10872470 \pm 1.0 \cdot 10^{-4} \) |
\(a_{877}= +0.30467963 \pm 3.7 \cdot 10^{-5} \) | \(a_{878}= \pm1.02515363 \pm 1.5 \cdot 10^{-4} \) | \(a_{879}= +0.57016203 \pm 1.1 \cdot 10^{-4} \) |
\(a_{880}= \pm0.04924154 \pm 1.6 \cdot 10^{-5} \) | \(a_{881}= +1.31596433 \pm 8.7 \cdot 10^{-5} \) | \(a_{882}= \pm0.43881822 \pm 1.1 \cdot 10^{-5} \) |
\(a_{883}= +0.77034271 \pm 2.2 \cdot 10^{-4} \) | \(a_{884}= \pm0.45880071 \pm 2.1 \cdot 10^{-5} \) | \(a_{885}= -0.06879844 \pm 2.1 \cdot 10^{-5} \) |
\(a_{886}= \pm0.28243395 \pm 1.7 \cdot 10^{-4} \) | \(a_{887}= +1.15824867 \pm 1.1 \cdot 10^{-5} \) | \(a_{888}= \pm0.16897698 \pm 3.9 \cdot 10^{-5} \) |
\(a_{889}= -0.52196138 \pm 6.9 \cdot 10^{-5} \) | \(a_{890}= \pm0.00067541 \pm 7.5 \cdot 10^{-5} \) | \(a_{891}= +0.16799211 \pm 8.7 \cdot 10^{-5} \) |
\(a_{892}= \pm0.74413072 \pm 2.2 \cdot 10^{-5} \) | \(a_{893}= -0.04368061 \pm 9.5 \cdot 10^{-5} \) | \(a_{894}= \pm0.16234761 \pm 1.3 \cdot 10^{-4} \) |
\(a_{895}= +0.39762336 \pm 1.6 \cdot 10^{-4} \) | \(a_{896}= \pm0.13117536 \pm 9.6 \cdot 10^{-6} \) | \(a_{897}= +0.97594949 \pm 1.9 \cdot 10^{-5} \) |
\(a_{898}= \pm1.20144991 \pm 1.3 \cdot 10^{-4} \) | \(a_{899}= -1.70429771 \pm 3.6 \cdot 10^{-4} \) | \(a_{900}= \pm0.24124680 \pm 3.3 \cdot 10^{-6} \) |
\(a_{901}= -0.10539891 \pm 5.2 \cdot 10^{-5} \) | \(a_{902}= \pm0.38647959 \pm 3.9 \cdot 10^{-5} \) | \(a_{903}= -1.16432561 \pm 9.5 \cdot 10^{-5} \) |
\(a_{904}= \pm0.16423365 \pm 5.2 \cdot 10^{-5} \) | \(a_{905}= -0.14681146 \pm 3.9 \cdot 10^{-5} \) | \(a_{906}= \pm0.57756801 \pm 8.0 \cdot 10^{-5} \) |
\(a_{907}= +0.92831852 \pm 6.7 \cdot 10^{-5} \) | \(a_{908}= \pm0.48239411 \pm 2.0 \cdot 10^{-6} \) | \(a_{909}= -0.81772669 \pm 2.7 \cdot 10^{-5} \) |
\(a_{910}= \pm0.24306050 \pm 5.7 \cdot 10^{-5} \) | \(a_{911}= -1.90785937 \pm 1.4 \cdot 10^{-5} \) | \(a_{912}= \pm0.16440015 \pm 2.6 \cdot 10^{-5} \) |
\(a_{913}= +1.17939199 \pm 1.7 \cdot 10^{-5} \) | \(a_{914}= \pm1.17208661 \pm 2.5 \cdot 10^{-5} \) | \(a_{915}= +0.19423511 \pm 1.2 \cdot 10^{-5} \) |
\(a_{916}= \pm0.36008958 \pm 9.5 \cdot 10^{-5} \) | \(a_{917}= +0.15490698 \pm 9.9 \cdot 10^{-5} \) | \(a_{918}= \pm0.75370233 \pm 2.4 \cdot 10^{-5} \) |
\(a_{919}= -0.78554731 \pm 4.2 \cdot 10^{-5} \) | \(a_{920}= \pm0.13937072 \pm 4.0 \cdot 10^{-6} \) | \(a_{921}= +0.36757491 \pm 1.9 \cdot 10^{-4} \) |
\(a_{922}= \pm0.16776925 \pm 1.0 \cdot 10^{-4} \) | \(a_{923}= -0.42763440 \pm 1.2 \cdot 10^{-4} \) | \(a_{924}= \pm0.39854887 \pm 3.4 \cdot 10^{-5} \) |
\(a_{925}= +0.64233300 \pm 1.8 \cdot 10^{-5} \) | \(a_{926}= \pm0.64535253 \pm 5.6 \cdot 10^{-5} \) | \(a_{927}= +0.81496996 \pm 2.2 \cdot 10^{-5} \) |
\(a_{928}= \pm0.22398818 \pm 4.0 \cdot 10^{-5} \) | \(a_{929}= +0.34243863 \pm 3.3 \cdot 10^{-5} \) | \(a_{930}= \pm0.16878783 \pm 1.4 \cdot 10^{-4} \) |
\(a_{931}= +1.13673173 \pm 3.0 \cdot 10^{-5} \) | \(a_{932}= \pm0.23030813 \pm 6.6 \cdot 10^{-5} \) | \(a_{933}= -0.39735901 \pm 1.7 \cdot 10^{-4} \) |
\(a_{934}= \pm0.05038704 \pm 6.1 \cdot 10^{-5} \) | \(a_{935}= +0.19906623 \pm 2.1 \cdot 10^{-5} \) | \(a_{936}= \pm0.16566099 \pm 1.0 \cdot 10^{-5} \) |
\(a_{937}= -1.25338813 \pm 1.0 \cdot 10^{-4} \) | \(a_{938}= \pm0.70920035 \pm 7.3 \cdot 10^{-5} \) | \(a_{939}= +0.41215815 \pm 1.9 \cdot 10^{-4} \) |
\(a_{940}= \pm0.00589396 \pm 5.9 \cdot 10^{-5} \) | \(a_{941}= -0.16840721 \pm 8.8 \cdot 10^{-5} \) | \(a_{942}= \pm0.52852160 \pm 1.8 \cdot 10^{-4} \) |
\(a_{943}= -1.09387193 \pm 1.2 \cdot 10^{-5} \) | \(a_{944}= \pm0.09691876 \pm 5.3 \cdot 10^{-6} \) | \(a_{945}= -0.39929158 \pm 8.5 \cdot 10^{-5} \) |
\(a_{946}= \pm0.61571972 \pm 4.1 \cdot 10^{-5} \) | \(a_{947}= +0.53325328 \pm 3.7 \cdot 10^{-5} \) | \(a_{948}= \pm0.25776835 \pm 5.0 \cdot 10^{-5} \) |
\(a_{949}= +0.28380471 \pm 1.5 \cdot 10^{-4} \) | \(a_{950}= \pm0.62493506 \pm 1.2 \cdot 10^{-5} \) | \(a_{951}= -0.62278773 \pm 6.8 \cdot 10^{-5} \) |
\(a_{952}= \pm0.53029586 \pm 1.2 \cdot 10^{-5} \) | \(a_{953}= +0.87109790 \pm 6.4 \cdot 10^{-5} \) | \(a_{954}= \pm0.03805680 \pm 2.6 \cdot 10^{-5} \) |
\(a_{955}= +0.21758499 \pm 1.1 \cdot 10^{-4} \) | \(a_{956}= \pm0.65030962 \pm 1.3 \cdot 10^{-5} \) | \(a_{957}= -0.68054118 \pm 1.4 \cdot 10^{-4} \) |
\(a_{958}= \pm0.18677745 \pm 9.9 \cdot 10^{-5} \) | \(a_{959}= +1.91316353 \pm 4.0 \cdot 10^{-5} \) | \(a_{960}= \pm0.02218302 \pm 1.6 \cdot 10^{-5} \) |
\(a_{961}= +0.80921735 \pm 1.9 \cdot 10^{-4} \) | \(a_{962}= \pm0.44108158 \pm 6.0 \cdot 10^{-5} \) | \(a_{963}= -0.39911295 \pm 1.0 \cdot 10^{-5} \) |
\(a_{964}= \pm0.62153442 \pm 1.0 \cdot 10^{-4} \) | \(a_{965}= -0.27053344 \pm 2.1 \cdot 10^{-4} \) | \(a_{966}= \pm1.12803219 \pm 6.7 \cdot 10^{-6} \) |
\(a_{967}= -1.39985993 \pm 1.2 \cdot 10^{-4} \) | \(a_{968}= \pm0.14279242 \pm 3.1 \cdot 10^{-5} \) | \(a_{969}= +0.66461200 \pm 3.5 \cdot 10^{-5} \) |
\(a_{970}= \pm0.17282832 \pm 1.2 \cdot 10^{-4} \) | \(a_{971}= -0.04595095 \pm 1.0 \cdot 10^{-4} \) | \(a_{972}= \pm0.45164618 \pm 3.0 \cdot 10^{-5} \) |
\(a_{973}= -1.62240983 \pm 5.7 \cdot 10^{-5} \) | \(a_{974}= \pm0.38232703 \pm 1.8 \cdot 10^{-5} \) | \(a_{975}= +0.59048552 \pm 2.3 \cdot 10^{-5} \) |
\(a_{976}= \pm0.27362578 \pm 3.1 \cdot 10^{-6} \) | \(a_{977}= +0.00025023 \pm 1.2 \cdot 10^{-4} \) | \(a_{978}= \pm0.13117139 \pm 3.6 \cdot 10^{-5} \) |
\(a_{979}= -0.00289084 \pm 6.6 \cdot 10^{-5} \) | \(a_{980}= \pm0.15338275 \pm 1.9 \cdot 10^{-5} \) | \(a_{981}= +0.24657605 \pm 1.5 \cdot 10^{-5} \) |
\(a_{982}= \pm0.59060677 \pm 5.5 \cdot 10^{-5} \) | \(a_{983}= +1.40341810 \pm 6.1 \cdot 10^{-5} \) | \(a_{984}= \pm0.17410679 \pm 3.8 \cdot 10^{-5} \) |
\(a_{985}= -0.19977836 \pm 3.2 \cdot 10^{-5} \) | \(a_{986}= \pm0.90550545 \pm 5.0 \cdot 10^{-5} \) | \(a_{987}= +0.04770427 \pm 1.1 \cdot 10^{-4} \) |
\(a_{988}= \pm0.42913465 \pm 4.0 \cdot 10^{-5} \) | \(a_{989}= -1.74270138 \pm 1.4 \cdot 10^{-5} \) | \(a_{990}= \pm0.07187763 \pm 1.0 \cdot 10^{-5} \) |
\(a_{991}= -1.31727053 \pm 2.4 \cdot 10^{-4} \) | \(a_{992}= \pm0.23777730 \pm 3.6 \cdot 10^{-5} \) | \(a_{993}= -0.38471347 \pm 7.8 \cdot 10^{-5} \) |
\(a_{994}= \pm0.49427288 \pm 8.5 \cdot 10^{-5} \) | \(a_{995}= +0.30915222 \pm 9.5 \cdot 10^{-5} \) | \(a_{996}= \pm0.53130917 \pm 2.3 \cdot 10^{-5} \) |
\(a_{997}= +0.94332545 \pm 1.0 \cdot 10^{-4} \) | \(a_{998}= \pm0.23012517 \pm 2.2 \cdot 10^{-5} \) | \(a_{999}= +0.72459395 \pm 8.5 \cdot 10^{-5} \) |
\(a_{1000}= \pm0.17451872 \pm 5.0 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000