Properties

Label 5.32
Level 55
Weight 00
Character 5.1
Symmetry even
RR 11.18138
Fricke sign +1+1

Related objects

Downloads

Learn more

Maass form invariants

Level: 5 5
Weight: 0 0
Character: 5.1
Symmetry: even
Fricke sign: +1+1
Spectral parameter: 11.1813819580345604947372703581±2101011.1813819580345604947372703581 \pm 2 \cdot 10^{-10}

Maass form coefficients

The coefficients here are shown to at most 88 digits of precision. Full precision coefficients are available in the downloads.

a1=+1a_{1}= +1 a2=1.72940041±1108a_{2}= -1.72940041 \pm 1 \cdot 10^{-8} a3=+0.02650352±1108a_{3}= +0.02650352 \pm 1 \cdot 10^{-8}
a4=+1.99082579±1108a_{4}= +1.99082579 \pm 1 \cdot 10^{-8} a5=0.44721360±1.0108a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} a6=0.04583519±1108a_{6}= -0.04583519 \pm 1 \cdot 10^{-8}
a7=1.37044605±1108a_{7}= -1.37044605 \pm 1 \cdot 10^{-8} a8=1.71353454±1108a_{8}= -1.71353454 \pm 1 \cdot 10^{-8} a9=0.99929756±1108a_{9}= -0.99929756 \pm 1 \cdot 10^{-8}
a10=+0.77341138±1.1108a_{10}= +0.77341138 \pm 1.1 \cdot 10^{-8} a11=+0.41059224±1108a_{11}= +0.41059224 \pm 1 \cdot 10^{-8} a12=+0.05276389±1108a_{12}= +0.05276389 \pm 1 \cdot 10^{-8}
a13=0.37542475±1108a_{13}= -0.37542475 \pm 1 \cdot 10^{-8} a14=+2.37004997±1108a_{14}= +2.37004997 \pm 1 \cdot 10^{-8} a15=0.01185273±1.1108a_{15}= -0.01185273 \pm 1.1 \cdot 10^{-8}
a16=+0.97256154±1108a_{16}= +0.97256154 \pm 1 \cdot 10^{-8} a17=1.49634281±1108a_{17}= -1.49634281 \pm 1 \cdot 10^{-8} a18=+1.72818562±1108a_{18}= +1.72818562 \pm 1 \cdot 10^{-8}
a19=+0.72280991±1108a_{19}= +0.72280991 \pm 1 \cdot 10^{-8} a20=0.89032436±1.1108a_{20}= -0.89032436 \pm 1.1 \cdot 10^{-8} a21=0.03632164±1108a_{21}= -0.03632164 \pm 1 \cdot 10^{-8}
a22=0.71007839±1108a_{22}= -0.71007839 \pm 1 \cdot 10^{-8} a23=+1.41391785±1108a_{23}= +1.41391785 \pm 1 \cdot 10^{-8} a24=0.04541469±1108a_{24}= -0.04541469 \pm 1 \cdot 10^{-8}
a25=+0.2a_{25}= +0.2 a26=+0.64925972±1108a_{26}= +0.64925972 \pm 1 \cdot 10^{-8} a27=0.05298842±1108a_{27}= -0.05298842 \pm 1 \cdot 10^{-8}
a28=2.72831935±1108a_{28}= -2.72831935 \pm 1 \cdot 10^{-8} a29=+1.53225900±1108a_{29}= +1.53225900 \pm 1 \cdot 10^{-8} a30=+0.02049812±1.1108a_{30}= +0.02049812 \pm 1.1 \cdot 10^{-8}
a31=0.42231851±1108a_{31}= -0.42231851 \pm 1 \cdot 10^{-8} a32=+0.03158620±1108a_{32}= +0.03158620 \pm 1 \cdot 10^{-8} a33=+0.01088214±1108a_{33}= +0.01088214 \pm 1 \cdot 10^{-8}
a34=+2.58777587±1108a_{34}= +2.58777587 \pm 1 \cdot 10^{-8} a35=+0.61288211±1.1108a_{35}= +0.61288211 \pm 1.1 \cdot 10^{-8} a36=1.98942736±1108a_{36}= -1.98942736 \pm 1 \cdot 10^{-8}
a37=1.04778596±1108a_{37}= -1.04778596 \pm 1 \cdot 10^{-8} a38=1.25002775±1108a_{38}= -1.25002775 \pm 1 \cdot 10^{-8} a39=0.00995008±1108a_{39}= -0.00995008 \pm 1 \cdot 10^{-8}
a40=+0.76631594±1.1108a_{40}= +0.76631594 \pm 1.1 \cdot 10^{-8} a41=+1.13371232±1108a_{41}= +1.13371232 \pm 1 \cdot 10^{-8} a42=+0.06281466±1108a_{42}= +0.06281466 \pm 1 \cdot 10^{-8}
a43=+0.12782499±1108a_{43}= +0.12782499 \pm 1 \cdot 10^{-8} a44=+0.81741762±1108a_{44}= +0.81741762 \pm 1 \cdot 10^{-8} a45=+0.44689946±1.0108a_{45}= +0.44689946 \pm 1.0 \cdot 10^{-8}
a46=2.44523012±1108a_{46}= -2.44523012 \pm 1 \cdot 10^{-8} a47=+0.45141104±1108a_{47}= +0.45141104 \pm 1 \cdot 10^{-8} a48=+0.02577630±1108a_{48}= +0.02577630 \pm 1 \cdot 10^{-8}
a49=+0.87812239±1108a_{49}= +0.87812239 \pm 1 \cdot 10^{-8} a50=0.34588008±1.1108a_{50}= -0.34588008 \pm 1.1 \cdot 10^{-8} a51=0.03965835±1108a_{51}= -0.03965835 \pm 1 \cdot 10^{-8}
a52=0.74740527±1108a_{52}= -0.74740527 \pm 1 \cdot 10^{-8} a53=0.22221673±1108a_{53}= -0.22221673 \pm 1 \cdot 10^{-8} a54=+0.09163819±1108a_{54}= +0.09163819 \pm 1 \cdot 10^{-8}
a55=0.18362243±1.1108a_{55}= -0.18362243 \pm 1.1 \cdot 10^{-8} a56=+2.34830664±1108a_{56}= +2.34830664 \pm 1 \cdot 10^{-8} a57=+0.01915701±1108a_{57}= +0.01915701 \pm 1 \cdot 10^{-8}
a58=2.64988935±1108a_{58}= -2.64988935 \pm 1 \cdot 10^{-8} a59=+0.67308746±1108a_{59}= +0.67308746 \pm 1 \cdot 10^{-8} a60=0.02359673±1.1108a_{60}= -0.02359673 \pm 1.1 \cdot 10^{-8}

Displaying ana_n with nn up to: 60 180 1000