Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(10.0458208250339117398394776953 \pm 5 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.76604997 \pm 1.8 \cdot 10^{-8} \) | \(a_{3}= -1.51567547 \pm 1.9 \cdot 10^{-8} \) |
\(a_{4}= -0.41316744 \pm 1.5 \cdot 10^{-8} \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -1.16108315 \pm 1.8 \cdot 10^{-8} \) |
\(a_{7}= +1.45299570 \pm 1 \cdot 10^{-8} \) | \(a_{8}= -1.08255688 \pm 1.6 \cdot 10^{-8} \) | \(a_{9}= +1.29727213 \pm 1 \cdot 10^{-8} \) |
\(a_{10}= +0.34258796 \pm 2.8 \cdot 10^{-8} \) | \(a_{11}= +1.18198387 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +0.62622775 \pm 1.6 \cdot 10^{-8} \) |
\(a_{13}= -0.09958617 \pm 1.2 \cdot 10^{-8} \) | \(a_{14}= +1.11306732 \pm 1 \cdot 10^{-8} \) | \(a_{15}= -0.67783068 \pm 3.0 \cdot 10^{-8} \) |
\(a_{16}= -0.41612523 \pm 1 \cdot 10^{-8} \) | \(a_{17}= +0.99116397 \pm 2.0 \cdot 10^{-8} \) | \(a_{18}= +0.99377528 \pm 1 \cdot 10^{-8} \) |
\(a_{19}= +0.12942130 \pm 1.8 \cdot 10^{-8} \) | \(a_{20}= -0.18477410 \pm 2.6 \cdot 10^{-8} \) | \(a_{21}= -2.20226994 \pm 1 \cdot 10^{-8} \) |
\(a_{22}= +0.90545871 \pm 1.0 \cdot 10^{-8} \) | \(a_{23}= -0.40589562 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +1.64080490 \pm 1.7 \cdot 10^{-8} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -0.07628799 \pm 1.5 \cdot 10^{-8} \) | \(a_{27}= -0.45056807 \pm 1.5 \cdot 10^{-8} \) |
\(a_{28}= -0.60033052 \pm 1 \cdot 10^{-8} \) | \(a_{29}= +0.32747491 \pm 1 \cdot 10^{-8} \) | \(a_{30}= -0.51925217 \pm 4.8 \cdot 10^{-8} \) |
\(a_{31}= +0.40756462 \pm 1.9 \cdot 10^{-8} \) | \(a_{32}= +0.76378416 \pm 1.9 \cdot 10^{-8} \) | \(a_{33}= -1.79150395 \pm 1 \cdot 10^{-8} \) |
\(a_{34}= +0.75928113 \pm 1.9 \cdot 10^{-8} \) | \(a_{35}= +0.64979943 \pm 1.8 \cdot 10^{-8} \) | \(a_{36}= -0.53599060 \pm 1 \cdot 10^{-8} \) |
\(a_{37}= +0.87533676 \pm 2.4 \cdot 10^{-8} \) | \(a_{38}= +0.09914318 \pm 1.3 \cdot 10^{-8} \) | \(a_{39}= +0.15094032 \pm 1.0 \cdot 10^{-8} \) |
\(a_{40}= -0.48413415 \pm 2.7 \cdot 10^{-8} \) | \(a_{41}= +0.01388687 \pm 2.0 \cdot 10^{-8} \) | \(a_{42}= -1.68704883 \pm 1 \cdot 10^{-8} \) |
\(a_{43}= +1.00022350 \pm 2.0 \cdot 10^{-8} \) | \(a_{44}= -0.48835725 \pm 1 \cdot 10^{-8} \) | \(a_{45}= +0.58015773 \pm 2.0 \cdot 10^{-8} \) |
\(a_{46}= -0.31093633 \pm 1 \cdot 10^{-8} \) | \(a_{47}= -0.08342218 \pm 1.2 \cdot 10^{-8} \) | \(a_{48}= +0.63071080 \pm 1 \cdot 10^{-8} \) |
\(a_{49}= +1.11119651 \pm 1.6 \cdot 10^{-8} \) | \(a_{50}= +0.15320999 \pm 2.8 \cdot 10^{-8} \) | \(a_{51}= -1.50228292 \pm 1.9 \cdot 10^{-8} \) |
\(a_{52}= +0.04114576 \pm 1.2 \cdot 10^{-8} \) | \(a_{53}= +1.08201311 \pm 1.9 \cdot 10^{-8} \) | \(a_{54}= -0.34515766 \pm 1.5 \cdot 10^{-8} \) |
\(a_{55}= +0.52859925 \pm 2.0 \cdot 10^{-8} \) | \(a_{56}= -1.57295049 \pm 1 \cdot 10^{-8} \) | \(a_{57}= -0.19616069 \pm 2.1 \cdot 10^{-8} \) |
\(a_{58}= +0.25086214 \pm 1 \cdot 10^{-8} \) | \(a_{59}= -1.87004361 \pm 1.5 \cdot 10^{-8} \) | \(a_{60}= +0.28005757 \pm 4.6 \cdot 10^{-8} \) |
\(a_{61}= +1.22933163 \pm 1.1 \cdot 10^{-8} \) | \(a_{62}= +0.31221487 \pm 2.6 \cdot 10^{-8} \) | \(a_{63}= +1.88493083 \pm 1 \cdot 10^{-8} \) |
\(a_{64}= +1.00122206 \pm 1.8 \cdot 10^{-8} \) | \(a_{65}= -0.04453629 \pm 2.3 \cdot 10^{-8} \) | \(a_{66}= -1.37238155 \pm 1 \cdot 10^{-8} \) |
\(a_{67}= -1.28507972 \pm 1.2 \cdot 10^{-8} \) | \(a_{68}= -0.40951668 \pm 1.6 \cdot 10^{-8} \) | \(a_{69}= +0.61520603 \pm 1 \cdot 10^{-8} \) |
\(a_{70}= +0.49777884 \pm 3.6 \cdot 10^{-8} \) | \(a_{71}= -0.57186874 \pm 1 \cdot 10^{-8} \) | \(a_{72}= -1.40437086 \pm 1 \cdot 10^{-8} \) |
\(a_{73}= +0.67255010 \pm 1.6 \cdot 10^{-8} \) | \(a_{74}= +0.67055170 \pm 1.6 \cdot 10^{-8} \) | \(a_{75}= -0.30313509 \pm 3.0 \cdot 10^{-8} \) |
\(a_{76}= -0.05347267 \pm 1.2 \cdot 10^{-8} \) | \(a_{77}= +1.71741748 \pm 1 \cdot 10^{-8} \) | \(a_{78}= +0.11562783 \pm 1.4 \cdot 10^{-8} \) |
\(a_{79}= -1.74646670 \pm 2.3 \cdot 10^{-8} \) | \(a_{80}= -0.18609686 \pm 1.8 \cdot 10^{-8} \) | \(a_{81}= -0.61435715 \pm 2.0 \cdot 10^{-8} \) |
\(a_{82}= +0.01063804 \pm 2.7 \cdot 10^{-8} \) | \(a_{83}= +1.43391877 \pm 2.0 \cdot 10^{-8} \) | \(a_{84}= +0.90990624 \pm 1 \cdot 10^{-8} \) |
\(a_{85}= +0.44326200 \pm 3.0 \cdot 10^{-8} \) | \(a_{86}= +0.76622118 \pm 1.2 \cdot 10^{-8} \) | \(a_{87}= -0.49634569 \pm 1.0 \cdot 10^{-8} \) |
\(a_{88}= -1.27956476 \pm 1 \cdot 10^{-8} \) | \(a_{89}= -1.24910137 \pm 2.3 \cdot 10^{-8} \) | \(a_{90}= +0.44442981 \pm 3.8 \cdot 10^{-8} \) |
\(a_{91}= -0.14469828 \pm 1 \cdot 10^{-8} \) | \(a_{92}= +0.16770285 \pm 1 \cdot 10^{-8} \) | \(a_{93}= -0.61773570 \pm 2.0 \cdot 10^{-8} \) |
\(a_{94}= -0.06390556 \pm 1.1 \cdot 10^{-8} \) | \(a_{95}= +0.05787897 \pm 2.9 \cdot 10^{-8} \) | \(a_{96}= -1.15764892 \pm 2.0 \cdot 10^{-8} \) |
\(a_{97}= +0.52354297 \pm 1.4 \cdot 10^{-8} \) | \(a_{98}= +0.85123206 \pm 1.5 \cdot 10^{-8} \) | \(a_{99}= +1.53335472 \pm 1 \cdot 10^{-8} \) |
\(a_{100}= -0.08263349 \pm 2.6 \cdot 10^{-8} \) | \(a_{101}= +0.68333443 \pm 1.5 \cdot 10^{-8} \) | \(a_{102}= -1.15082379 \pm 1.8 \cdot 10^{-8} \) |
\(a_{103}= +0.53827078 \pm 1.5 \cdot 10^{-8} \) | \(a_{104}= +0.10780770 \pm 1.1 \cdot 10^{-8} \) | \(a_{105}= -0.98488506 \pm 3.7 \cdot 10^{-8} \) |
\(a_{106}= +0.82887611 \pm 1.5 \cdot 10^{-8} \) | \(a_{107}= +0.35944414 \pm 1.5 \cdot 10^{-8} \) | \(a_{108}= +0.18616006 \pm 1.4 \cdot 10^{-8} \) |
\(a_{109}= -0.95667838 \pm 1 \cdot 10^{-8} \) | \(a_{110}= +0.40493344 \pm 3.8 \cdot 10^{-8} \) | \(a_{111}= -1.32672646 \pm 2.5 \cdot 10^{-8} \) |
\(a_{112}= -0.60462816 \pm 1 \cdot 10^{-8} \) | \(a_{113}= +0.62191074 \pm 1.3 \cdot 10^{-8} \) | \(a_{114}= -0.15026889 \pm 1.5 \cdot 10^{-8} \) |
\(a_{115}= -0.18152204 \pm 1.8 \cdot 10^{-8} \) | \(a_{116}= -0.13530197 \pm 1 \cdot 10^{-8} \) | \(a_{117}= -0.12919037 \pm 1 \cdot 10^{-8} \) |
\(a_{118}= -1.43254686 \pm 1.5 \cdot 10^{-8} \) | \(a_{119}= +1.44015700 \pm 1 \cdot 10^{-8} \) | \(a_{120}= +0.73379026 \pm 4.7 \cdot 10^{-8} \) |
\(a_{121}= +0.39708586 \pm 1.5 \cdot 10^{-8} \) | \(a_{122}= +0.94172946 \pm 1 \cdot 10^{-8} \) | \(a_{123}= -0.02104799 \pm 2.0 \cdot 10^{-8} \) |
\(a_{124}= -0.16839243 \pm 2.3 \cdot 10^{-8} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +1.44395121 \pm 1 \cdot 10^{-8} \) |
\(a_{127}= -0.56436456 \pm 2.1 \cdot 10^{-8} \) | \(a_{128}= +0.00320197 \pm 1.3 \cdot 10^{-8} \) | \(a_{129}= -1.51601422 \pm 2.2 \cdot 10^{-8} \) |
\(a_{130}= -0.03411702 \pm 4.1 \cdot 10^{-8} \) | \(a_{131}= -0.92261639 \pm 1.8 \cdot 10^{-8} \) | \(a_{132}= +0.74019110 \pm 1 \cdot 10^{-8} \) |
\(a_{133}= +0.18804859 \pm 1 \cdot 10^{-8} \) | \(a_{134}= -0.98443528 \pm 1 \cdot 10^{-8} \) | \(a_{135}= -0.20150017 \pm 2.5 \cdot 10^{-8} \) |
\(a_{136}= -1.07299138 \pm 1.8 \cdot 10^{-8} \) | \(a_{137}= +1.20113213 \pm 2.2 \cdot 10^{-8} \) | \(a_{138}= +0.47127856 \pm 1 \cdot 10^{-8} \) |
\(a_{139}= +1.03078529 \pm 2.1 \cdot 10^{-8} \) | \(a_{140}= -0.26847597 \pm 3.3 \cdot 10^{-8} \) | \(a_{141}= +0.12644096 \pm 1 \cdot 10^{-8} \) |
\(a_{142}= -0.43808003 \pm 1 \cdot 10^{-8} \) | \(a_{143}= -0.11770925 \pm 1.1 \cdot 10^{-8} \) | \(a_{144}= -0.53982766 \pm 1 \cdot 10^{-8} \) |
\(a_{145}= +0.14645123 \pm 1.9 \cdot 10^{-8} \) | \(a_{146}= +0.51520699 \pm 1.3 \cdot 10^{-8} \) | \(a_{147}= -1.68421330 \pm 1.6 \cdot 10^{-8} \) |
\(a_{148}= -0.36166065 \pm 1.6 \cdot 10^{-8} \) | \(a_{149}= +1.91299399 \pm 1 \cdot 10^{-8} \) | \(a_{150}= -0.23221663 \pm 4.8 \cdot 10^{-8} \) |
\(a_{151}= +0.28697093 \pm 1.2 \cdot 10^{-8} \) | \(a_{152}= -0.14010592 \pm 1.8 \cdot 10^{-8} \) | \(a_{153}= +1.28580940 \pm 1.0 \cdot 10^{-8} \) |
\(a_{154}= +1.31562761 \pm 1 \cdot 10^{-8} \) | \(a_{155}= +0.18226844 \pm 2.9 \cdot 10^{-8} \) | \(a_{156}= -0.06236363 \pm 1.1 \cdot 10^{-8} \) |
\(a_{157}= +0.31355884 \pm 1.7 \cdot 10^{-8} \) | \(a_{158}= -1.33788076 \pm 1.6 \cdot 10^{-8} \) | \(a_{159}= -1.63998073 \pm 2.0 \cdot 10^{-8} \) |
\(a_{160}= +0.34157466 \pm 3.0 \cdot 10^{-8} \) | \(a_{161}= -0.58976459 \pm 1 \cdot 10^{-8} \) | \(a_{162}= -0.47062828 \pm 1.9 \cdot 10^{-8} \) |
\(a_{163}= -1.25614089 \pm 1.5 \cdot 10^{-8} \) | \(a_{164}= -0.00573760 \pm 2.3 \cdot 10^{-8} \) | \(a_{165}= -0.80118492 \pm 4.0 \cdot 10^{-8} \) |
\(a_{166}= +1.09845344 \pm 1.5 \cdot 10^{-8} \) | \(a_{167}= -0.33802396 \pm 1.5 \cdot 10^{-8} \) | \(a_{168}= +2.38408247 \pm 1 \cdot 10^{-8} \) |
\(a_{169}= -0.99008259 \pm 1.5 \cdot 10^{-8} \) | \(a_{170}= +0.33956085 \pm 4.8 \cdot 10^{-8} \) | \(a_{171}= +0.16789465 \pm 1 \cdot 10^{-8} \) |
\(a_{172}= -0.41325978 \pm 1.3 \cdot 10^{-8} \) | \(a_{173}= +0.87801054 \pm 1.7 \cdot 10^{-8} \) | \(a_{174}= -0.38022560 \pm 1 \cdot 10^{-8} \) |
\(a_{175}= +0.29059914 \pm 1.8 \cdot 10^{-8} \) | \(a_{176}= -0.49185330 \pm 1 \cdot 10^{-8} \) | \(a_{177}= +2.83437923 \pm 1.8 \cdot 10^{-8} \) |
\(a_{178}= -0.95687407 \pm 2.1 \cdot 10^{-8} \) | \(a_{179}= +0.63790826 \pm 1.8 \cdot 10^{-8} \) | \(a_{180}= -0.23970229 \pm 3.5 \cdot 10^{-8} \) |
\(a_{181}= -0.73548660 \pm 1.9 \cdot 10^{-8} \) | \(a_{182}= -0.11084612 \pm 1 \cdot 10^{-8} \) | \(a_{183}= -1.86326780 \pm 1.2 \cdot 10^{-8} \) |
\(a_{184}= +0.43940509 \pm 1 \cdot 10^{-8} \) | \(a_{185}= +0.39146250 \pm 3.4 \cdot 10^{-8} \) | \(a_{186}= -0.47321642 \pm 2.7 \cdot 10^{-8} \) |
\(a_{187}= +1.17153983 \pm 1.2 \cdot 10^{-8} \) | \(a_{188}= +0.03446733 \pm 1 \cdot 10^{-8} \) | \(a_{189}= -0.65467347 \pm 1 \cdot 10^{-8} \) |
\(a_{190}= +0.04433818 \pm 4.7 \cdot 10^{-8} \) | \(a_{191}= +0.22500398 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -1.51752772 \pm 1.8 \cdot 10^{-8} \) |
\(a_{193}= -0.16961527 \pm 1 \cdot 10^{-8} \) | \(a_{194}= +0.40106008 \pm 1.3 \cdot 10^{-8} \) | \(a_{195}= +0.06750256 \pm 4.3 \cdot 10^{-8} \) |
\(a_{196}= -0.45911022 \pm 1.4 \cdot 10^{-8} \) | \(a_{197}= -1.25281724 \pm 1.8 \cdot 10^{-8} \) | \(a_{198}= +1.17462634 \pm 1 \cdot 10^{-8} \) |
\(a_{199}= -0.57270929 \pm 2.5 \cdot 10^{-8} \) | \(a_{200}= -0.21651138 \pm 2.7 \cdot 10^{-8} \) | \(a_{201}= +1.94776381 \pm 1.3 \cdot 10^{-8} \) |
\(a_{202}= +0.52346832 \pm 1.4 \cdot 10^{-8} \) | \(a_{203}= +0.47581964 \pm 1 \cdot 10^{-8} \) | \(a_{204}= +0.62069439 \pm 1.7 \cdot 10^{-8} \) |
\(a_{205}= +0.00621040 \pm 3.1 \cdot 10^{-8} \) | \(a_{206}= +0.41234231 \pm 2.2 \cdot 10^{-8} \) | \(a_{207}= -0.52655707 \pm 1 \cdot 10^{-8} \) |
\(a_{208}= +0.04144032 \pm 1 \cdot 10^{-8} \) | \(a_{209}= +0.15297389 \pm 1 \cdot 10^{-8} \) | \(a_{210}= -0.75447117 \pm 5.5 \cdot 10^{-8} \) |
\(a_{211}= -1.26147140 \pm 1.0 \cdot 10^{-8} \) | \(a_{212}= -0.44705259 \pm 1.4 \cdot 10^{-8} \) | \(a_{213}= +0.86676742 \pm 1.1 \cdot 10^{-8} \) |
\(a_{214}= +0.27535217 \pm 1.6 \cdot 10^{-8} \) | \(a_{215}= +0.44731355 \pm 3.0 \cdot 10^{-8} \) | \(a_{216}= +0.48776557 \pm 1.2 \cdot 10^{-8} \) |
\(a_{217}= +0.59218965 \pm 1 \cdot 10^{-8} \) | \(a_{218}= -0.73286344 \pm 1.2 \cdot 10^{-8} \) | \(a_{219}= -1.01936769 \pm 1.6 \cdot 10^{-8} \) |
\(a_{220}= -0.21840000 \pm 3.6 \cdot 10^{-8} \) | \(a_{221}= -0.09870623 \pm 1.5 \cdot 10^{-8} \) | \(a_{222}= -1.01633877 \pm 1.7 \cdot 10^{-8} \) |
\(a_{223}= -0.62536702 \pm 1.9 \cdot 10^{-8} \) | \(a_{224}= +1.10977510 \pm 1 \cdot 10^{-8} \) | \(a_{225}= +0.25945443 \pm 2.0 \cdot 10^{-8} \) |
\(a_{226}= +0.47641471 \pm 1.6 \cdot 10^{-8} \) | \(a_{227}= +0.28462575 \pm 1.5 \cdot 10^{-8} \) | \(a_{228}= +0.08104721 \pm 1.3 \cdot 10^{-8} \) |
\(a_{229}= +1.36096746 \pm 2.7 \cdot 10^{-8} \) | \(a_{230}= -0.13905495 \pm 3.6 \cdot 10^{-8} \) | \(a_{231}= -2.60304754 \pm 1 \cdot 10^{-8} \) |
\(a_{232}= -0.35451021 \pm 1 \cdot 10^{-8} \) | \(a_{233}= -1.47670851 \pm 2.5 \cdot 10^{-8} \) | \(a_{234}= -0.09896628 \pm 1 \cdot 10^{-8} \) |
\(a_{235}= -0.03730753 \pm 2.2 \cdot 10^{-8} \) | \(a_{236}= +0.77264113 \pm 1.3 \cdot 10^{-8} \) | \(a_{237}= +2.64707673 \pm 2.5 \cdot 10^{-8} \) |
\(a_{238}= +1.10323223 \pm 1 \cdot 10^{-8} \) | \(a_{239}= -1.36820003 \pm 1.8 \cdot 10^{-8} \) | \(a_{240}= +0.28206244 \pm 3.8 \cdot 10^{-8} \) |
\(a_{241}= +0.71872724 \pm 1.0 \cdot 10^{-8} \) | \(a_{242}= +0.30418761 \pm 1.4 \cdot 10^{-8} \) | \(a_{243}= +1.38173414 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= -0.50791980 \pm 1 \cdot 10^{-8} \) | \(a_{245}= +0.49694219 \pm 2.7 \cdot 10^{-8} \) | \(a_{246}= -0.01612381 \pm 2.7 \cdot 10^{-8} \) |
\(a_{247}= -0.01288857 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -0.44121189 \pm 1.2 \cdot 10^{-8} \) | \(a_{249}= -2.17335551 \pm 2.2 \cdot 10^{-8} \) |
\(a_{250}= +0.06851759 \pm 2.8 \cdot 10^{-8} \) | \(a_{251}= +1.44773752 \pm 2.7 \cdot 10^{-8} \) | \(a_{252}= -0.77879205 \pm 1 \cdot 10^{-8} \) |
\(a_{253}= -0.47976207 \pm 1 \cdot 10^{-8} \) | \(a_{254}= -0.43233145 \pm 1.7 \cdot 10^{-8} \) | \(a_{255}= -0.67184135 \pm 5.0 \cdot 10^{-8} \) |
\(a_{256}= -0.99876919 \pm 1.5 \cdot 10^{-8} \) | \(a_{257}= -0.81857587 \pm 1.4 \cdot 10^{-8} \) | \(a_{258}= -1.16134265 \pm 1.3 \cdot 10^{-8} \) |
\(a_{259}= +1.27186056 \pm 1 \cdot 10^{-8} \) | \(a_{260}= +0.01840095 \pm 3.9 \cdot 10^{-8} \) | \(a_{261}= +0.42482407 \pm 1 \cdot 10^{-8} \) |
\(a_{262}= -0.70677026 \pm 2.2 \cdot 10^{-8} \) | \(a_{263}= +0.23838960 \pm 2.1 \cdot 10^{-8} \) | \(a_{264}= +1.93940492 \pm 1 \cdot 10^{-8} \) |
\(a_{265}= +0.48389097 \pm 2.9 \cdot 10^{-8} \) | \(a_{266}= +0.14405462 \pm 1 \cdot 10^{-8} \) | \(a_{267}= +1.89323230 \pm 2.5 \cdot 10^{-8} \) |
\(a_{268}= +0.53095310 \pm 1 \cdot 10^{-8} \) | \(a_{269}= -0.75697050 \pm 1.8 \cdot 10^{-8} \) | \(a_{270}= -0.15435920 \pm 4.3 \cdot 10^{-8} \) |
\(a_{271}= -1.44740221 \pm 1.4 \cdot 10^{-8} \) | \(a_{272}= -0.41244833 \pm 1 \cdot 10^{-8} \) | \(a_{273}= +0.21931564 \pm 1 \cdot 10^{-8} \) |
\(a_{274}= +0.92012724 \pm 2.7 \cdot 10^{-8} \) | \(a_{275}= +0.23639677 \pm 2.0 \cdot 10^{-8} \) | \(a_{276}= -0.25418310 \pm 1 \cdot 10^{-8} \) |
\(a_{277}= -1.38014572 \pm 2.0 \cdot 10^{-8} \) | \(a_{278}= +0.78963304 \pm 1.5 \cdot 10^{-8} \) | \(a_{279}= +0.52872223 \pm 1 \cdot 10^{-8} \) |
\(a_{280}= -0.70344485 \pm 3.4 \cdot 10^{-8} \) | \(a_{281}= +1.38893333 \pm 1 \cdot 10^{-8} \) | \(a_{282}= +0.09686009 \pm 1 \cdot 10^{-8} \) |
\(a_{283}= -1.43241520 \pm 1.9 \cdot 10^{-8} \) | \(a_{284}= +0.23627754 \pm 1 \cdot 10^{-8} \) | \(a_{285}= -0.08772573 \pm 4.8 \cdot 10^{-8} \) |
\(a_{286}= -0.09017117 \pm 1.1 \cdot 10^{-8} \) | \(a_{287}= +0.02017756 \pm 1 \cdot 10^{-8} \) | \(a_{288}= +0.99083590 \pm 1 \cdot 10^{-8} \) |
\(a_{289}= -0.01759398 \pm 1 \cdot 10^{-8} \) | \(a_{290}= +0.11218896 \pm 3.7 \cdot 10^{-8} \) | \(a_{291}= -0.79352123 \pm 1.5 \cdot 10^{-8} \) |
\(a_{292}= -0.27787580 \pm 1.3 \cdot 10^{-8} \) | \(a_{293}= +0.05927663 \pm 2.4 \cdot 10^{-8} \) | \(a_{294}= -1.29019155 \pm 1.5 \cdot 10^{-8} \) |
\(a_{295}= -0.83630893 \pm 2.6 \cdot 10^{-8} \) | \(a_{296}= -0.94760183 \pm 2.3 \cdot 10^{-8} \) | \(a_{297}= -0.53256419 \pm 1 \cdot 10^{-8} \) |
\(a_{298}= +1.46544899 \pm 1 \cdot 10^{-8} \) | \(a_{299}= +0.04042159 \pm 1 \cdot 10^{-8} \) | \(a_{300}= +0.12524555 \pm 4.6 \cdot 10^{-8} \) |
\(a_{301}= +1.45332045 \pm 1 \cdot 10^{-8} \) | \(a_{302}= +0.21983407 \pm 1.5 \cdot 10^{-8} \) | \(a_{303}= -1.03571323 \pm 1.5 \cdot 10^{-8} \) |
\(a_{304}= -0.05385547 \pm 1 \cdot 10^{-8} \) | \(a_{305}= +0.54977382 \pm 2.1 \cdot 10^{-8} \) | \(a_{306}= +0.98499425 \pm 1 \cdot 10^{-8} \) |
\(a_{307}= +1.52983895 \pm 1.6 \cdot 10^{-8} \) | \(a_{308}= -0.70958098 \pm 1 \cdot 10^{-8} \) | \(a_{309}= -0.81584381 \pm 1.5 \cdot 10^{-8} \) |
\(a_{310}= +0.13962673 \pm 4.8 \cdot 10^{-8} \) | \(a_{311}= -0.50796146 \pm 1.8 \cdot 10^{-8} \) | \(a_{312}= -0.16340148 \pm 1 \cdot 10^{-8} \) |
\(a_{313}= +0.06764022 \pm 1.7 \cdot 10^{-8} \) | \(a_{314}= +0.24020174 \pm 1.5 \cdot 10^{-8} \) | \(a_{315}= +0.84296669 \pm 2.7 \cdot 10^{-8} \) |
\(a_{316}= +0.72158318 \pm 1.5 \cdot 10^{-8} \) | \(a_{317}= +0.01235319 \pm 2.6 \cdot 10^{-8} \) | \(a_{318}= -1.25630719 \pm 1.5 \cdot 10^{-8} \) |
\(a_{319}= +0.38707006 \pm 1 \cdot 10^{-8} \) | \(a_{320}= +0.44776012 \pm 2.8 \cdot 10^{-8} \) | \(a_{321}= -0.54480066 \pm 1.4 \cdot 10^{-8} \) |
\(a_{322}= -0.45178915 \pm 1 \cdot 10^{-8} \) | \(a_{323}= +0.12827773 \pm 1.8 \cdot 10^{-8} \) | \(a_{324}= +0.25383237 \pm 1.7 \cdot 10^{-8} \) |
\(a_{325}= -0.01991723 \pm 2.3 \cdot 10^{-8} \) | \(a_{326}= -0.96226669 \pm 1.5 \cdot 10^{-8} \) | \(a_{327}= +1.45001395 \pm 1 \cdot 10^{-8} \) |
\(a_{328}= -0.01503333 \pm 1.4 \cdot 10^{-8} \) | \(a_{329}= -0.12121207 \pm 1 \cdot 10^{-8} \) | \(a_{330}= -0.61374769 \pm 5.8 \cdot 10^{-8} \) |
\(a_{331}= -1.49598399 \pm 1.4 \cdot 10^{-8} \) | \(a_{332}= -0.59244855 \pm 1.4 \cdot 10^{-8} \) | \(a_{333}= +1.13554999 \pm 1 \cdot 10^{-8} \) |
\(a_{334}= -0.25894324 \pm 1.0 \cdot 10^{-8} \) | \(a_{335}= -0.57470512 \pm 2.2 \cdot 10^{-8} \) | \(a_{336}= +0.91642008 \pm 1 \cdot 10^{-8} \) |
\(a_{337}= +0.10917970 \pm 2.6 \cdot 10^{-8} \) | \(a_{338}= -0.75845274 \pm 1.0 \cdot 10^{-8} \) | \(a_{339}= -0.94261486 \pm 1.6 \cdot 10^{-8} \) |
\(a_{340}= -0.18314143 \pm 4.6 \cdot 10^{-8} \) | \(a_{341}= +0.48173481 \pm 1.0 \cdot 10^{-8} \) | \(a_{342}= +0.12861569 \pm 1 \cdot 10^{-8} \) |
\(a_{343}= +0.16156805 \pm 1.1 \cdot 10^{-8} \) | \(a_{344}= -1.08279883 \pm 1.9 \cdot 10^{-8} \) | \(a_{345}= +0.27512850 \pm 3.8 \cdot 10^{-8} \) |
\(a_{346}= +0.67259995 \pm 2.2 \cdot 10^{-8} \) | \(a_{347}= +0.44143828 \pm 1.2 \cdot 10^{-8} \) | \(a_{348}= +0.20507388 \pm 1 \cdot 10^{-8} \) |
\(a_{349}= +0.75575467 \pm 1.9 \cdot 10^{-8} \) | \(a_{350}= +0.22261346 \pm 3.6 \cdot 10^{-8} \) | \(a_{351}= +0.04487035 \pm 1 \cdot 10^{-8} \) |
\(a_{352}= +0.90278055 \pm 1 \cdot 10^{-8} \) | \(a_{353}= +1.10792858 \pm 1 \cdot 10^{-8} \) | \(a_{354}= +2.17127613 \pm 1.7 \cdot 10^{-8} \) |
\(a_{355}= -0.25574748 \pm 2.0 \cdot 10^{-8} \) | \(a_{356}= +0.51608801 \pm 2.0 \cdot 10^{-8} \) | \(a_{357}= -2.18281063 \pm 1 \cdot 10^{-8} \) |
\(a_{358}= +0.48866960 \pm 2.7 \cdot 10^{-8} \) | \(a_{359}= +0.08565569 \pm 1 \cdot 10^{-8} \) | \(a_{360}= -0.62805374 \pm 3.7 \cdot 10^{-8} \) |
\(a_{361}= -0.98325013 \pm 1.4 \cdot 10^{-8} \) | \(a_{362}= -0.56341949 \pm 2.1 \cdot 10^{-8} \) | \(a_{363}= -0.60185329 \pm 1.7 \cdot 10^{-8} \) |
\(a_{364}= +0.05978462 \pm 1 \cdot 10^{-8} \) | \(a_{365}= +0.30077355 \pm 2.6 \cdot 10^{-8} \) | \(a_{366}= -1.42735625 \pm 1 \cdot 10^{-8} \) |
\(a_{367}= -1.64325938 \pm 1.6 \cdot 10^{-8} \) | \(a_{368}= +0.16890341 \pm 1 \cdot 10^{-8} \) | \(a_{369}= +0.01801505 \pm 1 \cdot 10^{-8} \) |
\(a_{370}= +0.29987984 \pm 5.2 \cdot 10^{-8} \) | \(a_{371}= +1.57216040 \pm 1 \cdot 10^{-8} \) | \(a_{372}= +0.25522828 \pm 2.4 \cdot 10^{-8} \) |
\(a_{373}= -1.45104317 \pm 2.2 \cdot 10^{-8} \) | \(a_{374}= +0.89745805 \pm 1.1 \cdot 10^{-8} \) | \(a_{375}= -0.13556614 \pm 3.0 \cdot 10^{-8} \) |
\(a_{376}= +0.09030926 \pm 1.2 \cdot 10^{-8} \) | \(a_{377}= -0.03261197 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.50151259 \pm 1 \cdot 10^{-8} \) |
\(a_{379}= -0.51020285 \pm 1.5 \cdot 10^{-8} \) | \(a_{380}= -0.02391370 \pm 4.5 \cdot 10^{-8} \) | \(a_{381}= +0.85539352 \pm 2.0 \cdot 10^{-8} \) |
\(a_{382}= +0.17236429 \pm 1 \cdot 10^{-8} \) | \(a_{383}= +0.72787804 \pm 2.1 \cdot 10^{-8} \) | \(a_{384}= -0.00485315 \pm 1.5 \cdot 10^{-8} \) |
\(a_{385}= +0.76805244 \pm 2.8 \cdot 10^{-8} \) | \(a_{386}= -0.12993377 \pm 1 \cdot 10^{-8} \) | \(a_{387}= +1.29756207 \pm 1 \cdot 10^{-8} \) |
\(a_{388}= -0.21631091 \pm 1.0 \cdot 10^{-8} \) | \(a_{389}= -0.52443185 \pm 2.1 \cdot 10^{-8} \) | \(a_{390}= +0.05171034 \pm 6.1 \cdot 10^{-8} \) |
\(a_{391}= -0.40230911 \pm 1 \cdot 10^{-8} \) | \(a_{392}= -1.20293343 \pm 1.4 \cdot 10^{-8} \) | \(a_{393}= +1.39838703 \pm 1.9 \cdot 10^{-8} \) |
\(a_{394}= -0.95972061 \pm 2.1 \cdot 10^{-8} \) | \(a_{395}= -0.78104365 \pm 3.3 \cdot 10^{-8} \) | \(a_{396}= -0.63353225 \pm 1 \cdot 10^{-8} \) |
\(a_{397}= +1.52404943 \pm 1.9 \cdot 10^{-8} \) | \(a_{398}= -0.43872394 \pm 2.2 \cdot 10^{-8} \) | \(a_{399}= -0.28502064 \pm 1 \cdot 10^{-8} \) |
\(a_{400}= -0.08322505 \pm 1.8 \cdot 10^{-8} \) | \(a_{401}= +0.71987817 \pm 2.9 \cdot 10^{-8} \) | \(a_{402}= +1.49208441 \pm 1 \cdot 10^{-8} \) |
\(a_{403}= -0.04058780 \pm 1.6 \cdot 10^{-8} \) | \(a_{404}= -0.28233154 \pm 1.1 \cdot 10^{-8} \) | \(a_{405}= -0.27474887 \pm 3.0 \cdot 10^{-8} \) |
\(a_{406}= +0.36450162 \pm 1 \cdot 10^{-8} \) | \(a_{407}= +1.03463393 \pm 1 \cdot 10^{-8} \) | \(a_{408}= +1.62630671 \pm 1.7 \cdot 10^{-8} \) |
\(a_{409}= -0.38953026 \pm 1.9 \cdot 10^{-8} \) | \(a_{410}= +0.00475747 \pm 4.9 \cdot 10^{-8} \) | \(a_{411}= -1.82052651 \pm 2.3 \cdot 10^{-8} \) |
\(a_{412}= -0.22239596 \pm 1.9 \cdot 10^{-8} \) | \(a_{413}= -2.71716533 \pm 1 \cdot 10^{-8} \) | \(a_{414}= -0.40336903 \pm 1 \cdot 10^{-8} \) |
\(a_{415}= +0.64126797 \pm 3.0 \cdot 10^{-8} \) | \(a_{416}= -0.07606234 \pm 1.3 \cdot 10^{-8} \) | \(a_{417}= -1.56233598 \pm 2.3 \cdot 10^{-8} \) |
\(a_{418}= +0.11718564 \pm 1 \cdot 10^{-8} \) | \(a_{419}= +1.65972743 \pm 1 \cdot 10^{-8} \) | \(a_{420}= +0.40692244 \pm 5.3 \cdot 10^{-8} \) |
\(a_{421}= -0.46875328 \pm 1.3 \cdot 10^{-8} \) | \(a_{422}= -0.96635013 \pm 1 \cdot 10^{-8} \) | \(a_{423}= -0.10822127 \pm 1.0 \cdot 10^{-8} \) |
\(a_{424}= -1.17134074 \pm 1.8 \cdot 10^{-8} \) | \(a_{425}= +0.19823279 \pm 3.0 \cdot 10^{-8} \) | \(a_{426}= +0.66398716 \pm 1.1 \cdot 10^{-8} \) |
\(a_{427}= +1.78621358 \pm 1 \cdot 10^{-8} \) | \(a_{428}= -0.14851061 \pm 1.2 \cdot 10^{-8} \) | \(a_{429}= +0.17840902 \pm 1 \cdot 10^{-8} \) |
\(a_{430}= +0.34266453 \pm 4.9 \cdot 10^{-8} \) | \(a_{431}= +0.07377263 \pm 1.8 \cdot 10^{-8} \) | \(a_{432}= +0.18749274 \pm 1 \cdot 10^{-8} \) |
\(a_{433}= -0.28533798 \pm 2.3 \cdot 10^{-8} \) | \(a_{434}= +0.45364686 \pm 1 \cdot 10^{-8} \) | \(a_{435}= -0.22197254 \pm 3.9 \cdot 10^{-8} \) |
\(a_{436}= +0.39526836 \pm 1.0 \cdot 10^{-8} \) | \(a_{437}= -0.05253154 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.78088659 \pm 1.3 \cdot 10^{-8} \) |
\(a_{439}= +1.01903517 \pm 1.2 \cdot 10^{-8} \) | \(a_{440}= -0.57223876 \pm 3.7 \cdot 10^{-8} \) | \(a_{441}= +1.44152426 \pm 1 \cdot 10^{-8} \) |
\(a_{442}= -0.07561390 \pm 1.7 \cdot 10^{-8} \) | \(a_{443}= +1.45510732 \pm 1.6 \cdot 10^{-8} \) | \(a_{444}= +0.54816018 \pm 1.8 \cdot 10^{-8} \) |
\(a_{445}= -0.55861511 \pm 3.3 \cdot 10^{-8} \) | \(a_{446}= -0.47906239 \pm 1.9 \cdot 10^{-8} \) | \(a_{447}= -2.89947806 \pm 1 \cdot 10^{-8} \) |
\(a_{448}= +1.45477135 \pm 1 \cdot 10^{-8} \) | \(a_{449}= -0.74989547 \pm 2.0 \cdot 10^{-8} \) | \(a_{450}= +0.19875506 \pm 3.8 \cdot 10^{-8} \) |
\(a_{451}= +0.01641405 \pm 1.2 \cdot 10^{-8} \) | \(a_{452}= -0.25695327 \pm 1.4 \cdot 10^{-8} \) | \(a_{453}= -0.43495480 \pm 1.2 \cdot 10^{-8} \) |
\(a_{454}= +0.21803755 \pm 1.6 \cdot 10^{-8} \) | \(a_{455}= -0.06471104 \pm 3.0 \cdot 10^{-8} \) | \(a_{456}= +0.21235510 \pm 2.1 \cdot 10^{-8} \) |
\(a_{457}= +1.37787673 \pm 1.9 \cdot 10^{-8} \) | \(a_{458}= +1.04256908 \pm 2.1 \cdot 10^{-8} \) | \(a_{459}= -0.44658684 \pm 1.5 \cdot 10^{-8} \) |
\(a_{460}= +0.07499900 \pm 3.4 \cdot 10^{-8} \) | \(a_{461}= +0.58966839 \pm 2.6 \cdot 10^{-8} \) | \(a_{462}= -1.99406450 \pm 1 \cdot 10^{-8} \) |
\(a_{463}= -1.44216775 \pm 1.5 \cdot 10^{-8} \) | \(a_{464}= -0.13627057 \pm 1 \cdot 10^{-8} \) | \(a_{465}= -0.27625980 \pm 4.9 \cdot 10^{-8} \) |
\(a_{466}= -1.13123251 \pm 1.8 \cdot 10^{-8} \) | \(a_{467}= -0.86891662 \pm 1 \cdot 10^{-8} \) | \(a_{468}= +0.05337725 \pm 1 \cdot 10^{-8} \) |
\(a_{469}= -1.86721531 \pm 1 \cdot 10^{-8} \) | \(a_{470}= -0.02857944 \pm 4.0 \cdot 10^{-8} \) | \(a_{471}= -0.47525345 \pm 1.8 \cdot 10^{-8} \) |
\(a_{472}= +2.02442857 \pm 1.3 \cdot 10^{-8} \) | \(a_{473}= +1.18224804 \pm 1 \cdot 10^{-8} \) | \(a_{474}= +2.02779306 \pm 1.7 \cdot 10^{-8} \) |
\(a_{475}= +0.02588426 \pm 2.9 \cdot 10^{-8} \) | \(a_{476}= -0.59502598 \pm 1 \cdot 10^{-8} \) | \(a_{477}= +1.40366545 \pm 1 \cdot 10^{-8} \) |
\(a_{478}= -1.04810959 \pm 1.6 \cdot 10^{-8} \) | \(a_{479}= +1.17696759 \pm 1.6 \cdot 10^{-8} \) | \(a_{480}= -0.51771633 \pm 4.9 \cdot 10^{-8} \) |
\(a_{481}= -0.08717144 \pm 1 \cdot 10^{-8} \) | \(a_{482}= +0.55058098 \pm 1.3 \cdot 10^{-8} \) | \(a_{483}= +0.89389172 \pm 1 \cdot 10^{-8} \) |
\(a_{484}= -0.16406295 \pm 1.3 \cdot 10^{-8} \) | \(a_{485}= +0.23413553 \pm 2.5 \cdot 10^{-8} \) | \(a_{486}= +1.05847740 \pm 1 \cdot 10^{-8} \) |
\(a_{487}= -0.98926385 \pm 2.4 \cdot 10^{-8} \) | \(a_{488}= -1.33082142 \pm 1.0 \cdot 10^{-8} \) | \(a_{489}= +1.90390193 \pm 1.4 \cdot 10^{-8} \) |
\(a_{490}= +0.38068255 \pm 4.5 \cdot 10^{-8} \) | \(a_{491}= -0.90178475 \pm 1.2 \cdot 10^{-8} \) | \(a_{492}= +0.00869634 \pm 2.4 \cdot 10^{-8} \) |
\(a_{493}= +0.32458133 \pm 1 \cdot 10^{-8} \) | \(a_{494}= -0.00987329 \pm 1 \cdot 10^{-8} \) | \(a_{495}= +0.68573708 \pm 3.0 \cdot 10^{-8} \) |
\(a_{496}= -0.16959792 \pm 1.0 \cdot 10^{-8} \) | \(a_{497}= -0.83092282 \pm 1 \cdot 10^{-8} \) | \(a_{498}= -1.66489893 \pm 1.6 \cdot 10^{-8} \) |
\(a_{499}= -1.96114453 \pm 2.3 \cdot 10^{-8} \) | \(a_{500}= -0.03695482 \pm 2.6 \cdot 10^{-8} \) | \(a_{501}= +0.51233462 \pm 1.7 \cdot 10^{-8} \) |
\(a_{502}= +1.10903929 \pm 1.7 \cdot 10^{-8} \) | \(a_{503}= +0.43118212 \pm 2.4 \cdot 10^{-8} \) | \(a_{504}= -2.04054483 \pm 1 \cdot 10^{-8} \) |
\(a_{505}= +0.30559645 \pm 2.6 \cdot 10^{-8} \) | \(a_{506}= -0.36752172 \pm 1 \cdot 10^{-8} \) | \(a_{507}= +1.50064390 \pm 1.6 \cdot 10^{-8} \) |
\(a_{508}= +0.23317706 \pm 1.3 \cdot 10^{-8} \) | \(a_{509}= +0.17650226 \pm 1.3 \cdot 10^{-8} \) | \(a_{510}= -0.51466405 \pm 6.8 \cdot 10^{-8} \) |
\(a_{511}= +0.97721241 \pm 1 \cdot 10^{-8} \) | \(a_{512}= -0.76830908 \pm 1.2 \cdot 10^{-8} \) | \(a_{513}= -0.05831311 \pm 1.5 \cdot 10^{-8} \) |
\(a_{514}= -0.62707002 \pm 2.1 \cdot 10^{-8} \) | \(a_{515}= +0.24072201 \pm 2.5 \cdot 10^{-8} \) | \(a_{516}= +0.62636772 \pm 1.4 \cdot 10^{-8} \) |
\(a_{517}= -0.09860368 \pm 1.2 \cdot 10^{-8} \) | \(a_{518}= +0.97430874 \pm 1 \cdot 10^{-8} \) | \(a_{519}= -1.33077904 \pm 1.8 \cdot 10^{-8} \) |
\(a_{520}= +0.04821307 \pm 4.0 \cdot 10^{-8} \) | \(a_{521}= -0.11530268 \pm 1.7 \cdot 10^{-8} \) | \(a_{522}= +0.32543647 \pm 1 \cdot 10^{-8} \) |
\(a_{523}= -0.41558703 \pm 2.5 \cdot 10^{-8} \) | \(a_{524}= +0.38119505 \pm 1.9 \cdot 10^{-8} \) | \(a_{525}= -0.44045399 \pm 3.7 \cdot 10^{-8} \) |
\(a_{526}= +0.18261834 \pm 2.4 \cdot 10^{-8} \) | \(a_{527}= +0.40396337 \pm 2.0 \cdot 10^{-8} \) | \(a_{528}= +0.74548999 \pm 1 \cdot 10^{-8} \) |
\(a_{529}= -0.83524875 \pm 1.6 \cdot 10^{-8} \) | \(a_{530}= +0.37068467 \pm 4.7 \cdot 10^{-8} \) | \(a_{531}= -2.42595545 \pm 1 \cdot 10^{-8} \) |
\(a_{532}= -0.07769556 \pm 1 \cdot 10^{-8} \) | \(a_{533}= -0.00138294 \pm 1.7 \cdot 10^{-8} \) | \(a_{534}= +1.45031055 \pm 2.2 \cdot 10^{-8} \) |
\(a_{535}= +0.16074831 \pm 2.5 \cdot 10^{-8} \) | \(a_{536}= +1.39117189 \pm 1.1 \cdot 10^{-8} \) | \(a_{537}= -0.96686190 \pm 1.9 \cdot 10^{-8} \) |
\(a_{538}= -0.57987723 \pm 1.6 \cdot 10^{-8} \) | \(a_{539}= +1.31341635 \pm 1 \cdot 10^{-8} \) | \(a_{540}= +0.08325331 \pm 4.1 \cdot 10^{-8} \) |
\(a_{541}= +0.95759742 \pm 1.6 \cdot 10^{-8} \) | \(a_{542}= -1.10878242 \pm 1.4 \cdot 10^{-8} \) | \(a_{543}= +1.11475899 \pm 2.0 \cdot 10^{-8} \) |
\(a_{544}= +0.75703534 \pm 2.1 \cdot 10^{-8} \) | \(a_{545}= -0.42783958 \pm 1.9 \cdot 10^{-8} \) | \(a_{546}= +0.16800674 \pm 1 \cdot 10^{-8} \) |
\(a_{547}= +1.63497729 \pm 1.3 \cdot 10^{-8} \) | \(a_{548}= -0.49626869 \pm 2.4 \cdot 10^{-8} \) | \(a_{549}= +1.59477766 \pm 1 \cdot 10^{-8} \) |
\(a_{550}= +0.18109174 \pm 3.8 \cdot 10^{-8} \) | \(a_{551}= +0.04238223 \pm 1 \cdot 10^{-8} \) | \(a_{552}= -0.66599552 \pm 1 \cdot 10^{-8} \) |
\(a_{553}= -2.53760861 \pm 1 \cdot 10^{-8} \) | \(a_{554}= -1.05726059 \pm 2.5 \cdot 10^{-8} \) | \(a_{555}= -0.59333011 \pm 5.4 \cdot 10^{-8} \) |
\(a_{556}= -0.42588692 \pm 1.3 \cdot 10^{-8} \) | \(a_{557}= -1.11026112 \pm 1.4 \cdot 10^{-8} \) | \(a_{558}= +0.40502765 \pm 1 \cdot 10^{-8} \) |
\(a_{559}= -0.09960843 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.27039794 \pm 2.6 \cdot 10^{-8} \) | \(a_{561}= -1.77567417 \pm 1 \cdot 10^{-8} \) |
\(a_{562}= +1.06399233 \pm 1 \cdot 10^{-8} \) | \(a_{563}= +1.33528333 \pm 1 \cdot 10^{-8} \) | \(a_{564}= -0.05224129 \pm 1 \cdot 10^{-8} \) |
\(a_{565}= +0.27812694 \pm 2.4 \cdot 10^{-8} \) | \(a_{566}= -1.09730163 \pm 2.7 \cdot 10^{-8} \) | \(a_{567}= -0.89265831 \pm 1 \cdot 10^{-8} \) |
\(a_{568}= +0.61908044 \pm 1 \cdot 10^{-8} \) | \(a_{569}= +0.74409540 \pm 1.1 \cdot 10^{-8} \) | \(a_{570}= -0.06720229 \pm 6.7 \cdot 10^{-8} \) |
\(a_{571}= -0.68303557 \pm 1.5 \cdot 10^{-8} \) | \(a_{572}= +0.04863363 \pm 1 \cdot 10^{-8} \) | \(a_{573}= -0.34103301 \pm 1 \cdot 10^{-8} \) |
\(a_{574}= +0.01545702 \pm 1.0 \cdot 10^{-8} \) | \(a_{575}= -0.08117912 \pm 1.8 \cdot 10^{-8} \) | \(a_{576}= +1.29885747 \pm 1 \cdot 10^{-8} \) |
\(a_{577}= +0.09463230 \pm 1.6 \cdot 10^{-8} \) | \(a_{578}= -0.01347786 \pm 1 \cdot 10^{-8} \) | \(a_{579}= +0.25708170 \pm 1 \cdot 10^{-8} \) |
\(a_{580}= -0.06050888 \pm 3.5 \cdot 10^{-8} \) | \(a_{581}= +2.08347782 \pm 1 \cdot 10^{-8} \) | \(a_{582}= -0.60787692 \pm 1.3 \cdot 10^{-8} \) |
\(a_{583}= +1.27892204 \pm 1 \cdot 10^{-8} \) | \(a_{584}= -0.72807374 \pm 1.4 \cdot 10^{-8} \) | \(a_{585}= -0.05777569 \pm 3.3 \cdot 10^{-8} \) |
\(a_{586}= +0.04540886 \pm 1.5 \cdot 10^{-8} \) | \(a_{587}= -0.99585889 \pm 1.6 \cdot 10^{-8} \) | \(a_{588}= +0.69586210 \pm 1.4 \cdot 10^{-8} \) |
\(a_{589}= +0.05274754 \pm 1.2 \cdot 10^{-8} \) | \(a_{590}= -0.64065443 \pm 4.4 \cdot 10^{-8} \) | \(a_{591}= +1.89886436 \pm 1.9 \cdot 10^{-8} \) |
\(a_{592}= -0.36424971 \pm 1 \cdot 10^{-8} \) | \(a_{593}= -0.14005652 \pm 2.2 \cdot 10^{-8} \) | \(a_{594}= -0.40797078 \pm 1 \cdot 10^{-8} \) |
\(a_{595}= +0.64405779 \pm 3.8 \cdot 10^{-8} \) | \(a_{596}= -0.79038683 \pm 1 \cdot 10^{-8} \) | \(a_{597}= +0.86804143 \pm 2.6 \cdot 10^{-8} \) |
\(a_{598}= +0.03096496 \pm 1 \cdot 10^{-8} \) | \(a_{599}= -1.44232258 \pm 2.3 \cdot 10^{-8} \) | \(a_{600}= +0.32816098 \pm 4.7 \cdot 10^{-8} \) |
\(a_{601}= -0.12369234 \pm 2.3 \cdot 10^{-8} \) | \(a_{602}= +1.11331609 \pm 1 \cdot 10^{-8} \) | \(a_{603}= -1.66709810 \pm 1 \cdot 10^{-8} \) |
\(a_{604}= -0.11856704 \pm 1.2 \cdot 10^{-8} \) | \(a_{605}= +0.17758219 \pm 2.6 \cdot 10^{-8} \) | \(a_{606}= -0.79340809 \pm 1.4 \cdot 10^{-8} \) |
\(a_{607}= +1.57695518 \pm 1.3 \cdot 10^{-8} \) | \(a_{608}= +0.09884994 \pm 1.8 \cdot 10^{-8} \) | \(a_{609}= -0.72118815 \pm 1 \cdot 10^{-8} \) |
\(a_{610}= +0.42115422 \pm 3.9 \cdot 10^{-8} \) | \(a_{611}= +0.00830770 \pm 1.5 \cdot 10^{-8} \) | \(a_{612}= -0.53125458 \pm 1 \cdot 10^{-8} \) |
\(a_{613}= -0.50733413 \pm 2.0 \cdot 10^{-8} \) | \(a_{614}= +1.17193308 \pm 1.1 \cdot 10^{-8} \) | \(a_{615}= -0.00941295 \pm 5.0 \cdot 10^{-8} \) |
\(a_{616}= -1.85920210 \pm 1 \cdot 10^{-8} \) | \(a_{617}= -0.11717167 \pm 2.6 \cdot 10^{-8} \) | \(a_{618}= -0.62497713 \pm 2.3 \cdot 10^{-8} \) |
\(a_{619}= +0.08767936 \pm 2.6 \cdot 10^{-8} \) | \(a_{620}= -0.07530739 \pm 4.5 \cdot 10^{-8} \) | \(a_{621}= +0.18288361 \pm 1 \cdot 10^{-8} \) |
\(a_{622}= -0.38912386 \pm 1.7 \cdot 10^{-8} \) | \(a_{623}= -1.81493892 \pm 1 \cdot 10^{-8} \) | \(a_{624}= -0.06281008 \pm 1 \cdot 10^{-8} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +0.05181579 \pm 1.6 \cdot 10^{-8} \) | \(a_{627}= -0.23185877 \pm 1 \cdot 10^{-8} \) |
\(a_{628}= -0.12955230 \pm 1.1 \cdot 10^{-8} \) | \(a_{629}= +0.86760227 \pm 2.5 \cdot 10^{-8} \) | \(a_{630}= +0.64575461 \pm 4.5 \cdot 10^{-8} \) |
\(a_{631}= +0.65043340 \pm 2.1 \cdot 10^{-8} \) | \(a_{632}= +1.89064954 \pm 2.2 \cdot 10^{-8} \) | \(a_{633}= +1.91198126 \pm 1 \cdot 10^{-8} \) |
\(a_{634}= +0.00946316 \pm 1.8 \cdot 10^{-8} \) | \(a_{635}= -0.25239150 \pm 3.2 \cdot 10^{-8} \) | \(a_{636}= +0.67758664 \pm 1.5 \cdot 10^{-8} \) |
\(a_{637}= -0.11065981 \pm 1.1 \cdot 10^{-8} \) | \(a_{638}= +0.29651501 \pm 1 \cdot 10^{-8} \) | \(a_{639}= -0.74186938 \pm 1 \cdot 10^{-8} \) |
\(a_{640}= +0.00143196 \pm 2.4 \cdot 10^{-8} \) | \(a_{641}= -0.60300774 \pm 1.4 \cdot 10^{-8} \) | \(a_{642}= -0.41734453 \pm 1.6 \cdot 10^{-8} \) |
\(a_{643}= +0.55396183 \pm 1.1 \cdot 10^{-8} \) | \(a_{644}= +0.24367153 \pm 1 \cdot 10^{-8} \) | \(a_{645}= -0.67798217 \pm 5.0 \cdot 10^{-8} \) |
\(a_{646}= +0.09826715 \pm 1.2 \cdot 10^{-8} \) | \(a_{647}= +0.15827264 \pm 2.2 \cdot 10^{-8} \) | \(a_{648}= +0.66507656 \pm 1.8 \cdot 10^{-8} \) |
\(a_{649}= -2.21036138 \pm 1 \cdot 10^{-8} \) | \(a_{650}= -0.01525760 \pm 4.1 \cdot 10^{-8} \) | \(a_{651}= -0.89756732 \pm 1 \cdot 10^{-8} \) |
\(a_{652}= +0.51899651 \pm 1.2 \cdot 10^{-8} \) | \(a_{653}= -0.07667955 \pm 1.3 \cdot 10^{-8} \) | \(a_{654}= +1.11078314 \pm 1.2 \cdot 10^{-8} \) |
\(a_{655}= -0.41260659 \pm 2.8 \cdot 10^{-8} \) | \(a_{656}= -0.00577868 \pm 1.1 \cdot 10^{-8} \) | \(a_{657}= +0.87248050 \pm 1 \cdot 10^{-8} \) |
\(a_{658}= -0.09285451 \pm 1 \cdot 10^{-8} \) | \(a_{659}= +1.18390556 \pm 2.5 \cdot 10^{-8} \) | \(a_{660}= +0.33102352 \pm 5.6 \cdot 10^{-8} \) |
\(a_{661}= -0.66562409 \pm 1.7 \cdot 10^{-8} \) | \(a_{662}= -1.14599850 \pm 1.8 \cdot 10^{-8} \) | \(a_{663}= +0.14960661 \pm 1.0 \cdot 10^{-8} \) |
\(a_{664}= -1.55229863 \pm 1.8 \cdot 10^{-8} \) | \(a_{665}= +0.08409789 \pm 3.6 \cdot 10^{-8} \) | \(a_{666}= +0.86988804 \pm 1 \cdot 10^{-8} \) |
\(a_{667}= -0.13292063 \pm 1 \cdot 10^{-8} \) | \(a_{668}= +0.13966049 \pm 1 \cdot 10^{-8} \) | \(a_{669}= +0.94785345 \pm 2.2 \cdot 10^{-8} \) |
\(a_{670}= -0.44025284 \pm 4.0 \cdot 10^{-8} \) | \(a_{671}= +1.45305016 \pm 1 \cdot 10^{-8} \) | \(a_{672}= -1.68205890 \pm 1 \cdot 10^{-8} \) |
\(a_{673}= -0.00467160 \pm 1.5 \cdot 10^{-8} \) | \(a_{674}= +0.08363711 \pm 1.7 \cdot 10^{-8} \) | \(a_{675}= -0.09011361 \pm 2.5 \cdot 10^{-8} \) |
\(a_{676}= +0.40906989 \pm 1.0 \cdot 10^{-8} \) | \(a_{677}= -0.75652563 \pm 1.8 \cdot 10^{-8} \) | \(a_{678}= -0.72209009 \pm 1.8 \cdot 10^{-8} \) |
\(a_{679}= +0.76070568 \pm 1 \cdot 10^{-8} \) | \(a_{680}= -0.47985633 \pm 4.7 \cdot 10^{-8} \) | \(a_{681}= -0.43140027 \pm 1.5 \cdot 10^{-8} \) |
\(a_{682}= +0.36903294 \pm 1.3 \cdot 10^{-8} \) | \(a_{683}= -1.14027858 \pm 2.5 \cdot 10^{-8} \) | \(a_{684}= -0.06936860 \pm 1 \cdot 10^{-8} \) |
\(a_{685}= +0.53716262 \pm 3.3 \cdot 10^{-8} \) | \(a_{686}= +0.12376920 \pm 1.1 \cdot 10^{-8} \) | \(a_{687}= -2.06278499 \pm 3.0 \cdot 10^{-8} \) |
\(a_{688}= -0.41621823 \pm 1 \cdot 10^{-8} \) | \(a_{689}= -0.10775355 \pm 1.0 \cdot 10^{-8} \) | \(a_{690}= +0.21076218 \pm 5.6 \cdot 10^{-8} \) |
\(a_{691}= -0.62226693 \pm 1.2 \cdot 10^{-8} \) | \(a_{692}= -0.36276537 \pm 1.9 \cdot 10^{-8} \) | \(a_{693}= +2.22795782 \pm 1 \cdot 10^{-8} \) |
\(a_{694}= +0.33816378 \pm 1.0 \cdot 10^{-8} \) | \(a_{695}= +0.46098120 \pm 3.2 \cdot 10^{-8} \) | \(a_{696}= +0.53732244 \pm 1.0 \cdot 10^{-8} \) |
\(a_{697}= +0.01376416 \pm 2.1 \cdot 10^{-8} \) | \(a_{698}= +0.57894585 \pm 2.4 \cdot 10^{-8} \) | \(a_{699}= +2.23821087 \pm 2.7 \cdot 10^{-8} \) |
\(a_{700}= -0.12006610 \pm 3.3 \cdot 10^{-8} \) | \(a_{701}= +0.07813165 \pm 1.0 \cdot 10^{-8} \) | \(a_{702}= +0.03437293 \pm 1.2 \cdot 10^{-8} \) |
\(a_{703}= +0.11328722 \pm 2.8 \cdot 10^{-8} \) | \(a_{704}= +1.18342832 \pm 1.1 \cdot 10^{-8} \) | \(a_{705}= +0.05654612 \pm 4.2 \cdot 10^{-8} \) |
\(a_{706}= +0.84872866 \pm 1 \cdot 10^{-8} \) | \(a_{707}= +0.99288199 \pm 1 \cdot 10^{-8} \) | \(a_{708}= -1.17107321 \pm 1.3 \cdot 10^{-8} \) |
\(a_{709}= -0.32524368 \pm 2.3 \cdot 10^{-8} \) | \(a_{710}= -0.19591535 \pm 3.8 \cdot 10^{-8} \) | \(a_{711}= -2.26564257 \pm 1.1 \cdot 10^{-8} \) |
\(a_{712}= +1.35222327 \pm 2.0 \cdot 10^{-8} \) | \(a_{713}= -0.16542869 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -1.67214202 \pm 1 \cdot 10^{-8} \) |
\(a_{715}= -0.05264118 \pm 3.3 \cdot 10^{-8} \) | \(a_{716}= -0.26356292 \pm 2.3 \cdot 10^{-8} \) | \(a_{717}= +2.07374722 \pm 1.5 \cdot 10^{-8} \) |
\(a_{718}= +0.06561654 \pm 1.0 \cdot 10^{-8} \) | \(a_{719}= -1.62108999 \pm 1 \cdot 10^{-8} \) | \(a_{720}= -0.24141827 \pm 2.8 \cdot 10^{-8} \) |
\(a_{721}= +0.78210513 \pm 1 \cdot 10^{-8} \) | \(a_{722}= -0.75321873 \pm 1.5 \cdot 10^{-8} \) | \(a_{723}= -1.08935724 \pm 1.1 \cdot 10^{-8} \) |
\(a_{724}= +0.30387911 \pm 1.8 \cdot 10^{-8} \) | \(a_{725}= +0.06549498 \pm 1.9 \cdot 10^{-8} \) | \(a_{726}= -0.46104970 \pm 1.4 \cdot 10^{-8} \) |
\(a_{727}= -1.24562545 \pm 2.0 \cdot 10^{-8} \) | \(a_{728}= +0.15664412 \pm 1 \cdot 10^{-8} \) | \(a_{729}= -1.47990339 \pm 1.5 \cdot 10^{-8} \) |
\(a_{730}= +0.23040757 \pm 4.4 \cdot 10^{-8} \) | \(a_{731}= +0.99138550 \pm 2.1 \cdot 10^{-8} \) | \(a_{732}= +0.76984159 \pm 1 \cdot 10^{-8} \) |
\(a_{733}= +1.31006960 \pm 1.3 \cdot 10^{-8} \) | \(a_{734}= -1.25881880 \pm 2.4 \cdot 10^{-8} \) | \(a_{735}= -0.75320308 \pm 4.6 \cdot 10^{-8} \) |
\(a_{736}= -0.31001664 \pm 1 \cdot 10^{-8} \) | \(a_{737}= -1.51894349 \pm 1 \cdot 10^{-8} \) | \(a_{738}= +0.01380043 \pm 1 \cdot 10^{-8} \) |
\(a_{739}= +0.15894830 \pm 1.6 \cdot 10^{-8} \) | \(a_{740}= -0.16173956 \pm 5.0 \cdot 10^{-8} \) | \(a_{741}= +0.01953489 \pm 1 \cdot 10^{-8} \) |
\(a_{742}= +1.20435343 \pm 1 \cdot 10^{-8} \) | \(a_{743}= +1.62898102 \pm 2.6 \cdot 10^{-8} \) | \(a_{744}= +0.66873403 \pm 1.3 \cdot 10^{-8} \) |
\(a_{745}= +0.85551692 \pm 1.7 \cdot 10^{-8} \) | \(a_{746}= -1.11157158 \pm 2.6 \cdot 10^{-8} \) | \(a_{747}= +1.86018286 \pm 1 \cdot 10^{-8} \) |
\(a_{748}= -0.48404211 \pm 1 \cdot 10^{-8} \) | \(a_{749}= +0.52227079 \pm 1 \cdot 10^{-8} \) | \(a_{750}= -0.10385043 \pm 4.8 \cdot 10^{-8} \) |
\(a_{751}= +0.69626605 \pm 1.7 \cdot 10^{-8} \) | \(a_{752}= +0.03471408 \pm 1 \cdot 10^{-8} \) | \(a_{753}= -2.19430025 \pm 2.9 \cdot 10^{-8} \) |
\(a_{754}= -0.02498240 \pm 1 \cdot 10^{-8} \) | \(a_{755}= +0.12833730 \pm 2.2 \cdot 10^{-8} \) | \(a_{756}= +0.27048976 \pm 1 \cdot 10^{-8} \) |
\(a_{757}= +0.30777131 \pm 1.4 \cdot 10^{-8} \) | \(a_{758}= -0.39084088 \pm 1.5 \cdot 10^{-8} \) | \(a_{759}= +0.72716360 \pm 1 \cdot 10^{-8} \) |
\(a_{760}= -0.06265727 \pm 4.6 \cdot 10^{-8} \) | \(a_{761}= -1.35319424 \pm 1.8 \cdot 10^{-8} \) | \(a_{762}= +0.65527418 \pm 1.6 \cdot 10^{-8} \) |
\(a_{763}= -1.39004957 \pm 1 \cdot 10^{-8} \) | \(a_{764}= -0.09296432 \pm 1 \cdot 10^{-8} \) | \(a_{765}= +0.57503144 \pm 4.0 \cdot 10^{-8} \) |
\(a_{766}= +0.55759095 \pm 2.1 \cdot 10^{-8} \) | \(a_{767}= +0.18623049 \pm 1 \cdot 10^{-8} \) | \(a_{768}= +1.51380996 \pm 1.5 \cdot 10^{-8} \) |
\(a_{769}= -0.93686572 \pm 1.3 \cdot 10^{-8} \) | \(a_{770}= +0.58836655 \pm 4.6 \cdot 10^{-8} \) | \(a_{771}= +1.24069536 \pm 1.4 \cdot 10^{-8} \) |
\(a_{772}= +0.07007951 \pm 1 \cdot 10^{-8} \) | \(a_{773}= +0.36854862 \pm 1.0 \cdot 10^{-8} \) | \(a_{774}= +0.99399739 \pm 1 \cdot 10^{-8} \) |
\(a_{775}= +0.08151292 \pm 2.9 \cdot 10^{-8} \) | \(a_{776}= -0.56676504 \pm 1.4 \cdot 10^{-8} \) | \(a_{777}= -1.92772785 \pm 1 \cdot 10^{-8} \) |
\(a_{778}= -0.40174101 \pm 1.4 \cdot 10^{-8} \) | \(a_{779}= +0.00179726 \pm 1.3 \cdot 10^{-8} \) | \(a_{780}= -0.02788986 \pm 5.8 \cdot 10^{-8} \) |
\(a_{781}= -0.67593962 \pm 1 \cdot 10^{-8} \) | \(a_{782}= -0.30818889 \pm 1 \cdot 10^{-8} \) | \(a_{783}= -0.14754974 \pm 1 \cdot 10^{-8} \) |
\(a_{784}= -0.46239690 \pm 1 \cdot 10^{-8} \) | \(a_{785}= +0.14022778 \pm 2.7 \cdot 10^{-8} \) | \(a_{786}= +1.07123435 \pm 2.3 \cdot 10^{-8} \) |
\(a_{787}= -1.32182739 \pm 1.2 \cdot 10^{-8} \) | \(a_{788}= +0.51762329 \pm 1.9 \cdot 10^{-8} \) | \(a_{789}= -0.36132127 \pm 2.1 \cdot 10^{-8} \) |
\(a_{790}= -0.59831847 \pm 5.1 \cdot 10^{-8} \) | \(a_{791}= +0.90363364 \pm 1 \cdot 10^{-8} \) | \(a_{792}= -1.65994370 \pm 1 \cdot 10^{-8} \) |
\(a_{793}= -0.12242443 \pm 1 \cdot 10^{-8} \) | \(a_{794}= +1.16749802 \pm 2.2 \cdot 10^{-8} \) | \(a_{795}= -0.73342168 \pm 4.9 \cdot 10^{-8} \) |
\(a_{796}= +0.23662483 \pm 2.0 \cdot 10^{-8} \) | \(a_{797}= +0.37224327 \pm 1.6 \cdot 10^{-8} \) | \(a_{798}= -0.21834005 \pm 1 \cdot 10^{-8} \) |
\(a_{799}= -0.08268506 \pm 1.6 \cdot 10^{-8} \) | \(a_{800}= +0.15275683 \pm 3.0 \cdot 10^{-8} \) | \(a_{801}= -1.62042439 \pm 1 \cdot 10^{-8} \) |
\(a_{802}= +0.55146265 \pm 2.7 \cdot 10^{-8} \) | \(a_{803}= +0.79494337 \pm 1 \cdot 10^{-8} \) | \(a_{804}= -0.80475259 \pm 1 \cdot 10^{-8} \) |
\(a_{805}= -0.26375074 \pm 2.5 \cdot 10^{-8} \) | \(a_{806}= -0.03109228 \pm 2.4 \cdot 10^{-8} \) | \(a_{807}= +1.14732161 \pm 1.9 \cdot 10^{-8} \) |
\(a_{808}= -0.73974839 \pm 1.4 \cdot 10^{-8} \) | \(a_{809}= +0.77198736 \pm 1.4 \cdot 10^{-8} \) | \(a_{810}= -0.21047137 \pm 4.9 \cdot 10^{-8} \) |
\(a_{811}= +0.85267696 \pm 1.2 \cdot 10^{-8} \) | \(a_{812}= -0.19659318 \pm 1 \cdot 10^{-8} \) | \(a_{813}= +2.19379202 \pm 1.4 \cdot 10^{-8} \) |
\(a_{814}= +0.79258129 \pm 1 \cdot 10^{-8} \) | \(a_{815}= -0.56176328 \pm 2.6 \cdot 10^{-8} \) | \(a_{816}= +0.62513782 \pm 1 \cdot 10^{-8} \) |
\(a_{817}= +0.12945023 \pm 2.5 \cdot 10^{-8} \) | \(a_{818}= -0.29839965 \pm 2.1 \cdot 10^{-8} \) | \(a_{819}= -0.18771305 \pm 1 \cdot 10^{-8} \) |
\(a_{820}= -0.00256593 \pm 4.6 \cdot 10^{-8} \) | \(a_{821}= -0.52558554 \pm 1.3 \cdot 10^{-8} \) | \(a_{822}= -1.39461428 \pm 2.8 \cdot 10^{-8} \) |
\(a_{823}= -0.46295998 \pm 2.1 \cdot 10^{-8} \) | \(a_{824}= -0.58270873 \pm 1 \cdot 10^{-8} \) | \(a_{825}= -0.35830079 \pm 4.0 \cdot 10^{-8} \) |
\(a_{826}= -2.08148443 \pm 1 \cdot 10^{-8} \) | \(a_{827}= +1.30015788 \pm 1.3 \cdot 10^{-8} \) | \(a_{828}= +0.21755624 \pm 1 \cdot 10^{-8} \) |
\(a_{829}= +1.78453652 \pm 2.7 \cdot 10^{-8} \) | \(a_{830}= +0.49124331 \pm 4.8 \cdot 10^{-8} \) | \(a_{831}= +2.09185302 \pm 1.8 \cdot 10^{-8} \) |
\(a_{832}= -0.09970787 \pm 1.6 \cdot 10^{-8} \) | \(a_{833}= +1.10137795 \pm 1.8 \cdot 10^{-8} \) | \(a_{834}= -1.19682743 \pm 1.6 \cdot 10^{-8} \) |
\(a_{835}= -0.15116891 \pm 2.6 \cdot 10^{-8} \) | \(a_{836}= -0.06320383 \pm 1 \cdot 10^{-8} \) | \(a_{837}= -0.18363561 \pm 1.7 \cdot 10^{-8} \) |
\(a_{838}= +1.27143415 \pm 1 \cdot 10^{-8} \) | \(a_{839}= -1.01764242 \pm 1.0 \cdot 10^{-8} \) | \(a_{840}= +1.06619410 \pm 5.4 \cdot 10^{-8} \) |
\(a_{841}= -0.89276018 \pm 1.5 \cdot 10^{-8} \) | \(a_{842}= -0.35908843 \pm 1.0 \cdot 10^{-8} \) | \(a_{843}= -2.10517217 \pm 1 \cdot 10^{-8} \) |
\(a_{844}= +0.52119891 \pm 1 \cdot 10^{-8} \) | \(a_{845}= -0.44277840 \pm 2.5 \cdot 10^{-8} \) | \(a_{846}= -0.08290290 \pm 1 \cdot 10^{-8} \) |
\(a_{847}= +0.57696404 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.45025295 \pm 1 \cdot 10^{-8} \) | \(a_{849}= +2.17107659 \pm 2.1 \cdot 10^{-8} \) |
\(a_{850}= +0.15185623 \pm 4.8 \cdot 10^{-8} \) | \(a_{851}= -0.35529536 \pm 1 \cdot 10^{-8} \) | \(a_{852}= -0.35812008 \pm 1 \cdot 10^{-8} \) |
\(a_{853}= -1.37903726 \pm 1.5 \cdot 10^{-8} \) | \(a_{854}= +1.36832886 \pm 1 \cdot 10^{-8} \) | \(a_{855}= +0.07508477 \pm 3.8 \cdot 10^{-8} \) |
\(a_{856}= -0.38911872 \pm 1.3 \cdot 10^{-8} \) | \(a_{857}= -0.86610740 \pm 1.7 \cdot 10^{-8} \) | \(a_{858}= +0.13667023 \pm 1 \cdot 10^{-8} \) |
\(a_{859}= -1.43951397 \pm 1.6 \cdot 10^{-8} \) | \(a_{860}= -0.18481539 \pm 4.6 \cdot 10^{-8} \) | \(a_{861}= -0.03058263 \pm 1 \cdot 10^{-8} \) |
\(a_{862}= +0.05651352 \pm 1.2 \cdot 10^{-8} \) | \(a_{863}= -1.48317341 \pm 2.5 \cdot 10^{-8} \) | \(a_{864}= -0.34413676 \pm 1.7 \cdot 10^{-8} \) |
\(a_{865}= +0.39265825 \pm 2.7 \cdot 10^{-8} \) | \(a_{866}= -0.21858315 \pm 1.5 \cdot 10^{-8} \) | \(a_{867}= +0.02666676 \pm 1 \cdot 10^{-8} \) |
\(a_{868}= -0.24467348 \pm 1 \cdot 10^{-8} \) | \(a_{869}= -2.06429546 \pm 1 \cdot 10^{-8} \) | \(a_{870}= -0.17004206 \pm 5.7 \cdot 10^{-8} \) |
\(a_{871}= +0.12797617 \pm 1 \cdot 10^{-8} \) | \(a_{872}= +1.03565876 \pm 1 \cdot 10^{-8} \) | \(a_{873}= +0.67917770 \pm 1.0 \cdot 10^{-8} \) |
\(a_{874}= -0.04024178 \pm 1 \cdot 10^{-8} \) | \(a_{875}= +0.12995989 \pm 1.8 \cdot 10^{-8} \) | \(a_{876}= +0.42116954 \pm 1.3 \cdot 10^{-8} \) |
\(a_{877}= +1.01483426 \pm 1.5 \cdot 10^{-8} \) | \(a_{878}= +0.78063186 \pm 1.6 \cdot 10^{-8} \) | \(a_{879}= -0.08984414 \pm 2.6 \cdot 10^{-8} \) |
\(a_{880}= -0.21996348 \pm 2.8 \cdot 10^{-8} \) | \(a_{881}= +1.46410867 \pm 1.3 \cdot 10^{-8} \) | \(a_{882}= +1.10427962 \pm 1 \cdot 10^{-8} \) |
\(a_{883}= +0.77660349 \pm 1.4 \cdot 10^{-8} \) | \(a_{884}= +0.04078220 \pm 1.2 \cdot 10^{-8} \) | \(a_{885}= +1.26757293 \pm 4.5 \cdot 10^{-8} \) |
\(a_{886}= +1.11468492 \pm 1.9 \cdot 10^{-8} \) | \(a_{887}= -0.03767926 \pm 2.3 \cdot 10^{-8} \) | \(a_{888}= +1.43625686 \pm 2.5 \cdot 10^{-8} \) |
\(a_{889}= -0.82001928 \pm 1 \cdot 10^{-8} \) | \(a_{890}= -0.42792709 \pm 5.2 \cdot 10^{-8} \) | \(a_{891}= -0.72616024 \pm 1 \cdot 10^{-8} \) |
\(a_{892}= +0.25838129 \pm 1.7 \cdot 10^{-8} \) | \(a_{893}= -0.01079661 \pm 1 \cdot 10^{-8} \) | \(a_{894}= -2.22114508 \pm 1 \cdot 10^{-8} \) |
\(a_{895}= +0.28528125 \pm 2.9 \cdot 10^{-8} \) | \(a_{896}= +0.00465245 \pm 1 \cdot 10^{-8} \) | \(a_{897}= -0.06126601 \pm 1 \cdot 10^{-8} \) |
\(a_{898}= -0.57445741 \pm 1.8 \cdot 10^{-8} \) | \(a_{899}= +0.13346719 \pm 1 \cdot 10^{-8} \) | \(a_{900}= -0.10719812 \pm 3.5 \cdot 10^{-8} \) |
\(a_{901}= +1.07245242 \pm 2.0 \cdot 10^{-8} \) | \(a_{902}= +0.01257399 \pm 1.6 \cdot 10^{-8} \) | \(a_{903}= -2.20276215 \pm 1 \cdot 10^{-8} \) |
\(a_{904}= -0.67325375 \pm 1.0 \cdot 10^{-8} \) | \(a_{905}= -0.32891960 \pm 3.0 \cdot 10^{-8} \) | \(a_{906}= -0.33319711 \pm 1.5 \cdot 10^{-8} \) |
\(a_{907}= -0.68627484 \pm 2.4 \cdot 10^{-8} \) | \(a_{908}= -0.11759809 \pm 1.3 \cdot 10^{-8} \) | \(a_{909}= +0.88647071 \pm 1.0 \cdot 10^{-8} \) |
\(a_{910}= -0.04957189 \pm 4.9 \cdot 10^{-8} \) | \(a_{911}= -0.41404207 \pm 2.5 \cdot 10^{-8} \) | \(a_{912}= +0.08162741 \pm 1 \cdot 10^{-8} \) |
\(a_{913}= +1.69486885 \pm 1 \cdot 10^{-8} \) | \(a_{914}= +1.05552243 \pm 1.9 \cdot 10^{-8} \) | \(a_{915}= -0.83327869 \pm 4.1 \cdot 10^{-8} \) |
\(a_{916}= -0.56230744 \pm 1.9 \cdot 10^{-8} \) | \(a_{917}= -1.34055765 \pm 1 \cdot 10^{-8} \) | \(a_{918}= -0.34210784 \pm 1.6 \cdot 10^{-8} \) |
\(a_{919}= +1.59757796 \pm 1.7 \cdot 10^{-8} \) | \(a_{920}= +0.19650793 \pm 3.5 \cdot 10^{-8} \) | \(a_{921}= -2.31873937 \pm 1.6 \cdot 10^{-8} \) |
\(a_{922}= +0.45171545 \pm 1.8 \cdot 10^{-8} \) | \(a_{923}= +0.05695022 \pm 1 \cdot 10^{-8} \) | \(a_{924}= +1.07549449 \pm 1 \cdot 10^{-8} \) |
\(a_{925}= +0.17506735 \pm 3.4 \cdot 10^{-8} \) | \(a_{926}= -1.10477257 \pm 1.3 \cdot 10^{-8} \) | \(a_{927}= +0.69828368 \pm 1 \cdot 10^{-8} \) |
\(a_{928}= +0.25012015 \pm 1 \cdot 10^{-8} \) | \(a_{929}= -0.36960869 \pm 1 \cdot 10^{-8} \) | \(a_{930}= -0.21162882 \pm 6.7 \cdot 10^{-8} \) |
\(a_{931}= +0.14381250 \pm 1.6 \cdot 10^{-8} \) | \(a_{932}= +0.61012788 \pm 1.7 \cdot 10^{-8} \) | \(a_{933}= +0.76990472 \pm 1.4 \cdot 10^{-8} \) |
\(a_{934}= -0.66563355 \pm 1.0 \cdot 10^{-8} \) | \(a_{935}= +0.52392854 \pm 4.0 \cdot 10^{-8} \) | \(a_{936}= +0.13985592 \pm 1 \cdot 10^{-8} \) |
\(a_{937}= -0.73385855 \pm 2.9 \cdot 10^{-8} \) | \(a_{938}= -1.43038024 \pm 1 \cdot 10^{-8} \) | \(a_{939}= -0.10252062 \pm 1.5 \cdot 10^{-8} \) |
\(a_{940}= +0.01541426 \pm 3.8 \cdot 10^{-8} \) | \(a_{941}= +1.27486819 \pm 2.0 \cdot 10^{-8} \) | \(a_{942}= -0.36406789 \pm 1.6 \cdot 10^{-8} \) |
\(a_{943}= -0.00563662 \pm 1.0 \cdot 10^{-8} \) | \(a_{944}= +0.77817232 \pm 1 \cdot 10^{-8} \) | \(a_{945}= -0.29277888 \pm 3.3 \cdot 10^{-8} \) |
\(a_{946}= +0.90566108 \pm 1 \cdot 10^{-8} \) | \(a_{947}= +0.50300685 \pm 2.3 \cdot 10^{-8} \) | \(a_{948}= -1.09368592 \pm 1.6 \cdot 10^{-8} \) |
\(a_{949}= -0.06697669 \pm 1 \cdot 10^{-8} \) | \(a_{950}= +0.01982864 \pm 4.7 \cdot 10^{-8} \) | \(a_{951}= -0.01872343 \pm 2.9 \cdot 10^{-8} \) |
\(a_{952}= -1.55905186 \pm 1 \cdot 10^{-8} \) | \(a_{953}= +0.19100609 \pm 2.6 \cdot 10^{-8} \) | \(a_{954}= +1.07527788 \pm 1 \cdot 10^{-8} \) |
\(a_{955}= +0.10062484 \pm 1.5 \cdot 10^{-8} \) | \(a_{956}= +0.56529570 \pm 1.2 \cdot 10^{-8} \) | \(a_{957}= -0.58667259 \pm 1 \cdot 10^{-8} \) |
\(a_{958}= +0.90161599 \pm 2.2 \cdot 10^{-8} \) | \(a_{959}= +1.74523983 \pm 1 \cdot 10^{-8} \) | \(a_{960}= -0.67865903 \pm 4.8 \cdot 10^{-8} \) |
\(a_{961}= -0.83389108 \pm 2.4 \cdot 10^{-8} \) | \(a_{962}= -0.06677768 \pm 1.0 \cdot 10^{-8} \) | \(a_{963}= +0.46629686 \pm 1.2 \cdot 10^{-8} \) |
\(a_{964}= -0.29695469 \pm 1.1 \cdot 10^{-8} \) | \(a_{965}= -0.07585425 \pm 1.8 \cdot 10^{-8} \) | \(a_{966}= +0.68476573 \pm 1 \cdot 10^{-8} \) |
\(a_{967}= +1.24495158 \pm 1.2 \cdot 10^{-8} \) | \(a_{968}= -0.42986803 \pm 1.4 \cdot 10^{-8} \) | \(a_{969}= -0.19442741 \pm 2.1 \cdot 10^{-8} \) |
\(a_{970}= +0.17935952 \pm 4.3 \cdot 10^{-8} \) | \(a_{971}= +1.18833481 \pm 1.4 \cdot 10^{-8} \) | \(a_{972}= -0.57088756 \pm 1 \cdot 10^{-8} \) |
\(a_{973}= +1.49772660 \pm 1 \cdot 10^{-8} \) | \(a_{974}= -0.75782555 \pm 1.7 \cdot 10^{-8} \) | \(a_{975}= +0.03018806 \pm 4.3 \cdot 10^{-8} \) |
\(a_{976}= -0.51155590 \pm 1 \cdot 10^{-8} \) | \(a_{977}= -1.47637065 \pm 1.2 \cdot 10^{-8} \) | \(a_{978}= +1.45848402 \pm 1.4 \cdot 10^{-8} \) |
\(a_{979}= -1.47641766 \pm 1 \cdot 10^{-8} \) | \(a_{980}= -0.20532033 \pm 4.2 \cdot 10^{-8} \) | \(a_{981}= -1.24107219 \pm 1 \cdot 10^{-8} \) |
\(a_{982}= -0.69081218 \pm 1 \cdot 10^{-8} \) | \(a_{983}= -1.34145579 \pm 1.8 \cdot 10^{-8} \) | \(a_{984}= +0.02278564 \pm 1.4 \cdot 10^{-8} \) |
\(a_{985}= -0.56027690 \pm 2.9 \cdot 10^{-8} \) | \(a_{986}= +0.24864552 \pm 1 \cdot 10^{-8} \) | \(a_{987}= +0.18371817 \pm 1 \cdot 10^{-8} \) |
\(a_{988}= +0.00532514 \pm 1 \cdot 10^{-8} \) | \(a_{989}= -0.40598634 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.52530887 \pm 4.8 \cdot 10^{-8} \) |
\(a_{991}= +0.11660496 \pm 1.8 \cdot 10^{-8} \) | \(a_{992}= +0.31129140 \pm 2.4 \cdot 10^{-8} \) | \(a_{993}= +2.26742624 \pm 1.3 \cdot 10^{-8} \) |
\(a_{994}= -0.63652840 \pm 1 \cdot 10^{-8} \) | \(a_{995}= -0.25612338 \pm 3.5 \cdot 10^{-8} \) | \(a_{996}= +0.89795973 \pm 1.5 \cdot 10^{-8} \) |
\(a_{997}= +0.08942097 \pm 2.5 \cdot 10^{-8} \) | \(a_{998}= -1.50233471 \pm 2.0 \cdot 10^{-8} \) | \(a_{999}= -0.39439880 \pm 2.0 \cdot 10^{-8} \) |
\(a_{1000}= -0.09682683 \pm 2.7 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000