Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.6473942984543737641050917837 \pm 10 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.11088028 \pm 1.2 \cdot 10^{-5} \) | \(a_{3}= -0.17425754 \pm 1.3 \cdot 10^{-5} \) |
\(a_{4}= +0.23405500 \pm 1.0 \cdot 10^{-5} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -0.19357926 \pm 1.2 \cdot 10^{-5} \) |
\(a_{7}= +1.83541165 \pm 5.0 \cdot 10^{-6} \) | \(a_{8}= -0.85087320 \pm 1.1 \cdot 10^{-5} \) | \(a_{9}= -0.96963431 \pm 6.4 \cdot 10^{-6} \) |
\(a_{10}= -0.49680076 \pm 1.2 \cdot 10^{-5} \) | \(a_{11}= -0.75542845 \pm 6.8 \cdot 10^{-6} \) | \(a_{12}= -0.04078585 \pm 1.1 \cdot 10^{-5} \) |
\(a_{13}= -1.05671932 \pm 8.6 \cdot 10^{-6} \) | \(a_{14}= +2.03892261 \pm 5.1 \cdot 10^{-6} \) | \(a_{15}= +0.07793034 \pm 1.3 \cdot 10^{-5} \) |
\(a_{16}= -1.17927326 \pm 5.4 \cdot 10^{-6} \) | \(a_{17}= -0.33370103 \pm 1.3 \cdot 10^{-5} \) | \(a_{18}= -1.07714764 \pm 5.7 \cdot 10^{-6} \) |
\(a_{19}= -0.19896072 \pm 1.2 \cdot 10^{-5} \) | \(a_{20}= -0.10467258 \pm 1.0 \cdot 10^{-5} \) | \(a_{21}= -0.31983432 \pm 5.6 \cdot 10^{-6} \) |
\(a_{22}= -0.83919057 \pm 7.2 \cdot 10^{-6} \) | \(a_{23}= -1.52474887 \pm 5.2 \cdot 10^{-6} \) | \(a_{24}= +0.14827107 \pm 1.1 \cdot 10^{-5} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -1.17388866 \pm 1.0 \cdot 10^{-5} \) | \(a_{27}= +0.34322363 \pm 1.0 \cdot 10^{-5} \) |
\(a_{28}= +0.42958727 \pm 4.1 \cdot 10^{-6} \) | \(a_{29}= -0.92616787 \pm 6.1 \cdot 10^{-6} \) | \(a_{30}= +0.08657128 \pm 2.5 \cdot 10^{-5} \) |
\(a_{31}= +0.57848674 \pm 1.3 \cdot 10^{-5} \) | \(a_{32}= -0.45915821 \pm 1.3 \cdot 10^{-5} \) | \(a_{33}= +0.13163910 \pm 4.9 \cdot 10^{-6} \) |
\(a_{34}= -0.37070189 \pm 1.2 \cdot 10^{-5} \) | \(a_{35}= -0.82082104 \pm 5.0 \cdot 10^{-6} \) | \(a_{36}= -0.22694776 \pm 3.0 \cdot 10^{-6} \) |
\(a_{37}= +1.12637488 \pm 1.6 \cdot 10^{-5} \) | \(a_{38}= -0.22102154 \pm 8.8 \cdot 10^{-6} \) | \(a_{39}= +0.18414131 \pm 6.8 \cdot 10^{-6} \) |
\(a_{40}= +0.38052206 \pm 1.1 \cdot 10^{-5} \) | \(a_{41}= +0.52233007 \pm 1.3 \cdot 10^{-5} \) | \(a_{42}= -0.35529764 \pm 5.2 \cdot 10^{-6} \) |
\(a_{43}= -0.57389719 \pm 1.3 \cdot 10^{-5} \) | \(a_{44}= -0.17681181 \pm 5.1 \cdot 10^{-6} \) | \(a_{45}= +0.43363365 \pm 6.4 \cdot 10^{-6} \) |
\(a_{46}= -1.69381346 \pm 6.3 \cdot 10^{-6} \) | \(a_{47}= -0.46539521 \pm 8.1 \cdot 10^{-6} \) | \(a_{48}= +0.20549726 \pm 5.5 \cdot 10^{-6} \) |
\(a_{49}= +2.36873593 \pm 1.1 \cdot 10^{-5} \) | \(a_{50}= +0.22217606 \pm 1.2 \cdot 10^{-5} \) | \(a_{51}= +0.05814992 \pm 1.3 \cdot 10^{-5} \) |
\(a_{52}= -0.24733044 \pm 8.2 \cdot 10^{-6} \) | \(a_{53}= -0.48902105 \pm 1.2 \cdot 10^{-5} \) | \(a_{54}= +0.38128036 \pm 1.0 \cdot 10^{-5} \) |
\(a_{55}= +0.33783787 \pm 6.8 \cdot 10^{-6} \) | \(a_{56}= -1.56170258 \pm 4.4 \cdot 10^{-6} \) | \(a_{57}= +0.03467041 \pm 1.4 \cdot 10^{-5} \) |
\(a_{58}= -1.02886162 \pm 4.8 \cdot 10^{-6} \) | \(a_{59}= +0.27014848 \pm 1.0 \cdot 10^{-5} \) | \(a_{60}= +0.01823999 \pm 2.3 \cdot 10^{-5} \) |
\(a_{61}= +1.80664145 \pm 7.4 \cdot 10^{-6} \) | \(a_{62}= +0.64262951 \pm 1.7 \cdot 10^{-5} \) | \(a_{63}= -1.77967811 \pm 3.9 \cdot 10^{-6} \) |
\(a_{64}= +0.66920346 \pm 1.2 \cdot 10^{-5} \) | \(a_{65}= +0.47257925 \pm 8.6 \cdot 10^{-6} \) | \(a_{66}= +0.14623528 \pm 5.8 \cdot 10^{-6} \) |
\(a_{67}= -0.28359109 \pm 8.2 \cdot 10^{-6} \) | \(a_{68}= -0.07810439 \pm 1.1 \cdot 10^{-5} \) | \(a_{69}= +0.26569899 \pm 6.0 \cdot 10^{-6} \) |
\(a_{70}= -0.91183391 \pm 1.7 \cdot 10^{-5} \) | \(a_{71}= -0.49339935 \pm 6.4 \cdot 10^{-6} \) | \(a_{72}= +0.82503585 \pm 6.6 \cdot 10^{-6} \) |
\(a_{73}= -0.80526765 \pm 1.0 \cdot 10^{-5} \) | \(a_{74}= +1.25126764 \pm 1.1 \cdot 10^{-5} \) | \(a_{75}= -0.03485151 \pm 1.3 \cdot 10^{-5} \) |
\(a_{76}= -0.04656775 \pm 8.2 \cdot 10^{-6} \) | \(a_{77}= -1.38652218 \pm 3.3 \cdot 10^{-6} \) | \(a_{78}= +0.20455895 \pm 9.5 \cdot 10^{-6} \) |
\(a_{79}= -0.65788216 \pm 1.5 \cdot 10^{-5} \) | \(a_{80}= +0.52738703 \pm 5.4 \cdot 10^{-6} \) | \(a_{81}= +0.90982500 \pm 1.3 \cdot 10^{-5} \) |
\(a_{82}= +0.58024617 \pm 1.8 \cdot 10^{-5} \) | \(a_{83}= +0.28916699 \pm 1.3 \cdot 10^{-5} \) | \(a_{84}= -0.07485882 \pm 3.7 \cdot 10^{-6} \) |
\(a_{85}= +0.14923564 \pm 1.3 \cdot 10^{-5} \) | \(a_{86}= -0.63753107 \pm 8.4 \cdot 10^{-6} \) | \(a_{87}= +0.16139173 \pm 7.1 \cdot 10^{-6} \) |
\(a_{88}= +0.64277382 \pm 6.2 \cdot 10^{-6} \) | \(a_{89}= -0.36275884 \pm 1.5 \cdot 10^{-5} \) | \(a_{90}= +0.48171507 \pm 1.8 \cdot 10^{-5} \) |
\(a_{91}= -1.93951496 \pm 3.7 \cdot 10^{-6} \) | \(a_{92}= -0.35687510 \pm 4.5 \cdot 10^{-6} \) | \(a_{93}= -0.10080568 \pm 1.3 \cdot 10^{-5} \) |
\(a_{94}= -0.51699836 \pm 7.6 \cdot 10^{-6} \) | \(a_{95}= +0.08897794 \pm 1.2 \cdot 10^{-5} \) | \(a_{96}= +0.08001178 \pm 1.3 \cdot 10^{-5} \) |
\(a_{97}= -0.50268237 \pm 1.0 \cdot 10^{-5} \) | \(a_{98}= +2.63138204 \pm 1.0 \cdot 10^{-5} \) | \(a_{99}= +0.73248934 \pm 5.9 \cdot 10^{-6} \) |
\(a_{100}= +0.04681100 \pm 1.0 \cdot 10^{-5} \) | \(a_{101}= -1.18011686 \pm 1.0 \cdot 10^{-5} \) | \(a_{102}= +0.06459760 \pm 1.2 \cdot 10^{-5} \) |
\(a_{103}= +0.44913544 \pm 1.0 \cdot 10^{-5} \) | \(a_{104}= +0.89913415 \pm 7.3 \cdot 10^{-6} \) | \(a_{105}= +0.14303426 \pm 1.8 \cdot 10^{-5} \) |
\(a_{106}= -0.54324384 \pm 1.0 \cdot 10^{-5} \) | \(a_{107}= -0.92714762 \pm 1.0 \cdot 10^{-5} \) | \(a_{108}= +0.08033321 \pm 9.5 \cdot 10^{-6} \) |
\(a_{109}= -1.15405935 \pm 6.3 \cdot 10^{-6} \) | \(a_{110}= +0.37529743 \pm 1.9 \cdot 10^{-5} \) | \(a_{111}= -0.19627931 \pm 1.7 \cdot 10^{-5} \) |
\(a_{112}= -2.16445188 \pm 3.6 \cdot 10^{-6} \) | \(a_{113}= +1.53955041 \pm 9.2 \cdot 10^{-6} \) | \(a_{114}= +0.03851467 \pm 1.0 \cdot 10^{-5} \) |
\(a_{115}= +0.68188843 \pm 5.2 \cdot 10^{-6} \) | \(a_{116}= -0.21677422 \pm 3.3 \cdot 10^{-6} \) | \(a_{117}= +1.02463131 \pm 6.4 \cdot 10^{-6} \) |
\(a_{118}= +0.30010262 \pm 1.0 \cdot 10^{-5} \) | \(a_{119}= -0.61247876 \pm 4.4 \cdot 10^{-6} \) | \(a_{120}= -0.06630884 \pm 2.4 \cdot 10^{-5} \) |
\(a_{121}= -0.42932786 \pm 1.0 \cdot 10^{-5} \) | \(a_{122}= +2.00696236 \pm 6.1 \cdot 10^{-6} \) | \(a_{123}= -0.09101995 \pm 1.3 \cdot 10^{-5} \) |
\(a_{124}= +0.13539771 \pm 1.5 \cdot 10^{-5} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -1.97700932 \pm 4.0 \cdot 10^{-6} \) |
\(a_{127}= -0.96322978 \pm 1.4 \cdot 10^{-5} \) | \(a_{128}= +1.20256313 \pm 9.3 \cdot 10^{-6} \) | \(a_{129}= +0.10000591 \pm 1.5 \cdot 10^{-5} \) |
\(a_{130}= +0.52497897 \pm 2.0 \cdot 10^{-5} \) | \(a_{131}= +0.27013620 \pm 1.2 \cdot 10^{-5} \) | \(a_{132}= +0.03081079 \pm 4.6 \cdot 10^{-6} \) |
\(a_{133}= -0.36517483 \pm 5.1 \cdot 10^{-6} \) | \(a_{134}= -0.31503575 \pm 5.8 \cdot 10^{-6} \) | \(a_{135}= -0.15349427 \pm 1.0 \cdot 10^{-5} \) |
\(a_{136}= +0.28393726 \pm 1.2 \cdot 10^{-5} \) | \(a_{137}= -1.04147585 \pm 1.5 \cdot 10^{-5} \) | \(a_{138}= +0.29515977 \pm 6.6 \cdot 10^{-6} \) |
\(a_{139}= -0.20501413 \pm 1.4 \cdot 10^{-5} \) | \(a_{140}= -0.19211727 \pm 1.5 \cdot 10^{-5} \) | \(a_{141}= +0.08109862 \pm 4.2 \cdot 10^{-6} \) |
\(a_{142}= -0.54810761 \pm 6.6 \cdot 10^{-6} \) | \(a_{143}= +0.79827584 \pm 7.6 \cdot 10^{-6} \) | \(a_{144}= +1.14346381 \pm 4.3 \cdot 10^{-6} \) |
\(a_{145}= +0.41419486 \pm 6.1 \cdot 10^{-6} \) | \(a_{146}= -0.89455596 \pm 9.2 \cdot 10^{-6} \) | \(a_{147}= -0.41277009 \pm 1.1 \cdot 10^{-5} \) |
\(a_{148}= +0.26363367 \pm 1.1 \cdot 10^{-5} \) | \(a_{149}= +0.60275188 \pm 4.7 \cdot 10^{-6} \) | \(a_{150}= -0.03871585 \pm 2.5 \cdot 10^{-5} \) |
\(a_{151}= +1.65238262 \pm 8.3 \cdot 10^{-6} \) | \(a_{152}= +0.16929035 \pm 1.2 \cdot 10^{-5} \) | \(a_{153}= +0.32356797 \pm 7.0 \cdot 10^{-6} \) |
\(a_{154}= -1.54026015 \pm 3.8 \cdot 10^{-6} \) | \(a_{155}= -0.25870713 \pm 1.3 \cdot 10^{-5} \) | \(a_{156}= +0.04309919 \pm 7.9 \cdot 10^{-6} \) |
\(a_{157}= -0.45174679 \pm 1.1 \cdot 10^{-5} \) | \(a_{158}= -0.73082832 \pm 1.0 \cdot 10^{-5} \) | \(a_{159}= +0.08521561 \pm 1.3 \cdot 10^{-5} \) |
\(a_{160}= +0.20534179 \pm 1.3 \cdot 10^{-5} \) | \(a_{161}= -2.79854185 \pm 3.8 \cdot 10^{-6} \) | \(a_{162}= +1.01070666 \pm 1.2 \cdot 10^{-5} \) |
\(a_{163}= -0.07521089 \pm 1.0 \cdot 10^{-5} \) | \(a_{164}= +0.12225396 \pm 1.5 \cdot 10^{-5} \) | \(a_{165}= -0.05887080 \pm 2.0 \cdot 10^{-5} \) |
\(a_{166}= +0.32122990 \pm 1.0 \cdot 10^{-5} \) | \(a_{167}= +1.49649288 \pm 1.0 \cdot 10^{-5} \) | \(a_{168}= +0.27213845 \pm 5.3 \cdot 10^{-6} \) |
\(a_{169}= +0.11665573 \pm 1.0 \cdot 10^{-5} \) | \(a_{170}= +0.16578293 \pm 2.5 \cdot 10^{-5} \) | \(a_{171}= +0.19291914 \pm 5.8 \cdot 10^{-6} \) |
\(a_{172}= -0.13432351 \pm 9.0 \cdot 10^{-6} \) | \(a_{173}= +0.46651698 \pm 1.1 \cdot 10^{-5} \) | \(a_{174}= +0.17928689 \pm 5.6 \cdot 10^{-6} \) |
\(a_{175}= +0.36708233 \pm 5.0 \cdot 10^{-6} \) | \(a_{176}= +0.89085657 \pm 4.3 \cdot 10^{-6} \) | \(a_{177}= -0.04707541 \pm 1.2 \cdot 10^{-5} \) |
\(a_{178}= -0.40298164 \pm 1.4 \cdot 10^{-5} \) | \(a_{179}= -1.89671635 \pm 1.2 \cdot 10^{-5} \) | \(a_{180}= +0.10149412 \pm 1.7 \cdot 10^{-5} \) |
\(a_{181}= +0.68145727 \pm 1.3 \cdot 10^{-5} \) | \(a_{182}= -2.15456892 \pm 4.7 \cdot 10^{-6} \) | \(a_{183}= -0.31482089 \pm 8.2 \cdot 10^{-6} \) |
\(a_{184}= +1.29736795 \pm 4.1 \cdot 10^{-6} \) | \(a_{185}= -0.50373016 \pm 1.6 \cdot 10^{-5} \) | \(a_{186}= -0.11198304 \pm 1.8 \cdot 10^{-5} \) |
\(a_{187}= +0.25208725 \pm 8.2 \cdot 10^{-6} \) | \(a_{188}= -0.10892807 \pm 5.3 \cdot 10^{-6} \) | \(a_{189}= +0.62995665 \pm 3.6 \cdot 10^{-6} \) |
\(a_{190}= +0.09884384 \pm 2.4 \cdot 10^{-5} \) | \(a_{191}= -1.20346439 \pm 3.4 \cdot 10^{-6} \) | \(a_{192}= -0.11661375 \pm 1.2 \cdot 10^{-5} \) |
\(a_{193}= +0.96362512 \pm 5.4 \cdot 10^{-6} \) | \(a_{194}= -0.55841993 \pm 8.8 \cdot 10^{-6} \) | \(a_{195}= -0.08235050 \pm 2.1 \cdot 10^{-5} \) |
\(a_{196}= +0.55441449 \pm 9.5 \cdot 10^{-6} \) | \(a_{197}= +0.51947423 \pm 1.2 \cdot 10^{-5} \) | \(a_{198}= +0.81370797 \pm 5.3 \cdot 10^{-6} \) |
\(a_{199}= +1.16874820 \pm 1.6 \cdot 10^{-5} \) | \(a_{200}= -0.17017464 \pm 1.1 \cdot 10^{-5} \) | \(a_{201}= +0.04941789 \pm 9.2 \cdot 10^{-6} \) |
\(a_{202}= -1.31096854 \pm 9.7 \cdot 10^{-6} \) | \(a_{203}= -1.69989929 \pm 3.3 \cdot 10^{-6} \) | \(a_{204}= +0.01361028 \pm 1.1 \cdot 10^{-5} \) |
\(a_{205}= -0.23359311 \pm 1.3 \cdot 10^{-5} \) | \(a_{206}= +0.49893570 \pm 1.5 \cdot 10^{-5} \) | \(a_{207}= +1.47844882 \pm 4.8 \cdot 10^{-6} \) |
\(a_{208}= +1.24616084 \pm 4.8 \cdot 10^{-6} \) | \(a_{209}= +0.15030059 \pm 3.0 \cdot 10^{-6} \) | \(a_{210}= +0.15889393 \pm 3.0 \cdot 10^{-5} \) |
\(a_{211}= -1.60183238 \pm 7.3 \cdot 10^{-6} \) | \(a_{212}= -0.11445782 \pm 9.6 \cdot 10^{-6} \) | \(a_{213}= +0.08597856 \pm 7.7 \cdot 10^{-6} \) |
\(a_{214}= -1.02995001 \pm 1.1 \cdot 10^{-5} \) | \(a_{215}= +0.25665462 \pm 1.3 \cdot 10^{-5} \) | \(a_{216}= -0.29203979 \pm 8.6 \cdot 10^{-6} \) |
\(a_{217}= +1.06176130 \pm 5.3 \cdot 10^{-6} \) | \(a_{218}= -1.28202177 \pm 8.3 \cdot 10^{-6} \) | \(a_{219}= +0.14032396 \pm 1.1 \cdot 10^{-5} \) |
\(a_{220}= +0.07907264 \pm 1.7 \cdot 10^{-5} \) | \(a_{221}= +0.35262833 \pm 1.0 \cdot 10^{-5} \) | \(a_{222}= -0.21804282 \pm 1.1 \cdot 10^{-5} \) |
\(a_{223}= -0.37231736 \pm 1.3 \cdot 10^{-5} \) | \(a_{224}= -0.84274433 \pm 4.7 \cdot 10^{-6} \) | \(a_{225}= -0.19392686 \pm 6.4 \cdot 10^{-6} \) |
\(a_{226}= +1.71025619 \pm 1.1 \cdot 10^{-5} \) | \(a_{227}= -1.05731608 \pm 1.0 \cdot 10^{-5} \) | \(a_{228}= +0.00811478 \pm 8.9 \cdot 10^{-6} \) |
\(a_{229}= -1.38157041 \pm 1.8 \cdot 10^{-5} \) | \(a_{230}= +0.75749641 \pm 1.7 \cdot 10^{-5} \) | \(a_{231}= +0.24161194 \pm 2.8 \cdot 10^{-6} \) |
\(a_{232}= +0.78805141 \pm 6.3 \cdot 10^{-6} \) | \(a_{233}= +1.71406276 \pm 1.6 \cdot 10^{-5} \) | \(a_{234}= +1.13824272 \pm 5.6 \cdot 10^{-6} \) |
\(a_{235}= +0.20813106 \pm 8.1 \cdot 10^{-6} \) | \(a_{236}= +0.06322960 \pm 8.7 \cdot 10^{-6} \) | \(a_{237}= +0.11464093 \pm 1.7 \cdot 10^{-5} \) |
\(a_{238}= -0.68039058 \pm 4.5 \cdot 10^{-6} \) | \(a_{239}= +0.85781699 \pm 1.2 \cdot 10^{-5} \) | \(a_{240}= -0.09190117 \pm 1.8 \cdot 10^{-5} \) |
\(a_{241}= -1.32792215 \pm 7.1 \cdot 10^{-6} \) | \(a_{242}= -0.47693185 \pm 9.5 \cdot 10^{-6} \) | \(a_{243}= -0.50176750 \pm 7.1 \cdot 10^{-6} \) |
\(a_{244}= +0.42285346 \pm 5.2 \cdot 10^{-6} \) | \(a_{245}= -1.05933091 \pm 1.1 \cdot 10^{-5} \) | \(a_{246}= -0.10111227 \pm 1.8 \cdot 10^{-5} \) |
\(a_{247}= +0.21024564 \pm 3.6 \cdot 10^{-6} \) | \(a_{248}= -0.49221886 \pm 8.6 \cdot 10^{-6} \) | \(a_{249}= -0.05038953 \pm 1.4 \cdot 10^{-5} \) |
\(a_{250}= -0.09936015 \pm 1.2 \cdot 10^{-5} \) | \(a_{251}= -0.96055015 \pm 1.8 \cdot 10^{-5} \) | \(a_{252}= -0.41654256 \pm 2.1 \cdot 10^{-6} \) |
\(a_{253}= +1.15183868 \pm 4.2 \cdot 10^{-6} \) | \(a_{254}= -1.07003297 \pm 1.1 \cdot 10^{-5} \) | \(a_{255}= -0.02600544 \pm 2.6 \cdot 10^{-5} \) |
\(a_{256}= +0.66670022 \pm 1.0 \cdot 10^{-5} \) | \(a_{257}= -0.75914130 \pm 1.0 \cdot 10^{-5} \) | \(a_{258}= +0.11109460 \pm 9.2 \cdot 10^{-6} \) |
\(a_{259}= +2.06736157 \pm 5.3 \cdot 10^{-6} \) | \(a_{260}= +0.11060954 \pm 1.9 \cdot 10^{-5} \) | \(a_{261}= +0.89804414 \pm 5.3 \cdot 10^{-6} \) |
\(a_{262}= +0.30008898 \pm 1.5 \cdot 10^{-5} \) | \(a_{263}= +0.08146170 \pm 1.4 \cdot 10^{-5} \) | \(a_{264}= -0.11200818 \pm 4.1 \cdot 10^{-6} \) |
\(a_{265}= +0.21869686 \pm 1.2 \cdot 10^{-5} \) | \(a_{266}= -0.40566552 \pm 4.4 \cdot 10^{-6} \) | \(a_{267}= +0.06321346 \pm 1.7 \cdot 10^{-5} \) |
\(a_{268}= -0.06637591 \pm 5.6 \cdot 10^{-6} \) | \(a_{269}= +0.22632745 \pm 1.2 \cdot 10^{-5} \) | \(a_{270}= -0.17051376 \pm 2.2 \cdot 10^{-5} \) |
\(a_{271}= -0.02224291 \pm 9.8 \cdot 10^{-6} \) | \(a_{272}= +0.39352470 \pm 5.2 \cdot 10^{-6} \) | \(a_{273}= +0.33797510 \pm 3.3 \cdot 10^{-6} \) |
\(a_{274}= -1.15695499 \pm 1.8 \cdot 10^{-5} \) | \(a_{275}= -0.15108569 \pm 6.8 \cdot 10^{-6} \) | \(a_{276}= +0.06218818 \pm 4.4 \cdot 10^{-6} \) |
\(a_{277}= -0.69270823 \pm 1.3 \cdot 10^{-5} \) | \(a_{278}= -0.22774615 \pm 1.0 \cdot 10^{-5} \) | \(a_{279}= -0.56092059 \pm 4.3 \cdot 10^{-6} \) |
\(a_{280}= +0.69841463 \pm 1.6 \cdot 10^{-5} \) | \(a_{281}= +0.13501492 \pm 5.4 \cdot 10^{-6} \) | \(a_{282}= +0.09009086 \pm 5.4 \cdot 10^{-6} \) |
\(a_{283}= -1.37555636 \pm 1.3 \cdot 10^{-5} \) | \(a_{284}= -0.11548258 \pm 3.5 \cdot 10^{-6} \) | \(a_{285}= -0.01550508 \pm 2.5 \cdot 10^{-5} \) |
\(a_{286}= +0.88678889 \pm 7.4 \cdot 10^{-6} \) | \(a_{287}= +0.95869069 \pm 5.4 \cdot 10^{-6} \) | \(a_{288}= +0.44521555 \pm 4.6 \cdot 10^{-6} \) |
\(a_{289}= -0.88864362 \pm 5.6 \cdot 10^{-6} \) | \(a_{290}= +0.46012090 \pm 1.8 \cdot 10^{-5} \) | \(a_{291}= +0.08759619 \pm 1.0 \cdot 10^{-5} \) |
\(a_{292}= -0.18847692 \pm 8.7 \cdot 10^{-6} \) | \(a_{293}= -0.58943840 \pm 1.6 \cdot 10^{-5} \) | \(a_{294}= -0.45853816 \pm 1.0 \cdot 10^{-5} \) |
\(a_{295}= -0.12081407 \pm 1.0 \cdot 10^{-5} \) | \(a_{296}= -0.95840219 \pm 1.5 \cdot 10^{-5} \) | \(a_{297}= -0.25928089 \pm 4.0 \cdot 10^{-6} \) |
\(a_{298}= +0.66958518 \pm 5.4 \cdot 10^{-6} \) | \(a_{299}= +1.61123160 \pm 4.0 \cdot 10^{-6} \) | \(a_{300}= -0.00815717 \pm 2.3 \cdot 10^{-5} \) |
\(a_{301}= -1.05333758 \pm 4.1 \cdot 10^{-6} \) | \(a_{302}= +1.83559927 \pm 1.0 \cdot 10^{-5} \) | \(a_{303}= +0.20564426 \pm 1.0 \cdot 10^{-5} \) |
\(a_{304}= +0.23462906 \pm 4.3 \cdot 10^{-6} \) | \(a_{305}= -0.80795462 \pm 7.5 \cdot 10^{-6} \) | \(a_{306}= +0.35944528 \pm 5.7 \cdot 10^{-6} \) |
\(a_{307}= +0.41906070 \pm 1.1 \cdot 10^{-5} \) | \(a_{308}= -0.32452245 \pm 2.6 \cdot 10^{-6} \) | \(a_{309}= -0.07826524 \pm 1.0 \cdot 10^{-5} \) |
\(a_{310}= -0.28739265 \pm 2.5 \cdot 10^{-5} \) | \(a_{311}= +0.03757109 \pm 1.2 \cdot 10^{-5} \) | \(a_{312}= -0.15668090 \pm 4.8 \cdot 10^{-6} \) |
\(a_{313}= +0.84211631 \pm 1.1 \cdot 10^{-5} \) | \(a_{314}= -0.50183661 \pm 1.0 \cdot 10^{-5} \) | \(a_{315}= +0.79589625 \pm 1.1 \cdot 10^{-5} \) |
\(a_{316}= -0.15398061 \pm 1.0 \cdot 10^{-5} \) | \(a_{317}= -0.59719141 \pm 1.8 \cdot 10^{-5} \) | \(a_{318}= +0.09466434 \pm 1.0 \cdot 10^{-5} \) |
\(a_{319}= +0.69965355 \pm 4.1 \cdot 10^{-6} \) | \(a_{320}= -0.29927688 \pm 1.2 \cdot 10^{-5} \) | \(a_{321}= +0.16156246 \pm 9.9 \cdot 10^{-6} \) |
\(a_{322}= -3.10884495 \pm 4.1 \cdot 10^{-6} \) | \(a_{323}= +0.06639340 \pm 1.2 \cdot 10^{-5} \) | \(a_{324}= +0.21294909 \pm 1.1 \cdot 10^{-5} \) |
\(a_{325}= -0.21134386 \pm 8.6 \cdot 10^{-6} \) | \(a_{326}= -0.08355029 \pm 1.0 \cdot 10^{-5} \) | \(a_{327}= +0.20110354 \pm 6.2 \cdot 10^{-6} \) |
\(a_{328}= -0.44443665 \pm 9.6 \cdot 10^{-6} \) | \(a_{329}= -0.85419178 \pm 3.1 \cdot 10^{-6} \) | \(a_{330}= -0.06539841 \pm 3.2 \cdot 10^{-5} \) |
\(a_{331}= +1.20192900 \pm 1.0 \cdot 10^{-5} \) | \(a_{332}= +0.06768098 \pm 9.7 \cdot 10^{-6} \) | \(a_{333}= -1.09217173 \pm 5.5 \cdot 10^{-6} \) |
\(a_{334}= +1.66242443 \pm 7.1 \cdot 10^{-6} \) | \(a_{335}= +0.12682579 \pm 8.2 \cdot 10^{-6} \) | \(a_{336}= +0.37717206 \pm 3.7 \cdot 10^{-6} \) |
\(a_{337}= +0.71196083 \pm 1.7 \cdot 10^{-5} \) | \(a_{338}= +0.12959055 \pm 7.1 \cdot 10^{-6} \) | \(a_{339}= -0.26827827 \pm 1.0 \cdot 10^{-5} \) |
\(a_{340}= +0.03492935 \pm 2.4 \cdot 10^{-5} \) | \(a_{341}= -0.43700534 \pm 7.0 \cdot 10^{-6} \) | \(a_{342}= +0.21431007 \pm 5.2 \cdot 10^{-6} \) |
\(a_{343}= +2.51219387 \pm 7.9 \cdot 10^{-6} \) | \(a_{344}= +0.48831373 \pm 1.3 \cdot 10^{-5} \) | \(a_{345}= -0.11882420 \pm 1.8 \cdot 10^{-5} \) |
\(a_{346}= +0.51824451 \pm 1.4 \cdot 10^{-5} \) | \(a_{347}= -0.71040888 \pm 8.6 \cdot 10^{-6} \) | \(a_{348}= +0.03777454 \pm 3.4 \cdot 10^{-6} \) |
\(a_{349}= -1.49450038 \pm 1.3 \cdot 10^{-5} \) | \(a_{350}= +0.40778452 \pm 1.7 \cdot 10^{-5} \) | \(a_{351}= -0.36269104 \pm 6.1 \cdot 10^{-6} \) |
\(a_{352}= +0.34686117 \pm 6.5 \cdot 10^{-6} \) | \(a_{353}= -1.13314225 \pm 5.2 \cdot 10^{-6} \) | \(a_{354}= -0.05229514 \pm 1.1 \cdot 10^{-5} \) |
\(a_{355}= +0.22065490 \pm 6.4 \cdot 10^{-6} \) | \(a_{356}= -0.08490552 \pm 1.3 \cdot 10^{-5} \) | \(a_{357}= +0.10672904 \pm 4.7 \cdot 10^{-6} \) |
\(a_{358}= -2.10702479 \pm 1.8 \cdot 10^{-5} \) | \(a_{359}= -0.03857205 \pm 6.0 \cdot 10^{-6} \) | \(a_{360}= -0.36896725 \pm 1.7 \cdot 10^{-5} \) |
\(a_{361}= -0.96041463 \pm 9.5 \cdot 10^{-6} \) | \(a_{362}= +0.75701744 \pm 1.4 \cdot 10^{-5} \) | \(a_{363}= +0.07481362 \pm 1.1 \cdot 10^{-5} \) |
\(a_{364}= -0.45395317 \pm 3.7 \cdot 10^{-6} \) | \(a_{365}= +0.36012664 \pm 1.0 \cdot 10^{-5} \) | \(a_{366}= -0.34972832 \pm 6.4 \cdot 10^{-6} \) |
\(a_{367}= +1.79490832 \pm 1.0 \cdot 10^{-5} \) | \(a_{368}= +1.79809557 \pm 4.2 \cdot 10^{-6} \) | \(a_{369}= -0.50646915 \pm 5.6 \cdot 10^{-6} \) |
\(a_{370}= -0.55958390 \pm 2.8 \cdot 10^{-5} \) | \(a_{371}= -0.89755493 \pm 4.0 \cdot 10^{-6} \) | \(a_{372}= -0.02359407 \pm 1.6 \cdot 10^{-5} \) |
\(a_{373}= -0.29499560 \pm 1.5 \cdot 10^{-5} \) | \(a_{374}= +0.28003876 \pm 8.0 \cdot 10^{-6} \) | \(a_{375}= +0.01558607 \pm 1.3 \cdot 10^{-5} \) |
\(a_{376}= +0.39599231 \pm 8.1 \cdot 10^{-6} \) | \(a_{377}= +0.97869948 \pm 4.4 \cdot 10^{-6} \) | \(a_{378}= +0.69980642 \pm 3.5 \cdot 10^{-6} \) |
\(a_{379}= +0.73144568 \pm 1.0 \cdot 10^{-5} \) | \(a_{380}= +0.02082573 \pm 2.3 \cdot 10^{-5} \) | \(a_{381}= +0.16785005 \pm 1.3 \cdot 10^{-5} \) |
\(a_{382}= -1.33690486 \pm 3.9 \cdot 10^{-6} \) | \(a_{383}= -1.40594323 \pm 1.4 \cdot 10^{-5} \) | \(a_{384}= -0.20955569 \pm 1.0 \cdot 10^{-5} \) |
\(a_{385}= +0.62007157 \pm 1.1 \cdot 10^{-5} \) | \(a_{386}= +1.07047214 \pm 5.4 \cdot 10^{-6} \) | \(a_{387}= +0.55647040 \pm 3.4 \cdot 10^{-6} \) |
\(a_{388}= -0.11765532 \pm 7.0 \cdot 10^{-6} \) | \(a_{389}= -0.48671845 \pm 1.4 \cdot 10^{-5} \) | \(a_{390}= -0.09148154 \pm 3.4 \cdot 10^{-5} \) |
\(a_{391}= +0.50881027 \pm 4.2 \cdot 10^{-6} \) | \(a_{392}= -2.01549391 \pm 9.9 \cdot 10^{-6} \) | \(a_{393}= -0.04707327 \pm 1.3 \cdot 10^{-5} \) |
\(a_{394}= +0.57707368 \pm 1.4 \cdot 10^{-5} \) | \(a_{395}= +0.29421385 \pm 1.5 \cdot 10^{-5} \) | \(a_{396}= +0.17144279 \pm 2.8 \cdot 10^{-6} \) |
\(a_{397}= -0.47474744 \pm 1.2 \cdot 10^{-5} \) | \(a_{398}= +1.29833933 \pm 1.5 \cdot 10^{-5} \) | \(a_{399}= +0.06363447 \pm 6.5 \cdot 10^{-6} \) |
\(a_{400}= -0.23585465 \pm 5.4 \cdot 10^{-6} \) | \(a_{401}= +1.00208364 \pm 1.9 \cdot 10^{-5} \) | \(a_{402}= +0.05489736 \pm 6.4 \cdot 10^{-6} \) |
\(a_{403}= -0.61129812 \pm 1.1 \cdot 10^{-5} \) | \(a_{404}= -0.27621225 \pm 7.9 \cdot 10^{-6} \) | \(a_{405}= -0.40688611 \pm 1.3 \cdot 10^{-5} \) |
\(a_{406}= -1.88838460 \pm 3.0 \cdot 10^{-6} \) | \(a_{407}= -0.85089563 \pm 5.7 \cdot 10^{-6} \) | \(a_{408}= -0.04947821 \pm 1.1 \cdot 10^{-5} \) |
\(a_{409}= -0.01481612 \pm 1.3 \cdot 10^{-5} \) | \(a_{410}= -0.25949398 \pm 2.6 \cdot 10^{-5} \) | \(a_{411}= +0.18148502 \pm 1.5 \cdot 10^{-5} \) |
\(a_{412}= +0.10512239 \pm 1.3 \cdot 10^{-5} \) | \(a_{413}= +0.49583366 \pm 5.3 \cdot 10^{-6} \) | \(a_{414}= +1.64237964 \pm 4.8 \cdot 10^{-6} \) |
\(a_{415}= -0.12931941 \pm 1.3 \cdot 10^{-5} \) | \(a_{416}= +0.48520135 \pm 9.1 \cdot 10^{-6} \) | \(a_{417}= +0.03572526 \pm 1.5 \cdot 10^{-5} \) |
\(a_{418}= +0.16696596 \pm 3.1 \cdot 10^{-6} \) | \(a_{419}= -0.78974435 \pm 5.8 \cdot 10^{-6} \) | \(a_{420}= +0.03347788 \pm 2.8 \cdot 10^{-5} \) |
\(a_{421}= -0.91764010 \pm 9.3 \cdot 10^{-6} \) | \(a_{422}= -1.77944401 \pm 6.7 \cdot 10^{-6} \) | \(a_{423}= +0.45126316 \pm 7.0 \cdot 10^{-6} \) |
\(a_{424}= +0.41609490 \pm 1.2 \cdot 10^{-5} \) | \(a_{425}= -0.06674021 \pm 1.3 \cdot 10^{-5} \) | \(a_{426}= +0.09551188 \pm 7.6 \cdot 10^{-6} \) |
\(a_{427}= +3.31593077 \pm 3.4 \cdot 10^{-6} \) | \(a_{428}= -0.21700354 \pm 8.2 \cdot 10^{-6} \) | \(a_{429}= -0.13910558 \pm 4.0 \cdot 10^{-6} \) |
\(a_{430}= +0.28511256 \pm 2.5 \cdot 10^{-5} \) | \(a_{431}= +1.75882585 \pm 1.2 \cdot 10^{-5} \) | \(a_{432}= -0.40475445 \pm 3.7 \cdot 10^{-6} \) |
\(a_{433}= -0.62415268 \pm 1.5 \cdot 10^{-5} \) | \(a_{434}= +1.17948969 \pm 6.2 \cdot 10^{-6} \) | \(a_{435}= -0.07217658 \pm 1.9 \cdot 10^{-5} \) |
\(a_{436}= -0.27011336 \pm 7.1 \cdot 10^{-6} \) | \(a_{437}= +0.30336514 \pm 4.4 \cdot 10^{-6} \) | \(a_{438}= +0.15588312 \pm 9.2 \cdot 10^{-6} \) |
\(a_{439}= -0.97419312 \pm 8.4 \cdot 10^{-6} \) | \(a_{440}= -0.28745719 \pm 1.8 \cdot 10^{-5} \) | \(a_{441}= -2.29680763 \pm 4.6 \cdot 10^{-6} \) |
\(a_{442}= +0.39172786 \pm 1.1 \cdot 10^{-5} \) | \(a_{443}= -0.70889121 \pm 1.1 \cdot 10^{-5} \) | \(a_{444}= -0.04594015 \pm 1.2 \cdot 10^{-5} \) |
\(a_{445}= +0.16223068 \pm 1.5 \cdot 10^{-5} \) | \(a_{446}= -0.41360002 \pm 1.3 \cdot 10^{-5} \) | \(a_{447}= -0.10503406 \pm 6.1 \cdot 10^{-6} \) |
\(a_{448}= +1.22826382 \pm 5.1 \cdot 10^{-6} \) | \(a_{449}= -1.09261751 \pm 1.4 \cdot 10^{-5} \) | \(a_{450}= -0.21542953 \pm 1.8 \cdot 10^{-5} \) |
\(a_{451}= -0.39458299 \pm 8.3 \cdot 10^{-6} \) | \(a_{452}= +0.36033947 \pm 9.4 \cdot 10^{-6} \) | \(a_{453}= -0.28794013 \pm 8.3 \cdot 10^{-6} \) |
\(a_{454}= -1.17455159 \pm 1.1 \cdot 10^{-5} \) | \(a_{455}= +0.86737746 \pm 1.3 \cdot 10^{-5} \) | \(a_{456}= -0.02950012 \pm 1.4 \cdot 10^{-5} \) |
\(a_{457}= -0.07226033 \pm 1.2 \cdot 10^{-5} \) | \(a_{458}= -1.53475933 \pm 1.4 \cdot 10^{-5} \) | \(a_{459}= -0.11453408 \pm 1.0 \cdot 10^{-5} \) |
\(a_{460}= +0.15959940 \pm 1.5 \cdot 10^{-5} \) | \(a_{461}= +1.82519259 \pm 1.7 \cdot 10^{-5} \) | \(a_{462}= +0.26840194 \pm 2.7 \cdot 10^{-6} \) |
\(a_{463}= -0.17131753 \pm 1.0 \cdot 10^{-5} \) | \(a_{464}= +1.09220500 \pm 3.1 \cdot 10^{-6} \) | \(a_{465}= +0.04508167 \pm 2.6 \cdot 10^{-5} \) |
\(a_{466}= +1.90411852 \pm 1.2 \cdot 10^{-5} \) | \(a_{467}= -0.42389663 \pm 6.2 \cdot 10^{-6} \) | \(a_{468}= +0.23982008 \pm 3.1 \cdot 10^{-6} \) |
\(a_{469}= -0.52050640 \pm 3.6 \cdot 10^{-6} \) | \(a_{470}= +0.23120869 \pm 2.0 \cdot 10^{-5} \) | \(a_{471}= +0.07872028 \pm 1.2 \cdot 10^{-5} \) |
\(a_{472}= -0.22986210 \pm 9.2 \cdot 10^{-6} \) | \(a_{473}= +0.43353826 \pm 2.2 \cdot 10^{-6} \) | \(a_{474}= +0.12735234 \pm 1.2 \cdot 10^{-5} \) |
\(a_{475}= -0.03979214 \pm 1.2 \cdot 10^{-5} \) | \(a_{476}= -0.14335372 \pm 3.6 \cdot 10^{-6} \) | \(a_{477}= +0.47417159 \pm 5.4 \cdot 10^{-6} \) |
\(a_{478}= +0.95293198 \pm 1.0 \cdot 10^{-5} \) | \(a_{479}= -0.26798288 \pm 1.1 \cdot 10^{-5} \) | \(a_{480}= -0.03578236 \pm 2.6 \cdot 10^{-5} \) |
\(a_{481}= -1.19026210 \pm 6.0 \cdot 10^{-6} \) | \(a_{482}= -1.47516253 \pm 8.8 \cdot 10^{-6} \) | \(a_{483}= +0.48766702 \pm 4.3 \cdot 10^{-6} \) |
\(a_{484}= -0.10048633 \pm 8.7 \cdot 10^{-6} \) | \(a_{485}= +0.22480639 \pm 1.0 \cdot 10^{-5} \) | \(a_{486}= -0.55740362 \pm 5.8 \cdot 10^{-6} \) |
\(a_{487}= +1.69342345 \pm 1.6 \cdot 10^{-5} \) | \(a_{488}= -1.53722279 \pm 7.2 \cdot 10^{-6} \) | \(a_{489}= +0.01310606 \pm 9.5 \cdot 10^{-6} \) |
\(a_{490}= -1.17678982 \pm 2.3 \cdot 10^{-5} \) | \(a_{491}= +0.07284964 \pm 8.5 \cdot 10^{-6} \) | \(a_{492}= -0.02130367 \pm 1.6 \cdot 10^{-5} \) |
\(a_{493}= +0.30906317 \pm 6.1 \cdot 10^{-6} \) | \(a_{494}= +0.23355774 \pm 4.3 \cdot 10^{-6} \) | \(a_{495}= -0.32757919 \pm 1.3 \cdot 10^{-5} \) |
\(a_{496}= -0.68219394 \pm 6.9 \cdot 10^{-6} \) | \(a_{497}= -0.90559091 \pm 4.8 \cdot 10^{-6} \) | \(a_{498}= -0.05597673 \pm 1.1 \cdot 10^{-5} \) |
\(a_{499}= +1.76049837 \pm 1.5 \cdot 10^{-5} \) | \(a_{500}= -0.02093452 \pm 1.0 \cdot 10^{-5} \) | \(a_{501}= -0.26077517 \pm 1.1 \cdot 10^{-5} \) |
\(a_{502}= -1.06705622 \pm 1.1 \cdot 10^{-5} \) | \(a_{503}= +0.54327682 \pm 1.6 \cdot 10^{-5} \) | \(a_{504}= +1.51428040 \pm 3.8 \cdot 10^{-6} \) |
\(a_{505}= +0.52776430 \pm 1.0 \cdot 10^{-5} \) | \(a_{506}= +1.27955487 \pm 5.1 \cdot 10^{-6} \) | \(a_{507}= -0.02032814 \pm 1.0 \cdot 10^{-5} \) |
\(a_{508}= -0.22544875 \pm 9.3 \cdot 10^{-6} \) | \(a_{509}= -0.87322482 \pm 9.1 \cdot 10^{-6} \) | \(a_{510}= -0.02888892 \pm 3.8 \cdot 10^{-5} \) |
\(a_{511}= -1.47799763 \pm 4.0 \cdot 10^{-6} \) | \(a_{512}= -0.46193901 \pm 8.6 \cdot 10^{-6} \) | \(a_{513}= -0.06828802 \pm 1.0 \cdot 10^{-5} \) |
\(a_{514}= -0.84331510 \pm 1.4 \cdot 10^{-5} \) | \(a_{515}= -0.20085947 \pm 1.0 \cdot 10^{-5} \) | \(a_{516}= +0.02340688 \pm 1.0 \cdot 10^{-5} \) |
\(a_{517}= +0.35157278 \pm 8.6 \cdot 10^{-6} \) | \(a_{518}= +2.29659121 \pm 4.5 \cdot 10^{-6} \) | \(a_{519}= -0.08129410 \pm 1.2 \cdot 10^{-5} \) |
\(a_{520}= -0.40210502 \pm 1.9 \cdot 10^{-5} \) | \(a_{521}= +1.03322731 \pm 1.1 \cdot 10^{-5} \) | \(a_{522}= +0.99761953 \pm 4.6 \cdot 10^{-6} \) |
\(a_{523}= -1.35465309 \pm 1.6 \cdot 10^{-5} \) | \(a_{524}= +0.06322673 \pm 1.3 \cdot 10^{-5} \) | \(a_{525}= -0.06396686 \pm 1.8 \cdot 10^{-5} \) |
\(a_{526}= +0.09049419 \pm 1.6 \cdot 10^{-5} \) | \(a_{527}= -0.19304162 \pm 1.3 \cdot 10^{-5} \) | \(a_{528}= -0.15523847 \pm 3.0 \cdot 10^{-6} \) |
\(a_{529}= +1.32485913 \pm 1.1 \cdot 10^{-5} \) | \(a_{530}= +0.24294603 \pm 2.5 \cdot 10^{-5} \) | \(a_{531}= -0.26194523 \pm 6.0 \cdot 10^{-6} \) |
\(a_{532}= -0.08547099 \pm 3.2 \cdot 10^{-6} \) | \(a_{533}= -0.55195627 \pm 1.1 \cdot 10^{-5} \) | \(a_{534}= +0.07022259 \pm 1.5 \cdot 10^{-5} \) |
\(a_{535}= +0.41463302 \pm 1.0 \cdot 10^{-5} \) | \(a_{536}= +0.24130006 \pm 7.9 \cdot 10^{-6} \) | \(a_{537}= +0.33051712 \pm 1.3 \cdot 10^{-5} \) |
\(a_{538}= +0.25142270 \pm 1.1 \cdot 10^{-5} \) | \(a_{539}= -1.78941051 \pm 5.7 \cdot 10^{-6} \) | \(a_{540}= -0.03592610 \pm 2.0 \cdot 10^{-5} \) |
\(a_{541}= +0.52251032 \pm 1.1 \cdot 10^{-5} \) | \(a_{542}= -0.02470921 \pm 9.6 \cdot 10^{-6} \) | \(a_{543}= -0.11874907 \pm 1.3 \cdot 10^{-5} \) |
\(a_{544}= +0.15322157 \pm 1.4 \cdot 10^{-5} \) | \(a_{545}= +0.51611103 \pm 6.3 \cdot 10^{-6} \) | \(a_{546}= +0.37544988 \pm 3.8 \cdot 10^{-6} \) |
\(a_{547}= -1.33540172 \pm 9.3 \cdot 10^{-6} \) | \(a_{548}= -0.24376263 \pm 1.6 \cdot 10^{-5} \) | \(a_{549}= -1.75178154 \pm 4.5 \cdot 10^{-6} \) |
\(a_{550}= -0.16783811 \pm 1.9 \cdot 10^{-5} \) | \(a_{551}= +0.18427103 \pm 6.3 \cdot 10^{-6} \) | \(a_{552}= -0.22607615 \pm 5.7 \cdot 10^{-6} \) |
\(a_{553}= -1.20748458 \pm 5.6 \cdot 10^{-6} \) | \(a_{554}= -0.76951591 \pm 1.7 \cdot 10^{-5} \) | \(a_{555}= +0.08777878 \pm 2.9 \cdot 10^{-5} \) |
\(a_{556}= -0.04798458 \pm 9.1 \cdot 10^{-6} \) | \(a_{557}= +1.15079175 \pm 1.0 \cdot 10^{-5} \) | \(a_{558}= -0.62311562 \pm 3.9 \cdot 10^{-6} \) |
\(a_{559}= +0.60644825 \pm 1.8 \cdot 10^{-6} \) | \(a_{560}= +0.96797231 \pm 1.0 \cdot 10^{-5} \) | \(a_{561}= -0.04392810 \pm 4.4 \cdot 10^{-6} \) |
\(a_{562}= +0.14998541 \pm 5.7 \cdot 10^{-6} \) | \(a_{563}= +1.73882552 \pm 4.5 \cdot 10^{-6} \) | \(a_{564}= +0.01898154 \pm 4.6 \cdot 10^{-6} \) |
\(a_{565}= -0.68850788 \pm 9.3 \cdot 10^{-6} \) | \(a_{566}= -1.52807843 \pm 1.8 \cdot 10^{-5} \) | \(a_{567}= +1.66990341 \pm 4.8 \cdot 10^{-6} \) |
\(a_{568}= +0.41982028 \pm 6.3 \cdot 10^{-6} \) | \(a_{569}= +0.31288771 \pm 7.8 \cdot 10^{-6} \) | \(a_{570}= -0.01722428 \pm 3.8 \cdot 10^{-5} \) |
\(a_{571}= +0.41413487 \pm 1.0 \cdot 10^{-5} \) | \(a_{572}= +0.18684045 \pm 4.9 \cdot 10^{-6} \) | \(a_{573}= +0.20971274 \pm 3.7 \cdot 10^{-6} \) |
\(a_{574}= +1.06499058 \pm 7.1 \cdot 10^{-6} \) | \(a_{575}= -0.30494977 \pm 5.2 \cdot 10^{-6} \) | \(a_{576}= -0.64888263 \pm 6.3 \cdot 10^{-6} \) |
\(a_{577}= +1.42927768 \pm 1.1 \cdot 10^{-5} \) | \(a_{578}= -0.98717668 \pm 4.8 \cdot 10^{-6} \) | \(a_{579}= -0.16791894 \pm 5.0 \cdot 10^{-6} \) |
\(a_{580}= +0.09694438 \pm 1.6 \cdot 10^{-5} \) | \(a_{581}= +0.53074045 \pm 5.4 \cdot 10^{-6} \) | \(a_{582}= +0.09730888 \pm 9.3 \cdot 10^{-6} \) |
\(a_{583}= +0.36942041 \pm 5.8 \cdot 10^{-6} \) | \(a_{584}= +0.68518066 \pm 1.0 \cdot 10^{-5} \) | \(a_{585}= -0.45822905 \pm 1.5 \cdot 10^{-5} \) |
\(a_{586}= -0.65479550 \pm 1.0 \cdot 10^{-5} \) | \(a_{587}= -1.09733245 \pm 1.1 \cdot 10^{-5} \) | \(a_{588}= -0.09661090 \pm 9.9 \cdot 10^{-6} \) |
\(a_{589}= -0.11509614 \pm 8.2 \cdot 10^{-6} \) | \(a_{590}= -0.13420997 \pm 2.2 \cdot 10^{-5} \) | \(a_{591}= -0.09052230 \pm 1.2 \cdot 10^{-5} \) |
\(a_{592}= -1.32830377 \pm 4.0 \cdot 10^{-6} \) | \(a_{593}= -1.58525514 \pm 1.4 \cdot 10^{-5} \) | \(a_{594}= -0.28803003 \pm 5.0 \cdot 10^{-6} \) |
\(a_{595}= +0.27390883 \pm 1.8 \cdot 10^{-5} \) | \(a_{596}= +0.14107709 \pm 3.6 \cdot 10^{-6} \) | \(a_{597}= -0.20366319 \pm 1.7 \cdot 10^{-5} \) |
\(a_{598}= +1.78988541 \pm 5.3 \cdot 10^{-6} \) | \(a_{599}= -0.80125567 \pm 1.5 \cdot 10^{-5} \) | \(a_{600}= +0.02965421 \pm 2.4 \cdot 10^{-5} \) |
\(a_{601}= -0.09704563 \pm 1.5 \cdot 10^{-5} \) | \(a_{602}= -1.17013195 \pm 2.7 \cdot 10^{-6} \) | \(a_{603}= +0.27497965 \pm 3.7 \cdot 10^{-6} \) |
\(a_{604}= +0.38674841 \pm 8.4 \cdot 10^{-6} \) | \(a_{605}= +0.19200126 \pm 1.0 \cdot 10^{-5} \) | \(a_{606}= +0.22844615 \pm 9.7 \cdot 10^{-6} \) |
\(a_{607}= -0.09957823 \pm 8.8 \cdot 10^{-6} \) | \(a_{608}= +0.09135445 \pm 1.2 \cdot 10^{-5} \) | \(a_{609}= +0.29622027 \pm 4.5 \cdot 10^{-6} \) |
\(a_{610}= -0.89754086 \pm 1.9 \cdot 10^{-5} \) | \(a_{611}= +0.49179211 \pm 1.0 \cdot 10^{-5} \) | \(a_{612}= +0.07573270 \pm 3.0 \cdot 10^{-6} \) |
\(a_{613}= +0.48974757 \pm 1.3 \cdot 10^{-5} \) | \(a_{614}= +0.46552627 \pm 7.9 \cdot 10^{-6} \) | \(a_{615}= +0.04070536 \pm 2.7 \cdot 10^{-5} \) |
\(a_{616}= +1.17975456 \pm 2.4 \cdot 10^{-6} \) | \(a_{617}= -0.40041625 \pm 1.7 \cdot 10^{-5} \) | \(a_{618}= -0.08694331 \pm 1.5 \cdot 10^{-5} \) |
\(a_{619}= +1.49316948 \pm 1.8 \cdot 10^{-5} \) | \(a_{620}= -0.06055170 \pm 2.3 \cdot 10^{-5} \) | \(a_{621}= -0.52332984 \pm 3.4 \cdot 10^{-6} \) |
\(a_{622}= +0.04173698 \pm 1.1 \cdot 10^{-5} \) | \(a_{623}= -0.66581180 \pm 5.3 \cdot 10^{-6} \) | \(a_{624}= -0.21715292 \pm 4.2 \cdot 10^{-6} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +0.93549040 \pm 1.0 \cdot 10^{-5} \) | \(a_{627}= -0.02619101 \pm 3.8 \cdot 10^{-6} \) |
\(a_{628}= -0.10573360 \pm 7.9 \cdot 10^{-6} \) | \(a_{629}= -0.37587246 \pm 1.7 \cdot 10^{-5} \) | \(a_{630}= +0.88414545 \pm 2.3 \cdot 10^{-5} \) |
\(a_{631}= -1.24928588 \pm 1.4 \cdot 10^{-5} \) | \(a_{632}= +0.55977430 \pm 1.5 \cdot 10^{-5} \) | \(a_{633}= +0.27913137 \pm 4.7 \cdot 10^{-6} \) |
\(a_{634}= -0.66340816 \pm 1.2 \cdot 10^{-5} \) | \(a_{635}= +0.43076945 \pm 1.4 \cdot 10^{-5} \) | \(a_{636}= +0.01994514 \pm 1.0 \cdot 10^{-5} \) |
\(a_{637}= -2.50308903 \pm 7.5 \cdot 10^{-6} \) | \(a_{638}= +0.77723134 \pm 3.4 \cdot 10^{-6} \) | \(a_{639}= +0.47841694 \pm 6.7 \cdot 10^{-6} \) |
\(a_{640}= -0.53780258 \pm 9.3 \cdot 10^{-6} \) | \(a_{641}= +1.33838640 \pm 9.5 \cdot 10^{-6} \) | \(a_{642}= +0.17947655 \pm 1.1 \cdot 10^{-5} \) |
\(a_{643}= +0.18968723 \pm 7.5 \cdot 10^{-6} \) | \(a_{644}= -0.65501271 \pm 2.5 \cdot 10^{-6} \) | \(a_{645}= -0.04472400 \pm 2.6 \cdot 10^{-5} \) |
\(a_{646}= +0.07375512 \pm 8.6 \cdot 10^{-6} \) | \(a_{647}= +1.55767643 \pm 1.5 \cdot 10^{-5} \) | \(a_{648}= -0.77414571 \pm 1.2 \cdot 10^{-5} \) |
\(a_{649}= -0.20407784 \pm 4.0 \cdot 10^{-6} \) | \(a_{650}= -0.23477773 \pm 2.0 \cdot 10^{-5} \) | \(a_{651}= -0.18501991 \pm 5.4 \cdot 10^{-6} \) |
\(a_{652}= -0.01760348 \pm 8.0 \cdot 10^{-6} \) | \(a_{653}= -0.56987316 \pm 8.8 \cdot 10^{-6} \) | \(a_{654}= +0.22340196 \pm 8.3 \cdot 10^{-6} \) |
\(a_{655}= -0.12080858 \pm 1.2 \cdot 10^{-5} \) | \(a_{656}= -0.61596988 \pm 7.4 \cdot 10^{-6} \) | \(a_{657}= +0.78081515 \pm 4.1 \cdot 10^{-6} \) |
\(a_{658}= -0.94890481 \pm 2.5 \cdot 10^{-6} \) | \(a_{659}= -0.85907252 \pm 1.6 \cdot 10^{-5} \) | \(a_{660}= -0.01377900 \pm 3.0 \cdot 10^{-5} \) |
\(a_{661}= -0.84086905 \pm 1.2 \cdot 10^{-5} \) | \(a_{662}= +1.33519923 \pm 1.2 \cdot 10^{-5} \) | \(a_{663}= -0.06144814 \pm 6.8 \cdot 10^{-6} \) |
\(a_{664}= -0.24604444 \pm 1.2 \cdot 10^{-5} \) | \(a_{665}= +0.16331115 \pm 1.7 \cdot 10^{-5} \) | \(a_{666}= -1.21327204 \pm 4.7 \cdot 10^{-6} \) |
\(a_{667}= +1.41217341 \pm 4.2 \cdot 10^{-6} \) | \(a_{668}= +0.35026164 \pm 6.4 \cdot 10^{-6} \) | \(a_{669}= +0.06487911 \pm 1.4 \cdot 10^{-5} \) |
\(a_{670}= +0.14088827 \pm 2.0 \cdot 10^{-5} \) | \(a_{671}= -1.36478835 \pm 3.7 \cdot 10^{-6} \) | \(a_{672}= +0.14685455 \pm 4.4 \cdot 10^{-6} \) |
\(a_{673}= +0.84482495 \pm 1.0 \cdot 10^{-5} \) | \(a_{674}= +0.79090325 \pm 1.1 \cdot 10^{-5} \) | \(a_{675}= +0.06864473 \pm 1.0 \cdot 10^{-5} \) |
\(a_{676}= +0.02730386 \pm 6.8 \cdot 10^{-6} \) | \(a_{677}= -0.08533679 \pm 1.2 \cdot 10^{-5} \) | \(a_{678}= -0.29802504 \pm 1.2 \cdot 10^{-5} \) |
\(a_{679}= -0.92262908 \pm 4.9 \cdot 10^{-6} \) | \(a_{680}= -0.12698060 \pm 2.4 \cdot 10^{-5} \) | \(a_{681}= +0.18424530 \pm 1.0 \cdot 10^{-5} \) |
\(a_{682}= -0.48546061 \pm 9.2 \cdot 10^{-6} \) | \(a_{683}= -0.36604238 \pm 1.7 \cdot 10^{-5} \) | \(a_{684}= +0.04515369 \pm 2.4 \cdot 10^{-6} \) |
\(a_{685}= +0.46576216 \pm 1.5 \cdot 10^{-5} \) | \(a_{686}= +2.79074664 \pm 7.9 \cdot 10^{-6} \) | \(a_{687}= +0.24074906 \pm 2.0 \cdot 10^{-5} \) |
\(a_{688}= +0.67678161 \pm 1.5 \cdot 10^{-6} \) | \(a_{689}= +0.51675799 \pm 7.1 \cdot 10^{-6} \) | \(a_{690}= -0.13199946 \pm 3.0 \cdot 10^{-5} \) |
\(a_{691}= +0.92380152 \pm 8.4 \cdot 10^{-6} \) | \(a_{692}= +0.10919063 \pm 1.2 \cdot 10^{-5} \) | \(a_{693}= +1.34441947 \pm 3.2 \cdot 10^{-6} \) |
\(a_{694}= -0.78917921 \pm 7.0 \cdot 10^{-6} \) | \(a_{695}= +0.09168511 \pm 1.4 \cdot 10^{-5} \) | \(a_{696}= -0.13732390 \pm 7.3 \cdot 10^{-6} \) |
\(a_{697}= -0.17430208 \pm 1.4 \cdot 10^{-5} \) | \(a_{698}= -1.66021100 \pm 1.6 \cdot 10^{-5} \) | \(a_{699}= -0.29868836 \pm 1.8 \cdot 10^{-5} \) |
\(a_{700}= +0.08591745 \pm 1.5 \cdot 10^{-5} \) | \(a_{701}= -0.51553998 \pm 6.9 \cdot 10^{-6} \) | \(a_{702}= -0.40290633 \pm 8.6 \cdot 10^{-6} \) |
\(a_{703}= -0.22410436 \pm 1.9 \cdot 10^{-5} \) | \(a_{704}= -0.50553533 \pm 7.4 \cdot 10^{-6} \) | \(a_{705}= -0.03626841 \pm 2.1 \cdot 10^{-5} \) |
\(a_{706}= -1.25878538 \pm 4.5 \cdot 10^{-6} \) | \(a_{707}= -2.16600023 \pm 4.5 \cdot 10^{-6} \) | \(a_{708}= -0.01101823 \pm 9.1 \cdot 10^{-6} \) |
\(a_{709}= +1.46971874 \pm 1.5 \cdot 10^{-5} \) | \(a_{710}= +0.24512117 \pm 1.8 \cdot 10^{-5} \) | \(a_{711}= +0.63790511 \pm 7.4 \cdot 10^{-6} \) |
\(a_{712}= +0.30866177 \pm 1.3 \cdot 10^{-5} \) | \(a_{713}= -0.88204700 \pm 6.0 \cdot 10^{-6} \) | \(a_{714}= +0.11856319 \pm 4.6 \cdot 10^{-6} \) |
\(a_{715}= -0.35699981 \pm 1.5 \cdot 10^{-5} \) | \(a_{716}= -0.44393594 \pm 1.5 \cdot 10^{-5} \) | \(a_{717}= -0.14948108 \pm 1.0 \cdot 10^{-5} \) |
\(a_{718}= -0.04284892 \pm 7.2 \cdot 10^{-6} \) | \(a_{719}= -0.04098784 \pm 5.0 \cdot 10^{-6} \) | \(a_{720}= -0.51137256 \pm 1.1 \cdot 10^{-5} \) |
\(a_{721}= +0.82434841 \pm 4.1 \cdot 10^{-6} \) | \(a_{722}= -1.06690568 \pm 1.0 \cdot 10^{-5} \) | \(a_{723}= +0.23140045 \pm 7.6 \cdot 10^{-6} \) |
\(a_{724}= +0.15949848 \pm 1.2 \cdot 10^{-5} \) | \(a_{725}= -0.18523357 \pm 6.1 \cdot 10^{-6} \) | \(a_{726}= +0.08310897 \pm 1.0 \cdot 10^{-5} \) |
\(a_{727}= +0.41302289 \pm 1.3 \cdot 10^{-5} \) | \(a_{728}= +1.65028130 \pm 2.8 \cdot 10^{-6} \) | \(a_{729}= -0.82238824 \pm 1.0 \cdot 10^{-5} \) |
\(a_{730}= +0.40005759 \pm 2.3 \cdot 10^{-5} \) | \(a_{731}= +0.19151008 \pm 1.4 \cdot 10^{-5} \) | \(a_{732}= -0.07368540 \pm 5.2 \cdot 10^{-6} \) |
\(a_{733}= +0.60711871 \pm 9.0 \cdot 10^{-6} \) | \(a_{734}= +1.99392826 \pm 1.6 \cdot 10^{-5} \) | \(a_{735}= +0.18459640 \pm 2.4 \cdot 10^{-5} \) |
\(a_{736}= +0.70010096 \pm 5.2 \cdot 10^{-6} \) | \(a_{737}= +0.21423278 \pm 2.7 \cdot 10^{-6} \) | \(a_{738}= -0.56262659 \pm 5.7 \cdot 10^{-6} \) |
\(a_{739}= +0.77003054 \pm 1.0 \cdot 10^{-5} \) | \(a_{740}= -0.11790056 \pm 2.6 \cdot 10^{-5} \) | \(a_{741}= -0.03663689 \pm 4.6 \cdot 10^{-6} \) |
\(a_{742}= -0.99707608 \pm 3.4 \cdot 10^{-6} \) | \(a_{743}= +0.22696680 \pm 1.7 \cdot 10^{-5} \) | \(a_{744}= +0.08577285 \pm 8.9 \cdot 10^{-6} \) |
\(a_{745}= -0.26955884 \pm 4.7 \cdot 10^{-6} \) | \(a_{746}= -0.32770479 \pm 1.7 \cdot 10^{-5} \) | \(a_{747}= -0.28038623 \pm 5.5 \cdot 10^{-6} \) |
\(a_{748}= +0.05900228 \pm 5.4 \cdot 10^{-6} \) | \(a_{749}= -1.70169754 \pm 6.2 \cdot 10^{-6} \) | \(a_{750}= +0.01731426 \pm 2.5 \cdot 10^{-5} \) |
\(a_{751}= -0.04971151 \pm 1.1 \cdot 10^{-5} \) | \(a_{752}= +0.54882812 \pm 4.2 \cdot 10^{-6} \) | \(a_{753}= +0.16738311 \pm 1.9 \cdot 10^{-5} \) |
\(a_{754}= +1.08721796 \pm 3.9 \cdot 10^{-6} \) | \(a_{755}= -0.73896797 \pm 8.3 \cdot 10^{-6} \) | \(a_{756}= +0.14744450 \pm 3.5 \cdot 10^{-6} \) |
\(a_{757}= +1.65376512 \pm 9.8 \cdot 10^{-6} \) | \(a_{758}= +0.81254858 \pm 1.0 \cdot 10^{-5} \) | \(a_{759}= -0.20071657 \pm 3.9 \cdot 10^{-6} \) |
\(a_{760}= -0.07570894 \pm 2.3 \cdot 10^{-5} \) | \(a_{761}= -1.97159896 \pm 1.2 \cdot 10^{-5} \) | \(a_{762}= +0.18646131 \pm 1.0 \cdot 10^{-5} \) |
\(a_{763}= -2.11817397 \pm 3.0 \cdot 10^{-6} \) | \(a_{764}= -0.28167686 \pm 3.1 \cdot 10^{-6} \) | \(a_{765}= -0.14470399 \pm 2.0 \cdot 10^{-5} \) |
\(a_{766}= -1.56183461 \pm 1.4 \cdot 10^{-5} \) | \(a_{767}= -0.28547112 \pm 6.1 \cdot 10^{-6} \) | \(a_{768}= -0.11617754 \pm 1.0 \cdot 10^{-5} \) |
\(a_{769}= +0.45511023 \pm 8.9 \cdot 10^{-6} \) | \(a_{770}= +0.68882528 \pm 2.4 \cdot 10^{-5} \) | \(a_{771}= +0.13228609 \pm 9.8 \cdot 10^{-6} \) |
\(a_{772}= +0.22554128 \pm 3.5 \cdot 10^{-6} \) | \(a_{773}= +1.40750583 \pm 6.9 \cdot 10^{-6} \) | \(a_{774}= +0.61817200 \pm 2.2 \cdot 10^{-6} \) |
\(a_{775}= +0.11569735 \pm 1.3 \cdot 10^{-5} \) | \(a_{776}= +0.42771896 \pm 9.8 \cdot 10^{-6} \) | \(a_{777}= -0.36025334 \pm 5.2 \cdot 10^{-6} \) |
\(a_{778}= -0.54068593 \pm 1.0 \cdot 10^{-5} \) | \(a_{779}= -0.10392317 \pm 9.1 \cdot 10^{-6} \) | \(a_{780}= -0.01927455 \pm 3.2 \cdot 10^{-5} \) |
\(a_{781}= +0.37272790 \pm 4.8 \cdot 10^{-6} \) | \(a_{782}= +0.56522730 \pm 5.6 \cdot 10^{-6} \) | \(a_{783}= -0.31788270 \pm 4.1 \cdot 10^{-6} \) |
\(a_{784}= -2.79338693 \pm 4.0 \cdot 10^{-6} \) | \(a_{785}= +0.20202731 \pm 1.1 \cdot 10^{-5} \) | \(a_{786}= -0.05229277 \pm 1.5 \cdot 10^{-5} \) |
\(a_{787}= +1.31377218 \pm 8.4 \cdot 10^{-6} \) | \(a_{788}= +0.12158554 \pm 1.2 \cdot 10^{-5} \) | \(a_{789}= -0.01419531 \pm 1.4 \cdot 10^{-5} \) |
\(a_{790}= +0.32683636 \pm 2.7 \cdot 10^{-5} \) | \(a_{791}= +2.82570876 \pm 4.6 \cdot 10^{-6} \) | \(a_{792}= -0.62325555 \pm 5.8 \cdot 10^{-6} \) |
\(a_{793}= -1.90911293 \pm 4.4 \cdot 10^{-6} \) | \(a_{794}= -0.52738757 \pm 1.5 \cdot 10^{-5} \) | \(a_{795}= -0.03810958 \pm 2.6 \cdot 10^{-5} \) |
\(a_{796}= +0.27355136 \pm 1.3 \cdot 10^{-5} \) | \(a_{797}= -1.11068473 \pm 1.0 \cdot 10^{-5} \) | \(a_{798}= +0.07069028 \pm 5.5 \cdot 10^{-6} \) |
\(a_{799}= +0.15530286 \pm 1.1 \cdot 10^{-5} \) | \(a_{800}= -0.09183164 \pm 1.3 \cdot 10^{-5} \) | \(a_{801}= +0.35174342 \pm 5.1 \cdot 10^{-6} \) |
\(a_{802}= +1.11319496 \pm 1.8 \cdot 10^{-5} \) | \(a_{803}= +0.60832209 \pm 4.7 \cdot 10^{-6} \) | \(a_{804}= +0.01156650 \pm 5.9 \cdot 10^{-6} \) |
\(a_{805}= +1.25154596 \pm 1.0 \cdot 10^{-5} \) | \(a_{806}= -0.67907902 \pm 1.6 \cdot 10^{-5} \) | \(a_{807}= -0.03943926 \pm 1.3 \cdot 10^{-5} \) |
\(a_{808}= +1.00412980 \pm 9.8 \cdot 10^{-6} \) | \(a_{809}= +0.65624865 \pm 1.0 \cdot 10^{-5} \) | \(a_{810}= -0.45200176 \pm 2.5 \cdot 10^{-5} \) |
\(a_{811}= -0.75360119 \pm 8.1 \cdot 10^{-6} \) | \(a_{812}= -0.39786993 \pm 1.7 \cdot 10^{-6} \) | \(a_{813}= +0.00387599 \pm 9.9 \cdot 10^{-6} \) |
\(a_{814}= -0.94524317 \pm 6.0 \cdot 10^{-6} \) | \(a_{815}= +0.03363533 \pm 1.0 \cdot 10^{-5} \) | \(a_{816}= -0.06857465 \pm 4.8 \cdot 10^{-6} \) |
\(a_{817}= +0.11418300 \pm 1.7 \cdot 10^{-5} \) | \(a_{818}= -0.01645893 \pm 1.4 \cdot 10^{-5} \) | \(a_{819}= +1.88062025 \pm 3.2 \cdot 10^{-6} \) |
\(a_{820}= -0.05467363 \pm 2.4 \cdot 10^{-5} \) | \(a_{821}= -0.77526000 \pm 8.9 \cdot 10^{-6} \) | \(a_{822}= +0.20160813 \pm 1.9 \cdot 10^{-5} \) |
\(a_{823}= -0.09275109 \pm 1.4 \cdot 10^{-5} \) | \(a_{824}= -0.38215731 \pm 5.8 \cdot 10^{-6} \) | \(a_{825}= +0.02632782 \pm 2.0 \cdot 10^{-5} \) |
\(a_{826}= +0.55081184 \pm 5.5 \cdot 10^{-6} \) | \(a_{827}= +0.88590315 \pm 9.3 \cdot 10^{-6} \) | \(a_{828}= +0.34603834 \pm 2.0 \cdot 10^{-6} \) |
\(a_{829}= -1.43318416 \pm 1.8 \cdot 10^{-5} \) | \(a_{830}= -0.14365838 \pm 2.5 \cdot 10^{-5} \) | \(a_{831}= +0.12070963 \pm 1.2 \cdot 10^{-5} \) |
\(a_{832}= -0.70716022 \pm 1.0 \cdot 10^{-5} \) | \(a_{833}= -0.79044962 \pm 1.2 \cdot 10^{-5} \) | \(a_{834}= +0.03968648 \pm 1.0 \cdot 10^{-5} \) |
\(a_{835}= -0.66925196 \pm 1.0 \cdot 10^{-5} \) | \(a_{836}= +0.03517860 \pm 2.2 \cdot 10^{-6} \) | \(a_{837}= +0.19855032 \pm 1.1 \cdot 10^{-5} \) |
\(a_{838}= -0.87731142 \pm 5.6 \cdot 10^{-6} \) | \(a_{839}= -0.30795427 \pm 7.0 \cdot 10^{-6} \) | \(a_{840}= -0.12170401 \pm 2.9 \cdot 10^{-5} \) |
\(a_{841}= -0.14221308 \pm 1.0 \cdot 10^{-5} \) | \(a_{842}= -1.01938830 \pm 7.0 \cdot 10^{-6} \) | \(a_{843}= -0.02352737 \pm 5.0 \cdot 10^{-6} \) |
\(a_{844}= -0.37491688 \pm 4.3 \cdot 10^{-6} \) | \(a_{845}= -0.05217003 \pm 1.0 \cdot 10^{-5} \) | \(a_{846}= +0.50129935 \pm 5.6 \cdot 10^{-6} \) |
\(a_{847}= -0.78799335 \pm 4.0 \cdot 10^{-6} \) | \(a_{848}= +0.57668945 \pm 3.6 \cdot 10^{-6} \) | \(a_{849}= +0.23970107 \pm 1.4 \cdot 10^{-5} \) |
\(a_{850}= -0.07414038 \pm 2.5 \cdot 10^{-5} \) | \(a_{851}= -1.71743883 \pm 4.3 \cdot 10^{-6} \) | \(a_{852}= +0.02012371 \pm 2.8 \cdot 10^{-6} \) |
\(a_{853}= +1.75173798 \pm 1.0 \cdot 10^{-5} \) | \(a_{854}= +3.68360211 \pm 3.6 \cdot 10^{-6} \) | \(a_{855}= -0.08627606 \pm 1.9 \cdot 10^{-5} \) |
\(a_{856}= +0.78888506 \pm 9.2 \cdot 10^{-6} \) | \(a_{857}= -1.52162245 \pm 1.1 \cdot 10^{-5} \) | \(a_{858}= -0.15452965 \pm 5.0 \cdot 10^{-6} \) |
\(a_{859}= +0.06571728 \pm 1.1 \cdot 10^{-5} \) | \(a_{860}= +0.06007130 \pm 2.4 \cdot 10^{-5} \) | \(a_{861}= -0.16705908 \pm 5.0 \cdot 10^{-6} \) |
\(a_{862}= +1.95384496 \pm 8.6 \cdot 10^{-6} \) | \(a_{863}= -0.23281031 \pm 1.6 \cdot 10^{-5} \) | \(a_{864}= -0.15759395 \pm 1.1 \cdot 10^{-5} \) |
\(a_{865}= -0.20863273 \pm 1.1 \cdot 10^{-5} \) | \(a_{866}= -0.69335891 \pm 1.0 \cdot 10^{-5} \) | \(a_{867}= +0.15485285 \pm 3.6 \cdot 10^{-6} \) |
\(a_{868}= +0.24851054 \pm 5.8 \cdot 10^{-6} \) | \(a_{869}= +0.49698290 \pm 5.8 \cdot 10^{-6} \) | \(a_{870}= -0.08017954 \pm 3.1 \cdot 10^{-5} \) |
\(a_{871}= +0.29967619 \pm 3.0 \cdot 10^{-6} \) | \(a_{872}= +0.98195817 \pm 4.8 \cdot 10^{-6} \) | \(a_{873}= +0.48741807 \pm 6.9 \cdot 10^{-6} \) |
\(a_{874}= +0.33700235 \pm 4.2 \cdot 10^{-6} \) | \(a_{875}= -0.16416421 \pm 5.0 \cdot 10^{-6} \) | \(a_{876}= +0.03284352 \pm 9.0 \cdot 10^{-6} \) |
\(a_{877}= +1.30850084 \pm 1.0 \cdot 10^{-5} \) | \(a_{878}= -1.08221193 \pm 1.1 \cdot 10^{-5} \) | \(a_{879}= +0.10271409 \pm 1.7 \cdot 10^{-5} \) |
\(a_{880}= -0.39840317 \pm 1.2 \cdot 10^{-5} \) | \(a_{881}= +0.79330284 \pm 9.3 \cdot 10^{-6} \) | \(a_{882}= -2.55147830 \pm 3.6 \cdot 10^{-6} \) |
\(a_{883}= +0.65419591 \pm 9.7 \cdot 10^{-6} \) | \(a_{884}= +0.08253442 \pm 8.7 \cdot 10^{-6} \) | \(a_{885}= +0.02105276 \pm 2.3 \cdot 10^{-5} \) |
\(a_{886}= -0.78749326 \pm 1.3 \cdot 10^{-5} \) | \(a_{887}= -1.71670693 \pm 1.6 \cdot 10^{-5} \) | \(a_{888}= +0.16700881 \pm 1.6 \cdot 10^{-5} \) |
\(a_{889}= -1.76792316 \pm 5.3 \cdot 10^{-6} \) | \(a_{890}= +0.18021887 \pm 2.7 \cdot 10^{-5} \) | \(a_{891}= -0.68730769 \pm 6.1 \cdot 10^{-6} \) |
\(a_{892}= -0.08714274 \pm 1.1 \cdot 10^{-5} \) | \(a_{893}= +0.09259537 \pm 2.0 \cdot 10^{-6} \) | \(a_{894}= -0.11668027 \pm 6.3 \cdot 10^{-6} \) |
\(a_{895}= +0.84823734 \pm 1.2 \cdot 10^{-5} \) | \(a_{896}= +2.20719839 \pm 3.8 \cdot 10^{-6} \) | \(a_{897}= -0.28076925 \pm 4.3 \cdot 10^{-6} \) |
\(a_{898}= -1.21376725 \pm 1.2 \cdot 10^{-5} \) | \(a_{899}= -0.53577583 \pm 3.6 \cdot 10^{-6} \) | \(a_{900}= -0.04538955 \pm 1.7 \cdot 10^{-5} \) |
\(a_{901}= +0.16318683 \pm 1.4 \cdot 10^{-5} \) | \(a_{902}= -0.43833446 \pm 1.0 \cdot 10^{-5} \) | \(a_{903}= +0.18355202 \pm 4.5 \cdot 10^{-6} \) |
\(a_{904}= -1.30996218 \pm 7.3 \cdot 10^{-6} \) | \(a_{905}= -0.30475695 \pm 1.3 \cdot 10^{-5} \) | \(a_{906}= -0.31986701 \pm 1.0 \cdot 10^{-5} \) |
\(a_{907}= +0.76533752 \pm 1.6 \cdot 10^{-5} \) | \(a_{908}= -0.24747012 \pm 9.3 \cdot 10^{-6} \) | \(a_{909}= +1.14428179 \pm 7.1 \cdot 10^{-6} \) |
\(a_{910}= +0.96355252 \pm 2.5 \cdot 10^{-5} \) | \(a_{911}= +1.08017454 \pm 1.7 \cdot 10^{-5} \) | \(a_{912}= -0.04088588 \pm 5.7 \cdot 10^{-6} \) |
\(a_{913}= -0.21844497 \pm 4.7 \cdot 10^{-6} \) | \(a_{914}= -0.08027257 \pm 1.3 \cdot 10^{-5} \) | \(a_{915}= +0.14079218 \pm 2.0 \cdot 10^{-5} \) |
\(a_{916}= -0.32336346 \pm 1.3 \cdot 10^{-5} \) | \(a_{917}= +0.49581113 \pm 5.4 \cdot 10^{-6} \) | \(a_{918}= -0.12723365 \pm 1.1 \cdot 10^{-5} \) |
\(a_{919}= -0.56282380 \pm 1.2 \cdot 10^{-5} \) | \(a_{920}= -0.58020059 \pm 1.6 \cdot 10^{-5} \) | \(a_{921}= -0.07302449 \pm 1.1 \cdot 10^{-5} \) |
\(a_{922}= +2.02757046 \pm 1.2 \cdot 10^{-5} \) | \(a_{923}= +0.52138462 \pm 5.4 \cdot 10^{-6} \) | \(a_{924}= +0.05655048 \pm 1.8 \cdot 10^{-6} \) |
\(a_{925}= +0.22527498 \pm 1.6 \cdot 10^{-5} \) | \(a_{926}= -0.19031326 \pm 9.3 \cdot 10^{-6} \) | \(a_{927}= -0.43549713 \pm 3.4 \cdot 10^{-6} \) |
\(a_{928}= +0.42525758 \pm 5.0 \cdot 10^{-6} \) | \(a_{929}= +0.25032720 \pm 6.2 \cdot 10^{-6} \) | \(a_{930}= +0.05008034 \pm 3.8 \cdot 10^{-5} \) |
\(a_{931}= -0.47128541 \pm 1.0 \cdot 10^{-5} \) | \(a_{932}= +0.40118496 \pm 1.1 \cdot 10^{-5} \) | \(a_{933}= -0.00654705 \pm 9.9 \cdot 10^{-6} \) |
\(a_{934}= -0.47089841 \pm 7.3 \cdot 10^{-6} \) | \(a_{935}= -0.11273685 \pm 2.0 \cdot 10^{-5} \) | \(a_{936}= -0.87183132 \pm 6.6 \cdot 10^{-6} \) |
\(a_{937}= +0.92689860 \pm 1.9 \cdot 10^{-5} \) | \(a_{938}= -0.57822029 \pm 2.9 \cdot 10^{-6} \) | \(a_{939}= -0.14674512 \pm 1.0 \cdot 10^{-5} \) |
\(a_{940}= +0.04871412 \pm 1.8 \cdot 10^{-5} \) | \(a_{941}= -0.31894449 \pm 1.3 \cdot 10^{-5} \) | \(a_{942}= +0.08744881 \pm 1.1 \cdot 10^{-5} \) |
\(a_{943}= -0.79642218 \pm 7.2 \cdot 10^{-6} \) | \(a_{944}= -0.31857887 \pm 5.4 \cdot 10^{-6} \) | \(a_{945}= -0.28172518 \pm 1.5 \cdot 10^{-5} \) |
\(a_{946}= +0.48160911 \pm 1.8 \cdot 10^{-6} \) | \(a_{947}= +0.87976924 \pm 1.5 \cdot 10^{-5} \) | \(a_{948}= +0.02683228 \pm 1.1 \cdot 10^{-5} \) |
\(a_{949}= +0.85094189 \pm 6.0 \cdot 10^{-6} \) | \(a_{950}= -0.04420431 \pm 2.4 \cdot 10^{-5} \) | \(a_{951}= +0.10406511 \pm 1.9 \cdot 10^{-5} \) |
\(a_{952}= +0.52114176 \pm 3.9 \cdot 10^{-6} \) | \(a_{953}= +0.23089385 \pm 1.7 \cdot 10^{-5} \) | \(a_{954}= +0.52674787 \pm 4.1 \cdot 10^{-6} \) |
\(a_{955}= +0.53820564 \pm 3.4 \cdot 10^{-6} \) | \(a_{956}= +0.20077636 \pm 8.7 \cdot 10^{-6} \) | \(a_{957}= -0.12191991 \pm 4.1 \cdot 10^{-6} \) |
\(a_{958}= -0.29769690 \pm 1.4 \cdot 10^{-5} \) | \(a_{959}= -1.91153691 \pm 5.4 \cdot 10^{-6} \) | \(a_{960}= +0.05215125 \pm 2.5 \cdot 10^{-5} \) |
\(a_{961}= -0.66535309 \pm 1.6 \cdot 10^{-5} \) | \(a_{962}= -1.32223870 \pm 6.7 \cdot 10^{-6} \) | \(a_{963}= +0.89899414 \pm 8.4 \cdot 10^{-6} \) |
\(a_{964}= -0.31080682 \pm 7.6 \cdot 10^{-6} \) | \(a_{965}= -0.43094625 \pm 5.4 \cdot 10^{-6} \) | \(a_{966}= +0.54173967 \pm 4.0 \cdot 10^{-6} \) |
\(a_{967}= -0.22020305 \pm 8.0 \cdot 10^{-6} \) | \(a_{968}= +0.36530357 \pm 9.7 \cdot 10^{-6} \) | \(a_{969}= -0.01156955 \pm 1.4 \cdot 10^{-5} \) |
\(a_{970}= +0.24973299 \pm 2.2 \cdot 10^{-5} \) | \(a_{971}= -1.38597741 \pm 9.7 \cdot 10^{-6} \) | \(a_{972}= -0.11744119 \pm 3.7 \cdot 10^{-6} \) |
\(a_{973}= -0.37628532 \pm 5.8 \cdot 10^{-6} \) | \(a_{974}= +1.88119072 \pm 1.1 \cdot 10^{-5} \) | \(a_{975}= +0.03682826 \pm 2.1 \cdot 10^{-5} \) |
\(a_{976}= -2.13052395 \pm 3.2 \cdot 10^{-6} \) | \(a_{977}= +0.14350419 \pm 8.2 \cdot 10^{-6} \) | \(a_{978}= +0.01455927 \pm 9.8 \cdot 10^{-6} \) |
\(a_{979}= +0.27403835 \pm 5.7 \cdot 10^{-6} \) | \(a_{980}= -0.24794170 \pm 2.1 \cdot 10^{-5} \) | \(a_{981}= +1.11901554 \pm 3.5 \cdot 10^{-6} \) |
\(a_{982}= +0.08092723 \pm 6.4 \cdot 10^{-6} \) | \(a_{983}= -1.06642747 \pm 1.2 \cdot 10^{-5} \) | \(a_{984}= +0.07744644 \pm 9.7 \cdot 10^{-6} \) |
\(a_{985}= -0.23231594 \pm 1.2 \cdot 10^{-5} \) | \(a_{986}= +0.34333218 \pm 4.4 \cdot 10^{-6} \) | \(a_{987}= +0.14884936 \pm 2.4 \cdot 10^{-6} \) |
\(a_{988}= +0.04920904 \pm 3.1 \cdot 10^{-6} \) | \(a_{989}= +0.87504909 \pm 2.0 \cdot 10^{-6} \) | \(a_{990}= -0.36390127 \pm 2.5 \cdot 10^{-5} \) |
\(a_{991}= +1.47911091 \pm 1.2 \cdot 10^{-5} \) | \(a_{992}= -0.26561694 \pm 1.6 \cdot 10^{-5} \) | \(a_{993}= -0.20944519 \pm 8.9 \cdot 10^{-6} \) |
\(a_{994}= -1.00600308 \pm 5.1 \cdot 10^{-6} \) | \(a_{995}= -0.52268008 \pm 1.6 \cdot 10^{-5} \) | \(a_{996}= -0.01179392 \pm 1.0 \cdot 10^{-5} \) |
\(a_{997}= -1.63415257 \pm 1.7 \cdot 10^{-5} \) | \(a_{998}= +1.95570293 \pm 1.3 \cdot 10^{-5} \) | \(a_{999}= +0.38659847 \pm 1.3 \cdot 10^{-5} \) |
\(a_{1000}= +0.07610441 \pm 1.1 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000