Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(19.0267767277159515990093036122 \pm 2 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.08613898 \pm 2.7 \cdot 10^{-2} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.99258008 \pm 4.9 \cdot 10^{-2} \) | \(a_{5}= +0.10078856 \pm 3.7 \cdot 10^{-2} \) | \(a_{6}= +0.04973236 \pm 2.7 \cdot 10^{-2} \) |
\(a_{7}= +1.22782462 \pm 3.0 \cdot 10^{-2} \) | \(a_{8}= +0.17163881 \pm 3.3 \cdot 10^{-2} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.00868182 \pm 2.1 \cdot 10^{-2} \) | \(a_{11}= +0.68050424 \pm 3.4 \cdot 10^{-2} \) | \(a_{12}= +0.57306637 \pm 4.9 \cdot 10^{-2} \) |
\(a_{13}= -1.18003931 \pm 3.3 \cdot 10^{-2} \) | \(a_{14}= -0.10576356 \pm 2.1 \cdot 10^{-2} \) | \(a_{15}= -0.05819030 \pm 3.7 \cdot 10^{-2} \) |
\(a_{16}= +0.97779528 \pm 4.0 \cdot 10^{-2} \) | \(a_{17}= +0.15753027 \pm 2.5 \cdot 10^{-2} \) | \(a_{18}= -0.02871299 \pm 2.7 \cdot 10^{-2} \) |
\(a_{19}= +0.92577735 \pm 2.0 \cdot 10^{-2} \) | \(a_{20}= -0.10004072 \pm 3.5 \cdot 10^{-2} \) | \(a_{21}= -0.70888488 \pm 3.0 \cdot 10^{-2} \) |
\(a_{22}= -0.05861794 \pm 1.7 \cdot 10^{-2} \) | \(a_{23}= -1.85747795 \pm 7.5 \cdot 10^{-2} \) | \(a_{24}= -0.09909572 \pm 3.3 \cdot 10^{-2} \) |
\(a_{25}= -0.98984167 \pm 3.1 \cdot 10^{-2} \) | \(a_{26}= +0.10164738 \pm 1.1 \cdot 10^{-2} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -1.21871426 \pm 2.0 \cdot 10^{-2} \) | \(a_{29}= -1.13235323 \pm 7.1 \cdot 10^{-2} \) | \(a_{30}= +0.00501245 \pm 6.4 \cdot 10^{-2} \) |
\(a_{31}= +0.73662808 \pm 3.1 \cdot 10^{-2} \) | \(a_{32}= -0.25586510 \pm 4.4 \cdot 10^{-2} \) | \(a_{33}= -0.39288931 \pm 3.4 \cdot 10^{-2} \) |
\(a_{34}= -0.01356950 \pm 3.0 \cdot 10^{-2} \) | \(a_{35}= +0.12375067 \pm 1.3 \cdot 10^{-2} \) | \(a_{36}= -0.33086003 \pm 4.9 \cdot 10^{-2} \) |
\(a_{37}= -0.69030342 \pm 3.8 \cdot 10^{-2} \) | \(a_{38}= -0.07974552 \pm 9.2 \cdot 10^{-3} \) | \(a_{39}= +0.68129601 \pm 3.3 \cdot 10^{-2} \) |
\(a_{40}= +0.01729923 \pm 2.0 \cdot 10^{-2} \) | \(a_{41}= +0.73078552 \pm 7.2 \cdot 10^{-2} \) | \(a_{42}= +0.06106262 \pm 5.8 \cdot 10^{-2} \) |
\(a_{43}= -0.83201477 \pm 4.8 \cdot 10^{-2} \) | \(a_{44}= -0.67545495 \pm 3.0 \cdot 10^{-2} \) | \(a_{45}= +0.03359619 \pm 3.7 \cdot 10^{-2} \) |
\(a_{46}= +0.16000125 \pm 2.1 \cdot 10^{-2} \) | \(a_{47}= +0.70211362 \pm 5.9 \cdot 10^{-2} \) | \(a_{48}= -0.56453037 \pm 4.0 \cdot 10^{-2} \) |
\(a_{49}= +0.50755330 \pm 5.2 \cdot 10^{-2} \) | \(a_{50}= +0.08526395 \pm 1.5 \cdot 10^{-2} \) | \(a_{51}= -0.09095014 \pm 2.5 \cdot 10^{-2} \) |
\(a_{52}= +1.17128351 \pm 3.0 \cdot 10^{-2} \) | \(a_{53}= -1.84333098 \pm 3.0 \cdot 10^{-2} \) | \(a_{54}= +0.01657745 \pm 2.7 \cdot 10^{-2} \) |
\(a_{55}= +0.06858704 \pm 2.4 \cdot 10^{-2} \) | \(a_{56}= +0.21074236 \pm 2.9 \cdot 10^{-2} \) | \(a_{57}= -0.53449780 \pm 2.0 \cdot 10^{-2} \) |
\(a_{58}= +0.09753975 \pm 2.9 \cdot 10^{-2} \) | \(a_{59}= +1.07935213 \pm 4.8 \cdot 10^{-2} \) | \(a_{60}= +0.05775853 \pm 8.7 \cdot 10^{-2} \) |
\(a_{61}= -0.03436169 \pm 3.9 \cdot 10^{-2} \) | \(a_{62}= -0.06345239 \pm 1.4 \cdot 10^{-2} \) | \(a_{63}= +0.40927487 \pm 3.0 \cdot 10^{-2} \) |
\(a_{64}= -0.95575533 \pm 3.6 \cdot 10^{-2} \) | \(a_{65}= -0.11893446 \pm 2.3 \cdot 10^{-2} \) | \(a_{66}= +0.03384308 \pm 6.1 \cdot 10^{-2} \) |
\(a_{67}= -0.84922882 \pm 8.4 \cdot 10^{-2} \) | \(a_{68}= -0.15636140 \pm 2.8 \cdot 10^{-2} \) | \(a_{69}= +1.07241539 \pm 7.5 \cdot 10^{-2} \) |
\(a_{70}= -0.01065976 \pm 1.0 \cdot 10^{-2} \) | \(a_{71}= +1.22790141 \pm 5.6 \cdot 10^{-2} \) | \(a_{72}= +0.05721294 \pm 3.3 \cdot 10^{-2} \) |
\(a_{73}= -1.19613704 \pm 2.3 \cdot 10^{-2} \) | \(a_{74}= +0.05946203 \pm 3.8 \cdot 10^{-2} \) | \(a_{75}= +0.57148535 \pm 3.1 \cdot 10^{-2} \) |
\(a_{76}= -0.91890816 \pm 1.8 \cdot 10^{-2} \) | \(a_{77}= +0.83553986 \pm 2.0 \cdot 10^{-2} \) | \(a_{78}= -0.05868614 \pm 6.0 \cdot 10^{-2} \) |
\(a_{79}= -1.40905036 \pm 4.2 \cdot 10^{-2} \) | \(a_{80}= +0.09855058 \pm 2.9 \cdot 10^{-2} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.06294912 \pm 2.3 \cdot 10^{-2} \) | \(a_{83}= +0.66231562 \pm 5.9 \cdot 10^{-2} \) | \(a_{84}= +0.70362500 \pm 8.0 \cdot 10^{-2} \) |
\(a_{85}= +0.01587725 \pm 2.0 \cdot 10^{-2} \) | \(a_{86}= +0.07166890 \pm 3.6 \cdot 10^{-2} \) | \(a_{87}= +0.65376444 \pm 7.1 \cdot 10^{-2} \) |
\(a_{88}= +0.11680094 \pm 2.1 \cdot 10^{-2} \) | \(a_{89}= -1.64114005 \pm 2.4 \cdot 10^{-2} \) | \(a_{90}= -0.00289394 \pm 6.4 \cdot 10^{-2} \) |
\(a_{91}= -1.44888132 \pm 1.2 \cdot 10^{-2} \) | \(a_{92}= +1.84369560 \pm 6.9 \cdot 10^{-2} \) | \(a_{93}= -0.42529242 \pm 3.1 \cdot 10^{-2} \) |
\(a_{94}= -0.06047935 \pm 2.4 \cdot 10^{-2} \) | \(a_{95}= +0.09330777 \pm 1.5 \cdot 10^{-2} \) | \(a_{96}= +0.14772379 \pm 4.4 \cdot 10^{-2} \) |
\(a_{97}= -0.45916942 \pm 5.7 \cdot 10^{-2} \) | \(a_{98}= -0.04372012 \pm 2.4 \cdot 10^{-2} \) | \(a_{99}= +0.22683475 \pm 3.4 \cdot 10^{-2} \) |
\(a_{100}= +0.98249712 \pm 2.5 \cdot 10^{-2} \) | \(a_{101}= +0.77665636 \pm 3.1 \cdot 10^{-2} \) | \(a_{102}= +0.00783435 \pm 5.2 \cdot 10^{-2} \) |
\(a_{103}= -0.93508724 \pm 4.0 \cdot 10^{-2} \) | \(a_{104}= -0.20254055 \pm 1.8 \cdot 10^{-2} \) | \(a_{105}= -0.07144749 \pm 6.8 \cdot 10^{-2} \) |
\(a_{106}= +0.15878265 \pm 1.8 \cdot 10^{-2} \) | \(a_{107}= -1.08425707 \pm 2.7 \cdot 10^{-2} \) | \(a_{108}= +0.19102212 \pm 4.9 \cdot 10^{-2} \) |
\(a_{109}= -0.71342636 \pm 5.5 \cdot 10^{-2} \) | \(a_{110}= -0.00590802 \pm 1.4 \cdot 10^{-2} \) | \(a_{111}= +0.39854686 \pm 3.8 \cdot 10^{-2} \) |
\(a_{112}= +1.20056112 \pm 1.1 \cdot 10^{-2} \) | \(a_{113}= -0.23639827 \pm 3.1 \cdot 10^{-2} \) | \(a_{114}= +0.04604110 \pm 4.7 \cdot 10^{-2} \) |
\(a_{115}= -0.18721253 \pm 5.2 \cdot 10^{-2} \) | \(a_{116}= +1.12395125 \pm 6.5 \cdot 10^{-2} \) | \(a_{117}= -0.39334644 \pm 3.3 \cdot 10^{-2} \) |
\(a_{118}= -0.09297429 \pm 3.1 \cdot 10^{-2} \) | \(a_{119}= +0.19341954 \pm 1.3 \cdot 10^{-2} \) | \(a_{120}= -0.00998771 \pm 7.0 \cdot 10^{-2} \) |
\(a_{121}= -0.53691398 \pm 3.3 \cdot 10^{-2} \) | \(a_{122}= +0.00295988 \pm 1.6 \cdot 10^{-2} \) | \(a_{123}= -0.42191922 \pm 7.2 \cdot 10^{-2} \) |
\(a_{124}= -0.73116236 \pm 2.8 \cdot 10^{-2} \) | \(a_{125}= -0.20055327 \pm 5.5 \cdot 10^{-2} \) | \(a_{126}= -0.03525452 \pm 5.8 \cdot 10^{-2} \) |
\(a_{127}= +0.54662506 \pm 6.1 \cdot 10^{-2} \) | \(a_{128}= +0.33819289 \pm 4.6 \cdot 10^{-2} \) | \(a_{129}= +0.48036395 \pm 4.8 \cdot 10^{-2} \) |
\(a_{130}= +0.01024489 \pm 8.9 \cdot 10^{-3} \) | \(a_{131}= -1.06752701 \pm 3.5 \cdot 10^{-2} \) | \(a_{132}= +0.38997410 \pm 8.3 \cdot 10^{-2} \) |
\(a_{133}= +1.13669223 \pm 5.7 \cdot 10^{-3} \) | \(a_{134}= +0.07315170 \pm 2.8 \cdot 10^{-2} \) | \(a_{135}= -0.01939677 \pm 3.7 \cdot 10^{-2} \) |
\(a_{136}= +0.02703831 \pm 1.2 \cdot 10^{-2} \) | \(a_{137}= +0.49002440 \pm 6.2 \cdot 10^{-2} \) | \(a_{138}= -0.09237677 \pm 1.0 \cdot 10^{-1} \) |
\(a_{139}= -0.96956402 \pm 4.1 \cdot 10^{-2} \) | \(a_{140}= -0.12283245 \pm 1.1 \cdot 10^{-2} \) | \(a_{141}= -0.40536549 \pm 5.9 \cdot 10^{-2} \) |
\(a_{142}= -0.10577017 \pm 2.5 \cdot 10^{-2} \) | \(a_{143}= -0.80302176 \pm 2.1 \cdot 10^{-2} \) | \(a_{144}= +0.32593176 \pm 4.0 \cdot 10^{-2} \) |
\(a_{145}= -0.11412825 \pm 4.8 \cdot 10^{-2} \) | \(a_{146}= +0.10303402 \pm 1.9 \cdot 10^{-2} \) | \(a_{147}= -0.29303603 \pm 5.2 \cdot 10^{-2} \) |
\(a_{148}= +0.68518142 \pm 4.0 \cdot 10^{-2} \) | \(a_{149}= +1.58441194 \pm 4.6 \cdot 10^{-2} \) | \(a_{150}= -0.04922717 \pm 5.8 \cdot 10^{-2} \) |
\(a_{151}= -0.73024828 \pm 7.0 \cdot 10^{-2} \) | \(a_{152}= +0.15889933 \pm 1.1 \cdot 10^{-2} \) | \(a_{153}= +0.05251009 \pm 2.5 \cdot 10^{-2} \) |
\(a_{154}= -0.07197255 \pm 1.4 \cdot 10^{-2} \) | \(a_{155}= +0.07424368 \pm 2.1 \cdot 10^{-2} \) | \(a_{156}= -0.67624085 \pm 8.2 \cdot 10^{-2} \) |
\(a_{157}= +0.64379007 \pm 7.4 \cdot 10^{-2} \) | \(a_{158}= +0.12137416 \pm 2.1 \cdot 10^{-2} \) | \(a_{159}= +1.06424764 \pm 3.0 \cdot 10^{-2} \) |
\(a_{160}= -0.02578828 \pm 3.1 \cdot 10^{-2} \) | \(a_{161}= -2.28065716 \pm 1.8 \cdot 10^{-2} \) | \(a_{162}= -0.00957100 \pm 2.7 \cdot 10^{-2} \) |
\(a_{163}= -0.25846285 \pm 9.3 \cdot 10^{-3} \) | \(a_{164}= -0.72536315 \pm 6.5 \cdot 10^{-2} \) | \(a_{165}= -0.03959875 \pm 7.1 \cdot 10^{-2} \) |
\(a_{166}= -0.05705119 \pm 2.3 \cdot 10^{-2} \) | \(a_{167}= +1.47203166 \pm 3.4 \cdot 10^{-2} \) | \(a_{168}= -0.12167216 \pm 6.4 \cdot 10^{-2} \) |
\(a_{169}= +0.39249277 \pm 3.5 \cdot 10^{-2} \) | \(a_{170}= -0.00136765 \pm 2.6 \cdot 10^{-2} \) | \(a_{171}= +0.30859245 \pm 2.0 \cdot 10^{-2} \) |
\(a_{172}= +0.82584128 \pm 4.0 \cdot 10^{-2} \) | \(a_{173}= +0.42036723 \pm 3.1 \cdot 10^{-2} \) | \(a_{174}= -0.05631460 \pm 9.8 \cdot 10^{-2} \) |
\(a_{175}= -1.21535197 \pm 2.5 \cdot 10^{-2} \) | \(a_{176}= +0.66539384 \pm 2.5 \cdot 10^{-2} \) | \(a_{177}= -0.62316424 \pm 4.8 \cdot 10^{-2} \) |
\(a_{178}= +0.14136613 \pm 1.8 \cdot 10^{-2} \) | \(a_{179}= -0.43088477 \pm 4.6 \cdot 10^{-2} \) | \(a_{180}= -0.03334691 \pm 8.7 \cdot 10^{-2} \) |
\(a_{181}= -0.32143250 \pm 5.6 \cdot 10^{-2} \) | \(a_{182}= +0.12480516 \pm 7.3 \cdot 10^{-3} \) | \(a_{183}= +0.01983873 \pm 3.9 \cdot 10^{-2} \) |
\(a_{184}= -0.31881531 \pm 3.9 \cdot 10^{-2} \) | \(a_{185}= -0.06957469 \pm 2.9 \cdot 10^{-2} \) | \(a_{186}= +0.03663426 \pm 5.9 \cdot 10^{-2} \) |
\(a_{187}= +0.10720001 \pm 1.4 \cdot 10^{-2} \) | \(a_{188}= -0.69690399 \pm 5.3 \cdot 10^{-2} \) | \(a_{189}= -0.23629496 \pm 3.0 \cdot 10^{-2} \) |
\(a_{190}= -0.00803744 \pm 9.7 \cdot 10^{-3} \) | \(a_{191}= +0.81538776 \pm 3.9 \cdot 10^{-2} \) | \(a_{192}= +0.55180559 \pm 3.6 \cdot 10^{-2} \) |
\(a_{193}= +1.25517705 \pm 6.5 \cdot 10^{-2} \) | \(a_{194}= +0.03955239 \pm 2.2 \cdot 10^{-2} \) | \(a_{195}= +0.06866684 \pm 7.1 \cdot 10^{-2} \) |
\(a_{196}= -0.50378729 \pm 4.6 \cdot 10^{-2} \) | \(a_{197}= -0.46718951 \pm 9.6 \cdot 10^{-2} \) | \(a_{198}= -0.01953931 \pm 6.1 \cdot 10^{-2} \) |
\(a_{199}= +0.37614625 \pm 3.6 \cdot 10^{-2} \) | \(a_{200}= -0.16989525 \pm 2.2 \cdot 10^{-2} \) | \(a_{201}= +0.49030249 \pm 8.4 \cdot 10^{-2} \) |
\(a_{202}= -0.06690039 \pm 2.3 \cdot 10^{-2} \) | \(a_{203}= -1.39033117 \pm 3.0 \cdot 10^{-2} \) | \(a_{204}= +0.09027530 \pm 7.4 \cdot 10^{-2} \) |
\(a_{205}= +0.07365482 \pm 4.9 \cdot 10^{-2} \) | \(a_{206}= +0.08054746 \pm 3.1 \cdot 10^{-2} \) | \(a_{207}= -0.61915932 \pm 7.5 \cdot 10^{-2} \) |
\(a_{208}= -1.15383687 \pm 2.5 \cdot 10^{-2} \) | \(a_{209}= +0.62999542 \pm 1.3 \cdot 10^{-2} \) | \(a_{210}= +0.00615441 \pm 9.5 \cdot 10^{-2} \) |
\(a_{211}= -0.05562901 \pm 2.1 \cdot 10^{-2} \) | \(a_{212}= +1.82965361 \pm 2.7 \cdot 10^{-2} \) | \(a_{213}= -0.70892921 \pm 5.6 \cdot 10^{-2} \) |
\(a_{214}= +0.09339680 \pm 1.8 \cdot 10^{-2} \) | \(a_{215}= -0.08385757 \pm 3.1 \cdot 10^{-2} \) | \(a_{216}= -0.03303191 \pm 3.3 \cdot 10^{-2} \) |
\(a_{217}= +0.90445010 \pm 2.0 \cdot 10^{-2} \) | \(a_{218}= +0.06145382 \pm 2.3 \cdot 10^{-2} \) | \(a_{219}= +0.69059004 \pm 2.4 \cdot 10^{-2} \) |
\(a_{220}= -0.06807813 \pm 2.1 \cdot 10^{-2} \) | \(a_{221}= -0.18589191 \pm 1.1 \cdot 10^{-2} \) | \(a_{222}= -0.03433042 \pm 6.5 \cdot 10^{-2} \) |
\(a_{223}= -0.49772123 \pm 1.9 \cdot 10^{-2} \) | \(a_{224}= -0.31415747 \pm 2.8 \cdot 10^{-2} \) | \(a_{225}= -0.32994722 \pm 3.1 \cdot 10^{-2} \) |
\(a_{226}= +0.02036311 \pm 2.5 \cdot 10^{-2} \) | \(a_{227}= -0.44034139 \pm 7.3 \cdot 10^{-2} \) | \(a_{228}= +0.53053187 \pm 6.9 \cdot 10^{-2} \) |
\(a_{229}= -0.01896116 \pm 3.2 \cdot 10^{-2} \) | \(a_{230}= +0.01612630 \pm 1.6 \cdot 10^{-2} \) | \(a_{231}= -0.48239917 \pm 6.5 \cdot 10^{-2} \) |
\(a_{232}= -0.19435577 \pm 4.0 \cdot 10^{-2} \) | \(a_{233}= -0.54126239 \pm 5.2 \cdot 10^{-2} \) | \(a_{234}= +0.03388246 \pm 6.0 \cdot 10^{-2} \) |
\(a_{235}= +0.07076502 \pm 4.2 \cdot 10^{-2} \) | \(a_{236}= -1.07134341 \pm 3.6 \cdot 10^{-2} \) | \(a_{237}= +0.81351561 \pm 4.2 \cdot 10^{-2} \) |
\(a_{238}= -0.01666096 \pm 1.6 \cdot 10^{-2} \) | \(a_{239}= +1.15547496 \pm 4.5 \cdot 10^{-2} \) | \(a_{240}= -0.05689820 \pm 7.7 \cdot 10^{-2} \) |
\(a_{241}= +1.63922825 \pm 4.5 \cdot 10^{-2} \) | \(a_{242}= +0.04624922 \pm 1.7 \cdot 10^{-2} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.03410673 \pm 3.5 \cdot 10^{-2} \) | \(a_{245}= +0.05115557 \pm 3.4 \cdot 10^{-2} \) | \(a_{246}= +0.03634369 \pm 9.9 \cdot 10^{-2} \) |
\(a_{247}= -1.09245367 \pm 1.5 \cdot 10^{-2} \) | \(a_{248}= +0.12643397 \pm 2.0 \cdot 10^{-2} \) | \(a_{249}= -0.38238810 \pm 5.9 \cdot 10^{-2} \) |
\(a_{250}= +0.01727545 \pm 2.5 \cdot 10^{-2} \) | \(a_{251}= +0.32337146 \pm 6.4 \cdot 10^{-2} \) | \(a_{252}= -0.40623809 \pm 8.0 \cdot 10^{-2} \) |
\(a_{253}= -1.26402162 \pm 4.6 \cdot 10^{-2} \) | \(a_{254}= -0.04708572 \pm 3.0 \cdot 10^{-2} \) | \(a_{255}= -0.00916673 \pm 6.2 \cdot 10^{-2} \) |
\(a_{256}= +0.92662373 \pm 2.7 \cdot 10^{-2} \) | \(a_{257}= +0.45699695 \pm 5.9 \cdot 10^{-2} \) | \(a_{258}= -0.04137806 \pm 7.5 \cdot 10^{-2} \) |
\(a_{259}= -0.84757153 \pm 2.0 \cdot 10^{-2} \) | \(a_{260}= +0.11805198 \pm 2.1 \cdot 10^{-2} \) | \(a_{261}= -0.37745108 \pm 7.1 \cdot 10^{-2} \) |
\(a_{262}= +0.09195569 \pm 2.0 \cdot 10^{-2} \) | \(a_{263}= +0.23895887 \pm 4.2 \cdot 10^{-2} \) | \(a_{264}= -0.06743505 \pm 6.7 \cdot 10^{-2} \) |
\(a_{265}= -0.18578667 \pm 2.1 \cdot 10^{-2} \) | \(a_{266}= -0.09791351 \pm 3.1 \cdot 10^{-3} \) | \(a_{267}= +0.94751265 \pm 2.4 \cdot 10^{-2} \) |
\(a_{268}= +0.84292760 \pm 7.8 \cdot 10^{-2} \) | \(a_{269}= -0.86482073 \pm 3.7 \cdot 10^{-2} \) | \(a_{270}= +0.00167082 \pm 6.4 \cdot 10^{-2} \) |
\(a_{271}= +1.67621802 \pm 5.0 \cdot 10^{-2} \) | \(a_{272}= +0.15403235 \pm 1.7 \cdot 10^{-2} \) | \(a_{273}= +0.83651202 \pm 6.4 \cdot 10^{-2} \) |
\(a_{274}= -0.04221020 \pm 3.3 \cdot 10^{-2} \) | \(a_{275}= -0.67359145 \pm 2.0 \cdot 10^{-2} \) | \(a_{276}= -1.06445815 \pm 1.2 \cdot 10^{-1} \) |
\(a_{277}= -1.73676262 \pm 2.7 \cdot 10^{-2} \) | \(a_{278}= +0.08351725 \pm 3.8 \cdot 10^{-2} \) | \(a_{279}= +0.24554269 \pm 3.1 \cdot 10^{-2} \) |
\(a_{280}= +0.02124042 \pm 1.0 \cdot 10^{-2} \) | \(a_{281}= +0.12023834 \pm 5.7 \cdot 10^{-2} \) | \(a_{282}= +0.03491777 \pm 8.7 \cdot 10^{-2} \) |
\(a_{283}= +0.38670852 \pm 8.0 \cdot 10^{-2} \) | \(a_{284}= -1.21879047 \pm 4.9 \cdot 10^{-2} \) | \(a_{285}= -0.05387126 \pm 5.7 \cdot 10^{-2} \) |
\(a_{286}= +0.06917147 \pm 7.7 \cdot 10^{-3} \) | \(a_{287}= +0.89727646 \pm 3.2 \cdot 10^{-2} \) | \(a_{288}= -0.08528837 \pm 4.4 \cdot 10^{-2} \) |
\(a_{289}= -0.97518422 \pm 5.2 \cdot 10^{-2} \) | \(a_{290}= +0.00983089 \pm 2.2 \cdot 10^{-2} \) | \(a_{291}= +0.26510159 \pm 5.7 \cdot 10^{-2} \) |
\(a_{292}= +1.18726180 \pm 2.4 \cdot 10^{-2} \) | \(a_{293}= +0.27456714 \pm 8.6 \cdot 10^{-2} \) | \(a_{294}= +0.02524182 \pm 7.9 \cdot 10^{-2} \) |
\(a_{295}= +0.10878635 \pm 2.6 \cdot 10^{-2} \) | \(a_{296}= -0.11848286 \pm 2.0 \cdot 10^{-2} \) | \(a_{297}= -0.13096310 \pm 3.4 \cdot 10^{-2} \) |
\(a_{298}= -0.13647963 \pm 2.4 \cdot 10^{-2} \) | \(a_{299}= +2.19189699 \pm 4.8 \cdot 10^{-2} \) | \(a_{300}= -0.56724497 \pm 8.0 \cdot 10^{-2} \) |
\(a_{301}= -1.02156822 \pm 4.5 \cdot 10^{-2} \) | \(a_{302}= +0.06290284 \pm 2.2 \cdot 10^{-2} \) | \(a_{303}= -0.44840276 \pm 3.1 \cdot 10^{-2} \) |
\(a_{304}= +0.90522073 \pm 1.6 \cdot 10^{-2} \) | \(a_{305}= -0.00346327 \pm 3.0 \cdot 10^{-2} \) | \(a_{306}= -0.00452317 \pm 5.2 \cdot 10^{-2} \) |
\(a_{307}= -1.11741999 \pm 2.4 \cdot 10^{-2} \) | \(a_{308}= -0.82934022 \pm 1.3 \cdot 10^{-2} \) | \(a_{309}= +0.53987287 \pm 4.0 \cdot 10^{-2} \) |
\(a_{310}= -0.00639528 \pm 1.0 \cdot 10^{-2} \) | \(a_{311}= -1.22830520 \pm 7.9 \cdot 10^{-2} \) | \(a_{312}= +0.11693684 \pm 6.6 \cdot 10^{-2} \) |
\(a_{313}= -0.03951282 \pm 3.3 \cdot 10^{-2} \) | \(a_{314}= -0.05545542 \pm 2.3 \cdot 10^{-2} \) | \(a_{315}= +0.04125022 \pm 6.8 \cdot 10^{-2} \) |
\(a_{316}= +1.39859532 \pm 3.6 \cdot 10^{-2} \) | \(a_{317}= -0.31747226 \pm 3.4 \cdot 10^{-2} \) | \(a_{318}= -0.09167321 \pm 5.7 \cdot 10^{-2} \) |
\(a_{319}= -0.77057118 \pm 4.3 \cdot 10^{-2} \) | \(a_{320}= -0.09632920 \pm 2.5 \cdot 10^{-2} \) | \(a_{321}= +0.62599611 \pm 2.7 \cdot 10^{-2} \) |
\(a_{322}= +0.19645348 \pm 6.5 \cdot 10^{-3} \) | \(a_{323}= +0.14583795 \pm 7.4 \cdot 10^{-3} \) | \(a_{324}= -0.11028668 \pm 4.9 \cdot 10^{-2} \) |
\(a_{325}= +1.16805207 \pm 1.7 \cdot 10^{-2} \) | \(a_{326}= +0.02226373 \pm 1.1 \cdot 10^{-2} \) | \(a_{327}= +0.41189690 \pm 5.5 \cdot 10^{-2} \) |
\(a_{328}= +0.12543116 \pm 4.1 \cdot 10^{-2} \) | \(a_{329}= +0.86207239 \pm 2.9 \cdot 10^{-2} \) | \(a_{330}= +0.00341100 \pm 9.9 \cdot 10^{-2} \) |
\(a_{331}= -0.71487245 \pm 3.2 \cdot 10^{-2} \) | \(a_{332}= -0.65740129 \pm 5.1 \cdot 10^{-2} \) | \(a_{333}= -0.23010114 \pm 3.8 \cdot 10^{-2} \) |
\(a_{334}= -0.12679931 \pm 2.7 \cdot 10^{-2} \) | \(a_{335}= -0.08559255 \pm 5.9 \cdot 10^{-2} \) | \(a_{336}= -0.69314429 \pm 7.1 \cdot 10^{-2} \) |
\(a_{337}= -0.44300726 \pm 6.2 \cdot 10^{-2} \) | \(a_{338}= -0.03380893 \pm 2.3 \cdot 10^{-2} \) | \(a_{339}= +0.13648460 \pm 3.1 \cdot 10^{-2} \) |
\(a_{340}= -0.01575944 \pm 2.3 \cdot 10^{-2} \) | \(a_{341}= +0.50127854 \pm 1.9 \cdot 10^{-2} \) | \(a_{342}= -0.02658184 \pm 4.7 \cdot 10^{-2} \) |
\(a_{343}= -0.60463818 \pm 2.6 \cdot 10^{-2} \) | \(a_{344}= -0.14280603 \pm 3.6 \cdot 10^{-2} \) | \(a_{345}= +0.10808720 \pm 1.1 \cdot 10^{-1} \) |
\(a_{346}= -0.03621000 \pm 2.0 \cdot 10^{-2} \) | \(a_{347}= +0.31255158 \pm 1.9 \cdot 10^{-2} \) | \(a_{348}= -0.64891356 \pm 1.2 \cdot 10^{-1} \) |
\(a_{349}= +0.50864863 \pm 8.5 \cdot 10^{-2} \) | \(a_{350}= +0.10468918 \pm 1.6 \cdot 10^{-2} \) | \(a_{351}= +0.22709867 \pm 3.3 \cdot 10^{-2} \) |
\(a_{352}= -0.17411729 \pm 2.7 \cdot 10^{-2} \) | \(a_{353}= -0.29394645 \pm 7.4 \cdot 10^{-2} \) | \(a_{354}= +0.05367873 \pm 7.5 \cdot 10^{-2} \) |
\(a_{355}= +0.12375841 \pm 3.7 \cdot 10^{-2} \) | \(a_{356}= +1.62896292 \pm 1.8 \cdot 10^{-2} \) | \(a_{357}= -0.11167082 \pm 5.6 \cdot 10^{-2} \) |
\(a_{358}= +0.03711597 \pm 2.8 \cdot 10^{-2} \) | \(a_{359}= +0.14428747 \pm 3.9 \cdot 10^{-2} \) | \(a_{360}= +0.00576641 \pm 7.0 \cdot 10^{-2} \) |
\(a_{361}= -0.14293629 \pm 4.7 \cdot 10^{-2} \) | \(a_{362}= +0.02768787 \pm 3.5 \cdot 10^{-2} \) | \(a_{363}= +0.30998743 \pm 3.3 \cdot 10^{-2} \) |
\(a_{364}= +1.43813073 \pm 9.3 \cdot 10^{-3} \) | \(a_{365}= -0.12055693 \pm 1.8 \cdot 10^{-2} \) | \(a_{366}= -0.00170889 \pm 6.6 \cdot 10^{-2} \) |
\(a_{367}= -1.48293394 \pm 3.6 \cdot 10^{-2} \) | \(a_{368}= -1.81623318 \pm 5.8 \cdot 10^{-2} \) | \(a_{369}= +0.24359517 \pm 7.2 \cdot 10^{-2} \) |
\(a_{370}= +0.00599309 \pm 3.3 \cdot 10^{-2} \) | \(a_{371}= -2.26328716 \pm 1.7 \cdot 10^{-2} \) | \(a_{372}= +0.42213678 \pm 8.1 \cdot 10^{-2} \) |
\(a_{373}= +0.76920014 \pm 3.2 \cdot 10^{-2} \) | \(a_{374}= -0.00923410 \pm 1.6 \cdot 10^{-2} \) | \(a_{375}= +0.11578949 \pm 5.5 \cdot 10^{-2} \) |
\(a_{376}= +0.12050995 \pm 3.5 \cdot 10^{-2} \) | \(a_{377}= +1.33622132 \pm 4.4 \cdot 10^{-2} \) | \(a_{378}= +0.02035421 \pm 5.8 \cdot 10^{-2} \) |
\(a_{379}= -0.37467116 \pm 1.3 \cdot 10^{-2} \) | \(a_{380}= -0.09261543 \pm 1.3 \cdot 10^{-2} \) | \(a_{381}= -0.31559413 \pm 6.1 \cdot 10^{-2} \) |
\(a_{382}= -0.07023667 \pm 3.8 \cdot 10^{-2} \) | \(a_{383}= +0.87095801 \pm 4.1 \cdot 10^{-2} \) | \(a_{384}= -0.19525576 \pm 4.6 \cdot 10^{-2} \) |
\(a_{385}= +0.08421286 \pm 8.9 \cdot 10^{-3} \) | \(a_{386}= -0.10811967 \pm 2.8 \cdot 10^{-2} \) | \(a_{387}= -0.27733826 \pm 4.8 \cdot 10^{-2} \) |
\(a_{388}= +0.45576242 \pm 4.9 \cdot 10^{-2} \) | \(a_{389}= +0.89852458 \pm 1.8 \cdot 10^{-2} \) | \(a_{390}= -0.00591489 \pm 9.8 \cdot 10^{-2} \) |
\(a_{391}= -0.29260900 \pm 2.2 \cdot 10^{-2} \) | \(a_{392}= +0.08711585 \pm 3.3 \cdot 10^{-2} \) | \(a_{393}= +0.61633701 \pm 3.5 \cdot 10^{-2} \) |
\(a_{394}= +0.04024323 \pm 2.7 \cdot 10^{-2} \) | \(a_{395}= -0.14201616 \pm 2.8 \cdot 10^{-2} \) | \(a_{396}= -0.22515165 \pm 8.3 \cdot 10^{-2} \) |
\(a_{397}= +0.60132873 \pm 6.6 \cdot 10^{-2} \) | \(a_{398}= -0.03240085 \pm 2.4 \cdot 10^{-2} \) | \(a_{399}= -0.65626956 \pm 5.1 \cdot 10^{-2} \) |
\(a_{400}= -0.96786251 \pm 2.1 \cdot 10^{-2} \) | \(a_{401}= +0.82824932 \pm 7.5 \cdot 10^{-2} \) | \(a_{402}= -0.04223416 \pm 1.1 \cdot 10^{-1} \) |
\(a_{403}= -0.86925009 \pm 1.8 \cdot 10^{-2} \) | \(a_{404}= -0.77089363 \pm 2.5 \cdot 10^{-2} \) | \(a_{405}= +0.01119873 \pm 3.7 \cdot 10^{-2} \) |
\(a_{406}= +0.11976171 \pm 2.0 \cdot 10^{-2} \) | \(a_{407}= -0.46975441 \pm 2.2 \cdot 10^{-2} \) | \(a_{408}= -0.01561057 \pm 5.8 \cdot 10^{-2} \) |
\(a_{409}= -0.89401125 \pm 7.7 \cdot 10^{-2} \) | \(a_{410}= -0.00634455 \pm 1.4 \cdot 10^{-2} \) | \(a_{411}= -0.28291572 \pm 6.2 \cdot 10^{-2} \) |
\(a_{412}= +0.92814897 \pm 3.8 \cdot 10^{-2} \) | \(a_{413}= +1.32525511 \pm 5.3 \cdot 10^{-2} \) | \(a_{414}= +0.05333375 \pm 1.0 \cdot 10^{-1} \) |
\(a_{415}= +0.06675384 \pm 3.8 \cdot 10^{-2} \) | \(a_{416}= +0.30193088 \pm 2.5 \cdot 10^{-2} \) | \(a_{417}= +0.55977805 \pm 4.1 \cdot 10^{-2} \) |
\(a_{418}= -0.05426716 \pm 7.4 \cdot 10^{-3} \) | \(a_{419}= -1.89153376 \pm 2.9 \cdot 10^{-2} \) | \(a_{420}= +0.07091735 \pm 1.1 \cdot 10^{-1} \) |
\(a_{421}= +1.86689452 \pm 8.3 \cdot 10^{-2} \) | \(a_{422}= +0.00479183 \pm 2.1 \cdot 10^{-2} \) | \(a_{423}= +0.23403787 \pm 5.9 \cdot 10^{-2} \) |
\(a_{424}= -0.31638714 \pm 1.8 \cdot 10^{-2} \) | \(a_{425}= -0.15593002 \pm 1.0 \cdot 10^{-2} \) | \(a_{426}= +0.06106644 \pm 8.3 \cdot 10^{-2} \) |
\(a_{427}= -0.04219013 \pm 1.0 \cdot 10^{-2} \) | \(a_{428}= +1.07621196 \pm 2.6 \cdot 10^{-2} \) | \(a_{429}= +0.46362483 \pm 6.7 \cdot 10^{-2} \) |
\(a_{430}= +0.00722341 \pm 2.8 \cdot 10^{-2} \) | \(a_{431}= -1.13030047 \pm 3.5 \cdot 10^{-2} \) | \(a_{432}= -0.18817679 \pm 4.0 \cdot 10^{-2} \) |
\(a_{433}= -0.33478944 \pm 6.7 \cdot 10^{-2} \) | \(a_{434}= -0.07790841 \pm 1.3 \cdot 10^{-2} \) | \(a_{435}= +0.06589198 \pm 1.0 \cdot 10^{-1} \) |
\(a_{436}= +0.70813279 \pm 5.1 \cdot 10^{-2} \) | \(a_{437}= -1.71961102 \pm 2.8 \cdot 10^{-2} \) | \(a_{438}= -0.05948672 \pm 5.1 \cdot 10^{-2} \) |
\(a_{439}= -1.04924515 \pm 5.1 \cdot 10^{-2} \) | \(a_{440}= +0.01177220 \pm 1.3 \cdot 10^{-2} \) | \(a_{441}= +0.16918443 \pm 5.2 \cdot 10^{-2} \) |
\(a_{442}= +0.01601254 \pm 9.1 \cdot 10^{-3} \) | \(a_{443}= +1.67687347 \pm 7.7 \cdot 10^{-2} \) | \(a_{444}= -0.39558968 \pm 8.7 \cdot 10^{-2} \) |
\(a_{445}= -0.16540814 \pm 1.4 \cdot 10^{-2} \) | \(a_{446}= +0.04287320 \pm 1.9 \cdot 10^{-2} \) | \(a_{447}= -0.91476066 \pm 4.6 \cdot 10^{-2} \) |
\(a_{448}= -1.17349992 \pm 2.4 \cdot 10^{-2} \) | \(a_{449}= +1.18599609 \pm 7.8 \cdot 10^{-2} \) | \(a_{450}= +0.02842132 \pm 5.8 \cdot 10^{-2} \) |
\(a_{451}= +0.49730265 \pm 4.4 \cdot 10^{-2} \) | \(a_{452}= +0.23464421 \pm 2.3 \cdot 10^{-2} \) | \(a_{453}= +0.42160904 \pm 7.0 \cdot 10^{-2} \) |
\(a_{454}= +0.03793056 \pm 3.5 \cdot 10^{-2} \) | \(a_{455}= -0.14603066 \pm 7.1 \cdot 10^{-3} \) | \(a_{456}= -0.09174057 \pm 5.3 \cdot 10^{-2} \) |
\(a_{457}= +0.81248730 \pm 4.8 \cdot 10^{-2} \) | \(a_{458}= +0.00163329 \pm 2.7 \cdot 10^{-2} \) | \(a_{459}= -0.03031671 \pm 2.5 \cdot 10^{-2} \) |
\(a_{460}= +0.18582342 \pm 4.8 \cdot 10^{-2} \) | \(a_{461}= +1.25901297 \pm 2.4 \cdot 10^{-2} \) | \(a_{462}= +0.04155337 \pm 9.2 \cdot 10^{-2} \) |
\(a_{463}= +0.24810642 \pm 5.8 \cdot 10^{-2} \) | \(a_{464}= -1.10720964 \pm 5.3 \cdot 10^{-2} \) | \(a_{465}= -0.04286461 \pm 6.9 \cdot 10^{-2} \) |
\(a_{466}= +0.04662379 \pm 2.4 \cdot 10^{-2} \) | \(a_{467}= +0.08275594 \pm 6.7 \cdot 10^{-2} \) | \(a_{468}= +0.39042784 \pm 8.2 \cdot 10^{-2} \) |
\(a_{469}= -1.04270405 \pm 2.7 \cdot 10^{-2} \) | \(a_{470}= -0.00609563 \pm 2.1 \cdot 10^{-2} \) | \(a_{471}= -0.37169237 \pm 7.4 \cdot 10^{-2} \) |
\(a_{472}= +0.18525872 \pm 4.1 \cdot 10^{-2} \) | \(a_{473}= -0.56618958 \pm 3.1 \cdot 10^{-2} \) | \(a_{474}= -0.07007540 \pm 6.9 \cdot 10^{-2} \) |
\(a_{475}= -0.91637300 \pm 1.0 \cdot 10^{-2} \) | \(a_{476}= -0.19198438 \pm 1.3 \cdot 10^{-2} \) | \(a_{477}= -0.61444366 \pm 3.0 \cdot 10^{-2} \) |
\(a_{478}= -0.09953143 \pm 1.8 \cdot 10^{-2} \) | \(a_{479}= -0.37956177 \pm 4.5 \cdot 10^{-2} \) | \(a_{480}= +0.01488887 \pm 8.2 \cdot 10^{-2} \) |
\(a_{481}= +0.81458517 \pm 1.9 \cdot 10^{-2} \) | \(a_{482}= -0.14120145 \pm 2.6 \cdot 10^{-2} \) | \(a_{483}= +1.31673802 \pm 1.0 \cdot 10^{-1} \) |
\(a_{484}= +0.53293011 \pm 3.1 \cdot 10^{-2} \) | \(a_{485}= -0.04627902 \pm 3.7 \cdot 10^{-2} \) | \(a_{486}= +0.00552582 \pm 2.7 \cdot 10^{-2} \) |
\(a_{487}= +0.53824685 \pm 3.2 \cdot 10^{-2} \) | \(a_{488}= -0.00589780 \pm 2.1 \cdot 10^{-2} \) | \(a_{489}= +0.14922360 \pm 9.3 \cdot 10^{-3} \) |
\(a_{490}= -0.00440649 \pm 1.8 \cdot 10^{-2} \) | \(a_{491}= -1.70274957 \pm 3.0 \cdot 10^{-2} \) | \(a_{492}= +0.41878861 \pm 1.2 \cdot 10^{-1} \) |
\(a_{493}= -0.17837991 \pm 2.8 \cdot 10^{-2} \) | \(a_{494}= +0.09410284 \pm 5.8 \cdot 10^{-3} \) | \(a_{495}= +0.02286235 \pm 7.1 \cdot 10^{-2} \) |
\(a_{496}= +0.72027146 \pm 2.2 \cdot 10^{-2} \) | \(a_{497}= +1.50764758 \pm 3.6 \cdot 10^{-2} \) | \(a_{498}= +0.03293852 \pm 8.7 \cdot 10^{-2} \) |
\(a_{499}= -0.22509605 \pm 8.3 \cdot 10^{-2} \) | \(a_{500}= +0.19906518 \pm 5.1 \cdot 10^{-2} \) | \(a_{501}= -0.84987788 \pm 3.4 \cdot 10^{-2} \) |
\(a_{502}= -0.02785489 \pm 2.2 \cdot 10^{-2} \) | \(a_{503}= +0.58802270 \pm 7.9 \cdot 10^{-2} \) | \(a_{504}= +0.07024745 \pm 6.4 \cdot 10^{-2} \) |
\(a_{505}= +0.07827808 \pm 2.2 \cdot 10^{-2} \) | \(a_{506}= +0.10888153 \pm 1.4 \cdot 10^{-2} \) | \(a_{507}= -0.22660580 \pm 3.5 \cdot 10^{-2} \) |
\(a_{508}= -0.54256914 \pm 5.0 \cdot 10^{-2} \) | \(a_{509}= -0.09186384 \pm 1.8 \cdot 10^{-2} \) | \(a_{510}= +0.00078961 \pm 9.0 \cdot 10^{-2} \) |
\(a_{511}= -1.46864651 \pm 8.6 \cdot 10^{-3} \) | \(a_{512}= -0.41801131 \pm 5.1 \cdot 10^{-2} \) | \(a_{513}= -0.17816593 \pm 2.0 \cdot 10^{-2} \) |
\(a_{514}= -0.03936525 \pm 2.4 \cdot 10^{-2} \) | \(a_{515}= -0.09424610 \pm 2.9 \cdot 10^{-2} \) | \(a_{516}= -0.47679969 \pm 9.7 \cdot 10^{-2} \) |
\(a_{517}= +0.47779130 \pm 3.8 \cdot 10^{-2} \) | \(a_{518}= +0.07300895 \pm 2.0 \cdot 10^{-2} \) | \(a_{519}= -0.24269914 \pm 3.1 \cdot 10^{-2} \) |
\(a_{520}= -0.02041377 \pm 1.3 \cdot 10^{-2} \) | \(a_{521}= +0.36261981 \pm 7.1 \cdot 10^{-2} \) | \(a_{522}= +0.03251325 \pm 9.8 \cdot 10^{-2} \) |
\(a_{523}= -0.75437261 \pm 2.8 \cdot 10^{-2} \) | \(a_{524}= +1.05960604 \pm 2.8 \cdot 10^{-2} \) | \(a_{525}= +0.70168379 \pm 6.1 \cdot 10^{-2} \) |
\(a_{526}= -0.02058367 \pm 3.2 \cdot 10^{-2} \) | \(a_{527}= +0.11604122 \pm 1.2 \cdot 10^{-2} \) | \(a_{528}= -0.38416531 \pm 7.4 \cdot 10^{-2} \) |
\(a_{529}= +2.45022432 \pm 6.8 \cdot 10^{-2} \) | \(a_{530}= +0.01600347 \pm 1.5 \cdot 10^{-2} \) | \(a_{531}= +0.35978404 \pm 4.8 \cdot 10^{-2} \) |
\(a_{532}= -1.12825806 \pm 5.1 \cdot 10^{-3} \) | \(a_{533}= -0.86235564 \pm 4.5 \cdot 10^{-2} \) | \(a_{534}= -0.08161777 \pm 5.2 \cdot 10^{-2} \) |
\(a_{535}= -0.10928071 \pm 1.9 \cdot 10^{-2} \) | \(a_{536}= -0.14576063 \pm 4.6 \cdot 10^{-2} \) | \(a_{537}= +0.24877144 \pm 4.6 \cdot 10^{-2} \) |
\(a_{538}= +0.07449477 \pm 1.6 \cdot 10^{-2} \) | \(a_{539}= +0.34539217 \pm 3.2 \cdot 10^{-2} \) | \(a_{540}= +0.01925284 \pm 8.7 \cdot 10^{-2} \) |
\(a_{541}= +0.78877335 \pm 2.3 \cdot 10^{-2} \) | \(a_{542}= -0.14438771 \pm 3.6 \cdot 10^{-2} \) | \(a_{543}= +0.18557914 \pm 5.6 \cdot 10^{-2} \) |
\(a_{544}= -0.04030650 \pm 3.0 \cdot 10^{-2} \) | \(a_{545}= -0.07190521 \pm 3.8 \cdot 10^{-2} \) | \(a_{546}= -0.07205629 \pm 9.1 \cdot 10^{-2} \) |
\(a_{547}= -0.33236189 \pm 3.7 \cdot 10^{-2} \) | \(a_{548}= -0.48638846 \pm 5.7 \cdot 10^{-2} \) | \(a_{549}= -0.01145390 \pm 3.9 \cdot 10^{-2} \) |
\(a_{550}= +0.05802248 \pm 1.1 \cdot 10^{-2} \) | \(a_{551}= -1.04830697 \pm 2.6 \cdot 10^{-2} \) | \(a_{552}= +0.18406811 \pm 1.0 \cdot 10^{-1} \) |
\(a_{553}= -1.73006673 \pm 2.8 \cdot 10^{-2} \) | \(a_{554}= +0.14960296 \pm 2.1 \cdot 10^{-2} \) | \(a_{555}= +0.04016896 \pm 7.5 \cdot 10^{-2} \) |
\(a_{556}= +0.96236993 \pm 3.7 \cdot 10^{-2} \) | \(a_{557}= -1.36063350 \pm 4.3 \cdot 10^{-2} \) | \(a_{558}= -0.02115080 \pm 5.9 \cdot 10^{-2} \) |
\(a_{559}= +0.98181013 \pm 2.3 \cdot 10^{-2} \) | \(a_{560}= +0.12100283 \pm 7.8 \cdot 10^{-3} \) | \(a_{561}= -0.06189196 \pm 5.9 \cdot 10^{-2} \) |
\(a_{562}= -0.01035721 \pm 1.9 \cdot 10^{-2} \) | \(a_{563}= +0.49149836 \pm 7.5 \cdot 10^{-2} \) | \(a_{564}= +0.40235771 \pm 1.0 \cdot 10^{-1} \) |
\(a_{565}= -0.02382624 \pm 1.9 \cdot 10^{-2} \) | \(a_{566}= -0.03331068 \pm 2.3 \cdot 10^{-2} \) | \(a_{567}= +0.13642496 \pm 3.0 \cdot 10^{-2} \) |
\(a_{568}= +0.21075554 \pm 3.6 \cdot 10^{-2} \) | \(a_{569}= +0.34514215 \pm 4.1 \cdot 10^{-2} \) | \(a_{570}= +0.00464042 \pm 8.5 \cdot 10^{-2} \) |
\(a_{571}= -0.05728041 \pm 4.9 \cdot 10^{-2} \) | \(a_{572}= +0.79706340 \pm 1.8 \cdot 10^{-2} \) | \(a_{573}= -0.47076434 \pm 3.9 \cdot 10^{-2} \) |
\(a_{574}= -0.07729048 \pm 1.9 \cdot 10^{-2} \) | \(a_{575}= +1.83860907 \pm 3.8 \cdot 10^{-2} \) | \(a_{576}= -0.31858511 \pm 3.6 \cdot 10^{-2} \) |
\(a_{577}= -0.37703527 \pm 5.3 \cdot 10^{-2} \) | \(a_{578}= +0.08400137 \pm 3.3 \cdot 10^{-2} \) | \(a_{579}= -0.72467681 \pm 6.5 \cdot 10^{-2} \) |
\(a_{580}= +0.11328143 \pm 4.6 \cdot 10^{-2} \) | \(a_{581}= +0.81320743 \pm 3.9 \cdot 10^{-2} \) | \(a_{582}= -0.02283558 \pm 8.4 \cdot 10^{-2} \) |
\(a_{583}= -1.25439455 \pm 1.8 \cdot 10^{-2} \) | \(a_{584}= -0.20530354 \pm 1.2 \cdot 10^{-2} \) | \(a_{585}= -0.03964482 \pm 7.1 \cdot 10^{-2} \) |
\(a_{586}= -0.02365093 \pm 2.4 \cdot 10^{-2} \) | \(a_{587}= -1.06375697 \pm 5.4 \cdot 10^{-2} \) | \(a_{588}= +0.29086173 \pm 1.0 \cdot 10^{-1} \) |
\(a_{589}= +0.68195360 \pm 1.1 \cdot 10^{-2} \) | \(a_{590}= -0.00937074 \pm 1.8 \cdot 10^{-2} \) | \(a_{591}= +0.26973199 \pm 9.6 \cdot 10^{-2} \) |
\(a_{592}= -0.67497543 \pm 2.7 \cdot 10^{-2} \) | \(a_{593}= -0.70060495 \pm 5.4 \cdot 10^{-2} \) | \(a_{594}= +0.01128103 \pm 6.1 \cdot 10^{-2} \) |
\(a_{595}= +0.01949448 \pm 9.4 \cdot 10^{-3} \) | \(a_{596}= -1.57265572 \pm 3.6 \cdot 10^{-2} \) | \(a_{597}= -0.21716814 \pm 3.6 \cdot 10^{-2} \) |
\(a_{598}= -0.18880777 \pm 1.3 \cdot 10^{-2} \) | \(a_{599}= +1.78858696 \pm 2.1 \cdot 10^{-2} \) | \(a_{600}= +0.09808907 \pm 6.4 \cdot 10^{-2} \) |
\(a_{601}= -0.14983960 \pm 3.3 \cdot 10^{-2} \) | \(a_{602}= +0.08799684 \pm 3.2 \cdot 10^{-2} \) | \(a_{603}= -0.28307627 \pm 8.4 \cdot 10^{-2} \) |
\(a_{604}= +0.72482989 \pm 6.4 \cdot 10^{-2} \) | \(a_{605}= -0.05411479 \pm 2.3 \cdot 10^{-2} \) | \(a_{606}= +0.03862496 \pm 5.8 \cdot 10^{-2} \) |
\(a_{607}= +1.31200348 \pm 8.1 \cdot 10^{-2} \) | \(a_{608}= -0.23687412 \pm 1.6 \cdot 10^{-2} \) | \(a_{609}= +0.80270808 \pm 1.0 \cdot 10^{-1} \) |
\(a_{610}= +0.00029832 \pm 1.8 \cdot 10^{-2} \) | \(a_{611}= -0.82852167 \pm 3.7 \cdot 10^{-2} \) | \(a_{612}= -0.05212047 \pm 7.4 \cdot 10^{-2} \) |
\(a_{613}= -1.30327627 \pm 4.6 \cdot 10^{-2} \) | \(a_{614}= +0.09625342 \pm 1.9 \cdot 10^{-2} \) | \(a_{615}= -0.04252463 \pm 1.1 \cdot 10^{-1} \) |
\(a_{616}= +0.14341107 \pm 2.0 \cdot 10^{-2} \) | \(a_{617}= +1.38988726 \pm 8.4 \cdot 10^{-2} \) | \(a_{618}= -0.04650410 \pm 6.7 \cdot 10^{-2} \) |
\(a_{619}= +1.32231923 \pm 3.5 \cdot 10^{-2} \) | \(a_{620}= -0.07369280 \pm 1.9 \cdot 10^{-2} \) | \(a_{621}= +0.35747180 \pm 7.5 \cdot 10^{-2} \) |
\(a_{622}= +0.10580496 \pm 3.2 \cdot 10^{-2} \) | \(a_{623}= -2.01503216 \pm 2.8 \cdot 10^{-2} \) | \(a_{624}= +0.66616803 \pm 7.3 \cdot 10^{-2} \) |
\(a_{625}= +0.96962819 \pm 2.0 \cdot 10^{-2} \) | \(a_{626}= +0.00340359 \pm 3.4 \cdot 10^{-2} \) | \(a_{627}= -0.36372802 \pm 5.4 \cdot 10^{-2} \) |
\(a_{628}= -0.63901320 \pm 6.8 \cdot 10^{-2} \) | \(a_{629}= -0.10874368 \pm 3.9 \cdot 10^{-2} \) | \(a_{630}= -0.00355325 \pm 9.5 \cdot 10^{-2} \) |
\(a_{631}= -1.37083324 \pm 5.0 \cdot 10^{-2} \) | \(a_{632}= -0.24184773 \pm 2.7 \cdot 10^{-2} \) | \(a_{633}= +0.03211742 \pm 2.1 \cdot 10^{-2} \) |
\(a_{634}= +0.02734674 \pm 1.4 \cdot 10^{-2} \) | \(a_{635}= +0.05509355 \pm 3.7 \cdot 10^{-2} \) | \(a_{636}= -1.05635100 \pm 7.9 \cdot 10^{-2} \) |
\(a_{637}= -0.59893284 \pm 3.1 \cdot 10^{-2} \) | \(a_{638}= +0.06637621 \pm 1.7 \cdot 10^{-2} \) | \(a_{639}= +0.40930047 \pm 5.6 \cdot 10^{-2} \) |
\(a_{640}= +0.03408597 \pm 3.3 \cdot 10^{-2} \) | \(a_{641}= -0.45530804 \pm 2.0 \cdot 10^{-2} \) | \(a_{642}= -0.05392267 \pm 5.5 \cdot 10^{-2} \) |
\(a_{643}= -0.23526870 \pm 5.2 \cdot 10^{-2} \) | \(a_{644}= +2.26373485 \pm 1.7 \cdot 10^{-2} \) | \(a_{645}= +0.04841519 \pm 8.5 \cdot 10^{-2} \) |
\(a_{646}= -0.01256233 \pm 7.6 \cdot 10^{-3} \) | \(a_{647}= -0.63688214 \pm 4.1 \cdot 10^{-2} \) | \(a_{648}= +0.01907098 \pm 3.3 \cdot 10^{-2} \) |
\(a_{649}= +0.73450370 \pm 3.1 \cdot 10^{-2} \) | \(a_{650}= -0.10061481 \pm 6.2 \cdot 10^{-3} \) | \(a_{651}= -0.52218451 \pm 6.2 \cdot 10^{-2} \) |
\(a_{652}= +0.25654507 \pm 1.0 \cdot 10^{-2} \) | \(a_{653}= +1.70712941 \pm 3.7 \cdot 10^{-2} \) | \(a_{654}= -0.03548038 \pm 8.2 \cdot 10^{-2} \) |
\(a_{655}= -0.10759451 \pm 2.1 \cdot 10^{-2} \) | \(a_{656}= +0.71455864 \pm 5.4 \cdot 10^{-2} \) | \(a_{657}= -0.39871235 \pm 2.4 \cdot 10^{-2} \) |
\(a_{658}= -0.07425804 \pm 1.8 \cdot 10^{-2} \) | \(a_{659}= -0.02251169 \pm 4.9 \cdot 10^{-2} \) | \(a_{660}= +0.03930493 \pm 1.2 \cdot 10^{-1} \) |
\(a_{661}= -1.50247667 \pm 5.4 \cdot 10^{-2} \) | \(a_{662}= +0.06157838 \pm 2.3 \cdot 10^{-2} \) | \(a_{663}= +0.10732474 \pm 5.8 \cdot 10^{-2} \) |
\(a_{664}= +0.11367907 \pm 3.9 \cdot 10^{-2} \) | \(a_{665}= +0.11456557 \pm 4.4 \cdot 10^{-3} \) | \(a_{666}= +0.01982068 \pm 6.5 \cdot 10^{-2} \) |
\(a_{667}= +2.10332115 \pm 1.0 \cdot 10^{-1} \) | \(a_{668}= -1.46110930 \pm 3.4 \cdot 10^{-2} \) | \(a_{669}= +0.28735949 \pm 1.9 \cdot 10^{-2} \) |
\(a_{670}= +0.00737285 \pm 2.1 \cdot 10^{-2} \) | \(a_{671}= -0.02338328 \pm 2.5 \cdot 10^{-2} \) | \(a_{672}= +0.18137890 \pm 7.5 \cdot 10^{-2} \) |
\(a_{673}= -0.46630776 \pm 4.1 \cdot 10^{-2} \) | \(a_{674}= +0.03816019 \pm 2.7 \cdot 10^{-2} \) | \(a_{675}= +0.19049512 \pm 3.1 \cdot 10^{-2} \) |
\(a_{676}= -0.38958050 \pm 3.1 \cdot 10^{-2} \) | \(a_{677}= -1.52069861 \pm 3.8 \cdot 10^{-2} \) | \(a_{678}= -0.01175664 \pm 5.8 \cdot 10^{-2} \) |
\(a_{679}= -0.56377952 \pm 3.7 \cdot 10^{-2} \) | \(a_{680}= +0.00272515 \pm 9.2 \cdot 10^{-3} \) | \(a_{681}= +0.25423122 \pm 7.3 \cdot 10^{-2} \) |
\(a_{682}= -0.04317962 \pm 9.6 \cdot 10^{-3} \) | \(a_{683}= -1.27586981 \pm 8.6 \cdot 10^{-2} \) | \(a_{684}= -0.30630272 \pm 6.9 \cdot 10^{-2} \) |
\(a_{685}= +0.04938885 \pm 4.3 \cdot 10^{-2} \) | \(a_{686}= +0.05208292 \pm 1.7 \cdot 10^{-2} \) | \(a_{687}= +0.01094723 \pm 3.2 \cdot 10^{-2} \) |
\(a_{688}= -0.81354012 \pm 3.0 \cdot 10^{-2} \) | \(a_{689}= +2.17520301 \pm 1.7 \cdot 10^{-2} \) | \(a_{690}= -0.00931052 \pm 1.4 \cdot 10^{-1} \) |
\(a_{691}= +1.77403806 \pm 6.9 \cdot 10^{-2} \) | \(a_{692}= -0.41724814 \pm 2.9 \cdot 10^{-2} \) | \(a_{693}= +0.27851329 \pm 6.5 \cdot 10^{-2} \) |
\(a_{694}= -0.02692287 \pm 2.1 \cdot 10^{-2} \) | \(a_{695}= -0.09772096 \pm 2.7 \cdot 10^{-2} \) | \(a_{696}= +0.11221135 \pm 1.0 \cdot 10^{-1} \) |
\(a_{697}= +0.11512084 \pm 2.0 \cdot 10^{-2} \) | \(a_{698}= -0.04381447 \pm 3.1 \cdot 10^{-2} \) | \(a_{699}= +0.31249799 \pm 5.2 \cdot 10^{-2} \) |
\(a_{700}= +1.20633415 \pm 1.4 \cdot 10^{-2} \) | \(a_{701}= -0.33469002 \pm 4.9 \cdot 10^{-2} \) | \(a_{702}= -0.01956205 \pm 6.0 \cdot 10^{-2} \) |
\(a_{703}= -0.63906727 \pm 1.2 \cdot 10^{-2} \) | \(a_{704}= -0.65039555 \pm 2.2 \cdot 10^{-2} \) | \(a_{705}= -0.04085620 \pm 9.7 \cdot 10^{-2} \) |
\(a_{706}= +0.02532025 \pm 3.6 \cdot 10^{-2} \) | \(a_{707}= +0.95359780 \pm 2.8 \cdot 10^{-2} \) | \(a_{708}= +0.61854041 \pm 9.7 \cdot 10^{-2} \) |
\(a_{709}= +0.08763661 \pm 2.3 \cdot 10^{-2} \) | \(a_{710}= -0.01066042 \pm 1.8 \cdot 10^{-2} \) | \(a_{711}= -0.46968345 \pm 4.2 \cdot 10^{-2} \) |
\(a_{712}= -0.28168333 \pm 2.1 \cdot 10^{-2} \) | \(a_{713}= -1.36827042 \pm 4.3 \cdot 10^{-2} \) | \(a_{714}= +0.00961921 \pm 8.3 \cdot 10^{-2} \) |
\(a_{715}= -0.08093541 \pm 1.5 \cdot 10^{-2} \) | \(a_{716}= +0.42768764 \pm 4.4 \cdot 10^{-2} \) | \(a_{717}= -0.66711378 \pm 4.5 \cdot 10^{-2} \) |
\(a_{718}= -0.01242878 \pm 3.2 \cdot 10^{-2} \) | \(a_{719}= +1.41240925 \pm 2.2 \cdot 10^{-2} \) | \(a_{720}= +0.03285019 \pm 7.7 \cdot 10^{-2} \) |
\(a_{721}= -1.14812314 \pm 2.3 \cdot 10^{-2} \) | \(a_{722}= +0.01231239 \pm 2.4 \cdot 10^{-2} \) | \(a_{723}= -0.94640887 \pm 4.5 \cdot 10^{-2} \) |
\(a_{724}= +0.31904750 \pm 5.1 \cdot 10^{-2} \) | \(a_{725}= +1.12085040 \pm 3.8 \cdot 10^{-2} \) | \(a_{726}= -0.02670200 \pm 6.0 \cdot 10^{-2} \) |
\(a_{727}= -1.69266246 \pm 2.2 \cdot 10^{-2} \) | \(a_{728}= -0.24868427 \pm 1.0 \cdot 10^{-2} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.01038465 \pm 1.7 \cdot 10^{-2} \) | \(a_{731}= -0.13106751 \pm 3.1 \cdot 10^{-2} \) | \(a_{732}= -0.01969153 \pm 8.8 \cdot 10^{-2} \) |
\(a_{733}= +0.01552358 \pm 9.5 \cdot 10^{-2} \) | \(a_{734}= +0.12773842 \pm 2.1 \cdot 10^{-2} \) | \(a_{735}= -0.02953468 \pm 8.9 \cdot 10^{-2} \) |
\(a_{736}= +0.47526378 \pm 5.5 \cdot 10^{-2} \) | \(a_{737}= -0.57790381 \pm 5.2 \cdot 10^{-2} \) | \(a_{738}= -0.02098304 \pm 9.9 \cdot 10^{-2} \) |
\(a_{739}= +1.08827479 \pm 5.7 \cdot 10^{-2} \) | \(a_{740}= +0.06905845 \pm 3.2 \cdot 10^{-2} \) | \(a_{741}= +0.63072842 \pm 5.3 \cdot 10^{-2} \) |
\(a_{742}= +0.19495725 \pm 1.3 \cdot 10^{-2} \) | \(a_{743}= +1.24413034 \pm 7.8 \cdot 10^{-2} \) | \(a_{744}= -0.07299669 \pm 6.5 \cdot 10^{-2} \) |
\(a_{745}= +0.15969060 \pm 2.7 \cdot 10^{-2} \) | \(a_{746}= -0.06625812 \pm 1.8 \cdot 10^{-2} \) | \(a_{747}= +0.22077187 \pm 5.9 \cdot 10^{-2} \) |
\(a_{748}= -0.10640460 \pm 1.5 \cdot 10^{-2} \) | \(a_{749}= -1.33127752 \pm 1.4 \cdot 10^{-2} \) | \(a_{750}= -0.00997399 \pm 8.2 \cdot 10^{-2} \) |
\(a_{751}= +0.08168978 \pm 4.5 \cdot 10^{-2} \) | \(a_{752}= +0.68652339 \pm 4.5 \cdot 10^{-2} \) | \(a_{753}= -0.18669860 \pm 6.4 \cdot 10^{-2} \) |
\(a_{754}= -0.11510074 \pm 1.3 \cdot 10^{-2} \) | \(a_{755}= -0.07360067 \pm 4.8 \cdot 10^{-2} \) | \(a_{756}= +0.23454167 \pm 8.0 \cdot 10^{-2} \) |
\(a_{757}= +0.79667362 \pm 1.5 \cdot 10^{-2} \) | \(a_{758}= +0.03227379 \pm 1.4 \cdot 10^{-2} \) | \(a_{759}= +0.72978323 \pm 1.0 \cdot 10^{-1} \) |
\(a_{760}= +0.01601523 \pm 9.6 \cdot 10^{-3} \) | \(a_{761}= -0.78963165 \pm 8.6 \cdot 10^{-2} \) | \(a_{762}= +0.02718496 \pm 8.8 \cdot 10^{-2} \) |
\(a_{763}= -0.87596245 \pm 2.1 \cdot 10^{-2} \) | \(a_{764}= -0.80933764 \pm 3.2 \cdot 10^{-2} \) | \(a_{765}= +0.00529242 \pm 6.2 \cdot 10^{-2} \) |
\(a_{766}= -0.07502343 \pm 1.6 \cdot 10^{-2} \) | \(a_{767}= -1.27367793 \pm 2.4 \cdot 10^{-2} \) | \(a_{768}= -0.53498646 \pm 2.7 \cdot 10^{-2} \) |
\(a_{769}= +1.40878511 \pm 4.6 \cdot 10^{-2} \) | \(a_{770}= -0.00725401 \pm 6.7 \cdot 10^{-3} \) | \(a_{771}= -0.26384731 \pm 5.9 \cdot 10^{-2} \) |
\(a_{772}= -1.24586373 \pm 6.1 \cdot 10^{-2} \) | \(a_{773}= +0.18080957 \pm 4.0 \cdot 10^{-2} \) | \(a_{774}= +0.02388963 \pm 7.5 \cdot 10^{-2} \) |
\(a_{775}= -0.72914517 \pm 1.8 \cdot 10^{-2} \) | \(a_{776}= -0.07881129 \pm 3.7 \cdot 10^{-2} \) | \(a_{777}= +0.48934565 \pm 6.9 \cdot 10^{-2} \) |
\(a_{778}= -0.07739799 \pm 1.4 \cdot 10^{-2} \) | \(a_{779}= +0.67654469 \pm 2.6 \cdot 10^{-2} \) | \(a_{780}= -0.06815734 \pm 1.2 \cdot 10^{-1} \) |
\(a_{781}= +0.83559212 \pm 3.5 \cdot 10^{-2} \) | \(a_{782}= +0.02520504 \pm 9.9 \cdot 10^{-3} \) | \(a_{783}= +0.21792148 \pm 7.1 \cdot 10^{-2} \) |
\(a_{784}= +0.49628322 \pm 3.7 \cdot 10^{-2} \) | \(a_{785}= +0.06488667 \pm 5.3 \cdot 10^{-2} \) | \(a_{786}= -0.05309064 \pm 6.3 \cdot 10^{-2} \) |
\(a_{787}= +0.19310300 \pm 8.2 \cdot 10^{-2} \) | \(a_{788}= +0.46372300 \pm 8.8 \cdot 10^{-2} \) | \(a_{789}= -0.13796297 \pm 4.2 \cdot 10^{-2} \) |
\(a_{790}= +0.01223313 \pm 1.7 \cdot 10^{-2} \) | \(a_{791}= -0.29025561 \pm 3.6 \cdot 10^{-2} \) | \(a_{792}= +0.03893365 \pm 6.7 \cdot 10^{-2} \) |
\(a_{793}= +0.04054814 \pm 2.5 \cdot 10^{-2} \) | \(a_{794}= -0.05179784 \pm 2.5 \cdot 10^{-2} \) | \(a_{795}= +0.10726399 \pm 6.7 \cdot 10^{-2} \) |
\(a_{796}= -0.37335528 \pm 3.6 \cdot 10^{-2} \) | \(a_{797}= +1.69168311 \pm 1.9 \cdot 10^{-2} \) | \(a_{798}= +0.05653039 \pm 7.8 \cdot 10^{-2} \) |
\(a_{799}= +0.11060415 \pm 1.8 \cdot 10^{-2} \) | \(a_{800}= +0.25326594 \pm 2.5 \cdot 10^{-2} \) | \(a_{801}= -0.54704668 \pm 2.4 \cdot 10^{-2} \) |
\(a_{802}= -0.07134455 \pm 2.2 \cdot 10^{-2} \) | \(a_{803}= -0.81397633 \pm 1.4 \cdot 10^{-2} \) | \(a_{804}= -0.48666448 \pm 1.3 \cdot 10^{-1} \) |
\(a_{805}= -0.22986415 \pm 1.2 \cdot 10^{-2} \) | \(a_{806}= +0.07487632 \pm 6.4 \cdot 10^{-3} \) | \(a_{807}= +0.49930448 \pm 3.7 \cdot 10^{-2} \) |
\(a_{808}= +0.13330438 \pm 2.4 \cdot 10^{-2} \) | \(a_{809}= +0.76408275 \pm 4.8 \cdot 10^{-2} \) | \(a_{810}= -0.00096465 \pm 6.4 \cdot 10^{-2} \) |
\(a_{811}= -1.24068824 \pm 2.1 \cdot 10^{-2} \) | \(a_{812}= +1.38001502 \pm 2.2 \cdot 10^{-2} \) | \(a_{813}= -0.96776493 \pm 5.0 \cdot 10^{-2} \) |
\(a_{814}= +0.04046417 \pm 2.1 \cdot 10^{-2} \) | \(a_{815}= -0.02605010 \pm 8.8 \cdot 10^{-3} \) | \(a_{816}= -0.08893062 \pm 6.5 \cdot 10^{-2} \) |
\(a_{817}= -0.77026043 \pm 1.5 \cdot 10^{-2} \) | \(a_{818}= +0.07700922 \pm 2.7 \cdot 10^{-2} \) | \(a_{819}= -0.48296044 \pm 6.4 \cdot 10^{-2} \) |
\(a_{820}= -0.07310831 \pm 4.5 \cdot 10^{-2} \) | \(a_{821}= -1.90085428 \pm 6.0 \cdot 10^{-2} \) | \(a_{822}= +0.02437007 \pm 8.9 \cdot 10^{-2} \) |
\(a_{823}= -0.10687803 \pm 2.6 \cdot 10^{-2} \) | \(a_{824}= -0.16049727 \pm 2.4 \cdot 10^{-2} \) | \(a_{825}= +0.38889821 \pm 6.5 \cdot 10^{-2} \) |
\(a_{826}= -0.11415612 \pm 3.6 \cdot 10^{-2} \) | \(a_{827}= -0.92794103 \pm 3.9 \cdot 10^{-2} \) | \(a_{828}= +0.61456520 \pm 1.2 \cdot 10^{-1} \) |
\(a_{829}= +1.14180864 \pm 5.9 \cdot 10^{-2} \) | \(a_{830}= -0.00575011 \pm 1.2 \cdot 10^{-2} \) | \(a_{831}= +1.00272037 \pm 2.7 \cdot 10^{-2} \) |
\(a_{832}= +1.12782885 \pm 1.9 \cdot 10^{-2} \) | \(a_{833}= +0.07995501 \pm 2.1 \cdot 10^{-2} \) | \(a_{834}= -0.04821871 \pm 6.9 \cdot 10^{-2} \) |
\(a_{835}= +0.14836395 \pm 2.5 \cdot 10^{-2} \) | \(a_{836}= -0.62532090 \pm 1.1 \cdot 10^{-2} \) | \(a_{837}= -0.14176414 \pm 3.1 \cdot 10^{-2} \) |
\(a_{838}= +0.16293479 \pm 1.2 \cdot 10^{-2} \) | \(a_{839}= +1.59908164 \pm 2.6 \cdot 10^{-2} \) | \(a_{840}= -0.01226316 \pm 1.0 \cdot 10^{-1} \) |
\(a_{841}= +0.28222383 \pm 4.4 \cdot 10^{-2} \) | \(a_{842}= -0.16081239 \pm 3.9 \cdot 10^{-2} \) | \(a_{843}= -0.06941964 \pm 5.7 \cdot 10^{-2} \) |
\(a_{844}= +0.05521625 \pm 2.2 \cdot 10^{-2} \) | \(a_{845}= +0.03955878 \pm 2.4 \cdot 10^{-2} \) | \(a_{846}= -0.02015978 \pm 8.7 \cdot 10^{-2} \) |
\(a_{847}= -0.65923620 \pm 1.7 \cdot 10^{-2} \) | \(a_{848}= -1.80240034 \pm 2.1 \cdot 10^{-2} \) | \(a_{849}= -0.22326627 \pm 8.0 \cdot 10^{-2} \) |
\(a_{850}= +0.01343165 \pm 8.4 \cdot 10^{-3} \) | \(a_{851}= +1.28222338 \pm 4.2 \cdot 10^{-2} \) | \(a_{852}= +0.70366901 \pm 1.0 \cdot 10^{-1} \) |
\(a_{853}= +0.88946842 \pm 6.5 \cdot 10^{-2} \) | \(a_{854}= +0.00363421 \pm 4.7 \cdot 10^{-3} \) | \(a_{855}= +0.03110259 \pm 5.7 \cdot 10^{-2} \) |
\(a_{856}= -0.18610060 \pm 1.6 \cdot 10^{-2} \) | \(a_{857}= -0.64020409 \pm 3.7 \cdot 10^{-2} \) | \(a_{858}= -0.03993617 \pm 9.5 \cdot 10^{-2} \) |
\(a_{859}= -0.78554990 \pm 4.2 \cdot 10^{-2} \) | \(a_{860}= +0.08323535 \pm 2.9 \cdot 10^{-2} \) | \(a_{861}= -0.51804280 \pm 1.0 \cdot 10^{-1} \) |
\(a_{862}= +0.09736293 \pm 2.5 \cdot 10^{-2} \) | \(a_{863}= -0.14078081 \pm 6.1 \cdot 10^{-2} \) | \(a_{864}= +0.04924126 \pm 4.4 \cdot 10^{-2} \) |
\(a_{865}= +0.04236821 \pm 2.3 \cdot 10^{-2} \) | \(a_{866}= +0.02883842 \pm 3.4 \cdot 10^{-2} \) | \(a_{867}= +0.56302287 \pm 5.2 \cdot 10^{-2} \) |
\(a_{868}= -0.89773914 \pm 1.2 \cdot 10^{-2} \) | \(a_{869}= -0.95886475 \pm 2.7 \cdot 10^{-2} \) | \(a_{870}= -0.00567587 \pm 1.3 \cdot 10^{-1} \) |
\(a_{871}= +1.00212339 \pm 5.4 \cdot 10^{-2} \) | \(a_{872}= -0.12245165 \pm 3.0 \cdot 10^{-2} \) | \(a_{873}= -0.15305647 \pm 5.7 \cdot 10^{-2} \) |
\(a_{874}= +0.14812554 \pm 9.0 \cdot 10^{-3} \) | \(a_{875}= -0.24624425 \pm 2.2 \cdot 10^{-2} \) | \(a_{876}= -0.68546592 \pm 7.3 \cdot 10^{-2} \) |
\(a_{877}= -1.87618611 \pm 3.3 \cdot 10^{-2} \) | \(a_{878}= +0.09038091 \pm 2.3 \cdot 10^{-2} \) | \(a_{879}= -0.15852141 \pm 8.6 \cdot 10^{-2} \) |
\(a_{880}= +0.06706409 \pm 1.9 \cdot 10^{-2} \) | \(a_{881}= +1.65360183 \pm 8.2 \cdot 10^{-2} \) | \(a_{882}= -0.01457337 \pm 7.9 \cdot 10^{-2} \) |
\(a_{883}= +0.58739310 \pm 1.3 \cdot 10^{-2} \) | \(a_{884}= +0.18451260 \pm 1.1 \cdot 10^{-2} \) | \(a_{885}= -0.06280783 \pm 8.5 \cdot 10^{-2} \) |
\(a_{886}= -0.14444417 \pm 4.2 \cdot 10^{-2} \) | \(a_{887}= +1.51047558 \pm 6.8 \cdot 10^{-2} \) | \(a_{888}= +0.06840611 \pm 7.1 \cdot 10^{-2} \) |
\(a_{889}= +0.67115971 \pm 5.3 \cdot 10^{-2} \) | \(a_{890}= +0.01424809 \pm 1.4 \cdot 10^{-2} \) | \(a_{891}= +0.07561158 \pm 3.4 \cdot 10^{-2} \) |
\(a_{892}= +0.49402818 \pm 2.0 \cdot 10^{-2} \) | \(a_{893}= +0.65000089 \pm 2.3 \cdot 10^{-2} \) | \(a_{894}= +0.07879655 \pm 7.3 \cdot 10^{-2} \) |
\(a_{895}= -0.04342826 \pm 3.3 \cdot 10^{-2} \) | \(a_{896}= +0.41524156 \pm 1.6 \cdot 10^{-2} \) | \(a_{897}= -1.26549232 \pm 1.0 \cdot 10^{-1} \) |
\(a_{898}= -0.10216049 \pm 3.5 \cdot 10^{-2} \) | \(a_{899}= -0.83412319 \pm 4.1 \cdot 10^{-2} \) | \(a_{900}= +0.32749904 \pm 8.0 \cdot 10^{-2} \) |
\(a_{901}= -0.29038042 \pm 1.7 \cdot 10^{-2} \) | \(a_{902}= -0.04283714 \pm 1.5 \cdot 10^{-2} \) | \(a_{903}= +0.58980269 \pm 7.9 \cdot 10^{-2} \) |
\(a_{904}= -0.04057512 \pm 2.7 \cdot 10^{-2} \) | \(a_{905}= -0.03239672 \pm 4.0 \cdot 10^{-2} \) | \(a_{906}= -0.03631697 \pm 9.8 \cdot 10^{-2} \) |
\(a_{907}= -0.98147736 \pm 9.7 \cdot 10^{-2} \) | \(a_{908}= +0.43707409 \pm 7.0 \cdot 10^{-2} \) | \(a_{909}= +0.25888545 \pm 3.1 \cdot 10^{-2} \) |
\(a_{910}= +0.01257893 \pm 4.0 \cdot 10^{-3} \) | \(a_{911}= -0.42943168 \pm 6.8 \cdot 10^{-2} \) | \(a_{912}= -0.52262943 \pm 6.0 \cdot 10^{-2} \) |
\(a_{913}= +0.45070859 \pm 3.7 \cdot 10^{-2} \) | \(a_{914}= -0.06998683 \pm 3.0 \cdot 10^{-2} \) | \(a_{915}= +0.00199952 \pm 7.6 \cdot 10^{-2} \) |
\(a_{916}= +0.01882047 \pm 2.5 \cdot 10^{-2} \) | \(a_{917}= -1.31073595 \pm 3.5 \cdot 10^{-2} \) | \(a_{918}= +0.00261145 \pm 5.2 \cdot 10^{-2} \) |
\(a_{919}= -0.45706558 \pm 3.7 \cdot 10^{-2} \) | \(a_{920}= -0.03213294 \pm 2.7 \cdot 10^{-2} \) | \(a_{921}= +0.64514273 \pm 2.4 \cdot 10^{-2} \) |
\(a_{922}= -0.10845009 \pm 1.3 \cdot 10^{-2} \) | \(a_{923}= -1.44897192 \pm 3.3 \cdot 10^{-2} \) | \(a_{924}= +0.47881980 \pm 1.1 \cdot 10^{-1} \) |
\(a_{925}= +0.68329109 \pm 1.7 \cdot 10^{-2} \) | \(a_{926}= -0.02137163 \pm 2.9 \cdot 10^{-2} \) | \(a_{927}= -0.31169575 \pm 4.0 \cdot 10^{-2} \) |
\(a_{928}= +0.28972967 \pm 5.5 \cdot 10^{-2} \) | \(a_{929}= -0.83799786 \pm 5.1 \cdot 10^{-2} \) | \(a_{930}= +0.00369231 \pm 9.6 \cdot 10^{-2} \) |
\(a_{931}= +0.46988135 \pm 1.8 \cdot 10^{-2} \) | \(a_{932}= +0.53724627 \pm 4.9 \cdot 10^{-2} \) | \(a_{933}= +0.70916234 \pm 7.9 \cdot 10^{-2} \) |
\(a_{934}= -0.00712851 \pm 3.0 \cdot 10^{-2} \) | \(a_{935}= +0.01080454 \pm 1.1 \cdot 10^{-2} \) | \(a_{936}= -0.06751352 \pm 6.6 \cdot 10^{-2} \) |
\(a_{937}= +0.81582415 \pm 3.7 \cdot 10^{-2} \) | \(a_{938}= +0.08981746 \pm 1.5 \cdot 10^{-2} \) | \(a_{939}= +0.02281274 \pm 3.3 \cdot 10^{-2} \) |
\(a_{940}= -0.07023995 \pm 3.7 \cdot 10^{-2} \) | \(a_{941}= +0.47185741 \pm 4.0 \cdot 10^{-2} \) | \(a_{942}= +0.03201720 \pm 1.0 \cdot 10^{-1} \) |
\(a_{943}= -1.35741799 \pm 1.0 \cdot 10^{-1} \) | \(a_{944}= +1.05538542 \pm 2.4 \cdot 10^{-2} \) | \(a_{945}= -0.02381583 \pm 6.8 \cdot 10^{-2} \) |
\(a_{946}= +0.04877099 \pm 2.3 \cdot 10^{-2} \) | \(a_{947}= +0.64286802 \pm 2.6 \cdot 10^{-2} \) | \(a_{948}= -0.80747938 \pm 9.1 \cdot 10^{-2} \) |
\(a_{949}= +1.41148873 \pm 1.4 \cdot 10^{-2} \) | \(a_{950}= +0.07893543 \pm 5.6 \cdot 10^{-3} \) | \(a_{951}= +0.18329269 \pm 3.4 \cdot 10^{-2} \) |
\(a_{952}= +0.03319830 \pm 1.0 \cdot 10^{-2} \) | \(a_{953}= -0.67904536 \pm 9.4 \cdot 10^{-2} \) | \(a_{954}= +0.05292755 \pm 5.7 \cdot 10^{-2} \) |
\(a_{955}= +0.08218176 \pm 2.2 \cdot 10^{-2} \) | \(a_{956}= -1.14690143 \pm 3.9 \cdot 10^{-2} \) | \(a_{957}= +0.44488948 \pm 1.0 \cdot 10^{-1} \) |
\(a_{958}= +0.03269506 \pm 2.7 \cdot 10^{-2} \) | \(a_{959}= +0.60166403 \pm 2.9 \cdot 10^{-2} \) | \(a_{960}= +0.05561569 \pm 7.4 \cdot 10^{-2} \) |
\(a_{961}= -0.45737907 \pm 3.6 \cdot 10^{-2} \) | \(a_{962}= -0.07016754 \pm 1.2 \cdot 10^{-2} \) | \(a_{963}= -0.36141902 \pm 2.7 \cdot 10^{-2} \) |
\(a_{964}= -1.62706530 \pm 3.7 \cdot 10^{-2} \) | \(a_{965}= +0.12650749 \pm 4.7 \cdot 10^{-2} \) | \(a_{966}= -0.11342247 \pm 1.3 \cdot 10^{-1} \) |
\(a_{967}= +1.24567218 \pm 9.4 \cdot 10^{-2} \) | \(a_{968}= -0.09215528 \pm 1.9 \cdot 10^{-2} \) | \(a_{969}= -0.08419958 \pm 4.5 \cdot 10^{-2} \) |
\(a_{970}= +0.00398643 \pm 1.2 \cdot 10^{-2} \) | \(a_{971}= -0.11674002 \pm 8.6 \cdot 10^{-2} \) | \(a_{972}= +0.06367404 \pm 4.9 \cdot 10^{-2} \) |
\(a_{973}= -1.19045457 \pm 4.2 \cdot 10^{-2} \) | \(a_{974}= -0.04636403 \pm 1.5 \cdot 10^{-2} \) | \(a_{975}= -0.67437518 \pm 6.4 \cdot 10^{-2} \) |
\(a_{976}= -0.03359870 \pm 3.2 \cdot 10^{-2} \) | \(a_{977}= +0.05464039 \pm 5.2 \cdot 10^{-2} \) | \(a_{978}= -0.01285397 \pm 3.6 \cdot 10^{-2} \) |
\(a_{979}= -1.11680277 \pm 1.6 \cdot 10^{-2} \) | \(a_{980}= -0.05077600 \pm 3.2 \cdot 10^{-2} \) | \(a_{981}= -0.23780879 \pm 5.5 \cdot 10^{-2} \) |
\(a_{982}= +0.14667311 \pm 1.6 \cdot 10^{-2} \) | \(a_{983}= +1.87008816 \pm 2.3 \cdot 10^{-2} \) | \(a_{984}= -0.07241771 \pm 1.0 \cdot 10^{-1} \) |
\(a_{985}= -0.04708736 \pm 6.7 \cdot 10^{-2} \) | \(a_{986}= +0.01536546 \pm 3.1 \cdot 10^{-2} \) | \(a_{987}= -0.49771773 \pm 9.0 \cdot 10^{-2} \) |
\(a_{988}= +1.08434774 \pm 1.3 \cdot 10^{-2} \) | \(a_{989}= +1.54544909 \pm 4.9 \cdot 10^{-2} \) | \(a_{990}= -0.00196934 \pm 9.9 \cdot 10^{-2} \) |
\(a_{991}= +0.03935466 \pm 6.3 \cdot 10^{-2} \) | \(a_{992}= -0.18847742 \pm 2.5 \cdot 10^{-2} \) | \(a_{993}= +0.41273180 \pm 3.2 \cdot 10^{-2} \) |
\(a_{994}= -0.12986722 \pm 2.4 \cdot 10^{-2} \) | \(a_{995}= +0.03791124 \pm 2.6 \cdot 10^{-2} \) | \(a_{996}= +0.37955081 \pm 1.0 \cdot 10^{-1} \) |
\(a_{997}= +0.35255080 \pm 7.7 \cdot 10^{-2} \) | \(a_{998}= +0.01938954 \pm 3.2 \cdot 10^{-2} \) | \(a_{999}= +0.13284895 \pm 3.8 \cdot 10^{-2} \) |
\(a_{1000}= -0.03442273 \pm 3.0 \cdot 10^{-2} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000