Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(17.2883277696958706487727893028 \pm 6 \cdot 10^{-6}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.15268036 \pm 5.8 \cdot 10^{-4} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.97668871 \pm 1.0 \cdot 10^{-3} \) | \(a_{5}= -1.63487950 \pm 8.0 \cdot 10^{-4} \) | \(a_{6}= +0.08815005 \pm 5.8 \cdot 10^{-4} \) |
\(a_{7}= +0.43448281 \pm 6.6 \cdot 10^{-4} \) | \(a_{8}= -0.30180154 \pm 7.1 \cdot 10^{-4} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.24961399 \pm 4.6 \cdot 10^{-4} \) | \(a_{11}= +1.63699990 \pm 7.3 \cdot 10^{-4} \) | \(a_{12}= -0.56389149 \pm 1.0 \cdot 10^{-3} \) |
\(a_{13}= -0.82216821 \pm 7.1 \cdot 10^{-4} \) | \(a_{14}= +0.06633699 \pm 4.5 \cdot 10^{-4} \) | \(a_{15}= -0.94389812 \pm 8.0 \cdot 10^{-4} \) |
\(a_{16}= +0.93060954 \pm 8.6 \cdot 10^{-4} \) | \(a_{17}= -0.04830386 \pm 5.3 \cdot 10^{-4} \) | \(a_{18}= +0.05089345 \pm 5.8 \cdot 10^{-4} \) |
\(a_{19}= +1.12670635 \pm 4.3 \cdot 10^{-4} \) | \(a_{20}= +1.59676834 \pm 7.5 \cdot 10^{-4} \) | \(a_{21}= +0.25084877 \pm 6.6 \cdot 10^{-4} \) |
\(a_{22}= +0.24993773 \pm 3.7 \cdot 10^{-4} \) | \(a_{23}= +0.32871172 \pm 1.6 \cdot 10^{-3} \) | \(a_{24}= -0.17424520 \pm 7.1 \cdot 10^{-4} \) |
\(a_{25}= +1.67283097 \pm 6.6 \cdot 10^{-4} \) | \(a_{26}= -0.12552894 \pm 2.5 \cdot 10^{-4} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.42435445 \pm 4.3 \cdot 10^{-4} \) | \(a_{29}= +0.27864256 \pm 1.5 \cdot 10^{-3} \) | \(a_{30}= -0.14411470 \pm 1.3 \cdot 10^{-3} \) |
\(a_{31}= -0.35895031 \pm 6.8 \cdot 10^{-4} \) | \(a_{32}= +0.44388734 \pm 9.5 \cdot 10^{-4} \) | \(a_{33}= +0.94512233 \pm 7.3 \cdot 10^{-4} \) |
\(a_{34}= -0.00737505 \pm 6.5 \cdot 10^{-4} \) | \(a_{35}= -0.71032703 \pm 2.9 \cdot 10^{-4} \) | \(a_{36}= -0.32556290 \pm 1.0 \cdot 10^{-3} \) |
\(a_{37}= +0.05009193 \pm 8.1 \cdot 10^{-4} \) | \(a_{38}= +0.17202593 \pm 1.9 \cdot 10^{-4} \) | \(a_{39}= -0.47467904 \pm 7.1 \cdot 10^{-4} \) |
\(a_{40}= +0.49340915 \pm 4.4 \cdot 10^{-4} \) | \(a_{41}= +0.36101357 \pm 1.5 \cdot 10^{-3} \) | \(a_{42}= +0.03829968 \pm 1.2 \cdot 10^{-3} \) |
\(a_{43}= +1.16288445 \pm 1.0 \cdot 10^{-3} \) | \(a_{44}= -1.59883931 \pm 6.4 \cdot 10^{-4} \) | \(a_{45}= -0.54495983 \pm 8.0 \cdot 10^{-4} \) |
\(a_{46}= +0.05018782 \pm 4.6 \cdot 10^{-4} \) | \(a_{47}= +0.42383768 \pm 1.2 \cdot 10^{-3} \) | \(a_{48}= +0.53728767 \pm 8.6 \cdot 10^{-4} \) |
\(a_{49}= -0.81122469 \pm 1.1 \cdot 10^{-3} \) | \(a_{50}= +0.25540843 \pm 3.2 \cdot 10^{-4} \) | \(a_{51}= -0.02788825 \pm 5.3 \cdot 10^{-4} \) |
\(a_{52}= +0.80300240 \pm 6.5 \cdot 10^{-4} \) | \(a_{53}= +0.96210845 \pm 6.4 \cdot 10^{-4} \) | \(a_{54}= +0.02938335 \pm 5.8 \cdot 10^{-4} \) |
\(a_{55}= -2.67629757 \pm 5.1 \cdot 10^{-4} \) | \(a_{56}= -0.13112758 \pm 6.3 \cdot 10^{-4} \) | \(a_{57}= +0.65050421 \pm 4.3 \cdot 10^{-4} \) |
\(a_{58}= +0.04254325 \pm 6.3 \cdot 10^{-4} \) | \(a_{59}= +0.27465322 \pm 1.0 \cdot 10^{-3} \) | \(a_{60}= +0.92189463 \pm 1.8 \cdot 10^{-3} \) |
\(a_{61}= -0.25982408 \pm 8.4 \cdot 10^{-4} \) | \(a_{62}= -0.05480466 \pm 3.1 \cdot 10^{-4} \) | \(a_{63}= +0.14482760 \pm 6.6 \cdot 10^{-4} \) |
\(a_{64}= -0.86283666 \pm 7.9 \cdot 10^{-4} \) | \(a_{65}= +1.34414595 \pm 5.0 \cdot 10^{-4} \) | \(a_{66}= +0.14430162 \pm 1.3 \cdot 10^{-3} \) |
\(a_{67}= -1.84113987 \pm 1.8 \cdot 10^{-3} \) | \(a_{68}= +0.04717784 \pm 6.1 \cdot 10^{-4} \) | \(a_{69}= +0.18978180 \pm 1.6 \cdot 10^{-3} \) |
\(a_{70}= -0.10845299 \pm 2.2 \cdot 10^{-4} \) | \(a_{71}= +0.27651478 \pm 1.2 \cdot 10^{-3} \) | \(a_{72}= -0.10060051 \pm 7.1 \cdot 10^{-4} \) |
\(a_{73}= +0.68215354 \pm 5.1 \cdot 10^{-4} \) | \(a_{74}= +0.00764805 \pm 8.2 \cdot 10^{-4} \) | \(a_{75}= +0.96580941 \pm 6.6 \cdot 10^{-4} \) |
\(a_{76}= -1.10044137 \pm 3.9 \cdot 10^{-4} \) | \(a_{77}= +0.71124831 \pm 4.4 \cdot 10^{-4} \) | \(a_{78}= -0.07247417 \pm 1.3 \cdot 10^{-3} \) |
\(a_{79}= -0.19445065 \pm 9.0 \cdot 10^{-4} \) | \(a_{80}= -1.52143446 \pm 6.3 \cdot 10^{-4} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.05511968 \pm 5.0 \cdot 10^{-4} \) | \(a_{83}= +0.67254122 \pm 1.2 \cdot 10^{-3} \) | \(a_{84}= -0.24500116 \pm 1.7 \cdot 10^{-3} \) |
\(a_{85}= +0.07897100 \pm 4.3 \cdot 10^{-4} \) | \(a_{86}= +0.17754962 \pm 7.7 \cdot 10^{-4} \) | \(a_{87}= +0.16087436 \pm 1.5 \cdot 10^{-3} \) |
\(a_{88}= -0.49404909 \pm 4.6 \cdot 10^{-4} \) | \(a_{89}= +1.72226499 \pm 5.3 \cdot 10^{-4} \) | \(a_{90}= -0.08320466 \pm 1.3 \cdot 10^{-3} \) |
\(a_{91}= -0.35721795 \pm 2.6 \cdot 10^{-4} \) | \(a_{92}= -0.32104903 \pm 1.4 \cdot 10^{-3} \) | \(a_{93}= -0.20724006 \pm 6.8 \cdot 10^{-4} \) |
\(a_{94}= +0.06471169 \pm 5.1 \cdot 10^{-4} \) | \(a_{95}= -1.84202911 \pm 3.4 \cdot 10^{-4} \) | \(a_{96}= +0.25627848 \pm 9.5 \cdot 10^{-4} \) |
\(a_{97}= +1.04447943 \pm 1.2 \cdot 10^{-3} \) | \(a_{98}= -0.12385808 \pm 5.2 \cdot 10^{-4} \) | \(a_{99}= +0.54566663 \pm 7.3 \cdot 10^{-4} \) |
\(a_{100}= -1.63383512 \pm 5.4 \cdot 10^{-4} \) | \(a_{101}= +0.90745195 \pm 6.7 \cdot 10^{-4} \) | \(a_{102}= -0.00425799 \pm 1.1 \cdot 10^{-3} \) |
\(a_{103}= +1.58325171 \pm 8.7 \cdot 10^{-4} \) | \(a_{104}= +0.24813163 \pm 4.0 \cdot 10^{-4} \) | \(a_{105}= -0.41010750 \pm 1.4 \cdot 10^{-3} \) |
\(a_{106}= +0.14689506 \pm 4.0 \cdot 10^{-4} \) | \(a_{107}= -0.15416949 \pm 5.9 \cdot 10^{-4} \) | \(a_{108}= -0.18796383 \pm 1.0 \cdot 10^{-3} \) |
\(a_{109}= -1.52115619 \pm 1.1 \cdot 10^{-3} \) | \(a_{110}= -0.40861807 \pm 3.1 \cdot 10^{-4} \) | \(a_{111}= +0.02892059 \pm 8.1 \cdot 10^{-4} \) |
\(a_{112}= +0.40433384 \pm 2.3 \cdot 10^{-4} \) | \(a_{113}= +1.06224675 \pm 6.7 \cdot 10^{-4} \) | \(a_{114}= +0.09931922 \pm 1.0 \cdot 10^{-3} \) |
\(a_{115}= -0.53740405 \pm 1.1 \cdot 10^{-3} \) | \(a_{116}= -0.27214704 \pm 1.4 \cdot 10^{-3} \) | \(a_{117}= -0.27405607 \pm 7.1 \cdot 10^{-4} \) |
\(a_{118}= +0.04193415 \pm 6.7 \cdot 10^{-4} \) | \(a_{119}= -0.02098720 \pm 2.9 \cdot 10^{-4} \) | \(a_{120}= +0.28486991 \pm 1.5 \cdot 10^{-3} \) |
\(a_{121}= +1.67976866 \pm 7.1 \cdot 10^{-4} \) | \(a_{122}= -0.03967003 \pm 3.5 \cdot 10^{-4} \) | \(a_{123}= +0.20843128 \pm 1.5 \cdot 10^{-3} \) |
\(a_{124}= +0.35058271 \pm 6.0 \cdot 10^{-4} \) | \(a_{125}= -1.09999756 \pm 1.1 \cdot 10^{-3} \) | \(a_{126}= +0.02211233 \pm 1.2 \cdot 10^{-3} \) |
\(a_{127}= -1.94382794 \pm 1.3 \cdot 10^{-3} \) | \(a_{128}= -0.57562555 \pm 9.9 \cdot 10^{-4} \) | \(a_{129}= +0.67139165 \pm 1.0 \cdot 10^{-3} \) |
\(a_{130}= +0.20522469 \pm 1.9 \cdot 10^{-4} \) | \(a_{131}= +1.22907430 \pm 7.7 \cdot 10^{-4} \) | \(a_{132}= -0.92309031 \pm 1.7 \cdot 10^{-3} \) |
\(a_{133}= +0.48953454 \pm 1.2 \cdot 10^{-4} \) | \(a_{134}= -0.28110590 \pm 6.0 \cdot 10^{-4} \) | \(a_{135}= -0.31463271 \pm 8.0 \cdot 10^{-4} \) |
\(a_{136}= +0.01457818 \pm 2.7 \cdot 10^{-4} \) | \(a_{137}= +1.19331899 \pm 1.3 \cdot 10^{-3} \) | \(a_{138}= +0.02897595 \pm 2.2 \cdot 10^{-3} \) |
\(a_{139}= -0.10241201 \pm 8.9 \cdot 10^{-4} \) | \(a_{140}= +0.69376839 \pm 2.4 \cdot 10^{-4} \) | \(a_{141}= +0.24470280 \pm 1.2 \cdot 10^{-3} \) |
\(a_{142}= +0.04221838 \pm 5.3 \cdot 10^{-4} \) | \(a_{143}= -1.34588927 \pm 4.5 \cdot 10^{-4} \) | \(a_{144}= +0.31020318 \pm 8.6 \cdot 10^{-4} \) |
\(a_{145}= -0.45554701 \pm 1.0 \cdot 10^{-3} \) | \(a_{146}= +0.10415145 \pm 4.2 \cdot 10^{-4} \) | \(a_{147}= -0.46836079 \pm 1.1 \cdot 10^{-3} \) |
\(a_{148}= -0.04892422 \pm 8.6 \cdot 10^{-4} \) | \(a_{149}= -0.73305494 \pm 9.9 \cdot 10^{-4} \) | \(a_{150}= +0.14746013 \pm 1.2 \cdot 10^{-3} \) |
\(a_{151}= +0.59087827 \pm 1.5 \cdot 10^{-3} \) | \(a_{152}= -0.34004171 \pm 2.4 \cdot 10^{-4} \) | \(a_{153}= -0.01610129 \pm 5.3 \cdot 10^{-4} \) |
\(a_{154}= +0.10859365 \pm 3.0 \cdot 10^{-4} \) | \(a_{155}= +0.58684050 \pm 4.5 \cdot 10^{-4} \) | \(a_{156}= +0.46361365 \pm 1.7 \cdot 10^{-3} \) |
\(a_{157}= +0.56768545 \pm 1.6 \cdot 10^{-3} \) | \(a_{158}= -0.02968879 \pm 4.5 \cdot 10^{-4} \) | \(a_{159}= +0.55547357 \pm 6.4 \cdot 10^{-4} \) |
\(a_{160}= -0.72570231 \pm 6.6 \cdot 10^{-4} \) | \(a_{161}= +0.14281959 \pm 4.0 \cdot 10^{-4} \) | \(a_{162}= +0.01696448 \pm 5.8 \cdot 10^{-4} \) |
\(a_{163}= +0.05322071 \pm 2.0 \cdot 10^{-4} \) | \(a_{164}= -0.35259788 \pm 1.4 \cdot 10^{-3} \) | \(a_{165}= -1.54516112 \pm 1.5 \cdot 10^{-3} \) |
\(a_{166}= +0.10268384 \pm 4.9 \cdot 10^{-4} \) | \(a_{167}= +0.83951248 \pm 7.4 \cdot 10^{-4} \) | \(a_{168}= -0.07570654 \pm 1.3 \cdot 10^{-3} \) |
\(a_{169}= -0.32403944 \pm 7.7 \cdot 10^{-4} \) | \(a_{170}= +0.01205732 \pm 5.6 \cdot 10^{-4} \) | \(a_{171}= +0.37556878 \pm 4.3 \cdot 10^{-4} \) |
\(a_{172}= -1.13577611 \pm 8.7 \cdot 10^{-4} \) | \(a_{173}= -0.26432739 \pm 6.6 \cdot 10^{-4} \) | \(a_{174}= +0.02456235 \pm 2.1 \cdot 10^{-3} \) |
\(a_{175}= +0.72681629 \pm 5.4 \cdot 10^{-4} \) | \(a_{176}= +1.52340772 \pm 5.4 \cdot 10^{-4} \) | \(a_{177}= +0.15857111 \pm 1.0 \cdot 10^{-3} \) |
\(a_{178}= +0.26295604 \pm 4.0 \cdot 10^{-4} \) | \(a_{179}= -1.66545338 \pm 1.0 \cdot 10^{-3} \) | \(a_{180}= +0.53225611 \pm 1.8 \cdot 10^{-3} \) |
\(a_{181}= +0.94825863 \pm 1.2 \cdot 10^{-3} \) | \(a_{182}= -0.05454016 \pm 1.5 \cdot 10^{-4} \) | \(a_{183}= -0.15000950 \pm 8.4 \cdot 10^{-4} \) |
\(a_{184}= -0.09920570 \pm 8.5 \cdot 10^{-4} \) | \(a_{185}= -0.08189427 \pm 6.3 \cdot 10^{-4} \) | \(a_{186}= -0.03164149 \pm 1.2 \cdot 10^{-3} \) |
\(a_{187}= -0.07907342 \pm 3.1 \cdot 10^{-4} \) | \(a_{188}= -0.41395748 \pm 1.1 \cdot 10^{-3} \) | \(a_{189}= +0.08361626 \pm 6.6 \cdot 10^{-4} \) |
\(a_{190}= -0.28124167 \pm 2.0 \cdot 10^{-4} \) | \(a_{191}= -0.74417136 \pm 8.3 \cdot 10^{-4} \) | \(a_{192}= -0.49815898 \pm 7.9 \cdot 10^{-4} \) |
\(a_{193}= -1.34447629 \pm 1.4 \cdot 10^{-3} \) | \(a_{194}= +0.15947149 \pm 4.7 \cdot 10^{-4} \) | \(a_{195}= +0.77604302 \pm 1.5 \cdot 10^{-3} \) |
\(a_{196}= +0.79231400 \pm 9.8 \cdot 10^{-4} \) | \(a_{197}= +1.68454812 \pm 2.0 \cdot 10^{-3} \) | \(a_{198}= +0.08331258 \pm 1.3 \cdot 10^{-3} \) |
\(a_{199}= +1.03362761 \pm 7.8 \cdot 10^{-4} \) | \(a_{200}= -0.50486297 \pm 4.8 \cdot 10^{-4} \) | \(a_{201}= -1.06298260 \pm 1.8 \cdot 10^{-3} \) |
\(a_{202}= +0.13855009 \pm 4.9 \cdot 10^{-4} \) | \(a_{203}= +0.12106540 \pm 6.6 \cdot 10^{-4} \) | \(a_{204}= +0.02723814 \pm 1.6 \cdot 10^{-3} \) |
\(a_{205}= -0.59021369 \pm 1.0 \cdot 10^{-3} \) | \(a_{206}= +0.24173144 \pm 6.6 \cdot 10^{-4} \) | \(a_{207}= +0.10957057 \pm 1.6 \cdot 10^{-3} \) |
\(a_{208}= -0.76511758 \pm 5.4 \cdot 10^{-4} \) | \(a_{209}= +1.84441818 \pm 2.9 \cdot 10^{-4} \) | \(a_{210}= -0.06261536 \pm 2.0 \cdot 10^{-3} \) |
\(a_{211}= -0.57244838 \pm 4.6 \cdot 10^{-4} \) | \(a_{212}= -0.93968046 \pm 5.9 \cdot 10^{-4} \) | \(a_{213}= +0.15964588 \pm 1.2 \cdot 10^{-3} \) |
\(a_{214}= -0.02353865 \pm 3.9 \cdot 10^{-4} \) | \(a_{215}= -1.90117594 \pm 6.7 \cdot 10^{-4} \) | \(a_{216}= -0.05808173 \pm 7.1 \cdot 10^{-4} \) |
\(a_{217}= -0.15595774 \pm 4.3 \cdot 10^{-4} \) | \(a_{218}= -0.23225067 \pm 5.0 \cdot 10^{-4} \) | \(a_{219}= +0.39384153 \pm 5.1 \cdot 10^{-4} \) |
\(a_{220}= +2.61390961 \pm 4.5 \cdot 10^{-4} \) | \(a_{221}= +0.03971390 \pm 2.3 \cdot 10^{-4} \) | \(a_{222}= +0.00441561 \pm 1.4 \cdot 10^{-3} \) |
\(a_{223}= -0.43030599 \pm 4.1 \cdot 10^{-4} \) | \(a_{224}= +0.19286142 \pm 6.1 \cdot 10^{-4} \) | \(a_{225}= +0.55761032 \pm 6.6 \cdot 10^{-4} \) |
\(a_{226}= +0.16218421 \pm 5.5 \cdot 10^{-4} \) | \(a_{227}= +0.26844151 \pm 1.5 \cdot 10^{-3} \) | \(a_{228}= -0.63534012 \pm 1.4 \cdot 10^{-3} \) |
\(a_{229}= -0.82196709 \pm 6.9 \cdot 10^{-4} \) | \(a_{230}= -0.08205104 \pm 3.5 \cdot 10^{-4} \) | \(a_{231}= +0.41063940 \pm 1.3 \cdot 10^{-3} \) |
\(a_{232}= -0.08409475 \pm 8.6 \cdot 10^{-4} \) | \(a_{233}= +0.84115581 \pm 1.1 \cdot 10^{-3} \) | \(a_{234}= -0.04184298 \pm 1.3 \cdot 10^{-3} \) |
\(a_{235}= -0.69292354 \pm 9.0 \cdot 10^{-4} \) | \(a_{236}= -0.26825070 \pm 7.8 \cdot 10^{-4} \) | \(a_{237}= -0.11226613 \pm 9.0 \cdot 10^{-4} \) |
\(a_{238}= -0.00320433 \pm 3.4 \cdot 10^{-4} \) | \(a_{239}= -1.07153917 \pm 9.7 \cdot 10^{-4} \) | \(a_{240}= -0.87840059 \pm 1.6 \cdot 10^{-3} \) |
\(a_{241}= +0.48473337 \pm 9.6 \cdot 10^{-4} \) | \(a_{242}= +0.25646768 \pm 3.6 \cdot 10^{-4} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.25376725 \pm 7.5 \cdot 10^{-4} \) | \(a_{245}= +1.32625461 \pm 7.5 \cdot 10^{-4} \) | \(a_{246}= +0.03182336 \pm 2.1 \cdot 10^{-3} \) |
\(a_{247}= -0.92634214 \pm 3.2 \cdot 10^{-4} \) | \(a_{248}= +0.10833176 \pm 4.3 \cdot 10^{-4} \) | \(a_{249}= +0.38829186 \pm 1.2 \cdot 10^{-3} \) |
\(a_{250}= -0.16794802 \pm 5.5 \cdot 10^{-4} \) | \(a_{251}= +0.86793673 \pm 1.3 \cdot 10^{-3} \) | \(a_{252}= -0.14145148 \pm 1.7 \cdot 10^{-3} \) |
\(a_{253}= +0.53810105 \pm 9.9 \cdot 10^{-4} \) | \(a_{254}= -0.29678435 \pm 6.4 \cdot 10^{-4} \) | \(a_{255}= +0.04559393 \pm 1.3 \cdot 10^{-3} \) |
\(a_{256}= +0.77494995 \pm 5.8 \cdot 10^{-4} \) | \(a_{257}= -0.31651263 \pm 1.2 \cdot 10^{-3} \) | \(a_{258}= +0.10250832 \pm 1.6 \cdot 10^{-3} \) |
\(a_{259}= +0.02176408 \pm 4.2 \cdot 10^{-4} \) | \(a_{260}= -1.31281217 \pm 4.6 \cdot 10^{-4} \) | \(a_{261}= +0.09288085 \pm 1.5 \cdot 10^{-3} \) |
\(a_{262}= +0.18765551 \pm 4.3 \cdot 10^{-4} \) | \(a_{263}= -1.09372482 \pm 9.1 \cdot 10^{-4} \) | \(a_{264}= -0.28523938 \pm 1.4 \cdot 10^{-3} \) |
\(a_{265}= -1.57293138 \pm 4.5 \cdot 10^{-4} \) | \(a_{266}= +0.07474231 \pm 6.8 \cdot 10^{-5} \) | \(a_{267}= +0.99435016 \pm 5.3 \cdot 10^{-4} \) |
\(a_{268}= +1.79822052 \pm 1.6 \cdot 10^{-3} \) | \(a_{269}= -0.45589480 \pm 7.9 \cdot 10^{-4} \) | \(a_{270}= -0.04803823 \pm 1.3 \cdot 10^{-3} \) |
\(a_{271}= -0.93076409 \pm 1.0 \cdot 10^{-3} \) | \(a_{272}= -0.04495204 \pm 3.7 \cdot 10^{-4} \) | \(a_{273}= -0.20623988 \pm 1.3 \cdot 10^{-3} \) |
\(a_{274}= +0.18219637 \pm 7.1 \cdot 10^{-4} \) | \(a_{275}= +2.73842412 \pm 4.3 \cdot 10^{-4} \) | \(a_{276}= -0.18535774 \pm 2.6 \cdot 10^{-3} \) |
\(a_{277}= -0.47409854 \pm 5.8 \cdot 10^{-4} \) | \(a_{278}= -0.01563630 \pm 8.2 \cdot 10^{-4} \) | \(a_{279}= -0.11965010 \pm 6.8 \cdot 10^{-4} \) |
\(a_{280}= +0.21437779 \pm 2.3 \cdot 10^{-4} \) | \(a_{281}= -0.46854187 \pm 1.2 \cdot 10^{-3} \) | \(a_{282}= +0.03736131 \pm 1.8 \cdot 10^{-3} \) |
\(a_{283}= +1.14937467 \pm 1.7 \cdot 10^{-3} \) | \(a_{284}= -0.27006886 \pm 1.0 \cdot 10^{-3} \) | \(a_{285}= -1.06349600 \pm 1.2 \cdot 10^{-3} \) |
\(a_{286}= -0.20549086 \pm 1.6 \cdot 10^{-4} \) | \(a_{287}= +0.15685419 \pm 6.9 \cdot 10^{-4} \) | \(a_{288}= +0.14796245 \pm 9.5 \cdot 10^{-4} \) |
\(a_{289}= -0.99766674 \pm 1.1 \cdot 10^{-3} \) | \(a_{290}= -0.06955308 \pm 4.7 \cdot 10^{-4} \) | \(a_{291}= +0.60303048 \pm 1.2 \cdot 10^{-3} \) |
\(a_{292}= -0.66625166 \pm 5.2 \cdot 10^{-4} \) | \(a_{293}= +0.30662426 \pm 1.8 \cdot 10^{-3} \) | \(a_{294}= -0.07150949 \pm 1.7 \cdot 10^{-3} \) |
\(a_{295}= -0.44902493 \pm 5.6 \cdot 10^{-4} \) | \(a_{296}= -0.01511782 \pm 4.3 \cdot 10^{-4} \) | \(a_{297}= +0.31504078 \pm 7.3 \cdot 10^{-4} \) |
\(a_{298}= -0.11192309 \pm 5.2 \cdot 10^{-4} \) | \(a_{299}= -0.27025633 \pm 1.0 \cdot 10^{-3} \) | \(a_{300}= -0.94329515 \pm 1.7 \cdot 10^{-3} \) |
\(a_{301}= +0.50525330 \pm 9.7 \cdot 10^{-4} \) | \(a_{302}= +0.09021551 \pm 4.8 \cdot 10^{-4} \) | \(a_{303}= +0.52391763 \pm 6.7 \cdot 10^{-4} \) |
\(a_{304}= +1.04852368 \pm 3.4 \cdot 10^{-4} \) | \(a_{305}= +0.42478107 \pm 6.4 \cdot 10^{-4} \) | \(a_{306}= -0.00245835 \pm 1.1 \cdot 10^{-3} \) |
\(a_{307}= +1.46600267 \pm 5.3 \cdot 10^{-4} \) | \(a_{308}= -0.69466819 \pm 2.8 \cdot 10^{-4} \) | \(a_{309}= +0.91409080 \pm 8.7 \cdot 10^{-4} \) |
\(a_{310}= +0.08959902 \pm 2.3 \cdot 10^{-4} \) | \(a_{311}= -0.93871277 \pm 1.7 \cdot 10^{-3} \) | \(a_{312}= +0.14325886 \pm 1.4 \cdot 10^{-3} \) |
\(a_{313}= -1.86292467 \pm 7.2 \cdot 10^{-4} \) | \(a_{314}= +0.08667442 \pm 5.0 \cdot 10^{-4} \) | \(a_{315}= -0.23677568 \pm 1.4 \cdot 10^{-3} \) |
\(a_{316}= +0.18991775 \pm 7.8 \cdot 10^{-4} \) | \(a_{317}= -1.13515042 \pm 7.3 \cdot 10^{-4} \) | \(a_{318}= +0.08480990 \pm 1.2 \cdot 10^{-3} \) |
\(a_{319}= +0.45613784 \pm 9.4 \cdot 10^{-4} \) | \(a_{320}= +1.41063397 \pm 5.5 \cdot 10^{-4} \) | \(a_{321}= -0.08900980 \pm 5.9 \cdot 10^{-4} \) |
\(a_{322}= +0.02180575 \pm 1.3 \cdot 10^{-4} \) | \(a_{323}= -0.05442427 \pm 1.5 \cdot 10^{-4} \) | \(a_{324}= -0.10852097 \pm 1.0 \cdot 10^{-3} \) |
\(a_{325}= -1.37534844 \pm 3.7 \cdot 10^{-4} \) | \(a_{326}= +0.00812576 \pm 2.5 \cdot 10^{-4} \) | \(a_{327}= -0.87823994 \pm 1.1 \cdot 10^{-3} \) |
\(a_{328}= -0.10895445 \pm 8.9 \cdot 10^{-4} \) | \(a_{329}= +0.18415019 \pm 6.4 \cdot 10^{-4} \) | \(a_{330}= -0.23591575 \pm 2.1 \cdot 10^{-3} \) |
\(a_{331}= +1.36613593 \pm 6.9 \cdot 10^{-4} \) | \(a_{332}= -0.65686342 \pm 1.1 \cdot 10^{-3} \) | \(a_{333}= +0.01669731 \pm 8.1 \cdot 10^{-4} \) |
\(a_{334}= +0.12817707 \pm 5.9 \cdot 10^{-4} \) | \(a_{335}= +3.01004183 \pm 1.2 \cdot 10^{-3} \) | \(a_{336}= +0.23344225 \pm 1.5 \cdot 10^{-3} \) |
\(a_{337}= -0.50247549 \pm 1.3 \cdot 10^{-3} \) | \(a_{338}= -0.04947446 \pm 4.9 \cdot 10^{-4} \) | \(a_{339}= +0.61328845 \pm 6.7 \cdot 10^{-4} \) |
\(a_{340}= -0.07713008 \pm 5.1 \cdot 10^{-4} \) | \(a_{341}= -0.58760162 \pm 4.2 \cdot 10^{-4} \) | \(a_{342}= +0.05734198 \pm 1.0 \cdot 10^{-3} \) |
\(a_{343}= -0.78694599 \pm 5.5 \cdot 10^{-4} \) | \(a_{344}= -0.35096032 \pm 7.8 \cdot 10^{-4} \) | \(a_{345}= -0.31027037 \pm 2.4 \cdot 10^{-3} \) |
\(a_{346}= -0.04035760 \pm 4.4 \cdot 10^{-4} \) | \(a_{347}= -0.71438743 \pm 4.2 \cdot 10^{-4} \) | \(a_{348}= -0.15712417 \pm 2.5 \cdot 10^{-3} \) |
\(a_{349}= +0.51852374 \pm 1.8 \cdot 10^{-3} \) | \(a_{350}= +0.11097057 \pm 3.6 \cdot 10^{-4} \) | \(a_{351}= -0.15822635 \pm 7.1 \cdot 10^{-4} \) |
\(a_{352}= +0.72664353 \pm 5.9 \cdot 10^{-4} \) | \(a_{353}= -0.55894880 \pm 1.6 \cdot 10^{-3} \) | \(a_{354}= +0.02421069 \pm 1.6 \cdot 10^{-3} \) |
\(a_{355}= -0.45206834 \pm 8.0 \cdot 10^{-4} \) | \(a_{356}= -1.68211677 \pm 3.9 \cdot 10^{-4} \) | \(a_{357}= -0.01211696 \pm 1.2 \cdot 10^{-3} \) |
\(a_{358}= -0.25428202 \pm 6.0 \cdot 10^{-4} \) | \(a_{359}= +1.55538260 \pm 8.4 \cdot 10^{-4} \) | \(a_{360}= +0.16446972 \pm 1.5 \cdot 10^{-3} \) |
\(a_{361}= +0.26946720 \pm 1.0 \cdot 10^{-3} \) | \(a_{362}= +0.14478047 \pm 7.6 \cdot 10^{-4} \) | \(a_{363}= +0.96981489 \pm 7.1 \cdot 10^{-4} \) |
\(a_{364}= +0.34889074 \pm 2.0 \cdot 10^{-4} \) | \(a_{365}= -1.11523884 \pm 3.8 \cdot 10^{-4} \) | \(a_{366}= -0.02290350 \pm 1.4 \cdot 10^{-3} \) |
\(a_{367}= +1.02436690 \pm 7.7 \cdot 10^{-4} \) | \(a_{368}= +0.30590226 \pm 1.2 \cdot 10^{-3} \) | \(a_{369}= +0.12033786 \pm 1.5 \cdot 10^{-3} \) |
\(a_{370}= -0.01250365 \pm 7.1 \cdot 10^{-4} \) | \(a_{371}= +0.41801958 \pm 3.8 \cdot 10^{-4} \) | \(a_{372}= +0.20240902 \pm 1.7 \cdot 10^{-3} \) |
\(a_{373}= -1.19257067 \pm 6.9 \cdot 10^{-4} \) | \(a_{374}= -0.01207296 \pm 3.5 \cdot 10^{-4} \) | \(a_{375}= -0.63508389 \pm 1.1 \cdot 10^{-3} \) |
\(a_{376}= -0.12791487 \pm 7.6 \cdot 10^{-4} \) | \(a_{377}= -0.22909105 \pm 9.5 \cdot 10^{-4} \) | \(a_{378}= +0.01276656 \pm 1.2 \cdot 10^{-3} \) |
\(a_{379}= +0.76157779 \pm 2.8 \cdot 10^{-4} \) | \(a_{380}= +1.79908903 \pm 2.9 \cdot 10^{-4} \) | \(a_{381}= -1.12226959 \pm 1.3 \cdot 10^{-3} \) |
\(a_{382}= -0.11362035 \pm 8.1 \cdot 10^{-4} \) | \(a_{383}= -0.74221349 \pm 8.8 \cdot 10^{-4} \) | \(a_{384}= -0.33233757 \pm 9.9 \cdot 10^{-4} \) |
\(a_{385}= -1.16280528 \pm 1.9 \cdot 10^{-4} \) | \(a_{386}= -0.20527512 \pm 6.0 \cdot 10^{-4} \) | \(a_{387}= +0.38762815 \pm 1.0 \cdot 10^{-3} \) |
\(a_{388}= -1.02013126 \pm 1.0 \cdot 10^{-3} \) | \(a_{389}= +0.32556881 \pm 3.9 \cdot 10^{-4} \) | \(a_{390}= +0.11848653 \pm 2.1 \cdot 10^{-3} \) |
\(a_{391}= -0.01587805 \pm 4.7 \cdot 10^{-4} \) | \(a_{392}= +0.24482886 \pm 7.1 \cdot 10^{-4} \) | \(a_{393}= +0.70960638 \pm 7.7 \cdot 10^{-4} \) |
\(a_{394}= +0.25719741 \pm 5.9 \cdot 10^{-4} \) | \(a_{395}= +0.31790337 \pm 6.1 \cdot 10^{-4} \) | \(a_{396}= -0.53294644 \pm 1.7 \cdot 10^{-3} \) |
\(a_{397}= +0.44820903 \pm 1.4 \cdot 10^{-3} \) | \(a_{398}= +0.15781463 \pm 5.2 \cdot 10^{-4} \) | \(a_{399}= +0.28263290 \pm 1.1 \cdot 10^{-3} \) |
\(a_{400}= +1.55675246 \pm 4.5 \cdot 10^{-4} \) | \(a_{401}= -0.21411850 \pm 1.6 \cdot 10^{-3} \) | \(a_{402}= -0.16229656 \pm 2.4 \cdot 10^{-3} \) |
\(a_{403}= +0.29511753 \pm 4.0 \cdot 10^{-4} \) | \(a_{404}= -0.88629808 \pm 5.4 \cdot 10^{-4} \) | \(a_{405}= -0.18165328 \pm 8.0 \cdot 10^{-4} \) |
\(a_{406}= +0.01848431 \pm 4.3 \cdot 10^{-4} \) | \(a_{407}= +0.08200049 \pm 4.8 \cdot 10^{-4} \) | \(a_{408}= +0.00841672 \pm 1.2 \cdot 10^{-3} \) |
\(a_{409}= +0.55797144 \pm 1.6 \cdot 10^{-3} \) | \(a_{410}= -0.09011404 \pm 3.2 \cdot 10^{-4} \) | \(a_{411}= +0.68896304 \pm 1.3 \cdot 10^{-3} \) |
\(a_{412}= -1.54634407 \pm 8.3 \cdot 10^{-4} \) | \(a_{413}= +0.11933210 \pm 1.1 \cdot 10^{-3} \) | \(a_{414}= +0.01672927 \pm 2.2 \cdot 10^{-3} \) |
\(a_{415}= -1.09952386 \pm 8.2 \cdot 10^{-4} \) | \(a_{416}= -0.36495006 \pm 5.5 \cdot 10^{-4} \) | \(a_{417}= -0.05912760 \pm 8.9 \cdot 10^{-4} \) |
\(a_{418}= +0.28160643 \pm 1.6 \cdot 10^{-4} \) | \(a_{419}= -1.27416863 \pm 6.3 \cdot 10^{-4} \) | \(a_{420}= +0.40054737 \pm 2.5 \cdot 10^{-3} \) |
\(a_{421}= +1.21995297 \pm 1.7 \cdot 10^{-3} \) | \(a_{422}= -0.08740162 \pm 4.6 \cdot 10^{-4} \) | \(a_{423}= +0.14127923 \pm 1.2 \cdot 10^{-3} \) |
\(a_{424}= -0.29036581 \pm 3.9 \cdot 10^{-4} \) | \(a_{425}= -0.08080420 \pm 2.2 \cdot 10^{-4} \) | \(a_{426}= +0.02437479 \pm 1.7 \cdot 10^{-3} \) |
\(a_{427}= -0.11288910 \pm 2.2 \cdot 10^{-4} \) | \(a_{428}= +0.15057560 \pm 5.7 \cdot 10^{-4} \) | \(a_{429}= -0.77704953 \pm 1.4 \cdot 10^{-3} \) |
\(a_{430}= -0.29027223 \pm 6.1 \cdot 10^{-4} \) | \(a_{431}= +1.08260090 \pm 7.5 \cdot 10^{-4} \) | \(a_{432}= +0.17909589 \pm 8.6 \cdot 10^{-4} \) |
\(a_{433}= +0.64362213 \pm 1.4 \cdot 10^{-3} \) | \(a_{434}= -0.02381168 \pm 2.8 \cdot 10^{-4} \) | \(a_{435}= -0.26301019 \pm 2.3 \cdot 10^{-3} \) |
\(a_{436}= +1.48569607 \pm 1.1 \cdot 10^{-3} \) | \(a_{437}= +0.37036158 \pm 6.1 \cdot 10^{-4} \) | \(a_{438}= +0.06013187 \pm 1.1 \cdot 10^{-3} \) |
\(a_{439}= -0.63498031 \pm 1.1 \cdot 10^{-3} \) | \(a_{440}= +0.80771073 \pm 2.9 \cdot 10^{-4} \) | \(a_{441}= -0.27040823 \pm 1.1 \cdot 10^{-3} \) |
\(a_{442}= +0.00606353 \pm 1.9 \cdot 10^{-4} \) | \(a_{443}= +1.52321459 \pm 1.6 \cdot 10^{-3} \) | \(a_{444}= -0.02824641 \pm 1.8 \cdot 10^{-3} \) |
\(a_{445}= -2.81569573 \pm 3.1 \cdot 10^{-4} \) | \(a_{446}= -0.06569927 \pm 4.2 \cdot 10^{-4} \) | \(a_{447}= -0.42322947 \pm 9.9 \cdot 10^{-4} \) |
\(a_{448}= -0.37488769 \pm 5.2 \cdot 10^{-4} \) | \(a_{449}= -1.10891888 \pm 1.6 \cdot 10^{-3} \) | \(a_{450}= +0.08513614 \pm 1.2 \cdot 10^{-3} \) |
\(a_{451}= +0.59097918 \pm 9.6 \cdot 10^{-4} \) | \(a_{452}= -1.03748440 \pm 4.9 \cdot 10^{-4} \) | \(a_{453}= +0.34114373 \pm 1.5 \cdot 10^{-3} \) |
\(a_{454}= +0.04098575 \pm 7.6 \cdot 10^{-4} \) | \(a_{455}= +0.58400830 \pm 1.5 \cdot 10^{-4} \) | \(a_{456}= -0.19632317 \pm 1.1 \cdot 10^{-3} \) |
\(a_{457}= +1.37479107 \pm 1.0 \cdot 10^{-3} \) | \(a_{458}= -0.12549823 \pm 5.8 \cdot 10^{-4} \) | \(a_{459}= -0.00929608 \pm 5.3 \cdot 10^{-4} \) |
\(a_{460}= +0.52487647 \pm 1.0 \cdot 10^{-3} \) | \(a_{461}= -1.20370138 \pm 5.2 \cdot 10^{-4} \) | \(a_{462}= +0.06269657 \pm 1.9 \cdot 10^{-3} \) |
\(a_{463}= -0.42374774 \pm 1.2 \cdot 10^{-3} \) | \(a_{464}= +0.25930742 \pm 1.1 \cdot 10^{-3} \) | \(a_{465}= +0.33881252 \pm 1.4 \cdot 10^{-3} \) |
\(a_{466}= +0.12842797 \pm 5.3 \cdot 10^{-4} \) | \(a_{467}= -0.29428590 \pm 1.4 \cdot 10^{-3} \) | \(a_{468}= +0.26766747 \pm 1.7 \cdot 10^{-3} \) |
\(a_{469}= -0.79994362 \pm 5.9 \cdot 10^{-4} \) | \(a_{470}= -0.10579581 \pm 4.6 \cdot 10^{-4} \) | \(a_{471}= +0.32775335 \pm 1.6 \cdot 10^{-3} \) |
\(a_{472}= -0.08289077 \pm 8.8 \cdot 10^{-4} \) | \(a_{473}= +1.90364172 \pm 6.7 \cdot 10^{-4} \) | \(a_{474}= -0.01714083 \pm 1.4 \cdot 10^{-3} \) |
\(a_{475}= +1.88478927 \pm 2.2 \cdot 10^{-4} \) | \(a_{476}= +0.02049796 \pm 2.9 \cdot 10^{-4} \) | \(a_{477}= +0.32070282 \pm 6.4 \cdot 10^{-4} \) |
\(a_{478}= -0.16360298 \pm 4.0 \cdot 10^{-4} \) | \(a_{479}= -1.40728287 \pm 9.7 \cdot 10^{-4} \) | \(a_{480}= -0.41898442 \pm 1.7 \cdot 10^{-3} \) |
\(a_{481}= -0.04118399 \pm 4.2 \cdot 10^{-4} \) | \(a_{482}= +0.07400926 \pm 5.7 \cdot 10^{-4} \) | \(a_{483}= +0.08245693 \pm 2.2 \cdot 10^{-3} \) |
\(a_{484}= -1.64061108 \pm 6.6 \cdot 10^{-4} \) | \(a_{485}= -1.70759800 \pm 7.9 \cdot 10^{-4} \) | \(a_{486}= +0.00979445 \pm 5.8 \cdot 10^{-4} \) |
\(a_{487}= +1.23799691 \pm 6.9 \cdot 10^{-4} \) | \(a_{488}= +0.07841531 \pm 4.6 \cdot 10^{-4} \) | \(a_{489}= +0.03072699 \pm 2.0 \cdot 10^{-4} \) |
\(a_{490}= +0.20249303 \pm 3.9 \cdot 10^{-4} \) | \(a_{491}= +0.61335619 \pm 6.4 \cdot 10^{-4} \) | \(a_{492}= -0.20357248 \pm 2.6 \cdot 10^{-3} \) |
\(a_{493}= -0.01345951 \pm 6.2 \cdot 10^{-4} \) | \(a_{494}= -0.14143425 \pm 1.2 \cdot 10^{-4} \) | \(a_{495}= -0.89209919 \pm 1.5 \cdot 10^{-3} \) |
\(a_{496}= -0.33404258 \pm 4.8 \cdot 10^{-4} \) | \(a_{497}= +0.12014092 \pm 7.8 \cdot 10^{-4} \) | \(a_{498}= +0.05928454 \pm 1.8 \cdot 10^{-3} \) |
\(a_{499}= -1.46514028 \pm 1.7 \cdot 10^{-3} \) | \(a_{500}= +1.07435519 \pm 1.1 \cdot 10^{-3} \) | \(a_{501}= +0.48469276 \pm 7.4 \cdot 10^{-4} \) |
\(a_{502}= +0.13251689 \pm 4.7 \cdot 10^{-4} \) | \(a_{503}= +1.58882790 \pm 1.7 \cdot 10^{-3} \) | \(a_{504}= -0.04370919 \pm 1.3 \cdot 10^{-3} \) |
\(a_{505}= -1.48357459 \pm 4.9 \cdot 10^{-4} \) | \(a_{506}= +0.08215746 \pm 3.0 \cdot 10^{-4} \) | \(a_{507}= -0.18708426 \pm 7.7 \cdot 10^{-4} \) |
\(a_{508}= +1.89851480 \pm 1.0 \cdot 10^{-3} \) | \(a_{509}= +1.11332513 \pm 4.0 \cdot 10^{-4} \) | \(a_{510}= +0.00696130 \pm 1.9 \cdot 10^{-3} \) |
\(a_{511}= +0.29638398 \pm 1.8 \cdot 10^{-4} \) | \(a_{512}= +0.69394519 \pm 1.0 \cdot 10^{-3} \) | \(a_{513}= +0.21683474 \pm 4.3 \cdot 10^{-4} \) |
\(a_{514}= -0.04832526 \pm 5.2 \cdot 10^{-4} \) | \(a_{515}= -2.58842576 \pm 6.4 \cdot 10^{-4} \) | \(a_{516}= -0.65574064 \pm 2.0 \cdot 10^{-3} \) |
\(a_{517}= +0.69382224 \pm 8.2 \cdot 10^{-4} \) | \(a_{518}= +0.00332295 \pm 4.4 \cdot 10^{-4} \) | \(a_{519}= -0.15260949 \pm 6.6 \cdot 10^{-4} \) |
\(a_{520}= -0.40566532 \pm 2.8 \cdot 10^{-4} \) | \(a_{521}= +0.08776043 \pm 1.5 \cdot 10^{-3} \) | \(a_{522}= +0.01418108 \pm 2.1 \cdot 10^{-3} \) |
\(a_{523}= +0.42356933 \pm 6.2 \cdot 10^{-4} \) | \(a_{524}= -1.20042299 \pm 6.0 \cdot 10^{-4} \) | \(a_{525}= +0.41962758 \pm 1.3 \cdot 10^{-3} \) |
\(a_{526}= -0.16699030 \pm 6.9 \cdot 10^{-4} \) | \(a_{527}= +0.01733869 \pm 2.7 \cdot 10^{-4} \) | \(a_{528}= +0.87953986 \pm 1.5 \cdot 10^{-3} \) |
\(a_{529}= -0.89194860 \pm 1.4 \cdot 10^{-3} \) | \(a_{530}= -0.24015573 \pm 3.3 \cdot 10^{-4} \) | \(a_{531}= +0.09155107 \pm 1.0 \cdot 10^{-3} \) |
\(a_{532}= -0.47812285 \pm 1.0 \cdot 10^{-4} \) | \(a_{533}= -0.29681388 \pm 9.8 \cdot 10^{-4} \) | \(a_{534}= +0.15181774 \pm 1.1 \cdot 10^{-3} \) |
\(a_{535}= +0.25204854 \pm 4.2 \cdot 10^{-4} \) | \(a_{536}= +0.55565885 \pm 9.8 \cdot 10^{-4} \) | \(a_{537}= -0.96154996 \pm 1.0 \cdot 10^{-3} \) |
\(a_{538}= -0.06960618 \pm 3.4 \cdot 10^{-4} \) | \(a_{539}= -1.32797474 \pm 7.0 \cdot 10^{-4} \) | \(a_{540}= +0.30729821 \pm 1.8 \cdot 10^{-3} \) |
\(a_{541}= +1.50024441 \pm 5.0 \cdot 10^{-4} \) | \(a_{542}= -0.14210940 \pm 7.7 \cdot 10^{-4} \) | \(a_{543}= +0.54747737 \pm 1.2 \cdot 10^{-3} \) |
\(a_{544}= -0.02144147 \pm 6.4 \cdot 10^{-4} \) | \(a_{545}= +2.48690707 \pm 8.3 \cdot 10^{-4} \) | \(a_{546}= -0.03148878 \pm 1.9 \cdot 10^{-3} \) |
\(a_{547}= +0.29336719 \pm 8.1 \cdot 10^{-4} \) | \(a_{548}= -1.16550119 \pm 1.2 \cdot 10^{-3} \) | \(a_{549}= -0.08660803 \pm 8.4 \cdot 10^{-4} \) |
\(a_{550}= +0.41810358 \pm 2.3 \cdot 10^{-4} \) | \(a_{551}= +0.31394834 \pm 5.6 \cdot 10^{-4} \) | \(a_{552}= -0.05727644 \pm 2.3 \cdot 10^{-3} \) |
\(a_{553}= -0.08448546 \pm 6.0 \cdot 10^{-4} \) | \(a_{554}= -0.07238554 \pm 4.5 \cdot 10^{-4} \) | \(a_{555}= -0.04728168 \pm 1.6 \cdot 10^{-3} \) |
\(a_{556}= +0.10002466 \pm 8.0 \cdot 10^{-4} \) | \(a_{557}= -0.37407078 \pm 9.2 \cdot 10^{-4} \) | \(a_{558}= -0.01826822 \pm 1.2 \cdot 10^{-3} \) |
\(a_{559}= -0.95608662 \pm 5.1 \cdot 10^{-4} \) | \(a_{560}= -0.66103711 \pm 1.6 \cdot 10^{-4} \) | \(a_{561}= -0.04565306 \pm 1.2 \cdot 10^{-3} \) |
\(a_{562}= -0.07153714 \pm 4.1 \cdot 10^{-4} \) | \(a_{563}= +1.89288300 \pm 1.6 \cdot 10^{-3} \) | \(a_{564}= -0.23899846 \pm 2.3 \cdot 10^{-3} \) |
\(a_{565}= -1.73664543 \pm 4.2 \cdot 10^{-4} \) | \(a_{566}= +0.17548694 \pm 5.0 \cdot 10^{-4} \) | \(a_{567}= +0.04827587 \pm 6.6 \cdot 10^{-4} \) |
\(a_{568}= -0.08345259 \pm 7.8 \cdot 10^{-4} \) | \(a_{569}= -1.25566682 \pm 8.9 \cdot 10^{-4} \) | \(a_{570}= -0.16237495 \pm 1.8 \cdot 10^{-3} \) |
\(a_{571}= +0.35216005 \pm 1.0 \cdot 10^{-3} \) | \(a_{572}= +1.31451485 \pm 4.0 \cdot 10^{-4} \) | \(a_{573}= -0.42964754 \pm 8.3 \cdot 10^{-4} \) |
\(a_{574}= +0.02394855 \pm 4.1 \cdot 10^{-4} \) | \(a_{575}= +0.54987915 \pm 8.3 \cdot 10^{-4} \) | \(a_{576}= -0.28761222 \pm 7.9 \cdot 10^{-4} \) |
\(a_{577}= -0.37790474 \pm 1.1 \cdot 10^{-3} \) | \(a_{578}= -0.15232412 \pm 7.2 \cdot 10^{-4} \) | \(a_{579}= -0.77623375 \pm 1.4 \cdot 10^{-3} \) |
\(a_{580}= +0.44492762 \pm 9.8 \cdot 10^{-4} \) | \(a_{581}= +0.29220760 \pm 8.5 \cdot 10^{-4} \) | \(a_{582}= +0.09207091 \pm 1.8 \cdot 10^{-3} \) |
\(a_{583}= +1.57497144 \pm 4.0 \cdot 10^{-4} \) | \(a_{584}= -0.20587499 \pm 2.6 \cdot 10^{-4} \) | \(a_{585}= +0.44804865 \pm 1.5 \cdot 10^{-3} \) |
\(a_{586}= +0.04681550 \pm 5.2 \cdot 10^{-4} \) | \(a_{587}= -1.33778596 \pm 1.1 \cdot 10^{-3} \) | \(a_{588}= +0.45744270 \pm 2.1 \cdot 10^{-3} \) |
\(a_{589}= -0.40443159 \pm 2.3 \cdot 10^{-4} \) | \(a_{590}= -0.06855729 \pm 4.0 \cdot 10^{-4} \) | \(a_{591}= +0.97257431 \pm 2.0 \cdot 10^{-3} \) |
\(a_{592}= +0.04661603 \pm 5.8 \cdot 10^{-4} \) | \(a_{593}= +0.71518057 \pm 1.1 \cdot 10^{-3} \) | \(a_{594}= +0.04810054 \pm 1.3 \cdot 10^{-3} \) |
\(a_{595}= +0.03431154 \pm 2.0 \cdot 10^{-4} \) | \(a_{596}= +0.71596649 \pm 7.9 \cdot 10^{-4} \) | \(a_{597}= +0.59676518 \pm 7.8 \cdot 10^{-4} \) |
\(a_{598}= -0.04126283 \pm 2.9 \cdot 10^{-4} \) | \(a_{599}= -0.69908914 \pm 4.6 \cdot 10^{-4} \) | \(a_{600}= -0.29148277 \pm 1.3 \cdot 10^{-3} \) |
\(a_{601}= +0.68353560 \pm 7.1 \cdot 10^{-4} \) | \(a_{602}= +0.07714226 \pm 6.9 \cdot 10^{-4} \) | \(a_{603}= -0.61371329 \pm 1.8 \cdot 10^{-3} \) |
\(a_{604}= -0.57710414 \pm 1.3 \cdot 10^{-3} \) | \(a_{605}= -2.74621935 \pm 4.9 \cdot 10^{-4} \) | \(a_{606}= +0.07999193 \pm 1.2 \cdot 10^{-3} \) |
\(a_{607}= -1.21222933 \pm 1.7 \cdot 10^{-3} \) | \(a_{608}= +0.50013068 \pm 3.4 \cdot 10^{-4} \) | \(a_{609}= +0.06989714 \pm 2.1 \cdot 10^{-3} \) |
\(a_{610}= +0.06485573 \pm 4.0 \cdot 10^{-4} \) | \(a_{611}= -0.34846587 \pm 7.9 \cdot 10^{-4} \) | \(a_{612}= +0.01572595 \pm 1.6 \cdot 10^{-3} \) |
\(a_{613}= +1.08562964 \pm 9.8 \cdot 10^{-4} \) | \(a_{614}= +0.22382981 \pm 4.2 \cdot 10^{-4} \) | \(a_{615}= -0.34076003 \pm 2.3 \cdot 10^{-3} \) |
\(a_{616}= -0.21465584 \pm 4.3 \cdot 10^{-4} \) | \(a_{617}= +0.93999198 \pm 1.8 \cdot 10^{-3} \) | \(a_{618}= +0.13956371 \pm 1.4 \cdot 10^{-3} \) |
\(a_{619}= +0.80596999 \pm 7.5 \cdot 10^{-4} \) | \(a_{620}= -0.57316049 \pm 4.1 \cdot 10^{-4} \) | \(a_{621}= +0.06326060 \pm 1.6 \cdot 10^{-3} \) |
\(a_{622}= -0.14332300 \pm 7.0 \cdot 10^{-4} \) | \(a_{623}= +0.74829453 \pm 6.1 \cdot 10^{-4} \) | \(a_{624}= -0.44174084 \pm 1.5 \cdot 10^{-3} \) |
\(a_{625}= +0.12553248 \pm 4.4 \cdot 10^{-4} \) | \(a_{626}= -0.28443201 \pm 7.3 \cdot 10^{-4} \) | \(a_{627}= +1.06487533 \pm 1.1 \cdot 10^{-3} \) |
\(a_{628}= -0.55445197 \pm 1.4 \cdot 10^{-3} \) | \(a_{629}= -0.00241963 \pm 8.5 \cdot 10^{-4} \) | \(a_{630}= -0.03615100 \pm 2.0 \cdot 10^{-3} \) |
\(a_{631}= -0.68048077 \pm 1.0 \cdot 10^{-3} \) | \(a_{632}= +0.05868550 \pm 5.9 \cdot 10^{-4} \) | \(a_{633}= -0.33050322 \pm 4.6 \cdot 10^{-4} \) |
\(a_{634}= -0.17331517 \pm 3.0 \cdot 10^{-4} \) | \(a_{635}= +3.17792445 \pm 7.9 \cdot 10^{-4} \) | \(a_{636}= -0.54252477 \pm 1.7 \cdot 10^{-3} \) |
\(a_{637}= +0.66696315 \pm 6.7 \cdot 10^{-4} \) | \(a_{638}= +0.06964329 \pm 3.7 \cdot 10^{-4} \) | \(a_{639}= +0.09217159 \pm 1.2 \cdot 10^{-3} \) |
\(a_{640}= +0.94107841 \pm 7.1 \cdot 10^{-4} \) | \(a_{641}= -1.36175205 \pm 4.4 \cdot 10^{-4} \) | \(a_{642}= -0.01359005 \pm 1.1 \cdot 10^{-3} \) |
\(a_{643}= -1.44233346 \pm 1.1 \cdot 10^{-3} \) | \(a_{644}= -0.13949028 \pm 3.6 \cdot 10^{-4} \) | \(a_{645}= -1.09764444 \pm 1.8 \cdot 10^{-3} \) |
\(a_{646}= -0.00830952 \pm 1.6 \cdot 10^{-4} \) | \(a_{647}= -0.58751488 \pm 8.8 \cdot 10^{-4} \) | \(a_{648}= -0.03353350 \pm 7.1 \cdot 10^{-4} \) |
\(a_{649}= +0.44960730 \pm 6.7 \cdot 10^{-4} \) | \(a_{650}= -0.20998869 \pm 1.3 \cdot 10^{-4} \) | \(a_{651}= -0.09004224 \pm 1.3 \cdot 10^{-3} \) |
\(a_{652}= -0.05198006 \pm 2.1 \cdot 10^{-4} \) | \(a_{653}= +0.83033041 \pm 8.1 \cdot 10^{-4} \) | \(a_{654}= -0.13408999 \pm 1.7 \cdot 10^{-3} \) |
\(a_{655}= -2.00938837 \pm 4.6 \cdot 10^{-4} \) | \(a_{656}= +0.33596268 \pm 1.1 \cdot 10^{-3} \) | \(a_{657}= +0.22738451 \pm 5.1 \cdot 10^{-4} \) |
\(a_{658}= +0.02811612 \pm 3.9 \cdot 10^{-4} \) | \(a_{659}= -0.52055927 \pm 1.0 \cdot 10^{-3} \) | \(a_{660}= +1.50914142 \pm 2.6 \cdot 10^{-3} \) |
\(a_{661}= +1.07486879 \pm 1.1 \cdot 10^{-3} \) | \(a_{662}= +0.20858212 \pm 5.0 \cdot 10^{-4} \) | \(a_{663}= +0.02292883 \pm 1.2 \cdot 10^{-3} \) |
\(a_{664}= -0.20297398 \pm 8.3 \cdot 10^{-4} \) | \(a_{665}= -0.80032998 \pm 9.5 \cdot 10^{-5} \) | \(a_{666}= +0.00254935 \pm 1.4 \cdot 10^{-3} \) |
\(a_{667}= +0.09159307 \pm 2.2 \cdot 10^{-3} \) | \(a_{668}= -0.81994236 \pm 7.3 \cdot 10^{-4} \) | \(a_{669}= -0.24843728 \pm 4.1 \cdot 10^{-4} \) |
\(a_{670}= +0.45957427 \pm 4.5 \cdot 10^{-4} \) | \(a_{671}= -0.42533200 \pm 5.5 \cdot 10^{-4} \) | \(a_{672}= +0.11134859 \pm 1.6 \cdot 10^{-3} \) |
\(a_{673}= +1.94129723 \pm 8.8 \cdot 10^{-4} \) | \(a_{674}= -0.07671814 \pm 5.8 \cdot 10^{-4} \) | \(a_{675}= +0.32193647 \pm 6.6 \cdot 10^{-4} \) |
\(a_{676}= +0.31648566 \pm 6.8 \cdot 10^{-4} \) | \(a_{677}= +1.00494894 \pm 8.1 \cdot 10^{-4} \) | \(a_{678}= +0.09363710 \pm 1.2 \cdot 10^{-3} \) |
\(a_{679}= +0.45380835 \pm 8.0 \cdot 10^{-4} \) | \(a_{680}= -0.02383357 \pm 1.9 \cdot 10^{-4} \) | \(a_{681}= +0.15498478 \pm 1.5 \cdot 10^{-3} \) |
\(a_{682}= -0.08971523 \pm 2.0 \cdot 10^{-4} \) | \(a_{683}= -0.40599467 \pm 1.8 \cdot 10^{-3} \) | \(a_{684}= -0.36681379 \pm 1.4 \cdot 10^{-3} \) |
\(a_{685}= -1.95093276 \pm 9.3 \cdot 10^{-4} \) | \(a_{686}= -0.12015120 \pm 3.8 \cdot 10^{-4} \) | \(a_{687}= -0.47456292 \pm 6.9 \cdot 10^{-4} \) |
\(a_{688}= +1.08219136 \pm 6.4 \cdot 10^{-4} \) | \(a_{689}= -0.79101498 \pm 3.8 \cdot 10^{-4} \) | \(a_{690}= -0.04737219 \pm 3.0 \cdot 10^{-3} \) |
\(a_{691}= -1.06363413 \pm 1.4 \cdot 10^{-3} \) | \(a_{692}= +0.25816558 \pm 6.2 \cdot 10^{-4} \) | \(a_{693}= +0.23708277 \pm 1.3 \cdot 10^{-3} \) |
\(a_{694}= -0.10907293 \pm 4.6 \cdot 10^{-4} \) | \(a_{695}= +0.16743130 \pm 5.8 \cdot 10^{-4} \) | \(a_{696}= -0.04855213 \pm 2.2 \cdot 10^{-3} \) |
\(a_{697}= -0.01743835 \pm 4.4 \cdot 10^{-4} \) | \(a_{698}= +0.07916839 \pm 6.6 \cdot 10^{-4} \) | \(a_{699}= +0.48564153 \pm 1.1 \cdot 10^{-3} \) |
\(a_{700}= -0.70987327 \pm 3.1 \cdot 10^{-4} \) | \(a_{701}= +1.42295682 \pm 1.0 \cdot 10^{-3} \) | \(a_{702}= -0.02415806 \pm 1.3 \cdot 10^{-3} \) |
\(a_{703}= +0.05643890 \pm 2.7 \cdot 10^{-4} \) | \(a_{704}= -1.41246353 \pm 4.8 \cdot 10^{-4} \) | \(a_{705}= -0.40005959 \pm 2.0 \cdot 10^{-3} \) |
\(a_{706}= -0.08534050 \pm 7.8 \cdot 10^{-4} \) | \(a_{707}= +0.39427227 \pm 6.1 \cdot 10^{-4} \) | \(a_{708}= -0.15487462 \pm 2.0 \cdot 10^{-3} \) |
\(a_{709}= -0.43182108 \pm 5.1 \cdot 10^{-4} \) | \(a_{710}= -0.06902196 \pm 3.9 \cdot 10^{-4} \) | \(a_{711}= -0.06481688 \pm 9.0 \cdot 10^{-4} \) |
\(a_{712}= -0.51978223 \pm 4.6 \cdot 10^{-4} \) | \(a_{713}= -0.11799117 \pm 9.2 \cdot 10^{-4} \) | \(a_{714}= -0.00185002 \pm 1.7 \cdot 10^{-3} \) |
\(a_{715}= +2.20036677 \pm 3.2 \cdot 10^{-4} \) | \(a_{716}= +1.62662951 \pm 9.4 \cdot 10^{-4} \) | \(a_{717}= -0.61865343 \pm 9.7 \cdot 10^{-4} \) |
\(a_{718}= +0.23747637 \pm 7.0 \cdot 10^{-4} \) | \(a_{719}= +0.97506603 \pm 4.7 \cdot 10^{-4} \) | \(a_{720}= -0.50714482 \pm 1.6 \cdot 10^{-3} \) |
\(a_{721}= +0.68789565 \pm 5.1 \cdot 10^{-4} \) | \(a_{722}= +0.04114235 \pm 5.3 \cdot 10^{-4} \) | \(a_{723}= +0.27986094 \pm 9.6 \cdot 10^{-4} \) |
\(a_{724}= -0.92615349 \pm 1.1 \cdot 10^{-3} \) | \(a_{725}= +0.46612190 \pm 8.2 \cdot 10^{-4} \) | \(a_{726}= +0.14807169 \pm 1.3 \cdot 10^{-3} \) |
\(a_{727}= -0.75724876 \pm 4.8 \cdot 10^{-4} \) | \(a_{728}= +0.10780893 \pm 2.3 \cdot 10^{-4} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.17027507 \pm 3.6 \cdot 10^{-4} \) | \(a_{731}= -0.05617181 \pm 6.7 \cdot 10^{-4} \) | \(a_{732}= +0.14651259 \pm 1.9 \cdot 10^{-3} \) |
\(a_{733}= -1.37162824 \pm 2.0 \cdot 10^{-3} \) | \(a_{734}= +0.15640071 \pm 4.5 \cdot 10^{-4} \) | \(a_{735}= +0.76571346 \pm 1.9 \cdot 10^{-3} \) |
\(a_{736}= +0.14591097 \pm 1.1 \cdot 10^{-3} \) | \(a_{737}= -3.01394578 \pm 1.1 \cdot 10^{-3} \) | \(a_{738}= +0.01837323 \pm 2.1 \cdot 10^{-3} \) |
\(a_{739}= +0.80061493 \pm 1.2 \cdot 10^{-3} \) | \(a_{740}= +0.07998521 \pm 6.9 \cdot 10^{-4} \) | \(a_{741}= -0.53482388 \pm 1.1 \cdot 10^{-3} \) |
\(a_{742}= +0.06382338 \pm 2.8 \cdot 10^{-4} \) | \(a_{743}= -0.78295343 \pm 1.6 \cdot 10^{-3} \) | \(a_{744}= +0.06254537 \pm 1.3 \cdot 10^{-3} \) |
\(a_{745}= +1.19845650 \pm 5.7 \cdot 10^{-4} \) | \(a_{746}= -0.18208212 \pm 3.9 \cdot 10^{-4} \) | \(a_{747}= +0.22418041 \pm 1.2 \cdot 10^{-3} \) |
\(a_{748}= +0.07723012 \pm 3.3 \cdot 10^{-4} \) | \(a_{749}= -0.06698399 \pm 3.0 \cdot 10^{-4} \) | \(a_{750}= -0.09696484 \pm 1.7 \cdot 10^{-3} \) |
\(a_{751}= -0.41046607 \pm 9.6 \cdot 10^{-4} \) | \(a_{752}= +0.39442739 \pm 9.8 \cdot 10^{-4} \) | \(a_{753}= +0.50110351 \pm 1.3 \cdot 10^{-3} \) |
\(a_{754}= -0.03497770 \pm 2.9 \cdot 10^{-4} \) | \(a_{755}= -0.96601477 \pm 1.0 \cdot 10^{-3} \) | \(a_{756}= -0.08166705 \pm 1.7 \cdot 10^{-3} \) |
\(a_{757}= +1.04227015 \pm 3.2 \cdot 10^{-4} \) | \(a_{758}= +0.11627797 \pm 3.0 \cdot 10^{-4} \) | \(a_{759}= +0.31067279 \pm 2.3 \cdot 10^{-3} \) |
\(a_{760}= +0.55592722 \pm 2.0 \cdot 10^{-4} \) | \(a_{761}= +0.72543575 \pm 1.8 \cdot 10^{-3} \) | \(a_{762}= -0.17134852 \pm 1.9 \cdot 10^{-3} \) |
\(a_{763}= -0.66091621 \pm 4.5 \cdot 10^{-4} \) | \(a_{764}= +0.72682376 \pm 6.9 \cdot 10^{-4} \) | \(a_{765}= +0.02632367 \pm 1.3 \cdot 10^{-3} \) |
\(a_{766}= -0.11332142 \pm 3.6 \cdot 10^{-4} \) | \(a_{767}= -0.22581115 \pm 5.2 \cdot 10^{-4} \) | \(a_{768}= +0.44741756 \pm 5.8 \cdot 10^{-4} \) |
\(a_{769}= -1.57600298 \pm 9.9 \cdot 10^{-4} \) | \(a_{770}= -0.17753753 \pm 1.4 \cdot 10^{-4} \) | \(a_{771}= -0.18273865 \pm 1.2 \cdot 10^{-3} \) |
\(a_{772}= +1.31313481 \pm 1.3 \cdot 10^{-3} \) | \(a_{773}= +1.59177681 \pm 8.7 \cdot 10^{-4} \) | \(a_{774}= +0.05918321 \pm 1.6 \cdot 10^{-3} \) |
\(a_{775}= -0.60046319 \pm 4.0 \cdot 10^{-4} \) | \(a_{776}= -0.31522550 \pm 7.9 \cdot 10^{-4} \) | \(a_{777}= +0.01256550 \pm 1.4 \cdot 10^{-3} \) |
\(a_{778}= +0.04970796 \pm 3.0 \cdot 10^{-4} \) | \(a_{779}= +0.40675629 \pm 5.7 \cdot 10^{-4} \) | \(a_{780}= -0.75795246 \pm 2.5 \cdot 10^{-3} \) |
\(a_{781}= +0.45265466 \pm 7.6 \cdot 10^{-4} \) | \(a_{782}= -0.00242427 \pm 2.1 \cdot 10^{-4} \) | \(a_{783}= +0.05362479 \pm 1.5 \cdot 10^{-3} \) |
\(a_{784}= -0.75493344 \pm 8.0 \cdot 10^{-4} \) | \(a_{785}= -0.92809730 \pm 1.1 \cdot 10^{-3} \) | \(a_{786}= +0.10834296 \pm 1.3 \cdot 10^{-3} \) |
\(a_{787}= +0.22737798 \pm 1.7 \cdot 10^{-3} \) | \(a_{788}= -1.64527913 \pm 1.9 \cdot 10^{-3} \) | \(a_{789}= -0.63146232 \pm 9.1 \cdot 10^{-4} \) |
\(a_{790}= +0.04853760 \pm 3.7 \cdot 10^{-4} \) | \(a_{791}= +0.46152795 \pm 7.9 \cdot 10^{-4} \) | \(a_{792}= -0.16468303 \pm 1.4 \cdot 10^{-3} \) |
\(a_{793}= +0.21361910 \pm 5.3 \cdot 10^{-4} \) | \(a_{794}= +0.06843271 \pm 5.3 \cdot 10^{-4} \) | \(a_{795}= -0.90813236 \pm 1.4 \cdot 10^{-3} \) |
\(a_{796}= -1.00953241 \pm 7.8 \cdot 10^{-4} \) | \(a_{797}= +1.16574784 \pm 4.2 \cdot 10^{-4} \) | \(a_{798}= +0.04315249 \pm 1.6 \cdot 10^{-3} \) |
\(a_{799}= -0.02047300 \pm 4.0 \cdot 10^{-4} \) | \(a_{800}= +0.74254849 \pm 5.4 \cdot 10^{-4} \) | \(a_{801}= +0.57408833 \pm 5.3 \cdot 10^{-4} \) |
\(a_{802}= -0.03269169 \pm 4.8 \cdot 10^{-4} \) | \(a_{803}= +1.11668528 \pm 3.1 \cdot 10^{-4} \) | \(a_{804}= +1.03820310 \pm 2.8 \cdot 10^{-3} \) |
\(a_{805}= -0.23349282 \pm 2.7 \cdot 10^{-4} \) | \(a_{806}= +0.04505865 \pm 1.3 \cdot 10^{-4} \) | \(a_{807}= -0.26321099 \pm 7.9 \cdot 10^{-4} \) |
\(a_{808}= -0.27387040 \pm 5.2 \cdot 10^{-4} \) | \(a_{809}= +0.04939348 \pm 1.0 \cdot 10^{-3} \) | \(a_{810}= -0.02773489 \pm 1.3 \cdot 10^{-3} \) |
\(a_{811}= -0.15046649 \pm 4.5 \cdot 10^{-4} \) | \(a_{812}= -0.11824321 \pm 4.7 \cdot 10^{-4} \) | \(a_{813}= -0.53737690 \pm 1.0 \cdot 10^{-3} \) |
\(a_{814}= +0.01251986 \pm 4.5 \cdot 10^{-4} \) | \(a_{815}= -0.08700944 \pm 1.8 \cdot 10^{-4} \) | \(a_{816}= -0.02595307 \pm 1.4 \cdot 10^{-3} \) |
\(a_{817}= +1.31022929 \pm 3.2 \cdot 10^{-4} \) | \(a_{818}= +0.08519128 \pm 5.8 \cdot 10^{-4} \) | \(a_{819}= -0.11907265 \pm 1.3 \cdot 10^{-3} \) |
\(a_{820}= +0.57645505 \pm 9.6 \cdot 10^{-4} \) | \(a_{821}= -0.67519092 \pm 1.2 \cdot 10^{-3} \) | \(a_{822}= +0.10519112 \pm 1.9 \cdot 10^{-3} \) |
\(a_{823}= +0.99965781 \pm 5.6 \cdot 10^{-4} \) | \(a_{824}= -0.47782781 \pm 5.2 \cdot 10^{-4} \) | \(a_{825}= +1.58102991 \pm 1.4 \cdot 10^{-3} \) |
\(a_{826}= +0.01821967 \pm 7.8 \cdot 10^{-4} \) | \(a_{827}= -1.44135800 \pm 8.3 \cdot 10^{-4} \) | \(a_{828}= -0.10701634 \pm 2.6 \cdot 10^{-3} \) |
\(a_{829}= -0.65037155 \pm 1.2 \cdot 10^{-3} \) | \(a_{830}= -0.16787570 \pm 2.6 \cdot 10^{-4} \) | \(a_{831}= -0.27372092 \pm 5.8 \cdot 10^{-4} \) |
\(a_{832}= +0.70939687 \pm 4.2 \cdot 10^{-4} \) | \(a_{833}= +0.03918529 \pm 4.5 \cdot 10^{-4} \) | \(a_{834}= -0.00902762 \pm 1.4 \cdot 10^{-3} \) |
\(a_{835}= -1.37250174 \pm 5.4 \cdot 10^{-4} \) | \(a_{836}= -1.80142241 \pm 2.5 \cdot 10^{-4} \) | \(a_{837}= -0.06908002 \pm 6.8 \cdot 10^{-4} \) |
\(a_{838}= -0.19454052 \pm 2.7 \cdot 10^{-4} \) | \(a_{839}= +0.35954494 \pm 5.7 \cdot 10^{-4} \) | \(a_{840}= +0.12377108 \pm 2.1 \cdot 10^{-3} \) |
\(a_{841}= -0.92235832 \pm 9.5 \cdot 10^{-4} \) | \(a_{842}= +0.18626286 \pm 8.3 \cdot 10^{-4} \) | \(a_{843}= -0.27051277 \pm 1.2 \cdot 10^{-3} \) |
\(a_{844}= +0.55910387 \pm 4.8 \cdot 10^{-4} \) | \(a_{845}= +0.52976543 \pm 5.3 \cdot 10^{-4} \) | \(a_{846}= +0.02157056 \pm 1.8 \cdot 10^{-3} \) |
\(a_{847}= +0.72983060 \pm 3.6 \cdot 10^{-4} \) | \(a_{848}= +0.89534730 \pm 4.6 \cdot 10^{-4} \) | \(a_{849}= +0.66359178 \pm 1.7 \cdot 10^{-3} \) |
\(a_{850}= -0.01233721 \pm 1.8 \cdot 10^{-4} \) | \(a_{851}= +0.01646581 \pm 9.0 \cdot 10^{-4} \) | \(a_{852}= -0.15592433 \pm 2.2 \cdot 10^{-3} \) |
\(a_{853}= -1.00123072 \pm 1.4 \cdot 10^{-3} \) | \(a_{854}= -0.01723595 \pm 1.0 \cdot 10^{-4} \) | \(a_{855}= -0.61400970 \pm 1.2 \cdot 10^{-3} \) |
\(a_{856}= +0.04652859 \pm 3.4 \cdot 10^{-4} \) | \(a_{857}= -0.77345301 \pm 8.0 \cdot 10^{-4} \) | \(a_{858}= -0.11864020 \pm 2.0 \cdot 10^{-3} \) |
\(a_{859}= +0.93083983 \pm 9.0 \cdot 10^{-4} \) | \(a_{860}= +1.85685707 \pm 6.3 \cdot 10^{-4} \) | \(a_{861}= +0.09055981 \pm 2.2 \cdot 10^{-3} \) |
\(a_{862}= +0.16529189 \pm 5.4 \cdot 10^{-4} \) | \(a_{863}= +0.08354583 \pm 1.3 \cdot 10^{-3} \) | \(a_{864}= +0.08542616 \pm 9.5 \cdot 10^{-4} \) |
\(a_{865}= +0.43214343 \pm 4.9 \cdot 10^{-4} \) | \(a_{866}= +0.09826846 \pm 7.3 \cdot 10^{-4} \) | \(a_{867}= -0.57600316 \pm 1.1 \cdot 10^{-3} \) |
\(a_{868}= +0.15232216 \pm 2.7 \cdot 10^{-4} \) | \(a_{869}= -0.31831569 \pm 5.8 \cdot 10^{-4} \) | \(a_{870}= -0.04015649 \pm 2.9 \cdot 10^{-3} \) |
\(a_{871}= +1.51372667 \pm 1.1 \cdot 10^{-3} \) | \(a_{872}= +0.45908728 \pm 6.5 \cdot 10^{-4} \) | \(a_{873}= +0.34815981 \pm 1.2 \cdot 10^{-3} \) |
\(a_{874}= +0.05654694 \pm 1.9 \cdot 10^{-4} \) | \(a_{875}= -0.47793003 \pm 4.7 \cdot 10^{-4} \) | \(a_{876}= -0.38466058 \pm 1.5 \cdot 10^{-3} \) |
\(a_{877}= -1.62061645 \pm 7.1 \cdot 10^{-4} \) | \(a_{878}= -0.09694902 \pm 5.1 \cdot 10^{-4} \) | \(a_{879}= +0.17702960 \pm 1.8 \cdot 10^{-3} \) |
\(a_{880}= -2.49058805 \pm 4.2 \cdot 10^{-4} \) | \(a_{881}= +1.29458080 \pm 1.7 \cdot 10^{-3} \) | \(a_{882}= -0.04128603 \pm 1.7 \cdot 10^{-3} \) |
\(a_{883}= -1.00297514 \pm 2.9 \cdot 10^{-4} \) | \(a_{884}= -0.03878812 \pm 2.4 \cdot 10^{-4} \) | \(a_{885}= -0.25924466 \pm 1.8 \cdot 10^{-3} \) |
\(a_{886}= +0.23256495 \pm 9.0 \cdot 10^{-4} \) | \(a_{887}= +0.01317516 \pm 1.4 \cdot 10^{-3} \) | \(a_{888}= -0.00872828 \pm 1.5 \cdot 10^{-3} \) |
\(a_{889}= -0.84455982 \pm 1.1 \cdot 10^{-3} \) | \(a_{890}= -0.42990143 \pm 3.0 \cdot 10^{-4} \) | \(a_{891}= +0.18188888 \pm 7.3 \cdot 10^{-4} \) |
\(a_{892}= +0.42027500 \pm 4.2 \cdot 10^{-4} \) | \(a_{893}= +0.47754061 \pm 5.0 \cdot 10^{-4} \) | \(a_{894}= -0.06461883 \pm 1.5 \cdot 10^{-3} \) |
\(a_{895}= +2.72281559 \pm 7.1 \cdot 10^{-4} \) | \(a_{896}= -0.25009941 \pm 3.5 \cdot 10^{-4} \) | \(a_{897}= -0.15603256 \pm 2.3 \cdot 10^{-3} \) |
\(a_{898}= -0.16931013 \pm 7.6 \cdot 10^{-4} \) | \(a_{899}= -0.10001883 \pm 8.8 \cdot 10^{-4} \) | \(a_{900}= -0.54461171 \pm 1.7 \cdot 10^{-3} \) |
\(a_{901}= -0.04647356 \pm 3.8 \cdot 10^{-4} \) | \(a_{902}= +0.09023091 \pm 3.2 \cdot 10^{-4} \) | \(a_{903}= +0.29170813 \pm 1.6 \cdot 10^{-3} \) |
\(a_{904}= -0.32058771 \pm 5.9 \cdot 10^{-4} \) | \(a_{905}= -1.55028858 \pm 8.6 \cdot 10^{-4} \) | \(a_{906}= +0.05208595 \pm 2.1 \cdot 10^{-3} \) |
\(a_{907}= +0.22159666 \pm 2.0 \cdot 10^{-3} \) | \(a_{908}= -0.26218379 \pm 1.5 \cdot 10^{-3} \) | \(a_{909}= +0.30248398 \pm 6.7 \cdot 10^{-4} \) |
\(a_{910}= +0.08916660 \pm 8.6 \cdot 10^{-5} \) | \(a_{911}= -0.22232920 \pm 1.4 \cdot 10^{-3} \) | \(a_{912}= +0.60536543 \pm 1.2 \cdot 10^{-3} \) |
\(a_{913}= +1.10094992 \pm 8.0 \cdot 10^{-4} \) | \(a_{914}= +0.20990359 \pm 6.6 \cdot 10^{-4} \) | \(a_{915}= +0.24524746 \pm 1.6 \cdot 10^{-3} \) |
\(a_{916}= +0.80280598 \pm 5.5 \cdot 10^{-4} \) | \(a_{917}= +0.53401165 \pm 7.5 \cdot 10^{-4} \) | \(a_{918}= -0.00141933 \pm 1.1 \cdot 10^{-3} \) |
\(a_{919}= -0.29260547 \pm 7.9 \cdot 10^{-4} \) | \(a_{920}= +0.16218937 \pm 5.9 \cdot 10^{-4} \) | \(a_{921}= +0.84639704 \pm 5.3 \cdot 10^{-4} \) |
\(a_{922}= -0.18378156 \pm 2.8 \cdot 10^{-4} \) | \(a_{923}= -0.22734166 \pm 7.2 \cdot 10^{-4} \) | \(a_{924}= -0.40106687 \pm 2.4 \cdot 10^{-3} \) |
\(a_{925}= +0.08379534 \pm 3.8 \cdot 10^{-4} \) | \(a_{926}= -0.06469796 \pm 6.4 \cdot 10^{-4} \) | \(a_{927}= +0.52775057 \pm 8.7 \cdot 10^{-4} \) |
\(a_{928}= +0.12368590 \pm 1.1 \cdot 10^{-3} \) | \(a_{929}= -0.96911162 \pm 1.1 \cdot 10^{-3} \) | \(a_{930}= +0.05173002 \pm 2.0 \cdot 10^{-3} \) |
\(a_{931}= -0.91401201 \pm 4.0 \cdot 10^{-4} \) | \(a_{932}= -0.82154738 \pm 1.0 \cdot 10^{-3} \) | \(a_{933}= -0.54196607 \pm 1.7 \cdot 10^{-3} \) |
\(a_{934}= -0.04493168 \pm 6.5 \cdot 10^{-4} \) | \(a_{935}= +0.12927551 \pm 2.4 \cdot 10^{-4} \) | \(a_{936}= +0.08271054 \pm 1.4 \cdot 10^{-3} \) |
\(a_{937}= -1.46100385 \pm 7.9 \cdot 10^{-4} \) | \(a_{938}= -0.12213568 \pm 3.3 \cdot 10^{-4} \) | \(a_{939}= -1.07556006 \pm 7.2 \cdot 10^{-4} \) |
\(a_{940}= +0.67677059 \pm 7.9 \cdot 10^{-4} \) | \(a_{941}= +1.75973320 \pm 8.6 \cdot 10^{-4} \) | \(a_{942}= +0.05004150 \pm 2.1 \cdot 10^{-3} \) |
\(a_{943}= +0.11866939 \pm 2.2 \cdot 10^{-3} \) | \(a_{944}= +0.25559491 \pm 5.2 \cdot 10^{-4} \) | \(a_{945}= -0.13670250 \pm 1.4 \cdot 10^{-3} \) |
\(a_{946}= +0.29064870 \pm 4.9 \cdot 10^{-4} \) | \(a_{947}= -1.28906466 \pm 5.7 \cdot 10^{-4} \) | \(a_{948}= +0.10964906 \pm 1.9 \cdot 10^{-3} \) |
\(a_{949}= -0.56084495 \pm 3.0 \cdot 10^{-4} \) | \(a_{950}= +0.28777030 \pm 1.2 \cdot 10^{-4} \) | \(a_{951}= -0.65537940 \pm 7.3 \cdot 10^{-4} \) |
\(a_{952}= +0.00633397 \pm 2.2 \cdot 10^{-4} \) | \(a_{953}= -0.31409939 \pm 2.0 \cdot 10^{-3} \) | \(a_{954}= +0.04896502 \pm 1.2 \cdot 10^{-3} \) |
\(a_{955}= +1.21663050 \pm 4.8 \cdot 10^{-4} \) | \(a_{956}= +1.04656021 \pm 8.5 \cdot 10^{-4} \) | \(a_{957}= +0.26335130 \pm 2.2 \cdot 10^{-3} \) |
\(a_{958}= -0.21486445 \pm 5.8 \cdot 10^{-4} \) | \(a_{959}= +0.51847659 \pm 6.4 \cdot 10^{-4} \) | \(a_{960}= +0.81442990 \pm 1.5 \cdot 10^{-3} \) |
\(a_{961}= -0.87115468 \pm 7.7 \cdot 10^{-4} \) | \(a_{962}= -0.00628799 \pm 2.6 \cdot 10^{-4} \) | \(a_{963}= -0.05138983 \pm 5.9 \cdot 10^{-4} \) |
\(a_{964}= -0.47343361 \pm 8.0 \cdot 10^{-4} \) | \(a_{965}= +2.19805672 \pm 1.0 \cdot 10^{-3} \) | \(a_{966}= +0.01258955 \pm 2.8 \cdot 10^{-3} \) |
\(a_{967}= +0.12583819 \pm 2.0 \cdot 10^{-3} \) | \(a_{968}= -0.50695677 \pm 4.2 \cdot 10^{-4} \) | \(a_{969}= -0.03142187 \pm 9.7 \cdot 10^{-4} \) |
\(a_{970}= -0.26071668 \pm 2.5 \cdot 10^{-4} \) | \(a_{971}= -0.84004481 \pm 1.8 \cdot 10^{-3} \) | \(a_{972}= -0.06265461 \pm 1.0 \cdot 10^{-3} \) |
\(a_{973}= -0.04449626 \pm 9.0 \cdot 10^{-4} \) | \(a_{974}= +0.18901781 \pm 3.3 \cdot 10^{-4} \) | \(a_{975}= -0.79405779 \pm 1.3 \cdot 10^{-3} \) |
\(a_{976}= -0.24179477 \pm 6.9 \cdot 10^{-4} \) | \(a_{977}= +1.78305753 \pm 1.1 \cdot 10^{-3} \) | \(a_{978}= +0.00469141 \pm 7.8 \cdot 10^{-4} \) |
\(a_{979}= +2.81934762 \pm 3.6 \cdot 10^{-4} \) | \(a_{980}= -1.29533791 \pm 6.8 \cdot 10^{-4} \) | \(a_{981}= -0.50705206 \pm 1.1 \cdot 10^{-3} \) |
\(a_{982}= +0.09364744 \pm 3.5 \cdot 10^{-4} \) | \(a_{983}= -0.73002925 \pm 4.9 \cdot 10^{-4} \) | \(a_{984}= -0.06290488 \pm 2.2 \cdot 10^{-3} \) |
\(a_{985}= -2.75403319 \pm 1.4 \cdot 10^{-3} \) | \(a_{986}= -0.00205500 \pm 6.8 \cdot 10^{-4} \) | \(a_{987}= +0.10631916 \pm 1.9 \cdot 10^{-3} \) |
\(a_{988}= +0.90474791 \pm 2.8 \cdot 10^{-4} \) | \(a_{989}= +0.38225375 \pm 1.0 \cdot 10^{-3} \) | \(a_{990}= -0.13620602 \pm 2.1 \cdot 10^{-3} \) |
\(a_{991}= -0.18816572 \pm 1.3 \cdot 10^{-3} \) | \(a_{992}= -0.15933350 \pm 5.4 \cdot 10^{-4} \) | \(a_{993}= +0.78873895 \pm 6.9 \cdot 10^{-4} \) |
\(a_{994}= +0.01834316 \pm 5.1 \cdot 10^{-4} \) | \(a_{995}= -1.68985658 \pm 5.7 \cdot 10^{-4} \) | \(a_{996}= -0.37924027 \pm 2.3 \cdot 10^{-3} \) |
\(a_{997}= -1.03924526 \pm 1.6 \cdot 10^{-3} \) | \(a_{998}= -0.22369814 \pm 6.9 \cdot 10^{-4} \) | \(a_{999}= +0.00964020 \pm 8.1 \cdot 10^{-4} \) |
\(a_{1000}= +0.33198096 \pm 6.5 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000