Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.6262358403662403553443790824 \pm 5 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.55536200 \pm 3.0 \cdot 10^{-8} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.69157305 \pm 1.8 \cdot 10^{-8} \) | \(a_{5}= -0.95281834 \pm 1 \cdot 10^{-8} \) | \(a_{6}= -0.32063840 \pm 4.0 \cdot 10^{-8} \) |
\(a_{7}= +1.83744158 \pm 1.7 \cdot 10^{-8} \) | \(a_{8}= -0.93943539 \pm 1 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.52915910 \pm 1 \cdot 10^{-8} \) | \(a_{11}= -0.01575162 \pm 1 \cdot 10^{-8} \) | \(a_{12}= +0.39927988 \pm 2.9 \cdot 10^{-8} \) |
\(a_{13}= +1.03096988 \pm 1.2 \cdot 10^{-8} \) | \(a_{14}= +1.02044524 \pm 2.2 \cdot 10^{-8} \) | \(a_{15}= +0.55010992 \pm 1.3 \cdot 10^{-8} \) |
\(a_{16}= +0.16984632 \pm 2.6 \cdot 10^{-8} \) | \(a_{17}= +0.64782636 \pm 2.1 \cdot 10^{-8} \) | \(a_{18}= +0.18512067 \pm 4.0 \cdot 10^{-8} \) |
\(a_{19}= +0.63339593 \pm 3.4 \cdot 10^{-8} \) | \(a_{20}= +0.65894348 \pm 1 \cdot 10^{-8} \) | \(a_{21}= -1.06084739 \pm 2.7 \cdot 10^{-8} \) |
\(a_{22}= -0.00874785 \pm 1.2 \cdot 10^{-8} \) | \(a_{23}= +0.20959728 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +0.54238328 \pm 1.7 \cdot 10^{-8} \) |
\(a_{25}= -0.09213721 \pm 2.2 \cdot 10^{-8} \) | \(a_{26}= +0.57256150 \pm 1.7 \cdot 10^{-8} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -1.27072507 \pm 1.4 \cdot 10^{-8} \) | \(a_{29}= +0.31961885 \pm 1 \cdot 10^{-8} \) | \(a_{30}= +0.30551015 \pm 4.3 \cdot 10^{-8} \) |
\(a_{31}= -0.20102882 \pm 2.5 \cdot 10^{-8} \) | \(a_{32}= +1.03376159 \pm 2.8 \cdot 10^{-8} \) | \(a_{33}= +0.00909420 \pm 1.9 \cdot 10^{-8} \) |
\(a_{34}= +0.35977815 \pm 2.9 \cdot 10^{-8} \) | \(a_{35}= -1.75074803 \pm 1 \cdot 10^{-8} \) | \(a_{36}= -0.23052435 \pm 2.9 \cdot 10^{-8} \) |
\(a_{37}= +0.79454377 \pm 1 \cdot 10^{-8} \) | \(a_{38}= +0.35176403 \pm 4.6 \cdot 10^{-8} \) | \(a_{39}= -0.59523074 \pm 2.3 \cdot 10^{-8} \) |
\(a_{40}= +0.89511127 \pm 1 \cdot 10^{-8} \) | \(a_{41}= -0.17596149 \pm 2.4 \cdot 10^{-8} \) | \(a_{42}= -0.58915433 \pm 5.8 \cdot 10^{-8} \) |
\(a_{43}= +0.77907495 \pm 1 \cdot 10^{-8} \) | \(a_{44}= +0.01089339 \pm 1 \cdot 10^{-8} \) | \(a_{45}= -0.31760611 \pm 1.3 \cdot 10^{-8} \) |
\(a_{46}= +0.11640236 \pm 1.1 \cdot 10^{-8} \) | \(a_{47}= -1.83642604 \pm 2.2 \cdot 10^{-8} \) | \(a_{48}= -0.09806082 \pm 3.6 \cdot 10^{-8} \) |
\(a_{49}= +2.37619156 \pm 1 \cdot 10^{-8} \) | \(a_{50}= -0.05116951 \pm 3.0 \cdot 10^{-8} \) | \(a_{51}= -0.37402273 \pm 3.2 \cdot 10^{-8} \) |
\(a_{52}= -0.71299098 \pm 1.1 \cdot 10^{-8} \) | \(a_{53}= +1.34409416 \pm 1 \cdot 10^{-8} \) | \(a_{54}= -0.10687947 \pm 4.0 \cdot 10^{-8} \) |
\(a_{55}= +0.01500843 \pm 1 \cdot 10^{-8} \) | \(a_{56}= -1.72615766 \pm 1 \cdot 10^{-8} \) | \(a_{57}= -0.36569131 \pm 4.5 \cdot 10^{-8} \) |
\(a_{58}= +0.17750416 \pm 1 \cdot 10^{-8} \) | \(a_{59}= +1.01496206 \pm 1 \cdot 10^{-8} \) | \(a_{60}= -0.38044120 \pm 3.1 \cdot 10^{-8} \) |
\(a_{61}= +0.70859994 \pm 1.1 \cdot 10^{-8} \) | \(a_{62}= -0.11164377 \pm 3.4 \cdot 10^{-8} \) | \(a_{63}= +0.61248053 \pm 2.7 \cdot 10^{-8} \) |
\(a_{64}= +0.40426558 \pm 1.3 \cdot 10^{-8} \) | \(a_{65}= -0.98232701 \pm 1 \cdot 10^{-8} \) | \(a_{66}= +0.00505057 \pm 5.0 \cdot 10^{-8} \) |
\(a_{67}= -0.10121792 \pm 1.5 \cdot 10^{-8} \) | \(a_{68}= -0.44801925 \pm 1.7 \cdot 10^{-8} \) | \(a_{69}= -0.12101104 \pm 1.8 \cdot 10^{-8} \) |
\(a_{70}= -0.97229893 \pm 1 \cdot 10^{-8} \) | \(a_{71}= +1.03008630 \pm 2.4 \cdot 10^{-8} \) | \(a_{72}= -0.31314513 \pm 1.7 \cdot 10^{-8} \) |
\(a_{73}= +0.95389629 \pm 3.4 \cdot 10^{-8} \) | \(a_{74}= +0.44125942 \pm 1 \cdot 10^{-8} \) | \(a_{75}= +0.05319544 \pm 3.2 \cdot 10^{-8} \) |
\(a_{76}= -0.43803955 \pm 2.8 \cdot 10^{-8} \) | \(a_{77}= -0.02894267 \pm 1 \cdot 10^{-8} \) | \(a_{78}= -0.33056854 \pm 5.3 \cdot 10^{-8} \) |
\(a_{79}= +0.48789723 \pm 2.8 \cdot 10^{-8} \) | \(a_{80}= -0.16183269 \pm 1 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.09772233 \pm 3.3 \cdot 10^{-8} \) | \(a_{83}= -1.29447226 \pm 3.6 \cdot 10^{-8} \) | \(a_{84}= +0.73365346 \pm 4.6 \cdot 10^{-8} \) |
\(a_{85}= -0.61726084 \pm 1 \cdot 10^{-8} \) | \(a_{86}= +0.43266862 \pm 1 \cdot 10^{-8} \) | \(a_{87}= -0.18453203 \pm 1.6 \cdot 10^{-8} \) |
\(a_{88}= +0.01479763 \pm 1 \cdot 10^{-8} \) | \(a_{89}= +0.60547612 \pm 1 \cdot 10^{-8} \) | \(a_{90}= -0.17638637 \pm 4.3 \cdot 10^{-8} \) |
\(a_{91}= +1.89434693 \pm 1 \cdot 10^{-8} \) | \(a_{92}= -0.14495183 \pm 1 \cdot 10^{-8} \) | \(a_{93}= +0.11606404 \pm 3.6 \cdot 10^{-8} \) |
\(a_{94}= -1.01988124 \pm 3.0 \cdot 10^{-8} \) | \(a_{95}= -0.60351126 \pm 1 \cdot 10^{-8} \) | \(a_{96}= -0.59684253 \pm 3.9 \cdot 10^{-8} \) |
\(a_{97}= -1.33532319 \pm 1 \cdot 10^{-8} \) | \(a_{98}= +1.31964650 \pm 1.3 \cdot 10^{-8} \) | \(a_{99}= -0.00525054 \pm 1.9 \cdot 10^{-8} \) |
\(a_{100}= +0.06371961 \pm 1.8 \cdot 10^{-8} \) | \(a_{101}= +0.14979435 \pm 2.7 \cdot 10^{-8} \) | \(a_{102}= -0.20771801 \pm 6.2 \cdot 10^{-8} \) |
\(a_{103}= +0.84952170 \pm 2.1 \cdot 10^{-8} \) | \(a_{104}= -0.96852960 \pm 1 \cdot 10^{-8} \) | \(a_{105}= +1.01079485 \pm 3.0 \cdot 10^{-8} \) |
\(a_{106}= +0.74645882 \pm 1 \cdot 10^{-8} \) | \(a_{107}= +0.05584419 \pm 4.3 \cdot 10^{-8} \) | \(a_{108}= +0.13309329 \pm 2.9 \cdot 10^{-8} \) |
\(a_{109}= -0.80928187 \pm 3.1 \cdot 10^{-8} \) | \(a_{110}= +0.00833511 \pm 1 \cdot 10^{-8} \) | \(a_{111}= -0.45873006 \pm 1.6 \cdot 10^{-8} \) |
\(a_{112}= +0.31208270 \pm 1.9 \cdot 10^{-8} \) | \(a_{113}= -0.87508813 \pm 1 \cdot 10^{-8} \) | \(a_{114}= -0.20309106 \pm 7.5 \cdot 10^{-8} \) |
\(a_{115}= -0.19970813 \pm 1 \cdot 10^{-8} \) | \(a_{116}= -0.22103978 \pm 1 \cdot 10^{-8} \) | \(a_{117}= +0.34365663 \pm 2.3 \cdot 10^{-8} \) |
\(a_{118}= +0.56367136 \pm 1 \cdot 10^{-8} \) | \(a_{119}= +1.19034310 \pm 1.6 \cdot 10^{-8} \) | \(a_{120}= -0.51679273 \pm 2.0 \cdot 10^{-8} \) |
\(a_{121}= -0.99975189 \pm 1.8 \cdot 10^{-8} \) | \(a_{122}= +0.39352948 \pm 1.6 \cdot 10^{-8} \) | \(a_{123}= +0.10159141 \pm 3.5 \cdot 10^{-8} \) |
\(a_{124}= +0.13902611 \pm 2.0 \cdot 10^{-8} \) | \(a_{125}= +1.04060837 \pm 1 \cdot 10^{-8} \) | \(a_{126}= +0.34014841 \pm 5.8 \cdot 10^{-8} \) |
\(a_{127}= +0.05421291 \pm 1.8 \cdot 10^{-8} \) | \(a_{128}= -0.80924785 \pm 1.2 \cdot 10^{-8} \) | \(a_{129}= -0.44979913 \pm 1.4 \cdot 10^{-8} \) |
\(a_{130}= -0.54554710 \pm 1 \cdot 10^{-8} \) | \(a_{131}= -0.67289644 \pm 2.4 \cdot 10^{-8} \) | \(a_{132}= -0.00628930 \pm 3.8 \cdot 10^{-8} \) |
\(a_{133}= +1.16382802 \pm 2.6 \cdot 10^{-8} \) | \(a_{134}= -0.05621259 \pm 2.1 \cdot 10^{-8} \) | \(a_{135}= +0.18336997 \pm 1.3 \cdot 10^{-8} \) |
\(a_{136}= -0.60859102 \pm 1 \cdot 10^{-8} \) | \(a_{137}= -1.54831514 \pm 1 \cdot 10^{-8} \) | \(a_{138}= -0.06720494 \pm 4.8 \cdot 10^{-8} \) |
\(a_{139}= +0.56347405 \pm 1.1 \cdot 10^{-8} \) | \(a_{140}= +1.21077015 \pm 1 \cdot 10^{-8} \) | \(a_{141}= +1.06026107 \pm 3.3 \cdot 10^{-8} \) |
\(a_{142}= +0.57207079 \pm 3.3 \cdot 10^{-8} \) | \(a_{143}= -0.01623944 \pm 1 \cdot 10^{-8} \) | \(a_{144}= +0.05661544 \pm 3.6 \cdot 10^{-8} \) |
\(a_{145}= -0.30453870 \pm 1 \cdot 10^{-8} \) | \(a_{146}= +0.52975776 \pm 4.6 \cdot 10^{-8} \) | \(a_{147}= -1.37189484 \pm 2.0 \cdot 10^{-8} \) |
\(a_{148}= -0.54948506 \pm 1 \cdot 10^{-8} \) | \(a_{149}= +0.39169309 \pm 2.7 \cdot 10^{-8} \) | \(a_{150}= +0.02954273 \pm 6.3 \cdot 10^{-8} \) |
\(a_{151}= -1.25111189 \pm 1 \cdot 10^{-8} \) | \(a_{152}= -0.59503455 \pm 1 \cdot 10^{-8} \) | \(a_{153}= +0.21594212 \pm 3.2 \cdot 10^{-8} \) |
\(a_{154}= -0.01607366 \pm 1 \cdot 10^{-8} \) | \(a_{155}= +0.19154395 \pm 1 \cdot 10^{-8} \) | \(a_{156}= +0.41164554 \pm 4.1 \cdot 10^{-8} \) |
\(a_{157}= +1.68438705 \pm 1.0 \cdot 10^{-8} \) | \(a_{158}= +0.27095958 \pm 3.8 \cdot 10^{-8} \) | \(a_{159}= -0.77601312 \pm 1.7 \cdot 10^{-8} \) |
\(a_{160}= -0.98498700 \pm 1 \cdot 10^{-8} \) | \(a_{161}= +0.38512275 \pm 1 \cdot 10^{-8} \) | \(a_{162}= +0.06170689 \pm 4.0 \cdot 10^{-8} \) |
\(a_{163}= +1.42492074 \pm 1.8 \cdot 10^{-8} \) | \(a_{164}= +0.12169022 \pm 2.0 \cdot 10^{-8} \) | \(a_{165}= -0.00866512 \pm 2.2 \cdot 10^{-8} \) |
\(a_{166}= -0.71890071 \pm 4.8 \cdot 10^{-8} \) | \(a_{167}= -1.16832873 \pm 1.6 \cdot 10^{-8} \) | \(a_{168}= +0.99659759 \pm 3.4 \cdot 10^{-8} \) |
\(a_{169}= +0.06289890 \pm 1.6 \cdot 10^{-8} \) | \(a_{170}= -0.34280322 \pm 1 \cdot 10^{-8} \) | \(a_{171}= +0.21113198 \pm 4.5 \cdot 10^{-8} \) |
\(a_{172}= -0.53878723 \pm 1 \cdot 10^{-8} \) | \(a_{173}= -0.49482045 \pm 2.6 \cdot 10^{-8} \) | \(a_{174}= -0.10248208 \pm 4.6 \cdot 10^{-8} \) |
\(a_{175}= -0.16929675 \pm 1.6 \cdot 10^{-8} \) | \(a_{176}= -0.00267535 \pm 1.0 \cdot 10^{-8} \) | \(a_{177}= -0.58598862 \pm 1.2 \cdot 10^{-8} \) |
\(a_{178}= +0.33625843 \pm 1.2 \cdot 10^{-8} \) | \(a_{179}= +0.55881719 \pm 1.8 \cdot 10^{-8} \) | \(a_{180}= +0.21964783 \pm 3.1 \cdot 10^{-8} \) |
\(a_{181}= +0.63954165 \pm 1.7 \cdot 10^{-8} \) | \(a_{182}= +1.05204831 \pm 1.2 \cdot 10^{-8} \) | \(a_{183}= -0.40911037 \pm 2.2 \cdot 10^{-8} \) |
\(a_{184}= -0.19690310 \pm 1 \cdot 10^{-8} \) | \(a_{185}= -0.75705588 \pm 1 \cdot 10^{-8} \) | \(a_{186}= +0.06445756 \pm 6.6 \cdot 10^{-8} \) |
\(a_{187}= -0.01020431 \pm 1 \cdot 10^{-8} \) | \(a_{188}= +1.27002275 \pm 1.8 \cdot 10^{-8} \) | \(a_{189}= -0.35361580 \pm 2.7 \cdot 10^{-8} \) |
\(a_{190}= -0.33516722 \pm 1 \cdot 10^{-8} \) | \(a_{191}= +0.59848275 \pm 2.0 \cdot 10^{-8} \) | \(a_{192}= -0.23340284 \pm 2.4 \cdot 10^{-8} \) |
\(a_{193}= -0.14367415 \pm 4.2 \cdot 10^{-8} \) | \(a_{194}= -0.74158776 \pm 1 \cdot 10^{-8} \) | \(a_{195}= +0.56714676 \pm 2.5 \cdot 10^{-8} \) |
\(a_{196}= -1.64331004 \pm 1 \cdot 10^{-8} \) | \(a_{197}= -1.62476916 \pm 1 \cdot 10^{-8} \) | \(a_{198}= -0.00291595 \pm 5.0 \cdot 10^{-8} \) |
\(a_{199}= +1.64682270 \pm 1.4 \cdot 10^{-8} \) | \(a_{200}= +0.08655696 \pm 1 \cdot 10^{-8} \) | \(a_{201}= +0.05843820 \pm 2.6 \cdot 10^{-8} \) |
\(a_{202}= +0.08319009 \pm 3.6 \cdot 10^{-8} \) | \(a_{203}= +0.58728096 \pm 1 \cdot 10^{-8} \) | \(a_{204}= +0.25866404 \pm 5.1 \cdot 10^{-8} \) |
\(a_{205}= +0.16765934 \pm 1 \cdot 10^{-8} \) | \(a_{206}= +0.47179208 \pm 2.8 \cdot 10^{-8} \) | \(a_{207}= +0.06986576 \pm 1.8 \cdot 10^{-8} \) |
\(a_{208}= +0.17510645 \pm 1.3 \cdot 10^{-8} \) | \(a_{209}= -0.00997701 \pm 1.4 \cdot 10^{-8} \) | \(a_{210}= +0.56135705 \pm 6.0 \cdot 10^{-8} \) |
\(a_{211}= +0.56314689 \pm 2.5 \cdot 10^{-8} \) | \(a_{212}= -0.92953929 \pm 1 \cdot 10^{-8} \) | \(a_{213}= -0.59472060 \pm 3.5 \cdot 10^{-8} \) |
\(a_{214}= +0.03101374 \pm 5.7 \cdot 10^{-8} \) | \(a_{215}= -0.74231690 \pm 1 \cdot 10^{-8} \) | \(a_{216}= +0.18079443 \pm 1.7 \cdot 10^{-8} \) |
\(a_{217}= -0.36937871 \pm 1.9 \cdot 10^{-8} \) | \(a_{218}= -0.44944440 \pm 4.2 \cdot 10^{-8} \) | \(a_{219}= -0.55073228 \pm 4.4 \cdot 10^{-8} \) |
\(a_{220}= -0.01037942 \pm 1 \cdot 10^{-8} \) | \(a_{221}= +0.66788947 \pm 1.1 \cdot 10^{-8} \) | \(a_{222}= -0.25476125 \pm 4.6 \cdot 10^{-8} \) |
\(a_{223}= -1.10204174 \pm 2.4 \cdot 10^{-8} \) | \(a_{224}= +1.89947653 \pm 2.1 \cdot 10^{-8} \) | \(a_{225}= -0.03071240 \pm 3.2 \cdot 10^{-8} \) |
\(a_{226}= -0.48599070 \pm 1 \cdot 10^{-8} \) | \(a_{227}= +1.01940677 \pm 1.7 \cdot 10^{-8} \) | \(a_{228}= +0.25290225 \pm 6.4 \cdot 10^{-8} \) |
\(a_{229}= +0.20118368 \pm 2.3 \cdot 10^{-8} \) | \(a_{230}= -0.11091031 \pm 1 \cdot 10^{-8} \) | \(a_{231}= +0.01671006 \pm 3.6 \cdot 10^{-8} \) |
\(a_{232}= -0.30026126 \pm 1 \cdot 10^{-8} \) | \(a_{233}= -1.34634644 \pm 1.9 \cdot 10^{-8} \) | \(a_{234}= +0.19085383 \pm 5.3 \cdot 10^{-8} \) |
\(a_{235}= +1.74978041 \pm 1 \cdot 10^{-8} \) | \(a_{236}= -0.70192040 \pm 1 \cdot 10^{-8} \) | \(a_{237}= -0.28168760 \pm 3.9 \cdot 10^{-8} \) |
\(a_{238}= +0.66107133 \pm 2.1 \cdot 10^{-8} \) | \(a_{239}= +1.64728155 \pm 1.5 \cdot 10^{-8} \) | \(a_{240}= +0.09343415 \pm 3.9 \cdot 10^{-8} \) |
\(a_{241}= -1.40839591 \pm 1 \cdot 10^{-8} \) | \(a_{242}= -0.55522421 \pm 2.5 \cdot 10^{-8} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.49004862 \pm 1.1 \cdot 10^{-8} \) | \(a_{245}= -2.26407890 \pm 1 \cdot 10^{-8} \) | \(a_{246}= +0.05642001 \pm 6.5 \cdot 10^{-8} \) |
\(a_{247}= +0.65301213 \pm 1.8 \cdot 10^{-8} \) | \(a_{248}= +0.18885359 \pm 1 \cdot 10^{-8} \) | \(a_{249}= +0.74736391 \pm 4.6 \cdot 10^{-8} \) |
\(a_{250}= +0.57791435 \pm 1 \cdot 10^{-8} \) | \(a_{251}= -0.01285680 \pm 1.0 \cdot 10^{-8} \) | \(a_{252}= -0.42357502 \pm 4.6 \cdot 10^{-8} \) |
\(a_{253}= -0.00330150 \pm 1 \cdot 10^{-8} \) | \(a_{254}= +0.03010779 \pm 2.5 \cdot 10^{-8} \) | \(a_{255}= +0.35637571 \pm 3.4 \cdot 10^{-8} \) |
\(a_{256}= -0.85369109 \pm 2.8 \cdot 10^{-8} \) | \(a_{257}= +1.16058780 \pm 2.6 \cdot 10^{-8} \) | \(a_{258}= -0.24980135 \pm 4.5 \cdot 10^{-8} \) |
\(a_{259}= +1.45992777 \pm 1 \cdot 10^{-8} \) | \(a_{260}= +0.67935088 \pm 1 \cdot 10^{-8} \) | \(a_{261}= +0.10653962 \pm 1.6 \cdot 10^{-8} \) |
\(a_{262}= -0.37370111 \pm 3.2 \cdot 10^{-8} \) | \(a_{263}= -0.60536800 \pm 2.7 \cdot 10^{-8} \) | \(a_{264}= -0.00854341 \pm 2.6 \cdot 10^{-8} \) |
\(a_{265}= -1.28067756 \pm 1 \cdot 10^{-8} \) | \(a_{266}= +0.64634586 \pm 3.5 \cdot 10^{-8} \) | \(a_{267}= -0.34957180 \pm 2.0 \cdot 10^{-8} \) |
\(a_{268}= +0.06999959 \pm 1.3 \cdot 10^{-8} \) | \(a_{269}= -0.24297061 \pm 3.8 \cdot 10^{-8} \) | \(a_{270}= +0.10183672 \pm 4.3 \cdot 10^{-8} \) |
\(a_{271}= +0.05291021 \pm 1.0 \cdot 10^{-8} \) | \(a_{272}= +0.11003093 \pm 2.5 \cdot 10^{-8} \) | \(a_{273}= -1.09370171 \pm 4.0 \cdot 10^{-8} \) |
\(a_{274}= -0.85987540 \pm 1 \cdot 10^{-8} \) | \(a_{275}= +0.00145131 \pm 1 \cdot 10^{-8} \) | \(a_{276}= +0.08368798 \pm 3.7 \cdot 10^{-8} \) |
\(a_{277}= -0.51930124 \pm 2.2 \cdot 10^{-8} \) | \(a_{278}= +0.31293208 \pm 1.5 \cdot 10^{-8} \) | \(a_{279}= -0.06700961 \pm 3.6 \cdot 10^{-8} \) |
\(a_{280}= +1.64471467 \pm 1 \cdot 10^{-8} \) | \(a_{281}= -0.00614084 \pm 3.0 \cdot 10^{-8} \) | \(a_{282}= +0.58882871 \pm 6.3 \cdot 10^{-8} \) |
\(a_{283}= +1.35881072 \pm 1.0 \cdot 10^{-8} \) | \(a_{284}= -0.71237992 \pm 1.9 \cdot 10^{-8} \) | \(a_{285}= +0.34843739 \pm 4.8 \cdot 10^{-8} \) |
\(a_{286}= -0.00901877 \pm 1 \cdot 10^{-8} \) | \(a_{287}= -0.32331896 \pm 1.8 \cdot 10^{-8} \) | \(a_{288}= +0.34458720 \pm 3.9 \cdot 10^{-8} \) |
\(a_{289}= -0.58032100 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.16912922 \pm 1 \cdot 10^{-8} \) | \(a_{291}= +0.77094920 \pm 1.2 \cdot 10^{-8} \) |
\(a_{292}= -0.65968896 \pm 2.8 \cdot 10^{-8} \) | \(a_{293}= +0.65750239 \pm 1.0 \cdot 10^{-8} \) | \(a_{294}= -0.76189826 \pm 5.0 \cdot 10^{-8} \) |
\(a_{295}= -0.96707446 \pm 1 \cdot 10^{-8} \) | \(a_{296}= -0.74642254 \pm 1 \cdot 10^{-8} \) | \(a_{297}= +0.00303140 \pm 1.9 \cdot 10^{-8} \) |
\(a_{298}= +0.21753146 \pm 3.6 \cdot 10^{-8} \) | \(a_{299}= +0.21608848 \pm 1 \cdot 10^{-8} \) | \(a_{300}= -0.03678854 \pm 5.1 \cdot 10^{-8} \) |
\(a_{301}= +1.43150470 \pm 1 \cdot 10^{-8} \) | \(a_{302}= -0.69482001 \pm 1 \cdot 10^{-8} \) | \(a_{303}= -0.08648381 \pm 3.7 \cdot 10^{-8} \) |
\(a_{304}= +0.10757997 \pm 4.0 \cdot 10^{-8} \) | \(a_{305}= -0.67516702 \pm 1 \cdot 10^{-8} \) | \(a_{306}= +0.11992605 \pm 6.2 \cdot 10^{-8} \) |
\(a_{307}= -0.85069387 \pm 1.3 \cdot 10^{-8} \) | \(a_{308}= +0.02001597 \pm 1 \cdot 10^{-8} \) | \(a_{309}= -0.49047158 \pm 3.1 \cdot 10^{-8} \) |
\(a_{310}= +0.10637623 \pm 1 \cdot 10^{-8} \) | \(a_{311}= +1.46101583 \pm 1 \cdot 10^{-8} \) | \(a_{312}= +0.55918082 \pm 3.0 \cdot 10^{-8} \) |
\(a_{313}= +0.19845785 \pm 2.8 \cdot 10^{-8} \) | \(a_{314}= +0.93544456 \pm 1.4 \cdot 10^{-8} \) | \(a_{315}= -0.58358268 \pm 3.0 \cdot 10^{-8} \) |
\(a_{316}= -0.33741658 \pm 2.3 \cdot 10^{-8} \) | \(a_{317}= +0.73663142 \pm 3.6 \cdot 10^{-8} \) | \(a_{318}= -0.43096820 \pm 4.7 \cdot 10^{-8} \) |
\(a_{319}= -0.00503451 \pm 1 \cdot 10^{-8} \) | \(a_{320}= -0.38519166 \pm 1 \cdot 10^{-8} \) | \(a_{321}= -0.03224166 \pm 5.3 \cdot 10^{-8} \) |
\(a_{322}= +0.21388254 \pm 1 \cdot 10^{-8} \) | \(a_{323}= +0.41033058 \pm 3.3 \cdot 10^{-8} \) | \(a_{324}= -0.07684145 \pm 2.9 \cdot 10^{-8} \) |
\(a_{325}= -0.09499069 \pm 1.2 \cdot 10^{-8} \) | \(a_{326}= +0.79134683 \pm 2.4 \cdot 10^{-8} \) | \(a_{327}= +0.46723911 \pm 4.1 \cdot 10^{-8} \) |
\(a_{328}= +0.16530445 \pm 1 \cdot 10^{-8} \) | \(a_{329}= -3.37432556 \pm 1.7 \cdot 10^{-8} \) | \(a_{330}= -0.00481228 \pm 5.2 \cdot 10^{-8} \) |
\(a_{331}= -1.35517260 \pm 1 \cdot 10^{-8} \) | \(a_{332}= +0.89522212 \pm 2.9 \cdot 10^{-8} \) | \(a_{333}= +0.26484792 \pm 1.6 \cdot 10^{-8} \) |
\(a_{334}= -0.64884539 \pm 2.1 \cdot 10^{-8} \) | \(a_{335}= +0.09644229 \pm 1 \cdot 10^{-8} \) | \(a_{336}= -0.18018103 \pm 5.3 \cdot 10^{-8} \) |
\(a_{337}= +0.63164006 \pm 1 \cdot 10^{-8} \) | \(a_{338}= +0.03493166 \pm 2.2 \cdot 10^{-8} \) | \(a_{339}= +0.50523237 \pm 1.4 \cdot 10^{-8} \) |
\(a_{340}= +0.42688096 \pm 1 \cdot 10^{-8} \) | \(a_{341}= +0.00316653 \pm 1.0 \cdot 10^{-8} \) | \(a_{342}= +0.11725468 \pm 7.5 \cdot 10^{-8} \) |
\(a_{343}= +2.52867160 \pm 2.4 \cdot 10^{-8} \) | \(a_{344}= -0.73189058 \pm 1 \cdot 10^{-8} \) | \(a_{345}= +0.11530154 \pm 2.0 \cdot 10^{-8} \) |
\(a_{346}= -0.27480448 \pm 3.5 \cdot 10^{-8} \) | \(a_{347}= -0.48136594 \pm 1 \cdot 10^{-8} \) | \(a_{348}= +0.12761738 \pm 3.5 \cdot 10^{-8} \) |
\(a_{349}= -0.19940378 \pm 1 \cdot 10^{-8} \) | \(a_{350}= -0.09402098 \pm 2.2 \cdot 10^{-8} \) | \(a_{351}= -0.19841025 \pm 2.3 \cdot 10^{-8} \) |
\(a_{352}= -0.01628342 \pm 1.1 \cdot 10^{-8} \) | \(a_{353}= +1.52969073 \pm 1.0 \cdot 10^{-8} \) | \(a_{354}= -0.32543581 \pm 4.3 \cdot 10^{-8} \) |
\(a_{355}= -0.98148512 \pm 1 \cdot 10^{-8} \) | \(a_{356}= -0.41873096 \pm 1 \cdot 10^{-8} \) | \(a_{357}= -0.68724491 \pm 4.9 \cdot 10^{-8} \) |
\(a_{358}= +0.31034584 \pm 2.4 \cdot 10^{-8} \) | \(a_{359}= -0.23082619 \pm 3.0 \cdot 10^{-8} \) | \(a_{360}= +0.29837042 \pm 2.0 \cdot 10^{-8} \) |
\(a_{361}= -0.59880960 \pm 3.2 \cdot 10^{-8} \) | \(a_{362}= +0.35517713 \pm 2.4 \cdot 10^{-8} \) | \(a_{363}= +0.57720702 \pm 2.9 \cdot 10^{-8} \) |
\(a_{364}= -1.31007928 \pm 1 \cdot 10^{-8} \) | \(a_{365}= -0.90888988 \pm 1 \cdot 10^{-8} \) | \(a_{366}= -0.22720435 \pm 5.2 \cdot 10^{-8} \) |
\(a_{367}= +0.42215628 \pm 1.7 \cdot 10^{-8} \) | \(a_{368}= +0.03559933 \pm 1 \cdot 10^{-8} \) | \(a_{369}= -0.05865383 \pm 3.5 \cdot 10^{-8} \) |
\(a_{370}= -0.42044007 \pm 1 \cdot 10^{-8} \) | \(a_{371}= +2.46969450 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.08026676 \pm 5.5 \cdot 10^{-8} \) |
\(a_{373}= +0.40075889 \pm 3.9 \cdot 10^{-8} \) | \(a_{374}= -0.00566709 \pm 1.1 \cdot 10^{-8} \) | \(a_{375}= -0.60079552 \pm 1.4 \cdot 10^{-8} \) |
\(a_{376}= +1.72520362 \pm 1 \cdot 10^{-8} \) | \(a_{377}= +0.32951741 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.19638478 \pm 5.8 \cdot 10^{-8} \) |
\(a_{379}= -1.49283209 \pm 1 \cdot 10^{-8} \) | \(a_{380}= +0.41737212 \pm 1 \cdot 10^{-8} \) | \(a_{381}= -0.03129984 \pm 2.9 \cdot 10^{-8} \) |
\(a_{382}= +0.33237458 \pm 2.7 \cdot 10^{-8} \) | \(a_{383}= -1.58365014 \pm 2.1 \cdot 10^{-8} \) | \(a_{384}= +0.46721946 \pm 2.3 \cdot 10^{-8} \) |
\(a_{385}= +0.02757711 \pm 1 \cdot 10^{-8} \) | \(a_{386}= -0.07979116 \pm 5.7 \cdot 10^{-8} \) | \(a_{387}= +0.25969165 \pm 1.4 \cdot 10^{-8} \) |
\(a_{388}= +0.92347353 \pm 1 \cdot 10^{-8} \) | \(a_{389}= +0.24315589 \pm 4.0 \cdot 10^{-8} \) | \(a_{390}= +0.31497176 \pm 5.6 \cdot 10^{-8} \) |
\(a_{391}= +0.13578264 \pm 1 \cdot 10^{-8} \) | \(a_{392}= -2.23227846 \pm 1 \cdot 10^{-8} \) | \(a_{393}= +0.38849694 \pm 3.5 \cdot 10^{-8} \) |
\(a_{394}= -0.90233506 \pm 1 \cdot 10^{-8} \) | \(a_{395}= -0.46487743 \pm 1 \cdot 10^{-8} \) | \(a_{396}= +0.00363113 \pm 3.8 \cdot 10^{-8} \) |
\(a_{397}= +0.50900413 \pm 1 \cdot 10^{-8} \) | \(a_{398}= +0.91458275 \pm 1.9 \cdot 10^{-8} \) | \(a_{399}= -0.67193642 \pm 6.2 \cdot 10^{-8} \) |
\(a_{400}= -0.01564917 \pm 2.5 \cdot 10^{-8} \) | \(a_{401}= -0.18052926 \pm 2.6 \cdot 10^{-8} \) | \(a_{402}= +0.03245435 \pm 5.6 \cdot 10^{-8} \) |
\(a_{403}= -0.20725466 \pm 1.3 \cdot 10^{-8} \) | \(a_{404}= -0.10359374 \pm 2.2 \cdot 10^{-8} \) | \(a_{405}= -0.10586870 \pm 1.3 \cdot 10^{-8} \) |
\(a_{406}= +0.32615353 \pm 1 \cdot 10^{-8} \) | \(a_{407}= -0.01251535 \pm 1 \cdot 10^{-8} \) | \(a_{408}= +0.35137019 \pm 3.9 \cdot 10^{-8} \) |
\(a_{409}= -0.40369965 \pm 4.0 \cdot 10^{-8} \) | \(a_{410}= +0.09311162 \pm 1 \cdot 10^{-8} \) | \(a_{411}= +0.89392016 \pm 1.3 \cdot 10^{-8} \) |
\(a_{412}= -0.58750631 \pm 1.7 \cdot 10^{-8} \) | \(a_{413}= +1.86493349 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.03880079 \pm 4.8 \cdot 10^{-8} \) |
\(a_{415}= +1.23339691 \pm 1 \cdot 10^{-8} \) | \(a_{416}= +1.06577706 \pm 1.5 \cdot 10^{-8} \) | \(a_{417}= -0.32532190 \pm 2.2 \cdot 10^{-8} \) |
\(a_{418}= -0.00554085 \pm 1.9 \cdot 10^{-8} \) | \(a_{419}= -1.59260734 \pm 2.1 \cdot 10^{-8} \) | \(a_{420}= -0.69903847 \pm 4.9 \cdot 10^{-8} \) |
\(a_{421}= -0.51383900 \pm 1.3 \cdot 10^{-8} \) | \(a_{422}= +0.31275039 \pm 3.4 \cdot 10^{-8} \) | \(a_{423}= -0.61214201 \pm 3.3 \cdot 10^{-8} \) |
\(a_{424}= -1.26268963 \pm 1 \cdot 10^{-8} \) | \(a_{425}= -0.05968892 \pm 2.1 \cdot 10^{-8} \) | \(a_{426}= -0.33028522 \pm 6.5 \cdot 10^{-8} \) |
\(a_{427}= +1.30201100 \pm 1 \cdot 10^{-8} \) | \(a_{428}= -0.03862034 \pm 3.4 \cdot 10^{-8} \) | \(a_{429}= +0.00937585 \pm 3.2 \cdot 10^{-8} \) |
\(a_{430}= -0.41225460 \pm 1 \cdot 10^{-8} \) | \(a_{431}= -0.13658411 \pm 1.2 \cdot 10^{-8} \) | \(a_{432}= -0.03268694 \pm 3.6 \cdot 10^{-8} \) |
\(a_{433}= -1.10990417 \pm 1 \cdot 10^{-8} \) | \(a_{434}= -0.20513890 \pm 2.6 \cdot 10^{-8} \) | \(a_{435}= +0.17582550 \pm 1.8 \cdot 10^{-8} \) |
\(a_{436}= +0.55967753 \pm 2.5 \cdot 10^{-8} \) | \(a_{437}= +0.13275806 \pm 1.0 \cdot 10^{-8} \) | \(a_{438}= -0.30585578 \pm 7.5 \cdot 10^{-8} \) |
\(a_{439}= +0.41378113 \pm 2.9 \cdot 10^{-8} \) | \(a_{440}= -0.01409945 \pm 1 \cdot 10^{-8} \) | \(a_{441}= +0.79206385 \pm 2.0 \cdot 10^{-8} \) |
\(a_{442}= +0.37092043 \pm 1.5 \cdot 10^{-8} \) | \(a_{443}= +1.72906039 \pm 1 \cdot 10^{-8} \) | \(a_{444}= +0.31724535 \pm 3.5 \cdot 10^{-8} \) |
\(a_{445}= -0.57690875 \pm 1 \cdot 10^{-8} \) | \(a_{446}= -0.61203211 \pm 3.2 \cdot 10^{-8} \) | \(a_{447}= -0.22614411 \pm 3.7 \cdot 10^{-8} \) |
\(a_{448}= +0.74281439 \pm 1.0 \cdot 10^{-8} \) | \(a_{449}= -0.99757808 \pm 1 \cdot 10^{-8} \) | \(a_{450}= -0.01705650 \pm 6.3 \cdot 10^{-8} \) |
\(a_{451}= +0.00277168 \pm 1.0 \cdot 10^{-8} \) | \(a_{452}= +0.60518737 \pm 1 \cdot 10^{-8} \) | \(a_{453}= +0.72232979 \pm 1.7 \cdot 10^{-8} \) |
\(a_{454}= +0.56613979 \pm 2.3 \cdot 10^{-8} \) | \(a_{455}= -1.80496850 \pm 1 \cdot 10^{-8} \) | \(a_{456}= +0.34354336 \pm 5.2 \cdot 10^{-8} \) |
\(a_{457}= -0.52652523 \pm 1 \cdot 10^{-8} \) | \(a_{458}= +0.11172977 \pm 3.1 \cdot 10^{-8} \) | \(a_{459}= -0.12467424 \pm 3.2 \cdot 10^{-8} \) |
\(a_{460}= +0.13811276 \pm 1 \cdot 10^{-8} \) | \(a_{461}= -1.41832374 \pm 2.5 \cdot 10^{-8} \) | \(a_{462}= +0.00928013 \pm 6.7 \cdot 10^{-8} \) |
\(a_{463}= +0.61257894 \pm 1.2 \cdot 10^{-8} \) | \(a_{464}= +0.05428609 \pm 1 \cdot 10^{-8} \) | \(a_{465}= -0.11058795 \pm 3.9 \cdot 10^{-8} \) |
\(a_{466}= -0.74770965 \pm 2.6 \cdot 10^{-8} \) | \(a_{467}= +1.09301820 \pm 1 \cdot 10^{-8} \) | \(a_{468}= -0.23766366 \pm 4.1 \cdot 10^{-8} \) |
\(a_{469}= -0.18598202 \pm 1.1 \cdot 10^{-8} \) | \(a_{470}= +0.97176155 \pm 1 \cdot 10^{-8} \) | \(a_{471}= -0.97248132 \pm 2.1 \cdot 10^{-8} \) |
\(a_{472}= -0.95349128 \pm 1 \cdot 10^{-8} \) | \(a_{473}= -0.01227169 \pm 1 \cdot 10^{-8} \) | \(a_{474}= -0.15643859 \pm 6.9 \cdot 10^{-8} \) |
\(a_{475}= -0.05835934 \pm 3.4 \cdot 10^{-8} \) | \(a_{476}= -0.82320920 \pm 1.3 \cdot 10^{-8} \) | \(a_{477}= +0.44803139 \pm 1.7 \cdot 10^{-8} \) |
\(a_{478}= +0.91483758 \pm 2.1 \cdot 10^{-8} \) | \(a_{479}= +1.33456624 \pm 2.6 \cdot 10^{-8} \) | \(a_{480}= +0.56868251 \pm 4.2 \cdot 10^{-8} \) |
\(a_{481}= +0.81915070 \pm 1 \cdot 10^{-8} \) | \(a_{482}= -0.78216957 \pm 1.3 \cdot 10^{-8} \) | \(a_{483}= -0.22235072 \pm 3.5 \cdot 10^{-8} \) |
\(a_{484}= +0.69140146 \pm 1.5 \cdot 10^{-8} \) | \(a_{485}= +1.27232042 \pm 1 \cdot 10^{-8} \) | \(a_{486}= -0.03562649 \pm 4.0 \cdot 10^{-8} \) |
\(a_{487}= -0.56395934 \pm 3.0 \cdot 10^{-8} \) | \(a_{488}= -0.66568387 \pm 1 \cdot 10^{-8} \) | \(a_{489}= -0.82267837 \pm 2.8 \cdot 10^{-8} \) |
\(a_{490}= -1.25738339 \pm 1 \cdot 10^{-8} \) | \(a_{491}= +0.61203686 \pm 3.2 \cdot 10^{-8} \) | \(a_{492}= -0.07025788 \pm 5.4 \cdot 10^{-8} \) |
\(a_{493}= +0.20705752 \pm 1 \cdot 10^{-8} \) | \(a_{494}= +0.36265812 \pm 2.4 \cdot 10^{-8} \) | \(a_{495}= +0.00500281 \pm 2.2 \cdot 10^{-8} \) |
\(a_{496}= -0.03414401 \pm 2.9 \cdot 10^{-8} \) | \(a_{497}= +1.89272340 \pm 1.8 \cdot 10^{-8} \) | \(a_{498}= +0.41505752 \pm 7.7 \cdot 10^{-8} \) |
\(a_{499}= -1.47428192 \pm 1.8 \cdot 10^{-8} \) | \(a_{500}= -0.71965670 \pm 1 \cdot 10^{-8} \) | \(a_{501}= +0.67453491 \pm 2.6 \cdot 10^{-8} \) |
\(a_{502}= -0.00714018 \pm 1.4 \cdot 10^{-8} \) | \(a_{503}= -1.82204009 \pm 2.4 \cdot 10^{-8} \) | \(a_{504}= -0.57538589 \pm 3.4 \cdot 10^{-8} \) |
\(a_{505}= -0.14272681 \pm 1 \cdot 10^{-8} \) | \(a_{506}= -0.00183353 \pm 1 \cdot 10^{-8} \) | \(a_{507}= -0.03631470 \pm 2.6 \cdot 10^{-8} \) |
\(a_{508}= -0.03749219 \pm 1.6 \cdot 10^{-8} \) | \(a_{509}= -1.81907999 \pm 4.4 \cdot 10^{-8} \) | \(a_{510}= +0.19791753 \pm 6.5 \cdot 10^{-8} \) |
\(a_{511}= +1.75272871 \pm 2.5 \cdot 10^{-8} \) | \(a_{512}= +0.33514025 \pm 2.6 \cdot 10^{-8} \) | \(a_{513}= -0.12189710 \pm 4.5 \cdot 10^{-8} \) |
\(a_{514}= +0.64454637 \pm 3.6 \cdot 10^{-8} \) | \(a_{515}= -0.80943986 \pm 1 \cdot 10^{-8} \) | \(a_{516}= +0.31106895 \pm 3.3 \cdot 10^{-8} \) |
\(a_{517}= +0.02892668 \pm 1 \cdot 10^{-8} \) | \(a_{518}= +0.81078841 \pm 1 \cdot 10^{-8} \) | \(a_{519}= +0.28568472 \pm 3.6 \cdot 10^{-8} \) |
\(a_{520}= +0.92283276 \pm 1 \cdot 10^{-8} \) | \(a_{521}= +0.48331901 \pm 1.8 \cdot 10^{-8} \) | \(a_{522}= +0.05916805 \pm 4.6 \cdot 10^{-8} \) |
\(a_{523}= +0.67846943 \pm 1 \cdot 10^{-8} \) | \(a_{524}= +0.46535704 \pm 1.9 \cdot 10^{-8} \) | \(a_{525}= +0.09774352 \pm 5.0 \cdot 10^{-8} \) |
\(a_{526}= -0.33619839 \pm 3.7 \cdot 10^{-8} \) | \(a_{527}= -0.13023177 \pm 2.5 \cdot 10^{-8} \) | \(a_{528}= +0.00154462 \pm 4.5 \cdot 10^{-8} \) |
\(a_{529}= -0.95606898 \pm 2.0 \cdot 10^{-8} \) | \(a_{530}= -0.71123966 \pm 1 \cdot 10^{-8} \) | \(a_{531}= +0.33832069 \pm 1.2 \cdot 10^{-8} \) |
\(a_{532}= -0.80487209 \pm 2.1 \cdot 10^{-8} \) | \(a_{533}= -0.18141100 \pm 1.3 \cdot 10^{-8} \) | \(a_{534}= -0.19413890 \pm 5.0 \cdot 10^{-8} \) |
\(a_{535}= -0.05320937 \pm 1 \cdot 10^{-8} \) | \(a_{536}= +0.09508770 \pm 1 \cdot 10^{-8} \) | \(a_{537}= -0.32263326 \pm 2.8 \cdot 10^{-8} \) |
\(a_{538}= -0.13493665 \pm 5.1 \cdot 10^{-8} \) | \(a_{539}= -0.03742886 \pm 1 \cdot 10^{-8} \) | \(a_{540}= -0.12681373 \pm 3.1 \cdot 10^{-8} \) |
\(a_{541}= -0.25291891 \pm 1 \cdot 10^{-8} \) | \(a_{542}= +0.02938432 \pm 1.5 \cdot 10^{-8} \) | \(a_{543}= -0.36923955 \pm 2.8 \cdot 10^{-8} \) |
\(a_{544}= +0.66969801 \pm 2.7 \cdot 10^{-8} \) | \(a_{545}= +0.77109861 \pm 1 \cdot 10^{-8} \) | \(a_{546}= -0.60740037 \pm 7.0 \cdot 10^{-8} \) |
\(a_{547}= -1.86269086 \pm 1 \cdot 10^{-8} \) | \(a_{548}= +1.07077302 \pm 1 \cdot 10^{-8} \) | \(a_{549}= +0.23619998 \pm 2.2 \cdot 10^{-8} \) |
\(a_{550}= +0.00080600 \pm 1.2 \cdot 10^{-8} \) | \(a_{551}= +0.20244528 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.11368206 \pm 2.5 \cdot 10^{-8} \) |
\(a_{553}= +0.89648266 \pm 2.1 \cdot 10^{-8} \) | \(a_{554}= -0.28840018 \pm 2.9 \cdot 10^{-8} \) | \(a_{555}= +0.43708641 \pm 1.9 \cdot 10^{-8} \) |
\(a_{556}= -0.38968347 \pm 1 \cdot 10^{-8} \) | \(a_{557}= +0.31431257 \pm 2.4 \cdot 10^{-8} \) | \(a_{558}= -0.03721459 \pm 6.6 \cdot 10^{-8} \) |
\(a_{559}= +0.80320281 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.29735812 \pm 1 \cdot 10^{-8} \) | \(a_{561}= +0.00589146 \pm 4.1 \cdot 10^{-8} \) |
\(a_{562}= -0.00341039 \pm 4.0 \cdot 10^{-8} \) | \(a_{563}= -0.22111897 \pm 2.4 \cdot 10^{-8} \) | \(a_{564}= -0.73324798 \pm 5.2 \cdot 10^{-8} \) |
\(a_{565}= +0.83380002 \pm 1 \cdot 10^{-8} \) | \(a_{566}= +0.75463184 \pm 1.4 \cdot 10^{-8} \) | \(a_{567}= +0.20416018 \pm 2.7 \cdot 10^{-8} \) |
\(a_{568}= -0.96769953 \pm 1 \cdot 10^{-8} \) | \(a_{569}= -0.00386705 \pm 4.0 \cdot 10^{-8} \) | \(a_{570}= +0.19350888 \pm 7.8 \cdot 10^{-8} \) |
\(a_{571}= +0.90957231 \pm 2.1 \cdot 10^{-8} \) | \(a_{572}= +0.01123076 \pm 1 \cdot 10^{-8} \) | \(a_{573}= -0.34553418 \pm 3.0 \cdot 10^{-8} \) |
\(a_{574}= -0.17955906 \pm 2.5 \cdot 10^{-8} \) | \(a_{575}= -0.01931171 \pm 1 \cdot 10^{-8} \) | \(a_{576}= +0.13475519 \pm 2.4 \cdot 10^{-8} \) |
\(a_{577}= -0.48458076 \pm 1 \cdot 10^{-8} \) | \(a_{578}= -0.32228823 \pm 1 \cdot 10^{-8} \) | \(a_{579}= +0.08295031 \pm 5.3 \cdot 10^{-8} \) |
\(a_{580}= +0.21061076 \pm 1 \cdot 10^{-8} \) | \(a_{581}= -2.37851715 \pm 2.7 \cdot 10^{-8} \) | \(a_{582}= +0.42815589 \pm 4.2 \cdot 10^{-8} \) |
\(a_{583}= -0.02117166 \pm 1 \cdot 10^{-8} \) | \(a_{584}= -0.89612394 \pm 1.0 \cdot 10^{-8} \) | \(a_{585}= -0.32744234 \pm 2.5 \cdot 10^{-8} \) |
\(a_{586}= +0.36515184 \pm 1.4 \cdot 10^{-8} \) | \(a_{587}= +0.81367285 \pm 1.6 \cdot 10^{-8} \) | \(a_{588}= +0.94876549 \pm 3.9 \cdot 10^{-8} \) |
\(a_{589}= -0.12733084 \pm 4.0 \cdot 10^{-8} \) | \(a_{590}= -0.53707641 \pm 1 \cdot 10^{-8} \) | \(a_{591}= +0.93806091 \pm 1.5 \cdot 10^{-8} \) |
\(a_{592}= +0.13495034 \pm 1 \cdot 10^{-8} \) | \(a_{593}= -0.12554089 \pm 3.0 \cdot 10^{-8} \) | \(a_{594}= +0.00168352 \pm 5.0 \cdot 10^{-8} \) |
\(a_{595}= -1.13418073 \pm 1 \cdot 10^{-8} \) | \(a_{596}= -0.27088438 \pm 2.2 \cdot 10^{-8} \) | \(a_{597}= -0.95079353 \pm 2.4 \cdot 10^{-8} \) |
\(a_{598}= +0.12000733 \pm 1.0 \cdot 10^{-8} \) | \(a_{599}= +1.83982385 \pm 1.9 \cdot 10^{-8} \) | \(a_{600}= -0.04997368 \pm 3.9 \cdot 10^{-8} \) |
\(a_{601}= +0.27642479 \pm 2.9 \cdot 10^{-8} \) | \(a_{602}= +0.79500332 \pm 1 \cdot 10^{-8} \) | \(a_{603}= -0.03373931 \pm 2.6 \cdot 10^{-8} \) |
\(a_{604}= +0.86523526 \pm 1 \cdot 10^{-8} \) | \(a_{605}= +0.95258193 \pm 1 \cdot 10^{-8} \) | \(a_{606}= -0.04802982 \pm 6.8 \cdot 10^{-8} \) |
\(a_{607}= +0.20552769 \pm 1 \cdot 10^{-8} \) | \(a_{608}= +0.65478038 \pm 4.5 \cdot 10^{-8} \) | \(a_{609}= -0.33906682 \pm 3.3 \cdot 10^{-8} \) |
\(a_{610}= -0.37496211 \pm 1 \cdot 10^{-8} \) | \(a_{611}= -1.89329994 \pm 1.2 \cdot 10^{-8} \) | \(a_{612}= -0.14933975 \pm 5.1 \cdot 10^{-8} \) |
\(a_{613}= +0.94658793 \pm 3.6 \cdot 10^{-8} \) | \(a_{614}= -0.47244305 \pm 1.8 \cdot 10^{-8} \) | \(a_{615}= -0.09679816 \pm 3.8 \cdot 10^{-8} \) |
\(a_{616}= +0.02718977 \pm 1 \cdot 10^{-8} \) | \(a_{617}= +0.03844825 \pm 1 \cdot 10^{-8} \) | \(a_{618}= -0.27238928 \pm 6.2 \cdot 10^{-8} \) |
\(a_{619}= -1.75986759 \pm 1.1 \cdot 10^{-8} \) | \(a_{620}= -0.13246663 \pm 1 \cdot 10^{-8} \) | \(a_{621}= -0.04033701 \pm 1.8 \cdot 10^{-8} \) |
\(a_{622}= +0.81139268 \pm 1 \cdot 10^{-8} \) | \(a_{623}= +1.11252700 \pm 1 \cdot 10^{-8} \) | \(a_{624}= -0.10109775 \pm 4.9 \cdot 10^{-8} \) |
\(a_{625}= -0.89937352 \pm 2.2 \cdot 10^{-8} \) | \(a_{626}= +0.11021595 \pm 3.7 \cdot 10^{-8} \) | \(a_{627}= +0.00576023 \pm 5.4 \cdot 10^{-8} \) |
\(a_{628}= -1.16487668 \pm 1.0 \cdot 10^{-8} \) | \(a_{629}= +0.51472640 \pm 1 \cdot 10^{-8} \) | \(a_{630}= -0.32409964 \pm 6.0 \cdot 10^{-8} \) |
\(a_{631}= -1.18008289 \pm 1 \cdot 10^{-8} \) | \(a_{632}= -0.45834793 \pm 1 \cdot 10^{-8} \) | \(a_{633}= -0.32513301 \pm 3.6 \cdot 10^{-8} \) |
\(a_{634}= +0.40909710 \pm 4.9 \cdot 10^{-8} \) | \(a_{635}= -0.05165506 \pm 1 \cdot 10^{-8} \) | \(a_{636}= +0.53666976 \pm 3.6 \cdot 10^{-8} \) |
\(a_{637}= +2.44978194 \pm 1 \cdot 10^{-8} \) | \(a_{638}= -0.00279598 \pm 1 \cdot 10^{-8} \) | \(a_{639}= +0.34336210 \pm 3.5 \cdot 10^{-8} \) |
\(a_{640}= +0.77106619 \pm 1 \cdot 10^{-8} \) | \(a_{641}= +0.11284217 \pm 1.9 \cdot 10^{-8} \) | \(a_{642}= -0.01790579 \pm 8.4 \cdot 10^{-8} \) |
\(a_{643}= -0.32432792 \pm 1.3 \cdot 10^{-8} \) | \(a_{644}= -0.26634051 \pm 1 \cdot 10^{-8} \) | \(a_{645}= +0.42857686 \pm 1.7 \cdot 10^{-8} \) |
\(a_{646}= +0.22788201 \pm 4.5 \cdot 10^{-8} \) | \(a_{647}= +0.94523466 \pm 2.0 \cdot 10^{-8} \) | \(a_{648}= -0.10438171 \pm 1.7 \cdot 10^{-8} \) |
\(a_{649}= -0.01598729 \pm 1 \cdot 10^{-8} \) | \(a_{650}= -0.05275422 \pm 1.6 \cdot 10^{-8} \) | \(a_{651}= +0.21326090 \pm 5.3 \cdot 10^{-8} \) |
\(a_{652}= -0.98543678 \pm 1.6 \cdot 10^{-8} \) | \(a_{653}= -1.18340519 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.25948685 \pm 7.2 \cdot 10^{-8} \) |
\(a_{655}= +0.64114807 \pm 1 \cdot 10^{-8} \) | \(a_{656}= -0.02988641 \pm 2.8 \cdot 10^{-8} \) | \(a_{657}= +0.31796543 \pm 4.4 \cdot 10^{-8} \) |
\(a_{658}= -1.87397220 \pm 2.3 \cdot 10^{-8} \) | \(a_{659}= -0.61095138 \pm 1 \cdot 10^{-8} \) | \(a_{660}= +0.00599256 \pm 4.1 \cdot 10^{-8} \) |
\(a_{661}= +0.98625963 \pm 1.1 \cdot 10^{-8} \) | \(a_{662}= -0.75261137 \pm 1.1 \cdot 10^{-8} \) | \(a_{663}= -0.38560617 \pm 4.4 \cdot 10^{-8} \) |
\(a_{664}= +1.21607306 \pm 1.0 \cdot 10^{-8} \) | \(a_{665}= -1.10891668 \pm 1 \cdot 10^{-8} \) | \(a_{666}= +0.14708647 \pm 4.6 \cdot 10^{-8} \) |
\(a_{667}= +0.06699124 \pm 1 \cdot 10^{-8} \) | \(a_{668}= +0.80798466 \pm 1.3 \cdot 10^{-8} \) | \(a_{669}= +0.63626410 \pm 3.4 \cdot 10^{-8} \) |
\(a_{670}= +0.05356039 \pm 1 \cdot 10^{-8} \) | \(a_{671}= -0.01116159 \pm 1 \cdot 10^{-8} \) | \(a_{672}= -1.09666328 \pm 5.6 \cdot 10^{-8} \) |
\(a_{673}= +0.90644201 \pm 1 \cdot 10^{-8} \) | \(a_{674}= +0.35078889 \pm 1 \cdot 10^{-8} \) | \(a_{675}= +0.01773181 \pm 3.2 \cdot 10^{-8} \) |
\(a_{676}= -0.04349918 \pm 1.3 \cdot 10^{-8} \) | \(a_{677}= -1.93865396 \pm 1.6 \cdot 10^{-8} \) | \(a_{678}= +0.28058686 \pm 4.5 \cdot 10^{-8} \) |
\(a_{679}= -2.45357835 \pm 1 \cdot 10^{-8} \) | \(a_{680}= +0.57987668 \pm 1 \cdot 10^{-8} \) | \(a_{681}= -0.58855477 \pm 2.8 \cdot 10^{-8} \) |
\(a_{682}= +0.00175857 \pm 1.4 \cdot 10^{-8} \) | \(a_{683}= +1.67408414 \pm 3.8 \cdot 10^{-8} \) | \(a_{684}= -0.14601318 \pm 6.4 \cdot 10^{-8} \) |
\(a_{685}= +1.47526306 \pm 1 \cdot 10^{-8} \) | \(a_{686}= +1.40432812 \pm 3.2 \cdot 10^{-8} \) | \(a_{687}= -0.11615345 \pm 3.3 \cdot 10^{-8} \) |
\(a_{688}= +0.13232302 \pm 1 \cdot 10^{-8} \) | \(a_{689}= +1.38572060 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.06403410 \pm 5.1 \cdot 10^{-8} \) |
\(a_{691}= -1.10768567 \pm 2.3 \cdot 10^{-8} \) | \(a_{692}= +0.34220449 \pm 2.1 \cdot 10^{-8} \) | \(a_{693}= -0.00964756 \pm 3.6 \cdot 10^{-8} \) |
\(a_{694}= -0.26733235 \pm 1 \cdot 10^{-8} \) | \(a_{695}= -0.53688841 \pm 1 \cdot 10^{-8} \) | \(a_{696}= +0.17335592 \pm 2.3 \cdot 10^{-8} \) |
\(a_{697}= -0.11399249 \pm 2.4 \cdot 10^{-8} \) | \(a_{698}= -0.11074128 \pm 1 \cdot 10^{-8} \) | \(a_{699}= +0.77731348 \pm 2.9 \cdot 10^{-8} \) |
\(a_{700}= +0.11708107 \pm 1.3 \cdot 10^{-8} \) | \(a_{701}= -0.73497671 \pm 3.8 \cdot 10^{-8} \) | \(a_{702}= -0.11018951 \pm 5.3 \cdot 10^{-8} \) |
\(a_{703}= +0.50326079 \pm 1 \cdot 10^{-8} \) | \(a_{704}= -0.00636784 \pm 1 \cdot 10^{-8} \) | \(a_{705}= -1.01023619 \pm 3.5 \cdot 10^{-8} \) |
\(a_{706}= +0.84953211 \pm 1.4 \cdot 10^{-8} \) | \(a_{707}= +0.27523837 \pm 2.0 \cdot 10^{-8} \) | \(a_{708}= +0.40525393 \pm 3.1 \cdot 10^{-8} \) |
\(a_{709}= -1.94598310 \pm 1 \cdot 10^{-8} \) | \(a_{710}= -0.54507954 \pm 1 \cdot 10^{-8} \) | \(a_{711}= +0.16263241 \pm 3.9 \cdot 10^{-8} \) |
\(a_{712}= -0.56880570 \pm 1 \cdot 10^{-8} \) | \(a_{713}= -0.04213509 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.38166971 \pm 7.9 \cdot 10^{-8} \) |
\(a_{715}= +0.01547324 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.38646291 \pm 1.4 \cdot 10^{-8} \) | \(a_{717}= -0.95105845 \pm 2.6 \cdot 10^{-8} \) |
\(a_{718}= -0.12819210 \pm 4.1 \cdot 10^{-8} \) | \(a_{719}= +0.54670623 \pm 2.4 \cdot 10^{-8} \) | \(a_{720}= -0.05394423 \pm 3.9 \cdot 10^{-8} \) |
\(a_{721}= +1.56094650 \pm 1.6 \cdot 10^{-8} \) | \(a_{722}= -0.33255610 \pm 4.3 \cdot 10^{-8} \) | \(a_{723}= +0.81313776 \pm 1.9 \cdot 10^{-8} \) |
\(a_{724}= -0.44228977 \pm 1.4 \cdot 10^{-8} \) | \(a_{725}= -0.02944879 \pm 1 \cdot 10^{-8} \) | \(a_{726}= +0.32055885 \pm 5.9 \cdot 10^{-8} \) |
\(a_{727}= +1.44377573 \pm 1 \cdot 10^{-8} \) | \(a_{728}= -1.77961656 \pm 1 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.50476290 \pm 1 \cdot 10^{-8} \) | \(a_{731}= +0.50470529 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.28292970 \pm 4.1 \cdot 10^{-8} \) |
\(a_{733}= +0.82056034 \pm 3.7 \cdot 10^{-8} \) | \(a_{734}= +0.23444956 \pm 2.4 \cdot 10^{-8} \) | \(a_{735}= +1.30716656 \pm 2.2 \cdot 10^{-8} \) |
\(a_{736}= +0.21667361 \pm 1 \cdot 10^{-8} \) | \(a_{737}= +0.00159435 \pm 1 \cdot 10^{-8} \) | \(a_{738}= -0.03257411 \pm 6.5 \cdot 10^{-8} \) |
\(a_{739}= -0.57776354 \pm 2.5 \cdot 10^{-8} \) | \(a_{740}= +0.52355944 \pm 1 \cdot 10^{-8} \) | \(a_{741}= -0.37701673 \pm 5.8 \cdot 10^{-8} \) |
\(a_{742}= +1.37157448 \pm 1 \cdot 10^{-8} \) | \(a_{743}= -1.22315954 \pm 1.8 \cdot 10^{-8} \) | \(a_{744}= -0.10903467 \pm 4.3 \cdot 10^{-8} \) |
\(a_{745}= -0.37321236 \pm 1 \cdot 10^{-8} \) | \(a_{746}= +0.22256626 \pm 5.2 \cdot 10^{-8} \) | \(a_{747}= -0.43149075 \pm 4.6 \cdot 10^{-8} \) |
\(a_{748}= +0.00705703 \pm 1 \cdot 10^{-8} \) | \(a_{749}= +0.10261044 \pm 3.2 \cdot 10^{-8} \) | \(a_{750}= -0.33365900 \pm 4.5 \cdot 10^{-8} \) |
\(a_{751}= -1.39481452 \pm 2.2 \cdot 10^{-8} \) | \(a_{752}= -0.31191021 \pm 2.6 \cdot 10^{-8} \) | \(a_{753}= +0.00742287 \pm 2.1 \cdot 10^{-8} \) |
\(a_{754}= +0.18300145 \pm 1 \cdot 10^{-8} \) | \(a_{755}= +1.19208235 \pm 1 \cdot 10^{-8} \) | \(a_{756}= +0.24455115 \pm 4.6 \cdot 10^{-8} \) |
\(a_{757}= -1.14620586 \pm 2.4 \cdot 10^{-8} \) | \(a_{758}= -0.82906222 \pm 1.2 \cdot 10^{-8} \) | \(a_{759}= +0.00190612 \pm 2.7 \cdot 10^{-8} \) |
\(a_{760}= +0.56695984 \pm 1 \cdot 10^{-8} \) | \(a_{761}= +0.21956048 \pm 2.6 \cdot 10^{-8} \) | \(a_{762}= -0.01738274 \pm 5.9 \cdot 10^{-8} \) |
\(a_{763}= -1.48700816 \pm 2.3 \cdot 10^{-8} \) | \(a_{764}= -0.41389454 \pm 1.8 \cdot 10^{-8} \) | \(a_{765}= -0.20575361 \pm 3.4 \cdot 10^{-8} \) |
\(a_{766}= -0.87949911 \pm 2.9 \cdot 10^{-8} \) | \(a_{767}= +1.04639532 \pm 1 \cdot 10^{-8} \) | \(a_{768}= +0.49287878 \pm 3.9 \cdot 10^{-8} \) |
\(a_{769}= +1.71399192 \pm 1 \cdot 10^{-8} \) | \(a_{770}= +0.01531528 \pm 1 \cdot 10^{-8} \) | \(a_{771}= -0.67006568 \pm 3.7 \cdot 10^{-8} \) |
\(a_{772}= +0.09936117 \pm 3.4 \cdot 10^{-8} \) | \(a_{773}= +0.97743110 \pm 1.0 \cdot 10^{-8} \) | \(a_{774}= +0.14422287 \pm 4.5 \cdot 10^{-8} \) |
\(a_{775}= +0.01852224 \pm 2.5 \cdot 10^{-8} \) | \(a_{776}= +1.25444987 \pm 1 \cdot 10^{-8} \) | \(a_{777}= -0.84288969 \pm 3.3 \cdot 10^{-8} \) |
\(a_{778}= +0.13503954 \pm 5.4 \cdot 10^{-8} \) | \(a_{779}= -0.11145329 \pm 3.8 \cdot 10^{-8} \) | \(a_{780}= -0.39222342 \pm 4.4 \cdot 10^{-8} \) |
\(a_{781}= -0.01622552 \pm 1.0 \cdot 10^{-8} \) | \(a_{782}= +0.07540852 \pm 1 \cdot 10^{-8} \) | \(a_{783}= -0.06151068 \pm 1.6 \cdot 10^{-8} \) |
\(a_{784}= +0.40358740 \pm 1.1 \cdot 10^{-8} \) | \(a_{785}= -1.60491487 \pm 1 \cdot 10^{-8} \) | \(a_{786}= +0.21575644 \pm 6.5 \cdot 10^{-8} \) |
\(a_{787}= +1.31965693 \pm 2.3 \cdot 10^{-8} \) | \(a_{788}= +1.12364656 \pm 1 \cdot 10^{-8} \) | \(a_{789}= +0.34950938 \pm 3.8 \cdot 10^{-8} \) |
\(a_{790}= -0.25817526 \pm 1 \cdot 10^{-8} \) | \(a_{791}= -1.60792332 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +0.00493254 \pm 2.6 \cdot 10^{-8} \) |
\(a_{793}= +0.73054520 \pm 1 \cdot 10^{-8} \) | \(a_{794}= +0.28268156 \pm 1 \cdot 10^{-8} \) | \(a_{795}= +0.73939954 \pm 1.9 \cdot 10^{-8} \) |
\(a_{796}= -1.13889819 \pm 1.3 \cdot 10^{-8} \) | \(a_{797}= +0.50754137 \pm 1.4 \cdot 10^{-8} \) | \(a_{798}= -0.37316795 \pm 9.3 \cdot 10^{-8} \) |
\(a_{799}= -1.18968520 \pm 2.1 \cdot 10^{-8} \) | \(a_{800}= -0.09524791 \pm 2.8 \cdot 10^{-8} \) | \(a_{801}= +0.20182537 \pm 2.0 \cdot 10^{-8} \) |
\(a_{802}= -0.10025909 \pm 3.5 \cdot 10^{-8} \) | \(a_{803}= -0.01502541 \pm 1.3 \cdot 10^{-8} \) | \(a_{804}= -0.04041428 \pm 4.5 \cdot 10^{-8} \) |
\(a_{805}= -0.36695202 \pm 1 \cdot 10^{-8} \) | \(a_{806}= -0.11510136 \pm 1.8 \cdot 10^{-8} \) | \(a_{807}= +0.14027915 \pm 4.8 \cdot 10^{-8} \) |
\(a_{808}= -0.14072212 \pm 1 \cdot 10^{-8} \) | \(a_{809}= -0.03025003 \pm 1.2 \cdot 10^{-8} \) | \(a_{810}= -0.05879546 \pm 4.3 \cdot 10^{-8} \) |
\(a_{811}= +0.81360997 \pm 3.4 \cdot 10^{-8} \) | \(a_{812}= -0.40614768 \pm 1 \cdot 10^{-8} \) | \(a_{813}= -0.03054772 \pm 2.1 \cdot 10^{-8} \) |
\(a_{814}= -0.00695055 \pm 1 \cdot 10^{-8} \) | \(a_{815}= -1.35769061 \pm 1 \cdot 10^{-8} \) | \(a_{816}= -0.06352639 \pm 5.8 \cdot 10^{-8} \) |
\(a_{817}= +0.49346290 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.22419945 \pm 5.4 \cdot 10^{-8} \) | \(a_{819}= +0.63144898 \pm 4.0 \cdot 10^{-8} \) |
\(a_{820}= -0.11594868 \pm 1 \cdot 10^{-8} \) | \(a_{821}= -0.70784229 \pm 1.1 \cdot 10^{-8} \) | \(a_{822}= +0.49644929 \pm 4.4 \cdot 10^{-8} \) |
\(a_{823}= -1.22508295 \pm 2.6 \cdot 10^{-8} \) | \(a_{824}= -0.79807076 \pm 1 \cdot 10^{-8} \) | \(a_{825}= -0.00083791 \pm 4.2 \cdot 10^{-8} \) |
\(a_{826}= +1.03571320 \pm 1 \cdot 10^{-8} \) | \(a_{827}= +0.75713093 \pm 1.4 \cdot 10^{-8} \) | \(a_{828}= -0.04831728 \pm 3.7 \cdot 10^{-8} \) |
\(a_{829}= +1.55271168 \pm 2.5 \cdot 10^{-8} \) | \(a_{830}= +0.68498178 \pm 1 \cdot 10^{-8} \) | \(a_{831}= +0.29981871 \pm 3.2 \cdot 10^{-8} \) |
\(a_{832}= +0.41678564 \pm 1 \cdot 10^{-8} \) | \(a_{833}= +1.53935954 \pm 1 \cdot 10^{-8} \) | \(a_{834}= -0.18067142 \pm 5.2 \cdot 10^{-8} \) |
\(a_{835}= +1.11320504 \pm 1 \cdot 10^{-8} \) | \(a_{836}= +0.00689983 \pm 1.1 \cdot 10^{-8} \) | \(a_{837}= +0.03868801 \pm 3.6 \cdot 10^{-8} \) |
\(a_{838}= -0.88447360 \pm 2.8 \cdot 10^{-8} \) | \(a_{839}= +0.40883861 \pm 2.5 \cdot 10^{-8} \) | \(a_{840}= -0.94957646 \pm 3.7 \cdot 10^{-8} \) |
\(a_{841}= -0.89784379 \pm 2.1 \cdot 10^{-8} \) | \(a_{842}= -0.28536666 \pm 1.7 \cdot 10^{-8} \) | \(a_{843}= +0.00354542 \pm 4.0 \cdot 10^{-8} \) |
\(a_{844}= -0.38945721 \pm 2.1 \cdot 10^{-8} \) | \(a_{845}= -0.05993123 \pm 1 \cdot 10^{-8} \) | \(a_{846}= -0.33996041 \pm 6.3 \cdot 10^{-8} \) |
\(a_{847}= -1.83698569 \pm 1.4 \cdot 10^{-8} \) | \(a_{848}= +0.22828945 \pm 1 \cdot 10^{-8} \) | \(a_{849}= -0.78450973 \pm 2.1 \cdot 10^{-8} \) |
\(a_{850}= -0.03314896 \pm 2.9 \cdot 10^{-8} \) | \(a_{851}= +0.16653421 \pm 1 \cdot 10^{-8} \) | \(a_{852}= +0.41129274 \pm 5.4 \cdot 10^{-8} \) |
\(a_{853}= +1.27407004 \pm 1.8 \cdot 10^{-8} \) | \(a_{854}= +0.72308744 \pm 1.2 \cdot 10^{-8} \) | \(a_{855}= -0.20117042 \pm 4.8 \cdot 10^{-8} \) |
\(a_{856}= -0.05246201 \pm 1.1 \cdot 10^{-8} \) | \(a_{857}= -1.57707679 \pm 1.5 \cdot 10^{-8} \) | \(a_{858}= +0.00520699 \pm 6.2 \cdot 10^{-8} \) |
\(a_{859}= -0.99303907 \pm 3.6 \cdot 10^{-8} \) | \(a_{860}= +0.51336636 \pm 1 \cdot 10^{-8} \) | \(a_{861}= +0.18666829 \pm 5.2 \cdot 10^{-8} \) |
\(a_{862}= -0.07585362 \pm 1.7 \cdot 10^{-8} \) | \(a_{863}= -0.00731343 \pm 3.0 \cdot 10^{-8} \) | \(a_{864}= -0.19894751 \pm 3.9 \cdot 10^{-8} \) |
\(a_{865}= +0.47147400 \pm 1 \cdot 10^{-8} \) | \(a_{866}= -0.61639860 \pm 1 \cdot 10^{-8} \) | \(a_{867}= +0.33504849 \pm 1.3 \cdot 10^{-8} \) |
\(a_{868}= +0.25545236 \pm 1.5 \cdot 10^{-8} \) | \(a_{869}= -0.00768517 \pm 1.1 \cdot 10^{-8} \) | \(a_{870}= +0.09764680 \pm 4.9 \cdot 10^{-8} \) |
\(a_{871}= -0.10435263 \pm 1 \cdot 10^{-8} \) | \(a_{872}= +0.76026803 \pm 1 \cdot 10^{-8} \) | \(a_{873}= -0.44510773 \pm 1.2 \cdot 10^{-8} \) |
\(a_{874}= +0.07372878 \pm 1.3 \cdot 10^{-8} \) | \(a_{875}= +1.91205708 \pm 1 \cdot 10^{-8} \) | \(a_{876}= +0.38087160 \pm 6.3 \cdot 10^{-8} \) |
\(a_{877}= -1.13671236 \pm 1 \cdot 10^{-8} \) | \(a_{878}= +0.22979832 \pm 3.9 \cdot 10^{-8} \) | \(a_{879}= -0.37960918 \pm 2.1 \cdot 10^{-8} \) |
\(a_{880}= +0.00254913 \pm 1 \cdot 10^{-8} \) | \(a_{881}= -0.01441918 \pm 2.9 \cdot 10^{-8} \) | \(a_{882}= +0.43988217 \pm 5.0 \cdot 10^{-8} \) |
\(a_{883}= +0.44608357 \pm 1 \cdot 10^{-8} \) | \(a_{884}= -0.46189436 \pm 1.0 \cdot 10^{-8} \) | \(a_{885}= +0.55834070 \pm 1.5 \cdot 10^{-8} \) |
\(a_{886}= +0.96025444 \pm 1.1 \cdot 10^{-8} \) | \(a_{887}= -0.15933473 \pm 2.2 \cdot 10^{-8} \) | \(a_{888}= +0.43094726 \pm 2.3 \cdot 10^{-8} \) |
\(a_{889}= +0.09961306 \pm 1.4 \cdot 10^{-8} \) | \(a_{890}= -0.32039320 \pm 1 \cdot 10^{-8} \) | \(a_{891}= -0.00175018 \pm 1.9 \cdot 10^{-8} \) |
\(a_{892}= +0.76214237 \pm 2.0 \cdot 10^{-8} \) | \(a_{893}= -1.16318477 \pm 3.5 \cdot 10^{-8} \) | \(a_{894}= -0.12559185 \pm 6.8 \cdot 10^{-8} \) |
\(a_{895}= -0.53245127 \pm 1 \cdot 10^{-8} \) | \(a_{896}= -1.48694564 \pm 1 \cdot 10^{-8} \) | \(a_{897}= -0.12475874 \pm 3.0 \cdot 10^{-8} \) |
\(a_{898}= -0.55401696 \pm 1 \cdot 10^{-8} \) | \(a_{899}= -0.06425260 \pm 1 \cdot 10^{-8} \) | \(a_{900}= +0.02123987 \pm 5.1 \cdot 10^{-8} \) |
\(a_{901}= +0.87073963 \pm 1 \cdot 10^{-8} \) | \(a_{902}= +0.00153928 \pm 1.3 \cdot 10^{-8} \) | \(a_{903}= -0.82647962 \pm 3.2 \cdot 10^{-8} \) |
\(a_{904}= +0.82208876 \pm 1 \cdot 10^{-8} \) | \(a_{905}= -0.60936702 \pm 1 \cdot 10^{-8} \) | \(a_{906}= +0.40115452 \pm 4.7 \cdot 10^{-8} \) |
\(a_{907}= +0.46948175 \pm 1.4 \cdot 10^{-8} \) | \(a_{908}= -0.70499425 \pm 1.4 \cdot 10^{-8} \) | \(a_{909}= +0.04993145 \pm 3.7 \cdot 10^{-8} \) |
\(a_{910}= -1.00241092 \pm 1 \cdot 10^{-8} \) | \(a_{911}= +1.50406310 \pm 3.6 \cdot 10^{-8} \) | \(a_{912}= -0.06211132 \pm 7.1 \cdot 10^{-8} \) |
\(a_{913}= +0.02039003 \pm 1.4 \cdot 10^{-8} \) | \(a_{914}= -0.29241211 \pm 1 \cdot 10^{-8} \) | \(a_{915}= +0.38980786 \pm 2.4 \cdot 10^{-8} \) |
\(a_{916}= -0.13913321 \pm 1.9 \cdot 10^{-8} \) | \(a_{917}= -1.23640790 \pm 1.8 \cdot 10^{-8} \) | \(a_{918}= -0.06923934 \pm 6.2 \cdot 10^{-8} \) |
\(a_{919}= -0.62712612 \pm 1 \cdot 10^{-8} \) | \(a_{920}= +0.18761288 \pm 1 \cdot 10^{-8} \) | \(a_{921}= +0.49114833 \pm 2.4 \cdot 10^{-8} \) |
\(a_{922}= -0.78768312 \pm 3.4 \cdot 10^{-8} \) | \(a_{923}= +1.06198795 \pm 1.3 \cdot 10^{-8} \) | \(a_{924}= -0.01155623 \pm 5.5 \cdot 10^{-8} \) |
\(a_{925}= -0.07320705 \pm 1 \cdot 10^{-8} \) | \(a_{926}= +0.34020307 \pm 1.7 \cdot 10^{-8} \) | \(a_{927}= +0.28317390 \pm 3.1 \cdot 10^{-8} \) |
\(a_{928}= +0.33040969 \pm 1 \cdot 10^{-8} \) | \(a_{929}= +0.29201160 \pm 1 \cdot 10^{-8} \) | \(a_{930}= -0.06141634 \pm 6.9 \cdot 10^{-8} \) |
\(a_{931}= +1.50507006 \pm 1.5 \cdot 10^{-8} \) | \(a_{932}= +0.93109691 \pm 1.6 \cdot 10^{-8} \) | \(a_{933}= -0.84351788 \pm 1.4 \cdot 10^{-8} \) |
\(a_{934}= +0.60702078 \pm 1.4 \cdot 10^{-8} \) | \(a_{935}= +0.00972286 \pm 1 \cdot 10^{-8} \) | \(a_{936}= -0.32284320 \pm 3.0 \cdot 10^{-8} \) |
\(a_{937}= -1.08048612 \pm 2.9 \cdot 10^{-8} \) | \(a_{938}= -0.10328735 \pm 1.6 \cdot 10^{-8} \) | \(a_{939}= -0.11457969 \pm 3.8 \cdot 10^{-8} \) |
\(a_{940}= -1.21010096 \pm 1 \cdot 10^{-8} \) | \(a_{941}= +1.50858917 \pm 1 \cdot 10^{-8} \) | \(a_{942}= -0.54007917 \pm 5.1 \cdot 10^{-8} \) |
\(a_{943}= -0.03688105 \pm 1 \cdot 10^{-8} \) | \(a_{944}= +0.17238758 \pm 1 \cdot 10^{-8} \) | \(a_{945}= +0.33693162 \pm 3.0 \cdot 10^{-8} \) |
\(a_{946}= -0.00681523 \pm 1 \cdot 10^{-8} \) | \(a_{947}= +1.33328534 \pm 1 \cdot 10^{-8} \) | \(a_{948}= +0.19480755 \pm 5.7 \cdot 10^{-8} \) |
\(a_{949}= +0.98343835 \pm 1.9 \cdot 10^{-8} \) | \(a_{950}= -0.03241056 \pm 4.6 \cdot 10^{-8} \) | \(a_{951}= -0.42529435 \pm 4.7 \cdot 10^{-8} \) |
\(a_{952}= -1.11825044 \pm 1 \cdot 10^{-8} \) | \(a_{953}= -0.32541994 \pm 3.5 \cdot 10^{-8} \) | \(a_{954}= +0.24881961 \pm 4.7 \cdot 10^{-8} \) |
\(a_{955}= -0.57024534 \pm 1 \cdot 10^{-8} \) | \(a_{956}= -1.13921552 \pm 1.5 \cdot 10^{-8} \) | \(a_{957}= +0.00290668 \pm 2.5 \cdot 10^{-8} \) |
\(a_{958}= +0.74116738 \pm 3.6 \cdot 10^{-8} \) | \(a_{959}= -2.84493862 \pm 1 \cdot 10^{-8} \) | \(a_{960}= +0.22239051 \pm 2.6 \cdot 10^{-8} \) |
\(a_{961}= -0.95958741 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +0.45492517 \pm 1 \cdot 10^{-8} \) | \(a_{963}= +0.01861473 \pm 5.3 \cdot 10^{-8} \) |
\(a_{964}= +0.97400865 \pm 1 \cdot 10^{-8} \) | \(a_{965}= +0.13689537 \pm 1 \cdot 10^{-8} \) | \(a_{966}= -0.12348514 \pm 6.5 \cdot 10^{-8} \) |
\(a_{967}= -1.35913360 \pm 2.3 \cdot 10^{-8} \) | \(a_{968}= +0.93920231 \pm 1 \cdot 10^{-8} \) | \(a_{969}= -0.23690447 \pm 6.7 \cdot 10^{-8} \) |
\(a_{970}= +0.70659842 \pm 1 \cdot 10^{-8} \) | \(a_{971}= -0.75767621 \pm 1.9 \cdot 10^{-8} \) | \(a_{972}= +0.04436443 \pm 2.9 \cdot 10^{-8} \) |
\(a_{973}= +1.03535065 \pm 1 \cdot 10^{-8} \) | \(a_{974}= -0.31320159 \pm 4.0 \cdot 10^{-8} \) | \(a_{975}= +0.05484290 \pm 4.5 \cdot 10^{-8} \) |
\(a_{976}= +0.12035310 \pm 1.2 \cdot 10^{-8} \) | \(a_{977}= +0.74459395 \pm 3.8 \cdot 10^{-8} \) | \(a_{978}= -0.45688431 \pm 5.8 \cdot 10^{-8} \) |
\(a_{979}= -0.00953723 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +1.56577594 \pm 1 \cdot 10^{-8} \) | \(a_{981}= -0.26976062 \pm 4.1 \cdot 10^{-8} \) |
\(a_{982}= +0.33990202 \pm 4.3 \cdot 10^{-8} \) | \(a_{983}= -1.13173252 \pm 1.4 \cdot 10^{-8} \) | \(a_{984}= -0.09543857 \pm 4.2 \cdot 10^{-8} \) |
\(a_{985}= +1.54810985 \pm 1 \cdot 10^{-8} \) | \(a_{986}= +0.11499188 \pm 1 \cdot 10^{-8} \) | \(a_{987}= +1.94816777 \pm 5.0 \cdot 10^{-8} \) |
\(a_{988}= -0.45160559 \pm 1.4 \cdot 10^{-8} \) | \(a_{989}= +0.16329199 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.00277837 \pm 5.2 \cdot 10^{-8} \) |
\(a_{991}= -0.04526526 \pm 3.8 \cdot 10^{-8} \) | \(a_{992}= -0.20781587 \pm 3.3 \cdot 10^{-8} \) | \(a_{993}= +0.78240926 \pm 1.9 \cdot 10^{-8} \) |
\(a_{994}= +1.05114666 \pm 2.5 \cdot 10^{-8} \) | \(a_{995}= -1.56912287 \pm 1 \cdot 10^{-8} \) | \(a_{996}= -0.51685673 \pm 6.5 \cdot 10^{-8} \) |
\(a_{997}= -1.25196431 \pm 1 \cdot 10^{-8} \) | \(a_{998}= -0.81876016 \pm 2.5 \cdot 10^{-8} \) | \(a_{999}= -0.15291002 \pm 1.6 \cdot 10^{-8} \) |
\(a_{1000}= -0.97758433 \pm 1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000