Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(11.0931280004854038979726892996 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.31821009 \pm 3.9 \cdot 10^{-7} \) | \(a_{3}= -0.14985869 \pm 4.2 \cdot 10^{-7} \) |
\(a_{4}= -0.89874234 \pm 3.4 \cdot 10^{-7} \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.04768655 \pm 4.0 \cdot 10^{-7} \) |
\(a_{7}= -1.39569714 \pm 1.6 \cdot 10^{-7} \) | \(a_{8}= +0.60419897 \pm 3.6 \cdot 10^{-7} \) | \(a_{9}= -0.97754237 \pm 2.0 \cdot 10^{-7} \) |
\(a_{10}= -0.14230788 \pm 4.0 \cdot 10^{-7} \) | \(a_{11}= +0.94349242 \pm 2.1 \cdot 10^{-7} \) | \(a_{12}= +0.13468435 \pm 3.5 \cdot 10^{-7} \) |
\(a_{13}= +1.57536981 \pm 2.7 \cdot 10^{-7} \) | \(a_{14}= +0.44412491 \pm 1.6 \cdot 10^{-7} \) | \(a_{15}= -0.06701884 \pm 4.3 \cdot 10^{-7} \) |
\(a_{16}= +0.70648014 \pm 1.7 \cdot 10^{-7} \) | \(a_{17}= -0.27827180 \pm 4.3 \cdot 10^{-7} \) | \(a_{18}= +0.31106384 \pm 1.8 \cdot 10^{-7} \) |
\(a_{19}= +1.35632093 \pm 4.0 \cdot 10^{-7} \) | \(a_{20}= -0.40192979 \pm 3.5 \cdot 10^{-7} \) | \(a_{21}= +0.20915734 \pm 1.8 \cdot 10^{-7} \) |
\(a_{22}= -0.30022881 \pm 2.3 \cdot 10^{-7} \) | \(a_{23}= -0.14379336 \pm 1.7 \cdot 10^{-7} \) | \(a_{24}= -0.09054447 \pm 3.8 \cdot 10^{-7} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -0.50129857 \pm 3.3 \cdot 10^{-7} \) | \(a_{27}= +0.29635191 \pm 3.2 \cdot 10^{-7} \) |
\(a_{28}= +1.25437211 \pm 1.3 \cdot 10^{-7} \) | \(a_{29}= -0.25170097 \pm 1.9 \cdot 10^{-7} \) | \(a_{30}= +0.02132607 \pm 8.3 \cdot 10^{-7} \) |
\(a_{31}= -0.24790308 \pm 4.2 \cdot 10^{-7} \) | \(a_{32}= -0.82900807 \pm 4.2 \cdot 10^{-7} \) | \(a_{33}= -0.14139054 \pm 1.5 \cdot 10^{-7} \) |
\(a_{34}= +0.08854889 \pm 4.1 \cdot 10^{-7} \) | \(a_{35}= -0.62417473 \pm 1.7 \cdot 10^{-7} \) | \(a_{36}= +0.87855872 \pm 9.7 \cdot 10^{-8} \) |
\(a_{37}= +1.01274664 \pm 5.2 \cdot 10^{-7} \) | \(a_{38}= -0.43159500 \pm 2.8 \cdot 10^{-7} \) | \(a_{39}= -0.23608286 \pm 2.2 \cdot 10^{-7} \) |
\(a_{40}= +0.27020599 \pm 3.7 \cdot 10^{-7} \) | \(a_{41}= +0.51964696 \pm 4.4 \cdot 10^{-7} \) | \(a_{42}= -0.06655598 \pm 1.7 \cdot 10^{-7} \) |
\(a_{43}= -0.68912000 \pm 4.4 \cdot 10^{-7} \) | \(a_{44}= -0.84795659 \pm 1.6 \cdot 10^{-7} \) | \(a_{45}= -0.43717024 \pm 2.1 \cdot 10^{-7} \) |
\(a_{46}= +0.04575650 \pm 2.0 \cdot 10^{-7} \) | \(a_{47}= +0.83793176 \pm 2.6 \cdot 10^{-7} \) | \(a_{48}= -0.10587219 \pm 1.7 \cdot 10^{-7} \) |
\(a_{49}= +0.94797049 \pm 3.5 \cdot 10^{-7} \) | \(a_{50}= -0.06364202 \pm 4.0 \cdot 10^{-7} \) | \(a_{51}= +0.04170145 \pm 4.2 \cdot 10^{-7} \) |
\(a_{52}= -1.41585155 \pm 2.6 \cdot 10^{-7} \) | \(a_{53}= +1.55839449 \pm 4.1 \cdot 10^{-7} \) | \(a_{54}= -0.09430217 \pm 3.3 \cdot 10^{-7} \) |
\(a_{55}= +0.42194264 \pm 2.3 \cdot 10^{-7} \) | \(a_{56}= -0.84327876 \pm 1.4 \cdot 10^{-7} \) | \(a_{57}= -0.20325648 \pm 4.7 \cdot 10^{-7} \) |
\(a_{58}= +0.08009379 \pm 1.5 \cdot 10^{-7} \) | \(a_{59}= -0.49169326 \pm 3.3 \cdot 10^{-7} \) | \(a_{60}= +0.06023267 \pm 7.8 \cdot 10^{-7} \) |
\(a_{61}= -1.05835012 \pm 2.4 \cdot 10^{-7} \) | \(a_{62}= +0.07888526 \pm 5.7 \cdot 10^{-7} \) | \(a_{63}= +1.36435309 \pm 1.2 \cdot 10^{-7} \) |
\(a_{64}= -0.44268140 \pm 3.9 \cdot 10^{-7} \) | \(a_{65}= +0.70452680 \pm 2.8 \cdot 10^{-7} \) | \(a_{66}= +0.04499190 \pm 1.8 \cdot 10^{-7} \) |
\(a_{67}= +0.37959362 \pm 2.6 \cdot 10^{-7} \) | \(a_{68}= +0.25009465 \pm 3.6 \cdot 10^{-7} \) | \(a_{69}= +0.02154869 \pm 1.9 \cdot 10^{-7} \) |
\(a_{70}= +0.19861870 \pm 5.6 \cdot 10^{-7} \) | \(a_{71}= -1.45111511 \pm 2.0 \cdot 10^{-7} \) | \(a_{72}= -0.59063009 \pm 2.1 \cdot 10^{-7} \) |
\(a_{73}= +1.78312147 \pm 3.5 \cdot 10^{-7} \) | \(a_{74}= -0.32226620 \pm 3.6 \cdot 10^{-7} \) | \(a_{75}= -0.02997174 \pm 4.3 \cdot 10^{-7} \) |
\(a_{76}= -1.21898305 \pm 2.6 \cdot 10^{-7} \) | \(a_{77}= -1.31682967 \pm 1.0 \cdot 10^{-7} \) | \(a_{78}= +0.07512395 \pm 3.0 \cdot 10^{-7} \) |
\(a_{79}= +0.89615295 \pm 4.9 \cdot 10^{-7} \) | \(a_{80}= +0.31594752 \pm 1.8 \cdot 10^{-7} \) | \(a_{81}= +0.93313146 \pm 4.4 \cdot 10^{-7} \) |
\(a_{82}= -0.16535690 \pm 5.8 \cdot 10^{-7} \) | \(a_{83}= +0.75621740 \pm 4.3 \cdot 10^{-7} \) | \(a_{84}= -0.18797856 \pm 1.2 \cdot 10^{-7} \) |
\(a_{85}= -0.12444693 \pm 4.4 \cdot 10^{-7} \) | \(a_{86}= +0.21928494 \pm 2.7 \cdot 10^{-7} \) | \(a_{87}= +0.03771958 \pm 2.3 \cdot 10^{-7} \) |
\(a_{88}= +0.57005715 \pm 2.0 \cdot 10^{-7} \) | \(a_{89}= -0.27850668 \pm 5.0 \cdot 10^{-7} \) | \(a_{90}= +0.13911198 \pm 6.1 \cdot 10^{-7} \) |
\(a_{91}= -2.19873913 \pm 1.2 \cdot 10^{-7} \) | \(a_{92}= +0.12923319 \pm 1.4 \cdot 10^{-7} \) | \(a_{93}= +0.03715043 \pm 4.3 \cdot 10^{-7} \) |
\(a_{94}= -0.26663834 \pm 2.4 \cdot 10^{-7} \) | \(a_{95}= +0.60656516 \pm 4.1 \cdot 10^{-7} \) | \(a_{96}= +0.12423406 \pm 4.4 \cdot 10^{-7} \) |
\(a_{97}= +0.51130426 \pm 3.2 \cdot 10^{-7} \) | \(a_{98}= -0.30165377 \pm 3.3 \cdot 10^{-7} \) | \(a_{99}= -0.92230382 \pm 1.9 \cdot 10^{-7} \) |
\(a_{100}= -0.17974847 \pm 3.5 \cdot 10^{-7} \) | \(a_{101}= +0.83514232 \pm 3.3 \cdot 10^{-7} \) | \(a_{102}= -0.01326982 \pm 4.1 \cdot 10^{-7} \) |
\(a_{103}= +0.55726040 \pm 3.2 \cdot 10^{-7} \) | \(a_{104}= +0.95183681 \pm 2.3 \cdot 10^{-7} \) | \(a_{105}= +0.09353801 \pm 6.0 \cdot 10^{-7} \) |
\(a_{106}= -0.49589684 \pm 3.3 \cdot 10^{-7} \) | \(a_{107}= +0.42947820 \pm 3.3 \cdot 10^{-7} \) | \(a_{108}= -0.26634401 \pm 3.0 \cdot 10^{-7} \) |
\(a_{109}= -0.16198448 \pm 2.0 \cdot 10^{-7} \) | \(a_{110}= -0.13426640 \pm 6.2 \cdot 10^{-7} \) | \(a_{111}= -0.15176888 \pm 5.6 \cdot 10^{-7} \) |
\(a_{112}= -0.98603230 \pm 1.1 \cdot 10^{-7} \) | \(a_{113}= +0.59131717 \pm 2.9 \cdot 10^{-7} \) | \(a_{114}= +0.06467826 \pm 3.3 \cdot 10^{-7} \) |
\(a_{115}= -0.06430635 \pm 1.8 \cdot 10^{-7} \) | \(a_{116}= +0.22621432 \pm 1.0 \cdot 10^{-7} \) | \(a_{117}= -1.53999074 \pm 2.0 \cdot 10^{-7} \) |
\(a_{118}= +0.15646175 \pm 3.3 \cdot 10^{-7} \) | \(a_{119}= +0.38838315 \pm 1.4 \cdot 10^{-7} \) | \(a_{120}= -0.04049272 \pm 8.0 \cdot 10^{-7} \) |
\(a_{121}= -0.10982205 \pm 3.4 \cdot 10^{-7} \) | \(a_{122}= +0.33677768 \pm 1.9 \cdot 10^{-7} \) | \(a_{123}= -0.07787361 \pm 4.4 \cdot 10^{-7} \) |
\(a_{124}= +0.22280100 \pm 5.0 \cdot 10^{-7} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.43415092 \pm 1.3 \cdot 10^{-7} \) |
\(a_{127}= +1.37766013 \pm 4.6 \cdot 10^{-7} \) | \(a_{128}= +0.96987376 \pm 3.0 \cdot 10^{-7} \) | \(a_{129}= +0.10327062 \pm 4.9 \cdot 10^{-7} \) |
\(a_{130}= -0.22418753 \pm 6.8 \cdot 10^{-7} \) | \(a_{131}= +0.49544811 \pm 4.0 \cdot 10^{-7} \) | \(a_{132}= +0.12707366 \pm 1.5 \cdot 10^{-7} \) |
\(a_{133}= -1.89301324 \pm 1.6 \cdot 10^{-7} \) | \(a_{134}= -0.12079052 \pm 1.8 \cdot 10^{-7} \) | \(a_{135}= +0.13253260 \pm 3.3 \cdot 10^{-7} \) |
\(a_{136}= -0.16813153 \pm 3.9 \cdot 10^{-7} \) | \(a_{137}= -0.35744197 \pm 4.9 \cdot 10^{-7} \) | \(a_{138}= -0.00685701 \pm 2.1 \cdot 10^{-7} \) |
\(a_{139}= -1.49469425 \pm 4.7 \cdot 10^{-7} \) | \(a_{140}= +0.56097226 \pm 5.1 \cdot 10^{-7} \) | \(a_{141}= -0.12557136 \pm 1.3 \cdot 10^{-7} \) |
\(a_{142}= +0.46175946 \pm 2.1 \cdot 10^{-7} \) | \(a_{143}= +1.48634948 \pm 2.4 \cdot 10^{-7} \) | \(a_{144}= -0.69061427 \pm 1.4 \cdot 10^{-7} \) |
\(a_{145}= -0.11256410 \pm 2.0 \cdot 10^{-7} \) | \(a_{146}= -0.56740724 \pm 2.9 \cdot 10^{-7} \) | \(a_{147}= -0.14206162 \pm 3.6 \cdot 10^{-7} \) |
\(a_{148}= -0.91019829 \pm 3.6 \cdot 10^{-7} \) | \(a_{149}= +1.54558975 \pm 1.5 \cdot 10^{-7} \) | \(a_{150}= +0.00953731 \pm 8.3 \cdot 10^{-7} \) |
\(a_{151}= +0.72061346 \pm 2.6 \cdot 10^{-7} \) | \(a_{152}= +0.81948770 \pm 3.9 \cdot 10^{-7} \) | \(a_{153}= +0.27202247 \pm 2.2 \cdot 10^{-7} \) |
\(a_{154}= +0.41902848 \pm 1.2 \cdot 10^{-7} \) | \(a_{155}= -0.11086563 \pm 4.3 \cdot 10^{-7} \) | \(a_{156}= +0.21217766 \pm 2.5 \cdot 10^{-7} \) |
\(a_{157}= -1.28707338 \pm 3.7 \cdot 10^{-7} \) | \(a_{158}= -0.28516491 \pm 3.4 \cdot 10^{-7} \) | \(a_{159}= -0.23353896 \pm 4.4 \cdot 10^{-7} \) |
\(a_{160}= -0.37074368 \pm 4.3 \cdot 10^{-7} \) | \(a_{161}= +0.20069199 \pm 1.2 \cdot 10^{-7} \) | \(a_{162}= -0.29693184 \pm 4.1 \cdot 10^{-7} \) |
\(a_{163}= +0.26870190 \pm 3.4 \cdot 10^{-7} \) | \(a_{164}= -0.46702872 \pm 5.0 \cdot 10^{-7} \) | \(a_{165}= -0.06323177 \pm 6.5 \cdot 10^{-7} \) |
\(a_{166}= -0.24063600 \pm 3.2 \cdot 10^{-7} \) | \(a_{167}= -0.84172658 \pm 3.3 \cdot 10^{-7} \) | \(a_{168}= +0.12637265 \pm 1.7 \cdot 10^{-7} \) |
\(a_{169}= +1.48179005 \pm 3.3 \cdot 10^{-7} \) | \(a_{170}= +0.03960027 \pm 8.4 \cdot 10^{-7} \) | \(a_{171}= -1.32586118 \pm 1.8 \cdot 10^{-7} \) |
\(a_{172}= +0.61934132 \pm 2.9 \cdot 10^{-7} \) | \(a_{173}= +0.37546948 \pm 3.7 \cdot 10^{-7} \) | \(a_{174}= -0.01200275 \pm 1.8 \cdot 10^{-7} \) |
\(a_{175}= -0.27913943 \pm 1.7 \cdot 10^{-7} \) | \(a_{176}= +0.66655866 \pm 1.4 \cdot 10^{-7} \) | \(a_{177}= +0.07368451 \pm 3.9 \cdot 10^{-7} \) |
\(a_{178}= +0.08862364 \pm 4.7 \cdot 10^{-7} \) | \(a_{179}= -0.94526462 \pm 4.1 \cdot 10^{-7} \) | \(a_{180}= +0.39290340 \pm 5.6 \cdot 10^{-7} \) |
\(a_{181}= +0.81459101 \pm 4.2 \cdot 10^{-7} \) | \(a_{182}= +0.69966097 \pm 1.5 \cdot 10^{-7} \) | \(a_{183}= +0.15860296 \pm 2.6 \cdot 10^{-7} \) |
\(a_{184}= -0.08687980 \pm 1.3 \cdot 10^{-7} \) | \(a_{185}= +0.45291407 \pm 5.3 \cdot 10^{-7} \) | \(a_{186}= -0.01182164 \pm 5.9 \cdot 10^{-7} \) |
\(a_{187}= -0.26254733 \pm 2.6 \cdot 10^{-7} \) | \(a_{188}= -0.75308475 \pm 1.7 \cdot 10^{-7} \) | \(a_{189}= -0.41361751 \pm 1.1 \cdot 10^{-7} \) |
\(a_{190}= -0.19301515 \pm 8.1 \cdot 10^{-7} \) | \(a_{191}= +0.13040321 \pm 1.0 \cdot 10^{-7} \) | \(a_{192}= +0.06633966 \pm 4.0 \cdot 10^{-7} \) |
\(a_{193}= -1.17412467 \pm 1.7 \cdot 10^{-7} \) | \(a_{194}= -0.16270217 \pm 2.8 \cdot 10^{-7} \) | \(a_{195}= -0.10557946 \pm 7.1 \cdot 10^{-7} \) |
\(a_{196}= -0.85198122 \pm 3.0 \cdot 10^{-7} \) | \(a_{197}= +1.24864810 \pm 4.0 \cdot 10^{-7} \) | \(a_{198}= +0.29348638 \pm 1.7 \cdot 10^{-7} \) |
\(a_{199}= -0.53962385 \pm 5.4 \cdot 10^{-7} \) | \(a_{200}= +0.12083979 \pm 3.7 \cdot 10^{-7} \) | \(a_{201}= -0.05688540 \pm 2.9 \cdot 10^{-7} \) |
\(a_{202}= -0.26575071 \pm 3.1 \cdot 10^{-7} \) | \(a_{203}= +0.35129833 \pm 1.0 \cdot 10^{-7} \) | \(a_{204}= -0.03747886 \pm 3.7 \cdot 10^{-7} \) |
\(a_{205}= +0.23239318 \pm 4.5 \cdot 10^{-7} \) | \(a_{206}= -0.17732588 \pm 4.8 \cdot 10^{-7} \) | \(a_{207}= +0.14056411 \pm 1.5 \cdot 10^{-7} \) |
\(a_{208}= +1.11296748 \pm 1.5 \cdot 10^{-7} \) | \(a_{209}= +1.27967852 \pm 9.9 \cdot 10^{-8} \) | \(a_{210}= -0.02976474 \pm 9.9 \cdot 10^{-7} \) |
\(a_{211}= +0.66814197 \pm 2.3 \cdot 10^{-7} \) | \(a_{212}= -1.40059511 \pm 3.1 \cdot 10^{-7} \) | \(a_{213}= +0.21746221 \pm 2.5 \cdot 10^{-7} \) |
\(a_{214}= -0.13666430 \pm 3.6 \cdot 10^{-7} \) | \(a_{215}= -0.30818383 \pm 4.5 \cdot 10^{-7} \) | \(a_{216}= +0.17905552 \pm 2.7 \cdot 10^{-7} \) |
\(a_{217}= +0.34599762 \pm 1.7 \cdot 10^{-7} \) | \(a_{218}= +0.05154509 \pm 2.6 \cdot 10^{-7} \) | \(a_{219}= -0.26721625 \pm 3.6 \cdot 10^{-7} \) |
\(a_{220}= -0.37921772 \pm 5.7 \cdot 10^{-7} \) | \(a_{221}= -0.43838099 \pm 3.4 \cdot 10^{-7} \) | \(a_{222}= +0.04829439 \pm 3.7 \cdot 10^{-7} \) |
\(a_{223}= -1.77713115 \pm 4.2 \cdot 10^{-7} \) | \(a_{224}= +1.15704419 \pm 1.5 \cdot 10^{-7} \) | \(a_{225}= -0.19550847 \pm 2.1 \cdot 10^{-7} \) |
\(a_{226}= -0.18816309 \pm 3.6 \cdot 10^{-7} \) | \(a_{227}= -1.09126841 \pm 3.2 \cdot 10^{-7} \) | \(a_{228}= +0.18267520 \pm 2.9 \cdot 10^{-7} \) |
\(a_{229}= -0.21493025 \pm 6.0 \cdot 10^{-7} \) | \(a_{230}= +0.02046293 \pm 5.7 \cdot 10^{-7} \) | \(a_{231}= +0.19733837 \pm 9.0 \cdot 10^{-8} \) |
\(a_{232}= -0.15207747 \pm 2.0 \cdot 10^{-7} \) | \(a_{233}= +1.63906617 \pm 5.4 \cdot 10^{-7} \) | \(a_{234}= +0.49004059 \pm 1.8 \cdot 10^{-7} \) |
\(a_{235}= +0.37473447 \pm 2.7 \cdot 10^{-7} \) | \(a_{236}= +0.44190555 \pm 2.8 \cdot 10^{-7} \) | \(a_{237}= -0.13429631 \pm 5.5 \cdot 10^{-7} \) |
\(a_{238}= -0.12358744 \pm 1.4 \cdot 10^{-7} \) | \(a_{239}= -1.60475018 \pm 4.0 \cdot 10^{-7} \) | \(a_{240}= -0.04734748 \pm 6.1 \cdot 10^{-7} \) |
\(a_{241}= +0.46544750 \pm 2.3 \cdot 10^{-7} \) | \(a_{242}= +0.03494648 \pm 3.0 \cdot 10^{-7} \) | \(a_{243}= -0.43618977 \pm 2.3 \cdot 10^{-7} \) |
\(a_{244}= +0.95118406 \pm 1.6 \cdot 10^{-7} \) | \(a_{245}= +0.42394529 \pm 3.6 \cdot 10^{-7} \) | \(a_{246}= +0.02478017 \pm 5.9 \cdot 10^{-7} \) |
\(a_{247}= +2.13670705 \pm 1.1 \cdot 10^{-7} \) | \(a_{248}= -0.14978279 \pm 2.8 \cdot 10^{-7} \) | \(a_{249}= -0.11332575 \pm 4.8 \cdot 10^{-7} \) |
\(a_{250}= -0.02846158 \pm 4.0 \cdot 10^{-7} \) | \(a_{251}= -1.61119584 \pm 6.0 \cdot 10^{-7} \) | \(a_{252}= -1.22620189 \pm 7.0 \cdot 10^{-8} \) |
\(a_{253}= -0.13566795 \pm 1.3 \cdot 10^{-7} \) | \(a_{254}= -0.43838535 \pm 3.7 \cdot 10^{-7} \) | \(a_{255}= +0.01864945 \pm 8.7 \cdot 10^{-7} \) |
\(a_{256}= +0.13405779 \pm 3.2 \cdot 10^{-7} \) | \(a_{257}= +1.56584106 \pm 3.2 \cdot 10^{-7} \) | \(a_{258}= -0.03286175 \pm 2.9 \cdot 10^{-7} \) |
\(a_{259}= -1.41348759 \pm 1.7 \cdot 10^{-7} \) | \(a_{260}= -0.63318806 \pm 6.3 \cdot 10^{-7} \) | \(a_{261}= +0.24604837 \pm 1.7 \cdot 10^{-7} \) |
\(a_{262}= -0.15765659 \pm 4.9 \cdot 10^{-7} \) | \(a_{263}= -0.73068748 \pm 4.5 \cdot 10^{-7} \) | \(a_{264}= -0.08542802 \pm 1.3 \cdot 10^{-7} \) |
\(a_{265}= +0.69693520 \pm 4.2 \cdot 10^{-7} \) | \(a_{266}= +0.60237591 \pm 1.4 \cdot 10^{-7} \) | \(a_{267}= +0.04173665 \pm 5.5 \cdot 10^{-7} \) |
\(a_{268}= -0.34115686 \pm 1.8 \cdot 10^{-7} \) | \(a_{269}= +0.85944467 \pm 3.9 \cdot 10^{-7} \) | \(a_{270}= -0.04217321 \pm 7.3 \cdot 10^{-7} \) |
\(a_{271}= -0.08275827 \pm 3.1 \cdot 10^{-7} \) | \(a_{272}= -0.19659350 \pm 1.7 \cdot 10^{-7} \) | \(a_{273}= +0.32950017 \pm 1.0 \cdot 10^{-7} \) |
\(a_{274}= +0.11374164 \pm 5.9 \cdot 10^{-7} \) | \(a_{275}= +0.18869848 \pm 2.3 \cdot 10^{-7} \) | \(a_{276}= -0.01936672 \pm 1.4 \cdot 10^{-7} \) |
\(a_{277}= -0.18112714 \pm 4.3 \cdot 10^{-7} \) | \(a_{278}= +0.47562679 \pm 3.3 \cdot 10^{-7} \) | \(a_{279}= +0.24233577 \pm 1.4 \cdot 10^{-7} \) |
\(a_{280}= -0.37712573 \pm 5.3 \cdot 10^{-7} \) | \(a_{281}= -0.07003937 \pm 1.7 \cdot 10^{-7} \) | \(a_{282}= +0.03995807 \pm 1.7 \cdot 10^{-7} \) |
\(a_{283}= +1.04975860 \pm 4.2 \cdot 10^{-7} \) | \(a_{284}= +1.30417859 \pm 1.1 \cdot 10^{-7} \) | \(a_{285}= -0.09089906 \pm 8.4 \cdot 10^{-7} \) |
\(a_{286}= -0.47297140 \pm 2.3 \cdot 10^{-7} \) | \(a_{287}= -0.72526977 \pm 1.7 \cdot 10^{-7} \) | \(a_{288}= +0.81039052 \pm 1.5 \cdot 10^{-7} \) |
\(a_{289}= -0.92256481 \pm 1.8 \cdot 10^{-7} \) | \(a_{290}= +0.03581903 \pm 6.0 \cdot 10^{-7} \) | \(a_{291}= -0.07662339 \pm 3.4 \cdot 10^{-7} \) |
\(a_{292}= -1.60256676 \pm 2.8 \cdot 10^{-7} \) | \(a_{293}= -1.58224229 \pm 5.2 \cdot 10^{-7} \) | \(a_{294}= +0.04520544 \pm 3.4 \cdot 10^{-7} \) |
\(a_{295}= -0.21989191 \pm 3.4 \cdot 10^{-7} \) | \(a_{296}= +0.61190047 \pm 5.0 \cdot 10^{-7} \) | \(a_{297}= +0.27960578 \pm 1.3 \cdot 10^{-7} \) |
\(a_{298}= -0.49182225 \pm 1.7 \cdot 10^{-7} \) | \(a_{299}= -0.22652773 \pm 1.3 \cdot 10^{-7} \) | \(a_{300}= +0.02693687 \pm 7.8 \cdot 10^{-7} \) |
\(a_{301}= +0.96180281 \pm 1.3 \cdot 10^{-7} \) | \(a_{302}= -0.22930647 \pm 3.2 \cdot 10^{-7} \) | \(a_{303}= -0.12515333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{304}= +0.95821379 \pm 1.3 \cdot 10^{-7} \) | \(a_{305}= -0.47330856 \pm 2.5 \cdot 10^{-7} \) | \(a_{306}= -0.08656030 \pm 1.8 \cdot 10^{-7} \) |
\(a_{307}= +0.38044894 \pm 3.6 \cdot 10^{-7} \) | \(a_{308}= +1.18349058 \pm 8.5 \cdot 10^{-8} \) | \(a_{309}= -0.08351031 \pm 3.3 \cdot 10^{-7} \) |
\(a_{310}= +0.03527856 \pm 8.2 \cdot 10^{-7} \) | \(a_{311}= -0.59003709 \pm 3.9 \cdot 10^{-7} \) | \(a_{312}= -0.14264102 \pm 1.5 \cdot 10^{-7} \) |
\(a_{313}= -0.02268223 \pm 3.7 \cdot 10^{-7} \) | \(a_{314}= +0.40955973 \pm 3.3 \cdot 10^{-7} \) | \(a_{315}= +0.61015725 \pm 3.8 \cdot 10^{-7} \) |
\(a_{316}= -0.80541060 \pm 3.2 \cdot 10^{-7} \) | \(a_{317}= +1.95052576 \pm 5.8 \cdot 10^{-7} \) | \(a_{318}= +0.07431445 \pm 3.4 \cdot 10^{-7} \) |
\(a_{319}= -0.23747796 \pm 1.3 \cdot 10^{-7} \) | \(a_{320}= -0.19797314 \pm 4.0 \cdot 10^{-7} \) | \(a_{321}= -0.06436104 \pm 3.2 \cdot 10^{-7} \) |
\(a_{322}= -0.06386221 \pm 1.3 \cdot 10^{-7} \) | \(a_{323}= -0.37742586 \pm 4.1 \cdot 10^{-7} \) | \(a_{324}= -0.83864476 \pm 3.7 \cdot 10^{-7} \) |
\(a_{325}= +0.31507396 \pm 2.8 \cdot 10^{-7} \) | \(a_{326}= -0.08550365 \pm 3.3 \cdot 10^{-7} \) | \(a_{327}= +0.02427478 \pm 2.0 \cdot 10^{-7} \) |
\(a_{328}= +0.31397015 \pm 3.1 \cdot 10^{-7} \) | \(a_{329}= -1.16949895 \pm 1.0 \cdot 10^{-7} \) | \(a_{330}= +0.02012099 \pm 1.0 \cdot 10^{-6} \) |
\(a_{331}= +0.41135894 \pm 3.2 \cdot 10^{-7} \) | \(a_{332}= -0.67964459 \pm 3.1 \cdot 10^{-7} \) | \(a_{333}= -0.99000275 \pm 1.7 \cdot 10^{-7} \) |
\(a_{334}= +0.26784589 \pm 2.3 \cdot 10^{-7} \) | \(a_{335}= +0.16975943 \pm 2.7 \cdot 10^{-7} \) | \(a_{336}= +0.14776551 \pm 1.2 \cdot 10^{-7} \) |
\(a_{337}= +0.29653018 \pm 5.7 \cdot 10^{-7} \) | \(a_{338}= -0.47152054 \pm 2.2 \cdot 10^{-7} \) | \(a_{339}= -0.08861402 \pm 3.4 \cdot 10^{-7} \) |
\(a_{340}= +0.11184573 \pm 7.9 \cdot 10^{-7} \) | \(a_{341}= -0.23389468 \pm 2.2 \cdot 10^{-7} \) | \(a_{342}= +0.42190240 \pm 1.6 \cdot 10^{-7} \) |
\(a_{343}= +0.07261743 \pm 2.5 \cdot 10^{-7} \) | \(a_{344}= -0.41636559 \pm 4.3 \cdot 10^{-7} \) | \(a_{345}= +0.00963687 \pm 6.0 \cdot 10^{-7} \) |
\(a_{346}= -0.11947818 \pm 4.8 \cdot 10^{-7} \) | \(a_{347}= +1.26566036 \pm 2.7 \cdot 10^{-7} \) | \(a_{348}= -0.03390018 \pm 1.1 \cdot 10^{-7} \) |
\(a_{349}= +0.57179869 \pm 4.3 \cdot 10^{-7} \) | \(a_{350}= +0.08882498 \pm 5.6 \cdot 10^{-7} \) | \(a_{351}= +0.46686385 \pm 1.9 \cdot 10^{-7} \) |
\(a_{352}= -0.78216283 \pm 2.0 \cdot 10^{-7} \) | \(a_{353}= +0.67453588 \pm 1.6 \cdot 10^{-7} \) | \(a_{354}= -0.02344715 \pm 3.7 \cdot 10^{-7} \) |
\(a_{355}= -0.64895841 \pm 2.1 \cdot 10^{-7} \) | \(a_{356}= +0.25030575 \pm 4.3 \cdot 10^{-7} \) | \(a_{357}= -0.05820259 \pm 1.5 \cdot 10^{-7} \) |
\(a_{358}= +0.30079274 \pm 5.9 \cdot 10^{-7} \) | \(a_{359}= -0.43954901 \pm 1.9 \cdot 10^{-7} \) | \(a_{360}= -0.26413781 \pm 5.8 \cdot 10^{-7} \) |
\(a_{361}= +0.83960646 \pm 3.0 \cdot 10^{-7} \) | \(a_{362}= -0.25921107 \pm 4.5 \cdot 10^{-7} \) | \(a_{363}= +0.01645779 \pm 3.8 \cdot 10^{-7} \) |
\(a_{364}= +1.97609996 \pm 1.2 \cdot 10^{-7} \) | \(a_{365}= +0.79743616 \pm 3.6 \cdot 10^{-7} \) | \(a_{366}= -0.05046906 \pm 2.0 \cdot 10^{-7} \) |
\(a_{367}= -1.81874782 \pm 3.5 \cdot 10^{-7} \) | \(a_{368}= -0.10158716 \pm 1.3 \cdot 10^{-7} \) | \(a_{369}= -0.50797692 \pm 1.8 \cdot 10^{-7} \) |
\(a_{370}= -0.14412182 \pm 9.2 \cdot 10^{-7} \) | \(a_{371}= -2.17504672 \pm 1.3 \cdot 10^{-7} \) | \(a_{372}= -0.03338867 \pm 5.2 \cdot 10^{-7} \) |
\(a_{373}= +0.34127456 \pm 4.8 \cdot 10^{-7} \) | \(a_{374}= +0.08354521 \pm 2.5 \cdot 10^{-7} \) | \(a_{375}= -0.01340377 \pm 4.3 \cdot 10^{-7} \) |
\(a_{376}= +0.50627750 \pm 2.6 \cdot 10^{-7} \) | \(a_{377}= -0.39652212 \pm 1.4 \cdot 10^{-7} \) | \(a_{378}= +0.13161726 \pm 1.1 \cdot 10^{-7} \) |
\(a_{379}= +0.00662746 \pm 3.3 \cdot 10^{-7} \) | \(a_{380}= -0.54514579 \pm 7.6 \cdot 10^{-7} \) | \(a_{381}= -0.20645434 \pm 4.4 \cdot 10^{-7} \) |
\(a_{382}= -0.04149562 \pm 1.2 \cdot 10^{-7} \) | \(a_{383}= +0.19122350 \pm 4.6 \cdot 10^{-7} \) | \(a_{384}= -0.14534401 \pm 3.3 \cdot 10^{-7} \) |
\(a_{385}= -0.58890413 \pm 3.9 \cdot 10^{-7} \) | \(a_{386}= +0.37361831 \pm 1.7 \cdot 10^{-7} \) | \(a_{387}= +0.67364400 \pm 1.1 \cdot 10^{-7} \) |
\(a_{388}= -0.45953079 \pm 2.2 \cdot 10^{-7} \) | \(a_{389}= +1.40221810 \pm 4.7 \cdot 10^{-7} \) | \(a_{390}= +0.03359645 \pm 1.1 \cdot 10^{-6} \) |
\(a_{391}= +0.04001364 \pm 1.3 \cdot 10^{-7} \) | \(a_{392}= +0.57276279 \pm 3.2 \cdot 10^{-7} \) | \(a_{393}= -0.07424720 \pm 4.2 \cdot 10^{-7} \) |
\(a_{394}= -0.39733242 \pm 4.6 \cdot 10^{-7} \) | \(a_{395}= +0.40077178 \pm 5.1 \cdot 10^{-7} \) | \(a_{396}= +0.82891350 \pm 9.1 \cdot 10^{-8} \) |
\(a_{397}= -0.51160365 \pm 4.1 \cdot 10^{-7} \) | \(a_{398}= +0.17171375 \pm 4.8 \cdot 10^{-7} \) | \(a_{399}= +0.28368448 \pm 2.1 \cdot 10^{-7} \) |
\(a_{400}= +0.14129603 \pm 1.8 \cdot 10^{-7} \) | \(a_{401}= +0.47223735 \pm 6.4 \cdot 10^{-7} \) | \(a_{402}= +0.01810151 \pm 2.0 \cdot 10^{-7} \) |
\(a_{403}= -0.39053903 \pm 3.6 \cdot 10^{-7} \) | \(a_{404}= -0.75057776 \pm 2.5 \cdot 10^{-7} \) | \(a_{405}= +0.41730908 \pm 4.5 \cdot 10^{-7} \) |
\(a_{406}= -0.11178667 \pm 9.9 \cdot 10^{-8} \) | \(a_{407}= +0.95551878 \pm 1.8 \cdot 10^{-7} \) | \(a_{408}= +0.02519597 \pm 3.7 \cdot 10^{-7} \) |
\(a_{409}= -1.26227377 \pm 4.2 \cdot 10^{-7} \) | \(a_{410}= -0.07394986 \pm 8.5 \cdot 10^{-7} \) | \(a_{411}= +0.05356579 \pm 5.1 \cdot 10^{-7} \) |
\(a_{412}= -0.50083352 \pm 4.2 \cdot 10^{-7} \) | \(a_{413}= +0.68625487 \pm 1.7 \cdot 10^{-7} \) | \(a_{414}= -0.04472892 \pm 1.5 \cdot 10^{-7} \) |
\(a_{415}= +0.33819070 \pm 4.4 \cdot 10^{-7} \) | \(a_{416}= -1.30599429 \pm 2.9 \cdot 10^{-7} \) | \(a_{417}= +0.22399292 \pm 5.0 \cdot 10^{-7} \) |
\(a_{418}= -0.40720661 \pm 1.0 \cdot 10^{-7} \) | \(a_{419}= -1.08250798 \pm 1.8 \cdot 10^{-7} \) | \(a_{420}= -0.08406657 \pm 9.4 \cdot 10^{-7} \) |
\(a_{421}= -0.87220929 \pm 3.0 \cdot 10^{-7} \) | \(a_{422}= -0.21260952 \pm 2.1 \cdot 10^{-7} \) | \(a_{423}= -0.81911380 \pm 2.2 \cdot 10^{-7} \) |
\(a_{424}= +0.94158034 \pm 3.9 \cdot 10^{-7} \) | \(a_{425}= -0.05565436 \pm 4.4 \cdot 10^{-7} \) | \(a_{426}= -0.06919867 \pm 2.4 \cdot 10^{-7} \) |
\(a_{427}= +1.47713623 \pm 1.1 \cdot 10^{-7} \) | \(a_{428}= -0.38599025 \pm 2.6 \cdot 10^{-7} \) | \(a_{429}= -0.22274239 \pm 1.2 \cdot 10^{-7} \) |
\(a_{430}= +0.09806720 \pm 8.4 \cdot 10^{-7} \) | \(a_{431}= +1.77913888 \pm 3.9 \cdot 10^{-7} \) | \(a_{432}= +0.20936674 \pm 1.2 \cdot 10^{-7} \) |
\(a_{433}= +0.71436328 \pm 5.0 \cdot 10^{-7} \) | \(a_{434}= -0.11009993 \pm 2.0 \cdot 10^{-7} \) | \(a_{435}= +0.01686871 \pm 6.3 \cdot 10^{-7} \) |
\(a_{436}= +0.14558231 \pm 2.2 \cdot 10^{-7} \) | \(a_{437}= -0.19502995 \pm 1.4 \cdot 10^{-7} \) | \(a_{438}= +0.08503091 \pm 2.9 \cdot 10^{-7} \) |
\(a_{439}= -0.21455675 \pm 2.7 \cdot 10^{-7} \) | \(a_{440}= +0.25493731 \pm 5.9 \cdot 10^{-7} \) | \(a_{441}= -0.92668133 \pm 1.5 \cdot 10^{-7} \) |
\(a_{442}= +0.13949725 \pm 3.7 \cdot 10^{-7} \) | \(a_{443}= -0.69145787 \pm 3.6 \cdot 10^{-7} \) | \(a_{444}= +0.13640112 \pm 3.9 \cdot 10^{-7} \) |
\(a_{445}= -0.12455197 \pm 5.1 \cdot 10^{-7} \) | \(a_{446}= +0.56550106 \pm 4.2 \cdot 10^{-7} \) | \(a_{447}= -0.23162005 \pm 1.9 \cdot 10^{-7} \) |
\(a_{448}= +0.61784917 \pm 1.6 \cdot 10^{-7} \) | \(a_{449}= +1.17234177 \pm 4.5 \cdot 10^{-7} \) | \(a_{450}= +0.06221277 \pm 6.1 \cdot 10^{-7} \) |
\(a_{451}= +0.49028297 \pm 2.6 \cdot 10^{-7} \) | \(a_{452}= -0.53144177 \pm 3.0 \cdot 10^{-7} \) | \(a_{453}= -0.10799019 \pm 2.6 \cdot 10^{-7} \) |
\(a_{454}= +0.34725262 \pm 3.5 \cdot 10^{-7} \) | \(a_{455}= -0.98330603 \pm 4.5 \cdot 10^{-7} \) | \(a_{456}= -0.12280735 \pm 4.6 \cdot 10^{-7} \) |
\(a_{457}= -0.30893784 \pm 4.1 \cdot 10^{-7} \) | \(a_{458}= +0.06839297 \pm 4.6 \cdot 10^{-7} \) | \(a_{459}= -0.08246638 \pm 3.4 \cdot 10^{-7} \) |
\(a_{460}= +0.05779484 \pm 5.2 \cdot 10^{-7} \) | \(a_{461}= -1.05078337 \pm 5.6 \cdot 10^{-7} \) | \(a_{462}= -0.06279506 \pm 8.7 \cdot 10^{-8} \) |
\(a_{463}= -0.02579070 \pm 3.3 \cdot 10^{-7} \) | \(a_{464}= -0.17782174 \pm 1.0 \cdot 10^{-7} \) | \(a_{465}= +0.01661418 \pm 8.5 \cdot 10^{-7} \) |
\(a_{466}= -0.52156739 \pm 3.9 \cdot 10^{-7} \) | \(a_{467}= -0.56845790 \pm 2.0 \cdot 10^{-7} \) | \(a_{468}= +1.38405489 \pm 1.0 \cdot 10^{-7} \) |
\(a_{469}= -0.52979773 \pm 1.1 \cdot 10^{-7} \) | \(a_{470}= -0.11924429 \pm 6.6 \cdot 10^{-7} \) | \(a_{471}= +0.19287913 \pm 4.0 \cdot 10^{-7} \) |
\(a_{472}= -0.29708056 \pm 2.9 \cdot 10^{-7} \) | \(a_{473}= -0.65017950 \pm 7.3 \cdot 10^{-8} \) | \(a_{474}= +0.04273444 \pm 3.8 \cdot 10^{-7} \) |
\(a_{475}= +0.27126419 \pm 4.1 \cdot 10^{-7} \) | \(a_{476}= -0.34905638 \pm 1.1 \cdot 10^{-7} \) | \(a_{477}= -1.52339664 \pm 1.7 \cdot 10^{-7} \) |
\(a_{478}= +0.51064769 \pm 3.5 \cdot 10^{-7} \) | \(a_{479}= +1.80576204 \pm 3.6 \cdot 10^{-7} \) | \(a_{480}= +0.05555916 \pm 8.6 \cdot 10^{-7} \) |
\(a_{481}= +1.59545049 \pm 1.9 \cdot 10^{-7} \) | \(a_{482}= -0.14811009 \pm 2.8 \cdot 10^{-7} \) | \(a_{483}= -0.03007544 \pm 1.3 \cdot 10^{-7} \) |
\(a_{484}= +0.09870172 \pm 2.8 \cdot 10^{-7} \) | \(a_{485}= +0.22866222 \pm 3.3 \cdot 10^{-7} \) | \(a_{486}= +0.13879998 \pm 1.8 \cdot 10^{-7} \) |
\(a_{487}= +0.30449648 \pm 5.2 \cdot 10^{-7} \) | \(a_{488}= -0.63945405 \pm 2.3 \cdot 10^{-7} \) | \(a_{489}= -0.04026731 \pm 3.0 \cdot 10^{-7} \) |
\(a_{490}= -0.13490367 \pm 7.6 \cdot 10^{-7} \) | \(a_{491}= +0.59445059 \pm 2.7 \cdot 10^{-7} \) | \(a_{492}= +0.06998831 \pm 5.2 \cdot 10^{-7} \) |
\(a_{493}= +0.07004128 \pm 1.9 \cdot 10^{-7} \) | \(a_{494}= -0.67992174 \pm 1.4 \cdot 10^{-7} \) | \(a_{495}= -0.41246681 \pm 4.3 \cdot 10^{-7} \) |
\(a_{496}= -0.17513860 \pm 2.2 \cdot 10^{-7} \) | \(a_{497}= +2.02531720 \pm 1.5 \cdot 10^{-7} \) | \(a_{498}= +0.03606140 \pm 3.5 \cdot 10^{-7} \) |
\(a_{499}= -0.83789904 \pm 5.0 \cdot 10^{-7} \) | \(a_{500}= -0.08038596 \pm 3.5 \cdot 10^{-7} \) | \(a_{501}= +0.12614004 \pm 3.8 \cdot 10^{-7} \) |
\(a_{502}= +0.51269877 \pm 3.8 \cdot 10^{-7} \) | \(a_{503}= -0.06929439 \pm 5.2 \cdot 10^{-7} \) | \(a_{504}= +0.82434073 \pm 1.2 \cdot 10^{-7} \) |
\(a_{505}= +0.37348700 \pm 3.4 \cdot 10^{-7} \) | \(a_{506}= +0.04317091 \pm 1.6 \cdot 10^{-7} \) | \(a_{507}= -0.22205911 \pm 3.4 \cdot 10^{-7} \) |
\(a_{508}= -1.23816149 \pm 3.0 \cdot 10^{-7} \) | \(a_{509}= -0.73709395 \pm 2.9 \cdot 10^{-7} \) | \(a_{510}= -0.00593444 \pm 1.2 \cdot 10^{-6} \) |
\(a_{511}= -2.48869752 \pm 1.2 \cdot 10^{-7} \) | \(a_{512}= -1.01253230 \pm 2.7 \cdot 10^{-7} \) | \(a_{513}= +0.40194830 \pm 3.2 \cdot 10^{-7} \) |
\(a_{514}= -0.49826642 \pm 4.7 \cdot 10^{-7} \) | \(a_{515}= +0.24921443 \pm 3.3 \cdot 10^{-7} \) | \(a_{516}= -0.09281368 \pm 3.2 \cdot 10^{-7} \) |
\(a_{517}= +0.79058226 \pm 2.7 \cdot 10^{-7} \) | \(a_{518}= +0.44978601 \pm 1.4 \cdot 10^{-7} \) | \(a_{519}= -0.05626736 \pm 3.9 \cdot 10^{-7} \) |
\(a_{520}= +0.42567436 \pm 6.5 \cdot 10^{-7} \) | \(a_{521}= +0.77188729 \pm 3.7 \cdot 10^{-7} \) | \(a_{522}= -0.07829507 \pm 1.5 \cdot 10^{-7} \) |
\(a_{523}= -0.31009451 \pm 5.4 \cdot 10^{-7} \) | \(a_{524}= -0.44528020 \pm 4.2 \cdot 10^{-7} \) | \(a_{525}= +0.04183147 \pm 6.0 \cdot 10^{-7} \) |
\(a_{526}= +0.23251213 \pm 5.2 \cdot 10^{-7} \) | \(a_{527}= +0.06898444 \pm 4.5 \cdot 10^{-7} \) | \(a_{528}= -0.09988961 \pm 9.8 \cdot 10^{-8} \) |
\(a_{529}= -0.97932347 \pm 3.6 \cdot 10^{-7} \) | \(a_{530}= -0.22177181 \pm 8.2 \cdot 10^{-7} \) | \(a_{531}= +0.48065099 \pm 1.9 \cdot 10^{-7} \) |
\(a_{532}= +1.70133115 \pm 1.0 \cdot 10^{-7} \) | \(a_{533}= +0.81863613 \pm 3.7 \cdot 10^{-7} \) | \(a_{534}= -0.01328102 \pm 4.9 \cdot 10^{-7} \) |
\(a_{535}= +0.19206849 \pm 3.4 \cdot 10^{-7} \) | \(a_{536}= +0.22935007 \pm 2.5 \cdot 10^{-7} \) | \(a_{537}= +0.14165612 \pm 4.2 \cdot 10^{-7} \) |
\(a_{538}= -0.27348396 \pm 3.6 \cdot 10^{-7} \) | \(a_{539}= +0.89440298 \pm 1.8 \cdot 10^{-7} \) | \(a_{540}= -0.11911266 \pm 6.8 \cdot 10^{-7} \) |
\(a_{541}= -0.73043855 \pm 3.5 \cdot 10^{-7} \) | \(a_{542}= +0.02633451 \pm 3.1 \cdot 10^{-7} \) | \(a_{543}= -0.12207354 \pm 4.4 \cdot 10^{-7} \) |
\(a_{544}= +0.23068957 \pm 4.5 \cdot 10^{-7} \) | \(a_{545}= -0.07244166 \pm 2.1 \cdot 10^{-7} \) | \(a_{546}= -0.10485028 \pm 1.2 \cdot 10^{-7} \) |
\(a_{547}= -0.30281621 \pm 3.0 \cdot 10^{-7} \) | \(a_{548}= +0.32124823 \pm 5.2 \cdot 10^{-7} \) | \(a_{549}= +1.03458209 \pm 1.4 \cdot 10^{-7} \) |
\(a_{550}= -0.06004576 \pm 6.2 \cdot 10^{-7} \) | \(a_{551}= -0.34138730 \pm 2.0 \cdot 10^{-7} \) | \(a_{552}= +0.01301969 \pm 1.8 \cdot 10^{-7} \) |
\(a_{553}= -1.25075810 \pm 1.8 \cdot 10^{-7} \) | \(a_{554}= +0.05763648 \pm 5.5 \cdot 10^{-7} \) | \(a_{555}= -0.06787311 \pm 9.6 \cdot 10^{-7} \) |
\(a_{556}= +1.34334501 \pm 2.9 \cdot 10^{-7} \) | \(a_{557}= -1.44192245 \pm 3.2 \cdot 10^{-7} \) | \(a_{558}= -0.07711369 \pm 1.2 \cdot 10^{-7} \) |
\(a_{559}= -1.08561884 \pm 6.0 \cdot 10^{-8} \) | \(a_{560}= -0.44096705 \pm 3.4 \cdot 10^{-7} \) | \(a_{561}= +0.03934500 \pm 1.4 \cdot 10^{-7} \) |
\(a_{562}= +0.02228723 \pm 1.8 \cdot 10^{-7} \) | \(a_{563}= +1.29453961 \pm 1.4 \cdot 10^{-7} \) | \(a_{564}= +0.11285629 \pm 1.5 \cdot 10^{-7} \) |
\(a_{565}= +0.26444508 \pm 3.1 \cdot 10^{-7} \) | \(a_{566}= -0.33404377 \pm 5.9 \cdot 10^{-7} \) | \(a_{567}= -1.30236891 \pm 1.5 \cdot 10^{-7} \) |
\(a_{568}= -0.87676225 \pm 2.0 \cdot 10^{-7} \) | \(a_{569}= +0.52082551 \pm 2.5 \cdot 10^{-7} \) | \(a_{570}= +0.02892500 \pm 1.2 \cdot 10^{-6} \) |
\(a_{571}= +0.26004550 \pm 3.4 \cdot 10^{-7} \) | \(a_{572}= -1.33584521 \pm 1.5 \cdot 10^{-7} \) | \(a_{573}= -0.01954205 \pm 1.2 \cdot 10^{-7} \) |
\(a_{574}= +0.23078816 \pm 2.3 \cdot 10^{-7} \) | \(a_{575}= -0.02875867 \pm 1.8 \cdot 10^{-7} \) | \(a_{576}= +0.43273983 \pm 2.0 \cdot 10^{-7} \) |
\(a_{577}= +1.20619872 \pm 3.6 \cdot 10^{-7} \) | \(a_{578}= +0.29356943 \pm 1.5 \cdot 10^{-7} \) | \(a_{579}= +0.17595279 \pm 1.6 \cdot 10^{-7} \) |
\(a_{580}= +0.10116612 \pm 5.5 \cdot 10^{-7} \) | \(a_{581}= -1.05545045 \pm 1.7 \cdot 10^{-7} \) | \(a_{582}= +0.02438233 \pm 3.0 \cdot 10^{-7} \) |
\(a_{583}= +1.47033339 \pm 1.8 \cdot 10^{-7} \) | \(a_{584}= +1.07736014 \pm 3.2 \cdot 10^{-7} \) | \(a_{585}= -0.68870480 \pm 4.9 \cdot 10^{-7} \) |
\(a_{586}= +0.50348546 \pm 3.3 \cdot 10^{-7} \) | \(a_{587}= -0.83322081 \pm 3.5 \cdot 10^{-7} \) | \(a_{588}= +0.12767679 \pm 3.2 \cdot 10^{-7} \) |
\(a_{589}= -0.33623614 \pm 2.6 \cdot 10^{-7} \) | \(a_{590}= +0.06997182 \pm 7.4 \cdot 10^{-7} \) | \(a_{591}= -0.18712077 \pm 4.1 \cdot 10^{-7} \) |
\(a_{592}= +0.71548538 \pm 1.3 \cdot 10^{-7} \) | \(a_{593}= +0.52539909 \pm 4.8 \cdot 10^{-7} \) | \(a_{594}= -0.08897338 \pm 1.6 \cdot 10^{-7} \) |
\(a_{595}= +0.17369023 \pm 6.1 \cdot 10^{-7} \) | \(a_{596}= -1.38908695 \pm 1.1 \cdot 10^{-7} \) | \(a_{597}= +0.08086732 \pm 5.7 \cdot 10^{-7} \) |
\(a_{598}= +0.07208341 \pm 1.7 \cdot 10^{-7} \) | \(a_{599}= +0.86424816 \pm 5.0 \cdot 10^{-7} \) | \(a_{600}= -0.01810889 \pm 8.0 \cdot 10^{-7} \) |
\(a_{601}= +1.11253508 \pm 5.0 \cdot 10^{-7} \) | \(a_{602}= -0.30605536 \pm 8.7 \cdot 10^{-8} \) | \(a_{603}= -0.37106885 \pm 1.2 \cdot 10^{-7} \) |
\(a_{604}= -0.64764583 \pm 2.7 \cdot 10^{-7} \) | \(a_{605}= -0.04911391 \pm 3.5 \cdot 10^{-7} \) | \(a_{606}= +0.03982505 \pm 3.1 \cdot 10^{-7} \) |
\(a_{607}= +1.67858283 \pm 2.8 \cdot 10^{-7} \) | \(a_{608}= -1.12440100 \pm 3.9 \cdot 10^{-7} \) | \(a_{609}= -0.05264511 \pm 1.4 \cdot 10^{-7} \) |
\(a_{610}= +0.15061156 \pm 6.4 \cdot 10^{-7} \) | \(a_{611}= +1.32005239 \pm 3.3 \cdot 10^{-7} \) | \(a_{612}= -0.24447812 \pm 9.7 \cdot 10^{-8} \) |
\(a_{613}= -1.73932473 \pm 4.4 \cdot 10^{-7} \) | \(a_{614}= -0.12106269 \pm 2.5 \cdot 10^{-7} \) | \(a_{615}= -0.03482614 \pm 8.8 \cdot 10^{-7} \) |
\(a_{616}= -0.79562713 \pm 8.0 \cdot 10^{-8} \) | \(a_{617}= -0.49268143 \pm 5.7 \cdot 10^{-7} \) | \(a_{618}= +0.02657382 \pm 5.0 \cdot 10^{-7} \) |
\(a_{619}= -1.50648284 \pm 5.8 \cdot 10^{-7} \) | \(a_{620}= +0.09963963 \pm 7.7 \cdot 10^{-7} \) | \(a_{621}= -0.04261344 \pm 1.1 \cdot 10^{-7} \) |
\(a_{622}= +0.18775575 \pm 3.7 \cdot 10^{-7} \) | \(a_{623}= +0.38871098 \pm 1.7 \cdot 10^{-7} \) | \(a_{624}= -0.16678785 \pm 1.3 \cdot 10^{-7} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +0.00721772 \pm 3.5 \cdot 10^{-7} \) | \(a_{627}= -0.19177095 \pm 1.2 \cdot 10^{-7} \) |
\(a_{628}= +1.15674734 \pm 2.5 \cdot 10^{-7} \) | \(a_{629}= -0.28181883 \pm 5.5 \cdot 10^{-7} \) | \(a_{630}= -0.19415819 \pm 7.7 \cdot 10^{-7} \) |
\(a_{631}= -1.68449027 \pm 4.7 \cdot 10^{-7} \) | \(a_{632}= +0.54145468 \pm 4.8 \cdot 10^{-7} \) | \(a_{633}= -0.10012688 \pm 1.5 \cdot 10^{-7} \) |
\(a_{634}= -0.62067697 \pm 4.0 \cdot 10^{-7} \) | \(a_{635}= +0.61610834 \pm 4.7 \cdot 10^{-7} \) | \(a_{636}= +0.20989135 \pm 3.3 \cdot 10^{-7} \) |
\(a_{637}= +1.49340410 \pm 2.4 \cdot 10^{-7} \) | \(a_{638}= +0.07556788 \pm 1.1 \cdot 10^{-7} \) | \(a_{639}= +1.41852651 \pm 2.1 \cdot 10^{-7} \) |
\(a_{640}= +0.43374073 \pm 3.1 \cdot 10^{-7} \) | \(a_{641}= +0.53956637 \pm 3.0 \cdot 10^{-7} \) | \(a_{642}= +0.02048033 \pm 3.6 \cdot 10^{-7} \) |
\(a_{643}= -0.73063471 \pm 2.4 \cdot 10^{-7} \) | \(a_{644}= -0.18037039 \pm 8.3 \cdot 10^{-8} \) | \(a_{645}= +0.04618403 \pm 8.8 \cdot 10^{-7} \) |
\(a_{646}= +0.12010072 \pm 2.7 \cdot 10^{-7} \) | \(a_{647}= +0.95209881 \pm 4.9 \cdot 10^{-7} \) | \(a_{648}= +0.56379707 \pm 3.9 \cdot 10^{-7} \) |
\(a_{649}= -0.46390886 \pm 1.3 \cdot 10^{-7} \) | \(a_{650}= -0.10025971 \pm 6.8 \cdot 10^{-7} \) | \(a_{651}= -0.05185075 \pm 1.7 \cdot 10^{-7} \) |
\(a_{652}= -0.24149377 \pm 2.6 \cdot 10^{-7} \) | \(a_{653}= -0.43417596 \pm 2.8 \cdot 10^{-7} \) | \(a_{654}= -0.00772448 \pm 2.7 \cdot 10^{-7} \) |
\(a_{655}= +0.22157113 \pm 4.1 \cdot 10^{-7} \) | \(a_{656}= +0.36712025 \pm 2.4 \cdot 10^{-7} \) | \(a_{657}= -1.74307679 \pm 1.3 \cdot 10^{-7} \) |
\(a_{658}= +0.37214636 \pm 8.3 \cdot 10^{-8} \) | \(a_{659}= -0.83256171 \pm 5.4 \cdot 10^{-7} \) | \(a_{660}= +0.05682907 \pm 1.0 \cdot 10^{-6} \) |
\(a_{661}= +1.45141586 \pm 3.8 \cdot 10^{-7} \) | \(a_{662}= -0.13089856 \pm 3.9 \cdot 10^{-7} \) | \(a_{663}= +0.06569520 \pm 2.2 \cdot 10^{-7} \) |
\(a_{664}= +0.45690577 \pm 4.1 \cdot 10^{-7} \) | \(a_{665}= -0.84658126 \pm 5.8 \cdot 10^{-7} \) | \(a_{666}= +0.31502886 \pm 1.5 \cdot 10^{-7} \) |
\(a_{667}= +0.03619293 \pm 1.3 \cdot 10^{-7} \) | \(a_{668}= +0.75649532 \pm 2.0 \cdot 10^{-7} \) | \(a_{669}= +0.26631855 \pm 4.8 \cdot 10^{-7} \) |
\(a_{670}= -0.05401916 \pm 6.7 \cdot 10^{-7} \) | \(a_{671}= -0.99854532 \pm 1.2 \cdot 10^{-7} \) | \(a_{672}= -0.17339313 \pm 1.4 \cdot 10^{-7} \) |
\(a_{673}= -1.70459016 \pm 3.3 \cdot 10^{-7} \) | \(a_{674}= -0.09435890 \pm 3.7 \cdot 10^{-7} \) | \(a_{675}= +0.05927038 \pm 3.3 \cdot 10^{-7} \) |
\(a_{676}= -1.33174745 \pm 2.2 \cdot 10^{-7} \) | \(a_{677}= -0.29721722 \pm 3.9 \cdot 10^{-7} \) | \(a_{678}= +0.02819787 \pm 4.0 \cdot 10^{-7} \) |
\(a_{679}= -0.71362589 \pm 1.6 \cdot 10^{-7} \) | \(a_{680}= -0.07519071 \pm 8.1 \cdot 10^{-7} \) | \(a_{681}= +0.16353605 \pm 3.3 \cdot 10^{-7} \) |
\(a_{682}= +0.07442765 \pm 2.9 \cdot 10^{-7} \) | \(a_{683}= +0.34642908 \pm 5.4 \cdot 10^{-7} \) | \(a_{684}= +1.19160758 \pm 7.7 \cdot 10^{-8} \) |
\(a_{685}= -0.15985291 \pm 5.0 \cdot 10^{-7} \) | \(a_{686}= -0.02310760 \pm 2.5 \cdot 10^{-7} \) | \(a_{687}= +0.03220917 \pm 6.5 \cdot 10^{-7} \) |
\(a_{688}= -0.48684959 \pm 5.0 \cdot 10^{-8} \) | \(a_{689}= +2.45504763 \pm 2.3 \cdot 10^{-7} \) | \(a_{690}= -0.00306655 \pm 1.0 \cdot 10^{-6} \) |
\(a_{691}= -0.12421866 \pm 2.7 \cdot 10^{-7} \) | \(a_{692}= -0.33745032 \pm 4.1 \cdot 10^{-7} \) | \(a_{693}= +1.28725680 \pm 1.0 \cdot 10^{-7} \) |
\(a_{694}= -0.40274589 \pm 2.2 \cdot 10^{-7} \) | \(a_{695}= -0.66844759 \pm 4.8 \cdot 10^{-7} \) | \(a_{696}= +0.02279013 \pm 2.3 \cdot 10^{-7} \) |
\(a_{697}= -0.14460309 \pm 4.7 \cdot 10^{-7} \) | \(a_{698}= -0.18195211 \pm 5.2 \cdot 10^{-7} \) | \(a_{699}= -0.24562831 \pm 5.9 \cdot 10^{-7} \) |
\(a_{700}= +0.25087442 \pm 5.1 \cdot 10^{-7} \) | \(a_{701}= +1.40637886 \pm 2.2 \cdot 10^{-7} \) | \(a_{702}= -0.14856079 \pm 2.7 \cdot 10^{-7} \) |
\(a_{703}= +1.37360947 \pm 6.1 \cdot 10^{-7} \) | \(a_{704}= -0.41766655 \pm 2.4 \cdot 10^{-7} \) | \(a_{705}= -0.05615722 \pm 7.0 \cdot 10^{-7} \) |
\(a_{706}= -0.21464412 \pm 1.4 \cdot 10^{-7} \) | \(a_{707}= -1.16560574 \pm 1.4 \cdot 10^{-7} \) | \(a_{708}= -0.06622339 \pm 2.9 \cdot 10^{-7} \) |
\(a_{709}= +0.50467889 \pm 5.0 \cdot 10^{-7} \) | \(a_{710}= +0.20650511 \pm 6.1 \cdot 10^{-7} \) | \(a_{711}= -0.87602748 \pm 2.4 \cdot 10^{-7} \) |
\(a_{712}= -0.16827345 \pm 4.4 \cdot 10^{-7} \) | \(a_{713}= +0.03564682 \pm 1.9 \cdot 10^{-7} \) | \(a_{714}= +0.01852065 \pm 1.5 \cdot 10^{-7} \) |
\(a_{715}= +0.66471570 \pm 5.0 \cdot 10^{-7} \) | \(a_{716}= +0.84954934 \pm 5.1 \cdot 10^{-7} \) | \(a_{717}= +0.24048576 \pm 3.3 \cdot 10^{-7} \) |
\(a_{718}= +0.13986893 \pm 2.3 \cdot 10^{-7} \) | \(a_{719}= +0.47074722 \pm 1.6 \cdot 10^{-7} \) | \(a_{720}= -0.30885209 \pm 3.9 \cdot 10^{-7} \) |
\(a_{721}= -0.77776675 \pm 1.3 \cdot 10^{-7} \) | \(a_{722}= -0.26717125 \pm 3.3 \cdot 10^{-7} \) | \(a_{723}= -0.06975135 \pm 2.4 \cdot 10^{-7} \) |
\(a_{724}= -0.73210743 \pm 4.0 \cdot 10^{-7} \) | \(a_{725}= -0.05034019 \pm 2.0 \cdot 10^{-7} \) | \(a_{726}= -0.00523703 \pm 3.2 \cdot 10^{-7} \) |
\(a_{727}= +1.06304950 \pm 4.4 \cdot 10^{-7} \) | \(a_{728}= -1.32847591 \pm 9.3 \cdot 10^{-8} \) | \(a_{729}= -0.86776464 \pm 3.2 \cdot 10^{-7} \) |
\(a_{730}= -0.25375223 \pm 7.5 \cdot 10^{-7} \) | \(a_{731}= +0.19176266 \pm 4.6 \cdot 10^{-7} \) | \(a_{732}= -0.14254320 \pm 1.7 \cdot 10^{-7} \) |
\(a_{733}= -0.13886583 \pm 2.9 \cdot 10^{-7} \) | \(a_{734}= +0.57874390 \pm 5.2 \cdot 10^{-7} \) | \(a_{735}= -0.06353189 \pm 7.9 \cdot 10^{-7} \) |
\(a_{736}= +0.11920586 \pm 1.6 \cdot 10^{-7} \) | \(a_{737}= +0.35814371 \pm 8.9 \cdot 10^{-8} \) | \(a_{738}= +0.16164338 \pm 1.8 \cdot 10^{-7} \) |
\(a_{739}= -0.98131499 \pm 3.4 \cdot 10^{-7} \) | \(a_{740}= -0.40705305 \pm 8.7 \cdot 10^{-7} \) | \(a_{741}= -0.32020412 \pm 1.5 \cdot 10^{-7} \) |
\(a_{742}= +0.69212181 \pm 1.1 \cdot 10^{-7} \) | \(a_{743}= -1.32286401 \pm 5.7 \cdot 10^{-7} \) | \(a_{744}= +0.02244625 \pm 2.8 \cdot 10^{-7} \) |
\(a_{745}= +0.69120875 \pm 1.6 \cdot 10^{-7} \) | \(a_{746}= -0.10859701 \pm 5.7 \cdot 10^{-7} \) | \(a_{747}= -0.73923455 \pm 1.7 \cdot 10^{-7} \) |
\(a_{748}= +0.23596241 \pm 1.7 \cdot 10^{-7} \) | \(a_{749}= -0.59942150 \pm 2.0 \cdot 10^{-7} \) | \(a_{750}= +0.00426521 \pm 8.3 \cdot 10^{-7} \) |
\(a_{751}= +1.18589370 \pm 3.8 \cdot 10^{-7} \) | \(a_{752}= +0.59198214 \pm 1.3 \cdot 10^{-7} \) | \(a_{753}= +0.24145170 \pm 6.3 \cdot 10^{-7} \) |
\(a_{754}= +0.12617734 \pm 1.2 \cdot 10^{-7} \) | \(a_{755}= +0.32226814 \pm 2.8 \cdot 10^{-7} \) | \(a_{756}= +0.37173557 \pm 1.1 \cdot 10^{-7} \) |
\(a_{757}= +1.31693121 \pm 3.1 \cdot 10^{-7} \) | \(a_{758}= -0.00210892 \pm 3.3 \cdot 10^{-7} \) | \(a_{759}= +0.02033102 \pm 1.2 \cdot 10^{-7} \) |
\(a_{760}= +0.36648604 \pm 7.8 \cdot 10^{-7} \) | \(a_{761}= -0.71001114 \pm 3.9 \cdot 10^{-7} \) | \(a_{762}= +0.06569585 \pm 3.5 \cdot 10^{-7} \) |
\(a_{763}= +0.22608127 \pm 9.7 \cdot 10^{-8} \) | \(a_{764}= -0.11719889 \pm 1.0 \cdot 10^{-7} \) | \(a_{765}= +0.12165215 \pm 6.5 \cdot 10^{-7} \) |
\(a_{766}= -0.06084925 \pm 4.5 \cdot 10^{-7} \) | \(a_{767}= -0.77459871 \pm 1.9 \cdot 10^{-7} \) | \(a_{768}= -0.02008973 \pm 3.2 \cdot 10^{-7} \) |
\(a_{769}= -0.95715289 \pm 2.8 \cdot 10^{-7} \) | \(a_{770}= +0.18739524 \pm 7.8 \cdot 10^{-7} \) | \(a_{771}= -0.23465489 \pm 3.1 \cdot 10^{-7} \) |
\(a_{772}= +1.05523556 \pm 1.1 \cdot 10^{-7} \) | \(a_{773}= +1.78242932 \pm 2.2 \cdot 10^{-7} \) | \(a_{774}= -0.21436032 \pm 7.2 \cdot 10^{-8} \) |
\(a_{775}= -0.04958062 \pm 4.3 \cdot 10^{-7} \) | \(a_{776}= +0.30892951 \pm 3.1 \cdot 10^{-7} \) | \(a_{777}= +0.21182340 \pm 1.7 \cdot 10^{-7} \) |
\(a_{778}= -0.44619994 \pm 3.2 \cdot 10^{-7} \) | \(a_{779}= +0.70480804 \pm 2.9 \cdot 10^{-7} \) | \(a_{780}= +0.09488873 \pm 1.0 \cdot 10^{-6} \) |
\(a_{781}= -1.36911611 \pm 1.5 \cdot 10^{-7} \) | \(a_{782}= -0.01273274 \pm 1.8 \cdot 10^{-7} \) | \(a_{783}= -0.07459206 \pm 1.3 \cdot 10^{-7} \) |
\(a_{784}= +0.66972232 \pm 1.2 \cdot 10^{-7} \) | \(a_{785}= -0.57559671 \pm 3.8 \cdot 10^{-7} \) | \(a_{786}= +0.02362621 \pm 5.0 \cdot 10^{-7} \) |
\(a_{787}= +0.17395307 \pm 2.7 \cdot 10^{-7} \) | \(a_{788}= -1.12221292 \pm 4.1 \cdot 10^{-7} \) | \(a_{789}= +0.10949987 \pm 4.6 \cdot 10^{-7} \) |
\(a_{790}= -0.12752962 \pm 9.0 \cdot 10^{-7} \) | \(a_{791}= -0.82529968 \pm 1.5 \cdot 10^{-7} \) | \(a_{792}= -0.55725502 \pm 1.8 \cdot 10^{-7} \) |
\(a_{793}= -1.66729283 \pm 1.4 \cdot 10^{-7} \) | \(a_{794}= +0.16279744 \pm 4.9 \cdot 10^{-7} \) | \(a_{795}= -0.10444180 \pm 8.5 \cdot 10^{-7} \) |
\(a_{796}= +0.48498280 \pm 4.3 \cdot 10^{-7} \) | \(a_{797}= -0.53431493 \pm 3.4 \cdot 10^{-7} \) | \(a_{798}= -0.09027126 \pm 1.8 \cdot 10^{-7} \) |
\(a_{799}= -0.23317278 \pm 3.6 \cdot 10^{-7} \) | \(a_{800}= -0.16580161 \pm 4.3 \cdot 10^{-7} \) | \(a_{801}= +0.27225208 \pm 1.6 \cdot 10^{-7} \) |
\(a_{802}= -0.15027069 \pm 5.9 \cdot 10^{-7} \) | \(a_{803}= +1.68236159 \pm 1.5 \cdot 10^{-7} \) | \(a_{804}= +0.05112532 \pm 1.9 \cdot 10^{-7} \) |
\(a_{805}= +0.08975219 \pm 3.4 \cdot 10^{-7} \) | \(a_{806}= +0.12427346 \pm 5.2 \cdot 10^{-7} \) | \(a_{807}= -0.12879525 \pm 4.2 \cdot 10^{-7} \) |
\(a_{808}= +0.50459213 \pm 3.1 \cdot 10^{-7} \) | \(a_{809}= -1.06332725 \pm 3.2 \cdot 10^{-7} \) | \(a_{810}= -0.13279196 \pm 8.4 \cdot 10^{-7} \) |
\(a_{811}= +0.88657399 \pm 2.6 \cdot 10^{-7} \) | \(a_{812}= -0.31572668 \pm 5.6 \cdot 10^{-8} \) | \(a_{813}= +0.01240205 \pm 3.2 \cdot 10^{-7} \) |
\(a_{814}= -0.30405572 \pm 1.9 \cdot 10^{-7} \) | \(a_{815}= +0.12016714 \pm 3.5 \cdot 10^{-7} \) | \(a_{816}= +0.02946124 \pm 1.5 \cdot 10^{-7} \) |
\(a_{817}= -0.93466788 \pm 5.4 \cdot 10^{-7} \) | \(a_{818}= +0.40166825 \pm 4.6 \cdot 10^{-7} \) | \(a_{819}= +2.14936067 \pm 1.0 \cdot 10^{-7} \) |
\(a_{820}= -0.20886159 \pm 8.0 \cdot 10^{-7} \) | \(a_{821}= +1.59880965 \pm 2.8 \cdot 10^{-7} \) | \(a_{822}= -0.01704517 \pm 6.1 \cdot 10^{-7} \) |
\(a_{823}= +0.04964963 \pm 4.6 \cdot 10^{-7} \) | \(a_{824}= +0.33669616 \pm 1.8 \cdot 10^{-7} \) | \(a_{825}= -0.02827811 \pm 6.5 \cdot 10^{-7} \) |
\(a_{826}= -0.21837322 \pm 1.7 \cdot 10^{-7} \) | \(a_{827}= -0.12368830 \pm 3.0 \cdot 10^{-7} \) | \(a_{828}= -0.12633091 \pm 6.6 \cdot 10^{-8} \) |
\(a_{829}= +1.26413914 \pm 5.9 \cdot 10^{-7} \) | \(a_{830}= -0.10761569 \pm 8.3 \cdot 10^{-7} \) | \(a_{831}= +0.02714348 \pm 3.9 \cdot 10^{-7} \) |
\(a_{832}= -0.69738692 \pm 3.5 \cdot 10^{-7} \) | \(a_{833}= -0.26379345 \pm 3.9 \cdot 10^{-7} \) | \(a_{834}= -0.07127681 \pm 3.5 \cdot 10^{-7} \) |
\(a_{835}= -0.37643157 \pm 3.4 \cdot 10^{-7} \) | \(a_{836}= -1.15010127 \pm 7.4 \cdot 10^{-8} \) | \(a_{837}= -0.07346655 \pm 3.8 \cdot 10^{-7} \) |
\(a_{838}= +0.34446496 \pm 1.8 \cdot 10^{-7} \) | \(a_{839}= +0.18578621 \pm 2.2 \cdot 10^{-7} \) | \(a_{840}= +0.05651557 \pm 9.6 \cdot 10^{-7} \) |
\(a_{841}= -0.93664662 \pm 3.4 \cdot 10^{-7} \) | \(a_{842}= +0.27754579 \pm 2.2 \cdot 10^{-7} \) | \(a_{843}= +0.01049601 \pm 1.6 \cdot 10^{-7} \) |
\(a_{844}= -0.60048748 \pm 1.3 \cdot 10^{-7} \) | \(a_{845}= +0.66267665 \pm 3.4 \cdot 10^{-7} \) | \(a_{846}= +0.26065027 \pm 1.8 \cdot 10^{-7} \) |
\(a_{847}= +0.15327832 \pm 1.3 \cdot 10^{-7} \) | \(a_{848}= +1.10097475 \pm 1.1 \cdot 10^{-7} \) | \(a_{849}= -0.15731545 \pm 4.6 \cdot 10^{-7} \) |
\(a_{850}= +0.01770978 \pm 8.4 \cdot 10^{-7} \) | \(a_{851}= -0.14562625 \pm 1.4 \cdot 10^{-7} \) | \(a_{852}= -0.19544249 \pm 9.1 \cdot 10^{-8} \) |
\(a_{853}= -0.22319884 \pm 3.4 \cdot 10^{-7} \) | \(a_{854}= -0.47003965 \pm 1.1 \cdot 10^{-7} \) | \(a_{855}= -0.59294315 \pm 6.2 \cdot 10^{-7} \) |
\(a_{856}= +0.25949029 \pm 2.9 \cdot 10^{-7} \) | \(a_{857}= -0.35710653 \pm 3.7 \cdot 10^{-7} \) | \(a_{858}= +0.07087887 \pm 1.6 \cdot 10^{-7} \) |
\(a_{859}= -1.02338879 \pm 3.5 \cdot 10^{-7} \) | \(a_{860}= +0.27697786 \pm 7.9 \cdot 10^{-7} \) | \(a_{861}= +0.10868798 \pm 1.6 \cdot 10^{-7} \) |
\(a_{862}= -0.56613994 \pm 2.7 \cdot 10^{-7} \) | \(a_{863}= -0.95006616 \pm 5.4 \cdot 10^{-7} \) | \(a_{864}= -0.24567812 \pm 3.7 \cdot 10^{-7} \) |
\(a_{865}= +0.16791506 \pm 3.8 \cdot 10^{-7} \) | \(a_{866}= -0.22731760 \pm 3.2 \cdot 10^{-7} \) | \(a_{867}= +0.13825435 \pm 1.1 \cdot 10^{-7} \) |
\(a_{868}= -0.31096271 \pm 1.8 \cdot 10^{-7} \) | \(a_{869}= +0.84551352 \pm 1.8 \cdot 10^{-7} \) | \(a_{870}= -0.00536779 \pm 1.0 \cdot 10^{-6} \) |
\(a_{871}= +0.59800033 \pm 9.7 \cdot 10^{-8} \) | \(a_{872}= -0.09787085 \pm 1.5 \cdot 10^{-7} \) | \(a_{873}= -0.49982158 \pm 2.2 \cdot 10^{-7} \) |
\(a_{874}= +0.06206050 \pm 1.3 \cdot 10^{-7} \) | \(a_{875}= -0.12483495 \pm 1.7 \cdot 10^{-7} \) | \(a_{876}= +0.24015856 \pm 2.9 \cdot 10^{-7} \) |
\(a_{877}= +1.52724779 \pm 3.3 \cdot 10^{-7} \) | \(a_{878}= +0.06827412 \pm 3.6 \cdot 10^{-7} \) | \(a_{879}= +0.23711276 \pm 5.7 \cdot 10^{-7} \) |
\(a_{880}= +0.29809409 \pm 4.0 \cdot 10^{-7} \) | \(a_{881}= -0.45921716 \pm 3.0 \cdot 10^{-7} \) | \(a_{882}= +0.29487935 \pm 1.1 \cdot 10^{-7} \) |
\(a_{883}= -0.90700667 \pm 3.1 \cdot 10^{-7} \) | \(a_{884}= +0.39399156 \pm 2.8 \cdot 10^{-7} \) | \(a_{885}= +0.03295271 \pm 7.7 \cdot 10^{-7} \) |
\(a_{886}= +0.22002887 \pm 4.3 \cdot 10^{-7} \) | \(a_{887}= +1.41629516 \pm 5.1 \cdot 10^{-7} \) | \(a_{888}= -0.09169860 \pm 5.4 \cdot 10^{-7} \) |
\(a_{889}= -1.92279630 \pm 1.7 \cdot 10^{-7} \) | \(a_{890}= +0.03963369 \pm 9.1 \cdot 10^{-7} \) | \(a_{891}= +0.88040247 \pm 2.0 \cdot 10^{-7} \) |
\(a_{892}= +1.59718301 \pm 3.7 \cdot 10^{-7} \) | \(a_{893}= +1.13650438 \pm 6.5 \cdot 10^{-8} \) | \(a_{894}= +0.07370384 \pm 2.0 \cdot 10^{-7} \) |
\(a_{895}= -0.42273519 \pm 4.2 \cdot 10^{-7} \) | \(a_{896}= -1.35365003 \pm 1.2 \cdot 10^{-7} \) | \(a_{897}= +0.03394715 \pm 1.3 \cdot 10^{-7} \) |
\(a_{898}= -0.37305098 \pm 4.0 \cdot 10^{-7} \) | \(a_{899}= +0.06239745 \pm 1.1 \cdot 10^{-7} \) | \(a_{900}= +0.17571174 \pm 5.6 \cdot 10^{-7} \) |
\(a_{901}= -0.43365724 \pm 4.5 \cdot 10^{-7} \) | \(a_{902}= -0.15601299 \pm 3.4 \cdot 10^{-7} \) | \(a_{903}= -0.14413451 \pm 1.4 \cdot 10^{-7} \) |
\(a_{904}= +0.35727322 \pm 2.3 \cdot 10^{-7} \) | \(a_{905}= +0.36429617 \pm 4.3 \cdot 10^{-7} \) | \(a_{906}= +0.03436357 \pm 3.3 \cdot 10^{-7} \) |
\(a_{907}= -0.52246756 \pm 5.3 \cdot 10^{-7} \) | \(a_{908}= +0.98076913 \pm 3.0 \cdot 10^{-7} \) | \(a_{909}= -0.81638700 \pm 2.3 \cdot 10^{-7} \) |
\(a_{910}= +0.31289790 \pm 8.4 \cdot 10^{-7} \) | \(a_{911}= -0.28103223 \pm 5.4 \cdot 10^{-7} \) | \(a_{912}= -0.14359666 \pm 1.8 \cdot 10^{-7} \) |
\(a_{913}= +0.71348538 \pm 1.5 \cdot 10^{-7} \) | \(a_{914}= +0.09830714 \pm 4.2 \cdot 10^{-7} \) | \(a_{915}= +0.07092940 \pm 6.7 \cdot 10^{-7} \) |
\(a_{916}= +0.19316692 \pm 4.2 \cdot 10^{-7} \) | \(a_{917}= -0.69149551 \pm 1.7 \cdot 10^{-7} \) | \(a_{918}= +0.02624163 \pm 3.5 \cdot 10^{-7} \) |
\(a_{919}= -0.34014879 \pm 3.8 \cdot 10^{-7} \) | \(a_{920}= -0.03885383 \pm 5.4 \cdot 10^{-7} \) | \(a_{921}= -0.05701358 \pm 3.5 \cdot 10^{-7} \) |
\(a_{922}= +0.33436987 \pm 4.0 \cdot 10^{-7} \) | \(a_{923}= -2.28604294 \pm 1.7 \cdot 10^{-7} \) | \(a_{924}= -0.17735635 \pm 6.0 \cdot 10^{-8} \) |
\(a_{925}= +0.20254933 \pm 5.3 \cdot 10^{-7} \) | \(a_{926}= +0.00820686 \pm 3.0 \cdot 10^{-7} \) | \(a_{927}= -0.54474566 \pm 1.1 \cdot 10^{-7} \) |
\(a_{928}= +0.20866214 \pm 1.6 \cdot 10^{-7} \) | \(a_{929}= -0.53891779 \pm 2.0 \cdot 10^{-7} \) | \(a_{930}= -0.00528680 \pm 1.2 \cdot 10^{-6} \) |
\(a_{931}= +1.28575222 \pm 3.5 \cdot 10^{-7} \) | \(a_{932}= -1.47309817 \pm 3.7 \cdot 10^{-7} \) | \(a_{933}= +0.08842218 \pm 3.2 \cdot 10^{-7} \) |
\(a_{934}= +0.18088904 \pm 2.3 \cdot 10^{-7} \) | \(a_{935}= -0.11741474 \pm 6.6 \cdot 10^{-7} \) | \(a_{936}= -0.93046081 \pm 2.1 \cdot 10^{-7} \) |
\(a_{937}= +1.02037156 \pm 6.3 \cdot 10^{-7} \) | \(a_{938}= +0.16858698 \pm 9.3 \cdot 10^{-8} \) | \(a_{939}= +0.00339913 \pm 3.4 \cdot 10^{-7} \) |
\(a_{940}= -0.33678974 \pm 6.1 \cdot 10^{-7} \) | \(a_{941}= +0.13008189 \pm 4.5 \cdot 10^{-7} \) | \(a_{942}= -0.06137608 \pm 3.6 \cdot 10^{-7} \) |
\(a_{943}= -0.07472178 \pm 2.3 \cdot 10^{-7} \) | \(a_{944}= -0.34737152 \pm 1.7 \cdot 10^{-7} \) | \(a_{945}= -0.18497537 \pm 5.0 \cdot 10^{-7} \) |
\(a_{946}= +0.20689367 \pm 5.8 \cdot 10^{-8} \) | \(a_{947}= -0.08726649 \pm 5.1 \cdot 10^{-7} \) | \(a_{948}= +0.12069778 \pm 3.5 \cdot 10^{-7} \) |
\(a_{949}= +2.80907573 \pm 1.9 \cdot 10^{-7} \) | \(a_{950}= -0.08631900 \pm 8.1 \cdot 10^{-7} \) | \(a_{951}= -0.29230324 \pm 6.4 \cdot 10^{-7} \) |
\(a_{952}= +0.23466070 \pm 1.2 \cdot 10^{-7} \) | \(a_{953}= +1.21378108 \pm 5.7 \cdot 10^{-7} \) | \(a_{954}= +0.48476018 \pm 1.3 \cdot 10^{-7} \) |
\(a_{955}= +0.05831809 \pm 1.2 \cdot 10^{-7} \) | \(a_{956}= +1.44225693 \pm 2.8 \cdot 10^{-7} \) | \(a_{957}= +0.03558814 \pm 1.3 \cdot 10^{-7} \) |
\(a_{958}= -0.57461170 \pm 4.7 \cdot 10^{-7} \) | \(a_{959}= +0.49888074 \pm 1.7 \cdot 10^{-7} \) | \(a_{960}= +0.02966800 \pm 8.3 \cdot 10^{-7} \) |
\(a_{961}= -0.93854406 \pm 5.2 \cdot 10^{-7} \) | \(a_{962}= -0.50768844 \pm 2.1 \cdot 10^{-7} \) | \(a_{963}= -0.41983314 \pm 2.7 \cdot 10^{-7} \) |
\(a_{964}= -0.41831737 \pm 2.4 \cdot 10^{-7} \) | \(a_{965}= -0.52508452 \pm 1.8 \cdot 10^{-7} \) | \(a_{966}= +0.00957031 \pm 1.2 \cdot 10^{-7} \) |
\(a_{967}= -0.88486289 \pm 2.6 \cdot 10^{-7} \) | \(a_{968}= -0.06635437 \pm 3.1 \cdot 10^{-7} \) | \(a_{969}= +0.05656055 \pm 4.6 \cdot 10^{-7} \) |
\(a_{970}= -0.07276262 \pm 7.2 \cdot 10^{-7} \) | \(a_{971}= +1.16583652 \pm 3.1 \cdot 10^{-7} \) | \(a_{972}= +0.39202221 \pm 1.1 \cdot 10^{-7} \) |
\(a_{973}= +2.08614048 \pm 1.8 \cdot 10^{-7} \) | \(a_{974}= -0.09689385 \pm 3.7 \cdot 10^{-7} \) | \(a_{975}= -0.04721657 \pm 7.1 \cdot 10^{-7} \) |
\(a_{976}= -0.74770334 \pm 1.0 \cdot 10^{-7} \) | \(a_{977}= -1.15846119 \pm 2.6 \cdot 10^{-7} \) | \(a_{978}= +0.01281347 \pm 3.1 \cdot 10^{-7} \) |
\(a_{979}= -0.26276895 \pm 1.8 \cdot 10^{-7} \) | \(a_{980}= -0.38101758 \pm 7.1 \cdot 10^{-7} \) | \(a_{981}= +0.15834669 \pm 1.1 \cdot 10^{-7} \) |
\(a_{982}= -0.18916017 \pm 2.0 \cdot 10^{-7} \) | \(a_{983}= +0.12127858 \pm 4.0 \cdot 10^{-7} \) | \(a_{984}= -0.04705116 \pm 3.1 \cdot 10^{-7} \) |
\(a_{985}= +0.55841241 \pm 4.1 \cdot 10^{-7} \) | \(a_{986}= -0.02228784 \pm 1.4 \cdot 10^{-7} \) | \(a_{987}= +0.17525958 \pm 8.0 \cdot 10^{-8} \) |
\(a_{988}= -1.92034909 \pm 1.0 \cdot 10^{-7} \) | \(a_{989}= +0.09909088 \pm 6.6 \cdot 10^{-8} \) | \(a_{990}= +0.13125110 \pm 8.3 \cdot 10^{-7} \) |
\(a_{991}= -0.36169903 \pm 4.0 \cdot 10^{-7} \) | \(a_{992}= +0.20551366 \pm 5.2 \cdot 10^{-7} \) | \(a_{993}= -0.06164571 \pm 2.8 \cdot 10^{-7} \) |
\(a_{994}= -0.64447636 \pm 1.6 \cdot 10^{-7} \) | \(a_{995}= -0.24132712 \pm 5.5 \cdot 10^{-7} \) | \(a_{996}= +0.10185065 \pm 3.3 \cdot 10^{-7} \) |
\(a_{997}= -1.54138229 \pm 5.6 \cdot 10^{-7} \) | \(a_{998}= +0.26662793 \pm 4.3 \cdot 10^{-7} \) | \(a_{999}= +0.30012940 \pm 4.3 \cdot 10^{-7} \) |
\(a_{1000}= +0.05404120 \pm 3.7 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000