Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(19.5669106110084192363326335694 \pm 3 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.56540759 \pm 1.6 \cdot 10^{-2} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +1.45050094 \pm 2.9 \cdot 10^{-2} \) | \(a_{5}= +0.62263423 \pm 2.2 \cdot 10^{-2} \) | \(a_{6}= -0.90378850 \pm 1.6 \cdot 10^{-2} \) |
\(a_{7}= -1.93480398 \pm 1.8 \cdot 10^{-2} \) | \(a_{8}= +0.70521759 \pm 2.0 \cdot 10^{-2} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.97467635 \pm 1.2 \cdot 10^{-2} \) | \(a_{11}= -0.55777999 \pm 2.0 \cdot 10^{-2} \) | \(a_{12}= -0.83744711 \pm 2.9 \cdot 10^{-2} \) |
\(a_{13}= +0.10703289 \pm 2.0 \cdot 10^{-2} \) | \(a_{14}= -3.02875685 \pm 1.2 \cdot 10^{-2} \) | \(a_{15}= -0.35947804 \pm 2.2 \cdot 10^{-2} \) |
\(a_{16}= -0.34654797 \pm 2.4 \cdot 10^{-2} \) | \(a_{17}= +0.36348609 \pm 1.5 \cdot 10^{-2} \) | \(a_{18}= +0.52180253 \pm 1.6 \cdot 10^{-2} \) |
\(a_{19}= -0.79914212 \pm 1.2 \cdot 10^{-2} \) | \(a_{20}= +0.90313153 \pm 2.1 \cdot 10^{-2} \) | \(a_{21}= +1.11705960 \pm 1.8 \cdot 10^{-2} \) |
\(a_{22}= -0.87315303 \pm 1.0 \cdot 10^{-2} \) | \(a_{23}= -1.65986030 \pm 4.5 \cdot 10^{-2} \) | \(a_{24}= -0.40715756 \pm 2.0 \cdot 10^{-2} \) |
\(a_{25}= -0.61232662 \pm 1.8 \cdot 10^{-2} \) | \(a_{26}= +0.16755010 \pm 7.0 \cdot 10^{-3} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -2.80643499 \pm 1.2 \cdot 10^{-2} \) | \(a_{29}= +0.75651318 \pm 4.2 \cdot 10^{-2} \) | \(a_{30}= -0.56272965 \pm 3.8 \cdot 10^{-2} \) |
\(a_{31}= +0.19858530 \pm 1.9 \cdot 10^{-2} \) | \(a_{32}= -1.24770641 \pm 2.6 \cdot 10^{-2} \) | \(a_{33}= +0.32203443 \pm 2.0 \cdot 10^{-2} \) |
\(a_{34}= +0.56900389 \pm 1.8 \cdot 10^{-2} \) | \(a_{35}= -1.20467519 \pm 8.2 \cdot 10^{-3} \) | \(a_{36}= +0.48350031 \pm 2.9 \cdot 10^{-2} \) |
\(a_{37}= +0.52272516 \pm 2.2 \cdot 10^{-2} \) | \(a_{38}= -1.25098314 \pm 5.5 \cdot 10^{-3} \) | \(a_{39}= -0.06179547 \pm 2.0 \cdot 10^{-2} \) |
\(a_{40}= +0.43909261 \pm 1.2 \cdot 10^{-2} \) | \(a_{41}= -1.19949848 \pm 4.3 \cdot 10^{-2} \) | \(a_{42}= +1.74865358 \pm 3.4 \cdot 10^{-2} \) |
\(a_{43}= +0.93640580 \pm 2.8 \cdot 10^{-2} \) | \(a_{44}= -0.80906039 \pm 1.8 \cdot 10^{-2} \) | \(a_{45}= +0.20754474 \pm 2.2 \cdot 10^{-2} \) |
\(a_{46}= -2.59835791 \pm 1.3 \cdot 10^{-2} \) | \(a_{47}= +0.22929349 \pm 3.6 \cdot 10^{-2} \) | \(a_{48}= +0.20007956 \pm 2.4 \cdot 10^{-2} \) |
\(a_{49}= +2.74346646 \pm 3.1 \cdot 10^{-2} \) | \(a_{50}= -0.95854074 \pm 9.1 \cdot 10^{-3} \) | \(a_{51}= -0.20985879 \pm 1.5 \cdot 10^{-2} \) |
\(a_{52}= +0.15525131 \pm 1.8 \cdot 10^{-2} \) | \(a_{53}= +0.06021017 \pm 1.8 \cdot 10^{-2} \) | \(a_{54}= -0.30126283 \pm 1.6 \cdot 10^{-2} \) |
\(a_{55}= -0.34729291 \pm 1.4 \cdot 10^{-2} \) | \(a_{56}= -1.36445780 \pm 1.7 \cdot 10^{-2} \) | \(a_{57}= +0.46138492 \pm 1.2 \cdot 10^{-2} \) |
\(a_{58}= +1.18425147 \pm 1.7 \cdot 10^{-2} \) | \(a_{59}= +0.09877301 \pm 2.8 \cdot 10^{-2} \) | \(a_{60}= -0.52142323 \pm 5.2 \cdot 10^{-2} \) |
\(a_{61}= +1.23492073 \pm 2.3 \cdot 10^{-2} \) | \(a_{62}= +0.31086694 \pm 8.9 \cdot 10^{-3} \) | \(a_{63}= -0.64493466 \pm 1.8 \cdot 10^{-2} \) |
\(a_{64}= -1.60662112 \pm 2.2 \cdot 10^{-2} \) | \(a_{65}= +0.06664234 \pm 1.4 \cdot 10^{-2} \) | \(a_{66}= +0.50411514 \pm 3.7 \cdot 10^{-2} \) |
\(a_{67}= +0.26785623 \pm 5.1 \cdot 10^{-2} \) | \(a_{68}= +0.52723692 \pm 1.7 \cdot 10^{-2} \) | \(a_{69}= +0.95832079 \pm 4.5 \cdot 10^{-2} \) |
\(a_{70}= -1.88580769 \pm 6.4 \cdot 10^{-3} \) | \(a_{71}= -0.70817333 \pm 3.3 \cdot 10^{-2} \) | \(a_{72}= +0.23507253 \pm 2.0 \cdot 10^{-2} \) |
\(a_{73}= +0.92629954 \pm 1.4 \cdot 10^{-2} \) | \(a_{74}= +0.81827793 \pm 2.3 \cdot 10^{-2} \) | \(a_{75}= +0.35352694 \pm 1.8 \cdot 10^{-2} \) |
\(a_{76}= -1.15915639 \pm 1.1 \cdot 10^{-2} \) | \(a_{77}= +1.07919494 \pm 1.2 \cdot 10^{-2} \) | \(a_{78}= -0.09673510 \pm 3.6 \cdot 10^{-2} \) |
\(a_{79}= -1.07812771 \pm 2.5 \cdot 10^{-2} \) | \(a_{80}= -0.21577263 \pm 1.7 \cdot 10^{-2} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.87770403 \pm 1.4 \cdot 10^{-2} \) | \(a_{83}= +0.31686941 \pm 3.5 \cdot 10^{-2} \) | \(a_{84}= +1.62029600 \pm 4.8 \cdot 10^{-2} \) |
\(a_{85}= +0.22631888 \pm 1.2 \cdot 10^{-2} \) | \(a_{86}= +1.46585676 \pm 2.1 \cdot 10^{-2} \) | \(a_{87}= -0.43677309 \pm 4.2 \cdot 10^{-2} \) |
\(a_{88}= -0.39335626 \pm 1.3 \cdot 10^{-2} \) | \(a_{89}= +0.32353181 \pm 1.4 \cdot 10^{-2} \) | \(a_{90}= +0.32489212 \pm 3.8 \cdot 10^{-2} \) |
\(a_{91}= -0.20708767 \pm 7.5 \cdot 10^{-3} \) | \(a_{92}= -2.40762891 \pm 4.1 \cdot 10^{-2} \) | \(a_{93}= -0.11465328 \pm 1.9 \cdot 10^{-2} \) |
\(a_{94}= +0.35893777 \pm 1.4 \cdot 10^{-2} \) | \(a_{95}= -0.49757323 \pm 9.5 \cdot 10^{-3} \) | \(a_{96}= +0.72036363 \pm 2.6 \cdot 10^{-2} \) |
\(a_{97}= -1.25090301 \pm 3.4 \cdot 10^{-2} \) | \(a_{98}= +4.29464323 \pm 1.4 \cdot 10^{-2} \) | \(a_{99}= -0.18592666 \pm 2.0 \cdot 10^{-2} \) |
\(a_{100}= -0.88818033 \pm 1.5 \cdot 10^{-2} \) | \(a_{101}= -1.08481234 \pm 1.8 \cdot 10^{-2} \) | \(a_{102}= -0.32851455 \pm 3.1 \cdot 10^{-2} \) |
\(a_{103}= +0.06480165 \pm 2.4 \cdot 10^{-2} \) | \(a_{104}= +0.07548148 \pm 1.1 \cdot 10^{-2} \) | \(a_{105}= +0.69551954 \pm 4.1 \cdot 10^{-2} \) |
\(a_{106}= +0.09425346 \pm 1.1 \cdot 10^{-2} \) | \(a_{107}= -0.85892605 \pm 1.6 \cdot 10^{-2} \) | \(a_{108}= -0.27914904 \pm 2.9 \cdot 10^{-2} \) |
\(a_{109}= +0.44454598 \pm 3.3 \cdot 10^{-2} \) | \(a_{110}= -0.54365496 \pm 8.9 \cdot 10^{-3} \) | \(a_{111}= -0.30179551 \pm 2.2 \cdot 10^{-2} \) |
\(a_{112}= +0.67050239 \pm 6.7 \cdot 10^{-3} \) | \(a_{113}= -0.11874958 \pm 1.8 \cdot 10^{-2} \) | \(a_{114}= +0.72225545 \pm 2.8 \cdot 10^{-2} \) |
\(a_{115}= -1.03348583 \pm 3.1 \cdot 10^{-2} \) | \(a_{116}= +1.09732307 \pm 3.9 \cdot 10^{-2} \) | \(a_{117}= +0.03567763 \pm 2.0 \cdot 10^{-2} \) |
\(a_{118}= +0.15462002 \pm 1.8 \cdot 10^{-2} \) | \(a_{119}= -0.70327434 \pm 8.3 \cdot 10^{-3} \) | \(a_{120}= -0.25351024 \pm 4.2 \cdot 10^{-2} \) |
\(a_{121}= -0.68888149 \pm 2.0 \cdot 10^{-2} \) | \(a_{122}= +1.93315429 \pm 9.9 \cdot 10^{-3} \) | \(a_{123}= +0.69253077 \pm 4.3 \cdot 10^{-2} \) |
\(a_{124}= +0.28804816 \pm 1.6 \cdot 10^{-2} \) | \(a_{125}= -1.00388974 \pm 3.3 \cdot 10^{-2} \) | \(a_{126}= -1.00958562 \pm 3.4 \cdot 10^{-2} \) |
\(a_{127}= -0.52351092 \pm 3.7 \cdot 10^{-2} \) | \(a_{128}= -1.26731049 \pm 2.7 \cdot 10^{-2} \) | \(a_{129}= -0.54063414 \pm 2.8 \cdot 10^{-2} \) |
\(a_{130}= +0.10432243 \pm 5.3 \cdot 10^{-3} \) | \(a_{131}= +1.20121449 \pm 2.1 \cdot 10^{-2} \) | \(a_{132}= +0.46711124 \pm 5.0 \cdot 10^{-2} \) |
\(a_{133}= +1.54618335 \pm 3.4 \cdot 10^{-3} \) | \(a_{134}= +0.41930417 \pm 1.7 \cdot 10^{-2} \) | \(a_{135}= -0.11982601 \pm 2.2 \cdot 10^{-2} \) |
\(a_{136}= +0.25633678 \pm 7.7 \cdot 10^{-3} \) | \(a_{137}= -0.20750906 \pm 3.7 \cdot 10^{-2} \) | \(a_{138}= +1.50016264 \pm 6.1 \cdot 10^{-2} \) |
\(a_{139}= -1.24099597 \pm 2.5 \cdot 10^{-2} \) | \(a_{140}= -1.74738249 \pm 6.9 \cdot 10^{-3} \) | \(a_{141}= -0.13238266 \pm 3.6 \cdot 10^{-2} \) |
\(a_{142}= -1.10857991 \pm 1.5 \cdot 10^{-2} \) | \(a_{143}= -0.05970081 \pm 1.2 \cdot 10^{-2} \) | \(a_{144}= -0.11551599 \pm 2.4 \cdot 10^{-2} \) |
\(a_{145}= +0.47103100 \pm 2.9 \cdot 10^{-2} \) | \(a_{146}= +1.45003634 \pm 1.1 \cdot 10^{-2} \) | \(a_{147}= -1.58394110 \pm 3.1 \cdot 10^{-2} \) |
\(a_{148}= +0.75821333 \pm 2.4 \cdot 10^{-2} \) | \(a_{149}= +0.75804622 \pm 2.7 \cdot 10^{-2} \) | \(a_{150}= +0.55341375 \pm 3.5 \cdot 10^{-2} \) |
\(a_{151}= -0.25812972 \pm 4.2 \cdot 10^{-2} \) | \(a_{152}= -0.56356907 \pm 6.9 \cdot 10^{-3} \) | \(a_{153}= +0.12116203 \pm 1.5 \cdot 10^{-2} \) |
\(a_{154}= +1.68937996 \pm 8.4 \cdot 10^{-3} \) | \(a_{155}= +0.12364601 \pm 1.2 \cdot 10^{-2} \) | \(a_{156}= -0.08963439 \pm 4.9 \cdot 10^{-2} \) |
\(a_{157}= -1.49394999 \pm 4.4 \cdot 10^{-2} \) | \(a_{158}= -1.68770931 \pm 1.2 \cdot 10^{-2} \) | \(a_{159}= -0.03476236 \pm 1.8 \cdot 10^{-2} \) |
\(a_{160}= -0.77686472 \pm 1.8 \cdot 10^{-2} \) | \(a_{161}= +3.21150431 \pm 1.1 \cdot 10^{-2} \) | \(a_{162}= +0.17393418 \pm 1.6 \cdot 10^{-2} \) |
\(a_{163}= +0.04777010 \pm 5.6 \cdot 10^{-3} \) | \(a_{164}= -1.73987367 \pm 3.9 \cdot 10^{-2} \) | \(a_{165}= +0.20050966 \pm 4.3 \cdot 10^{-2} \) |
\(a_{166}= +0.49602978 \pm 1.3 \cdot 10^{-2} \) | \(a_{167}= -1.03531982 \pm 2.0 \cdot 10^{-2} \) | \(a_{168}= +0.78777008 \pm 3.8 \cdot 10^{-2} \) |
\(a_{169}= -0.98854396 \pm 2.1 \cdot 10^{-2} \) | \(a_{170}= +0.35428130 \pm 1.5 \cdot 10^{-2} \) | \(a_{171}= -0.26638071 \pm 1.2 \cdot 10^{-2} \) |
\(a_{172}= +1.35825750 \pm 2.4 \cdot 10^{-2} \) | \(a_{173}= -0.48344638 \pm 1.8 \cdot 10^{-2} \) | \(a_{174}= -0.68372790 \pm 5.9 \cdot 10^{-2} \) |
\(a_{175}= +1.18473198 \pm 1.5 \cdot 10^{-2} \) | \(a_{176}= +0.19329752 \pm 1.5 \cdot 10^{-2} \) | \(a_{177}= -0.05702662 \pm 2.8 \cdot 10^{-2} \) |
\(a_{178}= +0.50645915 \pm 1.1 \cdot 10^{-2} \) | \(a_{179}= +1.11243084 \pm 2.8 \cdot 10^{-2} \) | \(a_{180}= +0.30104384 \pm 5.2 \cdot 10^{-2} \) |
\(a_{181}= -1.54727403 \pm 3.3 \cdot 10^{-2} \) | \(a_{182}= -0.32417661 \pm 4.4 \cdot 10^{-3} \) | \(a_{183}= -0.71298181 \pm 2.3 \cdot 10^{-2} \) |
\(a_{184}= -1.17056267 \pm 2.3 \cdot 10^{-2} \) | \(a_{185}= +0.32546658 \pm 1.7 \cdot 10^{-2} \) | \(a_{186}= -0.17947911 \pm 3.5 \cdot 10^{-2} \) |
\(a_{187}= -0.20274527 \pm 8.6 \cdot 10^{-3} \) | \(a_{188}= +0.33259042 \pm 3.1 \cdot 10^{-2} \) | \(a_{189}= +0.37235320 \pm 1.8 \cdot 10^{-2} \) |
\(a_{190}= -0.77890492 \pm 5.8 \cdot 10^{-3} \) | \(a_{191}= +0.73296872 \pm 2.3 \cdot 10^{-2} \) | \(a_{192}= +0.92758314 \pm 2.2 \cdot 10^{-2} \) |
\(a_{193}= -0.35628383 \pm 3.9 \cdot 10^{-2} \) | \(a_{194}= -1.95817307 \pm 1.3 \cdot 10^{-2} \) | \(a_{195}= -0.03847597 \pm 4.2 \cdot 10^{-2} \) |
\(a_{196}= +3.97940067 \pm 2.7 \cdot 10^{-2} \) | \(a_{197}= +1.10687874 \pm 5.7 \cdot 10^{-2} \) | \(a_{198}= -0.29105101 \pm 3.7 \cdot 10^{-2} \) |
\(a_{199}= +0.26254734 \pm 2.2 \cdot 10^{-2} \) | \(a_{200}= -0.43182350 \pm 1.3 \cdot 10^{-2} \) | \(a_{201}= -0.15464687 \pm 5.1 \cdot 10^{-2} \) |
\(a_{202}= -1.69817348 \pm 1.3 \cdot 10^{-2} \) | \(a_{203}= -1.46370471 \pm 1.8 \cdot 10^{-2} \) | \(a_{204}= -0.30440038 \pm 4.4 \cdot 10^{-2} \) |
\(a_{205}= -0.74684881 \pm 2.9 \cdot 10^{-2} \) | \(a_{206}= +0.10144099 \pm 1.8 \cdot 10^{-2} \) | \(a_{207}= -0.55328677 \pm 4.5 \cdot 10^{-2} \) |
\(a_{208}= -0.03709203 \pm 1.5 \cdot 10^{-2} \) | \(a_{209}= +0.44574548 \pm 8.1 \cdot 10^{-3} \) | \(a_{210}= +1.08877157 \pm 5.7 \cdot 10^{-2} \) |
\(a_{211}= +1.71104931 \pm 1.3 \cdot 10^{-2} \) | \(a_{212}= +0.08733491 \pm 1.6 \cdot 10^{-2} \) | \(a_{213}= +0.40886406 \pm 3.3 \cdot 10^{-2} \) |
\(a_{214}= -1.34456936 \pm 1.1 \cdot 10^{-2} \) | \(a_{215}= +0.58303831 \pm 1.8 \cdot 10^{-2} \) | \(a_{216}= -0.13571919 \pm 2.0 \cdot 10^{-2} \) |
\(a_{217}= -0.38422363 \pm 1.2 \cdot 10^{-2} \) | \(a_{218}= +0.69589565 \pm 1.4 \cdot 10^{-2} \) | \(a_{219}= -0.53479929 \pm 1.4 \cdot 10^{-2} \) |
\(a_{220}= -0.50374869 \pm 1.2 \cdot 10^{-2} \) | \(a_{221}= +0.03890497 \pm 6.6 \cdot 10^{-3} \) | \(a_{222}= -0.47243298 \pm 3.9 \cdot 10^{-2} \) |
\(a_{223}= -0.18636649 \pm 1.1 \cdot 10^{-2} \) | \(a_{224}= +2.41406734 \pm 1.7 \cdot 10^{-2} \) | \(a_{225}= -0.20410887 \pm 1.8 \cdot 10^{-2} \) |
\(a_{226}= -0.18589149 \pm 1.5 \cdot 10^{-2} \) | \(a_{227}= -1.86887591 \pm 4.4 \cdot 10^{-2} \) | \(a_{228}= +0.66923925 \pm 4.1 \cdot 10^{-2} \) |
\(a_{229}= +1.87303628 \pm 1.9 \cdot 10^{-2} \) | \(a_{230}= -1.61782657 \pm 1.0 \cdot 10^{-2} \) | \(a_{231}= -0.62307349 \pm 3.9 \cdot 10^{-2} \) |
\(a_{232}= +0.53350640 \pm 2.4 \cdot 10^{-2} \) | \(a_{233}= -1.15293275 \pm 3.1 \cdot 10^{-2} \) | \(a_{234}= +0.05585003 \pm 3.6 \cdot 10^{-2} \) |
\(a_{235}= +0.14276597 \pm 2.5 \cdot 10^{-2} \) | \(a_{236}= +0.14327034 \pm 2.2 \cdot 10^{-2} \) | \(a_{237}= +0.62245733 \pm 2.5 \cdot 10^{-2} \) |
\(a_{238}= -1.10091099 \pm 9.6 \cdot 10^{-3} \) | \(a_{239}= +1.13225475 \pm 2.7 \cdot 10^{-2} \) | \(a_{240}= +0.12457638 \pm 4.6 \cdot 10^{-2} \) |
\(a_{241}= -1.20402433 \pm 2.7 \cdot 10^{-2} \) | \(a_{242}= -1.07838031 \pm 1.0 \cdot 10^{-2} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +1.79125367 \pm 2.1 \cdot 10^{-2} \) | \(a_{245}= +1.70817612 \pm 2.1 \cdot 10^{-2} \) | \(a_{246}= +1.08409293 \pm 5.9 \cdot 10^{-2} \) |
\(a_{247}= -0.08553449 \pm 9.1 \cdot 10^{-3} \) | \(a_{248}= +0.14004585 \pm 1.2 \cdot 10^{-2} \) | \(a_{249}= -0.18294464 \pm 3.5 \cdot 10^{-2} \) |
\(a_{250}= -1.57149662 \pm 1.5 \cdot 10^{-2} \) | \(a_{251}= +0.73575316 \pm 3.8 \cdot 10^{-2} \) | \(a_{252}= -0.93547833 \pm 4.8 \cdot 10^{-2} \) |
\(a_{253}= +0.92583685 \pm 2.7 \cdot 10^{-2} \) | \(a_{254}= -0.81950798 \pm 1.8 \cdot 10^{-2} \) | \(a_{255}= -0.13066527 \pm 3.7 \cdot 10^{-2} \) |
\(a_{256}= -0.37723635 \pm 1.6 \cdot 10^{-2} \) | \(a_{257}= -1.10286061 \pm 3.6 \cdot 10^{-2} \) | \(a_{258}= -0.84631279 \pm 4.5 \cdot 10^{-2} \) |
\(a_{259}= -1.01137072 \pm 1.2 \cdot 10^{-2} \) | \(a_{260}= +0.09666478 \pm 1.3 \cdot 10^{-2} \) | \(a_{261}= +0.25217106 \pm 4.2 \cdot 10^{-2} \) |
\(a_{262}= +1.88039028 \pm 1.2 \cdot 10^{-2} \) | \(a_{263}= -0.68894512 \pm 2.5 \cdot 10^{-2} \) | \(a_{264}= +0.22710434 \pm 4.0 \cdot 10^{-2} \) |
\(a_{265}= +0.03748891 \pm 1.2 \cdot 10^{-2} \) | \(a_{266}= +2.42040716 \pm 1.9 \cdot 10^{-3} \) | \(a_{267}= -0.18679118 \pm 1.4 \cdot 10^{-2} \) |
\(a_{268}= +0.38852571 \pm 4.7 \cdot 10^{-2} \) | \(a_{269}= +0.37770168 \pm 2.2 \cdot 10^{-2} \) | \(a_{270}= -0.18757655 \pm 3.8 \cdot 10^{-2} \) |
\(a_{271}= -0.97263179 \pm 3.0 \cdot 10^{-2} \) | \(a_{272}= -0.12596537 \pm 1.0 \cdot 10^{-2} \) | \(a_{273}= +0.11956212 \pm 3.8 \cdot 10^{-2} \) |
\(a_{274}= -0.32483627 \pm 1.9 \cdot 10^{-2} \) | \(a_{275}= +0.34154353 \pm 1.2 \cdot 10^{-2} \) | \(a_{276}= +1.39004520 \pm 7.4 \cdot 10^{-2} \) |
\(a_{277}= +0.17814820 \pm 1.6 \cdot 10^{-2} \) | \(a_{278}= -1.94266451 \pm 2.3 \cdot 10^{-2} \) | \(a_{279}= +0.06619510 \pm 1.9 \cdot 10^{-2} \) |
\(a_{280}= -0.84955813 \pm 6.4 \cdot 10^{-3} \) | \(a_{281}= -1.49562520 \pm 3.4 \cdot 10^{-2} \) | \(a_{282}= -0.20723282 \pm 5.2 \cdot 10^{-2} \) |
\(a_{283}= +1.22897183 \pm 4.8 \cdot 10^{-2} \) | \(a_{284}= -1.02720608 \pm 2.9 \cdot 10^{-2} \) | \(a_{285}= +0.28727404 \pm 3.4 \cdot 10^{-2} \) |
\(a_{286}= -0.09345609 \pm 4.6 \cdot 10^{-3} \) | \(a_{287}= +2.32079444 \pm 1.9 \cdot 10^{-2} \) | \(a_{288}= -0.41590214 \pm 2.6 \cdot 10^{-2} \) |
\(a_{289}= -0.86787786 \pm 3.1 \cdot 10^{-2} \) | \(a_{290}= +0.73735550 \pm 1.3 \cdot 10^{-2} \) | \(a_{291}= +0.72220919 \pm 3.4 \cdot 10^{-2} \) |
\(a_{292}= +1.34359835 \pm 1.4 \cdot 10^{-2} \) | \(a_{293}= -0.59618083 \pm 5.1 \cdot 10^{-2} \) | \(a_{294}= -2.47951343 \pm 4.7 \cdot 10^{-2} \) |
\(a_{295}= +0.06149946 \pm 1.5 \cdot 10^{-2} \) | \(a_{296}= +0.36863497 \pm 1.2 \cdot 10^{-2} \) | \(a_{297}= +0.10734481 \pm 2.0 \cdot 10^{-2} \) |
\(a_{298}= +1.18665131 \pm 1.4 \cdot 10^{-2} \) | \(a_{299}= -0.17765965 \pm 2.9 \cdot 10^{-2} \) | \(a_{300}= +0.51279115 \pm 4.8 \cdot 10^{-2} \) |
\(a_{301}= -1.81176168 \pm 2.7 \cdot 10^{-2} \) | \(a_{302}= -0.40407823 \pm 1.3 \cdot 10^{-2} \) | \(a_{303}= +0.62631670 \pm 1.8 \cdot 10^{-2} \) |
\(a_{304}= +0.27694108 \pm 9.6 \cdot 10^{-3} \) | \(a_{305}= +0.76890391 \pm 1.8 \cdot 10^{-2} \) | \(a_{306}= +0.18966796 \pm 3.1 \cdot 10^{-2} \) |
\(a_{307}= -0.23692129 \pm 1.4 \cdot 10^{-2} \) | \(a_{308}= +1.56537327 \pm 7.9 \cdot 10^{-3} \) | \(a_{309}= -0.03741325 \pm 2.4 \cdot 10^{-2} \) |
\(a_{310}= +0.19355640 \pm 6.4 \cdot 10^{-3} \) | \(a_{311}= +0.29347759 \pm 4.7 \cdot 10^{-2} \) | \(a_{312}= -0.04357925 \pm 4.0 \cdot 10^{-2} \) |
\(a_{313}= -1.70897966 \pm 2.0 \cdot 10^{-2} \) | \(a_{314}= -2.33864066 \pm 1.4 \cdot 10^{-2} \) | \(a_{315}= -0.40155840 \pm 4.1 \cdot 10^{-2} \) |
\(a_{316}= -1.56382526 \pm 2.1 \cdot 10^{-2} \) | \(a_{317}= +1.03514793 \pm 2.0 \cdot 10^{-2} \) | \(a_{318}= -0.05441726 \pm 3.4 \cdot 10^{-2} \) |
\(a_{319}= -0.42196791 \pm 2.6 \cdot 10^{-2} \) | \(a_{320}= -1.00033730 \pm 1.5 \cdot 10^{-2} \) | \(a_{321}= +0.49590119 \pm 1.6 \cdot 10^{-2} \) |
\(a_{322}= +5.02731324 \pm 3.9 \cdot 10^{-3} \) | \(a_{323}= -0.29047704 \pm 4.4 \cdot 10^{-3} \) | \(a_{324}= +0.16116677 \pm 2.9 \cdot 10^{-2} \) |
\(a_{325}= -0.06553909 \pm 1.0 \cdot 10^{-2} \) | \(a_{326}= +0.07477967 \pm 7.0 \cdot 10^{-3} \) | \(a_{327}= -0.25665874 \pm 3.3 \cdot 10^{-2} \) |
\(a_{328}= -0.84590742 \pm 2.5 \cdot 10^{-2} \) | \(a_{329}= -0.44363795 \pm 1.7 \cdot 10^{-2} \) | \(a_{330}= +0.31387934 \pm 5.9 \cdot 10^{-2} \) |
\(a_{331}= +1.85396595 \pm 1.9 \cdot 10^{-2} \) | \(a_{332}= +0.45961938 \pm 3.1 \cdot 10^{-2} \) | \(a_{333}= +0.17424172 \pm 2.2 \cdot 10^{-2} \) |
\(a_{334}= -1.62069751 \pm 1.6 \cdot 10^{-2} \) | \(a_{335}= +0.16677646 \pm 3.5 \cdot 10^{-2} \) | \(a_{336}= -0.38711474 \pm 4.2 \cdot 10^{-2} \) |
\(a_{337}= +0.61912728 \pm 3.7 \cdot 10^{-2} \) | \(a_{338}= -1.54747422 \pm 1.3 \cdot 10^{-2} \) | \(a_{339}= +0.06856010 \pm 1.8 \cdot 10^{-2} \) |
\(a_{340}= +0.32827575 \pm 1.4 \cdot 10^{-2} \) | \(a_{341}= -0.11076691 \pm 1.2 \cdot 10^{-2} \) | \(a_{342}= -0.41699438 \pm 2.8 \cdot 10^{-2} \) |
\(a_{343}= -3.37326585 \pm 1.5 \cdot 10^{-2} \) | \(a_{344}= +0.66036984 \pm 2.2 \cdot 10^{-2} \) | \(a_{345}= +0.59668332 \pm 6.7 \cdot 10^{-2} \) |
\(a_{346}= -0.75679064 \pm 1.2 \cdot 10^{-2} \) | \(a_{347}= +1.66586446 \pm 1.1 \cdot 10^{-2} \) | \(a_{348}= -0.63353977 \pm 7.2 \cdot 10^{-2} \) |
\(a_{349}= +0.72784882 \pm 5.1 \cdot 10^{-2} \) | \(a_{350}= +1.85458844 \pm 1.0 \cdot 10^{-2} \) | \(a_{351}= -0.02059849 \pm 2.0 \cdot 10^{-2} \) |
\(a_{352}= +0.69594567 \pm 1.6 \cdot 10^{-2} \) | \(a_{353}= -0.49761741 \pm 4.4 \cdot 10^{-2} \) | \(a_{354}= -0.08926991 \pm 4.5 \cdot 10^{-2} \) |
\(a_{355}= -0.44093296 \pm 2.2 \cdot 10^{-2} \) | \(a_{356}= +0.46928319 \pm 1.1 \cdot 10^{-2} \) | \(a_{357}= +0.40603563 \pm 3.3 \cdot 10^{-2} \) |
\(a_{358}= +1.74140769 \pm 1.6 \cdot 10^{-2} \) | \(a_{359}= -0.86738027 \pm 2.3 \cdot 10^{-2} \) | \(a_{360}= +0.14636420 \pm 4.2 \cdot 10^{-2} \) |
\(a_{361}= -0.36137188 \pm 2.8 \cdot 10^{-2} \) | \(a_{362}= -2.42211452 \pm 2.1 \cdot 10^{-2} \) | \(a_{363}= +0.39772591 \pm 2.0 \cdot 10^{-2} \) |
\(a_{364}= -0.30038085 \pm 5.6 \cdot 10^{-3} \) | \(a_{365}= +0.57674580 \pm 1.0 \cdot 10^{-2} \) | \(a_{366}= -1.11610715 \pm 4.0 \cdot 10^{-2} \) |
\(a_{367}= +0.94119369 \pm 2.1 \cdot 10^{-2} \) | \(a_{368}= +0.57522122 \pm 3.5 \cdot 10^{-2} \) | \(a_{369}= -0.39983283 \pm 4.3 \cdot 10^{-2} \) |
\(a_{370}= +0.50948785 \pm 2.0 \cdot 10^{-2} \) | \(a_{371}= -0.11649488 \pm 1.0 \cdot 10^{-2} \) | \(a_{372}= -0.16630469 \pm 4.8 \cdot 10^{-2} \) |
\(a_{373}= -0.47813888 \pm 1.9 \cdot 10^{-2} \) | \(a_{374}= -0.31737898 \pm 9.9 \cdot 10^{-3} \) | \(a_{375}= +0.57959601 \pm 3.3 \cdot 10^{-2} \) |
\(a_{376}= +0.16170180 \pm 2.1 \cdot 10^{-2} \) | \(a_{377}= +0.08097179 \pm 2.6 \cdot 10^{-2} \) | \(a_{378}= +0.58288453 \pm 3.4 \cdot 10^{-2} \) |
\(a_{379}= -1.90239387 \pm 8.0 \cdot 10^{-3} \) | \(a_{380}= -0.72173044 \pm 8.1 \cdot 10^{-3} \) | \(a_{381}= +0.30224917 \pm 3.7 \cdot 10^{-2} \) |
\(a_{382}= +1.14739480 \pm 2.2 \cdot 10^{-2} \) | \(a_{383}= -0.52092521 \pm 2.4 \cdot 10^{-2} \) | \(a_{384}= +0.73168205 \pm 2.7 \cdot 10^{-2} \) |
\(a_{385}= +0.67194371 \pm 5.3 \cdot 10^{-3} \) | \(a_{386}= -0.55772942 \pm 1.7 \cdot 10^{-2} \) | \(a_{387}= +0.31213527 \pm 2.8 \cdot 10^{-2} \) |
\(a_{388}= -1.81443598 \pm 2.9 \cdot 10^{-2} \) | \(a_{389}= +0.95815645 \pm 1.1 \cdot 10^{-2} \) | \(a_{390}= -0.06023058 \pm 5.9 \cdot 10^{-2} \) |
\(a_{391}= -0.60333613 \pm 1.3 \cdot 10^{-2} \) | \(a_{392}= +1.93474080 \pm 2.0 \cdot 10^{-2} \) | \(a_{393}= -0.69352151 \pm 2.1 \cdot 10^{-2} \) |
\(a_{394}= +1.73271639 \pm 1.6 \cdot 10^{-2} \) | \(a_{395}= -0.67127922 \pm 1.7 \cdot 10^{-2} \) | \(a_{396}= -0.26968680 \pm 5.0 \cdot 10^{-2} \) |
\(a_{397}= +0.61332151 \pm 3.9 \cdot 10^{-2} \) | \(a_{398}= +0.41099360 \pm 1.4 \cdot 10^{-2} \) | \(a_{399}= -0.89268937 \pm 3.0 \cdot 10^{-2} \) |
\(a_{400}= +0.21220055 \pm 1.2 \cdot 10^{-2} \) | \(a_{401}= +1.78934428 \pm 4.5 \cdot 10^{-2} \) | \(a_{402}= -0.24208538 \pm 6.7 \cdot 10^{-2} \) |
\(a_{403}= +0.02125516 \pm 1.1 \cdot 10^{-2} \) | \(a_{404}= -1.57352131 \pm 1.5 \cdot 10^{-2} \) | \(a_{405}= +0.06918158 \pm 2.2 \cdot 10^{-2} \) |
\(a_{406}= -2.29129446 \pm 1.2 \cdot 10^{-2} \) | \(a_{407}= -0.29156563 \pm 1.3 \cdot 10^{-2} \) | \(a_{408}= -0.14799611 \pm 3.5 \cdot 10^{-2} \) |
\(a_{409}= +0.48796622 \pm 4.6 \cdot 10^{-2} \) | \(a_{410}= -1.16912280 \pm 8.9 \cdot 10^{-3} \) | \(a_{411}= +0.11980541 \pm 3.7 \cdot 10^{-2} \) |
\(a_{412}= +0.09399485 \pm 2.3 \cdot 10^{-2} \) | \(a_{413}= -0.19110641 \pm 3.2 \cdot 10^{-2} \) | \(a_{414}= -0.86611930 \pm 6.1 \cdot 10^{-2} \) |
\(a_{415}= +0.19729374 \pm 2.3 \cdot 10^{-2} \) | \(a_{416}= -0.13354563 \pm 1.5 \cdot 10^{-2} \) | \(a_{417}= +0.71648936 \pm 2.5 \cdot 10^{-2} \) |
\(a_{418}= +0.69777336 \pm 4.4 \cdot 10^{-3} \) | \(a_{419}= +0.46705349 \pm 1.7 \cdot 10^{-2} \) | \(a_{420}= +1.00885175 \pm 7.0 \cdot 10^{-2} \) |
\(a_{421}= +1.03384518 \pm 5.0 \cdot 10^{-2} \) | \(a_{422}= +2.67848958 \pm 1.3 \cdot 10^{-2} \) | \(a_{423}= +0.07643116 \pm 3.6 \cdot 10^{-2} \) |
\(a_{424}= +0.04246127 \pm 1.1 \cdot 10^{-2} \) | \(a_{425}= -0.22257221 \pm 6.2 \cdot 10^{-3} \) | \(a_{426}= +0.64003891 \pm 5.0 \cdot 10^{-2} \) |
\(a_{427}= -2.38932954 \pm 6.3 \cdot 10^{-3} \) | \(a_{428}= -1.24587304 \pm 1.6 \cdot 10^{-2} \) | \(a_{429}= +0.03446828 \pm 4.0 \cdot 10^{-2} \) |
\(a_{430}= +0.91269259 \pm 1.7 \cdot 10^{-2} \) | \(a_{431}= -1.40197353 \pm 2.1 \cdot 10^{-2} \) | \(a_{432}= +0.06669319 \pm 2.4 \cdot 10^{-2} \) |
\(a_{433}= -0.46185507 \pm 4.0 \cdot 10^{-2} \) | \(a_{434}= -0.60146659 \pm 8.1 \cdot 10^{-3} \) | \(a_{435}= -0.27194987 \pm 6.5 \cdot 10^{-2} \) |
\(a_{436}= +0.64481436 \pm 3.0 \cdot 10^{-2} \) | \(a_{437}= +1.32646427 \pm 1.7 \cdot 10^{-2} \) | \(a_{438}= -0.83717887 \pm 3.0 \cdot 10^{-2} \) |
\(a_{439}= -0.84975614 \pm 3.1 \cdot 10^{-2} \) | \(a_{440}= -0.24491707 \pm 8.2 \cdot 10^{-3} \) | \(a_{441}= +0.91448882 \pm 3.1 \cdot 10^{-2} \) |
\(a_{442}= +0.06090213 \pm 5.4 \cdot 10^{-3} \) | \(a_{443}= -0.98346612 \pm 4.6 \cdot 10^{-2} \) | \(a_{444}= -0.43775467 \pm 5.2 \cdot 10^{-2} \) |
\(a_{445}= +0.20144198 \pm 8.9 \cdot 10^{-3} \) | \(a_{446}= -0.29173952 \pm 1.1 \cdot 10^{-2} \) | \(a_{447}= -0.43765819 \pm 2.7 \cdot 10^{-2} \) |
\(a_{448}= +3.10849695 \pm 1.4 \cdot 10^{-2} \) | \(a_{449}= -0.25952197 \pm 4.6 \cdot 10^{-2} \) | \(a_{450}= -0.31951358 \pm 3.5 \cdot 10^{-2} \) |
\(a_{451}= +0.66905625 \pm 2.7 \cdot 10^{-2} \) | \(a_{452}= -0.17224637 \pm 1.3 \cdot 10^{-2} \) | \(a_{453}= +0.14903127 \pm 4.2 \cdot 10^{-2} \) |
\(a_{454}= -2.92555255 \pm 2.1 \cdot 10^{-2} \) | \(a_{455}= -0.12893987 \pm 4.3 \cdot 10^{-3} \) | \(a_{456}= +0.32537676 \pm 3.2 \cdot 10^{-2} \) |
\(a_{457}= +0.79899267 \pm 2.9 \cdot 10^{-2} \) | \(a_{458}= +2.93206521 \pm 1.6 \cdot 10^{-2} \) | \(a_{459}= -0.06995293 \pm 1.5 \cdot 10^{-2} \) |
\(a_{460}= -1.49907217 \pm 2.9 \cdot 10^{-2} \) | \(a_{461}= +1.47482065 \pm 1.4 \cdot 10^{-2} \) | \(a_{462}= -0.97536397 \pm 5.5 \cdot 10^{-2} \) |
\(a_{463}= +0.83036488 \pm 3.5 \cdot 10^{-2} \) | \(a_{464}= -0.26216811 \pm 3.2 \cdot 10^{-2} \) | \(a_{465}= -0.07138705 \pm 4.1 \cdot 10^{-2} \) |
\(a_{466}= -1.80480968 \pm 1.4 \cdot 10^{-2} \) | \(a_{467}= -0.08783010 \pm 4.0 \cdot 10^{-2} \) | \(a_{468}= +0.05175044 \pm 4.9 \cdot 10^{-2} \) |
\(a_{469}= -0.51824930 \pm 1.6 \cdot 10^{-2} \) | \(a_{470}= +0.22348694 \pm 1.2 \cdot 10^{-2} \) | \(a_{471}= +0.86253243 \pm 4.4 \cdot 10^{-2} \) |
\(a_{472}= +0.06965646 \pm 2.4 \cdot 10^{-2} \) | \(a_{473}= -0.52230842 \pm 1.8 \cdot 10^{-2} \) | \(a_{474}= +0.97439942 \pm 4.1 \cdot 10^{-2} \) |
\(a_{475}= +0.48933599 \pm 6.3 \cdot 10^{-3} \) | \(a_{476}= -1.02010009 \pm 8.3 \cdot 10^{-3} \) | \(a_{477}= +0.02007006 \pm 1.8 \cdot 10^{-2} \) |
\(a_{478}= +1.77244018 \pm 1.1 \cdot 10^{-2} \) | \(a_{479}= -0.23296091 \pm 2.7 \cdot 10^{-2} \) | \(a_{480}= +0.44852305 \pm 4.9 \cdot 10^{-2} \) |
\(a_{481}= +0.05594879 \pm 1.1 \cdot 10^{-2} \) | \(a_{482}= -1.88478883 \pm 1.6 \cdot 10^{-2} \) | \(a_{483}= -1.85416288 \pm 6.3 \cdot 10^{-2} \) |
\(a_{484}= -0.99922324 \pm 1.8 \cdot 10^{-2} \) | \(a_{485}= -0.77885503 \pm 2.2 \cdot 10^{-2} \) | \(a_{486}= -0.10042094 \pm 1.6 \cdot 10^{-2} \) |
\(a_{487}= -1.29958015 \pm 1.9 \cdot 10^{-2} \) | \(a_{488}= +0.87088782 \pm 1.2 \cdot 10^{-2} \) | \(a_{489}= -0.02758008 \pm 5.6 \cdot 10^{-3} \) |
\(a_{490}= +2.67399187 \pm 1.1 \cdot 10^{-2} \) | \(a_{491}= +0.83355641 \pm 1.8 \cdot 10^{-2} \) | \(a_{492}= +1.00451653 \pm 7.3 \cdot 10^{-2} \) |
\(a_{493}= +0.27498202 \pm 1.7 \cdot 10^{-2} \) | \(a_{494}= -0.13389634 \pm 3.5 \cdot 10^{-3} \) | \(a_{495}= -0.11576430 \pm 4.3 \cdot 10^{-2} \) |
\(a_{496}= -0.06881933 \pm 1.3 \cdot 10^{-2} \) | \(a_{497}= +1.37017659 \pm 2.1 \cdot 10^{-2} \) | \(a_{498}= -0.28638293 \pm 5.2 \cdot 10^{-2} \) |
\(a_{499}= +0.74220129 \pm 5.0 \cdot 10^{-2} \) | \(a_{500}= -1.45614301 \pm 3.0 \cdot 10^{-2} \) | \(a_{501}= +0.59774218 \pm 2.1 \cdot 10^{-2} \) |
\(a_{502}= +1.15175359 \pm 1.3 \cdot 10^{-2} \) | \(a_{503}= -0.95991426 \pm 4.7 \cdot 10^{-2} \) | \(a_{504}= -0.45481927 \pm 3.8 \cdot 10^{-2} \) |
\(a_{505}= -0.67544129 \pm 1.3 \cdot 10^{-2} \) | \(a_{506}= +1.44931204 \pm 8.5 \cdot 10^{-3} \) | \(a_{507}= +0.57073612 \pm 2.1 \cdot 10^{-2} \) |
\(a_{508}= -0.75935309 \pm 3.0 \cdot 10^{-2} \) | \(a_{509}= -0.57512483 \pm 1.1 \cdot 10^{-2} \) | \(a_{510}= -0.20454440 \pm 5.4 \cdot 10^{-2} \) |
\(a_{511}= -1.79220804 \pm 5.1 \cdot 10^{-3} \) | \(a_{512}= +0.67678185 \pm 3.0 \cdot 10^{-2} \) | \(a_{513}= +0.15379497 \pm 1.2 \cdot 10^{-2} \) |
\(a_{514}= -1.72642638 \pm 1.4 \cdot 10^{-2} \) | \(a_{515}= +0.04034772 \pm 1.8 \cdot 10^{-2} \) | \(a_{516}= -0.78419033 \pm 5.8 \cdot 10^{-2} \) |
\(a_{517}= -0.12789532 \pm 2.3 \cdot 10^{-2} \) | \(a_{518}= -1.58320740 \pm 1.2 \cdot 10^{-2} \) | \(a_{519}= +0.27911790 \pm 1.8 \cdot 10^{-2} \) |
\(a_{520}= +0.04699735 \pm 8.0 \cdot 10^{-3} \) | \(a_{521}= +1.83021204 \pm 4.3 \cdot 10^{-2} \) | \(a_{522}= +0.39475049 \pm 5.9 \cdot 10^{-2} \) |
\(a_{523}= +0.53779874 \pm 1.7 \cdot 10^{-2} \) | \(a_{524}= +1.74236274 \pm 1.6 \cdot 10^{-2} \) | \(a_{525}= -0.68400533 \pm 3.7 \cdot 10^{-2} \) |
\(a_{526}= -1.07847992 \pm 1.9 \cdot 10^{-2} \) | \(a_{527}= +0.07218299 \pm 7.7 \cdot 10^{-3} \) | \(a_{528}= -0.11160038 \pm 4.4 \cdot 10^{-2} \) |
\(a_{529}= +1.75513620 \pm 4.1 \cdot 10^{-2} \) | \(a_{530}= +0.05868543 \pm 9.4 \cdot 10^{-3} \) | \(a_{531}= +0.03292434 \pm 2.8 \cdot 10^{-2} \) |
\(a_{532}= +2.24274039 \pm 3.0 \cdot 10^{-3} \) | \(a_{533}= -0.12838579 \pm 2.7 \cdot 10^{-2} \) | \(a_{534}= -0.29240432 \pm 3.1 \cdot 10^{-2} \) |
\(a_{535}= -0.53479676 \pm 1.1 \cdot 10^{-2} \) | \(a_{536}= +0.18889692 \pm 2.7 \cdot 10^{-2} \) | \(a_{537}= -0.64226225 \pm 2.8 \cdot 10^{-2} \) |
\(a_{538}= +0.59125708 \pm 9.6 \cdot 10^{-3} \) | \(a_{539}= -1.53025069 \pm 1.9 \cdot 10^{-2} \) | \(a_{540}= -0.17380774 \pm 5.2 \cdot 10^{-2} \) |
\(a_{541}= -0.37209321 \pm 1.4 \cdot 10^{-2} \) | \(a_{542}= -1.52256519 \pm 2.1 \cdot 10^{-2} \) | \(a_{543}= +0.89331908 \pm 3.3 \cdot 10^{-2} \) |
\(a_{544}= -0.45352393 \pm 1.8 \cdot 10^{-2} \) | \(a_{545}= +0.27678954 \pm 2.3 \cdot 10^{-2} \) | \(a_{546}= +0.18716345 \pm 5.5 \cdot 10^{-2} \) |
\(a_{547}= -0.77379743 \pm 2.2 \cdot 10^{-2} \) | \(a_{548}= -0.30099209 \pm 3.4 \cdot 10^{-2} \) | \(a_{549}= +0.41164024 \pm 2.3 \cdot 10^{-2} \) |
\(a_{550}= +0.53465484 \pm 6.6 \cdot 10^{-3} \) | \(a_{551}= -0.60456154 \pm 1.5 \cdot 10^{-2} \) | \(a_{552}= +0.67582467 \pm 6.5 \cdot 10^{-2} \) |
\(a_{553}= +2.08596580 \pm 1.6 \cdot 10^{-2} \) | \(a_{554}= +0.27887455 \pm 1.2 \cdot 10^{-2} \) | \(a_{555}= -0.18790821 \pm 4.5 \cdot 10^{-2} \) |
\(a_{556}= -1.80006581 \pm 2.2 \cdot 10^{-2} \) | \(a_{557}= +0.10758135 \pm 2.5 \cdot 10^{-2} \) | \(a_{558}= +0.10362231 \pm 3.5 \cdot 10^{-2} \) |
\(a_{559}= +0.10022622 \pm 1.4 \cdot 10^{-2} \) | \(a_{560}= +0.41747774 \pm 4.7 \cdot 10^{-3} \) | \(a_{561}= +0.11705503 \pm 3.5 \cdot 10^{-2} \) |
\(a_{562}= -2.34126304 \pm 1.1 \cdot 10^{-2} \) | \(a_{563}= -0.32619079 \pm 4.5 \cdot 10^{-2} \) | \(a_{564}= -0.19202117 \pm 6.5 \cdot 10^{-2} \) |
\(a_{565}= -0.07393755 \pm 1.1 \cdot 10^{-2} \) | \(a_{566}= +1.92384184 \pm 1.4 \cdot 10^{-2} \) | \(a_{567}= -0.21497822 \pm 1.8 \cdot 10^{-2} \) |
\(a_{568}= -0.49941629 \pm 2.1 \cdot 10^{-2} \) | \(a_{569}= -0.91099545 \pm 2.5 \cdot 10^{-2} \) | \(a_{570}= +0.44970096 \pm 5.1 \cdot 10^{-2} \) |
\(a_{571}= +0.04612125 \pm 2.9 \cdot 10^{-2} \) | \(a_{572}= -0.08659607 \pm 1.1 \cdot 10^{-2} \) | \(a_{573}= -0.42317969 \pm 2.3 \cdot 10^{-2} \) |
\(a_{574}= +3.63298925 \pm 1.1 \cdot 10^{-2} \) | \(a_{575}= +1.01637664 \pm 2.3 \cdot 10^{-2} \) | \(a_{576}= -0.53554037 \pm 2.2 \cdot 10^{-2} \) |
\(a_{577}= -0.56744803 \pm 3.2 \cdot 10^{-2} \) | \(a_{578}= -1.35858259 \pm 2.0 \cdot 10^{-2} \) | \(a_{579}= +0.20570057 \pm 3.9 \cdot 10^{-2} \) |
\(a_{580}= +0.68323090 \pm 2.7 \cdot 10^{-2} \) | \(a_{581}= -0.61308020 \pm 2.3 \cdot 10^{-2} \) | \(a_{582}= +1.13055175 \pm 5.0 \cdot 10^{-2} \) |
\(a_{583}= -0.03358403 \pm 1.1 \cdot 10^{-2} \) | \(a_{584}= +0.65324273 \pm 7.3 \cdot 10^{-3} \) | \(a_{585}= +0.02221411 \pm 4.2 \cdot 10^{-2} \) |
\(a_{586}= -0.93326600 \pm 1.4 \cdot 10^{-2} \) | \(a_{587}= +1.52721075 \pm 3.2 \cdot 10^{-2} \) | \(a_{588}= -2.29750805 \pm 6.1 \cdot 10^{-2} \) |
\(a_{589}= -0.15869788 \pm 6.7 \cdot 10^{-3} \) | \(a_{590}= +0.09627172 \pm 1.1 \cdot 10^{-2} \) | \(a_{591}= -0.63905674 \pm 5.7 \cdot 10^{-2} \) |
\(a_{592}= -0.18114934 \pm 1.6 \cdot 10^{-2} \) | \(a_{593}= -1.00444349 \pm 3.2 \cdot 10^{-2} \) | \(a_{594}= +0.16803838 \pm 3.7 \cdot 10^{-2} \) |
\(a_{595}= -0.43788268 \pm 5.6 \cdot 10^{-3} \) | \(a_{596}= +1.09954675 \pm 2.2 \cdot 10^{-2} \) | \(a_{597}= -0.15158178 \pm 2.2 \cdot 10^{-2} \) |
\(a_{598}= -0.27810976 \pm 8.1 \cdot 10^{-3} \) | \(a_{599}= +1.15931953 \pm 1.2 \cdot 10^{-2} \) | \(a_{600}= +0.24931341 \pm 3.8 \cdot 10^{-2} \) |
\(a_{601}= -0.72358591 \pm 1.9 \cdot 10^{-2} \) | \(a_{602}= -2.83614550 \pm 1.9 \cdot 10^{-2} \) | \(a_{603}= +0.08928541 \pm 5.1 \cdot 10^{-2} \) |
\(a_{604}= -0.37441741 \pm 3.8 \cdot 10^{-2} \) | \(a_{605}= -0.42892119 \pm 1.3 \cdot 10^{-2} \) | \(a_{606}= +0.98044091 \pm 3.5 \cdot 10^{-2} \) |
\(a_{607}= -0.48156919 \pm 4.9 \cdot 10^{-2} \) | \(a_{608}= +0.99709474 \pm 9.6 \cdot 10^{-3} \) | \(a_{609}= +0.84507031 \pm 6.1 \cdot 10^{-2} \) |
\(a_{610}= +1.20364803 \pm 1.1 \cdot 10^{-2} \) | \(a_{611}= +0.02454195 \pm 2.2 \cdot 10^{-2} \) | \(a_{612}= +0.17574564 \pm 4.4 \cdot 10^{-2} \) |
\(a_{613}= +1.24623469 \pm 2.7 \cdot 10^{-2} \) | \(a_{614}= -0.37087839 \pm 1.1 \cdot 10^{-2} \) | \(a_{615}= +0.43119336 \pm 6.6 \cdot 10^{-2} \) |
\(a_{616}= +0.76106725 \pm 1.2 \cdot 10^{-2} \) | \(a_{617}= +1.90858991 \pm 5.0 \cdot 10^{-2} \) | \(a_{618}= -0.05856698 \pm 4.0 \cdot 10^{-2} \) |
\(a_{619}= -1.32626690 \pm 2.1 \cdot 10^{-2} \) | \(a_{620}= +0.17934865 \pm 1.1 \cdot 10^{-2} \) | \(a_{621}= +0.31944026 \pm 4.5 \cdot 10^{-2} \) |
\(a_{622}= +0.45941204 \pm 1.9 \cdot 10^{-2} \) | \(a_{623}= -0.62597063 \pm 1.7 \cdot 10^{-2} \) | \(a_{624}= +0.02141509 \pm 4.4 \cdot 10^{-2} \) |
\(a_{625}= -0.01272950 \pm 1.2 \cdot 10^{-2} \) | \(a_{626}= -2.67524974 \pm 2.0 \cdot 10^{-2} \) | \(a_{627}= -0.25735127 \pm 3.2 \cdot 10^{-2} \) |
\(a_{628}= -2.16697586 \pm 4.1 \cdot 10^{-2} \) | \(a_{629}= +0.19000332 \pm 2.4 \cdot 10^{-2} \) | \(a_{630}= -0.62860256 \pm 5.7 \cdot 10^{-2} \) |
\(a_{631}= +1.90301648 \pm 3.0 \cdot 10^{-2} \) | \(a_{632}= -0.76031462 \pm 1.6 \cdot 10^{-2} \) | \(a_{633}= -0.98787478 \pm 1.3 \cdot 10^{-2} \) |
\(a_{634}= +1.62042844 \pm 8.5 \cdot 10^{-3} \) | \(a_{635}= -0.32595582 \pm 2.2 \cdot 10^{-2} \) | \(a_{636}= -0.05042283 \pm 4.7 \cdot 10^{-2} \) |
\(a_{637}= +0.29364115 \pm 1.8 \cdot 10^{-2} \) | \(a_{638}= -0.66055177 \pm 1.0 \cdot 10^{-2} \) | \(a_{639}= -0.23605778 \pm 3.3 \cdot 10^{-2} \) |
\(a_{640}= -0.78907089 \pm 2.0 \cdot 10^{-2} \) | \(a_{641}= -0.07918357 \pm 1.2 \cdot 10^{-2} \) | \(a_{642}= +0.77628748 \pm 3.3 \cdot 10^{-2} \) |
\(a_{643}= -0.51614272 \pm 3.1 \cdot 10^{-2} \) | \(a_{644}= +4.65829002 \pm 1.0 \cdot 10^{-2} \) | \(a_{645}= -0.33661732 \pm 5.1 \cdot 10^{-2} \) |
\(a_{646}= -0.45471497 \pm 4.6 \cdot 10^{-3} \) | \(a_{647}= -1.00711974 \pm 2.4 \cdot 10^{-2} \) | \(a_{648}= +0.07835751 \pm 2.0 \cdot 10^{-2} \) |
\(a_{649}= -0.05509361 \pm 1.8 \cdot 10^{-2} \) | \(a_{650}= -0.10259539 \pm 3.7 \cdot 10^{-3} \) | \(a_{651}= +0.22183162 \pm 3.7 \cdot 10^{-2} \) |
\(a_{652}= +0.06929057 \pm 6.0 \cdot 10^{-3} \) | \(a_{653}= -1.11229147 \pm 2.2 \cdot 10^{-2} \) | \(a_{654}= -0.40177554 \pm 4.9 \cdot 10^{-2} \) |
\(a_{655}= +0.74791726 \pm 1.3 \cdot 10^{-2} \) | \(a_{656}= +0.41568376 \pm 3.2 \cdot 10^{-2} \) | \(a_{657}= +0.30876651 \pm 1.4 \cdot 10^{-2} \) |
\(a_{658}= -0.69447422 \pm 1.1 \cdot 10^{-2} \) | \(a_{659}= -0.59290744 \pm 2.9 \cdot 10^{-2} \) | \(a_{660}= +0.29083944 \pm 7.2 \cdot 10^{-2} \) |
\(a_{661}= -1.21464515 \pm 3.2 \cdot 10^{-2} \) | \(a_{662}= +2.90221238 \pm 1.4 \cdot 10^{-2} \) | \(a_{663}= -0.02246179 \pm 3.5 \cdot 10^{-2} \) |
\(a_{664}= +0.22346188 \pm 2.3 \cdot 10^{-2} \) | \(a_{665}= +0.96270668 \pm 2.6 \cdot 10^{-3} \) | \(a_{666}= +0.27275931 \pm 3.9 \cdot 10^{-2} \) |
\(a_{667}= -1.25570618 \pm 6.2 \cdot 10^{-2} \) | \(a_{668}= -1.50173237 \pm 2.0 \cdot 10^{-2} \) | \(a_{669}= +0.10759874 \pm 1.1 \cdot 10^{-2} \) |
\(a_{670}= +0.26107313 \pm 1.2 \cdot 10^{-2} \) | \(a_{671}= -0.68881407 \pm 1.5 \cdot 10^{-2} \) | \(a_{672}= -1.39376243 \pm 4.5 \cdot 10^{-2} \) |
\(a_{673}= +0.76027477 \pm 2.4 \cdot 10^{-2} \) | \(a_{674}= +0.96918655 \pm 1.6 \cdot 10^{-2} \) | \(a_{675}= +0.11784231 \pm 1.8 \cdot 10^{-2} \) |
\(a_{676}= -1.43388394 \pm 1.9 \cdot 10^{-2} \) | \(a_{677}= +0.64899308 \pm 2.2 \cdot 10^{-2} \) | \(a_{678}= +0.10732450 \pm 3.5 \cdot 10^{-2} \) |
\(a_{679}= +2.42025212 \pm 2.2 \cdot 10^{-2} \) | \(a_{680}= +0.15960406 \pm 5.5 \cdot 10^{-3} \) | \(a_{681}= +1.07899601 \pm 4.4 \cdot 10^{-2} \) |
\(a_{682}= -0.17339536 \pm 5.7 \cdot 10^{-3} \) | \(a_{683}= +0.16053360 \pm 5.2 \cdot 10^{-2} \) | \(a_{684}= -0.38638546 \pm 4.1 \cdot 10^{-2} \) |
\(a_{685}= -0.12920225 \pm 2.6 \cdot 10^{-2} \) | \(a_{686}= -5.28053598 \pm 1.0 \cdot 10^{-2} \) | \(a_{687}= -1.08139800 \pm 1.9 \cdot 10^{-2} \) |
\(a_{688}= -0.32450953 \pm 1.8 \cdot 10^{-2} \) | \(a_{689}= +0.00644447 \pm 1.0 \cdot 10^{-2} \) | \(a_{690}= +0.93405261 \pm 8.4 \cdot 10^{-2} \) |
\(a_{691}= -0.12402641 \pm 4.1 \cdot 10^{-2} \) | \(a_{692}= -0.70123943 \pm 1.7 \cdot 10^{-2} \) | \(a_{693}= +0.35973165 \pm 3.9 \cdot 10^{-2} \) |
\(a_{694}= +2.60775688 \pm 1.2 \cdot 10^{-2} \) | \(a_{695}= -0.77268657 \pm 1.6 \cdot 10^{-2} \) | \(a_{696}= -0.30802006 \pm 6.2 \cdot 10^{-2} \) |
\(a_{697}= -0.43600102 \pm 1.2 \cdot 10^{-2} \) | \(a_{698}= +1.13938007 \pm 1.8 \cdot 10^{-2} \) | \(a_{699}= +0.66564603 \pm 3.1 \cdot 10^{-2} \) |
\(a_{700}= +1.71845485 \pm 8.9 \cdot 10^{-3} \) | \(a_{701}= +1.17752177 \pm 2.9 \cdot 10^{-2} \) | \(a_{702}= -0.03224503 \pm 3.6 \cdot 10^{-2} \) |
\(a_{703}= -0.41773169 \pm 7.5 \cdot 10^{-3} \) | \(a_{704}= +0.89614111 \pm 1.3 \cdot 10^{-2} \) | \(a_{705}= -0.08242597 \pm 5.8 \cdot 10^{-2} \) |
\(a_{706}= -0.77897407 \pm 2.1 \cdot 10^{-2} \) | \(a_{707}= +2.09889924 \pm 1.7 \cdot 10^{-2} \) | \(a_{708}= -0.08271717 \pm 5.8 \cdot 10^{-2} \) |
\(a_{709}= -1.61078811 \pm 1.4 \cdot 10^{-2} \) | \(a_{710}= -0.69023980 \pm 1.1 \cdot 10^{-2} \) | \(a_{711}= -0.35937590 \pm 2.5 \cdot 10^{-2} \) |
\(a_{712}= +0.22816032 \pm 1.3 \cdot 10^{-2} \) | \(a_{713}= -0.32962386 \pm 2.6 \cdot 10^{-2} \) | \(a_{714}= +0.63561126 \pm 5.0 \cdot 10^{-2} \) |
\(a_{715}= -0.03717176 \pm 9.1 \cdot 10^{-3} \) | \(a_{716}= +1.61358198 \pm 2.6 \cdot 10^{-2} \) | \(a_{717}= -0.65370758 \pm 2.7 \cdot 10^{-2} \) |
\(a_{718}= -1.35780366 \pm 1.9 \cdot 10^{-2} \) | \(a_{719}= -1.78612160 \pm 1.3 \cdot 10^{-2} \) | \(a_{720}= -0.07192421 \pm 4.6 \cdot 10^{-2} \) |
\(a_{721}= -0.12537848 \pm 1.4 \cdot 10^{-2} \) | \(a_{722}= -0.56569429 \pm 1.4 \cdot 10^{-2} \) | \(a_{723}= +0.69514377 \pm 2.7 \cdot 10^{-2} \) |
\(a_{724}= -2.24432243 \pm 3.1 \cdot 10^{-2} \) | \(a_{725}= -0.46323315 \pm 2.3 \cdot 10^{-2} \) | \(a_{726}= +0.62260316 \pm 3.6 \cdot 10^{-2} \) |
\(a_{727}= +0.76119927 \pm 1.3 \cdot 10^{-2} \) | \(a_{728}= -0.14604186 \pm 6.4 \cdot 10^{-3} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.90284225 \pm 1.0 \cdot 10^{-2} \) | \(a_{731}= +0.34037049 \pm 1.8 \cdot 10^{-2} \) | \(a_{732}= -1.03418079 \pm 5.3 \cdot 10^{-2} \) |
\(a_{733}= -0.77638223 \pm 5.7 \cdot 10^{-2} \) | \(a_{734}= +1.47335175 \pm 1.2 \cdot 10^{-2} \) | \(a_{735}= -0.98621594 \pm 5.3 \cdot 10^{-2} \) |
\(a_{736}= +2.07101833 \pm 3.3 \cdot 10^{-2} \) | \(a_{737}= -0.14940484 \pm 3.1 \cdot 10^{-2} \) | \(a_{738}= -0.62590134 \pm 5.9 \cdot 10^{-2} \) |
\(a_{739}= +0.73784828 \pm 3.4 \cdot 10^{-2} \) | \(a_{740}= +0.47208957 \pm 1.9 \cdot 10^{-2} \) | \(a_{741}= +0.04938336 \pm 3.2 \cdot 10^{-2} \) |
\(a_{742}= -0.18236196 \pm 7.9 \cdot 10^{-3} \) | \(a_{743}= +0.21121736 \pm 4.7 \cdot 10^{-2} \) | \(a_{744}= -0.08085551 \pm 3.9 \cdot 10^{-2} \) |
\(a_{745}= +0.47198552 \pm 1.6 \cdot 10^{-2} \) | \(a_{746}= -0.74848223 \pm 1.1 \cdot 10^{-2} \) | \(a_{747}= +0.10562314 \pm 3.5 \cdot 10^{-2} \) |
\(a_{748}= -0.29408220 \pm 9.4 \cdot 10^{-3} \) | \(a_{749}= +1.66185355 \pm 8.5 \cdot 10^{-3} \) | \(a_{750}= +0.90730400 \pm 4.9 \cdot 10^{-2} \) |
\(a_{751}= +0.98033366 \pm 2.7 \cdot 10^{-2} \) | \(a_{752}= -0.07946119 \pm 2.7 \cdot 10^{-2} \) | \(a_{753}= -0.42478729 \pm 3.8 \cdot 10^{-2} \) |
\(a_{754}= +0.12675386 \pm 8.3 \cdot 10^{-3} \) | \(a_{755}= -0.16072040 \pm 2.9 \cdot 10^{-2} \) | \(a_{756}= +0.54009867 \pm 4.8 \cdot 10^{-2} \) |
\(a_{757}= -0.74750612 \pm 9.1 \cdot 10^{-3} \) | \(a_{758}= -2.97802181 \pm 8.6 \cdot 10^{-3} \) | \(a_{759}= -0.53453216 \pm 6.5 \cdot 10^{-2} \) |
\(a_{760}= -0.35089740 \pm 5.7 \cdot 10^{-3} \) | \(a_{761}= -0.65394983 \pm 5.1 \cdot 10^{-2} \) | \(a_{762}= +0.47314315 \pm 5.3 \cdot 10^{-2} \) |
\(a_{763}= -0.86010933 \pm 1.2 \cdot 10^{-2} \) | \(a_{764}= +1.06317182 \pm 1.9 \cdot 10^{-2} \) | \(a_{765}= +0.07543963 \pm 3.7 \cdot 10^{-2} \) |
\(a_{766}= -0.81546028 \pm 1.0 \cdot 10^{-2} \) | \(a_{767}= +0.01057196 \pm 1.4 \cdot 10^{-2} \) | \(a_{768}= +0.21779751 \pm 1.6 \cdot 10^{-2} \) |
\(a_{769}= +0.95069525 \pm 2.7 \cdot 10^{-2} \) | \(a_{770}= +1.05186579 \pm 4.0 \cdot 10^{-3} \) | \(a_{771}= +0.63673687 \pm 3.6 \cdot 10^{-2} \) |
\(a_{772}= -0.51679003 \pm 3.6 \cdot 10^{-2} \) | \(a_{773}= -1.36977540 \pm 2.4 \cdot 10^{-2} \) | \(a_{774}= +0.48861892 \pm 4.5 \cdot 10^{-2} \) |
\(a_{775}= -0.12159907 \pm 1.1 \cdot 10^{-2} \) | \(a_{776}= -0.88215880 \pm 2.2 \cdot 10^{-2} \) | \(a_{777}= +0.58391516 \pm 4.1 \cdot 10^{-2} \) |
\(a_{778}= +1.49990538 \pm 8.5 \cdot 10^{-3} \) | \(a_{779}= +0.95856975 \pm 1.6 \cdot 10^{-2} \) | \(a_{780}= -0.05580944 \pm 7.2 \cdot 10^{-2} \) |
\(a_{781}= +0.39500491 \pm 2.1 \cdot 10^{-2} \) | \(a_{782}= -0.94446696 \pm 6.0 \cdot 10^{-3} \) | \(a_{783}= -0.14559103 \pm 4.2 \cdot 10^{-2} \) |
\(a_{784}= -0.95074273 \pm 2.2 \cdot 10^{-2} \) | \(a_{785}= -0.93018440 \pm 3.1 \cdot 10^{-2} \) | \(a_{786}= -1.08564384 \pm 3.7 \cdot 10^{-2} \) |
\(a_{787}= -0.59813680 \pm 4.9 \cdot 10^{-2} \) | \(a_{788}= +1.60552865 \pm 5.3 \cdot 10^{-2} \) | \(a_{789}= +0.39776265 \pm 2.5 \cdot 10^{-2} \) |
\(a_{790}= -1.05082558 \pm 1.0 \cdot 10^{-2} \) | \(a_{791}= +0.22975715 \pm 2.2 \cdot 10^{-2} \) | \(a_{792}= -0.13111875 \pm 4.0 \cdot 10^{-2} \) |
\(a_{793}= +0.13217714 \pm 1.5 \cdot 10^{-2} \) | \(a_{794}= +0.96009815 \pm 1.5 \cdot 10^{-2} \) | \(a_{795}= -0.02164423 \pm 4.0 \cdot 10^{-2} \) |
\(a_{796}= +0.38082516 \pm 2.1 \cdot 10^{-2} \) | \(a_{797}= +0.51135447 \pm 1.1 \cdot 10^{-2} \) | \(a_{798}= -1.39742272 \pm 4.7 \cdot 10^{-2} \) |
\(a_{799}= +0.08334499 \pm 1.1 \cdot 10^{-2} \) | \(a_{800}= +0.76400385 \pm 1.5 \cdot 10^{-2} \) | \(a_{801}= +0.10784394 \pm 1.4 \cdot 10^{-2} \) |
\(a_{802}= +2.80105313 \pm 1.3 \cdot 10^{-2} \) | \(a_{803}= -0.51667135 \pm 8.7 \cdot 10^{-3} \) | \(a_{804}= -0.22431542 \pm 8.0 \cdot 10^{-2} \) |
\(a_{805}= +1.99959251 \pm 7.7 \cdot 10^{-3} \) | \(a_{806}= +0.03327299 \pm 3.8 \cdot 10^{-3} \) | \(a_{807}= -0.21806617 \pm 2.2 \cdot 10^{-2} \) |
\(a_{808}= -0.76502874 \pm 1.4 \cdot 10^{-2} \) | \(a_{809}= +0.51310429 \pm 2.9 \cdot 10^{-2} \) | \(a_{810}= +0.10829737 \pm 3.8 \cdot 10^{-2} \) |
\(a_{811}= -1.61512383 \pm 1.2 \cdot 10^{-2} \) | \(a_{812}= -2.12310505 \pm 1.3 \cdot 10^{-2} \) | \(a_{813}= +0.56154922 \pm 3.0 \cdot 10^{-2} \) |
\(a_{814}= -0.45641905 \pm 1.2 \cdot 10^{-2} \) | \(a_{815}= +0.02974330 \pm 5.3 \cdot 10^{-3} \) | \(a_{816}= +0.07272614 \pm 3.9 \cdot 10^{-2} \) |
\(a_{817}= -0.74832132 \pm 9.0 \cdot 10^{-3} \) | \(a_{818}= +0.76386602 \pm 1.6 \cdot 10^{-2} \) | \(a_{819}= -0.06902922 \pm 3.8 \cdot 10^{-2} \) |
\(a_{820}= -1.08330490 \pm 2.7 \cdot 10^{-2} \) | \(a_{821}= -0.69017115 \pm 3.6 \cdot 10^{-2} \) | \(a_{822}= +0.18754431 \pm 5.3 \cdot 10^{-2} \) |
\(a_{823}= -0.62613166 \pm 1.5 \cdot 10^{-2} \) | \(a_{824}= +0.04569926 \pm 1.4 \cdot 10^{-2} \) | \(a_{825}= -0.19719025 \pm 3.9 \cdot 10^{-2} \) |
\(a_{826}= -0.29915943 \pm 2.2 \cdot 10^{-2} \) | \(a_{827}= +0.97567683 \pm 2.3 \cdot 10^{-2} \) | \(a_{828}= -0.80254297 \pm 7.4 \cdot 10^{-2} \) |
\(a_{829}= -0.25785283 \pm 3.5 \cdot 10^{-2} \) | \(a_{830}= +0.30884512 \pm 7.4 \cdot 10^{-3} \) | \(a_{831}= -0.10285391 \pm 1.6 \cdot 10^{-2} \) |
\(a_{832}= -0.17196131 \pm 1.1 \cdot 10^{-2} \) | \(a_{833}= +0.99721190 \pm 1.2 \cdot 10^{-2} \) | \(a_{834}= +1.12159788 \pm 4.1 \cdot 10^{-2} \) |
\(a_{835}= -0.64462556 \pm 1.5 \cdot 10^{-2} \) | \(a_{836}= +0.64655423 \pm 7.0 \cdot 10^{-3} \) | \(a_{837}= -0.03821776 \pm 1.9 \cdot 10^{-2} \) |
\(a_{838}= +0.73112909 \pm 7.7 \cdot 10^{-3} \) | \(a_{839}= -1.53021982 \pm 1.6 \cdot 10^{-2} \) | \(a_{840}= +0.49049261 \pm 6.1 \cdot 10^{-2} \) |
\(a_{841}= -0.42768782 \pm 2.6 \cdot 10^{-2} \) | \(a_{842}= +1.61838909 \pm 2.3 \cdot 10^{-2} \) | \(a_{843}= +0.86349961 \pm 3.4 \cdot 10^{-2} \) |
\(a_{844}= +2.48187862 \pm 1.3 \cdot 10^{-2} \) | \(a_{845}= -0.61550131 \pm 1.4 \cdot 10^{-2} \) | \(a_{846}= +0.11964592 \pm 5.2 \cdot 10^{-2} \) |
\(a_{847}= +1.33285064 \pm 1.0 \cdot 10^{-2} \) | \(a_{848}= -0.02086571 \pm 1.3 \cdot 10^{-2} \) | \(a_{849}= -0.70954722 \pm 4.8 \cdot 10^{-2} \) |
\(a_{850}= -0.34841623 \pm 5.0 \cdot 10^{-3} \) | \(a_{851}= -0.86765073 \pm 2.5 \cdot 10^{-2} \) | \(a_{852}= +0.59305771 \pm 6.3 \cdot 10^{-2} \) |
\(a_{853}= +1.49975476 \pm 3.9 \cdot 10^{-2} \) | \(a_{854}= -3.74027461 \pm 2.8 \cdot 10^{-3} \) | \(a_{855}= -0.16585774 \pm 3.4 \cdot 10^{-2} \) |
\(a_{856}= -0.60572976 \pm 9.7 \cdot 10^{-3} \) | \(a_{857}= -0.91547489 \pm 2.2 \cdot 10^{-2} \) | \(a_{858}= +0.05395690 \pm 5.7 \cdot 10^{-2} \) |
\(a_{859}= +1.05179131 \pm 2.5 \cdot 10^{-2} \) | \(a_{860}= +0.84569761 \pm 1.7 \cdot 10^{-2} \) | \(a_{861}= -1.33991130 \pm 6.2 \cdot 10^{-2} \) |
\(a_{862}= -2.19466001 \pm 1.5 \cdot 10^{-2} \) | \(a_{863}= +0.77844628 \pm 3.7 \cdot 10^{-2} \) | \(a_{864}= +0.24012121 \pm 2.6 \cdot 10^{-2} \) |
\(a_{865}= -0.30101026 \pm 1.3 \cdot 10^{-2} \) | \(a_{866}= -0.72299143 \pm 2.0 \cdot 10^{-2} \) | \(a_{867}= +0.50106952 \pm 3.1 \cdot 10^{-2} \) |
\(a_{868}= -0.55731674 \pm 7.5 \cdot 10^{-3} \) | \(a_{869}= +0.60135806 \pm 1.6 \cdot 10^{-2} \) | \(a_{870}= -0.42571240 \pm 8.1 \cdot 10^{-2} \) |
\(a_{871}= +0.02866943 \pm 3.2 \cdot 10^{-2} \) | \(a_{872}= +0.31350164 \pm 1.8 \cdot 10^{-2} \) | \(a_{873}= -0.41696767 \pm 3.4 \cdot 10^{-2} \) |
\(a_{874}= +2.07645724 \pm 5.4 \cdot 10^{-3} \) | \(a_{875}= +1.94232987 \pm 1.3 \cdot 10^{-2} \) | \(a_{876}= -0.77572687 \pm 4.4 \cdot 10^{-2} \) |
\(a_{877}= -0.68150427 \pm 1.9 \cdot 10^{-2} \) | \(a_{878}= -1.33021472 \pm 1.4 \cdot 10^{-2} \) | \(a_{879}= +0.34420516 \pm 5.1 \cdot 10^{-2} \) |
\(a_{880}= +0.12035365 \pm 1.1 \cdot 10^{-2} \) | \(a_{881}= +1.83024040 \pm 4.9 \cdot 10^{-2} \) | \(a_{882}= +1.43154774 \pm 4.7 \cdot 10^{-2} \) |
\(a_{883}= -1.58162904 \pm 8.1 \cdot 10^{-3} \) | \(a_{884}= +0.05643169 \pm 6.7 \cdot 10^{-3} \) | \(a_{885}= -0.03550673 \pm 5.1 \cdot 10^{-2} \) |
\(a_{886}= -1.53952533 \pm 2.5 \cdot 10^{-2} \) | \(a_{887}= -0.93584556 \pm 4.1 \cdot 10^{-2} \) | \(a_{888}= -0.21283150 \pm 4.3 \cdot 10^{-2} \) |
\(a_{889}= +1.01289102 \pm 3.2 \cdot 10^{-2} \) | \(a_{890}= +0.31533880 \pm 8.5 \cdot 10^{-3} \) | \(a_{891}= -0.06197555 \pm 2.0 \cdot 10^{-2} \) |
\(a_{892}= -0.27032477 \pm 1.2 \cdot 10^{-2} \) | \(a_{893}= -0.18323808 \pm 1.4 \cdot 10^{-2} \) | \(a_{894}= -0.68511345 \pm 4.4 \cdot 10^{-2} \) |
\(a_{895}= +0.69263752 \pm 1.9 \cdot 10^{-2} \) | \(a_{896}= +2.45199739 \pm 9.9 \cdot 10^{-3} \) | \(a_{897}= +0.10257185 \pm 6.5 \cdot 10^{-2} \) |
\(a_{898}= -0.40625766 \pm 2.1 \cdot 10^{-2} \) | \(a_{899}= +0.15023240 \pm 2.4 \cdot 10^{-2} \) | \(a_{900}= -0.29606011 \pm 4.8 \cdot 10^{-2} \) |
\(a_{901}= +0.02188556 \pm 1.0 \cdot 10^{-2} \) | \(a_{902}= +1.04734573 \pm 9.1 \cdot 10^{-3} \) | \(a_{903}= +1.04602109 \pm 4.7 \cdot 10^{-2} \) |
\(a_{904}= -0.08374429 \pm 1.6 \cdot 10^{-2} \) | \(a_{905}= -0.96338577 \pm 2.4 \cdot 10^{-2} \) | \(a_{906}= +0.23329467 \pm 5.9 \cdot 10^{-2} \) |
\(a_{907}= -1.38419691 \pm 5.8 \cdot 10^{-2} \) | \(a_{908}= -2.71080626 \pm 4.2 \cdot 10^{-2} \) | \(a_{909}= -0.36160411 \pm 1.8 \cdot 10^{-2} \) |
\(a_{910}= -0.20184345 \pm 2.4 \cdot 10^{-3} \) | \(a_{911}= +1.52315335 \pm 4.1 \cdot 10^{-2} \) | \(a_{912}= -0.15989201 \pm 3.6 \cdot 10^{-2} \) |
\(a_{913}= -0.17674342 \pm 2.2 \cdot 10^{-2} \) | \(a_{914}= +1.25074919 \pm 1.8 \cdot 10^{-2} \) | \(a_{915}= -0.44392688 \pm 4.6 \cdot 10^{-2} \) |
\(a_{916}= +2.71684087 \pm 1.5 \cdot 10^{-2} \) | \(a_{917}= -2.32411458 \pm 2.1 \cdot 10^{-2} \) | \(a_{918}= -0.10950485 \pm 3.1 \cdot 10^{-2} \) |
\(a_{919}= -0.18796394 \pm 2.2 \cdot 10^{-2} \) | \(a_{920}= -0.72883239 \pm 1.6 \cdot 10^{-2} \) | \(a_{921}= +0.13678657 \pm 1.4 \cdot 10^{-2} \) |
\(a_{922}= +2.30869544 \pm 7.8 \cdot 10^{-3} \) | \(a_{923}= -0.07579784 \pm 2.0 \cdot 10^{-2} \) | \(a_{924}= -0.90376868 \pm 6.8 \cdot 10^{-2} \) |
\(a_{925}= -0.32007853 \pm 1.0 \cdot 10^{-2} \) | \(a_{926}= +1.29985949 \pm 1.7 \cdot 10^{-2} \) | \(a_{927}= +0.02160055 \pm 2.4 \cdot 10^{-2} \) |
\(a_{928}= -0.94390634 \pm 3.3 \cdot 10^{-2} \) | \(a_{929}= -0.60746506 \pm 3.0 \cdot 10^{-2} \) | \(a_{930}= -0.11174984 \pm 5.8 \cdot 10^{-2} \) |
\(a_{931}= -2.19241959 \pm 1.1 \cdot 10^{-2} \) | \(a_{932}= -1.67233003 \pm 2.9 \cdot 10^{-2} \) | \(a_{933}= -0.16943936 \pm 4.7 \cdot 10^{-2} \) |
\(a_{934}= -0.13748990 \pm 1.8 \cdot 10^{-2} \) | \(a_{935}= -0.12623614 \pm 6.9 \cdot 10^{-3} \) | \(a_{936}= +0.02516049 \pm 4.0 \cdot 10^{-2} \) |
\(a_{937}= +1.55490210 \pm 2.2 \cdot 10^{-2} \) | \(a_{938}= -0.81127139 \pm 9.2 \cdot 10^{-3} \) | \(a_{939}= +0.98667987 \pm 2.0 \cdot 10^{-2} \) |
\(a_{940}= +0.20708218 \pm 2.2 \cdot 10^{-2} \) | \(a_{941}= +1.23510083 \pm 2.4 \cdot 10^{-2} \) | \(a_{942}= +1.35021481 \pm 6.1 \cdot 10^{-2} \) |
\(a_{943}= +1.99099991 \pm 6.3 \cdot 10^{-2} \) | \(a_{944}= -0.03422959 \pm 1.4 \cdot 10^{-2} \) | \(a_{945}= +0.23183985 \pm 4.1 \cdot 10^{-2} \) |
\(a_{946}= -0.81762556 \pm 1.3 \cdot 10^{-2} \) | \(a_{947}= -1.74491485 \pm 1.6 \cdot 10^{-2} \) | \(a_{948}= +0.90287493 \pm 5.4 \cdot 10^{-2} \) |
\(a_{949}= +0.09914452 \pm 8.6 \cdot 10^{-3} \) | \(a_{950}= +0.76601027 \pm 3.4 \cdot 10^{-3} \) | \(a_{951}= -0.59764294 \pm 2.0 \cdot 10^{-2} \) |
\(a_{952}= -0.49596143 \pm 6.3 \cdot 10^{-3} \) | \(a_{953}= +1.38375595 \pm 5.6 \cdot 10^{-2} \) | \(a_{954}= +0.03141782 \pm 3.4 \cdot 10^{-2} \) |
\(a_{955}= +0.45637141 \pm 1.3 \cdot 10^{-2} \) | \(a_{956}= +1.64233657 \pm 2.3 \cdot 10^{-2} \) | \(a_{957}= +0.24362329 \pm 6.3 \cdot 10^{-2} \) |
\(a_{958}= -0.36467878 \pm 1.6 \cdot 10^{-2} \) | \(a_{959}= +0.40148937 \pm 1.7 \cdot 10^{-2} \) | \(a_{960}= +0.57754501 \pm 4.4 \cdot 10^{-2} \) |
\(a_{961}= -0.96056388 \pm 2.1 \cdot 10^{-2} \) | \(a_{962}= +0.08758265 \pm 7.2 \cdot 10^{-3} \) | \(a_{963}= -0.28630868 \pm 1.6 \cdot 10^{-2} \) |
\(a_{964}= -1.74643842 \pm 2.2 \cdot 10^{-2} \) | \(a_{965}= -0.22183451 \pm 2.8 \cdot 10^{-2} \) | \(a_{966}= -2.90252065 \pm 8.0 \cdot 10^{-2} \) |
\(a_{967}= -1.06410437 \pm 5.6 \cdot 10^{-2} \) | \(a_{968}= -0.48581134 \pm 1.1 \cdot 10^{-2} \) | \(a_{969}= +0.16770700 \pm 2.7 \cdot 10^{-2} \) |
\(a_{970}= -1.21922558 \pm 7.2 \cdot 10^{-3} \) | \(a_{971}= -0.17373555 \pm 5.1 \cdot 10^{-2} \) | \(a_{972}= -0.09304968 \pm 2.9 \cdot 10^{-2} \) |
\(a_{973}= +2.40108394 \pm 2.5 \cdot 10^{-2} \) | \(a_{974}= -2.03437263 \pm 9.4 \cdot 10^{-3} \) | \(a_{975}= +0.03783901 \pm 3.8 \cdot 10^{-2} \) |
\(a_{976}= -0.42795927 \pm 1.9 \cdot 10^{-2} \) | \(a_{977}= +0.11329153 \pm 3.1 \cdot 10^{-2} \) | \(a_{978}= -0.04317406 \pm 2.2 \cdot 10^{-2} \) |
\(a_{979}= -0.18045957 \pm 1.0 \cdot 10^{-2} \) | \(a_{980}= +2.47771106 \pm 1.9 \cdot 10^{-2} \) | \(a_{981}= +0.14818199 \pm 3.3 \cdot 10^{-2} \) |
\(a_{982}= +1.30485554 \pm 1.0 \cdot 10^{-2} \) | \(a_{983}= -0.02046728 \pm 1.3 \cdot 10^{-2} \) | \(a_{984}= +0.48838488 \pm 6.3 \cdot 10^{-2} \) |
\(a_{985}= +0.68918059 \pm 4.0 \cdot 10^{-2} \) | \(a_{986}= +0.43045894 \pm 1.9 \cdot 10^{-2} \) | \(a_{987}= +0.25613449 \pm 5.4 \cdot 10^{-2} \) |
\(a_{988}= -0.12406786 \pm 7.9 \cdot 10^{-3} \) | \(a_{989}= -1.55430282 \pm 2.9 \cdot 10^{-2} \) | \(a_{990}= -0.18121832 \pm 5.9 \cdot 10^{-2} \) |
\(a_{991}= +0.55366125 \pm 3.8 \cdot 10^{-2} \) | \(a_{992}= -0.24777615 \pm 1.5 \cdot 10^{-2} \) | \(a_{993}= -1.07038774 \pm 1.9 \cdot 10^{-2} \) |
\(a_{994}= +2.14488484 \pm 1.4 \cdot 10^{-2} \) | \(a_{995}= +0.16347096 \pm 1.6 \cdot 10^{-2} \) | \(a_{996}= -0.26536137 \pm 6.5 \cdot 10^{-2} \) |
\(a_{997}= -0.58784145 \pm 4.6 \cdot 10^{-2} \) | \(a_{998}= +1.16184754 \pm 1.9 \cdot 10^{-2} \) | \(a_{999}= -0.10059850 \pm 2.2 \cdot 10^{-2} \) |
\(a_{1000}= -0.70796070 \pm 1.8 \cdot 10^{-2} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000