Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(16.9653979482295206395782966382 \pm 4 \cdot 10^{-6}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.27140621 \pm 3.9 \cdot 10^{-3} \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.92633867 \pm 7.0 \cdot 10^{-3} \) | \(a_{5}= +0.88701142 \pm 5.3 \cdot 10^{-3} \) | \(a_{6}= \pm0.15669645 \pm 2.2 \cdot 10^{-3} \) |
\(a_{7}= +0.44233409 \pm 4.4 \cdot 10^{-3} \) | \(a_{8}= +0.52282028 \pm 4.7 \cdot 10^{-3} \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= -0.24074041 \pm 3.0 \cdot 10^{-3} \) | \(a_{11}= -0.48209419 \pm 4.9 \cdot 10^{-3} \) | \(a_{12}= \pm0.53482188 \pm 4.0 \cdot 10^{-3} \) |
\(a_{13}= +1.36615398 \pm 4.7 \cdot 10^{-3} \) | \(a_{14}= -0.12005222 \pm 3.0 \cdot 10^{-3} \) | \(a_{15}= \pm0.51211628 \pm 3.1 \cdot 10^{-3} \) |
\(a_{16}= +0.78444199 \pm 5.7 \cdot 10^{-3} \) | \(a_{17}= -1.20406801 \pm 3.5 \cdot 10^{-3} \) | \(a_{18}= \pm0.09046874 \pm 1.3 \cdot 10^{-3} \) |
\(a_{19}= -1.58490148 \pm 2.9 \cdot 10^{-3} \) | \(a_{20}= -0.82167298 \pm 5.0 \cdot 10^{-3} \) | \(a_{21}= \pm0.25538170 \pm 2.5 \cdot 10^{-3} \) |
\(a_{22}= +0.13084336 \pm 2.4 \cdot 10^{-3} \) | \(a_{23}= -0.88938742 \pm 1.0 \cdot 10^{-2} \) | \(a_{24}= \pm0.30185043 \pm 2.7 \cdot 10^{-3} \) |
\(a_{25}= -0.21321074 \pm 4.4 \cdot 10^{-3} \) | \(a_{26}= -0.37078268 \pm 1.6 \cdot 10^{-3} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= -0.40975117 \pm 2.9 \cdot 10^{-3} \) | \(a_{29}= +1.36067712 \pm 1.0 \cdot 10^{-2} \) | \(a_{30}= \pm0.13899154 \pm 1.7 \cdot 10^{-3} \) |
\(a_{31}= -1.05564852 \pm 4.5 \cdot 10^{-3} \) | \(a_{32}= -0.73572271 \pm 6.3 \cdot 10^{-3} \) | \(a_{33}= \pm0.27833721 \pm 2.8 \cdot 10^{-3} \) |
\(a_{34}= +0.32679154 \pm 4.3 \cdot 10^{-3} \) | \(a_{35}= +0.39235539 \pm 1.9 \cdot 10^{-3} \) | \(a_{36}= \pm0.30877956 \pm 2.3 \cdot 10^{-3} \) |
\(a_{37}= +0.35776429 \pm 5.4 \cdot 10^{-3} \) | \(a_{38}= +0.43015211 \pm 1.3 \cdot 10^{-3} \) | \(a_{39}= \pm0.78874937 \pm 2.7 \cdot 10^{-3} \) |
\(a_{40}= +0.46374756 \pm 2.9 \cdot 10^{-3} \) | \(a_{41}= -1.34131023 \pm 1.0 \cdot 10^{-2} \) | \(a_{42}= \pm0.06931218 \pm 1.7 \cdot 10^{-3} \) |
\(a_{43}= +0.57469831 \pm 6.8 \cdot 10^{-3} \) | \(a_{44}= +0.44658249 \pm 4.3 \cdot 10^{-3} \) | \(a_{45}= \pm0.29567047 \pm 1.7 \cdot 10^{-3} \) |
\(a_{46}= +0.24138527 \pm 3.1 \cdot 10^{-3} \) | \(a_{47}= -0.04214236 \pm 8.5 \cdot 10^{-3} \) | \(a_{48}= \pm0.45289780 \pm 3.3 \cdot 10^{-3} \) |
\(a_{49}= -0.80434055 \pm 7.4 \cdot 10^{-3} \) | \(a_{50}= +0.05786672 \pm 2.1 \cdot 10^{-3} \) | \(a_{51}= \pm0.69516899 \pm 2.0 \cdot 10^{-3} \) |
\(a_{52}= -1.26552126 \pm 4.3 \cdot 10^{-3} \) | \(a_{53}= +1.30030034 \pm 4.2 \cdot 10^{-3} \) | \(a_{54}= \pm0.05223215 \pm 7.5 \cdot 10^{-4} \) |
\(a_{55}= -0.42762305 \pm 3.4 \cdot 10^{-3} \) | \(a_{56}= +0.23126123 \pm 4.2 \cdot 10^{-3} \) | \(a_{57}= \pm0.91504330 \pm 1.6 \cdot 10^{-3} \) |
\(a_{58}= -0.36929623 \pm 4.2 \cdot 10^{-3} \) | \(a_{59}= -0.53475422 \pm 6.8 \cdot 10^{-3} \) | \(a_{60}= \pm0.47439311 \pm 2.8 \cdot 10^{-3} \) |
\(a_{61}= -1.38859196 \pm 5.6 \cdot 10^{-3} \) | \(a_{62}= +0.28650957 \pm 2.1 \cdot 10^{-3} \) | \(a_{63}= \pm0.14744470 \pm 1.4 \cdot 10^{-3} \) |
\(a_{64}= -0.58476228 \pm 5.2 \cdot 10^{-3} \) | \(a_{65}= +1.21179418 \pm 3.3 \cdot 10^{-3} \) | \(a_{66}= \pm0.07554245 \pm 1.4 \cdot 10^{-3} \) |
\(a_{67}= -0.50443838 \pm 1.2 \cdot 10^{-2} \) | \(a_{68}= +1.11537475 \pm 4.0 \cdot 10^{-3} \) | \(a_{69}= \pm0.51348806 \pm 6.2 \cdot 10^{-3} \) |
\(a_{70}= -0.10648769 \pm 1.5 \cdot 10^{-3} \) | \(a_{71}= -1.01490083 \pm 8.0 \cdot 10^{-3} \) | \(a_{72}= \pm0.17427343 \pm 1.5 \cdot 10^{-3} \) |
\(a_{73}= -1.48130344 \pm 3.4 \cdot 10^{-3} \) | \(a_{74}= -0.09709945 \pm 5.5 \cdot 10^{-3} \) | \(a_{75}= \pm0.12309728 \pm 2.5 \cdot 10^{-3} \) |
\(a_{76}= +1.46815553 \pm 2.6 \cdot 10^{-3} \) | \(a_{77}= -0.21324669 \pm 2.9 \cdot 10^{-3} \) | \(a_{78}= \pm0.21407148 \pm 9.7 \cdot 10^{-4} \) |
\(a_{79}= -0.84994692 \pm 6.0 \cdot 10^{-3} \) | \(a_{80}= +0.69580901 \pm 4.2 \cdot 10^{-3} \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= +0.36403993 \pm 3.3 \cdot 10^{-3} \) | \(a_{83}= +0.31618167 \pm 8.5 \cdot 10^{-3} \) | \(a_{84}= \pm0.23656995 \pm 1.6 \cdot 10^{-3} \) |
\(a_{85}= -1.06802207 \pm 2.8 \cdot 10^{-3} \) | \(a_{86}= -0.15597669 \pm 5.1 \cdot 10^{-3} \) | \(a_{87}= \pm0.78558730 \pm 5.8 \cdot 10^{-3} \) |
\(a_{88}= -0.25204862 \pm 3.1 \cdot 10^{-3} \) | \(a_{89}= +0.07930100 \pm 3.5 \cdot 10^{-3} \) | \(a_{90}= \pm0.08024680 \pm 1.0 \cdot 10^{-3} \) |
\(a_{91}= +0.60429647 \pm 1.8 \cdot 10^{-3} \) | \(a_{92}= +0.82387395 \pm 9.9 \cdot 10^{-3} \) | \(a_{93}= \pm0.60947896 \pm 2.6 \cdot 10^{-3} \) |
\(a_{94}= +0.01143770 \pm 3.4 \cdot 10^{-3} \) | \(a_{95}= -1.40582571 \pm 2.2 \cdot 10^{-3} \) | \(a_{96}= \pm0.42476971 \pm 3.6 \cdot 10^{-3} \) |
\(a_{97}= +0.44130829 \pm 8.1 \cdot 10^{-3} \) | \(a_{98}= +0.21830302 \pm 3.5 \cdot 10^{-3} \) | \(a_{99}= \pm0.16069806 \pm 1.6 \cdot 10^{-3} \) |
\(a_{100}= +0.19750536 \pm 3.6 \cdot 10^{-3} \) | \(a_{101}= -0.50815082 \pm 4.5 \cdot 10^{-3} \) | \(a_{102}= \pm0.18867318 \pm 2.5 \cdot 10^{-3} \) |
\(a_{103}= -1.17475350 \pm 5.8 \cdot 10^{-3} \) | \(a_{104}= +0.71425301 \pm 2.7 \cdot 10^{-3} \) | \(a_{105}= \pm0.22652649 \pm 1.1 \cdot 10^{-3} \) |
\(a_{106}= -0.35290959 \pm 2.6 \cdot 10^{-3} \) | \(a_{107}= +0.22598633 \pm 3.9 \cdot 10^{-3} \) | \(a_{108}= \pm0.17827396 \pm 1.3 \cdot 10^{-3} \) |
\(a_{109}= +1.02132863 \pm 7.9 \cdot 10^{-3} \) | \(a_{110}= +0.11605955 \pm 2.1 \cdot 10^{-3} \) | \(a_{111}= \pm0.20655531 \pm 3.1 \cdot 10^{-3} \) |
\(a_{112}= +0.34698543 \pm 1.5 \cdot 10^{-3} \) | \(a_{113}= +1.06972866 \pm 4.4 \cdot 10^{-3} \) | \(a_{114}= \pm0.24834844 \pm 7.6 \cdot 10^{-4} \) |
\(a_{115}= -0.78889679 \pm 7.5 \cdot 10^{-3} \) | \(a_{116}= -1.26044783 \pm 9.3 \cdot 10^{-3} \) | \(a_{117}= \pm0.45538466 \pm 1.5 \cdot 10^{-3} \) |
\(a_{118}= +0.14513562 \pm 4.5 \cdot 10^{-3} \) | \(a_{119}= -0.53260032 \pm 1.9 \cdot 10^{-3} \) | \(a_{120}= \pm0.26774478 \pm 1.7 \cdot 10^{-3} \) |
\(a_{121}= -0.76758519 \pm 4.7 \cdot 10^{-3} \) | \(a_{122}= +0.37687249 \pm 2.3 \cdot 10^{-3} \) | \(a_{123}= \pm0.77440582 \pm 5.9 \cdot 10^{-3} \) |
\(a_{124}= +0.97788805 \pm 4.0 \cdot 10^{-3} \) | \(a_{125}= -1.07613178 \pm 7.8 \cdot 10^{-3} \) | \(a_{126}= \pm0.04001741 \pm 1.0 \cdot 10^{-3} \) |
\(a_{127}= +0.86220317 \pm 8.8 \cdot 10^{-3} \) | \(a_{128}= +0.89443083 \pm 6.6 \cdot 10^{-3} \) | \(a_{129}= \pm0.33180222 \pm 3.9 \cdot 10^{-3} \) |
\(a_{130}= -0.32888847 \pm 1.2 \cdot 10^{-3} \) | \(a_{131}= +0.45648944 \pm 5.1 \cdot 10^{-3} \) | \(a_{132}= \pm0.25783452 \pm 2.4 \cdot 10^{-3} \) |
\(a_{133}= -0.70105595 \pm 8.1 \cdot 10^{-4} \) | \(a_{134}= +0.13690771 \pm 4.0 \cdot 10^{-3} \) | \(a_{135}= \pm0.17070543 \pm 1.0 \cdot 10^{-3} \) |
\(a_{136}= -0.62951118 \pm 1.8 \cdot 10^{-3} \) | \(a_{137}= +0.43311051 \pm 8.8 \cdot 10^{-3} \) | \(a_{138}= \pm0.13936385 \pm 1.8 \cdot 10^{-3} \) |
\(a_{139}= -0.17289201 \pm 5.9 \cdot 10^{-3} \) | \(a_{140}= -0.36345397 \pm 1.6 \cdot 10^{-3} \) | \(a_{141}= \pm0.02433090 \pm 4.9 \cdot 10^{-3} \) |
\(a_{142}= +0.27545039 \pm 3.5 \cdot 10^{-3} \) | \(a_{143}= -0.65861489 \pm 3.0 \cdot 10^{-3} \) | \(a_{144}= \pm0.26148066 \pm 1.9 \cdot 10^{-3} \) |
\(a_{145}= +1.20693615 \pm 6.9 \cdot 10^{-3} \) | \(a_{146}= +0.40203496 \pm 2.8 \cdot 10^{-3} \) | \(a_{147}= \pm0.46438624 \pm 4.3 \cdot 10^{-3} \) |
\(a_{148}= -0.33141090 \pm 5.7 \cdot 10^{-3} \) | \(a_{149}= +0.55215925 \pm 6.6 \cdot 10^{-3} \) | \(a_{150}= \pm0.03340937 \pm 1.2 \cdot 10^{-3} \) |
\(a_{151}= -0.35053847 \pm 1.0 \cdot 10^{-2} \) | \(a_{152}= -0.82861864 \pm 1.6 \cdot 10^{-3} \) | \(a_{153}= \pm0.40135600 \pm 1.1 \cdot 10^{-3} \) |
\(a_{154}= +0.05787648 \pm 2.0 \cdot 10^{-3} \) | \(a_{155}= -0.93637230 \pm 3.0 \cdot 10^{-3} \) | \(a_{156}= \pm0.73064904 \pm 2.5 \cdot 10^{-3} \) |
\(a_{157}= +0.81038199 \pm 1.0 \cdot 10^{-2} \) | \(a_{158}= +0.23068087 \pm 3.0 \cdot 10^{-3} \) | \(a_{159}= \pm0.75072875 \pm 2.4 \cdot 10^{-3} \) |
\(a_{160}= -0.65259445 \pm 4.4 \cdot 10^{-3} \) | \(a_{161}= -0.39340637 \pm 2.6 \cdot 10^{-3} \) | \(a_{162}= \pm0.03015625 \pm 4.3 \cdot 10^{-4} \) |
\(a_{163}= -0.67677277 \pm 1.3 \cdot 10^{-3} \) | \(a_{164}= +1.24250753 \pm 9.3 \cdot 10^{-3} \) | \(a_{165}= \pm0.24688828 \pm 1.9 \cdot 10^{-3} \) |
\(a_{166}= -0.08581367 \pm 3.3 \cdot 10^{-3} \) | \(a_{167}= +1.66186695 \pm 4.9 \cdot 10^{-3} \) | \(a_{168}= \pm0.13351873 \pm 2.4 \cdot 10^{-3} \) |
\(a_{169}= +0.86637669 \pm 5.1 \cdot 10^{-3} \) | \(a_{170}= +0.28986783 \pm 3.7 \cdot 10^{-3} \) | \(a_{171}= \pm0.52830049 \pm 9.7 \cdot 10^{-4} \) |
\(a_{172}= -0.53236526 \pm 5.8 \cdot 10^{-3} \) | \(a_{173}= -1.58308440 \pm 4.4 \cdot 10^{-3} \) | \(a_{174}= \pm0.21321328 \pm 2.4 \cdot 10^{-3} \) |
\(a_{175}= -0.09431038 \pm 3.6 \cdot 10^{-3} \) | \(a_{176}= -0.37817493 \pm 3.6 \cdot 10^{-3} \) | \(a_{177}= \pm0.30874049 \pm 3.9 \cdot 10^{-3} \) |
\(a_{178}= -0.02152278 \pm 2.6 \cdot 10^{-3} \) | \(a_{179}= -0.68510928 \pm 6.7 \cdot 10^{-3} \) | \(a_{180}= \pm0.27389099 \pm 1.6 \cdot 10^{-3} \) |
\(a_{181}= +0.70110890 \pm 8.0 \cdot 10^{-3} \) | \(a_{182}= -0.16400982 \pm 1.0 \cdot 10^{-3} \) | \(a_{183}= \pm0.80170394 \pm 3.2 \cdot 10^{-3} \) |
\(a_{184}= -0.46498978 \pm 5.6 \cdot 10^{-3} \) | \(a_{185}= +0.31734101 \pm 4.2 \cdot 10^{-3} \) | \(a_{186}= \pm0.16541638 \pm 1.2 \cdot 10^{-3} \) |
\(a_{187}= +0.58047419 \pm 2.0 \cdot 10^{-3} \) | \(a_{188}= +0.03903810 \pm 7.6 \cdot 10^{-3} \) | \(a_{189}= \pm0.08512723 \pm 8.5 \cdot 10^{-4} \) |
\(a_{190}= +0.38154983 \pm 1.3 \cdot 10^{-3} \) | \(a_{191}= +0.68729289 \pm 5.5 \cdot 10^{-3} \) | \(a_{192}= \pm0.33761266 \pm 3.0 \cdot 10^{-3} \) |
\(a_{193}= -0.83942625 \pm 9.4 \cdot 10^{-3} \) | \(a_{194}= -0.11977381 \pm 3.1 \cdot 10^{-3} \) | \(a_{195}= \pm0.69962969 \pm 1.9 \cdot 10^{-3} \) |
\(a_{196}= +0.74509176 \pm 6.5 \cdot 10^{-3} \) | \(a_{197}= -0.26233691 \pm 1.3 \cdot 10^{-2} \) | \(a_{198}= \pm0.04361445 \pm 8.2 \cdot 10^{-4} \) |
\(a_{199}= -1.25737791 \pm 5.2 \cdot 10^{-3} \) | \(a_{200}= -0.11147090 \pm 3.2 \cdot 10^{-3} \) | \(a_{201}= \pm0.29123763 \pm 7.0 \cdot 10^{-3} \) |
\(a_{202}= +0.13791529 \pm 3.3 \cdot 10^{-3} \) | \(a_{203}= +0.60187388 \pm 4.4 \cdot 10^{-3} \) | \(a_{204}= \pm0.64396191 \pm 2.3 \cdot 10^{-3} \) |
\(a_{205}= -1.18975749 \pm 7.0 \cdot 10^{-3} \) | \(a_{206}= +0.31883540 \pm 4.4 \cdot 10^{-3} \) | \(a_{207}= \pm0.29646247 \pm 3.5 \cdot 10^{-3} \) |
\(a_{208}= +1.07166855 \pm 3.6 \cdot 10^{-3} \) | \(a_{209}= +0.76407179 \pm 1.9 \cdot 10^{-3} \) | \(a_{210}= \pm0.06148070 \pm 8.8 \cdot 10^{-4} \) |
\(a_{211}= +1.15456202 \pm 3.1 \cdot 10^{-3} \) | \(a_{212}= -1.20451848 \pm 3.9 \cdot 10^{-3} \) | \(a_{213}= \pm0.58595327 \pm 4.6 \cdot 10^{-3} \) |
\(a_{214}= -0.06133409 \pm 2.6 \cdot 10^{-3} \) | \(a_{215}= +0.50976396 \pm 4.4 \cdot 10^{-3} \) | \(a_{216}= \pm0.10061681 \pm 9.1 \cdot 10^{-4} \) |
\(a_{217}= -0.46694933 \pm 2.8 \cdot 10^{-3} \) | \(a_{218}= -0.27719493 \pm 3.3 \cdot 10^{-3} \) | \(a_{219}= \pm0.85523094 \pm 1.9 \cdot 10^{-3} \) |
\(a_{220}= +0.39612377 \pm 3.0 \cdot 10^{-3} \) | \(a_{221}= -1.64494230 \pm 1.5 \cdot 10^{-3} \) | \(a_{222}= \pm0.05606039 \pm 3.1 \cdot 10^{-3} \) |
\(a_{223}= -0.61387114 \pm 2.7 \cdot 10^{-3} \) | \(a_{224}= -0.32543524 \pm 4.1 \cdot 10^{-3} \) | \(a_{225}= \pm0.07107025 \pm 1.4 \cdot 10^{-3} \) |
\(a_{226}= -0.29033100 \pm 3.6 \cdot 10^{-3} \) | \(a_{227}= +0.94550217 \pm 1.0 \cdot 10^{-2} \) | \(a_{228}= \pm0.84763999 \pm 1.5 \cdot 10^{-3} \) |
\(a_{229}= +0.08393745 \pm 4.6 \cdot 10^{-3} \) | \(a_{230}= +0.21411149 \pm 2.3 \cdot 10^{-3} \) | \(a_{231}= \pm0.12311804 \pm 1.7 \cdot 10^{-3} \) |
\(a_{232}= +0.71138960 \pm 5.7 \cdot 10^{-3} \) | \(a_{233}= -0.26030242 \pm 7.5 \cdot 10^{-3} \) | \(a_{234}= \pm0.12359423 \pm 5.6 \cdot 10^{-4} \) |
\(a_{235}= -0.03738076 \pm 6.0 \cdot 10^{-3} \) | \(a_{236}= +0.49536351 \pm 5.2 \cdot 10^{-3} \) | \(a_{237}= \pm0.49071708 \pm 3.4 \cdot 10^{-3} \) |
\(a_{238}= +0.14455104 \pm 2.3 \cdot 10^{-3} \) | \(a_{239}= +1.35687305 \pm 6.5 \cdot 10^{-3} \) | \(a_{240}= \pm0.40172552 \pm 2.4 \cdot 10^{-3} \) |
\(a_{241}= -0.90650172 \pm 6.4 \cdot 10^{-3} \) | \(a_{242}= +0.20832739 \pm 2.4 \cdot 10^{-3} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= +1.28630643 \pm 5.0 \cdot 10^{-3} \) | \(a_{245}= -0.71345926 \pm 5.0 \cdot 10^{-3} \) | \(a_{246}= \pm0.21017855 \pm 1.9 \cdot 10^{-3} \) |
\(a_{247}= -2.16521946 \pm 2.1 \cdot 10^{-3} \) | \(a_{248}= -0.55191446 \pm 2.8 \cdot 10^{-3} \) | \(a_{249}= \pm0.18254757 \pm 4.9 \cdot 10^{-3} \) |
\(a_{250}= +0.29206885 \pm 3.7 \cdot 10^{-3} \) | \(a_{251}= +0.12361040 \pm 9.2 \cdot 10^{-3} \) | \(a_{252}= \pm0.13658372 \pm 9.7 \cdot 10^{-4} \) |
\(a_{253}= +0.42876851 \pm 6.6 \cdot 10^{-3} \) | \(a_{254}= -0.23400730 \pm 4.3 \cdot 10^{-3} \) | \(a_{255}= \pm0.61662283 \pm 1.6 \cdot 10^{-3} \) |
\(a_{256}= +0.34200820 \pm 3.8 \cdot 10^{-3} \) | \(a_{257}= +0.84532026 \pm 8.5 \cdot 10^{-3} \) | \(a_{258}= \pm0.09005318 \pm 2.9 \cdot 10^{-3} \) |
\(a_{259}= +0.15825134 \pm 2.8 \cdot 10^{-3} \) | \(a_{260}= -1.12253180 \pm 3.0 \cdot 10^{-3} \) | \(a_{261}= \pm0.45355904 \pm 3.3 \cdot 10^{-3} \) |
\(a_{262}= -0.12389407 \pm 2.9 \cdot 10^{-3} \) | \(a_{263}= -0.98080463 \pm 6.0 \cdot 10^{-3} \) | \(a_{264}= \pm0.14552034 \pm 1.7 \cdot 10^{-3} \) |
\(a_{265}= +1.15338125 \pm 3.0 \cdot 10^{-3} \) | \(a_{266}= +0.19027094 \pm 4.5 \cdot 10^{-4} \) | \(a_{267}= \pm0.04578445 \pm 2.0 \cdot 10^{-3} \) |
\(a_{268}= +0.46728078 \pm 1.1 \cdot 10^{-2} \) | \(a_{269}= +1.18850789 \pm 5.2 \cdot 10^{-3} \) | \(a_{270}= \pm0.04633051 \pm 5.9 \cdot 10^{-4} \) |
\(a_{271}= -0.61765586 \pm 7.2 \cdot 10^{-3} \) | \(a_{272}= -0.94452151 \pm 2.4 \cdot 10^{-3} \) | \(a_{273}= \pm0.34889073 \pm 1.0 \cdot 10^{-3} \) |
\(a_{274}= -0.11754888 \pm 4.7 \cdot 10^{-3} \) | \(a_{275}= +0.10278766 \pm 2.8 \cdot 10^{-3} \) | \(a_{276}= \pm0.47566385 \pm 5.7 \cdot 10^{-3} \) |
\(a_{277}= -1.37136826 \pm 3.9 \cdot 10^{-3} \) | \(a_{278}= +0.04692397 \pm 5.5 \cdot 10^{-3} \) | \(a_{279}= \pm0.35188284 \pm 1.5 \cdot 10^{-3} \) |
\(a_{280}= +0.20513135 \pm 1.5 \cdot 10^{-3} \) | \(a_{281}= +0.88480001 \pm 8.2 \cdot 10^{-3} \) | \(a_{282}= \pm0.00660356 \pm 2.0 \cdot 10^{-3} \) |
\(a_{283}= -0.76230171 \pm 1.1 \cdot 10^{-2} \) | \(a_{284}= +0.94014189 \pm 7.0 \cdot 10^{-3} \) | \(a_{285}= \pm0.81165385 \pm 1.3 \cdot 10^{-3} \) |
\(a_{286}= +0.17875217 \pm 1.1 \cdot 10^{-3} \) | \(a_{287}= -0.59330724 \pm 4.6 \cdot 10^{-3} \) | \(a_{288}= \pm0.24524090 \pm 2.1 \cdot 10^{-3} \) |
\(a_{289}= +0.44977976 \pm 7.4 \cdot 10^{-3} \) | \(a_{290}= -0.32756997 \pm 3.1 \cdot 10^{-3} \) | \(a_{291}= \pm0.25478946 \pm 4.7 \cdot 10^{-3} \) |
\(a_{292}= +1.37218865 \pm 3.5 \cdot 10^{-3} \) | \(a_{293}= +1.09111421 \pm 1.2 \cdot 10^{-2} \) | \(a_{294}= \pm0.12603731 \pm 2.0 \cdot 10^{-3} \) |
\(a_{295}= -0.47433310 \pm 3.7 \cdot 10^{-3} \) | \(a_{296}= +0.18704643 \pm 2.9 \cdot 10^{-3} \) | \(a_{297}= \pm0.09277907 \pm 9.4 \cdot 10^{-4} \) |
\(a_{298}= -0.14985945 \pm 3.4 \cdot 10^{-3} \) | \(a_{299}= -1.21504016 \pm 6.9 \cdot 10^{-3} \) | \(a_{300}= \pm0.11402977 \pm 2.1 \cdot 10^{-3} \) |
\(a_{301}= +0.25420865 \pm 6.4 \cdot 10^{-3} \) | \(a_{302}= +0.09513832 \pm 3.2 \cdot 10^{-3} \) | \(a_{303}= \pm0.29338101 \pm 2.6 \cdot 10^{-3} \) |
\(a_{304}= -1.24326328 \pm 2.2 \cdot 10^{-3} \) | \(a_{305}= -1.23169693 \pm 4.3 \cdot 10^{-3} \) | \(a_{306}= \pm0.10893051 \pm 1.4 \cdot 10^{-3} \) |
\(a_{307}= +0.39369327 \pm 3.5 \cdot 10^{-3} \) | \(a_{308}= +0.19753866 \pm 1.8 \cdot 10^{-3} \) | \(a_{309}= \pm0.67824425 \pm 3.3 \cdot 10^{-3} \) |
\(a_{310}= +0.25413726 \pm 1.5 \cdot 10^{-3} \) | \(a_{311}= -1.07935528 \pm 1.1 \cdot 10^{-2} \) | \(a_{312}= \pm0.41237417 \pm 1.5 \cdot 10^{-3} \) |
\(a_{313}= +0.59956789 \pm 4.8 \cdot 10^{-3} \) | \(a_{314}= -0.21994271 \pm 3.3 \cdot 10^{-3} \) | \(a_{315}= \pm0.13078513 \pm 6.5 \cdot 10^{-4} \) |
\(a_{316}= +0.78733870 \pm 5.2 \cdot 10^{-3} \) | \(a_{317}= +1.36902704 \pm 4.9 \cdot 10^{-3} \) | \(a_{318}= \pm0.20375245 \pm 1.5 \cdot 10^{-3} \) |
\(a_{319}= -0.65597454 \pm 6.2 \cdot 10^{-3} \) | \(a_{320}= -0.51869082 \pm 3.7 \cdot 10^{-3} \) | \(a_{321}= \pm0.13047327 \pm 2.3 \cdot 10^{-3} \) |
\(a_{322}= +0.10677293 \pm 9.3 \cdot 10^{-4} \) | \(a_{323}= +1.90832917 \pm 1.0 \cdot 10^{-3} \) | \(a_{324}= \pm0.10292652 \pm 7.8 \cdot 10^{-4} \) |
\(a_{325}= -0.29127871 \pm 2.5 \cdot 10^{-3} \) | \(a_{326}= +0.18368033 \pm 1.6 \cdot 10^{-3} \) | \(a_{327}= \pm0.58966436 \pm 4.5 \cdot 10^{-3} \) |
\(a_{328}= -0.70126419 \pm 5.9 \cdot 10^{-3} \) | \(a_{329}= -0.01864100 \pm 4.2 \cdot 10^{-3} \) | \(a_{330}= \pm0.06700701 \pm 1.2 \cdot 10^{-3} \) |
\(a_{331}= -0.34109535 \pm 4.6 \cdot 10^{-3} \) | \(a_{332}= -0.29289130 \pm 7.4 \cdot 10^{-3} \) | \(a_{333}= \pm0.11925476 \pm 1.8 \cdot 10^{-3} \) |
\(a_{334}= -0.45104101 \pm 3.9 \cdot 10^{-3} \) | \(a_{335}= -0.44744260 \pm 8.4 \cdot 10^{-3} \) | \(a_{336}= \pm0.20033213 \pm 9.2 \cdot 10^{-4} \) |
\(a_{337}= +0.33760680 \pm 8.9 \cdot 10^{-3} \) | \(a_{338}= -0.23514002 \pm 3.3 \cdot 10^{-3} \) | \(a_{339}= \pm0.61760813 \pm 2.5 \cdot 10^{-3} \) |
\(a_{340}= +0.98935014 \pm 3.4 \cdot 10^{-3} \) | \(a_{341}= +0.50892202 \pm 2.8 \cdot 10^{-3} \) | \(a_{342}= \pm0.14338404 \pm 4.4 \cdot 10^{-4} \) |
\(a_{343}= -0.79812133 \pm 3.7 \cdot 10^{-3} \) | \(a_{344}= +0.30046393 \pm 5.2 \cdot 10^{-3} \) | \(a_{345}= \pm0.45546978 \pm 4.3 \cdot 10^{-3} \) |
\(a_{346}= +0.42965894 \pm 2.9 \cdot 10^{-3} \) | \(a_{347}= -1.25700809 \pm 2.8 \cdot 10^{-3} \) | \(a_{348}= \pm0.72771990 \pm 5.4 \cdot 10^{-3} \) |
\(a_{349}= +0.35981793 \pm 1.2 \cdot 10^{-2} \) | \(a_{350}= +0.02559642 \pm 2.4 \cdot 10^{-3} \) | \(a_{351}= \pm0.26291646 \pm 9.2 \cdot 10^{-4} \) |
\(a_{352}= +0.35468764 \pm 3.9 \cdot 10^{-3} \) | \(a_{353}= +1.42347334 \pm 1.0 \cdot 10^{-2} \) | \(a_{354}= \pm0.08379409 \pm 2.6 \cdot 10^{-3} \) |
\(a_{355}= -0.90022863 \pm 5.3 \cdot 10^{-3} \) | \(a_{356}= -0.07345958 \pm 2.6 \cdot 10^{-3} \) | \(a_{357}= \pm0.30749694 \pm 1.1 \cdot 10^{-3} \) |
\(a_{358}= +0.18594291 \pm 4.0 \cdot 10^{-3} \) | \(a_{359}= -0.99262214 \pm 5.6 \cdot 10^{-3} \) | \(a_{360}= \pm0.15458252 \pm 9.8 \cdot 10^{-4} \) |
\(a_{361}= +1.51191271 \pm 6.8 \cdot 10^{-3} \) | \(a_{362}= -0.19028531 \pm 5.1 \cdot 10^{-3} \) | \(a_{363}= \pm0.44316552 \pm 2.7 \cdot 10^{-3} \) |
\(a_{364}= -0.55978319 \pm 1.3 \cdot 10^{-3} \) | \(a_{365}= -1.31393306 \pm 2.5 \cdot 10^{-3} \) | \(a_{366}= \pm0.21758743 \pm 1.3 \cdot 10^{-3} \) |
\(a_{367}= -0.99348366 \pm 5.1 \cdot 10^{-3} \) | \(a_{368}= -0.69767284 \pm 8.4 \cdot 10^{-3} \) | \(a_{369}= \pm0.44710341 \pm 3.4 \cdot 10^{-3} \) |
\(a_{370}= -0.08612832 \pm 4.7 \cdot 10^{-3} \) | \(a_{371}= +0.57516716 \pm 2.5 \cdot 10^{-3} \) | \(a_{372}= \pm0.56458393 \pm 2.3 \cdot 10^{-3} \) |
\(a_{373}= +0.47018231 \pm 4.6 \cdot 10^{-3} \) | \(a_{374}= -0.15754430 \pm 2.3 \cdot 10^{-3} \) | \(a_{375}= \pm0.62130497 \pm 4.5 \cdot 10^{-3} \) |
\(a_{376}= -0.02203288 \pm 5.1 \cdot 10^{-3} \) | \(a_{377}= +1.85889447 \pm 6.3 \cdot 10^{-3} \) | \(a_{378}= \pm0.02310406 \pm 5.8 \cdot 10^{-4} \) |
\(a_{379}= -0.08118959 \pm 1.9 \cdot 10^{-3} \) | \(a_{380}= +1.30227072 \pm 1.9 \cdot 10^{-3} \) | \(a_{381}= \pm0.49779323 \pm 5.0 \cdot 10^{-3} \) |
\(a_{382}= -0.18653556 \pm 5.4 \cdot 10^{-3} \) | \(a_{383}= +0.08212895 \pm 5.8 \cdot 10^{-3} \) | \(a_{384}= \pm0.51639988 \pm 3.8 \cdot 10^{-3} \) |
\(a_{385}= -0.18915225 \pm 1.2 \cdot 10^{-3} \) | \(a_{386}= +0.22782550 \pm 4.0 \cdot 10^{-3} \) | \(a_{387}= \pm0.19156610 \pm 2.2 \cdot 10^{-3} \) |
\(a_{388}= -0.40880094 \pm 7.1 \cdot 10^{-3} \) | \(a_{389}= -0.12877965 \pm 2.6 \cdot 10^{-3} \) | \(a_{390}= \pm0.18988385 \pm 7.4 \cdot 10^{-4} \) |
\(a_{391}= +1.07088293 \pm 3.1 \cdot 10^{-3} \) | \(a_{392}= -0.42052556 \pm 4.7 \cdot 10^{-3} \) | \(a_{393}= \pm0.26355430 \pm 2.9 \cdot 10^{-3} \) |
\(a_{394}= +0.07119987 \pm 3.9 \cdot 10^{-3} \) | \(a_{395}= -0.75391262 \pm 4.1 \cdot 10^{-3} \) | \(a_{396}= \pm0.14886083 \pm 1.4 \cdot 10^{-3} \) |
\(a_{397}= -0.56242485 \pm 9.4 \cdot 10^{-3} \) | \(a_{398}= +0.34126018 \pm 3.5 \cdot 10^{-3} \) | \(a_{399}= \pm0.40475484 \pm 4.7 \cdot 10^{-4} \) |
\(a_{400}= -0.16725146 \pm 3.0 \cdot 10^{-3} \) | \(a_{401}= -1.33790120 \pm 1.0 \cdot 10^{-2} \) | \(a_{402}= \pm0.07904370 \pm 2.3 \cdot 10^{-3} \) |
\(a_{403}= -1.44217843 \pm 2.7 \cdot 10^{-3} \) | \(a_{404}= +0.47071975 \pm 3.6 \cdot 10^{-3} \) | \(a_{405}= \pm0.09855682 \pm 5.9 \cdot 10^{-4} \) |
\(a_{406}= -0.16335231 \pm 2.8 \cdot 10^{-3} \) | \(a_{407}= -0.17247609 \pm 3.2 \cdot 10^{-3} \) | \(a_{408}= \pm0.36344845 \pm 1.0 \cdot 10^{-3} \) |
\(a_{409}= +1.78046790 \pm 1.1 \cdot 10^{-2} \) | \(a_{410}= +0.32290757 \pm 2.1 \cdot 10^{-3} \) | \(a_{411}= \pm0.25005647 \pm 5.1 \cdot 10^{-3} \) |
\(a_{412}= +1.08821959 \pm 5.5 \cdot 10^{-3} \) | \(a_{413}= -0.23654002 \pm 7.6 \cdot 10^{-3} \) | \(a_{414}= \pm0.08046176 \pm 1.0 \cdot 10^{-3} \) |
\(a_{415}= +0.28045675 \pm 5.5 \cdot 10^{-3} \) | \(a_{416}= -1.00511051 \pm 3.6 \cdot 10^{-3} \) | \(a_{417}= \pm0.09981925 \pm 3.4 \cdot 10^{-3} \) |
\(a_{418}= -0.20737383 \pm 1.0 \cdot 10^{-3} \) | \(a_{419}= +0.82644465 \pm 4.2 \cdot 10^{-3} \) | \(a_{420}= \pm0.20984025 \pm 9.5 \cdot 10^{-4} \) |
\(a_{421}= -0.24636431 \pm 1.1 \cdot 10^{-2} \) | \(a_{422}= -0.31335530 \pm 3.1 \cdot 10^{-3} \) | \(a_{423}= \pm0.01404745 \pm 2.8 \cdot 10^{-3} \) |
\(a_{424}= +0.67982339 \pm 2.6 \cdot 10^{-3} \) | \(a_{425}= +0.25672024 \pm 1.4 \cdot 10^{-3} \) | \(a_{426}= \pm0.15903136 \pm 2.0 \cdot 10^{-3} \) |
\(a_{427}= -0.61422156 \pm 1.5 \cdot 10^{-3} \) | \(a_{428}= -0.20933988 \pm 3.8 \cdot 10^{-3} \) | \(a_{429}= \pm0.38025149 \pm 1.7 \cdot 10^{-3} \) |
\(a_{430}= -0.13835311 \pm 4.1 \cdot 10^{-3} \) | \(a_{431}= -0.12874955 \pm 5.0 \cdot 10^{-3} \) | \(a_{432}= \pm0.15096593 \pm 1.1 \cdot 10^{-3} \) |
\(a_{433}= -1.25624743 \pm 9.6 \cdot 10^{-3} \) | \(a_{434}= +0.12673295 \pm 1.9 \cdot 10^{-3} \) | \(a_{435}= \pm0.69682491 \pm 4.0 \cdot 10^{-3} \) |
\(a_{436}= -0.94609620 \pm 7.3 \cdot 10^{-3} \) | \(a_{437}= +1.40959143 \pm 4.1 \cdot 10^{-3} \) | \(a_{438}= \pm0.23211499 \pm 1.6 \cdot 10^{-3} \) |
\(a_{439}= +0.33664827 \pm 7.4 \cdot 10^{-3} \) | \(a_{440}= -0.22357000 \pm 1.9 \cdot 10^{-3} \) | \(a_{441}= \pm0.26811352 \pm 2.4 \cdot 10^{-3} \) |
\(a_{442}= +0.44644756 \pm 1.3 \cdot 10^{-3} \) | \(a_{443}= +0.12511820 \pm 1.1 \cdot 10^{-2} \) | \(a_{444}= \pm0.19134017 \pm 3.3 \cdot 10^{-3} \) |
\(a_{445}= +0.07034089 \pm 2.1 \cdot 10^{-3} \) | \(a_{446}= +0.16660844 \pm 2.8 \cdot 10^{-3} \) | \(a_{447}= \pm0.31878929 \pm 3.8 \cdot 10^{-3} \) |
\(a_{448}= -0.25866029 \pm 3.4 \cdot 10^{-3} \) | \(a_{449}= +1.13176561 \pm 1.1 \cdot 10^{-2} \) | \(a_{450}= \pm0.01928891 \pm 7.2 \cdot 10^{-4} \) |
\(a_{451}= +0.64663787 \pm 6.4 \cdot 10^{-3} \) | \(a_{452}= -0.99093102 \pm 3.3 \cdot 10^{-3} \) | \(a_{453}= \pm0.20238348 \pm 5.8 \cdot 10^{-3} \) |
\(a_{454}= -0.25661516 \pm 5.1 \cdot 10^{-3} \) | \(a_{455}= +0.53601787 \pm 1.0 \cdot 10^{-3} \) | \(a_{456}= \pm0.47840319 \pm 9.5 \cdot 10^{-4} \) |
\(a_{457}= +1.16215317 \pm 6.9 \cdot 10^{-3} \) | \(a_{458}= -0.02278114 \pm 3.8 \cdot 10^{-3} \) | \(a_{459}= \pm0.23172300 \pm 6.9 \cdot 10^{-4} \) |
\(a_{460}= +0.73078560 \pm 6.9 \cdot 10^{-3} \) | \(a_{461}= -1.75947492 \pm 3.5 \cdot 10^{-3} \) | \(a_{462}= \pm0.03341500 \pm 1.1 \cdot 10^{-3} \) |
\(a_{463}= -1.30983183 \pm 8.4 \cdot 10^{-3} \) | \(a_{464}= +1.06737228 \pm 7.6 \cdot 10^{-3} \) | \(a_{465}= \pm0.54061480 \pm 1.7 \cdot 10^{-3} \) |
\(a_{466}= +0.07064769 \pm 3.5 \cdot 10^{-3} \) | \(a_{467}= -1.91516053 \pm 9.7 \cdot 10^{-3} \) | \(a_{468}= \pm0.42184042 \pm 1.4 \cdot 10^{-3} \) |
\(a_{469}= -0.22313029 \pm 4.0 \cdot 10^{-3} \) | \(a_{470}= +0.01014537 \pm 3.0 \cdot 10^{-3} \) | \(a_{471}= \pm0.46787426 \pm 6.1 \cdot 10^{-3} \) |
\(a_{472}= -0.27958035 \pm 5.9 \cdot 10^{-3} \) | \(a_{473}= -0.27705871 \pm 4.4 \cdot 10^{-3} \) | \(a_{474}= \pm0.13318366 \pm 1.7 \cdot 10^{-3} \) |
\(a_{475}= +0.33791802 \pm 1.5 \cdot 10^{-3} \) | \(a_{476}= +0.49336827 \pm 1.9 \cdot 10^{-3} \) | \(a_{477}= \pm0.43343345 \pm 1.4 \cdot 10^{-3} \) |
\(a_{478}= -0.36826377 \pm 2.6 \cdot 10^{-3} \) | \(a_{479}= -0.23834030 \pm 6.4 \cdot 10^{-3} \) | \(a_{480}= \pm0.37677558 \pm 2.5 \cdot 10^{-3} \) |
\(a_{481}= +0.48876111 \pm 2.8 \cdot 10^{-3} \) | \(a_{482}= +0.24603020 \pm 3.8 \cdot 10^{-3} \) | \(a_{483}= \pm0.22713327 \pm 1.5 \cdot 10^{-3} \) |
\(a_{484}= +0.71104384 \pm 4.4 \cdot 10^{-3} \) | \(a_{485}= +0.39144549 \pm 5.3 \cdot 10^{-3} \) | \(a_{486}= \pm0.01741072 \pm 2.5 \cdot 10^{-4} \) |
\(a_{487}= +0.17238504 \pm 4.6 \cdot 10^{-3} \) | \(a_{488}= -0.72598404 \pm 3.0 \cdot 10^{-3} \) | \(a_{489}= \pm0.39073494 \pm 7.7 \cdot 10^{-4} \) |
\(a_{490}= +0.19363727 \pm 2.6 \cdot 10^{-3} \) | \(a_{491}= +1.53686293 \pm 4.2 \cdot 10^{-3} \) | \(a_{492}= \pm0.71736206 \pm 5.4 \cdot 10^{-3} \) |
\(a_{493}= -1.63834779 \pm 4.1 \cdot 10^{-3} \) | \(a_{494}= +0.58765401 \pm 8.4 \cdot 10^{-4} \) | \(a_{495}= \pm0.14254102 \pm 1.1 \cdot 10^{-3} \) |
\(a_{496}= -0.82809503 \pm 3.2 \cdot 10^{-3} \) | \(a_{497}= -0.44892523 \pm 5.2 \cdot 10^{-3} \) | \(a_{498}= \pm0.04954454 \pm 1.9 \cdot 10^{-3} \) |
\(a_{499}= +1.96893016 \pm 1.1 \cdot 10^{-2} \) | \(a_{500}= +0.99686248 \pm 7.3 \cdot 10^{-3} \) | \(a_{501}= \pm0.95947933 \pm 2.8 \cdot 10^{-3} \) |
\(a_{502}= -0.03354863 \pm 3.1 \cdot 10^{-3} \) | \(a_{503}= -1.19629953 \pm 1.1 \cdot 10^{-2} \) | \(a_{504}= \pm0.07708708 \pm 1.4 \cdot 10^{-3} \) |
\(a_{505}= -0.45073558 \pm 3.2 \cdot 10^{-3} \) | \(a_{506}= -0.11637044 \pm 2.0 \cdot 10^{-3} \) | \(a_{507}= \pm0.50020281 \pm 2.9 \cdot 10^{-3} \) |
\(a_{508}= -0.79869213 \pm 7.2 \cdot 10^{-3} \) | \(a_{509}= +1.99971385 \pm 2.6 \cdot 10^{-3} \) | \(a_{510}= \pm0.16735527 \pm 2.1 \cdot 10^{-3} \) |
\(a_{511}= -0.65523101 \pm 1.2 \cdot 10^{-3} \) | \(a_{512}= -0.98725398 \pm 7.3 \cdot 10^{-3} \) | \(a_{513}= \pm0.30501443 \pm 5.6 \cdot 10^{-4} \) |
\(a_{514}= -0.22942517 \pm 3.5 \cdot 10^{-3} \) | \(a_{515}= -1.04201977 \pm 4.2 \cdot 10^{-3} \) | \(a_{516}= \pm0.30736123 \pm 3.3 \cdot 10^{-3} \) |
\(a_{517}= +0.02031659 \pm 5.4 \cdot 10^{-3} \) | \(a_{518}= -0.04295040 \pm 2.9 \cdot 10^{-3} \) | \(a_{519}= \pm0.91399420 \pm 2.5 \cdot 10^{-3} \) |
\(a_{520}= +0.63355057 \pm 1.9 \cdot 10^{-3} \) | \(a_{521}= +0.30031307 \pm 1.0 \cdot 10^{-2} \) | \(a_{522}= \pm0.12309874 \pm 1.4 \cdot 10^{-3} \) |
\(a_{523}= +1.10592046 \pm 4.1 \cdot 10^{-3} \) | \(a_{524}= -0.42286382 \pm 4.0 \cdot 10^{-3} \) | \(a_{525}= \pm0.05445012 \pm 2.1 \cdot 10^{-3} \) |
\(a_{526}= +0.26619647 \pm 4.6 \cdot 10^{-3} \) | \(a_{527}= +1.27107261 \pm 1.8 \cdot 10^{-3} \) | \(a_{528}= \pm0.21833940 \pm 2.0 \cdot 10^{-3} \) |
\(a_{529}= -0.20899002 \pm 9.8 \cdot 10^{-3} \) | \(a_{530}= -0.31303484 \pm 2.2 \cdot 10^{-3} \) | \(a_{531}= \pm0.17825141 \pm 2.2 \cdot 10^{-3} \) |
\(a_{532}= +0.64941524 \pm 7.2 \cdot 10^{-4} \) | \(a_{533}= -1.83243630 \pm 6.5 \cdot 10^{-3} \) | \(a_{534}= \pm0.01242618 \pm 1.5 \cdot 10^{-3} \) |
\(a_{535}= +0.20045246 \pm 2.8 \cdot 10^{-3} \) | \(a_{536}= -0.26373062 \pm 6.5 \cdot 10^{-3} \) | \(a_{537}= \pm0.39554803 \pm 3.8 \cdot 10^{-3} \) |
\(a_{538}= -0.32256842 \pm 2.3 \cdot 10^{-3} \) | \(a_{539}= +0.38776791 \pm 4.7 \cdot 10^{-3} \) | \(a_{540}= \pm0.15813104 \pm 9.6 \cdot 10^{-4} \) |
\(a_{541}= -0.96406903 \pm 3.3 \cdot 10^{-3} \) | \(a_{542}= +0.16763564 \pm 5.1 \cdot 10^{-3} \) | \(a_{543}= \pm0.40478541 \pm 4.6 \cdot 10^{-3} \) |
\(a_{544}= +0.88586018 \pm 4.3 \cdot 10^{-3} \) | \(a_{545}= +0.90593015 \pm 5.5 \cdot 10^{-3} \) | \(a_{546}= \pm0.09469111 \pm 6.0 \cdot 10^{-4} \) |
\(a_{547}= -0.99884021 \pm 5.4 \cdot 10^{-3} \) | \(a_{548}= -0.40120701 \pm 8.2 \cdot 10^{-3} \) | \(a_{549}= \pm0.46286399 \pm 1.8 \cdot 10^{-3} \) |
\(a_{550}= -0.02789721 \pm 1.5 \cdot 10^{-3} \) | \(a_{551}= -2.15653919 \pm 3.7 \cdot 10^{-3} \) | \(a_{552}= \pm0.26846197 \pm 3.2 \cdot 10^{-3} \) |
\(a_{553}= -0.37596050 \pm 4.0 \cdot 10^{-3} \) | \(a_{554}= +0.37219787 \pm 3.0 \cdot 10^{-3} \) | \(a_{555}= \pm0.18321692 \pm 2.4 \cdot 10^{-3} \) |
\(a_{556}= +0.16015655 \pm 5.3 \cdot 10^{-3} \) | \(a_{557}= +0.83298676 \pm 6.1 \cdot 10^{-3} \) | \(a_{558}= \pm0.09550319 \pm 7.0 \cdot 10^{-4} \) |
\(a_{559}= +0.78512638 \pm 3.4 \cdot 10^{-3} \) | \(a_{560}= +0.30778004 \pm 1.1 \cdot 10^{-3} \) | \(a_{561}= \pm0.33513693 \pm 1.1 \cdot 10^{-3} \) |
\(a_{562}= -0.24014022 \pm 2.7 \cdot 10^{-3} \) | \(a_{563}= +1.48801377 \pm 1.0 \cdot 10^{-2} \) | \(a_{564}= \pm0.02253866 \pm 4.3 \cdot 10^{-3} \) |
\(a_{565}= +0.94886154 \pm 2.8 \cdot 10^{-3} \) | \(a_{566}= +0.20689342 \pm 3.3 \cdot 10^{-3} \) | \(a_{567}= \pm0.04914823 \pm 4.9 \cdot 10^{-4} \) |
\(a_{568}= -0.53061074 \pm 5.2 \cdot 10^{-3} \) | \(a_{569}= +0.44307125 \pm 5.9 \cdot 10^{-3} \) | \(a_{570}= \pm0.22028790 \pm 8.0 \cdot 10^{-4} \) |
\(a_{571}= -0.80040827 \pm 7.0 \cdot 10^{-3} \) | \(a_{572}= +0.61010044 \pm 2.7 \cdot 10^{-3} \) | \(a_{573}= \pm0.39680874 \pm 3.2 \cdot 10^{-3} \) |
\(a_{574}= +0.16102727 \pm 2.7 \cdot 10^{-3} \) | \(a_{575}= +0.18962695 \pm 5.5 \cdot 10^{-3} \) | \(a_{576}= \pm0.19492076 \pm 1.7 \cdot 10^{-3} \) |
\(a_{577}= +0.18246459 \pm 7.6 \cdot 10^{-3} \) | \(a_{578}= -0.12207302 \pm 4.8 \cdot 10^{-3} \) | \(a_{579}= \pm0.48464297 \pm 5.4 \cdot 10^{-3} \) |
\(a_{580}= -1.11803162 \pm 6.5 \cdot 10^{-3} \) | \(a_{581}= +0.13985793 \pm 5.7 \cdot 10^{-3} \) | \(a_{582}= \pm0.06915144 \pm 1.8 \cdot 10^{-3} \) |
\(a_{583}= -0.62686724 \pm 2.7 \cdot 10^{-3} \) | \(a_{584}= -0.77445548 \pm 1.7 \cdot 10^{-3} \) | \(a_{585}= \pm0.40393139 \pm 1.1 \cdot 10^{-3} \) |
\(a_{586}= -0.29613517 \pm 3.4 \cdot 10^{-3} \) | \(a_{587}= -1.36556252 \pm 7.8 \cdot 10^{-3} \) | \(a_{588}= \pm0.43017893 \pm 3.8 \cdot 10^{-3} \) |
\(a_{589}= +1.67309891 \pm 1.5 \cdot 10^{-3} \) | \(a_{590}= +0.12873695 \pm 2.7 \cdot 10^{-3} \) | \(a_{591}= \pm0.15146029 \pm 7.9 \cdot 10^{-3} \) |
\(a_{592}= +0.28064533 \pm 3.8 \cdot 10^{-3} \) | \(a_{593}= -1.72445459 \pm 7.7 \cdot 10^{-3} \) | \(a_{594}= \pm0.02518082 \pm 4.7 \cdot 10^{-4} \) |
\(a_{595}= -0.47242257 \pm 1.3 \cdot 10^{-3} \) | \(a_{596}= -0.51148647 \pm 5.2 \cdot 10^{-3} \) | \(a_{597}= \pm0.72594748 \pm 3.0 \cdot 10^{-3} \) |
\(a_{598}= +0.32976945 \pm 1.9 \cdot 10^{-3} \) | \(a_{599}= +1.56715105 \pm 3.0 \cdot 10^{-3} \) | \(a_{600}= \pm0.06435775 \pm 1.8 \cdot 10^{-3} \) |
\(a_{601}= +1.79000125 \pm 4.7 \cdot 10^{-3} \) | \(a_{602}= -0.06899381 \pm 4.6 \cdot 10^{-3} \) | \(a_{603}= \pm0.16814613 \pm 4.0 \cdot 10^{-3} \) |
\(a_{604}= +0.32471734 \pm 9.2 \cdot 10^{-3} \) | \(a_{605}= -0.68085683 \pm 3.2 \cdot 10^{-3} \) | \(a_{606}= \pm0.07962543 \pm 1.9 \cdot 10^{-3} \) |
\(a_{607}= -1.62455224 \pm 1.1 \cdot 10^{-2} \) | \(a_{608}= +1.16604802 \pm 2.3 \cdot 10^{-3} \) | \(a_{609}= \pm0.34749204 \pm 2.5 \cdot 10^{-3} \) |
\(a_{610}= +0.33429020 \pm 2.7 \cdot 10^{-3} \) | \(a_{611}= -0.05757296 \pm 5.3 \cdot 10^{-3} \) | \(a_{612}= \pm0.37179158 \pm 1.3 \cdot 10^{-3} \) |
\(a_{613}= -0.20055200 \pm 6.5 \cdot 10^{-3} \) | \(a_{614}= -0.10685080 \pm 2.8 \cdot 10^{-3} \) | \(a_{615}= \pm0.68690681 \pm 4.0 \cdot 10^{-3} \) |
\(a_{616}= -0.11148970 \pm 2.9 \cdot 10^{-3} \) | \(a_{617}= -0.60715142 \pm 1.2 \cdot 10^{-2} \) | \(a_{618}= \pm0.18407970 \pm 2.5 \cdot 10^{-3} \) |
\(a_{619}= +0.42765034 \pm 5.0 \cdot 10^{-3} \) | \(a_{620}= +0.86739786 \pm 2.7 \cdot 10^{-3} \) | \(a_{621}= \pm0.17116269 \pm 2.0 \cdot 10^{-3} \) |
\(a_{622}= +0.29294373 \pm 4.7 \cdot 10^{-3} \) | \(a_{623}= +0.03507753 \pm 4.0 \cdot 10^{-3} \) | \(a_{624}= \pm0.61872813 \pm 2.0 \cdot 10^{-3} \) |
\(a_{625}= -0.74133044 \pm 2.9 \cdot 10^{-3} \) | \(a_{626}= -0.16272645 \pm 4.9 \cdot 10^{-3} \) | \(a_{627}= \pm0.44113706 \pm 1.1 \cdot 10^{-3} \) |
\(a_{628}= -0.75068818 \pm 9.8 \cdot 10^{-3} \) | \(a_{629}= -0.43077254 \pm 5.7 \cdot 10^{-3} \) | \(a_{630}= \pm0.03549590 \pm 5.1 \cdot 10^{-4} \) |
\(a_{631}= +0.28941237 \pm 7.1 \cdot 10^{-3} \) | \(a_{632}= -0.44436949 \pm 3.9 \cdot 10^{-3} \) | \(a_{633}= \pm0.66658669 \pm 1.7 \cdot 10^{-3} \) |
\(a_{634}= -0.37156244 \pm 2.0 \cdot 10^{-3} \) | \(a_{635}= +0.76478405 \pm 5.3 \cdot 10^{-3} \) | \(a_{636}= \pm0.69542907 \pm 2.2 \cdot 10^{-3} \) |
\(a_{637}= -1.09885305 \pm 4.5 \cdot 10^{-3} \) | \(a_{638}= +0.17803556 \pm 2.5 \cdot 10^{-3} \) | \(a_{639}= \pm0.33830028 \pm 2.6 \cdot 10^{-3} \) |
\(a_{640}= +0.79337036 \pm 4.7 \cdot 10^{-3} \) | \(a_{641}= +0.57419117 \pm 2.9 \cdot 10^{-3} \) | \(a_{642}= \pm0.03541126 \pm 1.5 \cdot 10^{-3} \) |
\(a_{643}= +0.15256833 \pm 7.5 \cdot 10^{-3} \) | \(a_{644}= +0.36442753 \pm 2.4 \cdot 10^{-3} \) | \(a_{645}= \pm0.29431236 \pm 2.5 \cdot 10^{-3} \) |
\(a_{646}= -0.51793239 \pm 1.1 \cdot 10^{-3} \) | \(a_{647}= +1.57817577 \pm 5.9 \cdot 10^{-3} \) | \(a_{648}= \pm0.05809114 \pm 5.3 \cdot 10^{-4} \) |
\(a_{649}= +0.25780190 \pm 4.5 \cdot 10^{-3} \) | \(a_{650}= +0.07905485 \pm 8.9 \cdot 10^{-4} \) | \(a_{651}= \pm0.26959332 \pm 1.6 \cdot 10^{-3} \) |
\(a_{652}= +0.62692079 \pm 1.4 \cdot 10^{-3} \) | \(a_{653}= +0.06559837 \pm 5.4 \cdot 10^{-3} \) | \(a_{654}= \pm0.16003857 \pm 1.9 \cdot 10^{-3} \) |
\(a_{655}= +0.40491134 \pm 3.1 \cdot 10^{-3} \) | \(a_{656}= -1.05218007 \pm 7.8 \cdot 10^{-3} \) | \(a_{657}= \pm0.49376781 \pm 1.1 \cdot 10^{-3} \) |
\(a_{658}= +0.00505928 \pm 2.6 \cdot 10^{-3} \) | \(a_{659}= -1.00881896 \pm 7.0 \cdot 10^{-3} \) | \(a_{660}= \pm0.22870216 \pm 1.7 \cdot 10^{-3} \) |
\(a_{661}= +1.13535453 \pm 7.8 \cdot 10^{-3} \) | \(a_{662}= +0.09257540 \pm 3.3 \cdot 10^{-3} \) | \(a_{663}= \pm0.94970788 \pm 9.0 \cdot 10^{-4} \) |
\(a_{664}= +0.16530619 \pm 5.5 \cdot 10^{-3} \) | \(a_{665}= -0.62184463 \pm 6.3 \cdot 10^{-4} \) | \(a_{666}= \pm0.03236648 \pm 1.8 \cdot 10^{-3} \) |
\(a_{667}= -1.21016911 \pm 1.4 \cdot 10^{-2} \) | \(a_{668}= -1.53945162 \pm 4.9 \cdot 10^{-3} \) | \(a_{669}= \pm0.35441867 \pm 1.6 \cdot 10^{-3} \) |
\(a_{670}= +0.12143870 \pm 3.0 \cdot 10^{-3} \) | \(a_{671}= +0.66943212 \pm 3.7 \cdot 10^{-3} \) | \(a_{672}= \pm0.18789012 \pm 2.3 \cdot 10^{-3} \) |
\(a_{673}= -0.11291876 \pm 5.8 \cdot 10^{-3} \) | \(a_{674}= -0.09162858 \pm 3.8 \cdot 10^{-3} \) | \(a_{675}= \pm0.04103243 \pm 8.5 \cdot 10^{-4} \) |
\(a_{676}= -0.80255823 \pm 4.5 \cdot 10^{-3} \) | \(a_{677}= -0.20826240 \pm 5.4 \cdot 10^{-3} \) | \(a_{678}= \pm0.16762268 \pm 2.1 \cdot 10^{-3} \) |
\(a_{679}= +0.19520570 \pm 5.3 \cdot 10^{-3} \) | \(a_{680}= -0.55838360 \pm 1.3 \cdot 10^{-3} \) | \(a_{681}= \pm0.54588593 \pm 6.0 \cdot 10^{-3} \) |
\(a_{682}= -0.13812460 \pm 1.3 \cdot 10^{-3} \) | \(a_{683}= -0.62762741 \pm 1.2 \cdot 10^{-2} \) | \(a_{684}= \pm0.48938518 \pm 8.7 \cdot 10^{-4} \) |
\(a_{685}= +0.38417396 \pm 6.2 \cdot 10^{-3} \) | \(a_{686}= +0.21661509 \pm 2.5 \cdot 10^{-3} \) | \(a_{687}= \pm0.04846131 \pm 2.6 \cdot 10^{-3} \) |
\(a_{688}= +0.45081749 \pm 4.2 \cdot 10^{-3} \) | \(a_{689}= +1.77641048 \pm 2.5 \cdot 10^{-3} \) | \(a_{690}= \pm0.12361733 \pm 1.3 \cdot 10^{-3} \) |
\(a_{691}= -0.63914481 \pm 9.8 \cdot 10^{-3} \) | \(a_{692}= +1.46647229 \pm 4.1 \cdot 10^{-3} \) | \(a_{693}= \pm0.07108223 \pm 9.9 \cdot 10^{-4} \) |
\(a_{694}= +0.34115980 \pm 3.0 \cdot 10^{-3} \) | \(a_{695}= -0.15335719 \pm 3.8 \cdot 10^{-3} \) | \(a_{696}= \pm0.41072098 \pm 3.3 \cdot 10^{-3} \) |
\(a_{697}= +1.61502873 \pm 2.9 \cdot 10^{-3} \) | \(a_{698}= -0.09765682 \pm 4.4 \cdot 10^{-3} \) | \(a_{699}= \pm0.15028567 \pm 4.3 \cdot 10^{-3} \) |
\(a_{700}= +0.08736335 \pm 2.1 \cdot 10^{-3} \) | \(a_{701}= -1.36820044 \pm 7.0 \cdot 10^{-3} \) | \(a_{702}= \pm0.07135716 \pm 3.2 \cdot 10^{-4} \) |
\(a_{703}= -0.56702116 \pm 1.8 \cdot 10^{-3} \) | \(a_{704}= +0.28191050 \pm 3.2 \cdot 10^{-3} \) | \(a_{705}= \pm0.02158179 \pm 3.4 \cdot 10^{-3} \) |
\(a_{706}= -0.38633951 \pm 5.2 \cdot 10^{-3} \) | \(a_{707}= -0.22477243 \pm 4.1 \cdot 10^{-3} \) | \(a_{708}= \pm0.28599826 \pm 3.0 \cdot 10^{-3} \) |
\(a_{709}= -1.05929609 \pm 3.4 \cdot 10^{-3} \) | \(a_{710}= +0.24432764 \pm 2.6 \cdot 10^{-3} \) | \(a_{711}= \pm0.28331564 \pm 2.0 \cdot 10^{-3} \) |
\(a_{712}= +0.04146017 \pm 3.1 \cdot 10^{-3} \) | \(a_{713}= +0.93888051 \pm 6.1 \cdot 10^{-3} \) | \(a_{714}= \pm0.08345658 \pm 1.3 \cdot 10^{-3} \) |
\(a_{715}= -0.58419893 \pm 2.1 \cdot 10^{-3} \) | \(a_{716}= +0.63464322 \pm 6.3 \cdot 10^{-3} \) | \(a_{717}= \pm0.78339102 \pm 3.7 \cdot 10^{-3} \) |
\(a_{718}= +0.26940381 \pm 4.7 \cdot 10^{-3} \) | \(a_{719}= +0.19820715 \pm 3.1 \cdot 10^{-3} \) | \(a_{720}= \pm0.23193634 \pm 1.4 \cdot 10^{-3} \) |
\(a_{721}= -0.51963352 \pm 3.4 \cdot 10^{-3} \) | \(a_{722}= -0.41034250 \pm 3.5 \cdot 10^{-3} \) | \(a_{723}= \pm0.52336901 \pm 3.7 \cdot 10^{-3} \) |
\(a_{724}= -0.64946429 \pm 7.4 \cdot 10^{-3} \) | \(a_{725}= -0.29011098 \pm 5.4 \cdot 10^{-3} \) | \(a_{726}= \pm0.12027787 \pm 1.4 \cdot 10^{-3} \) |
\(a_{727}= +0.22506818 \pm 3.2 \cdot 10^{-3} \) | \(a_{728}= +0.31593845 \pm 1.5 \cdot 10^{-3} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +0.35660960 \pm 2.4 \cdot 10^{-3} \) | \(a_{731}= -0.69197584 \pm 4.4 \cdot 10^{-3} \) | \(a_{732}= \pm0.74264936 \pm 2.9 \cdot 10^{-3} \) |
\(a_{733}= +0.15286974 \pm 1.3 \cdot 10^{-2} \) | \(a_{734}= +0.26963764 \pm 3.0 \cdot 10^{-3} \) | \(a_{735}= \pm0.41191589 \pm 2.8 \cdot 10^{-3} \) |
\(a_{736}= +0.65434252 \pm 7.9 \cdot 10^{-3} \) | \(a_{737}= +0.24318681 \pm 7.4 \cdot 10^{-3} \) | \(a_{738}= \pm0.12134664 \pm 1.1 \cdot 10^{-3} \) |
\(a_{739}= +1.27695864 \pm 8.1 \cdot 10^{-3} \) | \(a_{740}= -0.29396525 \pm 4.6 \cdot 10^{-3} \) | \(a_{741}= \pm1.25009004 \pm 1.2 \cdot 10^{-3} \) |
\(a_{742}= -0.15610394 \pm 1.8 \cdot 10^{-3} \) | \(a_{743}= -0.96253386 \pm 1.1 \cdot 10^{-2} \) | \(a_{744}= \pm0.31864796 \pm 1.6 \cdot 10^{-3} \) |
\(a_{745}= +0.48977156 \pm 3.8 \cdot 10^{-3} \) | \(a_{746}= -0.12761040 \pm 2.6 \cdot 10^{-3} \) | \(a_{747}= \pm0.10539389 \pm 2.8 \cdot 10^{-3} \) |
\(a_{748}= -0.53771569 \pm 2.2 \cdot 10^{-3} \) | \(a_{749}= +0.09996146 \pm 2.0 \cdot 10^{-3} \) | \(a_{750}= \pm0.16862603 \pm 2.1 \cdot 10^{-3} \) |
\(a_{751}= -0.27995305 \pm 6.4 \cdot 10^{-3} \) | \(a_{752}= -0.03305824 \pm 6.5 \cdot 10^{-3} \) | \(a_{753}= \pm0.07136650 \pm 5.3 \cdot 10^{-3} \) |
\(a_{754}= -0.50451551 \pm 1.9 \cdot 10^{-3} \) | \(a_{755}= -0.31093162 \pm 7.0 \cdot 10^{-3} \) | \(a_{756}= \pm0.07885665 \pm 5.6 \cdot 10^{-4} \) |
\(a_{757}= +1.19821711 \pm 2.1 \cdot 10^{-3} \) | \(a_{758}= +0.02203536 \pm 2.0 \cdot 10^{-3} \) | \(a_{759}= \pm0.24754961 \pm 3.8 \cdot 10^{-3} \) |
\(a_{760}= -0.73499419 \pm 1.3 \cdot 10^{-3} \) | \(a_{761}= -0.13526562 \pm 1.2 \cdot 10^{-2} \) | \(a_{762}= \pm0.13510418 \pm 2.4 \cdot 10^{-3} \) |
\(a_{763}= +0.45176847 \pm 3.0 \cdot 10^{-3} \) | \(a_{764}= -0.63666598 \pm 4.6 \cdot 10^{-3} \) | \(a_{765}= \pm0.35600736 \pm 9.6 \cdot 10^{-4} \) |
\(a_{766}= -0.02229031 \pm 2.4 \cdot 10^{-3} \) | \(a_{767}= -0.73055661 \pm 3.5 \cdot 10^{-3} \) | \(a_{768}= \pm0.19745852 \pm 2.2 \cdot 10^{-3} \) |
\(a_{769}= -1.76064030 \pm 6.6 \cdot 10^{-3} \) | \(a_{770}= +0.05133710 \pm 9.6 \cdot 10^{-4} \) | \(a_{771}= \pm0.48804588 \pm 4.9 \cdot 10^{-3} \) |
\(a_{772}= +0.77759299 \pm 8.7 \cdot 10^{-3} \) | \(a_{773}= +0.23660738 \pm 5.8 \cdot 10^{-3} \) | \(a_{774}= \pm0.05199223 \pm 1.7 \cdot 10^{-3} \) |
\(a_{775}= +0.22507561 \pm 2.6 \cdot 10^{-3} \) | \(a_{776}= +0.23072493 \pm 5.3 \cdot 10^{-3} \) | \(a_{777}= \pm0.09136645 \pm 1.6 \cdot 10^{-3} \) |
\(a_{778}= +0.03495160 \pm 2.0 \cdot 10^{-3} \) | \(a_{779}= +2.12584457 \pm 3.8 \cdot 10^{-3} \) | \(a_{780}= \pm0.64809404 \pm 1.7 \cdot 10^{-3} \) |
\(a_{781}= +0.48927779 \pm 5.1 \cdot 10^{-3} \) | \(a_{782}= -0.29064428 \pm 1.4 \cdot 10^{-3} \) | \(a_{783}= \pm0.26186243 \pm 1.9 \cdot 10^{-3} \) |
\(a_{784}= -0.63095851 \pm 5.3 \cdot 10^{-3} \) | \(a_{785}= +0.71881808 \pm 7.5 \cdot 10^{-3} \) | \(a_{786}= \pm0.07153027 \pm 1.6 \cdot 10^{-3} \) |
\(a_{787}= +0.25957880 \pm 1.1 \cdot 10^{-2} \) | \(a_{788}= +0.24301283 \pm 1.2 \cdot 10^{-2} \) | \(a_{789}= \pm0.56626782 \pm 3.5 \cdot 10^{-3} \) |
\(a_{790}= +0.20461657 \pm 2.4 \cdot 10^{-3} \) | \(a_{791}= +0.47317745 \pm 5.2 \cdot 10^{-3} \) | \(a_{792}= \pm0.08401621 \pm 1.0 \cdot 10^{-3} \) |
\(a_{793}= -1.89703043 \pm 3.5 \cdot 10^{-3} \) | \(a_{794}= +0.15264560 \pm 3.5 \cdot 10^{-3} \) | \(a_{795}= \pm0.66590497 \pm 1.7 \cdot 10^{-3} \) |
\(a_{796}= +1.16475778 \pm 5.2 \cdot 10^{-3} \) | \(a_{797}= -0.95891515 \pm 2.8 \cdot 10^{-3} \) | \(a_{798}= \pm0.10985298 \pm 2.6 \cdot 10^{-4} \) |
\(a_{799}= +0.05074227 \pm 2.6 \cdot 10^{-3} \) | \(a_{800}= +0.15686399 \pm 3.6 \cdot 10^{-3} \) | \(a_{801}= \pm0.02643367 \pm 1.1 \cdot 10^{-3} \) |
\(a_{802}= +0.36311470 \pm 3.2 \cdot 10^{-3} \) | \(a_{803}= +0.71412778 \pm 2.0 \cdot 10^{-3} \) | \(a_{804}= \pm0.26978468 \pm 6.4 \cdot 10^{-3} \) |
\(a_{805}= -0.34895594 \pm 1.8 \cdot 10^{-3} \) | \(a_{806}= +0.39141619 \pm 9.2 \cdot 10^{-4} \) | \(a_{807}= \pm0.68618535 \pm 3.0 \cdot 10^{-3} \) |
\(a_{808}= -0.26567155 \pm 3.5 \cdot 10^{-3} \) | \(a_{809}= -0.38569064 \pm 6.9 \cdot 10^{-3} \) | \(a_{810}= \pm0.02674893 \pm 3.4 \cdot 10^{-4} \) |
\(a_{811}= -0.45623882 \pm 3.0 \cdot 10^{-3} \) | \(a_{812}= -0.55753904 \pm 3.1 \cdot 10^{-3} \) | \(a_{813}= \pm0.35660377 \pm 4.1 \cdot 10^{-3} \) |
\(a_{814}= +0.04681108 \pm 3.0 \cdot 10^{-3} \) | \(a_{815}= -0.60030518 \pm 1.2 \cdot 10^{-3} \) | \(a_{816}= \pm0.54531975 \pm 1.4 \cdot 10^{-3} \) |
\(a_{817}= -0.91084020 \pm 2.1 \cdot 10^{-3} \) | \(a_{818}= -0.48323005 \pm 3.9 \cdot 10^{-3} \) | \(a_{819}= \pm0.20143216 \pm 6.0 \cdot 10^{-4} \) |
\(a_{820}= +1.10211837 \pm 6.4 \cdot 10^{-3} \) | \(a_{821}= -1.35221052 \pm 8.5 \cdot 10^{-3} \) | \(a_{822}= \pm0.06786688 \pm 2.7 \cdot 10^{-3} \) |
\(a_{823}= +0.47365504 \pm 3.7 \cdot 10^{-3} \) | \(a_{824}= -0.61418495 \pm 3.5 \cdot 10^{-3} \) | \(a_{825}= \pm0.05934448 \pm 1.6 \cdot 10^{-3} \) |
\(a_{826}= +0.06419843 \pm 5.2 \cdot 10^{-3} \) | \(a_{827}= +1.08631177 \pm 5.5 \cdot 10^{-3} \) | \(a_{828}= \pm0.27462465 \pm 3.3 \cdot 10^{-3} \) |
\(a_{829}= +1.13430281 \pm 8.5 \cdot 10^{-3} \) | \(a_{830}= -0.07611770 \pm 1.7 \cdot 10^{-3} \) | \(a_{831}= \pm0.79175983 \pm 2.2 \cdot 10^{-3} \) |
\(a_{832}= -0.79887531 \pm 2.8 \cdot 10^{-3} \) | \(a_{833}= +0.96848073 \pm 3.0 \cdot 10^{-3} \) | \(a_{834}= \pm0.02709156 \pm 3.1 \cdot 10^{-3} \) |
\(a_{835}= +1.47409496 \pm 3.6 \cdot 10^{-3} \) | \(a_{836}= -0.70778925 \pm 1.6 \cdot 10^{-3} \) | \(a_{837}= \pm0.20315965 \pm 8.7 \cdot 10^{-4} \) |
\(a_{838}= -0.22430221 \pm 1.8 \cdot 10^{-3} \) | \(a_{839}= -1.14220339 \pm 3.8 \cdot 10^{-3} \) | \(a_{840}= \pm0.11843264 \pm 8.9 \cdot 10^{-4} \) |
\(a_{841}= +0.85144224 \pm 6.3 \cdot 10^{-3} \) | \(a_{842}= +0.06686480 \pm 5.5 \cdot 10^{-3} \) | \(a_{843}= \pm0.51083953 \pm 4.7 \cdot 10^{-3} \) |
\(a_{844}= -1.06951544 \pm 3.2 \cdot 10^{-3} \) | \(a_{845}= +0.76848602 \pm 3.5 \cdot 10^{-3} \) | \(a_{846}= \pm0.00381257 \pm 1.1 \cdot 10^{-3} \) |
\(a_{847}= -0.33952910 \pm 2.4 \cdot 10^{-3} \) | \(a_{848}= +1.02001019 \pm 3.1 \cdot 10^{-3} \) | \(a_{849}= \pm0.44011510 \pm 6.6 \cdot 10^{-3} \) |
\(a_{850}= -0.06967547 \pm 1.2 \cdot 10^{-3} \) | \(a_{851}= -0.31819106 \pm 6.0 \cdot 10^{-3} \) | \(a_{852}= \pm0.54279117 \pm 4.0 \cdot 10^{-3} \) |
\(a_{853}= -1.09090022 \pm 9.4 \cdot 10^{-3} \) | \(a_{854}= +0.16670355 \pm 6.8 \cdot 10^{-4} \) | \(a_{855}= \pm0.46860857 \pm 7.5 \cdot 10^{-4} \) |
\(a_{856}= +0.11815024 \pm 2.3 \cdot 10^{-3} \) | \(a_{857}= +0.18233814 \pm 5.3 \cdot 10^{-3} \) | \(a_{858}= \pm0.10320262 \pm 6.3 \cdot 10^{-4} \) |
\(a_{859}= +0.48761211 \pm 6.0 \cdot 10^{-3} \) | \(a_{860}= -0.47221407 \pm 4.2 \cdot 10^{-3} \) | \(a_{861}= \pm0.34254609 \pm 2.6 \cdot 10^{-3} \) |
\(a_{862}= +0.03494343 \pm 3.6 \cdot 10^{-3} \) | \(a_{863}= -0.43846092 \pm 8.8 \cdot 10^{-3} \) | \(a_{864}= \pm0.14158990 \pm 1.2 \cdot 10^{-3} \) |
\(a_{865}= -1.40421394 \pm 3.3 \cdot 10^{-3} \) | \(a_{866}= +0.34095336 \pm 4.8 \cdot 10^{-3} \) | \(a_{867}= \pm0.25968047 \pm 4.3 \cdot 10^{-3} \) |
\(a_{868}= +0.43255322 \pm 1.8 \cdot 10^{-3} \) | \(a_{869}= +0.40975447 \pm 3.8 \cdot 10^{-3} \) | \(a_{870}= \pm0.18912261 \pm 1.8 \cdot 10^{-3} \) |
\(a_{871}= -0.68914050 \pm 7.8 \cdot 10^{-3} \) | \(a_{872}= +0.53397132 \pm 4.3 \cdot 10^{-3} \) | \(a_{873}= \pm0.14710276 \pm 2.7 \cdot 10^{-3} \) |
\(a_{874}= -0.38257187 \pm 1.2 \cdot 10^{-3} \) | \(a_{875}= -0.47600977 \pm 3.1 \cdot 10^{-3} \) | \(a_{876}= \pm0.79223349 \pm 2.0 \cdot 10^{-3} \) |
\(a_{877}= +0.58298601 \pm 4.7 \cdot 10^{-3} \) | \(a_{878}= -0.09136843 \pm 3.4 \cdot 10^{-3} \) | \(a_{879}= \pm0.62995508 \pm 7.1 \cdot 10^{-3} \) |
\(a_{880}= -0.33544548 \pm 2.8 \cdot 10^{-3} \) | \(a_{881}= +0.26217722 \pm 1.1 \cdot 10^{-2} \) | \(a_{882}= \pm0.07276767 \pm 1.1 \cdot 10^{-3} \) |
\(a_{883}= +1.93862700 \pm 1.9 \cdot 10^{-3} \) | \(a_{884}= +1.52377365 \pm 1.6 \cdot 10^{-3} \) | \(a_{885}= \pm0.27385634 \pm 2.1 \cdot 10^{-3} \) |
\(a_{886}= -0.03395786 \pm 6.0 \cdot 10^{-3} \) | \(a_{887}= +0.26514388 \pm 9.7 \cdot 10^{-3} \) | \(a_{888}= \pm0.10799131 \pm 1.6 \cdot 10^{-3} \) |
\(a_{889}= +0.38138185 \pm 7.6 \cdot 10^{-3} \) | \(a_{890}= -0.01909095 \pm 2.0 \cdot 10^{-3} \) | \(a_{891}= \pm0.05356602 \pm 5.4 \cdot 10^{-4} \) |
\(a_{892}= +0.56865258 \pm 2.8 \cdot 10^{-3} \) | \(a_{893}= +0.06679149 \pm 3.3 \cdot 10^{-3} \) | \(a_{894}= \pm0.08652139 \pm 2.0 \cdot 10^{-3} \) |
\(a_{895}= -0.60769975 \pm 4.7 \cdot 10^{-3} \) | \(a_{896}= +0.39563724 \pm 2.3 \cdot 10^{-3} \) | \(a_{897}= \pm0.70150376 \pm 4.0 \cdot 10^{-3} \) |
\(a_{898}= -0.30716822 \pm 5.1 \cdot 10^{-3} \) | \(a_{899}= -1.43639680 \pm 5.8 \cdot 10^{-3} \) | \(a_{900}= \pm0.06583512 \pm 1.2 \cdot 10^{-3} \) |
\(a_{901}= -1.56565004 \pm 2.5 \cdot 10^{-3} \) | \(a_{902}= -0.17550153 \pm 2.1 \cdot 10^{-3} \) | \(a_{903}= \pm0.14676743 \pm 3.7 \cdot 10^{-3} \) |
\(a_{904}= +0.55927584 \pm 3.9 \cdot 10^{-3} \) | \(a_{905}= +0.62189160 \pm 5.7 \cdot 10^{-3} \) | \(a_{906}= \pm0.05492813 \pm 1.8 \cdot 10^{-3} \) |
\(a_{907}= -0.00909870 \pm 1.3 \cdot 10^{-2} \) | \(a_{908}= -0.87585522 \pm 1.0 \cdot 10^{-2} \) | \(a_{909}= \pm0.16938361 \pm 1.5 \cdot 10^{-3} \) |
\(a_{910}= -0.14547858 \pm 5.7 \cdot 10^{-4} \) | \(a_{911}= -1.74499577 \pm 9.8 \cdot 10^{-3} \) | \(a_{912}= \pm0.71779839 \pm 1.3 \cdot 10^{-3} \) |
\(a_{913}= -0.15242934 \pm 5.3 \cdot 10^{-3} \) | \(a_{914}= -0.31541559 \pm 4.4 \cdot 10^{-3} \) | \(a_{915}= \pm0.71112055 \pm 2.4 \cdot 10^{-3} \) |
\(a_{916}= -0.07775450 \pm 3.6 \cdot 10^{-3} \) | \(a_{917}= +0.20192084 \pm 5.0 \cdot 10^{-3} \) | \(a_{918}= \pm0.06289106 \pm 8.3 \cdot 10^{-4} \) |
\(a_{919}= +1.28318714 \pm 5.3 \cdot 10^{-3} \) | \(a_{920}= -0.41245124 \pm 3.9 \cdot 10^{-3} \) | \(a_{921}= \pm0.22729892 \pm 2.0 \cdot 10^{-3} \) |
\(a_{922}= +0.47753242 \pm 1.8 \cdot 10^{-3} \) | \(a_{923}= -1.38651081 \pm 4.8 \cdot 10^{-3} \) | \(a_{924}= \pm0.11404900 \pm 1.0 \cdot 10^{-3} \) |
\(a_{925}= -0.07627919 \pm 2.5 \cdot 10^{-3} \) | \(a_{926}= +0.35549650 \pm 4.2 \cdot 10^{-3} \) | \(a_{927}= \pm0.39158450 \pm 1.9 \cdot 10^{-3} \) |
\(a_{928}= -1.00108107 \pm 7.9 \cdot 10^{-3} \) | \(a_{929}= +1.38798646 \pm 7.3 \cdot 10^{-3} \) | \(a_{930}= \pm0.14672621 \pm 8.8 \cdot 10^{-4} \) |
\(a_{931}= +1.27480054 \pm 2.7 \cdot 10^{-3} \) | \(a_{932}= +0.24112819 \pm 7.0 \cdot 10^{-3} \) | \(a_{933}= \pm0.62316606 \pm 6.5 \cdot 10^{-3} \) |
\(a_{934}= +0.51978647 \pm 4.3 \cdot 10^{-3} \) | \(a_{935}= +0.51488723 \pm 1.6 \cdot 10^{-3} \) | \(a_{936}= \pm0.23808434 \pm 9.0 \cdot 10^{-4} \) |
\(a_{937}= -1.26823887 \pm 5.3 \cdot 10^{-3} \) | \(a_{938}= +0.06055895 \pm 2.2 \cdot 10^{-3} \) | \(a_{939}= \pm0.34616068 \pm 2.8 \cdot 10^{-3} \) |
\(a_{940}= +0.03462724 \pm 5.3 \cdot 10^{-3} \) | \(a_{941}= +0.73785402 \pm 5.7 \cdot 10^{-3} \) | \(a_{942}= \pm0.12698398 \pm 1.9 \cdot 10^{-3} \) |
\(a_{943}= +1.19294444 \pm 1.5 \cdot 10^{-2} \) | \(a_{944}= -0.41948367 \pm 3.4 \cdot 10^{-3} \) | \(a_{945}= \pm0.07550883 \pm 3.7 \cdot 10^{-4} \) |
\(a_{946}= +0.07519546 \pm 3.3 \cdot 10^{-3} \) | \(a_{947}= +1.33990082 \pm 3.8 \cdot 10^{-3} \) | \(a_{948}= \pm0.45457021 \pm 3.0 \cdot 10^{-3} \) |
\(a_{949}= -2.02368858 \pm 2.0 \cdot 10^{-3} \) | \(a_{950}= -0.09171305 \pm 8.1 \cdot 10^{-4} \) | \(a_{951}= \pm0.79040813 \pm 2.8 \cdot 10^{-3} \) |
\(a_{952}= -0.27845425 \pm 1.5 \cdot 10^{-3} \) | \(a_{953}= +0.46340675 \pm 1.3 \cdot 10^{-2} \) | \(a_{954}= \pm0.11763653 \pm 8.9 \cdot 10^{-4} \) |
\(a_{955}= +0.60963664 \pm 3.2 \cdot 10^{-3} \) | \(a_{956}= -1.25692397 \pm 5.6 \cdot 10^{-3} \) | \(a_{957}= \pm0.37872707 \pm 3.6 \cdot 10^{-3} \) |
\(a_{958}= +0.06468704 \pm 3.8 \cdot 10^{-3} \) | \(a_{959}= +0.19157954 \pm 4.2 \cdot 10^{-3} \) | \(a_{960}= \pm0.29946628 \pm 2.1 \cdot 10^{-3} \) |
\(a_{961}= +0.11439381 \pm 5.1 \cdot 10^{-3} \) | \(a_{962}= -0.13265280 \pm 1.7 \cdot 10^{-3} \) | \(a_{963}= \pm0.07532878 \pm 1.3 \cdot 10^{-3} \) |
\(a_{964}= +0.83972760 \pm 5.3 \cdot 10^{-3} \) | \(a_{965}= -0.74458067 \pm 6.8 \cdot 10^{-3} \) | \(a_{966}= \pm0.06164538 \pm 5.3 \cdot 10^{-4} \) |
\(a_{967}= -1.41651255 \pm 1.3 \cdot 10^{-2} \) | \(a_{968}= -0.40130911 \pm 2.8 \cdot 10^{-3} \) | \(a_{969}= \pm1.10177436 \pm 6.1 \cdot 10^{-4} \) |
\(a_{970}= -0.10624074 \pm 1.7 \cdot 10^{-3} \) | \(a_{971}= +1.53187380 \pm 1.2 \cdot 10^{-2} \) | \(a_{972}= \pm0.05942465 \pm 4.5 \cdot 10^{-4} \) |
\(a_{973}= -0.07647603 \pm 6.0 \cdot 10^{-3} \) | \(a_{974}= -0.04678637 \pm 2.2 \cdot 10^{-3} \) | \(a_{975}= \pm0.16816984 \pm 1.4 \cdot 10^{-3} \) |
\(a_{976}= -1.08926985 \pm 4.6 \cdot 10^{-3} \) | \(a_{977}= +0.09918974 \pm 7.4 \cdot 10^{-3} \) | \(a_{978}= \pm0.10604789 \pm 9.6 \cdot 10^{-4} \) |
\(a_{979}= -0.03823055 \pm 2.4 \cdot 10^{-3} \) | \(a_{980}= +0.66090490 \pm 4.5 \cdot 10^{-3} \) | \(a_{981}= \pm0.34044288 \pm 2.6 \cdot 10^{-3} \) |
\(a_{982}= -0.41711415 \pm 2.3 \cdot 10^{-3} \) | \(a_{983}= +0.09047864 \pm 3.3 \cdot 10^{-3} \) | \(a_{984}= \pm0.40487507 \pm 3.4 \cdot 10^{-3} \) |
\(a_{985}= -0.23269584 \pm 9.5 \cdot 10^{-3} \) | \(a_{986}= +0.44465777 \pm 4.5 \cdot 10^{-3} \) | \(a_{987}= \pm0.01076239 \pm 2.4 \cdot 10^{-3} \) |
\(a_{988}= +2.00572651 \pm 1.8 \cdot 10^{-3} \) | \(a_{989}= -0.51112944 \pm 7.1 \cdot 10^{-3} \) | \(a_{990}= \pm0.03868652 \pm 7.0 \cdot 10^{-4} \) |
\(a_{991}= +1.61719902 \pm 9.0 \cdot 10^{-3} \) | \(a_{992}= +0.77666460 \pm 3.6 \cdot 10^{-3} \) | \(a_{993}= \pm0.19693149 \pm 2.6 \cdot 10^{-3} \) |
\(a_{994}= +0.12184110 \pm 3.4 \cdot 10^{-3} \) | \(a_{995}= -1.11530856 \pm 3.8 \cdot 10^{-3} \) | \(a_{996}= \pm0.16910087 \pm 4.2 \cdot 10^{-3} \) |
\(a_{997}= -1.07109092 \pm 1.1 \cdot 10^{-2} \) | \(a_{998}= -0.53437988 \pm 4.6 \cdot 10^{-3} \) | \(a_{999}= \pm0.06885177 \pm 1.0 \cdot 10^{-3} \) |
\(a_{1000}= -0.56262352 \pm 4.3 \cdot 10^{-3} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000