Properties

Label 5.43
Level 55
Weight 00
Character 5.1
Symmetry even
RR 12.85545
Fricke sign +1+1

Related objects

Downloads

Learn more

Maass form invariants

Level: 5 5
Weight: 0 0
Character: 5.1
Symmetry: even
Fricke sign: +1+1
Spectral parameter: 12.8554583745688571317287512642±210912.8554583745688571317287512642 \pm 2 \cdot 10^{-9}

Maass form coefficients

The coefficients here are shown to at most 88 digits of precision. Full precision coefficients are available in the downloads.

a1=+1a_{1}= +1 a2=+1.34107983±1108a_{2}= +1.34107983 \pm 1 \cdot 10^{-8} a3=1.83325140±1108a_{3}= -1.83325140 \pm 1 \cdot 10^{-8}
a4=+0.79849510±1108a_{4}= +0.79849510 \pm 1 \cdot 10^{-8} a5=0.44721360±1.0108a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} a6=2.45853646±1108a_{6}= -2.45853646 \pm 1 \cdot 10^{-8}
a7=+0.26643107±1108a_{7}= +0.26643107 \pm 1 \cdot 10^{-8} a8=0.27023415±1108a_{8}= -0.27023415 \pm 1 \cdot 10^{-8} a9=+2.36081068±1108a_{9}= +2.36081068 \pm 1 \cdot 10^{-8}
a10=0.59974913±1.6108a_{10}= -0.59974913 \pm 1.6 \cdot 10^{-8} a11=+0.39369449±1108a_{11}= +0.39369449 \pm 1 \cdot 10^{-8} a12=1.46384226±1108a_{12}= -1.46384226 \pm 1 \cdot 10^{-8}
a13=+1.45101490±1108a_{13}= +1.45101490 \pm 1 \cdot 10^{-8} a14=+0.35730534±1108a_{14}= +0.35730534 \pm 1 \cdot 10^{-8} a15=+0.81985495±1.5108a_{15}= +0.81985495 \pm 1.5 \cdot 10^{-8}
a16=1.16090067±1108a_{16}= -1.16090067 \pm 1 \cdot 10^{-8} a17=0.00559672±1108a_{17}= -0.00559672 \pm 1 \cdot 10^{-8} a18=+3.16603558±1108a_{18}= +3.16603558 \pm 1 \cdot 10^{-8}
a19=+0.89093530±1108a_{19}= +0.89093530 \pm 1 \cdot 10^{-8} a20=0.35709787±1.6108a_{20}= -0.35709787 \pm 1.6 \cdot 10^{-8} a21=0.48843514±1108a_{21}= -0.48843514 \pm 1 \cdot 10^{-8}
a22=+0.52797574±1108a_{22}= +0.52797574 \pm 1 \cdot 10^{-8} a23=+0.23720464±1108a_{23}= +0.23720464 \pm 1 \cdot 10^{-8} a24=+0.49540714±1108a_{24}= +0.49540714 \pm 1 \cdot 10^{-8}
a25=+0.2a_{25}= +0.2 a26=+1.94592682±1108a_{26}= +1.94592682 \pm 1 \cdot 10^{-8} a27=2.49470807±1108a_{27}= -2.49470807 \pm 1 \cdot 10^{-8}
a28=+0.21274391±1108a_{28}= +0.21274391 \pm 1 \cdot 10^{-8} a29=+0.62235679±1108a_{29}= +0.62235679 \pm 1 \cdot 10^{-8} a30=+1.09949093±2.0108a_{30}= +1.09949093 \pm 2.0 \cdot 10^{-8}
a31=+0.18724929±1108a_{31}= +0.18724929 \pm 1 \cdot 10^{-8} a32=1.28662632±1108a_{32}= -1.28662632 \pm 1 \cdot 10^{-8} a33=0.72174097±1108a_{33}= -0.72174097 \pm 1 \cdot 10^{-8}
a34=0.00750564±1108a_{34}= -0.00750564 \pm 1 \cdot 10^{-8} a35=0.11915160±1.6108a_{35}= -0.11915160 \pm 1.6 \cdot 10^{-8} a36=+1.88509577±1108a_{36}= +1.88509577 \pm 1 \cdot 10^{-8}
a37=0.09280769±1108a_{37}= -0.09280769 \pm 1 \cdot 10^{-8} a38=+1.19481536±1108a_{38}= +1.19481536 \pm 1 \cdot 10^{-8} a39=2.66007510±1108a_{39}= -2.66007510 \pm 1 \cdot 10^{-8}
a40=+0.12085239±1.7108a_{40}= +0.12085239 \pm 1.7 \cdot 10^{-8} a41=+1.70760798±1108a_{41}= +1.70760798 \pm 1 \cdot 10^{-8} a42=0.65503051±1108a_{42}= -0.65503051 \pm 1 \cdot 10^{-8}
a43=0.84433376±1108a_{43}= -0.84433376 \pm 1 \cdot 10^{-8} a44=+0.31436312±1108a_{44}= +0.31436312 \pm 1 \cdot 10^{-8} a45=1.05578663±1.3108a_{45}= -1.05578663 \pm 1.3 \cdot 10^{-8}
a46=+0.31811035±1108a_{46}= +0.31811035 \pm 1 \cdot 10^{-8} a47=0.12484987±1108a_{47}= -0.12484987 \pm 1 \cdot 10^{-8} a48=+2.12822278±1108a_{48}= +2.12822278 \pm 1 \cdot 10^{-8}
a49=0.92901448±1108a_{49}= -0.92901448 \pm 1 \cdot 10^{-8} a50=+0.26821597±1.6108a_{50}= +0.26821597 \pm 1.6 \cdot 10^{-8} a51=+0.01026019±1108a_{51}= +0.01026019 \pm 1 \cdot 10^{-8}
a52=+1.15862829±1108a_{52}= +1.15862829 \pm 1 \cdot 10^{-8} a53=+0.97296659±1108a_{53}= +0.97296659 \pm 1 \cdot 10^{-8} a54=3.34560267±1108a_{54}= -3.34560267 \pm 1 \cdot 10^{-8}
a55=0.17606553±1.7108a_{55}= -0.17606553 \pm 1.7 \cdot 10^{-8} a56=0.07199878±1108a_{56}= -0.07199878 \pm 1 \cdot 10^{-8} a57=1.63330838±1108a_{57}= -1.63330838 \pm 1 \cdot 10^{-8}
a58=+0.83463013±1108a_{58}= +0.83463013 \pm 1 \cdot 10^{-8} a59=+1.75657928±1108a_{59}= +1.75657928 \pm 1 \cdot 10^{-8} a60=+0.65465016±2.0108a_{60}= +0.65465016 \pm 2.0 \cdot 10^{-8}

Displaying ana_n with nn up to: 60 180 1000