Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(15.7994939260844159351480665632 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.88979233 \pm 8.0 \cdot 10^{-7} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +2.57131506 \pm 4.9 \cdot 10^{-7} \) | \(a_{5}= +0.58480210 \pm 6.9 \cdot 10^{-8} \) | \(a_{6}= -1.09107211 \pm 8.1 \cdot 10^{-7} \) |
\(a_{7}= -0.03104569 \pm 4.4 \cdot 10^{-7} \) | \(a_{8}= +2.96945915 \pm 1.8 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +1.10515453 \pm 8.3 \cdot 10^{-8} \) | \(a_{11}= +0.08493308 \pm 2.4 \cdot 10^{-7} \) | \(a_{12}= -1.48454944 \pm 5.0 \cdot 10^{-7} \) |
\(a_{13}= +1.52538435 \pm 3.2 \cdot 10^{-7} \) | \(a_{14}= -0.05866991 \pm 6.0 \cdot 10^{-7} \) | \(a_{15}= -0.33763565 \pm 8.0 \cdot 10^{-8} \) |
\(a_{16}= +3.04034608 \pm 6.8 \cdot 10^{-7} \) | \(a_{17}= -0.67682700 \pm 5.7 \cdot 10^{-7} \) | \(a_{18}= +0.62993078 \pm 8.1 \cdot 10^{-7} \) |
\(a_{19}= +0.04700919 \pm 9.1 \cdot 10^{-7} \) | \(a_{20}= +1.50371045 \pm 8.7 \cdot 10^{-8} \) | \(a_{21}= +0.01792424 \pm 4.6 \cdot 10^{-7} \) |
\(a_{22}= +0.16050589 \pm 3.2 \cdot 10^{-7} \) | \(a_{23}= +0.83713434 \pm 2.0 \cdot 10^{-7} \) | \(a_{24}= -1.71441804 \pm 1.9 \cdot 10^{-7} \) |
\(a_{25}= -0.65800650 \pm 5.8 \cdot 10^{-7} \) | \(a_{26}= +2.88265965 \pm 4.5 \cdot 10^{-7} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.07982825 \pm 3.7 \cdot 10^{-7} \) | \(a_{29}= -1.08143461 \pm 1.5 \cdot 10^{-7} \) | \(a_{30}= -0.63806127 \pm 8.8 \cdot 10^{-7} \) |
\(a_{31}= -0.73514243 \pm 6.8 \cdot 10^{-7} \) | \(a_{32}= +2.77616356 \pm 7.6 \cdot 10^{-7} \) | \(a_{33}= -0.04903614 \pm 2.5 \cdot 10^{-7} \) |
\(a_{34}= -1.27906248 \pm 7.6 \cdot 10^{-7} \) | \(a_{35}= -0.01815559 \pm 6.1 \cdot 10^{-8} \) | \(a_{36}= +0.85710502 \pm 5.0 \cdot 10^{-7} \) |
\(a_{37}= -0.82980604 \pm 1.5 \cdot 10^{-7} \) | \(a_{38}= +0.08883762 \pm 1.2 \cdot 10^{-6} \) | \(a_{39}= -0.88068107 \pm 3.4 \cdot 10^{-7} \) |
\(a_{40}= +1.73654596 \pm 5.3 \cdot 10^{-8} \) | \(a_{41}= -0.61266330 \pm 6.5 \cdot 10^{-7} \) | \(a_{42}= +0.03387309 \pm 1.2 \cdot 10^{-6} \) |
\(a_{43}= -0.72099717 \pm 1.1 \cdot 10^{-7} \) | \(a_{44}= +0.21838972 \pm 1.9 \cdot 10^{-7} \) | \(a_{45}= +0.19493403 \pm 8.0 \cdot 10^{-8} \) |
\(a_{46}= +1.58201006 \pm 2.9 \cdot 10^{-7} \) | \(a_{47}= +0.23706617 \pm 5.9 \cdot 10^{-7} \) | \(a_{48}= -1.75534463 \pm 6.9 \cdot 10^{-7} \) |
\(a_{49}= -0.99903617 \pm 2.5 \cdot 10^{-7} \) | \(a_{50}= -1.24349564 \pm 7.9 \cdot 10^{-7} \) | \(a_{51}= +0.39076625 \pm 5.8 \cdot 10^{-7} \) |
\(a_{52}= +3.92224376 \pm 3.1 \cdot 10^{-7} \) | \(a_{53}= -0.94364515 \pm 1.7 \cdot 10^{-7} \) | \(a_{54}= -0.36369070 \pm 8.1 \cdot 10^{-7} \) |
\(a_{55}= +0.04966905 \pm 2.4 \cdot 10^{-8} \) | \(a_{56}= -0.09218891 \pm 1.3 \cdot 10^{-7} \) | \(a_{57}= -0.02714077 \pm 9.3 \cdot 10^{-7} \) |
\(a_{58}= -2.04368684 \pm 2.2 \cdot 10^{-7} \) | \(a_{59}= +1.03520149 \pm 5.5 \cdot 10^{-8} \) | \(a_{60}= -0.86816764 \pm 5.7 \cdot 10^{-7} \) |
\(a_{61}= +1.60938323 \pm 3.1 \cdot 10^{-7} \) | \(a_{62}= -1.38926652 \pm 9.1 \cdot 10^{-7} \) | \(a_{63}= -0.01034856 \pm 4.6 \cdot 10^{-7} \) |
\(a_{64}= +2.20602652 \pm 3.5 \cdot 10^{-7} \) | \(a_{65}= +0.89204798 \pm 6.9 \cdot 10^{-8} \) | \(a_{66}= -0.09266812 \pm 1.0 \cdot 10^{-6} \) |
\(a_{67}= -1.29318411 \pm 4.1 \cdot 10^{-7} \) | \(a_{68}= -1.74033547 \pm 4.6 \cdot 10^{-7} \) | \(a_{69}= -0.48331974 \pm 2.1 \cdot 10^{-7} \) |
\(a_{70}= -0.03431029 \pm 6.1 \cdot 10^{-8} \) | \(a_{71}= +1.64004969 \pm 6.5 \cdot 10^{-7} \) | \(a_{72}= +0.98981972 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= +0.01135852 \pm 8.9 \cdot 10^{-7} \) | \(a_{74}= -1.56816109 \pm 2.0 \cdot 10^{-7} \) | \(a_{75}= +0.37990023 \pm 5.9 \cdot 10^{-7} \) |
\(a_{76}= +0.12087545 \pm 7.3 \cdot 10^{-7} \) | \(a_{77}= -0.00263681 \pm 1.8 \cdot 10^{-7} \) | \(a_{78}= -1.66430433 \pm 1.1 \cdot 10^{-6} \) |
\(a_{79}= +1.44739215 \pm 7.5 \cdot 10^{-7} \) | \(a_{80}= +1.77800078 \pm 6.0 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.15780642 \pm 8.7 \cdot 10^{-7} \) | \(a_{83}= -0.11320663 \pm 9.5 \cdot 10^{-7} \) | \(a_{84}= +0.04608886 \pm 9.5 \cdot 10^{-7} \) |
\(a_{85}= -0.39580986 \pm 7.0 \cdot 10^{-8} \) | \(a_{86}= -1.36253493 \pm 1.7 \cdot 10^{-7} \) | \(a_{87}= +0.62436657 \pm 1.6 \cdot 10^{-7} \) |
\(a_{88}= +0.25220532 \pm 7.2 \cdot 10^{-8} \) | \(a_{89}= -0.95286280 \pm 2.5 \cdot 10^{-7} \) | \(a_{90}= +0.36838484 \pm 8.8 \cdot 10^{-7} \) |
\(a_{91}= -0.04735661 \pm 2.4 \cdot 10^{-7} \) | \(a_{92}= +2.15253614 \pm 2.4 \cdot 10^{-7} \) | \(a_{93}= +0.42443468 \pm 6.9 \cdot 10^{-7} \) |
\(a_{94}= +0.44800582 \pm 8.0 \cdot 10^{-7} \) | \(a_{95}= +0.02749108 \pm 7.2 \cdot 10^{-8} \) | \(a_{96}= -1.60281878 \pm 7.7 \cdot 10^{-7} \) |
\(a_{97}= +1.24637624 \pm 4.8 \cdot 10^{-8} \) | \(a_{98}= -1.88797088 \pm 3.4 \cdot 10^{-7} \) | \(a_{99}= +0.02831103 \pm 2.5 \cdot 10^{-7} \) |
\(a_{100}= -1.69194202 \pm 4.8 \cdot 10^{-7} \) | \(a_{101}= -1.30113780 \pm 7.2 \cdot 10^{-7} \) | \(a_{102}= +0.73846707 \pm 1.3 \cdot 10^{-6} \) |
\(a_{103}= +0.79735600 \pm 5.6 \cdot 10^{-7} \) | \(a_{104}= +4.52956653 \pm 1.5 \cdot 10^{-7} \) | \(a_{105}= +0.01048213 \pm 5.2 \cdot 10^{-7} \) |
\(a_{106}= -1.78329338 \pm 2.5 \cdot 10^{-7} \) | \(a_{107}= -1.30615208 \pm 1.1 \cdot 10^{-6} \) | \(a_{108}= -0.49484981 \pm 5.0 \cdot 10^{-7} \) |
\(a_{109}= +0.94392808 \pm 8.2 \cdot 10^{-7} \) | \(a_{110}= +0.09386418 \pm 2.5 \cdot 10^{-8} \) | \(a_{111}= +0.47908874 \pm 1.6 \cdot 10^{-7} \) |
\(a_{112}= -0.09438964 \pm 5.1 \cdot 10^{-7} \) | \(a_{113}= -0.37730373 \pm 1.1 \cdot 10^{-7} \) | \(a_{114}= -0.05129042 \pm 1.7 \cdot 10^{-6} \) |
\(a_{115}= +0.48955792 \pm 6.6 \cdot 10^{-8} \) | \(a_{116}= -2.78070911 \pm 1.7 \cdot 10^{-7} \) | \(a_{117}= +0.50846145 \pm 3.4 \cdot 10^{-7} \) |
\(a_{118}= +1.95631584 \pm 6.6 \cdot 10^{-8} \) | \(a_{119}= +0.02101256 \pm 4.3 \cdot 10^{-7} \) | \(a_{120}= -1.00259528 \pm 2.6 \cdot 10^{-7} \) |
\(a_{121}= -0.99278637 \pm 4.9 \cdot 10^{-7} \) | \(a_{122}= +3.04140010 \pm 4.2 \cdot 10^{-7} \) | \(a_{123}= +0.35372132 \pm 6.6 \cdot 10^{-7} \) |
\(a_{124}= -1.89028279 \pm 5.5 \cdot 10^{-7} \) | \(a_{125}= -0.96960569 \pm 1.0 \cdot 10^{-7} \) | \(a_{126}= -0.01955664 \pm 1.2 \cdot 10^{-6} \) |
\(a_{127}= -0.42750434 \pm 4.9 \cdot 10^{-7} \) | \(a_{128}= +1.39276845 \pm 3.3 \cdot 10^{-7} \) | \(a_{129}= +0.41626791 \pm 1.2 \cdot 10^{-7} \) |
\(a_{130}= +1.68578543 \pm 9.3 \cdot 10^{-8} \) | \(a_{131}= +0.26819200 \pm 6.4 \cdot 10^{-7} \) | \(a_{132}= -0.12608736 \pm 7.4 \cdot 10^{-7} \) |
\(a_{133}= -0.00145943 \pm 6.9 \cdot 10^{-7} \) | \(a_{134}= -2.44384941 \pm 5.6 \cdot 10^{-7} \) | \(a_{135}= -0.11254522 \pm 8.0 \cdot 10^{-8} \) |
\(a_{136}= -2.00981014 \pm 1.5 \cdot 10^{-7} \) | \(a_{137}= +0.74151623 \pm 9.0 \cdot 10^{-8} \) | \(a_{138}= -0.91337393 \pm 1.0 \cdot 10^{-6} \) |
\(a_{139}= +0.89168590 \pm 3.1 \cdot 10^{-7} \) | \(a_{140}= -0.04668373 \pm 7.1 \cdot 10^{-8} \) | \(a_{141}= -0.13687022 \pm 6.0 \cdot 10^{-7} \) |
\(a_{142}= +3.09935333 \pm 8.7 \cdot 10^{-7} \) | \(a_{143}= +0.12955560 \pm 1.3 \cdot 10^{-7} \) | \(a_{144}= +1.01344869 \pm 6.9 \cdot 10^{-7} \) |
\(a_{145}= -0.63242524 \pm 4.6 \cdot 10^{-8} \) | \(a_{146}= +0.02146525 \pm 1.2 \cdot 10^{-6} \) | \(a_{147}= +0.57679380 \pm 2.6 \cdot 10^{-7} \) |
\(a_{148}= -2.13369276 \pm 1.3 \cdot 10^{-7} \) | \(a_{149}= -0.77281856 \pm 7.1 \cdot 10^{-7} \) | \(a_{150}= +0.71793254 \pm 1.4 \cdot 10^{-6} \) |
\(a_{151}= -0.31305023 \pm 1.8 \cdot 10^{-7} \) | \(a_{152}= +0.13959188 \pm 2.4 \cdot 10^{-7} \) | \(a_{153}= -0.22560900 \pm 5.8 \cdot 10^{-7} \) |
\(a_{154}= -0.00498302 \pm 2.4 \cdot 10^{-7} \) | \(a_{155}= -0.42991284 \pm 6.4 \cdot 10^{-8} \) | \(a_{156}= -2.26450849 \pm 8.3 \cdot 10^{-7} \) |
\(a_{157}= -0.42850725 \pm 2.7 \cdot 10^{-7} \) | \(a_{158}= +2.73527060 \pm 1.0 \cdot 10^{-6} \) | \(a_{159}= +0.54481378 \pm 1.8 \cdot 10^{-7} \) |
\(a_{160}= +1.62350629 \pm 5.8 \cdot 10^{-8} \) | \(a_{161}= -0.02598941 \pm 1.5 \cdot 10^{-7} \) | \(a_{162}= +0.20997693 \pm 8.1 \cdot 10^{-7} \) |
\(a_{163}= -0.00789112 \pm 4.7 \cdot 10^{-7} \) | \(a_{164}= -1.57535038 \pm 5.2 \cdot 10^{-7} \) | \(a_{165}= -0.02867644 \pm 3.2 \cdot 10^{-7} \) |
\(a_{166}= -0.21393702 \pm 1.2 \cdot 10^{-6} \) | \(a_{167}= -0.41819143 \pm 4.2 \cdot 10^{-7} \) | \(a_{168}= +0.05322529 \pm 6.4 \cdot 10^{-7} \) |
\(a_{169}= +1.32679742 \pm 4.2 \cdot 10^{-7} \) | \(a_{170}= -0.74799843 \pm 5.8 \cdot 10^{-8} \) | \(a_{171}= +0.01566973 \pm 9.3 \cdot 10^{-7} \) |
\(a_{172}= -1.85391089 \pm 1.6 \cdot 10^{-7} \) | \(a_{173}= +1.91231776 \pm 6.8 \cdot 10^{-7} \) | \(a_{174}= +1.17992315 \pm 9.6 \cdot 10^{-7} \) |
\(a_{175}= +0.02042827 \pm 4.4 \cdot 10^{-7} \) | \(a_{176}= +0.25822597 \pm 2.7 \cdot 10^{-7} \) | \(a_{177}= -0.59767386 \pm 6.6 \cdot 10^{-8} \) |
\(a_{178}= -1.80071282 \pm 3.4 \cdot 10^{-7} \) | \(a_{179}= -1.70892131 \pm 4.8 \cdot 10^{-7} \) | \(a_{180}= +0.50123682 \pm 5.7 \cdot 10^{-7} \) |
\(a_{181}= +0.92361915 \pm 4.7 \cdot 10^{-7} \) | \(a_{182}= -0.08949416 \pm 3.3 \cdot 10^{-7} \) | \(a_{183}= -0.92917784 \pm 3.2 \cdot 10^{-7} \) |
\(a_{184}= +2.48583623 \pm 1.5 \cdot 10^{-7} \) | \(a_{185}= -0.48527232 \pm 3.5 \cdot 10^{-8} \) | \(a_{186}= +0.80209340 \pm 1.4 \cdot 10^{-6} \) |
\(a_{187}= -0.05748500 \pm 2.3 \cdot 10^{-7} \) | \(a_{188}= +0.60957180 \pm 4.9 \cdot 10^{-7} \) | \(a_{189}= +0.00597475 \pm 4.6 \cdot 10^{-7} \) |
\(a_{190}= +0.05195242 \pm 8.0 \cdot 10^{-8} \) | \(a_{191}= -0.11854327 \pm 5.3 \cdot 10^{-7} \) | \(a_{192}= -1.27365001 \pm 3.6 \cdot 10^{-7} \) |
\(a_{193}= +0.18823939 \pm 1.1 \cdot 10^{-6} \) | \(a_{194}= +2.35539226 \pm 6.4 \cdot 10^{-8} \) | \(a_{195}= -0.51502414 \pm 4.1 \cdot 10^{-7} \) |
\(a_{196}= -2.56883674 \pm 2.1 \cdot 10^{-7} \) | \(a_{197}= +0.05608688 \pm 1.3 \cdot 10^{-7} \) | \(a_{198}= +0.05350196 \pm 1.0 \cdot 10^{-6} \) |
\(a_{199}= +0.83531264 \pm 3.7 \cdot 10^{-7} \) | \(a_{200}= -1.95392343 \pm 1.7 \cdot 10^{-7} \) | \(a_{201}= +0.74662019 \pm 4.2 \cdot 10^{-7} \) |
\(a_{202}= -2.45888024 \pm 9.6 \cdot 10^{-7} \) | \(a_{203}= +0.03357388 \pm 1.1 \cdot 10^{-7} \) | \(a_{204}= +1.00478315 \pm 1.0 \cdot 10^{-6} \) |
\(a_{205}= -0.35828679 \pm 7.1 \cdot 10^{-8} \) | \(a_{206}= +1.50683725 \pm 7.5 \cdot 10^{-7} \) | \(a_{207}= +0.27904478 \pm 2.1 \cdot 10^{-7} \) |
\(a_{208}= +4.63769634 \pm 3.6 \cdot 10^{-7} \) | \(a_{209}= +0.00399264 \pm 3.7 \cdot 10^{-7} \) | \(a_{210}= +0.01980905 \pm 1.3 \cdot 10^{-6} \) |
\(a_{211}= +0.90822414 \pm 6.7 \cdot 10^{-7} \) | \(a_{212}= -2.42640900 \pm 2.1 \cdot 10^{-7} \) | \(a_{213}= -0.94688313 \pm 6.6 \cdot 10^{-7} \) |
\(a_{214}= -2.46835618 \pm 1.5 \cdot 10^{-6} \) | \(a_{215}= -0.42164066 \pm 4.7 \cdot 10^{-8} \) | \(a_{216}= -0.57147268 \pm 1.9 \cdot 10^{-7} \) |
\(a_{217}= +0.02282300 \pm 5.1 \cdot 10^{-7} \) | \(a_{218}= +1.78382805 \pm 1.1 \cdot 10^{-6} \) | \(a_{219}= -0.00655785 \pm 9.0 \cdot 10^{-7} \) |
\(a_{220}= +0.12771477 \pm 2.6 \cdot 10^{-8} \) | \(a_{221}= -1.03242132 \pm 3.1 \cdot 10^{-7} \) | \(a_{222}= +0.90537823 \pm 9.6 \cdot 10^{-7} \) |
\(a_{223}= +0.83759825 \pm 6.4 \cdot 10^{-7} \) | \(a_{224}= -0.08618791 \pm 5.7 \cdot 10^{-7} \) | \(a_{225}= -0.21933550 \pm 5.9 \cdot 10^{-7} \) |
\(a_{226}= -0.71302570 \pm 1.1 \cdot 10^{-7} \) | \(a_{227}= -0.31452752 \pm 4.6 \cdot 10^{-7} \) | \(a_{228}= -0.06978747 \pm 1.4 \cdot 10^{-6} \) |
\(a_{229}= +1.25457513 \pm 6.1 \cdot 10^{-7} \) | \(a_{230}= +0.92516281 \pm 1.0 \cdot 10^{-7} \) | \(a_{231}= +0.00152236 \pm 7.0 \cdot 10^{-7} \) |
\(a_{232}= -3.21127591 \pm 1.1 \cdot 10^{-7} \) | \(a_{233}= +0.18394539 \pm 5.0 \cdot 10^{-7} \) | \(a_{234}= +0.96088655 \pm 1.1 \cdot 10^{-6} \) |
\(a_{235}= +0.13863679 \pm 5.7 \cdot 10^{-8} \) | \(a_{236}= +2.66182919 \pm 6.0 \cdot 10^{-8} \) | \(a_{237}= -0.83565225 \pm 7.6 \cdot 10^{-7} \) |
\(a_{238}= +0.03970938 \pm 5.7 \cdot 10^{-7} \) | \(a_{239}= +0.57765604 \pm 4.1 \cdot 10^{-7} \) | \(a_{240}= -1.02652923 \pm 7.6 \cdot 10^{-7} \) |
\(a_{241}= -0.86933914 \pm 2.4 \cdot 10^{-7} \) | \(a_{242}= -1.87616007 \pm 6.7 \cdot 10^{-7} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +4.13823135 \pm 3.0 \cdot 10^{-7} \) | \(a_{245}= -0.58423845 \pm 2.6 \cdot 10^{-8} \) | \(a_{246}= +0.66845985 \pm 1.4 \cdot 10^{-6} \) |
\(a_{247}= +0.07170709 \pm 4.8 \cdot 10^{-7} \) | \(a_{248}= -2.18297541 \pm 1.8 \cdot 10^{-7} \) | \(a_{249}= +0.06535988 \pm 9.6 \cdot 10^{-7} \) |
\(a_{250}= -1.83235339 \pm 1.5 \cdot 10^{-7} \) | \(a_{251}= +0.01377859 \pm 2.7 \cdot 10^{-7} \) | \(a_{252}= -0.02660942 \pm 9.5 \cdot 10^{-7} \) |
\(a_{253}= +0.07110040 \pm 7.4 \cdot 10^{-8} \) | \(a_{254}= -0.80789442 \pm 6.6 \cdot 10^{-7} \) | \(a_{255}= +0.22852093 \pm 6.5 \cdot 10^{-7} \) |
\(a_{256}= +0.42601662 \pm 7.5 \cdot 10^{-7} \) | \(a_{257}= +0.13406169 \pm 7.0 \cdot 10^{-7} \) | \(a_{258}= +0.78665991 \pm 9.2 \cdot 10^{-7} \) |
\(a_{259}= +0.02576190 \pm 1.1 \cdot 10^{-7} \) | \(a_{260}= +2.29373640 \pm 1.0 \cdot 10^{-7} \) | \(a_{261}= -0.36047820 \pm 1.6 \cdot 10^{-7} \) |
\(a_{262}= +0.50682719 \pm 8.6 \cdot 10^{-7} \) | \(a_{263}= +1.81335924 \pm 7.2 \cdot 10^{-7} \) | \(a_{264}= -0.14561081 \pm 4.3 \cdot 10^{-7} \) |
\(a_{265}= -0.55184567 \pm 6.2 \cdot 10^{-8} \) | \(a_{266}= -0.00275803 \pm 9.3 \cdot 10^{-7} \) | \(a_{267}= +0.55013560 \pm 2.6 \cdot 10^{-7} \) |
\(a_{268}= -3.32518377 \pm 3.5 \cdot 10^{-7} \) | \(a_{269}= -1.29892580 \pm 1.0 \cdot 10^{-6} \) | \(a_{270}= -0.21268709 \pm 8.8 \cdot 10^{-7} \) |
\(a_{271}= +1.72725757 \pm 2.7 \cdot 10^{-7} \) | \(a_{272}= -2.05778833 \pm 6.6 \cdot 10^{-7} \) | \(a_{273}= +0.02734135 \pm 7.9 \cdot 10^{-7} \) |
\(a_{274}= +1.40131169 \pm 1.0 \cdot 10^{-7} \) | \(a_{275}= -0.05588652 \pm 2.4 \cdot 10^{-7} \) | \(a_{276}= -1.24276732 \pm 7.1 \cdot 10^{-7} \) |
\(a_{277}= -0.03917497 \pm 5.8 \cdot 10^{-7} \) | \(a_{278}= +1.68510117 \pm 4.0 \cdot 10^{-7} \) | \(a_{279}= -0.24504748 \pm 6.9 \cdot 10^{-7} \) |
\(a_{280}= -0.05391227 \pm 3.9 \cdot 10^{-8} \) | \(a_{281}= -1.92561233 \pm 7.9 \cdot 10^{-7} \) | \(a_{282}= -0.25865628 \pm 1.4 \cdot 10^{-6} \) |
\(a_{283}= +0.05409628 \pm 2.8 \cdot 10^{-7} \) | \(a_{284}= +4.21708447 \pm 5.2 \cdot 10^{-7} \) | \(a_{285}= -0.01587198 \pm 9.9 \cdot 10^{-7} \) |
\(a_{286}= +0.24483317 \pm 1.7 \cdot 10^{-7} \) | \(a_{287}= +0.01902056 \pm 4.9 \cdot 10^{-7} \) | \(a_{288}= +0.92538785 \pm 7.7 \cdot 10^{-7} \) |
\(a_{289}= -0.54190521 \pm 8.8 \cdot 10^{-8} \) | \(a_{290}= -1.19515236 \pm 7.3 \cdot 10^{-8} \) | \(a_{291}= -0.71959566 \pm 5.9 \cdot 10^{-8} \) |
\(a_{292}= +0.02920634 \pm 7.4 \cdot 10^{-7} \) | \(a_{293}= -0.69800445 \pm 2.8 \cdot 10^{-7} \) | \(a_{294}= +1.09002050 \pm 1.0 \cdot 10^{-6} \) |
\(a_{295}= +0.60538801 \pm 3.9 \cdot 10^{-8} \) | \(a_{296}= -2.46407514 \pm 6.0 \cdot 10^{-8} \) | \(a_{297}= -0.01634538 \pm 2.5 \cdot 10^{-7} \) |
\(a_{298}= -1.46046659 \pm 9.5 \cdot 10^{-7} \) | \(a_{299}= +1.27695162 \pm 1.8 \cdot 10^{-7} \) | \(a_{300}= +0.97684318 \pm 1.0 \cdot 10^{-6} \) |
\(a_{301}= +0.02238385 \pm 8.5 \cdot 10^{-8} \) | \(a_{302}= -0.59159992 \pm 2.3 \cdot 10^{-7} \) | \(a_{303}= +0.75121226 \pm 7.3 \cdot 10^{-7} \) |
\(a_{304}= +0.14292422 \pm 1.0 \cdot 10^{-6} \) | \(a_{305}= +0.94117070 \pm 7.7 \cdot 10^{-8} \) | \(a_{306}= -0.42635416 \pm 1.3 \cdot 10^{-6} \) |
\(a_{307}= +1.35314998 \pm 3.6 \cdot 10^{-7} \) | \(a_{308}= -0.00678006 \pm 1.4 \cdot 10^{-7} \) | \(a_{309}= -0.46035370 \pm 5.7 \cdot 10^{-7} \) |
\(a_{310}= -0.81244598 \pm 6.6 \cdot 10^{-8} \) | \(a_{311}= -0.40671592 \pm 1.1 \cdot 10^{-7} \) | \(a_{312}= -2.61514645 \pm 5.2 \cdot 10^{-7} \) |
\(a_{313}= -1.56951266 \pm 7.3 \cdot 10^{-7} \) | \(a_{314}= -0.80978971 \pm 3.9 \cdot 10^{-7} \) | \(a_{315}= -0.00605186 \pm 5.2 \cdot 10^{-7} \) |
\(a_{316}= +3.72170124 \pm 6.0 \cdot 10^{-7} \) | \(a_{317}= +0.87893829 \pm 9.6 \cdot 10^{-7} \) | \(a_{318}= +1.02958491 \pm 9.8 \cdot 10^{-7} \) |
\(a_{319}= -0.09184958 \pm 5.5 \cdot 10^{-8} \) | \(a_{320}= +1.29008895 \pm 7.4 \cdot 10^{-8} \) | \(a_{321}= +0.75410725 \pm 1.1 \cdot 10^{-6} \) |
\(a_{322}= -0.04911459 \pm 2.2 \cdot 10^{-7} \) | \(a_{323}= -0.03181709 \pm 8.8 \cdot 10^{-7} \) | \(a_{324}= +0.28570167 \pm 5.0 \cdot 10^{-7} \) |
\(a_{325}= -1.00371282 \pm 3.1 \cdot 10^{-7} \) | \(a_{326}= -0.01491258 \pm 6.4 \cdot 10^{-7} \) | \(a_{327}= -0.54497713 \pm 8.3 \cdot 10^{-7} \) |
\(a_{328}= -1.81927866 \pm 1.7 \cdot 10^{-7} \) | \(a_{329}= -0.00735988 \pm 4.5 \cdot 10^{-7} \) | \(a_{330}= -0.05419251 \pm 1.1 \cdot 10^{-6} \) |
\(a_{331}= +0.20404587 \pm 2.3 \cdot 10^{-7} \) | \(a_{332}= -0.29108991 \pm 7.7 \cdot 10^{-7} \) | \(a_{333}= -0.27660201 \pm 1.6 \cdot 10^{-7} \) |
\(a_{334}= -0.79029496 \pm 5.6 \cdot 10^{-7} \) | \(a_{335}= -0.75625678 \pm 6.0 \cdot 10^{-8} \) | \(a_{336}= +0.05449589 \pm 1.1 \cdot 10^{-6} \) |
\(a_{337}= -0.32920813 \pm 8.5 \cdot 10^{-8} \) | \(a_{338}= +2.50737160 \pm 5.7 \cdot 10^{-7} \) | \(a_{339}= +0.21783641 \pm 1.2 \cdot 10^{-7} \) |
\(a_{340}= -1.01775184 \pm 7.3 \cdot 10^{-8} \) | \(a_{341}= -0.06243791 \pm 2.7 \cdot 10^{-7} \) | \(a_{342}= +0.02961254 \pm 1.7 \cdot 10^{-6} \) |
\(a_{343}= +0.06206146 \pm 6.4 \cdot 10^{-7} \) | \(a_{344}= -2.14097165 \pm 1.1 \cdot 10^{-7} \) | \(a_{345}= -0.28264640 \pm 2.8 \cdot 10^{-7} \) |
\(a_{346}= +3.61388344 \pm 9.2 \cdot 10^{-7} \) | \(a_{347}= -0.06619801 \pm 1.5 \cdot 10^{-7} \) | \(a_{348}= +1.60544315 \pm 6.5 \cdot 10^{-7} \) |
\(a_{349}= +1.82052079 \pm 1.4 \cdot 10^{-7} \) | \(a_{350}= +0.03860518 \pm 5.9 \cdot 10^{-7} \) | \(a_{351}= -0.29356036 \pm 3.4 \cdot 10^{-7} \) |
\(a_{352}= +0.23578813 \pm 3.1 \cdot 10^{-7} \) | \(a_{353}= -0.75676104 \pm 2.8 \cdot 10^{-7} \) | \(a_{354}= -1.12947948 \pm 8.6 \cdot 10^{-7} \) |
\(a_{355}= +0.95910451 \pm 4.2 \cdot 10^{-8} \) | \(a_{356}= -2.45011048 \pm 2.2 \cdot 10^{-7} \) | \(a_{357}= -0.01213161 \pm 1.0 \cdot 10^{-6} \) |
\(a_{358}= -3.22950638 \pm 6.4 \cdot 10^{-7} \) | \(a_{359}= +0.60670790 \pm 8.0 \cdot 10^{-7} \) | \(a_{360}= +0.57884865 \pm 2.6 \cdot 10^{-7} \) |
\(a_{361}= -0.99779014 \pm 8.4 \cdot 10^{-7} \) | \(a_{362}= +1.74544840 \pm 6.3 \cdot 10^{-7} \) | \(a_{363}= +0.57318548 \pm 5.0 \cdot 10^{-7} \) |
\(a_{364}= -0.12176877 \pm 2.3 \cdot 10^{-7} \) | \(a_{365}= +0.00664249 \pm 9.5 \cdot 10^{-8} \) | \(a_{366}= -1.75595317 \pm 1.1 \cdot 10^{-6} \) |
\(a_{367}= +0.53217009 \pm 4.7 \cdot 10^{-7} \) | \(a_{368}= +2.54517811 \pm 2.0 \cdot 10^{-7} \) | \(a_{369}= -0.20422110 \pm 6.6 \cdot 10^{-7} \) |
\(a_{370}= -0.91706390 \pm 3.0 \cdot 10^{-8} \) | \(a_{371}= +0.02929612 \pm 1.3 \cdot 10^{-7} \) | \(a_{372}= +1.09135528 \pm 1.1 \cdot 10^{-6} \) |
\(a_{373}= -0.33942823 \pm 1.0 \cdot 10^{-6} \) | \(a_{374}= -0.10863472 \pm 3.1 \cdot 10^{-7} \) | \(a_{375}= +0.55980210 \pm 1.1 \cdot 10^{-7} \) |
\(a_{376}= +0.70395830 \pm 1.7 \cdot 10^{-7} \) | \(a_{377}= -1.64960344 \pm 1.3 \cdot 10^{-7} \) | \(a_{378}= +0.01129103 \pm 1.2 \cdot 10^{-6} \) |
\(a_{379}= -0.78497416 \pm 2.3 \cdot 10^{-7} \) | \(a_{380}= +0.07068822 \pm 6.4 \cdot 10^{-8} \) | \(a_{381}= +0.24681974 \pm 5.0 \cdot 10^{-7} \) |
\(a_{382}= -0.22402217 \pm 7.2 \cdot 10^{-7} \) | \(a_{383}= +1.42430268 \pm 5.7 \cdot 10^{-7} \) | \(a_{384}= -0.80411524 \pm 3.4 \cdot 10^{-7} \) |
\(a_{385}= -0.00154201 \pm 2.3 \cdot 10^{-8} \) | \(a_{386}= +0.35573335 \pm 1.5 \cdot 10^{-6} \) | \(a_{387}= -0.24033239 \pm 1.2 \cdot 10^{-7} \) |
\(a_{388}= +3.20482600 \pm 4.2 \cdot 10^{-8} \) | \(a_{389}= -0.05200812 \pm 1.0 \cdot 10^{-6} \) | \(a_{390}= -0.97328867 \pm 1.2 \cdot 10^{-6} \) |
\(a_{391}= -0.56659513 \pm 1.7 \cdot 10^{-7} \) | \(a_{392}= -2.96659709 \pm 8.3 \cdot 10^{-8} \) | \(a_{393}= -0.15484073 \pm 6.5 \cdot 10^{-7} \) |
\(a_{394}= +0.10599255 \pm 1.9 \cdot 10^{-7} \) | \(a_{395}= +0.84643798 \pm 6.2 \cdot 10^{-8} \) | \(a_{396}= +0.07279657 \pm 7.4 \cdot 10^{-7} \) |
\(a_{397}= +0.90914728 \pm 1.2 \cdot 10^{-7} \) | \(a_{398}= +1.57856741 \pm 5.0 \cdot 10^{-7} \) | \(a_{399}= +0.00084260 \pm 1.3 \cdot 10^{-6} \) |
\(a_{400}= -2.00056748 \pm 6.8 \cdot 10^{-7} \) | \(a_{401}= +0.14399672 \pm 6.9 \cdot 10^{-7} \) | \(a_{402}= +1.41095711 \pm 1.2 \cdot 10^{-6} \) |
\(a_{403}= -1.12137476 \pm 3.6 \cdot 10^{-7} \) | \(a_{404}= -3.34563523 \pm 5.8 \cdot 10^{-7} \) | \(a_{405}= +0.06497801 \pm 8.0 \cdot 10^{-8} \) |
\(a_{406}= +0.06344767 \pm 1.6 \cdot 10^{-7} \) | \(a_{407}= -0.07047799 \pm 6.4 \cdot 10^{-8} \) | \(a_{408}= +1.16036443 \pm 7.7 \cdot 10^{-7} \) |
\(a_{409}= -0.00598021 \pm 1.0 \cdot 10^{-6} \) | \(a_{410}= -0.67708763 \pm 5.5 \cdot 10^{-8} \) | \(a_{411}= -0.42811460 \pm 1.0 \cdot 10^{-7} \) |
\(a_{412}= +2.05025349 \pm 4.5 \cdot 10^{-7} \) | \(a_{413}= -0.03213855 \pm 4.6 \cdot 10^{-8} \) | \(a_{414}= +0.52733669 \pm 1.0 \cdot 10^{-6} \) |
\(a_{415}= -0.06620347 \pm 8.6 \cdot 10^{-8} \) | \(a_{416}= +4.23471645 \pm 4.0 \cdot 10^{-7} \) | \(a_{417}= -0.51481509 \pm 3.2 \cdot 10^{-7} \) |
\(a_{418}= +0.00754525 \pm 5.0 \cdot 10^{-7} \) | \(a_{419}= -0.80932473 \pm 5.5 \cdot 10^{-7} \) | \(a_{420}= +0.02695286 \pm 1.0 \cdot 10^{-6} \) |
\(a_{421}= +0.25809710 \pm 3.5 \cdot 10^{-7} \) | \(a_{422}= +1.71635502 \pm 9.0 \cdot 10^{-7} \) | \(a_{423}= +0.07902206 \pm 6.0 \cdot 10^{-7} \) |
\(a_{424}= -2.80211574 \pm 1.3 \cdot 10^{-7} \) | \(a_{425}= +0.44535657 \pm 5.6 \cdot 10^{-7} \) | \(a_{426}= -1.78941248 \pm 1.4 \cdot 10^{-6} \) |
\(a_{427}= -0.04996441 \pm 2.3 \cdot 10^{-7} \) | \(a_{428}= -3.35852851 \pm 9.1 \cdot 10^{-7} \) | \(a_{429}= -0.07479896 \pm 5.8 \cdot 10^{-7} \) |
\(a_{430}= -0.79681329 \pm 7.7 \cdot 10^{-8} \) | \(a_{431}= -0.05965857 \pm 3.3 \cdot 10^{-7} \) | \(a_{432}= -0.58511488 \pm 6.9 \cdot 10^{-7} \) |
\(a_{433}= +1.70613390 \pm 5.6 \cdot 10^{-8} \) | \(a_{434}= +0.04313074 \pm 6.8 \cdot 10^{-7} \) | \(a_{435}= +0.36513088 \pm 2.3 \cdot 10^{-7} \) |
\(a_{436}= +2.42713650 \pm 6.6 \cdot 10^{-7} \) | \(a_{437}= +0.03935301 \pm 2.6 \cdot 10^{-7} \) | \(a_{438}= -0.01239297 \pm 1.7 \cdot 10^{-6} \) |
\(a_{439}= +0.75883828 \pm 7.8 \cdot 10^{-7} \) | \(a_{440}= +0.14749020 \pm 1.3 \cdot 10^{-8} \) | \(a_{441}= -0.33301206 \pm 2.6 \cdot 10^{-7} \) |
\(a_{442}= -1.95106190 \pm 4.1 \cdot 10^{-7} \) | \(a_{443}= +0.09855721 \pm 2.3 \cdot 10^{-7} \) | \(a_{444}= +1.23188809 \pm 6.5 \cdot 10^{-7} \) |
\(a_{445}= -0.55723617 \pm 5.5 \cdot 10^{-8} \) | \(a_{446}= +1.58288676 \pm 8.6 \cdot 10^{-7} \) | \(a_{447}= +0.44618700 \pm 7.2 \cdot 10^{-7} \) |
\(a_{448}= -0.06848762 \pm 2.7 \cdot 10^{-7} \) | \(a_{449}= +0.32117376 \pm 9.7 \cdot 10^{-8} \) | \(a_{450}= -0.41449855 \pm 1.4 \cdot 10^{-6} \) |
\(a_{451}= -0.05203538 \pm 2.6 \cdot 10^{-7} \) | \(a_{452}= -0.97016677 \pm 1.1 \cdot 10^{-7} \) | \(a_{453}= +0.18073963 \pm 1.9 \cdot 10^{-7} \) |
\(a_{454}= -0.59439170 \pm 6.2 \cdot 10^{-7} \) | \(a_{455}= -0.02769425 \pm 5.9 \cdot 10^{-8} \) | \(a_{456}= -0.08059341 \pm 1.1 \cdot 10^{-6} \) |
\(a_{457}= -0.93447376 \pm 1.3 \cdot 10^{-7} \) | \(a_{458}= +2.37088646 \pm 8.1 \cdot 10^{-7} \) | \(a_{459}= +0.13025542 \pm 5.8 \cdot 10^{-7} \) |
\(a_{460}= +1.25880766 \pm 1.1 \cdot 10^{-7} \) | \(a_{461}= -0.99804017 \pm 6.6 \cdot 10^{-7} \) | \(a_{462}= +0.00287695 \pm 1.5 \cdot 10^{-6} \) |
\(a_{463}= -1.12013378 \pm 3.3 \cdot 10^{-7} \) | \(a_{464}= -3.28793549 \pm 1.5 \cdot 10^{-7} \) | \(a_{465}= +0.24821029 \pm 7.6 \cdot 10^{-7} \) |
\(a_{466}= +0.34761858 \pm 6.8 \cdot 10^{-7} \) | \(a_{467}= -0.64561555 \pm 2.5 \cdot 10^{-7} \) | \(a_{468}= +1.30741459 \pm 8.3 \cdot 10^{-7} \) |
\(a_{469}= +0.04014779 \pm 3.1 \cdot 10^{-7} \) | \(a_{470}= +0.26199475 \pm 7.5 \cdot 10^{-8} \) | \(a_{471}= +0.24739878 \pm 2.9 \cdot 10^{-7} \) |
\(a_{472}= +3.07398855 \pm 3.7 \cdot 10^{-8} \) | \(a_{473}= -0.06123651 \pm 3.6 \cdot 10^{-8} \) | \(a_{474}= -1.57920921 \pm 1.5 \cdot 10^{-6} \) |
\(a_{475}= -0.03093236 \pm 9.1 \cdot 10^{-7} \) | \(a_{476}= +0.05402992 \pm 3.5 \cdot 10^{-7} \) | \(a_{477}= -0.31454838 \pm 1.8 \cdot 10^{-7} \) |
\(a_{478}= +1.09164995 \pm 5.7 \cdot 10^{-7} \) | \(a_{479}= +0.21557379 \pm 7.0 \cdot 10^{-7} \) | \(a_{480}= -0.93733179 \pm 8.4 \cdot 10^{-7} \) |
\(a_{481}= -1.26577315 \pm 8.9 \cdot 10^{-8} \) | \(a_{482}= -1.64287044 \pm 3.4 \cdot 10^{-7} \) | \(a_{483}= +0.01500499 \pm 6.6 \cdot 10^{-7} \) |
\(a_{484}= -2.55276655 \pm 4.1 \cdot 10^{-7} \) | \(a_{485}= +0.72888345 \pm 1.1 \cdot 10^{-8} \) | \(a_{486}= -0.12123023 \pm 8.1 \cdot 10^{-7} \) |
\(a_{487}= +1.72656899 \pm 7.9 \cdot 10^{-7} \) | \(a_{488}= +4.77899778 \pm 1.5 \cdot 10^{-7} \) | \(a_{489}= +0.00455594 \pm 4.8 \cdot 10^{-7} \) |
\(a_{490}= -1.10408934 \pm 3.8 \cdot 10^{-8} \) | \(a_{491}= +0.76632115 \pm 8.4 \cdot 10^{-7} \) | \(a_{492}= +0.90952897 \pm 1.1 \cdot 10^{-6} \) |
\(a_{493}= +0.73194415 \pm 1.3 \cdot 10^{-7} \) | \(a_{494}= +0.13551151 \pm 6.5 \cdot 10^{-7} \) | \(a_{495}= +0.01655635 \pm 3.2 \cdot 10^{-7} \) |
\(a_{496}= -2.23508740 \pm 7.8 \cdot 10^{-7} \) | \(a_{497}= -0.05091647 \pm 4.9 \cdot 10^{-7} \) | \(a_{498}= +0.12351659 \pm 1.7 \cdot 10^{-6} \) |
\(a_{499}= +1.37188991 \pm 4.9 \cdot 10^{-7} \) | \(a_{500}= -2.49316171 \pm 1.4 \cdot 10^{-7} \) | \(a_{501}= +0.24144293 \pm 4.3 \cdot 10^{-7} \) |
\(a_{502}= +0.02603868 \pm 3.7 \cdot 10^{-7} \) | \(a_{503}= -1.30482717 \pm 6.3 \cdot 10^{-7} \) | \(a_{504}= -0.03072964 \pm 6.4 \cdot 10^{-7} \) |
\(a_{505}= -0.76090812 \pm 5.5 \cdot 10^{-8} \) | \(a_{506}= +0.13436499 \pm 1.0 \cdot 10^{-7} \) | \(a_{507}= -0.76602685 \pm 4.4 \cdot 10^{-7} \) |
\(a_{508}= -1.09924834 \pm 4.3 \cdot 10^{-7} \) | \(a_{509}= +0.84499407 \pm 1.1 \cdot 10^{-6} \) | \(a_{510}= +0.43185709 \pm 1.4 \cdot 10^{-6} \) |
\(a_{511}= -0.00035263 \pm 6.7 \cdot 10^{-7} \) | \(a_{512}= -0.58768551 \pm 7.0 \cdot 10^{-7} \) | \(a_{513}= -0.00904692 \pm 9.3 \cdot 10^{-7} \) |
\(a_{514}= +0.25334875 \pm 9.5 \cdot 10^{-7} \) | \(a_{515}= +0.46629546 \pm 4.3 \cdot 10^{-8} \) | \(a_{516}= +1.07035595 \pm 6.2 \cdot 10^{-7} \) |
\(a_{517}= +0.02013476 \pm 2.4 \cdot 10^{-7} \) | \(a_{518}= +0.04868464 \pm 1.5 \cdot 10^{-7} \) | \(a_{519}= -1.10407717 \pm 6.9 \cdot 10^{-7} \) |
\(a_{520}= +2.64890003 \pm 6.8 \cdot 10^{-8} \) | \(a_{521}= -0.22990426 \pm 4.9 \cdot 10^{-7} \) | \(a_{522}= -0.68122895 \pm 9.6 \cdot 10^{-7} \) |
\(a_{523}= -0.62269794 \pm 1.6 \cdot 10^{-7} \) | \(a_{524}= +0.68960614 \pm 5.2 \cdot 10^{-7} \) | \(a_{525}= -0.01179426 \pm 1.0 \cdot 10^{-6} \) |
\(a_{526}= +3.42687240 \pm 9.7 \cdot 10^{-7} \) | \(a_{527}= +0.49756425 \pm 6.6 \cdot 10^{-7} \) | \(a_{528}= -0.14908683 \pm 9.3 \cdot 10^{-7} \) |
\(a_{529}= -0.29920610 \pm 5.5 \cdot 10^{-7} \) | \(a_{530}= -1.04287372 \pm 8.8 \cdot 10^{-8} \) | \(a_{531}= +0.34506716 \pm 6.6 \cdot 10^{-8} \) |
\(a_{532}= -0.00375266 \pm 5.5 \cdot 10^{-7} \) | \(a_{533}= -0.93454702 \pm 3.4 \cdot 10^{-7} \) | \(a_{534}= +1.03964203 \pm 1.0 \cdot 10^{-6} \) |
\(a_{535}= -0.76384048 \pm 7.9 \cdot 10^{-8} \) | \(a_{536}= -3.84005738 \pm 1.5 \cdot 10^{-7} \) | \(a_{537}= +0.98664618 \pm 4.9 \cdot 10^{-7} \) |
\(a_{538}= -2.45470001 \pm 1.3 \cdot 10^{-6} \) | \(a_{539}= -0.08485122 \pm 1.0 \cdot 10^{-7} \) | \(a_{540}= -0.28938921 \pm 5.7 \cdot 10^{-7} \) |
\(a_{541}= -0.27759086 \pm 1.5 \cdot 10^{-7} \) | \(a_{542}= +3.26415811 \pm 3.9 \cdot 10^{-7} \) | \(a_{543}= -0.53325177 \pm 4.8 \cdot 10^{-7} \) |
\(a_{544}= -1.87898246 \pm 7.3 \cdot 10^{-7} \) | \(a_{545}= +0.55201113 \pm 6.3 \cdot 10^{-8} \) | \(a_{546}= +0.05166948 \pm 1.5 \cdot 10^{-6} \) |
\(a_{547}= +0.85412717 \pm 1.9 \cdot 10^{-7} \) | \(a_{548}= +1.90667186 \pm 1.1 \cdot 10^{-7} \) | \(a_{549}= +0.53646108 \pm 3.2 \cdot 10^{-7} \) |
\(a_{550}= -0.10561392 \pm 3.2 \cdot 10^{-7} \) | \(a_{551}= -0.05083737 \pm 2.0 \cdot 10^{-7} \) | \(a_{552}= -1.43519822 \pm 4.0 \cdot 10^{-7} \) |
\(a_{553}= -0.04493529 \pm 5.6 \cdot 10^{-7} \) | \(a_{554}= -0.07403256 \pm 7.8 \cdot 10^{-7} \) | \(a_{555}= +0.28017210 \pm 2.3 \cdot 10^{-7} \) |
\(a_{556}= +2.29280538 \pm 2.5 \cdot 10^{-7} \) | \(a_{557}= +1.42933556 \pm 6.3 \cdot 10^{-7} \) | \(a_{558}= -0.46308884 \pm 1.4 \cdot 10^{-6} \) |
\(a_{559}= -1.09979781 \pm 1.2 \cdot 10^{-7} \) | \(a_{560}= -0.05519926 \pm 5.5 \cdot 10^{-8} \) | \(a_{561}= +0.03318898 \pm 8.2 \cdot 10^{-7} \) |
\(a_{562}= -3.63900742 \pm 1.0 \cdot 10^{-6} \) | \(a_{563}= -0.87430452 \pm 6.3 \cdot 10^{-7} \) | \(a_{564}= -0.35193645 \pm 1.1 \cdot 10^{-6} \) |
\(a_{565}= -0.22064802 \pm 7.8 \cdot 10^{-8} \) | \(a_{566}= +0.10223074 \pm 3.8 \cdot 10^{-7} \) | \(a_{567}= -0.00344952 \pm 4.6 \cdot 10^{-7} \) |
\(a_{568}= +4.87006057 \pm 1.7 \cdot 10^{-7} \) | \(a_{569}= -1.23686347 \pm 1.0 \cdot 10^{-6} \) | \(a_{570}= -0.02999475 \pm 1.8 \cdot 10^{-6} \) |
\(a_{571}= +1.76056198 \pm 5.7 \cdot 10^{-7} \) | \(a_{572}= +0.33312826 \pm 1.1 \cdot 10^{-7} \) | \(a_{573}= +0.06844099 \pm 5.4 \cdot 10^{-7} \) |
\(a_{574}= +0.03594490 \pm 6.5 \cdot 10^{-7} \) | \(a_{575}= -0.55083984 \pm 1.8 \cdot 10^{-7} \) | \(a_{576}= +0.73534217 \pm 3.6 \cdot 10^{-7} \) |
\(a_{577}= +0.19748465 \pm 8.2 \cdot 10^{-8} \) | \(a_{578}= -1.02408830 \pm 1.0 \cdot 10^{-7} \) | \(a_{579}= -0.10868006 \pm 1.1 \cdot 10^{-6} \) |
\(a_{580}= -1.62616453 \pm 7.8 \cdot 10^{-8} \) | \(a_{581}= +0.00351458 \pm 7.1 \cdot 10^{-7} \) | \(a_{582}= -1.35988636 \pm 8.6 \cdot 10^{-7} \) |
\(a_{583}= -0.08014669 \pm 6.3 \cdot 10^{-8} \) | \(a_{584}= +0.03372867 \pm 2.8 \cdot 10^{-7} \) | \(a_{585}= +0.29734933 \pm 4.1 \cdot 10^{-7} \) |
\(a_{586}= -1.31908345 \pm 3.8 \cdot 10^{-7} \) | \(a_{587}= +0.49547238 \pm 4.3 \cdot 10^{-7} \) | \(a_{588}= +1.48311858 \pm 7.6 \cdot 10^{-7} \) |
\(a_{589}= -0.03455845 \pm 1.0 \cdot 10^{-6} \) | \(a_{590}= +1.14405762 \pm 2.0 \cdot 10^{-8} \) | \(a_{591}= -0.03238177 \pm 1.4 \cdot 10^{-7} \) |
\(a_{592}= -2.52289754 \pm 1.7 \cdot 10^{-7} \) | \(a_{593}= +0.65357507 \pm 7.9 \cdot 10^{-7} \) | \(a_{594}= -0.03088937 \pm 1.0 \cdot 10^{-6} \) |
\(a_{595}= +0.01228819 \pm 7.0 \cdot 10^{-8} \) | \(a_{596}= -1.98716000 \pm 5.7 \cdot 10^{-7} \) | \(a_{597}= -0.48226797 \pm 3.8 \cdot 10^{-7} \) |
\(a_{598}= +2.41317339 \pm 2.8 \cdot 10^{-7} \) | \(a_{599}= -0.39752268 \pm 5.2 \cdot 10^{-7} \) | \(a_{600}= +1.12809822 \pm 7.8 \cdot 10^{-7} \) |
\(a_{601}= +0.35672031 \pm 7.8 \cdot 10^{-7} \) | \(a_{602}= +0.04230084 \pm 1.3 \cdot 10^{-7} \) | \(a_{603}= -0.43106137 \pm 4.2 \cdot 10^{-7} \) |
\(a_{604}= -0.80495076 \pm 1.4 \cdot 10^{-7} \) | \(a_{605}= -0.58058356 \pm 6.1 \cdot 10^{-8} \) | \(a_{606}= +1.41963517 \pm 1.5 \cdot 10^{-6} \) |
\(a_{607}= +1.48606676 \pm 2.3 \cdot 10^{-7} \) | \(a_{608}= +0.13050521 \pm 1.1 \cdot 10^{-6} \) | \(a_{609}= -0.01938389 \pm 6.1 \cdot 10^{-7} \) |
\(a_{610}= +1.77861717 \pm 9.9 \cdot 10^{-8} \) | \(a_{611}= +0.36161702 \pm 3.2 \cdot 10^{-7} \) | \(a_{612}= -0.58011182 \pm 1.0 \cdot 10^{-6} \) |
\(a_{613}= -1.74142408 \pm 9.7 \cdot 10^{-7} \) | \(a_{614}= +2.55717246 \pm 4.8 \cdot 10^{-7} \) | \(a_{615}= +0.20685697 \pm 7.3 \cdot 10^{-7} \) |
\(a_{616}= -0.00782989 \pm 5.0 \cdot 10^{-8} \) | \(a_{617}= -0.38876874 \pm 2.1 \cdot 10^{-7} \) | \(a_{618}= -0.86997289 \pm 1.3 \cdot 10^{-6} \) |
\(a_{619}= +0.26309221 \pm 3.0 \cdot 10^{-7} \) | \(a_{620}= -1.10544135 \pm 6.5 \cdot 10^{-8} \) | \(a_{621}= -0.16110658 \pm 2.1 \cdot 10^{-7} \) |
\(a_{622}= -0.76860862 \pm 1.5 \cdot 10^{-7} \) | \(a_{623}= +0.02958228 \pm 1.9 \cdot 10^{-7} \) | \(a_{624}= -2.67757523 \pm 1.0 \cdot 10^{-6} \) |
\(a_{625}= +0.09097906 \pm 5.8 \cdot 10^{-7} \) | \(a_{626}= -2.96605300 \pm 9.9 \cdot 10^{-7} \) | \(a_{627}= -0.00230515 \pm 1.1 \cdot 10^{-6} \) |
\(a_{628}= -1.10182714 \pm 2.8 \cdot 10^{-7} \) | \(a_{629}= +0.56163514 \pm 1.4 \cdot 10^{-7} \) | \(a_{630}= -0.01143676 \pm 1.3 \cdot 10^{-6} \) |
\(a_{631}= +0.19080338 \pm 1.9 \cdot 10^{-7} \) | \(a_{632}= +4.29797188 \pm 2.0 \cdot 10^{-7} \) | \(a_{633}= -0.52436345 \pm 6.8 \cdot 10^{-7} \) |
\(a_{634}= +1.66101084 \pm 1.3 \cdot 10^{-6} \) | \(a_{635}= -0.25000543 \pm 7.3 \cdot 10^{-8} \) | \(a_{636}= +1.40088789 \pm 6.8 \cdot 10^{-7} \) |
\(a_{637}= -1.52391413 \pm 1.4 \cdot 10^{-7} \) | \(a_{638}= -0.17357663 \pm 7.6 \cdot 10^{-8} \) | \(a_{639}= +0.54668323 \pm 6.6 \cdot 10^{-7} \) |
\(a_{640}= +0.81449392 \pm 7.7 \cdot 10^{-8} \) | \(a_{641}= +0.15557170 \pm 5.0 \cdot 10^{-7} \) | \(a_{642}= +1.42510611 \pm 1.9 \cdot 10^{-6} \) |
\(a_{643}= -1.26390787 \pm 3.6 \cdot 10^{-7} \) | \(a_{644}= -0.06682697 \pm 1.8 \cdot 10^{-7} \) | \(a_{645}= +0.24343435 \pm 1.9 \cdot 10^{-7} \) |
\(a_{646}= -0.06012770 \pm 1.1 \cdot 10^{-6} \) | \(a_{647}= -0.14808032 \pm 5.4 \cdot 10^{-7} \) | \(a_{648}= +0.32993991 \pm 1.9 \cdot 10^{-7} \) |
\(a_{649}= +0.08792286 \pm 2.6 \cdot 10^{-8} \) | \(a_{650}= -1.89680879 \pm 4.3 \cdot 10^{-7} \) | \(a_{651}= -0.01317687 \pm 1.1 \cdot 10^{-6} \) |
\(a_{652}= -0.02029056 \pm 4.3 \cdot 10^{-7} \) | \(a_{653}= +1.77831836 \pm 2.5 \cdot 10^{-7} \) | \(a_{654}= -1.02989361 \pm 1.6 \cdot 10^{-6} \) |
\(a_{655}= +0.15683925 \pm 7.9 \cdot 10^{-8} \) | \(a_{656}= -1.86270848 \pm 7.5 \cdot 10^{-7} \) | \(a_{657}= +0.00378617 \pm 9.0 \cdot 10^{-7} \) |
\(a_{658}= -0.01390865 \pm 6.0 \cdot 10^{-7} \) | \(a_{659}= +0.80253558 \pm 2.2 \cdot 10^{-7} \) | \(a_{660}= -0.07373615 \pm 8.1 \cdot 10^{-7} \) |
\(a_{661}= +1.22422038 \pm 2.9 \cdot 10^{-7} \) | \(a_{662}= +0.38560433 \pm 3.1 \cdot 10^{-7} \) | \(a_{663}= +0.59606873 \pm 9.1 \cdot 10^{-7} \) |
\(a_{664}= -0.33616246 \pm 2.7 \cdot 10^{-7} \) | \(a_{665}= -0.00085348 \pm 6.1 \cdot 10^{-8} \) | \(a_{666}= -0.52272036 \pm 9.6 \cdot 10^{-7} \) |
\(a_{667}= -0.90530605 \pm 1.3 \cdot 10^{-7} \) | \(a_{668}= -1.07530192 \pm 3.4 \cdot 10^{-7} \) | \(a_{669}= -0.48358758 \pm 6.5 \cdot 10^{-7} \) |
\(a_{670}= -1.42916827 \pm 8.1 \cdot 10^{-8} \) | \(a_{671}= +0.13668988 \pm 1.2 \cdot 10^{-7} \) | \(a_{672}= +0.04976062 \pm 1.2 \cdot 10^{-6} \) |
\(a_{673}= +1.63365282 \pm 2.3 \cdot 10^{-7} \) | \(a_{674}= -0.62213499 \pm 1.1 \cdot 10^{-7} \) | \(a_{675}= +0.12663341 \pm 5.9 \cdot 10^{-7} \) |
\(a_{676}= +3.41161420 \pm 3.5 \cdot 10^{-7} \) | \(a_{677}= -0.03743605 \pm 4.4 \cdot 10^{-7} \) | \(a_{678}= +0.41166558 \pm 9.2 \cdot 10^{-7} \) |
\(a_{679}= -0.03869461 \pm 3.7 \cdot 10^{-8} \) | \(a_{680}= -1.17534120 \pm 2.8 \cdot 10^{-8} \) | \(a_{681}= +0.18159255 \pm 4.7 \cdot 10^{-7} \) |
\(a_{682}= -0.11799469 \pm 3.7 \cdot 10^{-7} \) | \(a_{683}= -1.66710082 \pm 1.0 \cdot 10^{-6} \) | \(a_{684}= +0.04029182 \pm 1.4 \cdot 10^{-6} \) |
\(a_{685}= +0.43364025 \pm 6.0 \cdot 10^{-8} \) | \(a_{686}= +0.11728327 \pm 8.6 \cdot 10^{-7} \) | \(a_{687}= -0.72432929 \pm 6.2 \cdot 10^{-7} \) |
\(a_{688}= -2.19208093 \pm 9.1 \cdot 10^{-8} \) | \(a_{689}= -1.43942155 \pm 1.5 \cdot 10^{-7} \) | \(a_{690}= -0.53414300 \pm 1.0 \cdot 10^{-6} \) |
\(a_{691}= -1.20023013 \pm 6.0 \cdot 10^{-7} \) | \(a_{692}= +4.91717145 \pm 5.6 \cdot 10^{-7} \) | \(a_{693}= -0.00087894 \pm 7.0 \cdot 10^{-7} \) |
\(a_{694}= -0.12510049 \pm 2.0 \cdot 10^{-7} \) | \(a_{695}= +0.52145979 \pm 6.7 \cdot 10^{-8} \) | \(a_{696}= +1.85403101 \pm 3.4 \cdot 10^{-7} \) |
\(a_{697}= +0.41466707 \pm 6.3 \cdot 10^{-7} \) | \(a_{698}= +3.44040624 \pm 1.8 \cdot 10^{-7} \) | \(a_{699}= -0.10620092 \pm 5.1 \cdot 10^{-7} \) |
\(a_{700}= +0.05252751 \pm 3.6 \cdot 10^{-7} \) | \(a_{701}= -1.38634339 \pm 1.0 \cdot 10^{-6} \) | \(a_{702}= -0.55476811 \pm 1.1 \cdot 10^{-6} \) |
\(a_{703}= -0.03900851 \pm 2.3 \cdot 10^{-7} \) | \(a_{704}= +0.18736464 \pm 1.4 \cdot 10^{-7} \) | \(a_{705}= -0.08004199 \pm 6.7 \cdot 10^{-7} \) |
\(a_{706}= -1.43012121 \pm 3.7 \cdot 10^{-7} \) | \(a_{707}= +0.04039472 \pm 5.4 \cdot 10^{-7} \) | \(a_{708}= -1.53680780 \pm 5.5 \cdot 10^{-7} \) |
\(a_{709}= +0.73917035 \pm 1.3 \cdot 10^{-7} \) | \(a_{710}= +1.81250835 \pm 5.7 \cdot 10^{-8} \) | \(a_{711}= +0.48246405 \pm 7.6 \cdot 10^{-7} \) |
\(a_{712}= -2.82948717 \pm 9.5 \cdot 10^{-8} \) | \(a_{713}= -0.61541297 \pm 2.0 \cdot 10^{-7} \) | \(a_{714}= -0.02292622 \pm 1.8 \cdot 10^{-6} \) |
\(a_{715}= +0.07576439 \pm 2.2 \cdot 10^{-8} \) | \(a_{716}= -4.39417510 \pm 3.8 \cdot 10^{-7} \) | \(a_{717}= -0.33350987 \pm 4.2 \cdot 10^{-7} \) |
\(a_{718}= +1.14655193 \pm 1.0 \cdot 10^{-6} \) | \(a_{719}= +0.54505329 \pm 6.3 \cdot 10^{-7} \) | \(a_{720}= +0.59266693 \pm 7.6 \cdot 10^{-7} \) |
\(a_{721}= -0.02475447 \pm 4.2 \cdot 10^{-7} \) | \(a_{722}= -1.88561615 \pm 1.1 \cdot 10^{-6} \) | \(a_{723}= +0.50191319 \pm 2.5 \cdot 10^{-7} \) |
\(a_{724}= +2.37491584 \pm 3.8 \cdot 10^{-7} \) | \(a_{725}= +0.71159101 \pm 1.4 \cdot 10^{-7} \) | \(a_{726}= +1.08320152 \pm 1.3 \cdot 10^{-6} \) |
\(a_{727}= +0.34993891 \pm 1.7 \cdot 10^{-7} \) | \(a_{728}= -0.14062352 \pm 1.1 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.01255292 \pm 1.3 \cdot 10^{-7} \) | \(a_{731}= +0.48799036 \pm 8.5 \cdot 10^{-8} \) | \(a_{732}= -2.38920898 \pm 8.1 \cdot 10^{-7} \) |
\(a_{733}= +0.88922321 \pm 9.8 \cdot 10^{-7} \) | \(a_{734}= +1.00569095 \pm 6.3 \cdot 10^{-7} \) | \(a_{735}= +0.33731023 \pm 3.3 \cdot 10^{-7} \) |
\(a_{736}= +2.32402185 \pm 2.3 \cdot 10^{-7} \) | \(a_{737}= -0.10983411 \pm 1.6 \cdot 10^{-7} \) | \(a_{738}= -0.38593547 \pm 1.4 \cdot 10^{-6} \) |
\(a_{739}= -0.97989689 \pm 6.7 \cdot 10^{-7} \) | \(a_{740}= -1.24778802 \pm 4.0 \cdot 10^{-8} \) | \(a_{741}= -0.04140011 \pm 1.2 \cdot 10^{-6} \) |
\(a_{742}= +0.05536357 \pm 1.9 \cdot 10^{-7} \) | \(a_{743}= +1.64668271 \pm 4.8 \cdot 10^{-7} \) | \(a_{744}= +1.26034144 \pm 8.7 \cdot 10^{-7} \) |
\(a_{745}= -0.45194592 \pm 7.0 \cdot 10^{-8} \) | \(a_{746}= -0.64144887 \pm 1.3 \cdot 10^{-6} \) | \(a_{747}= -0.03773554 \pm 9.6 \cdot 10^{-7} \) |
\(a_{748}= -0.14781206 \pm 1.8 \cdot 10^{-7} \) | \(a_{749}= +0.04055039 \pm 8.5 \cdot 10^{-7} \) | \(a_{750}= +1.05790973 \pm 9.2 \cdot 10^{-7} \) |
\(a_{751}= -1.76495196 \pm 5.9 \cdot 10^{-7} \) | \(a_{752}= +0.72076319 \pm 6.8 \cdot 10^{-7} \) | \(a_{753}= -0.00795507 \pm 2.8 \cdot 10^{-7} \) |
\(a_{754}= -3.11740793 \pm 2.0 \cdot 10^{-7} \) | \(a_{755}= -0.18307243 \pm 4.4 \cdot 10^{-8} \) | \(a_{756}= +0.01536295 \pm 9.5 \cdot 10^{-7} \) |
\(a_{757}= +0.75291728 \pm 6.3 \cdot 10^{-7} \) | \(a_{758}= -1.48343815 \pm 3.2 \cdot 10^{-7} \) | \(a_{759}= -0.04104984 \pm 4.5 \cdot 10^{-7} \) |
\(a_{760}= +0.08163363 \pm 2.9 \cdot 10^{-8} \) | \(a_{761}= -1.48746387 \pm 6.9 \cdot 10^{-7} \) | \(a_{762}= +0.46643806 \pm 1.3 \cdot 10^{-6} \) |
\(a_{763}= -0.02930490 \pm 6.2 \cdot 10^{-7} \) | \(a_{764}= -0.30481211 \pm 4.7 \cdot 10^{-7} \) | \(a_{765}= -0.13193662 \pm 6.5 \cdot 10^{-7} \) |
\(a_{766}= +2.69163628 \pm 7.7 \cdot 10^{-7} \) | \(a_{767}= +1.57908016 \pm 4.0 \cdot 10^{-8} \) | \(a_{768}= -0.24596081 \pm 7.6 \cdot 10^{-7} \) |
\(a_{769}= -1.01596278 \pm 2.1 \cdot 10^{-7} \) | \(a_{770}= -0.00291408 \pm 1.8 \cdot 10^{-8} \) | \(a_{771}= -0.07740055 \pm 7.1 \cdot 10^{-7} \) |
\(a_{772}= +0.48402277 \pm 9.0 \cdot 10^{-7} \) | \(a_{773}= -0.01062643 \pm 2.6 \cdot 10^{-7} \) | \(a_{774}= -0.45417831 \pm 9.2 \cdot 10^{-7} \) |
\(a_{775}= +0.48372850 \pm 6.7 \cdot 10^{-7} \) | \(a_{776}= +3.70106334 \pm 2.0 \cdot 10^{-8} \) | \(a_{777}= -0.01487364 \pm 6.1 \cdot 10^{-7} \) |
\(a_{778}= -0.09828454 \pm 1.4 \cdot 10^{-6} \) | \(a_{779}= -0.02880081 \pm 1.0 \cdot 10^{-6} \) | \(a_{780}= -1.32428933 \pm 9.0 \cdot 10^{-7} \) |
\(a_{781}= +0.13929448 \pm 2.6 \cdot 10^{-7} \) | \(a_{782}= -1.07074713 \pm 2.3 \cdot 10^{-7} \) | \(a_{783}= +0.20812219 \pm 1.6 \cdot 10^{-7} \) |
\(a_{784}= -3.03741569 \pm 2.9 \cdot 10^{-7} \) | \(a_{785}= -0.25059194 \pm 6.4 \cdot 10^{-8} \) | \(a_{786}= -0.29261682 \pm 1.4 \cdot 10^{-6} \) |
\(a_{787}= -0.99406658 \pm 6.1 \cdot 10^{-7} \) | \(a_{788}= +0.14421703 \pm 1.6 \cdot 10^{-7} \) | \(a_{789}= -1.04694345 \pm 7.3 \cdot 10^{-7} \) |
\(a_{790}= +1.59959200 \pm 6.8 \cdot 10^{-8} \) | \(a_{791}= +0.01171365 \pm 1.0 \cdot 10^{-7} \) | \(a_{792}= +0.08406844 \pm 4.3 \cdot 10^{-7} \) |
\(a_{793}= +2.45492800 \pm 2.1 \cdot 10^{-7} \) | \(a_{794}= +1.71809957 \pm 1.7 \cdot 10^{-7} \) | \(a_{795}= +0.31860825 \pm 2.5 \cdot 10^{-7} \) |
\(a_{796}= +2.14785196 \pm 3.5 \cdot 10^{-7} \) | \(a_{797}= -0.74682791 \pm 3.8 \cdot 10^{-7} \) | \(a_{798}= +0.00159235 \pm 2.1 \cdot 10^{-6} \) |
\(a_{799}= -0.16045278 \pm 5.7 \cdot 10^{-7} \) | \(a_{800}= -1.82673367 \pm 7.5 \cdot 10^{-7} \) | \(a_{801}= -0.31762093 \pm 2.6 \cdot 10^{-7} \) |
\(a_{802}= +0.27212389 \pm 9.3 \cdot 10^{-7} \) | \(a_{803}= +0.00096471 \pm 3.6 \cdot 10^{-7} \) | \(a_{804}= +1.91979574 \pm 9.2 \cdot 10^{-7} \) |
\(a_{805}= -0.01519866 \pm 5.1 \cdot 10^{-8} \) | \(a_{806}= -2.11916541 \pm 4.8 \cdot 10^{-7} \) | \(a_{807}= +0.74993516 \pm 1.0 \cdot 10^{-6} \) |
\(a_{808}= -3.86367556 \pm 1.9 \cdot 10^{-7} \) | \(a_{809}= +1.20264949 \pm 3.2 \cdot 10^{-7} \) | \(a_{810}= +0.12279495 \pm 8.8 \cdot 10^{-7} \) |
\(a_{811}= -0.52062571 \pm 9.0 \cdot 10^{-7} \) | \(a_{812}= +0.08632903 \pm 1.3 \cdot 10^{-7} \) | \(a_{813}= -0.99723262 \pm 2.8 \cdot 10^{-7} \) |
\(a_{814}= -0.13318876 \pm 8.8 \cdot 10^{-8} \) | \(a_{815}= -0.00461475 \pm 7.7 \cdot 10^{-8} \) | \(a_{816}= +1.18806465 \pm 1.2 \cdot 10^{-6} \) |
\(a_{817}= -0.03389350 \pm 1.1 \cdot 10^{-7} \) | \(a_{818}= -0.01130136 \pm 1.4 \cdot 10^{-6} \) | \(a_{819}= -0.01578554 \pm 7.9 \cdot 10^{-7} \) |
\(a_{820}= -0.92126822 \pm 6.8 \cdot 10^{-8} \) | \(a_{821}= -1.37904710 \pm 3.0 \cdot 10^{-7} \) | \(a_{822}= -0.80904768 \pm 9.0 \cdot 10^{-7} \) |
\(a_{823}= -0.14404963 \pm 6.9 \cdot 10^{-7} \) | \(a_{824}= +2.36771607 \pm 1.5 \cdot 10^{-7} \) | \(a_{825}= +0.03226610 \pm 8.4 \cdot 10^{-7} \) |
\(a_{826}= -0.06073518 \pm 4.7 \cdot 10^{-8} \) | \(a_{827}= -0.40180924 \pm 3.7 \cdot 10^{-7} \) | \(a_{828}= +0.71751205 \pm 7.1 \cdot 10^{-7} \) |
\(a_{829}= +1.13888647 \pm 6.7 \cdot 10^{-7} \) | \(a_{830}= -0.12511082 \pm 1.0 \cdot 10^{-7} \) | \(a_{831}= +0.02261768 \pm 5.9 \cdot 10^{-7} \) |
\(a_{832}= +3.36503834 \pm 2.3 \cdot 10^{-7} \) | \(a_{833}= +0.67617466 \pm 2.4 \cdot 10^{-7} \) | \(a_{834}= -0.97289362 \pm 1.1 \cdot 10^{-6} \) |
\(a_{835}= -0.24455923 \pm 7.3 \cdot 10^{-8} \) | \(a_{836}= +0.01026632 \pm 3.0 \cdot 10^{-7} \) | \(a_{837}= +0.14147823 \pm 6.9 \cdot 10^{-7} \) |
\(a_{838}= -1.52945567 \pm 7.4 \cdot 10^{-7} \) | \(a_{839}= -0.90912460 \pm 6.6 \cdot 10^{-7} \) | \(a_{840}= +0.03112626 \pm 7.1 \cdot 10^{-7} \) |
\(a_{841}= +0.16950082 \pm 5.6 \cdot 10^{-7} \) | \(a_{842}= +0.48774992 \pm 4.6 \cdot 10^{-7} \) | \(a_{843}= +1.11175280 \pm 8.0 \cdot 10^{-7} \) |
\(a_{844}= +2.33533041 \pm 5.5 \cdot 10^{-7} \) | \(a_{845}= +0.77591392 \pm 4.6 \cdot 10^{-8} \) | \(a_{846}= +0.14933527 \pm 1.4 \cdot 10^{-6} \) |
\(a_{847}= +0.03082174 \pm 3.7 \cdot 10^{-7} \) | \(a_{848}= -2.86900785 \pm 1.7 \cdot 10^{-7} \) | \(a_{849}= -0.03123250 \pm 2.9 \cdot 10^{-7} \) |
\(a_{850}= +0.84163143 \pm 7.6 \cdot 10^{-7} \) | \(a_{851}= -0.69465913 \pm 6.4 \cdot 10^{-8} \) | \(a_{852}= -2.43473486 \pm 1.1 \cdot 10^{-6} \) |
\(a_{853}= +0.72547851 \pm 4.9 \cdot 10^{-7} \) | \(a_{854}= -0.09442237 \pm 3.1 \cdot 10^{-7} \) | \(a_{855}= +0.00916369 \pm 9.9 \cdot 10^{-7} \) |
\(a_{856}= -3.87856524 \pm 3.0 \cdot 10^{-7} \) | \(a_{857}= +0.21486090 \pm 3.9 \cdot 10^{-7} \) | \(a_{858}= -0.14135450 \pm 1.3 \cdot 10^{-6} \) |
\(a_{859}= -1.20129715 \pm 9.7 \cdot 10^{-7} \) | \(a_{860}= -1.08417099 \pm 8.2 \cdot 10^{-8} \) | \(a_{861}= -0.01098152 \pm 1.1 \cdot 10^{-6} \) |
\(a_{862}= -0.11274230 \pm 4.5 \cdot 10^{-7} \) | \(a_{863}= +1.39009541 \pm 8.0 \cdot 10^{-7} \) | \(a_{864}= -0.53427293 \pm 7.7 \cdot 10^{-7} \) |
\(a_{865}= +1.11832745 \pm 8.5 \cdot 10^{-8} \) | \(a_{866}= +3.22423876 \pm 8.1 \cdot 10^{-8} \) | \(a_{867}= +0.31286912 \pm 9.8 \cdot 10^{-8} \) |
\(a_{868}= +0.05868513 \pm 4.1 \cdot 10^{-7} \) | \(a_{869}= +0.12293148 \pm 3.0 \cdot 10^{-7} \) | \(a_{870}= +0.69002154 \pm 1.0 \cdot 10^{-6} \) |
\(a_{871}= -1.97260280 \pm 2.4 \cdot 10^{-7} \) | \(a_{872}= +2.80295589 \pm 2.2 \cdot 10^{-7} \) | \(a_{873}= +0.41545875 \pm 5.9 \cdot 10^{-8} \) |
\(a_{874}= +0.07436902 \pm 3.5 \cdot 10^{-7} \) | \(a_{875}= +0.03010208 \pm 8.7 \cdot 10^{-8} \) | \(a_{876}= -0.01686229 \pm 1.4 \cdot 10^{-6} \) |
\(a_{877}= -1.35486621 \pm 1.6 \cdot 10^{-7} \) | \(a_{878}= +1.43404676 \pm 1.0 \cdot 10^{-6} \) | \(a_{879}= +0.40299305 \pm 2.9 \cdot 10^{-7} \) |
\(a_{880}= +0.15101109 \pm 2.5 \cdot 10^{-8} \) | \(a_{881}= -1.23023569 \pm 7.8 \cdot 10^{-7} \) | \(a_{882}= -0.62932363 \pm 1.0 \cdot 10^{-6} \) |
\(a_{883}= +1.66871496 \pm 2.0 \cdot 10^{-7} \) | \(a_{884}= -2.65468049 \pm 2.6 \cdot 10^{-7} \) | \(a_{885}= -0.34952093 \pm 1.3 \cdot 10^{-7} \) |
\(a_{886}= +0.18625267 \pm 3.1 \cdot 10^{-7} \) | \(a_{887}= -1.28393615 \pm 5.9 \cdot 10^{-7} \) | \(a_{888}= +1.42263444 \pm 3.5 \cdot 10^{-7} \) |
\(a_{889}= +0.01327217 \pm 3.6 \cdot 10^{-7} \) | \(a_{890}= -1.05306064 \pm 5.2 \cdot 10^{-8} \) | \(a_{891}= +0.00943701 \pm 2.5 \cdot 10^{-7} \) |
\(a_{892}= +2.15372901 \pm 5.3 \cdot 10^{-7} \) | \(a_{893}= +0.01114429 \pm 9.2 \cdot 10^{-7} \) | \(a_{894}= +0.84320078 \pm 1.5 \cdot 10^{-6} \) |
\(a_{895}= -0.99938077 \pm 5.1 \cdot 10^{-8} \) | \(a_{896}= -0.04323946 \pm 2.5 \cdot 10^{-7} \) | \(a_{897}= -0.73724836 \pm 5.4 \cdot 10^{-7} \) |
\(a_{898}= +0.60695171 \pm 1.3 \cdot 10^{-7} \) | \(a_{899}= +0.79500847 \pm 1.5 \cdot 10^{-7} \) | \(a_{900}= -0.56398067 \pm 1.0 \cdot 10^{-6} \) |
\(a_{901}= +0.63868452 \pm 1.5 \cdot 10^{-7} \) | \(a_{902}= -0.09833607 \pm 3.5 \cdot 10^{-7} \) | \(a_{903}= -0.01292332 \pm 5.7 \cdot 10^{-7} \) |
\(a_{904}= -1.12038802 \pm 3.9 \cdot 10^{-8} \) | \(a_{905}= +0.54013442 \pm 4.1 \cdot 10^{-8} \) | \(a_{906}= +0.34156037 \pm 9.9 \cdot 10^{-7} \) |
\(a_{907}= -0.77778546 \pm 3.8 \cdot 10^{-7} \) | \(a_{908}= -0.80874936 \pm 3.8 \cdot 10^{-7} \) | \(a_{909}= -0.43371260 \pm 7.3 \cdot 10^{-7} \) |
\(a_{910}= -0.05233637 \pm 6.7 \cdot 10^{-8} \) | \(a_{911}= -0.86159701 \pm 9.7 \cdot 10^{-7} \) | \(a_{912}= -0.08251734 \pm 1.6 \cdot 10^{-6} \) |
\(a_{913}= -0.00961499 \pm 3.8 \cdot 10^{-7} \) | \(a_{914}= -1.76596135 \pm 1.7 \cdot 10^{-7} \) | \(a_{915}= -0.54338516 \pm 3.9 \cdot 10^{-7} \) |
\(a_{916}= +3.22590792 \pm 5.0 \cdot 10^{-7} \) | \(a_{917}= -0.00832621 \pm 4.9 \cdot 10^{-7} \) | \(a_{918}= +0.24615569 \pm 1.3 \cdot 10^{-6} \) |
\(a_{919}= +1.64156984 \pm 2.0 \cdot 10^{-7} \) | \(a_{920}= +1.45372225 \pm 7.7 \cdot 10^{-8} \) | \(a_{921}= -0.78124150 \pm 3.7 \cdot 10^{-7} \) |
\(a_{922}= -1.88608867 \pm 9.0 \cdot 10^{-7} \) | \(a_{923}= +2.50170614 \pm 3.4 \cdot 10^{-7} \) | \(a_{924}= +0.00391447 \pm 1.1 \cdot 10^{-6} \) |
\(a_{925}= +0.54601777 \pm 1.5 \cdot 10^{-7} \) | \(a_{926}= -2.11682023 \pm 4.5 \cdot 10^{-7} \) | \(a_{927}= +0.26578533 \pm 5.7 \cdot 10^{-7} \) |
\(a_{928}= -3.00223936 \pm 1.7 \cdot 10^{-7} \) | \(a_{929}= -1.03418090 \pm 2.3 \cdot 10^{-7} \) | \(a_{930}= +0.46906591 \pm 1.5 \cdot 10^{-6} \) |
\(a_{931}= -0.04696389 \pm 3.9 \cdot 10^{-7} \) | \(a_{932}= +0.47298154 \pm 4.4 \cdot 10^{-7} \) | \(a_{933}= +0.23481754 \pm 1.2 \cdot 10^{-7} \) |
\(a_{934}= -1.22007931 \pm 3.7 \cdot 10^{-7} \) | \(a_{935}= -0.03361735 \pm 3.1 \cdot 10^{-8} \) | \(a_{936}= +1.50985551 \pm 5.2 \cdot 10^{-7} \) |
\(a_{937}= +1.12693882 \pm 7.8 \cdot 10^{-7} \) | \(a_{938}= +0.07587099 \pm 4.2 \cdot 10^{-7} \) | \(a_{939}= +0.90615856 \pm 7.4 \cdot 10^{-7} \) |
\(a_{940}= +0.35647887 \pm 7.2 \cdot 10^{-8} \) | \(a_{941}= -0.30114666 \pm 2.1 \cdot 10^{-7} \) | \(a_{942}= +0.46753231 \pm 1.0 \cdot 10^{-6} \) |
\(a_{943}= -0.51288149 \pm 1.8 \cdot 10^{-7} \) | \(a_{944}= +3.14737080 \pm 5.7 \cdot 10^{-8} \) | \(a_{945}= +0.00349404 \pm 5.2 \cdot 10^{-7} \) |
\(a_{946}= -0.11572429 \pm 5.2 \cdot 10^{-8} \) | \(a_{947}= +1.89714598 \pm 2.1 \cdot 10^{-7} \) | \(a_{948}= -2.14872522 \pm 1.2 \cdot 10^{-6} \) |
\(a_{949}= +0.01732612 \pm 5.0 \cdot 10^{-7} \) | \(a_{950}= -0.05845573 \pm 1.2 \cdot 10^{-6} \) | \(a_{951}= -0.50745526 \pm 9.7 \cdot 10^{-7} \) |
\(a_{952}= +0.06239594 \pm 1.1 \cdot 10^{-7} \) | \(a_{953}= -0.98740840 \pm 9.3 \cdot 10^{-7} \) | \(a_{954}= -0.59443113 \pm 9.8 \cdot 10^{-7} \) |
\(a_{955}= -0.06932436 \pm 9.6 \cdot 10^{-8} \) | \(a_{956}= +1.48533567 \pm 4.0 \cdot 10^{-7} \) | \(a_{957}= +0.05302938 \pm 4.0 \cdot 10^{-7} \) |
\(a_{958}= +0.40738970 \pm 9.4 \cdot 10^{-7} \) | \(a_{959}= -0.02302088 \pm 8.0 \cdot 10^{-8} \) | \(a_{960}= -0.74483320 \pm 4.3 \cdot 10^{-7} \) |
\(a_{961}= -0.45956561 \pm 2.0 \cdot 10^{-7} \) | \(a_{962}= -2.39204839 \pm 1.2 \cdot 10^{-7} \) | \(a_{963}= -0.43538403 \pm 1.1 \cdot 10^{-6} \) |
\(a_{964}= -2.23534482 \pm 2.4 \cdot 10^{-7} \) | \(a_{965}= +0.11008279 \pm 8.5 \cdot 10^{-8} \) | \(a_{966}= +0.02835632 \pm 1.4 \cdot 10^{-6} \) |
\(a_{967}= -1.62793215 \pm 6.0 \cdot 10^{-7} \) | \(a_{968}= -2.94803858 \pm 1.6 \cdot 10^{-7} \) | \(a_{969}= +0.01836961 \pm 1.5 \cdot 10^{-6} \) |
\(a_{970}= +1.37743835 \pm 1 \cdot 10^{-8} \) | \(a_{971}= +0.53490476 \pm 5.1 \cdot 10^{-7} \) | \(a_{972}= -0.16494994 \pm 5.0 \cdot 10^{-7} \) |
\(a_{973}= -0.02768300 \pm 2.4 \cdot 10^{-7} \) | \(a_{974}= +3.26285683 \pm 1.0 \cdot 10^{-6} \) | \(a_{975}= +0.57949387 \pm 9.2 \cdot 10^{-7} \) |
\(a_{976}= +4.89308201 \pm 3.3 \cdot 10^{-7} \) | \(a_{977}= -1.06305703 \pm 1.0 \cdot 10^{-6} \) | \(a_{978}= +0.00860978 \pm 1.2 \cdot 10^{-6} \) |
\(a_{979}= -0.08092958 \pm 1.0 \cdot 10^{-7} \) | \(a_{980}= -1.50226113 \pm 3.7 \cdot 10^{-8} \) | \(a_{981}= +0.31464269 \pm 8.3 \cdot 10^{-7} \) |
\(a_{982}= +1.44818783 \pm 1.1 \cdot 10^{-6} \) | \(a_{983}= -0.73557405 \pm 3.8 \cdot 10^{-7} \) | \(a_{984}= +1.05036102 \pm 8.4 \cdot 10^{-7} \) |
\(a_{985}= +0.03279972 \pm 5.5 \cdot 10^{-8} \) | \(a_{986}= +1.38322244 \pm 1.7 \cdot 10^{-7} \) | \(a_{987}= +0.00424923 \pm 1.0 \cdot 10^{-6} \) |
\(a_{988}= +0.18438152 \pm 3.9 \cdot 10^{-7} \) | \(a_{989}= -0.60357149 \pm 1.3 \cdot 10^{-7} \) | \(a_{990}= +0.03128806 \pm 1.1 \cdot 10^{-6} \) |
\(a_{991}= -1.24357879 \pm 1.0 \cdot 10^{-6} \) | \(a_{992}= -2.04087562 \pm 8.7 \cdot 10^{-7} \) | \(a_{993}= -0.11780594 \pm 2.4 \cdot 10^{-7} \) |
\(a_{994}= -0.09622156 \pm 6.5 \cdot 10^{-7} \) | \(a_{995}= +0.48849259 \pm 8.6 \cdot 10^{-8} \) | \(a_{996}= +0.16806084 \pm 1.4 \cdot 10^{-6} \) |
\(a_{997}= +0.68682281 \pm 1.5 \cdot 10^{-7} \) | \(a_{998}= +2.59258703 \pm 6.6 \cdot 10^{-7} \) | \(a_{999}= +0.15969625 \pm 1.6 \cdot 10^{-7} \) |
\(a_{1000}= -2.87920449 \pm 9.0 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000