Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.0342548178518598562834278234 \pm 2 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.53474823 \pm 4.7 \cdot 10^{-6} \) | \(a_{3}= +1.80268776 \pm 5.1 \cdot 10^{-6} \) |
\(a_{4}= +1.35545214 \pm 4.1 \cdot 10^{-6} \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +2.76667185 \pm 4.8 \cdot 10^{-6} \) |
\(a_{7}= -0.46705075 \pm 1.9 \cdot 10^{-6} \) | \(a_{8}= +0.54552955 \pm 4.4 \cdot 10^{-6} \) | \(a_{9}= +2.24968314 \pm 2.5 \cdot 10^{-6} \) |
\(a_{10}= +0.68636028 \pm 4.7 \cdot 10^{-6} \) | \(a_{11}= +0.73916855 \pm 2.6 \cdot 10^{-6} \) | \(a_{12}= +2.44345698 \pm 4.3 \cdot 10^{-6} \) |
\(a_{13}= -0.71617956 \pm 3.3 \cdot 10^{-6} \) | \(a_{14}= -0.71680531 \pm 2.0 \cdot 10^{-6} \) | \(a_{15}= +0.80618647 \pm 5.1 \cdot 10^{-6} \) |
\(a_{16}= -0.51820163 \pm 2.1 \cdot 10^{-6} \) | \(a_{17}= -1.27938300 \pm 5.2 \cdot 10^{-6} \) | \(a_{18}= +3.45269723 \pm 2.2 \cdot 10^{-6} \) |
\(a_{19}= -0.49486548 \pm 4.9 \cdot 10^{-6} \) | \(a_{20}= +0.60617663 \pm 4.1 \cdot 10^{-6} \) | \(a_{21}= -0.84194666 \pm 2.1 \cdot 10^{-6} \) |
\(a_{22}= +1.13443763 \pm 2.8 \cdot 10^{-6} \) | \(a_{23}= +1.28901318 \pm 2.0 \cdot 10^{-6} \) | \(a_{24}= +0.98341944 \pm 4.6 \cdot 10^{-6} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -1.09915532 \pm 4.0 \cdot 10^{-6} \) | \(a_{27}= +2.25278850 \pm 3.9 \cdot 10^{-6} \) |
\(a_{28}= -0.63306493 \pm 1.6 \cdot 10^{-6} \) | \(a_{29}= -0.99104796 \pm 2.4 \cdot 10^{-6} \) | \(a_{30}= +1.23729327 \pm 9.9 \cdot 10^{-6} \) |
\(a_{31}= +0.90597356 \pm 5.1 \cdot 10^{-6} \) | \(a_{32}= -1.34083859 \pm 5.1 \cdot 10^{-6} \) | \(a_{33}= +1.33249009 \pm 1.9 \cdot 10^{-6} \) |
\(a_{34}= -1.96353081 \pm 5.0 \cdot 10^{-6} \) | \(a_{35}= -0.20887144 \pm 1.9 \cdot 10^{-6} \) | \(a_{36}= +3.04933784 \pm 1.1 \cdot 10^{-6} \) |
\(a_{37}= +0.22283092 \pm 6.3 \cdot 10^{-6} \) | \(a_{38}= -0.75949393 \pm 3.4 \cdot 10^{-6} \) | \(a_{39}= -1.29104813 \pm 2.6 \cdot 10^{-6} \) |
\(a_{40}= +0.24396823 \pm 4.4 \cdot 10^{-6} \) | \(a_{41}= +0.05756213 \pm 5.4 \cdot 10^{-6} \) | \(a_{42}= -1.29217615 \pm 2.0 \cdot 10^{-6} \) |
\(a_{43}= -0.40814263 \pm 5.3 \cdot 10^{-6} \) | \(a_{44}= +1.00190760 \pm 2.0 \cdot 10^{-6} \) | \(a_{45}= +1.00608889 \pm 2.5 \cdot 10^{-6} \) |
\(a_{46}= +1.97831071 \pm 2.4 \cdot 10^{-6} \) | \(a_{47}= -0.10966020 \pm 3.1 \cdot 10^{-6} \) | \(a_{48}= -0.93415574 \pm 2.1 \cdot 10^{-6} \) |
\(a_{49}= -0.78186360 \pm 4.3 \cdot 10^{-6} \) | \(a_{50}= +0.30694965 \pm 4.7 \cdot 10^{-6} \) | \(a_{51}= -2.30632808 \pm 5.1 \cdot 10^{-6} \) |
\(a_{52}= -0.97074712 \pm 3.2 \cdot 10^{-6} \) | \(a_{53}= +0.25023030 \pm 5.0 \cdot 10^{-6} \) | \(a_{54}= +3.45746318 \pm 4.0 \cdot 10^{-6} \) |
\(a_{55}= +0.33056623 \pm 2.6 \cdot 10^{-6} \) | \(a_{56}= -0.25478998 \pm 1.7 \cdot 10^{-6} \) | \(a_{57}= -0.89208795 \pm 5.6 \cdot 10^{-6} \) |
\(a_{58}= -1.52100911 \pm 1.8 \cdot 10^{-6} \) | \(a_{59}= +0.99922716 \pm 4.0 \cdot 10^{-6} \) | \(a_{60}= +1.09274718 \pm 9.3 \cdot 10^{-6} \) |
\(a_{61}= -0.46765150 \pm 2.9 \cdot 10^{-6} \) | \(a_{62}= +1.39044132 \pm 6.9 \cdot 10^{-6} \) | \(a_{63}= -1.05071619 \pm 1.5 \cdot 10^{-6} \) |
\(a_{64}= -1.53964802 \pm 4.7 \cdot 10^{-6} \) | \(a_{65}= -0.32028524 \pm 3.3 \cdot 10^{-6} \) | \(a_{66}= +2.04503682 \pm 2.2 \cdot 10^{-6} \) |
\(a_{67}= -1.17063790 \pm 3.2 \cdot 10^{-6} \) | \(a_{68}= -1.73414244 \pm 4.3 \cdot 10^{-6} \) | \(a_{69}= +2.32368828 \pm 2.3 \cdot 10^{-6} \) |
\(a_{70}= -0.32056508 \pm 6.7 \cdot 10^{-6} \) | \(a_{71}= -1.12923195 \pm 2.5 \cdot 10^{-6} \) | \(a_{72}= +1.22726863 \pm 2.5 \cdot 10^{-6} \) |
\(a_{73}= +0.49529620 \pm 4.2 \cdot 10^{-6} \) | \(a_{74}= +0.34198935 \pm 4.4 \cdot 10^{-6} \) | \(a_{75}= +0.36053755 \pm 5.1 \cdot 10^{-6} \) |
\(a_{76}= -0.67076648 \pm 3.2 \cdot 10^{-6} \) | \(a_{77}= -0.34522922 \pm 1.3 \cdot 10^{-6} \) | \(a_{78}= -1.98143383 \pm 3.7 \cdot 10^{-6} \) |
\(a_{79}= +1.32158727 \pm 6.0 \cdot 10^{-6} \) | \(a_{80}= -0.23174681 \pm 2.1 \cdot 10^{-6} \) | \(a_{81}= +1.81139111 \pm 5.3 \cdot 10^{-6} \) |
\(a_{82}= +0.08834337 \pm 7.1 \cdot 10^{-6} \) | \(a_{83}= +0.49113540 \pm 5.2 \cdot 10^{-6} \) | \(a_{84}= -1.14121840 \pm 1.4 \cdot 10^{-6} \) |
\(a_{85}= -0.57215747 \pm 5.2 \cdot 10^{-6} \) | \(a_{86}= -0.62639619 \pm 3.2 \cdot 10^{-6} \) | \(a_{87}= -1.78655002 \pm 2.7 \cdot 10^{-6} \) |
\(a_{88}= +0.40323829 \pm 2.4 \cdot 10^{-6} \) | \(a_{89}= -0.71251693 \pm 6.1 \cdot 10^{-6} \) | \(a_{90}= +1.54409314 \pm 7.3 \cdot 10^{-6} \) |
\(a_{91}= +0.33449220 \pm 1.4 \cdot 10^{-6} \) | \(a_{92}= +1.74719568 \pm 1.7 \cdot 10^{-6} \) | \(a_{93}= +1.63318744 \pm 5.2 \cdot 10^{-6} \) |
\(a_{94}= -0.16830081 \pm 3.0 \cdot 10^{-6} \) | \(a_{95}= -0.22131057 \pm 4.9 \cdot 10^{-6} \) | \(a_{96}= -2.41711330 \pm 5.3 \cdot 10^{-6} \) |
\(a_{97}= +1.33904643 \pm 3.9 \cdot 10^{-6} \) | \(a_{98}= -1.19996378 \pm 4.0 \cdot 10^{-6} \) | \(a_{99}= +1.66289503 \pm 2.3 \cdot 10^{-6} \) |
\(a_{100}= +0.27109043 \pm 4.1 \cdot 10^{-6} \) | \(a_{101}= -1.25249910 \pm 4.0 \cdot 10^{-6} \) | \(a_{102}= -3.53963295 \pm 4.9 \cdot 10^{-6} \) |
\(a_{103}= +1.07176569 \pm 3.9 \cdot 10^{-6} \) | \(a_{104}= -0.39069711 \pm 2.8 \cdot 10^{-6} \) | \(a_{105}= -0.37652999 \pm 7.1 \cdot 10^{-6} \) |
\(a_{106}= +0.38404051 \pm 4.0 \cdot 10^{-6} \) | \(a_{107}= +0.49745093 \pm 3.9 \cdot 10^{-6} \) | \(a_{108}= +3.05354700 \pm 3.7 \cdot 10^{-6} \) |
\(a_{109}= -0.25483173 \pm 2.4 \cdot 10^{-6} \) | \(a_{110}= +0.50733593 \pm 7.4 \cdot 10^{-6} \) | \(a_{111}= +0.40169456 \pm 6.8 \cdot 10^{-6} \) |
\(a_{112}= +0.24202646 \pm 1.4 \cdot 10^{-6} \) | \(a_{113}= -0.49035916 \pm 3.6 \cdot 10^{-6} \) | \(a_{114}= -1.36913040 \pm 4.0 \cdot 10^{-6} \) |
\(a_{115}= +0.57646422 \pm 2.0 \cdot 10^{-6} \) | \(a_{116}= -1.34331808 \pm 1.3 \cdot 10^{-6} \) | \(a_{117}= -1.61117709 \pm 2.4 \cdot 10^{-6} \) |
\(a_{118}= +1.53356212 \pm 4.0 \cdot 10^{-6} \) | \(a_{119}= +0.59753679 \pm 1.7 \cdot 10^{-6} \) | \(a_{120}= +0.43979854 \pm 9.6 \cdot 10^{-6} \) |
\(a_{121}= -0.45362985 \pm 4.1 \cdot 10^{-6} \) | \(a_{122}= -0.71772731 \pm 2.3 \cdot 10^{-6} \) | \(a_{123}= +0.10376654 \pm 5.4 \cdot 10^{-6} \) |
\(a_{124}= +1.22800380 \pm 6.1 \cdot 10^{-6} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -1.61258482 \pm 1.5 \cdot 10^{-6} \) |
\(a_{127}= +1.58725724 \pm 5.6 \cdot 10^{-6} \) | \(a_{128}= -1.02213350 \pm 3.6 \cdot 10^{-6} \) | \(a_{129}= -0.73575373 \pm 5.9 \cdot 10^{-6} \) |
\(a_{130}= -0.49155720 \pm 8.1 \cdot 10^{-6} \) | \(a_{131}= +0.17574531 \pm 4.8 \cdot 10^{-6} \) | \(a_{132}= +1.80612655 \pm 1.8 \cdot 10^{-6} \) |
\(a_{133}= +0.23112729 \pm 2.0 \cdot 10^{-6} \) | \(a_{134}= -1.79663446 \pm 2.2 \cdot 10^{-6} \) | \(a_{135}= +1.00747765 \pm 3.9 \cdot 10^{-6} \) |
\(a_{136}= -0.69794123 \pm 4.8 \cdot 10^{-6} \) | \(a_{137}= -1.10376032 \pm 5.9 \cdot 10^{-6} \) | \(a_{138}= +3.56627649 \pm 2.5 \cdot 10^{-6} \) |
\(a_{139}= +1.38863473 \pm 5.7 \cdot 10^{-6} \) | \(a_{140}= -0.28311525 \pm 6.1 \cdot 10^{-6} \) | \(a_{141}= -0.19768311 \pm 1.6 \cdot 10^{-6} \) |
\(a_{142}= -1.73308674 \pm 2.5 \cdot 10^{-6} \) | \(a_{143}= -0.52937741 \pm 2.9 \cdot 10^{-6} \) | \(a_{144}= -1.16578947 \pm 1.7 \cdot 10^{-6} \) |
\(a_{145}= -0.44321012 \pm 2.4 \cdot 10^{-6} \) | \(a_{146}= +0.76015497 \pm 3.6 \cdot 10^{-6} \) | \(a_{147}= -1.40945594 \pm 4.4 \cdot 10^{-6} \) |
\(a_{148}= +0.30203664 \pm 4.3 \cdot 10^{-6} \) | \(a_{149}= +1.90674171 \pm 1.8 \cdot 10^{-6} \) | \(a_{150}= +0.55333437 \pm 9.9 \cdot 10^{-6} \) |
\(a_{151}= +1.00475760 \pm 3.2 \cdot 10^{-6} \) | \(a_{152}= -0.26996374 \pm 4.8 \cdot 10^{-6} \) | \(a_{153}= -2.87820638 \pm 2.7 \cdot 10^{-6} \) |
\(a_{154}= -0.52983994 \pm 1.4 \cdot 10^{-6} \) | \(a_{155}= +0.40516369 \pm 5.1 \cdot 10^{-6} \) | \(a_{156}= -1.74995395 \pm 3.1 \cdot 10^{-6} \) |
\(a_{157}= +0.73403190 \pm 4.5 \cdot 10^{-6} \) | \(a_{158}= +2.02830374 \pm 4.2 \cdot 10^{-6} \) | \(a_{159}= +0.45108710 \pm 5.3 \cdot 10^{-6} \) |
\(a_{160}= -0.59964125 \pm 5.2 \cdot 10^{-6} \) | \(a_{161}= -0.60203457 \pm 1.5 \cdot 10^{-6} \) | \(a_{162}= +2.78002930 \pm 5.0 \cdot 10^{-6} \) |
\(a_{163}= +0.91681824 \pm 4.1 \cdot 10^{-6} \) | \(a_{164}= +0.07802271 \pm 6.1 \cdot 10^{-6} \) | \(a_{165}= +0.59590769 \pm 7.8 \cdot 10^{-6} \) |
\(a_{166}= +0.75376919 \pm 3.9 \cdot 10^{-6} \) | \(a_{167}= -1.93542770 \pm 4.0 \cdot 10^{-6} \) | \(a_{168}= -0.45930678 \pm 2.0 \cdot 10^{-6} \) |
\(a_{169}= -0.48708683 \pm 4.0 \cdot 10^{-6} \) | \(a_{170}= -0.87811767 \pm 1.0 \cdot 10^{-5} \) | \(a_{171}= -1.11329054 \pm 2.2 \cdot 10^{-6} \) |
\(a_{172}= -0.55321781 \pm 3.5 \cdot 10^{-6} \) | \(a_{173}= +1.23111136 \pm 4.5 \cdot 10^{-6} \) | \(a_{174}= -2.74190450 \pm 2.2 \cdot 10^{-6} \) |
\(a_{175}= -0.09341015 \pm 1.9 \cdot 10^{-6} \) | \(a_{176}= -0.38303835 \pm 1.7 \cdot 10^{-6} \) | \(a_{177}= +1.80129456 \pm 4.7 \cdot 10^{-6} \) |
\(a_{178}= -1.09353410 \pm 5.6 \cdot 10^{-6} \) | \(a_{179}= +1.57400039 \pm 4.9 \cdot 10^{-6} \) | \(a_{180}= +1.36370534 \pm 6.6 \cdot 10^{-6} \) |
\(a_{181}= +0.17117697 \pm 5.1 \cdot 10^{-6} \) | \(a_{182}= +0.51336131 \pm 1.8 \cdot 10^{-6} \) | \(a_{183}= -0.84302963 \pm 3.2 \cdot 10^{-6} \) |
\(a_{184}= +0.70319478 \pm 1.6 \cdot 10^{-6} \) | \(a_{185}= +0.09965301 \pm 6.3 \cdot 10^{-6} \) | \(a_{186}= +2.50653153 \pm 7.2 \cdot 10^{-6} \) |
\(a_{187}= -0.94567968 \pm 3.2 \cdot 10^{-6} \) | \(a_{188}= -0.14863916 \pm 2.0 \cdot 10^{-6} \) | \(a_{189}= -1.05216655 \pm 1.4 \cdot 10^{-6} \) |
\(a_{190}= -0.33965601 \pm 9.7 \cdot 10^{-6} \) | \(a_{191}= +0.02072694 \pm 1.3 \cdot 10^{-6} \) | \(a_{192}= -2.77550464 \pm 4.9 \cdot 10^{-6} \) |
\(a_{193}= -0.68976538 \pm 2.1 \cdot 10^{-6} \) | \(a_{194}= +2.05509914 \pm 3.4 \cdot 10^{-6} \) | \(a_{195}= -0.57737427 \pm 8.5 \cdot 10^{-6} \) |
\(a_{196}= -1.05977869 \pm 3.7 \cdot 10^{-6} \) | \(a_{197}= +1.42270445 \pm 4.8 \cdot 10^{-6} \) | \(a_{198}= +2.55212521 \pm 2.0 \cdot 10^{-6} \) |
\(a_{199}= +1.51760771 \pm 6.6 \cdot 10^{-6} \) | \(a_{200}= +0.10910591 \pm 4.4 \cdot 10^{-6} \) | \(a_{201}= -2.11029462 \pm 3.6 \cdot 10^{-6} \) |
\(a_{202}= -1.92227078 \pm 3.8 \cdot 10^{-6} \) | \(a_{203}= +0.46286969 \pm 1.2 \cdot 10^{-6} \) | \(a_{204}= -3.12611734 \pm 4.5 \cdot 10^{-6} \) |
\(a_{205}= +0.02574257 \pm 5.4 \cdot 10^{-6} \) | \(a_{206}= +1.64489049 \pm 5.9 \cdot 10^{-6} \) | \(a_{207}= +2.89987123 \pm 1.8 \cdot 10^{-6} \) |
\(a_{208}= +0.37112542 \pm 1.9 \cdot 10^{-6} \) | \(a_{209}= -0.36578900 \pm 1.2 \cdot 10^{-6} \) | \(a_{210}= -0.57787874 \pm 1.1 \cdot 10^{-5} \) |
\(a_{211}= -1.51098520 \pm 2.8 \cdot 10^{-6} \) | \(a_{212}= +0.33917520 \pm 3.7 \cdot 10^{-6} \) | \(a_{213}= -2.03565260 \pm 3.0 \cdot 10^{-6} \) |
\(a_{214}= +0.76346193 \pm 4.3 \cdot 10^{-6} \) | \(a_{215}= -0.18252694 \pm 5.3 \cdot 10^{-6} \) | \(a_{216}= +1.22896270 \pm 3.3 \cdot 10^{-6} \) |
\(a_{217}= -0.42313562 \pm 2.0 \cdot 10^{-6} \) | \(a_{218}= -0.39110255 \pm 3.2 \cdot 10^{-6} \) | \(a_{219}= +0.89286439 \pm 4.4 \cdot 10^{-6} \) |
\(a_{220}= +0.44806670 \pm 6.8 \cdot 10^{-6} \) | \(a_{221}= +0.91626796 \pm 4.1 \cdot 10^{-6} \) | \(a_{222}= +0.61650002 \pm 4.5 \cdot 10^{-6} \) |
\(a_{223}= +1.63892223 \pm 5.1 \cdot 10^{-6} \) | \(a_{224}= +0.62623966 \pm 1.8 \cdot 10^{-6} \) | \(a_{225}= +0.44993663 \pm 2.5 \cdot 10^{-6} \) |
\(a_{226}= -0.75257785 \pm 4.4 \cdot 10^{-6} \) | \(a_{227}= -1.66054270 \pm 3.9 \cdot 10^{-6} \) | \(a_{228}= -1.20918252 \pm 3.5 \cdot 10^{-6} \) |
\(a_{229}= -0.29664763 \pm 7.2 \cdot 10^{-6} \) | \(a_{230}= +0.88472744 \pm 6.8 \cdot 10^{-6} \) | \(a_{231}= -0.62234049 \pm 1.0 \cdot 10^{-6} \) |
\(a_{232}= -0.54064595 \pm 2.4 \cdot 10^{-6} \) | \(a_{233}= -1.47653371 \pm 6.5 \cdot 10^{-6} \) | \(a_{234}= -2.47275119 \pm 2.2 \cdot 10^{-6} \) |
\(a_{235}= -0.04904153 \pm 3.2 \cdot 10^{-6} \) | \(a_{236}= +1.35440459 \pm 3.4 \cdot 10^{-6} \) | \(a_{237}= +2.38240920 \pm 6.7 \cdot 10^{-6} \) |
\(a_{238}= +0.91706853 \pm 1.7 \cdot 10^{-6} \) | \(a_{239}= -0.02043965 \pm 4.8 \cdot 10^{-6} \) | \(a_{240}= -0.41776715 \pm 7.2 \cdot 10^{-6} \) |
\(a_{241}= -0.94246499 \pm 2.7 \cdot 10^{-6} \) | \(a_{242}= -0.69620762 \pm 3.7 \cdot 10^{-6} \) | \(a_{243}= +1.01258406 \pm 2.7 \cdot 10^{-6} \) |
\(a_{244}= -0.63387922 \pm 2.0 \cdot 10^{-6} \) | \(a_{245}= -0.34966003 \pm 4.3 \cdot 10^{-6} \) | \(a_{246}= +0.15925551 \pm 7.1 \cdot 10^{-6} \) |
\(a_{247}= +0.35441254 \pm 1.4 \cdot 10^{-6} \) | \(a_{248}= +0.49423535 \pm 3.3 \cdot 10^{-6} \) | \(a_{249}= +0.88536377 \pm 5.8 \cdot 10^{-6} \) |
\(a_{250}= +0.13727206 \pm 4.7 \cdot 10^{-6} \) | \(a_{251}= +0.91114028 \pm 7.2 \cdot 10^{-6} \) | \(a_{252}= -1.42419551 \pm 8.5 \cdot 10^{-7} \) |
\(a_{253}= +0.95279801 \pm 1.6 \cdot 10^{-6} \) | \(a_{254}= +2.43604024 \pm 4.5 \cdot 10^{-6} \) | \(a_{255}= -1.03142127 \pm 1.0 \cdot 10^{-5} \) |
\(a_{256}= -0.02906956 \pm 3.9 \cdot 10^{-6} \) | \(a_{257}= +0.78917578 \pm 3.9 \cdot 10^{-6} \) | \(a_{258}= -1.12919674 \pm 3.6 \cdot 10^{-6} \) |
\(a_{259}= -0.10407334 \pm 2.0 \cdot 10^{-6} \) | \(a_{260}= -0.43413131 \pm 7.5 \cdot 10^{-6} \) | \(a_{261}= -2.22954389 \pm 2.1 \cdot 10^{-6} \) |
\(a_{262}= +0.26972481 \pm 5.9 \cdot 10^{-6} \) | \(a_{263}= -0.33680669 \pm 5.5 \cdot 10^{-6} \) | \(a_{264}= +0.72691272 \pm 1.6 \cdot 10^{-6} \) |
\(a_{265}= +0.11190639 \pm 5.0 \cdot 10^{-6} \) | \(a_{266}= +0.35472220 \pm 1.7 \cdot 10^{-6} \) | \(a_{267}= -1.28444555 \pm 6.6 \cdot 10^{-6} \) |
\(a_{268}= -1.58674366 \pm 2.2 \cdot 10^{-6} \) | \(a_{269}= -0.68501465 \pm 4.8 \cdot 10^{-6} \) | \(a_{270}= +1.54622454 \pm 8.7 \cdot 10^{-6} \) |
\(a_{271}= -1.17482841 \pm 3.8 \cdot 10^{-6} \) | \(a_{272}= +0.66297836 \pm 2.0 \cdot 10^{-6} \) | \(a_{273}= +0.60298499 \pm 1.2 \cdot 10^{-6} \) |
\(a_{274}= -1.69399420 \pm 7.1 \cdot 10^{-6} \) | \(a_{275}= +0.14783371 \pm 2.6 \cdot 10^{-6} \) | \(a_{276}= +3.14964826 \pm 1.7 \cdot 10^{-6} \) |
\(a_{277}= -0.89996728 \pm 5.2 \cdot 10^{-6} \) | \(a_{278}= +2.13120470 \pm 4.0 \cdot 10^{-6} \) | \(a_{279}= +2.03815344 \pm 1.7 \cdot 10^{-6} \) |
\(a_{280}= -0.11394554 \pm 6.4 \cdot 10^{-6} \) | \(a_{281}= -0.57560637 \pm 2.1 \cdot 10^{-6} \) | \(a_{282}= -0.30339380 \pm 2.1 \cdot 10^{-6} \) |
\(a_{283}= +0.74333713 \pm 5.1 \cdot 10^{-6} \) | \(a_{284}= -1.53061986 \pm 1.3 \cdot 10^{-6} \) | \(a_{285}= -0.39895386 \pm 1.0 \cdot 10^{-5} \) |
\(a_{286}= -0.81246104 \pm 2.9 \cdot 10^{-6} \) | \(a_{287}= -0.02688443 \pm 2.1 \cdot 10^{-6} \) | \(a_{288}= -3.01646197 \pm 1.8 \cdot 10^{-6} \) |
\(a_{289}= +0.63682087 \pm 2.2 \cdot 10^{-6} \) | \(a_{290}= -0.68021595 \pm 7.1 \cdot 10^{-6} \) | \(a_{291}= +2.41388260 \pm 4.1 \cdot 10^{-6} \) |
\(a_{292}= +0.67135029 \pm 3.4 \cdot 10^{-6} \) | \(a_{293}= -0.20954159 \pm 6.3 \cdot 10^{-6} \) | \(a_{294}= -2.16316002 \pm 4.1 \cdot 10^{-6} \) |
\(a_{295}= +0.44686797 \pm 4.0 \cdot 10^{-6} \) | \(a_{296}= +0.12156085 \pm 6.0 \cdot 10^{-6} \) | \(a_{297}= +1.66519041 \pm 1.5 \cdot 10^{-6} \) |
\(a_{298}= +2.92636847 \pm 2.1 \cdot 10^{-6} \) | \(a_{299}= -0.92316490 \pm 1.6 \cdot 10^{-6} \) | \(a_{300}= +0.48869140 \pm 9.3 \cdot 10^{-6} \) |
\(a_{301}= +0.19062332 \pm 1.6 \cdot 10^{-6} \) | \(a_{302}= +1.54204996 \pm 3.9 \cdot 10^{-6} \) | \(a_{303}= -2.25786479 \pm 4.1 \cdot 10^{-6} \) |
\(a_{304}= +0.25644010 \pm 1.6 \cdot 10^{-6} \) | \(a_{305}= -0.20914011 \pm 2.9 \cdot 10^{-6} \) | \(a_{306}= -4.41732216 \pm 2.2 \cdot 10^{-6} \) |
\(a_{307}= -0.80396288 \pm 4.4 \cdot 10^{-6} \) | \(a_{308}= -0.46794169 \pm 1.0 \cdot 10^{-6} \) | \(a_{309}= +1.93205888 \pm 4.1 \cdot 10^{-6} \) |
\(a_{310}= +0.62182426 \pm 9.8 \cdot 10^{-6} \) | \(a_{311}= -1.37517258 \pm 4.7 \cdot 10^{-6} \) | \(a_{312}= -0.70430490 \pm 1.8 \cdot 10^{-6} \) |
\(a_{313}= +0.06014924 \pm 4.5 \cdot 10^{-6} \) | \(a_{314}= +1.12655416 \pm 4.0 \cdot 10^{-6} \) | \(a_{315}= -0.46989456 \pm 4.5 \cdot 10^{-6} \) |
\(a_{316}= +1.79134830 \pm 3.9 \cdot 10^{-6} \) | \(a_{317}= -0.20171832 \pm 7.0 \cdot 10^{-6} \) | \(a_{318}= +0.69230513 \pm 4.1 \cdot 10^{-6} \) |
\(a_{319}= -0.73255148 \pm 1.6 \cdot 10^{-6} \) | \(a_{320}= -0.68855153 \pm 4.8 \cdot 10^{-6} \) | \(a_{321}= +0.89674869 \pm 3.9 \cdot 10^{-6} \) |
\(a_{322}= -0.92397149 \pm 1.6 \cdot 10^{-6} \) | \(a_{323}= +0.63312249 \pm 4.9 \cdot 10^{-6} \) | \(a_{324}= +2.45525396 \pm 4.5 \cdot 10^{-6} \) |
\(a_{325}= -0.14323591 \pm 3.3 \cdot 10^{-6} \) | \(a_{326}= +1.40708517 \pm 4.0 \cdot 10^{-6} \) | \(a_{327}= -0.45938204 \pm 2.4 \cdot 10^{-6} \) |
\(a_{328}= +0.03140184 \pm 3.7 \cdot 10^{-6} \) | \(a_{329}= +0.05121688 \pm 1.2 \cdot 10^{-6} \) | \(a_{330}= +0.91456827 \pm 1.2 \cdot 10^{-5} \) |
\(a_{331}= -0.71583100 \pm 3.9 \cdot 10^{-6} \) | \(a_{332}= +0.66571053 \pm 3.8 \cdot 10^{-6} \) | \(a_{333}= +0.50129895 \pm 2.1 \cdot 10^{-6} \) |
\(a_{334}= -2.97039425 \pm 2.7 \cdot 10^{-6} \) | \(a_{335}= -0.52352519 \pm 3.2 \cdot 10^{-6} \) | \(a_{336}= +0.43629813 \pm 1.4 \cdot 10^{-6} \) |
\(a_{337}= -0.59488215 \pm 7.0 \cdot 10^{-6} \) | \(a_{338}= -0.74755566 \pm 2.7 \cdot 10^{-6} \) | \(a_{339}= -0.88396445 \pm 4.2 \cdot 10^{-6} \) |
\(a_{340}= -0.77553207 \pm 9.4 \cdot 10^{-6} \) | \(a_{341}= +0.66966716 \pm 2.7 \cdot 10^{-6} \) | \(a_{342}= -1.70862068 \pm 2.0 \cdot 10^{-6} \) |
\(a_{343}= +0.83222072 \pm 3.0 \cdot 10^{-6} \) | \(a_{344}= -0.22265387 \pm 5.2 \cdot 10^{-6} \) | \(a_{345}= +1.03918499 \pm 7.2 \cdot 10^{-6} \) |
\(a_{346}= +1.88944599 \pm 5.8 \cdot 10^{-6} \) | \(a_{347}= +1.07181982 \pm 3.3 \cdot 10^{-6} \) | \(a_{348}= -2.42158306 \pm 1.3 \cdot 10^{-6} \) |
\(a_{349}= -0.05618621 \pm 5.2 \cdot 10^{-6} \) | \(a_{350}= -0.14336106 \pm 6.7 \cdot 10^{-6} \) | \(a_{351}= -1.61340108 \pm 2.3 \cdot 10^{-6} \) |
\(a_{352}= -0.99110571 \pm 2.5 \cdot 10^{-6} \) | \(a_{353}= +1.10149840 \pm 2.0 \cdot 10^{-6} \) | \(a_{354}= +2.76453365 \pm 4.5 \cdot 10^{-6} \) |
\(a_{355}= -0.50500788 \pm 2.5 \cdot 10^{-6} \) | \(a_{356}= -0.96578260 \pm 5.2 \cdot 10^{-6} \) | \(a_{357}= +1.07717225 \pm 1.8 \cdot 10^{-6} \) |
\(a_{358}= +2.41569431 \pm 7.1 \cdot 10^{-6} \) | \(a_{359}= -0.23880812 \pm 2.3 \cdot 10^{-6} \) | \(a_{360}= +0.54885122 \pm 6.9 \cdot 10^{-6} \) |
\(a_{361}= -0.75510815 \pm 3.7 \cdot 10^{-6} \) | \(a_{362}= +0.26271355 \pm 5.5 \cdot 10^{-6} \) | \(a_{363}= -0.81775298 \pm 4.6 \cdot 10^{-6} \) |
\(a_{364}= +0.45338817 \pm 1.4 \cdot 10^{-6} \) | \(a_{365}= +0.22150319 \pm 4.2 \cdot 10^{-6} \) | \(a_{366}= -1.29383823 \pm 2.5 \cdot 10^{-6} \) |
\(a_{367}= +0.63196114 \pm 4.2 \cdot 10^{-6} \) | \(a_{368}= -0.66796873 \pm 1.6 \cdot 10^{-6} \) | \(a_{369}= +0.12949654 \pm 2.2 \cdot 10^{-6} \) |
\(a_{370}= +0.15294229 \pm 1.1 \cdot 10^{-5} \) | \(a_{371}= -0.11687025 \pm 1.5 \cdot 10^{-6} \) | \(a_{372}= +2.21370741 \pm 6.3 \cdot 10^{-6} \) |
\(a_{373}= -1.53124349 \pm 5.8 \cdot 10^{-6} \) | \(a_{374}= -1.45138022 \pm 3.1 \cdot 10^{-6} \) | \(a_{375}= +0.16123729 \pm 5.1 \cdot 10^{-6} \) |
\(a_{376}= -0.05982288 \pm 3.1 \cdot 10^{-6} \) | \(a_{377}= +0.70976829 \pm 1.7 \cdot 10^{-6} \) | \(a_{378}= -1.61481075 \pm 1.3 \cdot 10^{-6} \) |
\(a_{379}= -0.47578078 \pm 4.0 \cdot 10^{-6} \) | \(a_{380}= -0.29997589 \pm 9.0 \cdot 10^{-6} \) | \(a_{381}= +2.86132919 \pm 5.4 \cdot 10^{-6} \) |
\(a_{382}= +0.03181063 \pm 1.5 \cdot 10^{-6} \) | \(a_{383}= +0.39454196 \pm 5.6 \cdot 10^{-6} \) | \(a_{384}= -1.84258754 \pm 4.0 \cdot 10^{-6} \) |
\(a_{385}= -0.15439120 \pm 4.6 \cdot 10^{-6} \) | \(a_{386}= -1.05861620 \pm 2.1 \cdot 10^{-6} \) | \(a_{387}= -0.91819161 \pm 1.3 \cdot 10^{-6} \) |
\(a_{388}= +1.81501335 \pm 2.7 \cdot 10^{-6} \) | \(a_{389}= -0.13366321 \pm 5.7 \cdot 10^{-6} \) | \(a_{390}= -0.88612415 \pm 1.3 \cdot 10^{-5} \) |
\(a_{391}= -1.64914156 \pm 1.6 \cdot 10^{-6} \) | \(a_{392}= -0.42652970 \pm 3.8 \cdot 10^{-6} \) | \(a_{393}= +0.31681393 \pm 5.1 \cdot 10^{-6} \) |
\(a_{394}= +2.18349315 \pm 5.6 \cdot 10^{-6} \) | \(a_{395}= +0.59103180 \pm 6.0 \cdot 10^{-6} \) | \(a_{396}= +2.25397463 \pm 1.1 \cdot 10^{-6} \) |
\(a_{397}= -0.93720482 \pm 5.0 \cdot 10^{-6} \) | \(a_{398}= +2.32914576 \pm 5.8 \cdot 10^{-6} \) | \(a_{399}= +0.41665034 \pm 2.5 \cdot 10^{-6} \) |
\(a_{400}= -0.10364033 \pm 2.1 \cdot 10^{-6} \) | \(a_{401}= +0.74478489 \pm 7.7 \cdot 10^{-6} \) | \(a_{402}= -3.23877093 \pm 2.5 \cdot 10^{-6} \) |
\(a_{403}= -0.64883974 \pm 4.4 \cdot 10^{-6} \) | \(a_{404}= -1.69770259 \pm 3.1 \cdot 10^{-6} \) | \(a_{405}= +0.81007873 \pm 5.3 \cdot 10^{-6} \) |
\(a_{406}= +0.71038844 \pm 1.1 \cdot 10^{-6} \) | \(a_{407}= +0.16470960 \pm 2.2 \cdot 10^{-6} \) | \(a_{408}= -1.25817012 \pm 4.5 \cdot 10^{-6} \) |
\(a_{409}= -1.41514370 \pm 5.1 \cdot 10^{-6} \) | \(a_{410}= +0.03950836 \pm 1.0 \cdot 10^{-5} \) | \(a_{411}= -1.98973521 \pm 6.2 \cdot 10^{-6} \) |
\(a_{412}= +1.45272709 \pm 5.1 \cdot 10^{-6} \) | \(a_{413}= -0.46668979 \pm 2.0 \cdot 10^{-6} \) | \(a_{414}= +4.45057225 \pm 1.9 \cdot 10^{-6} \) |
\(a_{415}= +0.21964243 \pm 5.2 \cdot 10^{-6} \) | \(a_{416}= +0.96028119 \pm 3.5 \cdot 10^{-6} \) | \(a_{417}= +2.50327483 \pm 6.1 \cdot 10^{-6} \) |
\(a_{418}= -0.56139402 \pm 1.2 \cdot 10^{-6} \) | \(a_{419}= +0.38362236 \pm 2.2 \cdot 10^{-6} \) | \(a_{420}= -0.51036839 \pm 1.1 \cdot 10^{-5} \) |
\(a_{421}= +0.71366899 \pm 3.6 \cdot 10^{-6} \) | \(a_{422}= -2.31898187 \pm 2.6 \cdot 10^{-6} \) | \(a_{423}= -0.24670071 \pm 2.7 \cdot 10^{-6} \) |
\(a_{424}= +0.13650802 \pm 4.7 \cdot 10^{-6} \) | \(a_{425}= -0.25587660 \pm 5.2 \cdot 10^{-6} \) | \(a_{426}= -3.12421424 \pm 2.9 \cdot 10^{-6} \) |
\(a_{427}= +0.21841698 \pm 1.3 \cdot 10^{-6} \) | \(a_{428}= +0.67427092 \pm 3.2 \cdot 10^{-6} \) | \(a_{429}= -0.95430217 \pm 1.5 \cdot 10^{-6} \) |
\(a_{430}= -0.28013289 \pm 1.0 \cdot 10^{-5} \) | \(a_{431}= +1.24022181 \pm 4.8 \cdot 10^{-6} \) | \(a_{432}= -1.16739868 \pm 1.4 \cdot 10^{-6} \) |
\(a_{433}= -0.45163550 \pm 6.1 \cdot 10^{-6} \) | \(a_{434}= -0.64940665 \pm 2.4 \cdot 10^{-6} \) | \(a_{435}= -0.79896946 \pm 7.5 \cdot 10^{-6} \) |
\(a_{436}= -0.34541222 \pm 2.7 \cdot 10^{-6} \) | \(a_{437}= -0.63788813 \pm 1.7 \cdot 10^{-6} \) | \(a_{438}= +1.37032205 \pm 3.6 \cdot 10^{-6} \) |
\(a_{439}= +0.48388039 \pm 3.3 \cdot 10^{-6} \) | \(a_{440}= +0.18033364 \pm 7.0 \cdot 10^{-6} \) | \(a_{441}= -1.75894537 \pm 1.8 \cdot 10^{-6} \) |
\(a_{442}= +1.40624063 \pm 4.4 \cdot 10^{-6} \) | \(a_{443}= -1.07750499 \pm 4.4 \cdot 10^{-6} \) | \(a_{444}= +0.54447775 \pm 4.7 \cdot 10^{-6} \) |
\(a_{445}= -0.31864726 \pm 6.1 \cdot 10^{-6} \) | \(a_{446}= +2.51533300 \pm 5.1 \cdot 10^{-6} \) | \(a_{447}= +3.43725993 \pm 2.3 \cdot 10^{-6} \) |
\(a_{448}= +0.71909376 \pm 2.0 \cdot 10^{-6} \) | \(a_{449}= +0.44313177 \pm 5.4 \cdot 10^{-6} \) | \(a_{450}= +0.69053945 \pm 7.3 \cdot 10^{-6} \) |
\(a_{451}= +0.04254811 \pm 3.2 \cdot 10^{-6} \) | \(a_{452}= -0.66465837 \pm 3.6 \cdot 10^{-6} \) | \(a_{453}= +1.81126423 \pm 3.2 \cdot 10^{-6} \) |
\(a_{454}= -2.54851498 \pm 4.3 \cdot 10^{-6} \) | \(a_{455}= +0.14958946 \pm 5.3 \cdot 10^{-6} \) | \(a_{456}= -0.48666034 \pm 5.5 \cdot 10^{-6} \) |
\(a_{457}= +0.51802120 \pm 4.9 \cdot 10^{-6} \) | \(a_{458}= -0.45527942 \pm 5.6 \cdot 10^{-6} \) | \(a_{459}= -2.88217932 \pm 4.1 \cdot 10^{-6} \) |
\(a_{460}= +0.78136966 \pm 6.2 \cdot 10^{-6} \) | \(a_{461}= +1.02566375 \pm 6.8 \cdot 10^{-6} \) | \(a_{462}= -0.95513597 \pm 1.0 \cdot 10^{-6} \) |
\(a_{463}= -0.42856087 \pm 4.0 \cdot 10^{-6} \) | \(a_{464}= +0.51356267 \pm 1.2 \cdot 10^{-6} \) | \(a_{465}= +0.73038363 \pm 1.0 \cdot 10^{-5} \) |
\(a_{466}= -2.26610751 \pm 4.7 \cdot 10^{-6} \) | \(a_{467}= -1.64906300 \pm 2.4 \cdot 10^{-6} \) | \(a_{468}= -2.18387344 \pm 1.2 \cdot 10^{-6} \) |
\(a_{469}= +0.54674731 \pm 1.4 \cdot 10^{-6} \) | \(a_{470}= -0.07526641 \pm 7.9 \cdot 10^{-6} \) | \(a_{471}= +1.32323031 \pm 4.8 \cdot 10^{-6} \) |
\(a_{472}= +0.54510794 \pm 3.6 \cdot 10^{-6} \) | \(a_{473}= -0.30168620 \pm 8.8 \cdot 10^{-7} \) | \(a_{474}= +3.65639831 \pm 4.7 \cdot 10^{-6} \) |
\(a_{475}= -0.09897310 \pm 4.9 \cdot 10^{-6} \) | \(a_{476}= +0.80993252 \pm 1.4 \cdot 10^{-6} \) | \(a_{477}= +0.56293889 \pm 2.1 \cdot 10^{-6} \) |
\(a_{478}= -0.03136972 \pm 4.2 \cdot 10^{-6} \) | \(a_{479}= -1.46137874 \pm 4.4 \cdot 10^{-6} \) | \(a_{480}= -1.08096593 \pm 1.0 \cdot 10^{-5} \) |
\(a_{481}= -0.15958695 \pm 2.3 \cdot 10^{-6} \) | \(a_{482}= -1.44644648 \pm 3.4 \cdot 10^{-6} \) | \(a_{483}= -1.08528034 \pm 1.6 \cdot 10^{-6} \) |
\(a_{484}= -0.61487356 \pm 3.4 \cdot 10^{-6} \) | \(a_{485}= +0.59883977 \pm 3.9 \cdot 10^{-6} \) | \(a_{486}= +1.55406160 \pm 2.2 \cdot 10^{-6} \) |
\(a_{487}= +0.15850131 \pm 6.3 \cdot 10^{-6} \) | \(a_{488}= -0.25511771 \pm 2.8 \cdot 10^{-6} \) | \(a_{489}= +1.65273701 \pm 3.7 \cdot 10^{-6} \) |
\(a_{490}= -0.53664012 \pm 9.1 \cdot 10^{-6} \) | \(a_{491}= -0.24319043 \pm 3.3 \cdot 10^{-6} \) | \(a_{492}= +0.14065058 \pm 6.3 \cdot 10^{-6} \) |
\(a_{493}= +1.26792992 \pm 2.3 \cdot 10^{-6} \) | \(a_{494}= +0.54393403 \pm 1.6 \cdot 10^{-6} \) | \(a_{495}= +0.74366926 \pm 5.1 \cdot 10^{-6} \) |
\(a_{496}= -0.46947697 \pm 2.7 \cdot 10^{-6} \) | \(a_{497}= +0.52740862 \pm 1.8 \cdot 10^{-6} \) | \(a_{498}= +1.35881049 \pm 4.2 \cdot 10^{-6} \) |
\(a_{499}= -1.88366224 \pm 6.1 \cdot 10^{-6} \) | \(a_{500}= +0.12123533 \pm 4.1 \cdot 10^{-6} \) | \(a_{501}= -3.48897182 \pm 4.6 \cdot 10^{-6} \) |
\(a_{502}= +1.39837093 \pm 4.6 \cdot 10^{-6} \) | \(a_{503}= +0.78507488 \pm 6.3 \cdot 10^{-6} \) | \(a_{504}= -0.57319673 \pm 1.5 \cdot 10^{-6} \) |
\(a_{505}= -0.56013463 \pm 4.1 \cdot 10^{-6} \) | \(a_{506}= +1.46230506 \pm 2.0 \cdot 10^{-6} \) | \(a_{507}= -0.87806547 \pm 4.2 \cdot 10^{-6} \) |
\(a_{508}= +2.15145123 \pm 3.6 \cdot 10^{-6} \) | \(a_{509}= -0.66601034 \pm 3.5 \cdot 10^{-6} \) | \(a_{510}= -1.58297198 \pm 1.5 \cdot 10^{-5} \) |
\(a_{511}= -0.23132846 \pm 1.5 \cdot 10^{-6} \) | \(a_{512}= +0.97751904 \pm 3.3 \cdot 10^{-6} \) | \(a_{513}= -1.11482727 \pm 3.9 \cdot 10^{-6} \) |
\(a_{514}= +1.21118613 \pm 5.7 \cdot 10^{-6} \) | \(a_{515}= +0.47930819 \pm 3.9 \cdot 10^{-6} \) | \(a_{516}= -0.99727897 \pm 3.9 \cdot 10^{-6} \) |
\(a_{517}= -0.08105737 \pm 3.3 \cdot 10^{-6} \) | \(a_{518}= -0.15972638 \pm 1.7 \cdot 10^{-6} \) | \(a_{519}= +2.21930938 \pm 4.7 \cdot 10^{-6} \) |
\(a_{520}= -0.17472506 \pm 7.8 \cdot 10^{-6} \) | \(a_{521}= +1.39186770 \pm 4.5 \cdot 10^{-6} \) | \(a_{522}= -3.42178855 \pm 1.8 \cdot 10^{-6} \) |
\(a_{523}= -0.69177576 \pm 6.6 \cdot 10^{-6} \) | \(a_{524}= +0.23821436 \pm 5.1 \cdot 10^{-6} \) | \(a_{525}= -0.16838933 \pm 7.1 \cdot 10^{-6} \) |
\(a_{526}= -0.51691347 \pm 6.3 \cdot 10^{-6} \) | \(a_{527}= -1.15908717 \pm 5.4 \cdot 10^{-6} \) | \(a_{528}= -0.69049854 \pm 1.1 \cdot 10^{-6} \) |
\(a_{529}= +0.66155499 \pm 4.4 \cdot 10^{-6} \) | \(a_{530}= +0.17174814 \pm 9.8 \cdot 10^{-6} \) | \(a_{531}= +2.24794450 \pm 2.3 \cdot 10^{-6} \) |
\(a_{532}= +0.31328198 \pm 1.2 \cdot 10^{-6} \) | \(a_{533}= -0.04122482 \pm 4.5 \cdot 10^{-6} \) | \(a_{534}= -1.97130054 \pm 6.0 \cdot 10^{-6} \) |
\(a_{535}= +0.22246682 \pm 4.0 \cdot 10^{-6} \) | \(a_{536}= -0.63861757 \pm 3.1 \cdot 10^{-6} \) | \(a_{537}= +2.83743122 \pm 5.1 \cdot 10^{-6} \) |
\(a_{538}= -1.05132502 \pm 4.4 \cdot 10^{-6} \) | \(a_{539}= -0.57792898 \pm 2.2 \cdot 10^{-6} \) | \(a_{540}= +1.36558773 \pm 8.1 \cdot 10^{-6} \) |
\(a_{541}= -1.28215171 \pm 4.3 \cdot 10^{-6} \) | \(a_{542}= -1.80306584 \pm 3.7 \cdot 10^{-6} \) | \(a_{543}= +0.30857863 \pm 5.3 \cdot 10^{-6} \) |
\(a_{544}= +1.71544610 \pm 5.5 \cdot 10^{-6} \) | \(a_{545}= -0.11396422 \pm 2.4 \cdot 10^{-6} \) | \(a_{546}= +0.92543015 \pm 1.5 \cdot 10^{-6} \) |
\(a_{547}= +1.44016393 \pm 3.6 \cdot 10^{-6} \) | \(a_{548}= -1.49609429 \pm 6.3 \cdot 10^{-6} \) | \(a_{549}= -1.05206769 \pm 1.7 \cdot 10^{-6} \) |
\(a_{550}= +0.22688753 \pm 7.4 \cdot 10^{-6} \) | \(a_{551}= +0.49043543 \pm 2.4 \cdot 10^{-6} \) | \(a_{552}= +1.26764062 \pm 2.2 \cdot 10^{-6} \) |
\(a_{553}= -0.61724832 \pm 2.2 \cdot 10^{-6} \) | \(a_{554}= -1.38122320 \pm 6.7 \cdot 10^{-6} \) | \(a_{555}= +0.17964327 \pm 1.1 \cdot 10^{-5} \) |
\(a_{556}= +1.88222792 \pm 3.5 \cdot 10^{-6} \) | \(a_{557}= +0.20264817 \pm 3.9 \cdot 10^{-6} \) | \(a_{558}= +3.12805239 \pm 1.5 \cdot 10^{-6} \) |
\(a_{559}= +0.29230341 \pm 7.2 \cdot 10^{-7} \) | \(a_{560}= +0.10823752 \pm 4.1 \cdot 10^{-6} \) | \(a_{561}= -1.70476518 \pm 1.7 \cdot 10^{-6} \) |
\(a_{562}= -0.88341086 \pm 2.2 \cdot 10^{-6} \) | \(a_{563}= +0.18865867 \pm 1.7 \cdot 10^{-6} \) | \(a_{564}= -0.26794999 \pm 1.8 \cdot 10^{-6} \) |
\(a_{565}= -0.21929528 \pm 3.6 \cdot 10^{-6} \) | \(a_{566}= +1.14083535 \pm 7.2 \cdot 10^{-6} \) | \(a_{567}= -0.84601157 \pm 1.9 \cdot 10^{-6} \) |
\(a_{568}= -0.61602939 \pm 2.4 \cdot 10^{-6} \) | \(a_{569}= -0.62812252 \pm 3.0 \cdot 10^{-6} \) | \(a_{570}= -0.61229373 \pm 1.4 \cdot 10^{-5} \) |
\(a_{571}= -0.75590837 \pm 4.1 \cdot 10^{-6} \) | \(a_{572}= -0.71754574 \pm 1.9 \cdot 10^{-6} \) | \(a_{573}= +0.03736420 \pm 1.4 \cdot 10^{-6} \) |
\(a_{574}= -0.04126084 \pm 2.7 \cdot 10^{-6} \) | \(a_{575}= +0.25780264 \pm 2.0 \cdot 10^{-6} \) | \(a_{576}= -3.46372021 \pm 2.4 \cdot 10^{-6} \) |
\(a_{577}= +0.49093193 \pm 4.4 \cdot 10^{-6} \) | \(a_{578}= +0.97735971 \pm 1.8 \cdot 10^{-6} \) | \(a_{579}= -1.24343161 \pm 1.9 \cdot 10^{-6} \) |
\(a_{580}= -0.60075011 \pm 6.5 \cdot 10^{-6} \) | \(a_{581}= -0.22938515 \pm 2.1 \cdot 10^{-6} \) | \(a_{582}= +3.70470206 \pm 3.6 \cdot 10^{-6} \) |
\(a_{583}= +0.18496237 \pm 2.2 \cdot 10^{-6} \) | \(a_{584}= +0.27019871 \pm 3.9 \cdot 10^{-6} \) | \(a_{585}= -0.72054030 \pm 5.9 \cdot 10^{-6} \) |
\(a_{586}= -0.32159359 \pm 4.0 \cdot 10^{-6} \) | \(a_{587}= -1.61440198 \pm 4.3 \cdot 10^{-6} \) | \(a_{588}= -1.91045008 \pm 3.8 \cdot 10^{-6} \) |
\(a_{589}= -0.44833504 \pm 3.2 \cdot 10^{-6} \) | \(a_{590}= +0.68582983 \pm 8.8 \cdot 10^{-6} \) | \(a_{591}= +2.56469190 \pm 5.0 \cdot 10^{-6} \) |
\(a_{592}= -0.11547134 \pm 1.5 \cdot 10^{-6} \) | \(a_{593}= +1.57390490 \pm 5.8 \cdot 10^{-6} \) | \(a_{594}= +2.55564804 \pm 1.9 \cdot 10^{-6} \) |
\(a_{595}= +0.26722657 \pm 7.2 \cdot 10^{-6} \) | \(a_{596}= +2.58449713 \pm 1.4 \cdot 10^{-6} \) | \(a_{597}= +2.73577284 \pm 6.9 \cdot 10^{-6} \) |
\(a_{598}= -1.41682570 \pm 2.0 \cdot 10^{-6} \) | \(a_{599}= +0.35192161 \pm 6.0 \cdot 10^{-6} \) | \(a_{600}= +0.19668389 \pm 9.6 \cdot 10^{-6} \) |
\(a_{601}= -1.09358301 \pm 6.0 \cdot 10^{-6} \) | \(a_{602}= +0.29255881 \pm 1.0 \cdot 10^{-6} \) | \(a_{603}= -2.63356436 \pm 1.4 \cdot 10^{-6} \) |
\(a_{604}= +1.36190085 \pm 3.2 \cdot 10^{-6} \) | \(a_{605}= -0.20286944 \pm 4.2 \cdot 10^{-6} \) | \(a_{606}= -3.46525400 \pm 3.8 \cdot 10^{-6} \) |
\(a_{607}= -1.41363145 \pm 3.4 \cdot 10^{-6} \) | \(a_{608}= +0.66353473 \pm 4.7 \cdot 10^{-6} \) | \(a_{609}= +0.83440952 \pm 1.7 \cdot 10^{-6} \) |
\(a_{610}= -0.32097741 \pm 7.7 \cdot 10^{-6} \) | \(a_{611}= +0.07853640 \pm 3.9 \cdot 10^{-6} \) | \(a_{612}= -3.90127101 \pm 1.1 \cdot 10^{-6} \) |
\(a_{613}= +0.93597529 \pm 5.3 \cdot 10^{-6} \) | \(a_{614}= -1.23388062 \pm 3.0 \cdot 10^{-6} \) | \(a_{615}= +0.04640581 \pm 1.0 \cdot 10^{-5} \) |
\(a_{616}= -0.18833274 \pm 9.6 \cdot 10^{-7} \) | \(a_{617}= -0.36367538 \pm 6.9 \cdot 10^{-6} \) | \(a_{618}= +2.96522395 \pm 6.0 \cdot 10^{-6} \) |
\(a_{619}= +0.22224421 \pm 7.0 \cdot 10^{-6} \) | \(a_{620}= +0.54917999 \pm 9.2 \cdot 10^{-6} \) | \(a_{621}= +2.90387408 \pm 1.3 \cdot 10^{-6} \) |
\(a_{622}= -2.11054369 \pm 4.4 \cdot 10^{-6} \) | \(a_{623}= +0.33278156 \pm 2.0 \cdot 10^{-6} \) | \(a_{624}= +0.66902325 \pm 1.6 \cdot 10^{-6} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +0.09231394 \pm 4.2 \cdot 10^{-6} \) | \(a_{627}= -0.65940335 \pm 1.5 \cdot 10^{-6} \) |
\(a_{628}= +0.99494511 \pm 3.1 \cdot 10^{-6} \) | \(a_{629}= -0.28508609 \pm 6.6 \cdot 10^{-6} \) | \(a_{630}= -0.72116985 \pm 9.2 \cdot 10^{-6} \) |
\(a_{631}= +0.71717108 \pm 5.6 \cdot 10^{-6} \) | \(a_{632}= +0.72096491 \pm 5.9 \cdot 10^{-6} \) | \(a_{633}= -2.72383452 \pm 1.8 \cdot 10^{-6} \) |
\(a_{634}= -0.30958683 \pm 4.8 \cdot 10^{-6} \) | \(a_{635}= +0.70984302 \pm 5.6 \cdot 10^{-6} \) | \(a_{636}= +0.61142698 \pm 4.0 \cdot 10^{-6} \) |
\(a_{637}= +0.55995473 \pm 2.9 \cdot 10^{-6} \) | \(a_{638}= -1.12428210 \pm 1.3 \cdot 10^{-6} \) | \(a_{639}= -2.54041407 \pm 2.6 \cdot 10^{-6} \) |
\(a_{640}= -0.45711200 \pm 3.6 \cdot 10^{-6} \) | \(a_{641}= -1.25317774 \pm 3.7 \cdot 10^{-6} \) | \(a_{642}= +1.37628348 \pm 4.3 \cdot 10^{-6} \) |
\(a_{643}= +1.61974814 \pm 2.9 \cdot 10^{-6} \) | \(a_{644}= -0.81602904 \pm 1.0 \cdot 10^{-6} \) | \(a_{645}= -0.32903907 \pm 1.0 \cdot 10^{-5} \) |
\(a_{646}= +0.97168362 \pm 3.3 \cdot 10^{-6} \) | \(a_{647}= +0.81094989 \pm 6.0 \cdot 10^{-6} \) | \(a_{648}= +0.98816737 \pm 4.7 \cdot 10^{-6} \) |
\(a_{649}= +0.73859729 \pm 1.5 \cdot 10^{-6} \) | \(a_{650}= -0.21983106 \pm 8.1 \cdot 10^{-6} \) | \(a_{651}= -0.76278141 \pm 2.1 \cdot 10^{-6} \) |
\(a_{652}= +1.24270325 \pm 3.1 \cdot 10^{-6} \) | \(a_{653}= -1.60853931 \pm 3.4 \cdot 10^{-6} \) | \(a_{654}= -0.70503578 \pm 3.2 \cdot 10^{-6} \) |
\(a_{655}= +0.07859569 \pm 4.8 \cdot 10^{-6} \) | \(a_{656}= -0.02982879 \pm 2.9 \cdot 10^{-6} \) | \(a_{657}= +1.11425951 \pm 1.6 \cdot 10^{-6} \) |
\(a_{658}= +0.07860502 \pm 1.0 \cdot 10^{-6} \) | \(a_{659}= +1.38154533 \pm 6.5 \cdot 10^{-6} \) | \(a_{660}= +0.80772435 \pm 1.1 \cdot 10^{-5} \) |
\(a_{661}= -1.02548930 \pm 4.7 \cdot 10^{-6} \) | \(a_{662}= -1.09862036 \pm 4.7 \cdot 10^{-6} \) | \(a_{663}= +1.65174503 \pm 2.6 \cdot 10^{-6} \) |
\(a_{664}= +0.26792887 \pm 4.9 \cdot 10^{-6} \) | \(a_{665}= +0.10336327 \pm 6.9 \cdot 10^{-6} \) | \(a_{666}= +0.76936768 \pm 1.8 \cdot 10^{-6} \) |
\(a_{667}= -1.27747389 \pm 1.6 \cdot 10^{-6} \) | \(a_{668}= -2.62337963 \pm 2.5 \cdot 10^{-6} \) | \(a_{669}= +2.95446504 \pm 5.8 \cdot 10^{-6} \) |
\(a_{670}= -0.80347935 \pm 8.0 \cdot 10^{-6} \) | \(a_{671}= -0.34567328 \pm 1.4 \cdot 10^{-6} \) | \(a_{672}= +1.12891457 \pm 1.7 \cdot 10^{-6} \) |
\(a_{673}= +1.25088632 \pm 4.1 \cdot 10^{-6} \) | \(a_{674}= -0.91299433 \pm 4.5 \cdot 10^{-6} \) | \(a_{675}= +0.45055770 \pm 3.9 \cdot 10^{-6} \) |
\(a_{676}= -0.66022289 \pm 2.6 \cdot 10^{-6} \) | \(a_{677}= +0.57599434 \pm 4.7 \cdot 10^{-6} \) | \(a_{678}= -1.35666288 \pm 4.8 \cdot 10^{-6} \) |
\(a_{679}= -0.62540263 \pm 1.9 \cdot 10^{-6} \) | \(a_{680}= -0.31212881 \pm 9.7 \cdot 10^{-6} \) | \(a_{681}= -2.99344000 \pm 4.0 \cdot 10^{-6} \) |
\(a_{682}= +1.02777049 \pm 3.6 \cdot 10^{-6} \) | \(a_{683}= +0.06520092 \pm 6.6 \cdot 10^{-6} \) | \(a_{684}= -1.50901204 \pm 9.3 \cdot 10^{-7} \) |
\(a_{685}= -0.49361662 \pm 5.9 \cdot 10^{-6} \) | \(a_{686}= +1.27724928 \pm 3.1 \cdot 10^{-6} \) | \(a_{687}= -0.53476304 \pm 7.9 \cdot 10^{-6} \) |
\(a_{688}= +0.21150018 \pm 6.1 \cdot 10^{-7} \) | \(a_{689}= -0.17920983 \pm 2.8 \cdot 10^{-6} \) | \(a_{690}= +1.59488733 \pm 1.2 \cdot 10^{-5} \) |
\(a_{691}= -0.22688562 \pm 3.3 \cdot 10^{-6} \) | \(a_{692}= +1.66871254 \pm 5.0 \cdot 10^{-6} \) | \(a_{693}= -0.77665636 \pm 1.2 \cdot 10^{-6} \) |
\(a_{694}= +1.64497358 \pm 2.7 \cdot 10^{-6} \) | \(a_{695}= +0.62101633 \pm 5.7 \cdot 10^{-6} \) | \(a_{696}= -0.97461583 \pm 2.8 \cdot 10^{-6} \) |
\(a_{697}= -0.07364401 \pm 5.7 \cdot 10^{-6} \) | \(a_{698}= -0.08623168 \pm 6.3 \cdot 10^{-6} \) | \(a_{699}= -2.66172925 \pm 7.1 \cdot 10^{-6} \) |
\(a_{700}= -0.12661299 \pm 6.1 \cdot 10^{-6} \) | \(a_{701}= +0.43194325 \pm 2.7 \cdot 10^{-6} \) | \(a_{702}= -2.47616446 \pm 3.3 \cdot 10^{-6} \) |
\(a_{703}= -0.11027133 \pm 7.4 \cdot 10^{-6} \) | \(a_{704}= -1.13805940 \pm 2.9 \cdot 10^{-6} \) | \(a_{705}= -0.08840657 \pm 8.3 \cdot 10^{-6} \) |
\(a_{706}= +1.69052272 \pm 1.7 \cdot 10^{-6} \) | \(a_{707}= +0.58498064 \pm 1.7 \cdot 10^{-6} \) | \(a_{708}= +2.44156858 \pm 3.5 \cdot 10^{-6} \) |
\(a_{709}= -0.53661808 \pm 6.1 \cdot 10^{-6} \) | \(a_{710}= -0.77505995 \pm 7.2 \cdot 10^{-6} \) | \(a_{711}= +2.97315262 \pm 2.9 \cdot 10^{-6} \) |
\(a_{712}= -0.38869904 \pm 5.4 \cdot 10^{-6} \) | \(a_{713}= +1.16781186 \pm 2.3 \cdot 10^{-6} \) | \(a_{714}= +1.65318820 \pm 1.8 \cdot 10^{-6} \) |
\(a_{715}= -0.23674477 \pm 6.0 \cdot 10^{-6} \) | \(a_{716}= +2.13348220 \pm 6.1 \cdot 10^{-6} \) | \(a_{717}= -0.03684632 \pm 4.0 \cdot 10^{-6} \) |
\(a_{718}= -0.36651033 \pm 2.8 \cdot 10^{-6} \) | \(a_{719}= +0.99582958 \pm 1.9 \cdot 10^{-6} \) | \(a_{720}= -0.52135690 \pm 4.6 \cdot 10^{-6} \) |
\(a_{721}= -0.50056896 \pm 1.6 \cdot 10^{-6} \) | \(a_{722}= -1.15890091 \pm 4.0 \cdot 10^{-6} \) | \(a_{723}= -1.69897010 \pm 2.9 \cdot 10^{-6} \) |
\(a_{724}= +0.23202219 \pm 4.8 \cdot 10^{-6} \) | \(a_{725}= -0.19820959 \pm 2.4 \cdot 10^{-6} \) | \(a_{726}= -1.25504495 \pm 3.9 \cdot 10^{-6} \) |
\(a_{727}= -0.25259245 \pm 5.4 \cdot 10^{-6} \) | \(a_{728}= +0.18247538 \pm 1.1 \cdot 10^{-6} \) | \(a_{729}= +0.01398179 \pm 3.9 \cdot 10^{-6} \) |
\(a_{730}= +0.33995164 \pm 9.0 \cdot 10^{-6} \) | \(a_{731}= +0.52217075 \pm 5.5 \cdot 10^{-6} \) | \(a_{732}= -1.14268631 \pm 2.0 \cdot 10^{-6} \) |
\(a_{733}= -0.17126837 \pm 3.5 \cdot 10^{-6} \) | \(a_{734}= +0.96990125 \pm 6.3 \cdot 10^{-6} \) | \(a_{735}= -0.63032786 \pm 9.5 \cdot 10^{-6} \) |
\(a_{736}= -1.72835862 \pm 2.0 \cdot 10^{-6} \) | \(a_{737}= -0.86529872 \pm 1.0 \cdot 10^{-6} \) | \(a_{738}= +0.19874459 \pm 2.2 \cdot 10^{-6} \) |
\(a_{739}= -1.16126168 \pm 4.1 \cdot 10^{-6} \) | \(a_{740}= +0.13507489 \pm 1.0 \cdot 10^{-5} \) | \(a_{741}= +0.63889515 \pm 1.8 \cdot 10^{-6} \) |
\(a_{742}= -0.17936641 \pm 1.3 \cdot 10^{-6} \) | \(a_{743}= +0.49131409 \pm 6.9 \cdot 10^{-6} \) | \(a_{744}= +0.89095201 \pm 3.4 \cdot 10^{-6} \) |
\(a_{745}= +0.85272081 \pm 1.8 \cdot 10^{-6} \) | \(a_{746}= -2.35007324 \pm 6.9 \cdot 10^{-6} \) | \(a_{747}= +1.10489903 \pm 2.1 \cdot 10^{-6} \) |
\(a_{748}= -1.28182355 \pm 2.1 \cdot 10^{-6} \) | \(a_{749}= -0.23233483 \pm 2.4 \cdot 10^{-6} \) | \(a_{750}= +0.24745865 \pm 9.9 \cdot 10^{-6} \) |
\(a_{751}= -0.77556348 \pm 4.6 \cdot 10^{-6} \) | \(a_{752}= +0.05682610 \pm 1.6 \cdot 10^{-6} \) | \(a_{753}= +1.64250142 \pm 7.6 \cdot 10^{-6} \) |
\(a_{754}= +1.08931564 \pm 1.5 \cdot 10^{-6} \) | \(a_{755}= +0.44934126 \pm 3.2 \cdot 10^{-6} \) | \(a_{756}= -1.42616140 \pm 1.4 \cdot 10^{-6} \) |
\(a_{757}= -0.48640820 \pm 3.8 \cdot 10^{-6} \) | \(a_{758}= -0.73020371 \pm 4.0 \cdot 10^{-6} \) | \(a_{759}= +1.71759730 \pm 1.5 \cdot 10^{-6} \) |
\(a_{760}= -0.12073146 \pm 9.3 \cdot 10^{-6} \) | \(a_{761}= +0.22646408 \pm 4.7 \cdot 10^{-6} \) | \(a_{762}= +4.39141992 \pm 4.2 \cdot 10^{-6} \) |
\(a_{763}= +0.11901935 \pm 1.1 \cdot 10^{-6} \) | \(a_{764}= +0.02809437 \pm 1.2 \cdot 10^{-6} \) | \(a_{765}= -1.28717302 \pm 7.8 \cdot 10^{-6} \) |
\(a_{766}= +0.60552258 \pm 5.5 \cdot 10^{-6} \) | \(a_{767}= -0.71562607 \pm 2.3 \cdot 10^{-6} \) | \(a_{768}= -0.05240334 \pm 3.9 \cdot 10^{-6} \) |
\(a_{769}= -0.33788058 \pm 3.4 \cdot 10^{-6} \) | \(a_{770}= -0.23695162 \pm 9.4 \cdot 10^{-6} \) | \(a_{771}= +1.42263751 \pm 3.8 \cdot 10^{-6} \) |
\(a_{772}= -0.93494396 \pm 1.3 \cdot 10^{-6} \) | \(a_{773}= +0.60605863 \pm 2.7 \cdot 10^{-6} \) | \(a_{774}= -1.40919295 \pm 8.7 \cdot 10^{-7} \) |
\(a_{775}= +0.18119471 \pm 5.1 \cdot 10^{-6} \) | \(a_{776}= +0.73048939 \pm 3.8 \cdot 10^{-6} \) | \(a_{777}= -0.18761174 \pm 2.0 \cdot 10^{-6} \) |
\(a_{778}= -0.20513938 \pm 3.9 \cdot 10^{-6} \) | \(a_{779}= -0.02848551 \pm 3.5 \cdot 10^{-6} \) | \(a_{780}= -0.78260320 \pm 1.2 \cdot 10^{-5} \) |
\(a_{781}= -0.83469274 \pm 1.9 \cdot 10^{-6} \) | \(a_{782}= -2.53101710 \pm 2.1 \cdot 10^{-6} \) | \(a_{783}= -2.23262145 \pm 1.6 \cdot 10^{-6} \) |
\(a_{784}= +0.40516299 \pm 1.5 \cdot 10^{-6} \) | \(a_{785}= +0.32826904 \pm 4.5 \cdot 10^{-6} \) | \(a_{786}= +0.48622961 \pm 6.1 \cdot 10^{-6} \) |
\(a_{787}= +0.93792044 \pm 3.2 \cdot 10^{-6} \) | \(a_{788}= +1.92840780 \pm 4.9 \cdot 10^{-6} \) | \(a_{789}= -0.60715729 \pm 5.5 \cdot 10^{-6} \) |
\(a_{790}= +0.90708501 \pm 1.0 \cdot 10^{-5} \) | \(a_{791}= +0.22902261 \pm 1.8 \cdot 10^{-6} \) | \(a_{792}= +0.90715837 \pm 2.2 \cdot 10^{-6} \) |
\(a_{793}= +0.33492244 \pm 1.7 \cdot 10^{-6} \) | \(a_{794}= -1.43837344 \pm 5.9 \cdot 10^{-6} \) | \(a_{795}= +0.20173228 \pm 1.0 \cdot 10^{-5} \) |
\(a_{796}= +2.05704463 \pm 5.3 \cdot 10^{-6} \) | \(a_{797}= +1.92363720 \pm 4.2 \cdot 10^{-6} \) | \(a_{798}= +0.63945337 \pm 2.1 \cdot 10^{-6} \) |
\(a_{799}= +0.14029740 \pm 4.3 \cdot 10^{-6} \) | \(a_{800}= -0.26816772 \pm 5.2 \cdot 10^{-6} \) | \(a_{801}= -1.60293733 \pm 2.0 \cdot 10^{-6} \) |
\(a_{802}= +1.14305729 \pm 7.2 \cdot 10^{-6} \) | \(a_{803}= +0.36610737 \pm 1.8 \cdot 10^{-6} \) | \(a_{804}= -2.86040336 \pm 2.3 \cdot 10^{-6} \) |
\(a_{805}= -0.26923804 \pm 4.0 \cdot 10^{-6} \) | \(a_{806}= -0.99580565 \pm 6.3 \cdot 10^{-6} \) | \(a_{807}= -1.23486752 \pm 5.1 \cdot 10^{-6} \) |
\(a_{808}= -0.68327527 \pm 3.8 \cdot 10^{-6} \) | \(a_{809}= -1.24197782 \pm 3.9 \cdot 10^{-6} \) | \(a_{810}= +1.24326690 \pm 1.0 \cdot 10^{-5} \) |
\(a_{811}= +0.59819949 \pm 3.1 \cdot 10^{-6} \) | \(a_{812}= +0.62739771 \pm 6.8 \cdot 10^{-7} \) | \(a_{813}= -2.11784880 \pm 3.8 \cdot 10^{-6} \) |
\(a_{814}= +0.25278777 \pm 2.3 \cdot 10^{-6} \) | \(a_{815}= +0.41001358 \pm 4.1 \cdot 10^{-6} \) | \(a_{816}= +1.19514297 \pm 1.8 \cdot 10^{-6} \) |
\(a_{817}= +0.20197570 \pm 6.6 \cdot 10^{-6} \) | \(a_{818}= -2.17188930 \pm 5.5 \cdot 10^{-6} \) | \(a_{819}= +0.75250146 \pm 1.2 \cdot 10^{-6} \) |
\(a_{820}= +0.03489282 \pm 9.5 \cdot 10^{-6} \) | \(a_{821}= +1.06575752 \pm 3.4 \cdot 10^{-6} \) | \(a_{822}= -3.05374260 \pm 7.4 \cdot 10^{-6} \) |
\(a_{823}= -0.71401182 \pm 5.6 \cdot 10^{-6} \) | \(a_{824}= +0.58467985 \pm 2.2 \cdot 10^{-6} \) | \(a_{825}= +0.26649802 \pm 7.8 \cdot 10^{-6} \) |
\(a_{826}= -0.71625133 \pm 2.1 \cdot 10^{-6} \) | \(a_{827}= -1.90936175 \pm 3.6 \cdot 10^{-6} \) | \(a_{828}= +3.93063667 \pm 8.0 \cdot 10^{-7} \) |
\(a_{829}= +0.95690461 \pm 7.2 \cdot 10^{-6} \) | \(a_{830}= +0.33709583 \pm 1.0 \cdot 10^{-5} \) | \(a_{831}= -1.62236000 \pm 4.7 \cdot 10^{-6} \) |
\(a_{832}= +1.10266445 \pm 4.2 \cdot 10^{-6} \) | \(a_{833}= +1.00030300 \pm 4.7 \cdot 10^{-6} \) | \(a_{834}= +3.84189662 \pm 4.2 \cdot 10^{-6} \) |
\(a_{835}= -0.86554958 \pm 4.0 \cdot 10^{-6} \) | \(a_{836}= -0.49580949 \pm 8.9 \cdot 10^{-7} \) | \(a_{837}= +2.04096681 \pm 4.6 \cdot 10^{-6} \) |
\(a_{838}= +0.58876374 \pm 2.2 \cdot 10^{-6} \) | \(a_{839}= +0.67321014 \pm 2.7 \cdot 10^{-6} \) | \(a_{840}= -0.20540824 \pm 1.1 \cdot 10^{-5} \) |
\(a_{841}= -0.01782394 \pm 4.1 \cdot 10^{-6} \) | \(a_{842}= +1.09530222 \pm 2.7 \cdot 10^{-6} \) | \(a_{843}= -1.03763856 \pm 1.9 \cdot 10^{-6} \) |
\(a_{844}= -2.04806813 \pm 1.6 \cdot 10^{-6} \) | \(a_{845}= -0.21783185 \pm 4.0 \cdot 10^{-6} \) | \(a_{846}= -0.37862349 \pm 2.2 \cdot 10^{-6} \) |
\(a_{847}= +0.21186816 \pm 1.5 \cdot 10^{-6} \) | \(a_{848}= -0.12966975 \pm 1.4 \cdot 10^{-6} \) | \(a_{849}= +1.34000474 \pm 5.6 \cdot 10^{-6} \) |
\(a_{850}= -0.39270616 \pm 1.0 \cdot 10^{-5} \) | \(a_{851}= +0.28723199 \pm 1.7 \cdot 10^{-6} \) | \(a_{852}= -2.75922968 \pm 1.1 \cdot 10^{-6} \) |
\(a_{853}= -0.89104013 \pm 4.1 \cdot 10^{-6} \) | \(a_{854}= +0.33521507 \pm 1.4 \cdot 10^{-6} \) | \(a_{855}= -0.49787866 \pm 7.4 \cdot 10^{-6} \) |
\(a_{856}= +0.27137418 \pm 3.6 \cdot 10^{-6} \) | \(a_{857}= +0.39729508 \pm 4.4 \cdot 10^{-6} \) | \(a_{858}= -1.46461357 \pm 1.9 \cdot 10^{-6} \) |
\(a_{859}= -0.58424197 \pm 4.3 \cdot 10^{-6} \) | \(a_{860}= -0.24740653 \pm 9.5 \cdot 10^{-6} \) | \(a_{861}= -0.04846424 \pm 1.9 \cdot 10^{-6} \) |
\(a_{862}= +1.90342823 \pm 3.3 \cdot 10^{-6} \) | \(a_{863}= +0.37495556 \pm 6.6 \cdot 10^{-6} \) | \(a_{864}= -3.02062575 \pm 4.4 \cdot 10^{-6} \) |
\(a_{865}= +0.55056974 \pm 4.5 \cdot 10^{-6} \) | \(a_{866}= -0.69314678 \pm 3.9 \cdot 10^{-6} \) | \(a_{867}= +1.14798919 \pm 1.4 \cdot 10^{-6} \) |
\(a_{868}= -0.57354009 \pm 2.2 \cdot 10^{-6} \) | \(a_{869}= +0.97687575 \pm 2.2 \cdot 10^{-6} \) | \(a_{870}= -1.22621697 \pm 1.2 \cdot 10^{-5} \) |
\(a_{871}= +0.83838694 \pm 1.1 \cdot 10^{-6} \) | \(a_{872}= -0.13901824 \pm 1.8 \cdot 10^{-6} \) | \(a_{873}= +3.01243018 \pm 2.7 \cdot 10^{-6} \) |
\(a_{874}= -0.97899768 \pm 1.6 \cdot 10^{-6} \) | \(a_{875}= -0.04177429 \pm 1.9 \cdot 10^{-6} \) | \(a_{876}= +1.21023496 \pm 3.5 \cdot 10^{-6} \) |
\(a_{877}= -1.39960145 \pm 4.0 \cdot 10^{-6} \) | \(a_{878}= +0.74263457 \pm 4.4 \cdot 10^{-6} \) | \(a_{879}= -0.37773806 \pm 6.9 \cdot 10^{-6} \) |
\(a_{880}= -0.17129996 \pm 4.7 \cdot 10^{-6} \) | \(a_{881}= -1.69465949 \pm 3.6 \cdot 10^{-6} \) | \(a_{882}= -2.69953829 \pm 1.4 \cdot 10^{-6} \) |
\(a_{883}= +0.33813779 \pm 3.8 \cdot 10^{-6} \) | \(a_{884}= +1.24195737 \pm 3.4 \cdot 10^{-6} \) | \(a_{885}= +0.80556342 \pm 9.2 \cdot 10^{-6} \) |
\(a_{886}= -1.65369889 \pm 5.2 \cdot 10^{-6} \) | \(a_{887}= -1.03531436 \pm 6.2 \cdot 10^{-6} \) | \(a_{888}= +0.21913625 \pm 6.5 \cdot 10^{-6} \) |
\(a_{889}= -0.74132968 \pm 2.0 \cdot 10^{-6} \) | \(a_{890}= -0.48904332 \pm 1.0 \cdot 10^{-5} \) | \(a_{891}= +1.33892334 \pm 2.4 \cdot 10^{-6} \) |
\(a_{892}= +2.22148065 \pm 4.5 \cdot 10^{-6} \) | \(a_{893}= +0.05426705 \pm 7.8 \cdot 10^{-7} \) | \(a_{894}= +5.27532860 \pm 2.4 \cdot 10^{-6} \) |
\(a_{895}= +0.70391437 \pm 4.9 \cdot 10^{-6} \) | \(a_{896}= +0.47738821 \pm 1.5 \cdot 10^{-6} \) | \(a_{897}= -1.66417806 \pm 1.6 \cdot 10^{-6} \) |
\(a_{898}= +0.68009570 \pm 4.8 \cdot 10^{-6} \) | \(a_{899}= -0.89786325 \pm 1.4 \cdot 10^{-6} \) | \(a_{900}= +0.60986757 \pm 6.6 \cdot 10^{-6} \) |
\(a_{901}= -0.32014039 \pm 5.4 \cdot 10^{-6} \) | \(a_{902}= +0.06530064 \pm 4.2 \cdot 10^{-6} \) | \(a_{903}= +0.34363433 \pm 1.7 \cdot 10^{-6} \) |
\(a_{904}= -0.26750541 \pm 2.8 \cdot 10^{-6} \) | \(a_{905}= +0.07655267 \pm 5.2 \cdot 10^{-6} \) | \(a_{906}= +2.77983458 \pm 4.0 \cdot 10^{-6} \) |
\(a_{907}= -0.83084152 \pm 6.4 \cdot 10^{-6} \) | \(a_{908}= -2.25078616 \pm 3.6 \cdot 10^{-6} \) | \(a_{909}= -2.81772611 \pm 2.8 \cdot 10^{-6} \) |
\(a_{910}= +0.22958216 \pm 1.0 \cdot 10^{-5} \) | \(a_{911}= +0.94756998 \pm 6.6 \cdot 10^{-6} \) | \(a_{912}= +0.46228143 \pm 2.2 \cdot 10^{-6} \) |
\(a_{913}= +0.36303184 \pm 1.8 \cdot 10^{-6} \) | \(a_{914}= +0.79503211 \pm 5.0 \cdot 10^{-6} \) | \(a_{915}= -0.37701431 \pm 8.1 \cdot 10^{-6} \) |
\(a_{916}= -0.40209166 \pm 5.1 \cdot 10^{-6} \) | \(a_{917}= -0.08208198 \pm 2.1 \cdot 10^{-6} \) | \(a_{918}= -4.42341963 \pm 4.3 \cdot 10^{-6} \) |
\(a_{919}= -0.41003404 \pm 4.6 \cdot 10^{-6} \) | \(a_{920}= +0.31447827 \pm 6.4 \cdot 10^{-6} \) | \(a_{921}= -1.44929405 \pm 4.3 \cdot 10^{-6} \) |
\(a_{922}= +1.57413563 \pm 4.8 \cdot 10^{-6} \) | \(a_{923}= +0.80873284 \pm 2.1 \cdot 10^{-6} \) | \(a_{924}= -0.84355275 \pm 7.2 \cdot 10^{-7} \) |
\(a_{925}= +0.04456618 \pm 6.3 \cdot 10^{-6} \) | \(a_{926}= -0.65773304 \pm 3.6 \cdot 10^{-6} \) | \(a_{927}= +2.41113320 \pm 1.3 \cdot 10^{-6} \) |
\(a_{928}= +1.32883535 \pm 1.9 \cdot 10^{-6} \) | \(a_{929}= +1.58863050 \pm 2.4 \cdot 10^{-6} \) | \(a_{930}= +1.12095498 \pm 1.5 \cdot 10^{-5} \) |
\(a_{931}= +0.38691731 \pm 4.2 \cdot 10^{-6} \) | \(a_{932}= -2.00137079 \pm 4.4 \cdot 10^{-6} \) | \(a_{933}= -2.47900678 \pm 3.8 \cdot 10^{-6} \) |
\(a_{934}= -2.53089652 \pm 2.8 \cdot 10^{-6} \) | \(a_{935}= -0.42292081 \pm 7.9 \cdot 10^{-6} \) | \(a_{936}= -0.87894471 \pm 2.5 \cdot 10^{-6} \) |
\(a_{937}= +0.92169729 \pm 7.7 \cdot 10^{-6} \) | \(a_{938}= +0.83911946 \pm 1.1 \cdot 10^{-6} \) | \(a_{939}= +0.10843030 \pm 4.1 \cdot 10^{-6} \) |
\(a_{940}= -0.06647345 \pm 7.3 \cdot 10^{-6} \) | \(a_{941}= +1.01645444 \pm 5.4 \cdot 10^{-6} \) | \(a_{942}= +2.03082538 \pm 4.3 \cdot 10^{-6} \) |
\(a_{943}= +0.07419834 \pm 2.8 \cdot 10^{-6} \) | \(a_{944}= -0.51780114 \pm 2.1 \cdot 10^{-6} \) | \(a_{945}= -0.47054319 \pm 5.9 \cdot 10^{-6} \) |
\(a_{946}= -0.46301236 \pm 7.1 \cdot 10^{-7} \) | \(a_{947}= -0.67022892 \pm 6.2 \cdot 10^{-6} \) | \(a_{948}= +3.22924165 \pm 4.3 \cdot 10^{-6} \) |
\(a_{949}= -0.35472102 \pm 2.3 \cdot 10^{-6} \) | \(a_{950}= -0.15189879 \pm 9.7 \cdot 10^{-6} \) | \(a_{951}= -0.36363514 \pm 7.8 \cdot 10^{-6} \) |
\(a_{952}= +0.32597397 \pm 1.5 \cdot 10^{-6} \) | \(a_{953}= +1.26848378 \pm 6.9 \cdot 10^{-6} \) | \(a_{954}= +0.86396947 \pm 1.6 \cdot 10^{-6} \) |
\(a_{955}= +0.00926937 \pm 1.3 \cdot 10^{-6} \) | \(a_{956}= -0.02770497 \pm 3.4 \cdot 10^{-6} \) | \(a_{957}= -1.32056159 \pm 1.6 \cdot 10^{-6} \) |
\(a_{958}= -2.24284845 \pm 5.8 \cdot 10^{-6} \) | \(a_{959}= +0.51551208 \pm 2.1 \cdot 10^{-6} \) | \(a_{960}= -1.24124341 \pm 9.9 \cdot 10^{-6} \) |
\(a_{961}= -0.17921192 \pm 6.3 \cdot 10^{-6} \) | \(a_{962}= -0.24492579 \pm 2.6 \cdot 10^{-6} \) | \(a_{963}= +1.11910696 \pm 3.2 \cdot 10^{-6} \) |
\(a_{964}= -1.27746619 \pm 2.9 \cdot 10^{-6} \) | \(a_{965}= -0.30847246 \pm 2.1 \cdot 10^{-6} \) | \(a_{966}= -1.66563209 \pm 1.5 \cdot 10^{-6} \) |
\(a_{967}= +0.40893355 \pm 3.1 \cdot 10^{-6} \) | \(a_{968}= -0.24746849 \pm 3.7 \cdot 10^{-6} \) | \(a_{969}= +1.14132216 \pm 5.6 \cdot 10^{-6} \) |
\(a_{970}= +0.91906828 \pm 8.7 \cdot 10^{-6} \) | \(a_{971}= +0.00571557 \pm 3.7 \cdot 10^{-6} \) | \(a_{972}= +1.37250924 \pm 1.4 \cdot 10^{-6} \) |
\(a_{973}= -0.64856289 \pm 2.2 \cdot 10^{-6} \) | \(a_{974}= +0.24325961 \pm 4.5 \cdot 10^{-6} \) | \(a_{975}= -0.25820963 \pm 8.5 \cdot 10^{-6} \) |
\(a_{976}= +0.24233777 \pm 1.2 \cdot 10^{-6} \) | \(a_{977}= +1.58926417 \pm 3.2 \cdot 10^{-6} \) | \(a_{978}= +2.53653521 \pm 3.8 \cdot 10^{-6} \) |
\(a_{979}= -0.52667011 \pm 2.2 \cdot 10^{-6} \) | \(a_{980}= -0.47394744 \pm 8.5 \cdot 10^{-6} \) | \(a_{981}= -0.57329065 \pm 1.3 \cdot 10^{-6} \) |
\(a_{982}= -0.37323608 \pm 2.5 \cdot 10^{-6} \) | \(a_{983}= -0.44183342 \pm 4.8 \cdot 10^{-6} \) | \(a_{984}= +0.05660771 \pm 3.8 \cdot 10^{-6} \) |
\(a_{985}= +0.63625277 \pm 4.8 \cdot 10^{-6} \) | \(a_{986}= +1.94595320 \pm 1.7 \cdot 10^{-6} \) | \(a_{987}= +0.09232804 \pm 9.7 \cdot 10^{-7} \) |
\(a_{988}= +0.48038924 \pm 1.2 \cdot 10^{-6} \) | \(a_{989}= -0.52610124 \pm 8.0 \cdot 10^{-7} \) | \(a_{990}= +1.14134509 \pm 9.9 \cdot 10^{-6} \) |
\(a_{991}= -1.60749828 \pm 4.8 \cdot 10^{-6} \) | \(a_{992}= -1.21476430 \pm 6.3 \cdot 10^{-6} \) | \(a_{993}= -1.29041977 \pm 3.5 \cdot 10^{-6} \) |
\(a_{994}= +0.80943945 \pm 1.9 \cdot 10^{-6} \) | \(a_{995}= +0.67869480 \pm 6.6 \cdot 10^{-6} \) | \(a_{996}= +1.20006822 \pm 4.0 \cdot 10^{-6} \) |
\(a_{997}= +0.61627119 \pm 6.7 \cdot 10^{-6} \) | \(a_{998}= -2.89094729 \pm 5.2 \cdot 10^{-6} \) | \(a_{999}= +0.50199092 \pm 5.2 \cdot 10^{-6} \) |
\(a_{1000}= +0.04879365 \pm 4.4 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000