Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.9867895143026282497687488554 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.96060755 \pm 3.3 \cdot 10^{-4} \) | \(a_{3}= -0.23968016 \pm 3.6 \cdot 10^{-4} \) |
\(a_{4}= -0.07723313 \pm 2.9 \cdot 10^{-4} \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -0.23023857 \pm 3.4 \cdot 10^{-4} \) |
\(a_{7}= +0.94632982 \pm 1.3 \cdot 10^{-4} \) | \(a_{8}= -1.03479828 \pm 3.1 \cdot 10^{-4} \) | \(a_{9}= -0.94255342 \pm 1.7 \cdot 10^{-4} \) |
\(a_{10}= +0.42959676 \pm 3.3 \cdot 10^{-4} \) | \(a_{11}= +0.83684963 \pm 1.8 \cdot 10^{-4} \) | \(a_{12}= +0.01851125 \pm 3.0 \cdot 10^{-4} \) |
\(a_{13}= +1.29993484 \pm 2.3 \cdot 10^{-4} \) | \(a_{14}= +0.90905157 \pm 1.4 \cdot 10^{-4} \) | \(a_{15}= -0.10718823 \pm 3.6 \cdot 10^{-4} \) |
\(a_{16}= -0.91680191 \pm 1.4 \cdot 10^{-4} \) | \(a_{17}= -0.12407729 \pm 3.7 \cdot 10^{-4} \) | \(a_{18}= -0.90542393 \pm 1.5 \cdot 10^{-4} \) |
\(a_{19}= +1.47712782 \pm 3.4 \cdot 10^{-4} \) | \(a_{20}= -0.03453971 \pm 2.9 \cdot 10^{-4} \) | \(a_{21}= -0.22681648 \pm 1.5 \cdot 10^{-4} \) |
\(a_{22}= +0.80388407 \pm 1.9 \cdot 10^{-4} \) | \(a_{23}= +0.85717918 \pm 1.4 \cdot 10^{-4} \) | \(a_{24}= +0.24802062 \pm 3.2 \cdot 10^{-4} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +1.24872723 \pm 2.8 \cdot 10^{-4} \) | \(a_{27}= +0.46559151 \pm 2.7 \cdot 10^{-4} \) |
\(a_{28}= -0.07308802 \pm 1.1 \cdot 10^{-4} \) | \(a_{29}= +1.50225644 \pm 1.6 \cdot 10^{-4} \) | \(a_{30}= -0.10296582 \pm 6.9 \cdot 10^{-4} \) |
\(a_{31}= -0.03240728 \pm 3.5 \cdot 10^{-4} \) | \(a_{32}= +0.15411145 \pm 3.6 \cdot 10^{-4} \) | \(a_{33}= -0.20057625 \pm 1.3 \cdot 10^{-4} \) |
\(a_{34}= -0.11918958 \pm 3.5 \cdot 10^{-4} \) | \(a_{35}= +0.42321156 \pm 1.3 \cdot 10^{-4} \) | \(a_{36}= +0.07279636 \pm 8.2 \cdot 10^{-5} \) |
\(a_{37}= +0.28178048 \pm 4.4 \cdot 10^{-4} \) | \(a_{38}= +1.41894013 \pm 2.4 \cdot 10^{-4} \) | \(a_{39}= -0.31156859 \pm 1.8 \cdot 10^{-4} \) |
\(a_{40}= -0.46277586 \pm 3.1 \cdot 10^{-4} \) | \(a_{41}= -0.47520235 \pm 3.7 \cdot 10^{-4} \) | \(a_{42}= -0.21788163 \pm 1.4 \cdot 10^{-4} \) |
\(a_{43}= -0.32897076 \pm 3.7 \cdot 10^{-4} \) | \(a_{44}= -0.06463252 \pm 1.4 \cdot 10^{-4} \) | \(a_{45}= -0.42152270 \pm 1.7 \cdot 10^{-4} \) |
\(a_{46}= +0.82341279 \pm 1.7 \cdot 10^{-4} \) | \(a_{47}= +0.89230822 \pm 2.2 \cdot 10^{-4} \) | \(a_{48}= +0.21973923 \pm 1.5 \cdot 10^{-4} \) |
\(a_{49}= -0.10445987 \pm 3.0 \cdot 10^{-4} \) | \(a_{50}= +0.19212151 \pm 3.3 \cdot 10^{-4} \) | \(a_{51}= +0.02973886 \pm 3.6 \cdot 10^{-4} \) |
\(a_{52}= -0.10039804 \pm 2.2 \cdot 10^{-4} \) | \(a_{53}= -1.82846460 \pm 3.5 \cdot 10^{-4} \) | \(a_{54}= +0.44725072 \pm 2.8 \cdot 10^{-4} \) |
\(a_{55}= +0.37425053 \pm 1.8 \cdot 10^{-4} \) | \(a_{56}= -0.97926048 \pm 1.2 \cdot 10^{-4} \) | \(a_{57}= -0.35403823 \pm 3.9 \cdot 10^{-4} \) |
\(a_{58}= +1.44307888 \pm 1.3 \cdot 10^{-4} \) | \(a_{59}= +1.37176601 \pm 2.8 \cdot 10^{-4} \) | \(a_{60}= +0.00827848 \pm 6.5 \cdot 10^{-4} \) |
\(a_{61}= -1.02511266 \pm 2.0 \cdot 10^{-4} \) | \(a_{62}= -0.03113068 \pm 4.9 \cdot 10^{-4} \) | \(a_{63}= -0.89196641 \pm 1.0 \cdot 10^{-4} \) |
\(a_{64}= +1.06484253 \pm 3.3 \cdot 10^{-4} \) | \(a_{65}= +0.58134854 \pm 2.3 \cdot 10^{-4} \) | \(a_{66}= -0.19267506 \pm 1.5 \cdot 10^{-4} \) |
\(a_{67}= -1.17464566 \pm 2.2 \cdot 10^{-4} \) | \(a_{68}= +0.00958288 \pm 3.0 \cdot 10^{-4} \) | \(a_{69}= -0.20544884 \pm 1.6 \cdot 10^{-4} \) |
\(a_{70}= +0.40654022 \pm 4.7 \cdot 10^{-4} \) | \(a_{71}= -0.00741899 \pm 1.7 \cdot 10^{-4} \) | \(a_{72}= +0.97535266 \pm 1.8 \cdot 10^{-4} \) |
\(a_{73}= -1.54568297 \pm 2.9 \cdot 10^{-4} \) | \(a_{74}= +0.27068045 \pm 3.1 \cdot 10^{-4} \) | \(a_{75}= -0.04793603 \pm 3.6 \cdot 10^{-4} \) |
\(a_{76}= -0.11408321 \pm 2.2 \cdot 10^{-4} \) | \(a_{77}= +0.79193576 \pm 9.2 \cdot 10^{-5} \) | \(a_{78}= -0.29929514 \pm 2.6 \cdot 10^{-4} \) |
\(a_{79}= +1.28051400 \pm 4.2 \cdot 10^{-4} \) | \(a_{80}= -0.41000628 \pm 1.4 \cdot 10^{-4} \) | \(a_{81}= +0.83096037 \pm 3.7 \cdot 10^{-4} \) |
\(a_{82}= -0.45648296 \pm 4.9 \cdot 10^{-4} \) | \(a_{83}= -0.84730394 \pm 3.6 \cdot 10^{-4} \) | \(a_{84}= +0.01751775 \pm 1.0 \cdot 10^{-4} \) |
\(a_{85}= -0.05548905 \pm 3.7 \cdot 10^{-4} \) | \(a_{86}= -0.31601179 \pm 2.3 \cdot 10^{-4} \) | \(a_{87}= -0.36006106 \pm 1.9 \cdot 10^{-4} \) |
\(a_{88}= -0.86597056 \pm 1.7 \cdot 10^{-4} \) | \(a_{89}= +0.07907962 \pm 4.3 \cdot 10^{-4} \) | \(a_{90}= -0.40491789 \pm 5.1 \cdot 10^{-4} \) |
\(a_{91}= +1.23016711 \pm 1.0 \cdot 10^{-4} \) | \(a_{92}= -0.06620264 \pm 1.2 \cdot 10^{-4} \) | \(a_{93}= +0.00776738 \pm 3.7 \cdot 10^{-4} \) |
\(a_{94}= +0.85715801 \pm 2.1 \cdot 10^{-4} \) | \(a_{95}= +0.66059164 \pm 3.4 \cdot 10^{-4} \) | \(a_{96}= -0.03693746 \pm 3.7 \cdot 10^{-4} \) |
\(a_{97}= +0.62504792 \pm 2.7 \cdot 10^{-4} \) | \(a_{98}= -0.10034494 \pm 2.8 \cdot 10^{-4} \) | \(a_{99}= -0.78877548 \pm 1.6 \cdot 10^{-4} \) |
\(a_{100}= -0.01544663 \pm 2.9 \cdot 10^{-4} \) | \(a_{101}= -0.46262998 \pm 2.8 \cdot 10^{-4} \) | \(a_{102}= +0.02856738 \pm 3.4 \cdot 10^{-4} \) |
\(a_{103}= +0.62160931 \pm 2.7 \cdot 10^{-4} \) | \(a_{104}= -1.34517034 \pm 2.0 \cdot 10^{-4} \) | \(a_{105}= -0.10143542 \pm 5.0 \cdot 10^{-4} \) |
\(a_{106}= -1.75643690 \pm 2.8 \cdot 10^{-4} \) | \(a_{107}= +0.49346563 \pm 2.8 \cdot 10^{-4} \) | \(a_{108}= -0.03595909 \pm 2.6 \cdot 10^{-4} \) |
\(a_{109}= +1.76783572 \pm 1.7 \cdot 10^{-4} \) | \(a_{110}= +0.35950789 \pm 5.2 \cdot 10^{-4} \) | \(a_{111}= -0.06753719 \pm 4.7 \cdot 10^{-4} \) |
\(a_{112}= -0.86759699 \pm 9.9 \cdot 10^{-5} \) | \(a_{113}= +1.62852306 \pm 2.5 \cdot 10^{-4} \) | \(a_{114}= -0.34009180 \pm 2.8 \cdot 10^{-4} \) |
\(a_{115}= +0.38334218 \pm 1.4 \cdot 10^{-4} \) | \(a_{116}= -0.11602397 \pm 9.1 \cdot 10^{-5} \) | \(a_{117}= -1.22525803 \pm 1.7 \cdot 10^{-4} \) |
\(a_{118}= +1.31772879 \pm 2.8 \cdot 10^{-4} \) | \(a_{119}= -0.11741804 \pm 1.2 \cdot 10^{-4} \) | \(a_{120}= +0.11091819 \pm 6.7 \cdot 10^{-4} \) |
\(a_{121}= -0.29968270 \pm 2.9 \cdot 10^{-4} \) | \(a_{122}= -0.98473096 \pm 1.6 \cdot 10^{-4} \) | \(a_{123}= +0.11389657 \pm 3.8 \cdot 10^{-4} \) |
\(a_{124}= +0.00250292 \pm 4.2 \cdot 10^{-4} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.85682967 \pm 1.1 \cdot 10^{-4} \) |
\(a_{127}= +0.20102171 \pm 3.9 \cdot 10^{-4} \) | \(a_{128}= +0.86878432 \pm 2.5 \cdot 10^{-4} \) | \(a_{129}= +0.07884776 \pm 4.1 \cdot 10^{-4} \) |
\(a_{130}= +0.55844779 \pm 5.7 \cdot 10^{-4} \) | \(a_{131}= -1.88327499 \pm 3.4 \cdot 10^{-4} \) | \(a_{132}= +0.01549113 \pm 1.2 \cdot 10^{-4} \) |
\(a_{133}= +1.39785010 \pm 1.4 \cdot 10^{-4} \) | \(a_{134}= -1.12837349 \pm 1.6 \cdot 10^{-4} \) | \(a_{135}= +0.20821886 \pm 2.7 \cdot 10^{-4} \) |
\(a_{136}= +0.12839496 \pm 3.3 \cdot 10^{-4} \) | \(a_{137}= +0.77003358 \pm 4.1 \cdot 10^{-4} \) | \(a_{138}= -0.19735571 \pm 1.8 \cdot 10^{-4} \) |
\(a_{139}= +0.18752040 \pm 4.0 \cdot 10^{-4} \) | \(a_{140}= -0.03268596 \pm 4.3 \cdot 10^{-4} \) | \(a_{141}= -0.21386858 \pm 1.1 \cdot 10^{-4} \) |
\(a_{142}= -0.00712674 \pm 1.8 \cdot 10^{-4} \) | \(a_{143}= +1.08784999 \pm 2.1 \cdot 10^{-4} \) | \(a_{144}= +0.86413477 \pm 1.2 \cdot 10^{-4} \) |
\(a_{145}= +0.67182950 \pm 1.6 \cdot 10^{-4} \) | \(a_{146}= -1.48479474 \pm 2.5 \cdot 10^{-4} \) | \(a_{147}= +0.02503696 \pm 3.1 \cdot 10^{-4} \) |
\(a_{148}= -0.02176279 \pm 3.0 \cdot 10^{-4} \) | \(a_{149}= -1.72257951 \pm 1.2 \cdot 10^{-4} \) | \(a_{150}= -0.04604771 \pm 6.9 \cdot 10^{-4} \) |
\(a_{151}= +0.34675636 \pm 2.2 \cdot 10^{-4} \) | \(a_{152}= -1.52852933 \pm 3.3 \cdot 10^{-4} \) | \(a_{153}= +0.11694947 \pm 1.9 \cdot 10^{-4} \) |
\(a_{154}= +0.76073947 \pm 1.0 \cdot 10^{-4} \) | \(a_{155}= -0.01449298 \pm 3.5 \cdot 10^{-4} \) | \(a_{156}= +0.02406342 \pm 2.1 \cdot 10^{-4} \) |
\(a_{157}= -1.47172276 \pm 3.2 \cdot 10^{-4} \) | \(a_{158}= +1.23007142 \pm 2.9 \cdot 10^{-4} \) | \(a_{159}= +0.43824669 \pm 3.7 \cdot 10^{-4} \) |
\(a_{160}= +0.06892073 \pm 3.6 \cdot 10^{-4} \) | \(a_{161}= +0.81117422 \pm 1.0 \cdot 10^{-4} \) | \(a_{162}= +0.79822681 \pm 3.5 \cdot 10^{-4} \) |
\(a_{163}= +0.62105269 \pm 2.9 \cdot 10^{-4} \) | \(a_{164}= +0.03670137 \pm 4.3 \cdot 10^{-4} \) | \(a_{165}= -0.08970043 \pm 5.4 \cdot 10^{-4} \) |
\(a_{166}= -0.81392656 \pm 2.7 \cdot 10^{-4} \) | \(a_{167}= +0.30317958 \pm 2.8 \cdot 10^{-4} \) | \(a_{168}= +0.23470931 \pm 1.4 \cdot 10^{-4} \) |
\(a_{169}= +0.68983060 \pm 2.8 \cdot 10^{-4} \) | \(a_{170}= -0.05330320 \pm 7.0 \cdot 10^{-4} \) | \(a_{171}= -1.39227188 \pm 1.6 \cdot 10^{-4} \) |
\(a_{172}= +0.02540744 \pm 2.4 \cdot 10^{-4} \) | \(a_{173}= -0.68211686 \pm 3.2 \cdot 10^{-4} \) | \(a_{174}= -0.34587738 \pm 1.5 \cdot 10^{-4} \) |
\(a_{175}= +0.18926596 \pm 1.3 \cdot 10^{-4} \) | \(a_{176}= -0.76722534 \pm 1.2 \cdot 10^{-4} \) | \(a_{177}= -0.32878510 \pm 3.3 \cdot 10^{-4} \) |
\(a_{178}= +0.07596448 \pm 3.9 \cdot 10^{-4} \) | \(a_{179}= -0.75751657 \pm 3.4 \cdot 10^{-4} \) | \(a_{180}= +0.03255552 \pm 4.6 \cdot 10^{-4} \) |
\(a_{181}= +1.27697270 \pm 3.6 \cdot 10^{-4} \) | \(a_{182}= +1.18170781 \pm 1.2 \cdot 10^{-4} \) | \(a_{183}= +0.24569917 \pm 2.2 \cdot 10^{-4} \) |
\(a_{184}= -0.88700754 \pm 1.1 \cdot 10^{-4} \) | \(a_{185}= +0.12601606 \pm 4.4 \cdot 10^{-4} \) | \(a_{186}= +0.00746141 \pm 5.0 \cdot 10^{-4} \) |
\(a_{187}= -0.10383403 \pm 2.2 \cdot 10^{-4} \) | \(a_{188}= -0.06891576 \pm 1.4 \cdot 10^{-4} \) | \(a_{189}= +0.44060314 \pm 9.8 \cdot 10^{-5} \) |
\(a_{190}= +0.63456932 \pm 6.8 \cdot 10^{-4} \) | \(a_{191}= -0.15269305 \pm 9.3 \cdot 10^{-5} \) | \(a_{192}= -0.25522163 \pm 3.4 \cdot 10^{-4} \) |
\(a_{193}= +0.47217552 \pm 1.4 \cdot 10^{-4} \) | \(a_{194}= +0.60042575 \pm 2.4 \cdot 10^{-4} \) | \(a_{195}= -0.13933771 \pm 5.9 \cdot 10^{-4} \) |
\(a_{196}= +0.00806776 \pm 2.6 \cdot 10^{-4} \) | \(a_{197}= -0.07174384 \pm 3.4 \cdot 10^{-4} \) | \(a_{198}= -0.75770368 \pm 1.4 \cdot 10^{-4} \) |
\(a_{199}= -1.00039367 \pm 4.6 \cdot 10^{-4} \) | \(a_{200}= -0.20695966 \pm 3.1 \cdot 10^{-4} \) | \(a_{201}= +0.28153926 \pm 2.5 \cdot 10^{-4} \) |
\(a_{202}= -0.44440585 \pm 2.6 \cdot 10^{-4} \) | \(a_{203}= +1.42163007 \pm 9.0 \cdot 10^{-5} \) | \(a_{204}= -0.00229683 \pm 3.1 \cdot 10^{-4} \) |
\(a_{205}= -0.21251695 \pm 3.7 \cdot 10^{-4} \) | \(a_{206}= +0.59712259 \pm 4.1 \cdot 10^{-4} \) | \(a_{207}= -0.80793717 \pm 1.3 \cdot 10^{-4} \) |
\(a_{208}= -1.19178275 \pm 1.3 \cdot 10^{-4} \) | \(a_{209}= +1.23613386 \pm 8.4 \cdot 10^{-5} \) | \(a_{210}= -0.09743963 \pm 8.3 \cdot 10^{-4} \) |
\(a_{211}= -1.48538843 \pm 2.0 \cdot 10^{-4} \) | \(a_{212}= +0.14121805 \pm 2.6 \cdot 10^{-4} \) | \(a_{213}= +0.00177819 \pm 2.1 \cdot 10^{-4} \) |
\(a_{214}= +0.47402681 \pm 3.0 \cdot 10^{-4} \) | \(a_{215}= -0.14712020 \pm 3.7 \cdot 10^{-4} \) | \(a_{216}= -0.48179330 \pm 2.3 \cdot 10^{-4} \) |
\(a_{217}= -0.03066798 \pm 1.4 \cdot 10^{-4} \) | \(a_{218}= +1.69819634 \pm 2.2 \cdot 10^{-4} \) | \(a_{219}= +0.37046954 \pm 3.1 \cdot 10^{-4} \) |
\(a_{220}= -0.02890454 \pm 4.7 \cdot 10^{-4} \) | \(a_{221}= -0.16129239 \pm 2.8 \cdot 10^{-4} \) | \(a_{222}= -0.06487673 \pm 3.2 \cdot 10^{-4} \) |
\(a_{223}= -0.75184997 \pm 3.6 \cdot 10^{-4} \) | \(a_{224}= +0.14584026 \pm 1.2 \cdot 10^{-4} \) | \(a_{225}= -0.18851068 \pm 1.7 \cdot 10^{-4} \) |
\(a_{226}= +1.56437155 \pm 3.1 \cdot 10^{-4} \) | \(a_{227}= +1.93486217 \pm 2.7 \cdot 10^{-4} \) | \(a_{228}= +0.02734348 \pm 2.4 \cdot 10^{-4} \) |
\(a_{229}= -0.98660999 \pm 5.1 \cdot 10^{-4} \) | \(a_{230}= +0.36824140 \pm 4.7 \cdot 10^{-4} \) | \(a_{231}= -0.18981129 \pm 7.7 \cdot 10^{-5} \) |
\(a_{232}= -1.55453238 \pm 1.7 \cdot 10^{-4} \) | \(a_{233}= -0.38260122 \pm 4.6 \cdot 10^{-4} \) | \(a_{234}= -1.17699212 \pm 1.5 \cdot 10^{-4} \) |
\(a_{235}= +0.39905237 \pm 2.2 \cdot 10^{-4} \) | \(a_{236}= -0.10594579 \pm 2.3 \cdot 10^{-4} \) | \(a_{237}= -0.30691380 \pm 4.7 \cdot 10^{-4} \) |
\(a_{238}= -0.11279265 \pm 1.2 \cdot 10^{-4} \) | \(a_{239}= -0.10762152 \pm 3.4 \cdot 10^{-4} \) | \(a_{240}= +0.09827037 \pm 5.1 \cdot 10^{-4} \) |
\(a_{241}= -0.36107434 \pm 1.9 \cdot 10^{-4} \) | \(a_{242}= -0.28787746 \pm 2.6 \cdot 10^{-4} \) | \(a_{243}= -0.66475623 \pm 1.9 \cdot 10^{-4} \) |
\(a_{244}= +0.07917266 \pm 1.4 \cdot 10^{-4} \) | \(a_{245}= -0.04671587 \pm 3.0 \cdot 10^{-4} \) | \(a_{246}= +0.10940991 \pm 5.0 \cdot 10^{-4} \) |
\(a_{247}= +1.92016992 \pm 1.0 \cdot 10^{-4} \) | \(a_{248}= +0.03353500 \pm 2.3 \cdot 10^{-4} \) | \(a_{249}= +0.20308194 \pm 4.0 \cdot 10^{-4} \) |
\(a_{250}= +0.08591935 \pm 3.3 \cdot 10^{-4} \) | \(a_{251}= +0.66168089 \pm 5.1 \cdot 10^{-4} \) | \(a_{252}= +0.06888936 \pm 6.0 \cdot 10^{-5} \) |
\(a_{253}= +0.71733008 \pm 1.1 \cdot 10^{-4} \) | \(a_{254}= +0.19310297 \pm 3.1 \cdot 10^{-4} \) | \(a_{255}= +0.01329962 \pm 7.3 \cdot 10^{-4} \) |
\(a_{256}= -0.23028175 \pm 2.7 \cdot 10^{-4} \) | \(a_{257}= +0.55457352 \pm 2.7 \cdot 10^{-4} \) | \(a_{258}= +0.07574176 \pm 2.5 \cdot 10^{-4} \) |
\(a_{259}= +0.26665727 \pm 1.4 \cdot 10^{-4} \) | \(a_{260}= -0.04489937 \pm 5.2 \cdot 10^{-4} \) | \(a_{261}= -1.41595694 \pm 1.4 \cdot 10^{-4} \) |
\(a_{262}= -1.80908817 \pm 4.2 \cdot 10^{-4} \) | \(a_{263}= +0.06697259 \pm 3.8 \cdot 10^{-4} \) | \(a_{264}= +0.20755596 \pm 1.1 \cdot 10^{-4} \) |
\(a_{265}= -0.81771423 \pm 3.5 \cdot 10^{-4} \) | \(a_{266}= +1.34278536 \pm 1.2 \cdot 10^{-4} \) | \(a_{267}= -0.01895381 \pm 4.7 \cdot 10^{-4} \) |
\(a_{268}= +0.09072157 \pm 1.5 \cdot 10^{-4} \) | \(a_{269}= +0.06681953 \pm 3.3 \cdot 10^{-4} \) | \(a_{270}= +0.20001660 \pm 6.1 \cdot 10^{-4} \) |
\(a_{271}= -1.50989971 \pm 2.6 \cdot 10^{-4} \) | \(a_{272}= +0.11375429 \pm 1.4 \cdot 10^{-4} \) | \(a_{273}= -0.29484665 \pm 9.1 \cdot 10^{-5} \) |
\(a_{274}= +0.73970007 \pm 5.0 \cdot 10^{-4} \) | \(a_{275}= +0.16736993 \pm 1.8 \cdot 10^{-4} \) | \(a_{276}= +0.01586746 \pm 1.2 \cdot 10^{-4} \) |
\(a_{277}= -0.49098619 \pm 3.6 \cdot 10^{-4} \) | \(a_{278}= +0.18013351 \pm 2.8 \cdot 10^{-4} \) | \(a_{279}= +0.03054560 \pm 1.2 \cdot 10^{-4} \) |
\(a_{280}= -0.43793860 \pm 4.4 \cdot 10^{-4} \) | \(a_{281}= +1.14694081 \pm 1.4 \cdot 10^{-4} \) | \(a_{282}= -0.20544377 \pm 1.5 \cdot 10^{-4} \) |
\(a_{283}= +0.46193419 \pm 3.6 \cdot 10^{-4} \) | \(a_{284}= +0.00057299 \pm 9.6 \cdot 10^{-5} \) | \(a_{285}= -0.15833071 \pm 7.0 \cdot 10^{-4} \) |
\(a_{286}= +1.04499691 \pm 2.0 \cdot 10^{-4} \) | \(a_{287}= -0.44969815 \pm 1.5 \cdot 10^{-4} \) | \(a_{288}= -0.14525827 \pm 1.2 \cdot 10^{-4} \) |
\(a_{289}= -0.98460483 \pm 1.5 \cdot 10^{-4} \) | \(a_{290}= +0.64536449 \pm 5.0 \cdot 10^{-4} \) | \(a_{291}= -0.14981159 \pm 2.9 \cdot 10^{-4} \) |
\(a_{292}= +0.11937794 \pm 2.3 \cdot 10^{-4} \) | \(a_{293}= +0.69839858 \pm 4.4 \cdot 10^{-4} \) | \(a_{294}= +0.02405069 \pm 2.9 \cdot 10^{-4} \) |
\(a_{295}= +0.61347241 \pm 2.8 \cdot 10^{-4} \) | \(a_{296}= -0.29158595 \pm 4.2 \cdot 10^{-4} \) | \(a_{297}= +0.38963009 \pm 1.1 \cdot 10^{-4} \) |
\(a_{298}= -1.65472289 \pm 1.4 \cdot 10^{-4} \) | \(a_{299}= +1.11427708 \pm 1.1 \cdot 10^{-4} \) | \(a_{300}= +0.00370225 \pm 6.5 \cdot 10^{-4} \) |
\(a_{301}= -0.31131484 \pm 1.1 \cdot 10^{-4} \) | \(a_{302}= +0.33309678 \pm 2.7 \cdot 10^{-4} \) | \(a_{303}= +0.11088323 \pm 2.9 \cdot 10^{-4} \) |
\(a_{304}= -1.35423360 \pm 1.1 \cdot 10^{-4} \) | \(a_{305}= -0.45844432 \pm 2.0 \cdot 10^{-4} \) | \(a_{306}= +0.11234255 \pm 1.5 \cdot 10^{-4} \) |
\(a_{307}= +1.03298191 \pm 3.1 \cdot 10^{-4} \) | \(a_{308}= -0.06116368 \pm 7.3 \cdot 10^{-5} \) | \(a_{309}= -0.14898742 \pm 2.8 \cdot 10^{-4} \) |
\(a_{310}= -0.01392206 \pm 6.9 \cdot 10^{-4} \) | \(a_{311}= -1.18939590 \pm 3.3 \cdot 10^{-4} \) | \(a_{312}= +0.32241064 \pm 1.3 \cdot 10^{-4} \) |
\(a_{313}= -0.02082916 \pm 3.2 \cdot 10^{-4} \) | \(a_{314}= -1.41374799 \pm 2.8 \cdot 10^{-4} \) | \(a_{315}= -0.39889951 \pm 3.1 \cdot 10^{-4} \) |
\(a_{316}= -0.09889811 \pm 2.7 \cdot 10^{-4} \) | \(a_{317}= -0.11038698 \pm 4.9 \cdot 10^{-4} \) | \(a_{318}= +0.42098308 \pm 2.9 \cdot 10^{-4} \) |
\(a_{319}= +1.25716274 \pm 1.1 \cdot 10^{-4} \) | \(a_{320}= +0.47621206 \pm 3.3 \cdot 10^{-4} \) | \(a_{321}= -0.11827392 \pm 2.7 \cdot 10^{-4} \) |
\(a_{322}= +0.77922008 \pm 1.1 \cdot 10^{-4} \) | \(a_{323}= -0.18327801 \pm 3.4 \cdot 10^{-4} \) | \(a_{324}= -0.06417767 \pm 3.1 \cdot 10^{-4} \) |
\(a_{325}= +0.25998697 \pm 2.3 \cdot 10^{-4} \) | \(a_{326}= +0.59658790 \pm 2.8 \cdot 10^{-4} \) | \(a_{327}= -0.42371515 \pm 1.7 \cdot 10^{-4} \) |
\(a_{328}= +0.49173857 \pm 2.6 \cdot 10^{-4} \) | \(a_{329}= +0.84441788 \pm 8.7 \cdot 10^{-5} \) | \(a_{330}= -0.08616691 \pm 8.8 \cdot 10^{-4} \) |
\(a_{331}= +0.45185126 \pm 2.7 \cdot 10^{-4} \) | \(a_{332}= +0.06543994 \pm 2.6 \cdot 10^{-4} \) | \(a_{333}= -0.26559315 \pm 1.5 \cdot 10^{-4} \) |
\(a_{334}= +0.29123659 \pm 1.9 \cdot 10^{-4} \) | \(a_{335}= -0.52531751 \pm 2.2 \cdot 10^{-4} \) | \(a_{336}= +0.20794578 \pm 1.0 \cdot 10^{-4} \) |
\(a_{337}= -0.70512817 \pm 4.9 \cdot 10^{-4} \) | \(a_{338}= +0.66265648 \pm 1.9 \cdot 10^{-4} \) | \(a_{339}= -0.39032467 \pm 2.9 \cdot 10^{-4} \) |
\(a_{340}= +0.00428559 \pm 6.6 \cdot 10^{-4} \) | \(a_{341}= -0.02712002 \pm 1.9 \cdot 10^{-4} \) | \(a_{342}= -1.33742688 \pm 1.4 \cdot 10^{-4} \) |
\(a_{343}= -1.04518331 \pm 2.1 \cdot 10^{-4} \) | \(a_{344}= +0.34041837 \pm 3.6 \cdot 10^{-4} \) | \(a_{345}= -0.09187952 \pm 5.0 \cdot 10^{-4} \) |
\(a_{346}= -0.65524661 \pm 4.1 \cdot 10^{-4} \) | \(a_{347}= -1.30957144 \pm 2.3 \cdot 10^{-4} \) | \(a_{348}= +0.02780864 \pm 9.3 \cdot 10^{-5} \) |
\(a_{349}= -0.08446676 \pm 3.6 \cdot 10^{-4} \) | \(a_{350}= +0.18181031 \pm 4.7 \cdot 10^{-4} \) | \(a_{351}= +0.60523863 \pm 1.6 \cdot 10^{-4} \) |
\(a_{352}= +0.12896811 \pm 1.7 \cdot 10^{-4} \) | \(a_{353}= +1.34979753 \pm 1.4 \cdot 10^{-4} \) | \(a_{354}= -0.31583345 \pm 3.2 \cdot 10^{-4} \) |
\(a_{355}= -0.00331788 \pm 1.7 \cdot 10^{-4} \) | \(a_{356}= -0.00610757 \pm 3.7 \cdot 10^{-4} \) | \(a_{357}= +0.02814277 \pm 1.2 \cdot 10^{-4} \) |
\(a_{358}= -0.72767614 \pm 5.0 \cdot 10^{-4} \) | \(a_{359}= +0.78166142 \pm 1.6 \cdot 10^{-4} \) | \(a_{360}= +0.43619097 \pm 4.8 \cdot 10^{-4} \) |
\(a_{361}= +1.18190658 \pm 2.6 \cdot 10^{-4} \) | \(a_{362}= +1.22666962 \pm 3.9 \cdot 10^{-4} \) | \(a_{363}= +0.07182800 \pm 3.2 \cdot 10^{-4} \) |
\(a_{364}= -0.09500966 \pm 1.0 \cdot 10^{-4} \) | \(a_{365}= -0.69125044 \pm 2.9 \cdot 10^{-4} \) | \(a_{366}= +0.23602047 \pm 1.7 \cdot 10^{-4} \) |
\(a_{367}= -0.10076962 \pm 2.9 \cdot 10^{-4} \) | \(a_{368}= -0.78586351 \pm 1.1 \cdot 10^{-4} \) | \(a_{369}= +0.44790360 \pm 1.5 \cdot 10^{-4} \) |
\(a_{370}= +0.12105198 \pm 7.7 \cdot 10^{-4} \) | \(a_{371}= -1.73033058 \pm 1.1 \cdot 10^{-4} \) | \(a_{372}= -0.00059990 \pm 4.4 \cdot 10^{-4} \) |
\(a_{373}= +1.30519282 \pm 4.1 \cdot 10^{-4} \) | \(a_{374}= -0.09974376 \pm 2.1 \cdot 10^{-4} \) | \(a_{375}= -0.02143765 \pm 3.6 \cdot 10^{-4} \) |
\(a_{376}= -0.92335901 \pm 2.2 \cdot 10^{-4} \) | \(a_{377}= +1.95283549 \pm 1.2 \cdot 10^{-4} \) | \(a_{378}= +0.42324670 \pm 9.8 \cdot 10^{-5} \) |
\(a_{379}= -1.69554285 \pm 2.8 \cdot 10^{-4} \) | \(a_{380}= -0.05101956 \pm 6.3 \cdot 10^{-4} \) | \(a_{381}= -0.04818092 \pm 3.8 \cdot 10^{-4} \) |
\(a_{382}= -0.14667810 \pm 1.0 \cdot 10^{-4} \) | \(a_{383}= -1.67898711 \pm 3.9 \cdot 10^{-4} \) | \(a_{384}= -0.20823037 \pm 2.8 \cdot 10^{-4} \) |
\(a_{385}= +0.35416444 \pm 3.2 \cdot 10^{-4} \) | \(a_{386}= +0.45357537 \pm 1.4 \cdot 10^{-4} \) | \(a_{387}= +0.31007251 \pm 9.5 \cdot 10^{-5} \) |
\(a_{388}= -0.04827441 \pm 1.9 \cdot 10^{-4} \) | \(a_{389}= +0.40464365 \pm 4.0 \cdot 10^{-4} \) | \(a_{390}= -0.13384886 \pm 9.3 \cdot 10^{-4} \) |
\(a_{391}= -0.10635647 \pm 1.1 \cdot 10^{-4} \) | \(a_{392}= +0.10809489 \pm 2.7 \cdot 10^{-4} \) | \(a_{393}= +0.45138365 \pm 3.6 \cdot 10^{-4} \) |
\(a_{394}= -0.06891767 \pm 3.9 \cdot 10^{-4} \) | \(a_{395}= +0.57266327 \pm 4.2 \cdot 10^{-4} \) | \(a_{396}= +0.06091960 \pm 7.8 \cdot 10^{-5} \) |
\(a_{397}= -1.11248954 \pm 3.5 \cdot 10^{-4} \) | \(a_{398}= -0.96098571 \pm 4.1 \cdot 10^{-4} \) | \(a_{399}= -0.33503694 \pm 1.8 \cdot 10^{-4} \) |
\(a_{400}= -0.18336038 \pm 1.4 \cdot 10^{-4} \) | \(a_{401}= +0.08651806 \pm 5.4 \cdot 10^{-4} \) | \(a_{402}= +0.27044874 \pm 1.7 \cdot 10^{-4} \) |
\(a_{403}= -0.04212736 \pm 3.0 \cdot 10^{-4} \) | \(a_{404}= +0.03573036 \pm 2.1 \cdot 10^{-4} \) | \(a_{405}= +0.37161678 \pm 3.7 \cdot 10^{-4} \) |
\(a_{406}= +1.36562858 \pm 8.4 \cdot 10^{-5} \) | \(a_{407}= +0.23580789 \pm 1.5 \cdot 10^{-4} \) | \(a_{408}= -0.03077373 \pm 3.2 \cdot 10^{-4} \) |
\(a_{409}= +0.64602930 \pm 3.6 \cdot 10^{-4} \) | \(a_{410}= -0.20414539 \pm 7.1 \cdot 10^{-4} \) | \(a_{411}= -0.18456177 \pm 4.3 \cdot 10^{-4} \) |
\(a_{412}= -0.04800884 \pm 3.5 \cdot 10^{-4} \) | \(a_{413}= +1.29814309 \pm 1.4 \cdot 10^{-4} \) | \(a_{414}= -0.77611054 \pm 1.3 \cdot 10^{-4} \) |
\(a_{415}= -0.37892584 \pm 3.6 \cdot 10^{-4} \) | \(a_{416}= +0.20033484 \pm 2.4 \cdot 10^{-4} \) | \(a_{417}= -0.04494492 \pm 4.3 \cdot 10^{-4} \) |
\(a_{418}= +1.18743952 \pm 8.5 \cdot 10^{-5} \) | \(a_{419}= -0.00014958 \pm 1.5 \cdot 10^{-4} \) | \(a_{420}= +0.00783418 \pm 7.9 \cdot 10^{-4} \) |
\(a_{421}= -0.03068849 \pm 2.5 \cdot 10^{-4} \) | \(a_{422}= -1.42687534 \pm 1.8 \cdot 10^{-4} \) | \(a_{423}= -0.84104816 \pm 1.9 \cdot 10^{-4} \) |
\(a_{424}= +1.89209203 \pm 3.3 \cdot 10^{-4} \) | \(a_{425}= -0.02481546 \pm 3.7 \cdot 10^{-4} \) | \(a_{426}= +0.00170814 \pm 2.0 \cdot 10^{-4} \) |
\(a_{427}= -0.97009468 \pm 9.5 \cdot 10^{-5} \) | \(a_{428}= -0.03811190 \pm 2.2 \cdot 10^{-4} \) | \(a_{429}= -0.26073606 \pm 1.0 \cdot 10^{-4} \) |
\(a_{430}= -0.14132477 \pm 7.1 \cdot 10^{-4} \) | \(a_{431}= -0.74245594 \pm 3.3 \cdot 10^{-4} \) | \(a_{432}= -0.42685519 \pm 1.0 \cdot 10^{-4} \) |
\(a_{433}= -1.70139703 \pm 4.2 \cdot 10^{-4} \) | \(a_{434}= -0.02945989 \pm 1.7 \cdot 10^{-4} \) | \(a_{435}= -0.16102420 \pm 5.3 \cdot 10^{-4} \) |
\(a_{436}= -0.13653549 \pm 1.9 \cdot 10^{-4} \) | \(a_{437}= +1.26616321 \pm 1.2 \cdot 10^{-4} \) | \(a_{438}= +0.35587584 \pm 2.5 \cdot 10^{-4} \) |
\(a_{439}= -0.25973160 \pm 2.3 \cdot 10^{-4} \) | \(a_{440}= -0.38727381 \pm 4.9 \cdot 10^{-4} \) | \(a_{441}= +0.09845900 \pm 1.2 \cdot 10^{-4} \) |
\(a_{442}= -0.15493869 \pm 3.1 \cdot 10^{-4} \) | \(a_{443}= +1.39220170 \pm 3.1 \cdot 10^{-4} \) | \(a_{444}= +0.00521611 \pm 3.3 \cdot 10^{-4} \) |
\(a_{445}= +0.03536548 \pm 4.3 \cdot 10^{-4} \) | \(a_{446}= -0.72223276 \pm 3.6 \cdot 10^{-4} \) | \(a_{447}= +0.41286813 \pm 1.6 \cdot 10^{-4} \) |
\(a_{448}= +1.00769224 \pm 1.4 \cdot 10^{-4} \) | \(a_{449}= -0.06362054 \pm 3.8 \cdot 10^{-4} \) | \(a_{450}= -0.18108479 \pm 5.1 \cdot 10^{-4} \) |
\(a_{451}= -0.39767291 \pm 2.2 \cdot 10^{-4} \) | \(a_{452}= -0.12577594 \pm 2.5 \cdot 10^{-4} \) | \(a_{453}= -0.08311062 \pm 2.2 \cdot 10^{-4} \) |
\(a_{454}= +1.85864321 \pm 3.0 \cdot 10^{-4} \) | \(a_{455}= +0.55014746 \pm 3.7 \cdot 10^{-4} \) | \(a_{456}= +0.36635815 \pm 3.9 \cdot 10^{-4} \) |
\(a_{457}= +1.59657492 \pm 3.5 \cdot 10^{-4} \) | \(a_{458}= -0.94774500 \pm 3.9 \cdot 10^{-4} \) | \(a_{459}= -0.05776933 \pm 2.9 \cdot 10^{-4} \) |
\(a_{460}= -0.02960672 \pm 4.3 \cdot 10^{-4} \) | \(a_{461}= +1.02123096 \pm 4.8 \cdot 10^{-4} \) | \(a_{462}= -0.18233416 \pm 7.4 \cdot 10^{-5} \) |
\(a_{463}= -0.97949085 \pm 2.8 \cdot 10^{-4} \) | \(a_{464}= -1.37727157 \pm 8.6 \cdot 10^{-5} \) | \(a_{465}= +0.00347368 \pm 7.2 \cdot 10^{-4} \) |
\(a_{466}= -0.36752963 \pm 3.3 \cdot 10^{-4} \) | \(a_{467}= -0.44548341 \pm 1.7 \cdot 10^{-4} \) | \(a_{468}= +0.09463052 \pm 8.5 \cdot 10^{-5} \) |
\(a_{469}= -1.11160222 \pm 1.0 \cdot 10^{-4} \) | \(a_{470}= +0.38333271 \pm 5.5 \cdot 10^{-4} \) | \(a_{471}= +0.35274275 \pm 3.4 \cdot 10^{-4} \) |
\(a_{472}= -1.41950111 \pm 2.5 \cdot 10^{-4} \) | \(a_{473}= -0.27529906 \pm 6.2 \cdot 10^{-5} \) | \(a_{474}= -0.29482372 \pm 3.3 \cdot 10^{-4} \) |
\(a_{475}= +0.29542556 \pm 3.4 \cdot 10^{-4} \) | \(a_{476}= +0.00906856 \pm 9.9 \cdot 10^{-5} \) | \(a_{477}= +1.72342557 \pm 1.4 \cdot 10^{-4} \) |
\(a_{478}= -0.10338204 \pm 3.0 \cdot 10^{-4} \) | \(a_{479}= -1.24041050 \pm 3.1 \cdot 10^{-4} \) | \(a_{480}= -0.01651893 \pm 7.2 \cdot 10^{-4} \) |
\(a_{481}= +0.36629626 \pm 1.6 \cdot 10^{-4} \) | \(a_{482}= -0.34685074 \pm 2.4 \cdot 10^{-4} \) | \(a_{483}= -0.19442237 \pm 1.1 \cdot 10^{-4} \) |
\(a_{484}= +0.02314543 \pm 2.4 \cdot 10^{-4} \) | \(a_{485}= +0.27952993 \pm 2.7 \cdot 10^{-4} \) | \(a_{486}= -0.63856985 \pm 1.6 \cdot 10^{-4} \) |
\(a_{487}= +0.41498984 \pm 4.4 \cdot 10^{-4} \) | \(a_{488}= +1.06078482 \pm 1.9 \cdot 10^{-4} \) | \(a_{489}= -0.14885401 \pm 2.6 \cdot 10^{-4} \) |
\(a_{490}= -0.04487562 \pm 6.3 \cdot 10^{-4} \) | \(a_{491}= +0.32291869 \pm 2.3 \cdot 10^{-4} \) | \(a_{492}= -0.00879659 \pm 4.4 \cdot 10^{-4} \) |
\(a_{493}= -0.18639590 \pm 1.6 \cdot 10^{-4} \) | \(a_{494}= +1.84452972 \pm 1.1 \cdot 10^{-4} \) | \(a_{495}= -0.35275112 \pm 3.6 \cdot 10^{-4} \) |
\(a_{496}= +0.02971106 \pm 1.9 \cdot 10^{-4} \) | \(a_{497}= -0.00702082 \pm 1.3 \cdot 10^{-4} \) | \(a_{498}= +0.19508205 \pm 3.0 \cdot 10^{-4} \) |
\(a_{499}= -1.25622439 \pm 4.3 \cdot 10^{-4} \) | \(a_{500}= -0.00690794 \pm 2.9 \cdot 10^{-4} \) | \(a_{501}= -0.07266613 \pm 3.2 \cdot 10^{-4} \) |
\(a_{502}= +0.63561566 \pm 3.2 \cdot 10^{-4} \) | \(a_{503}= -0.87878856 \pm 4.4 \cdot 10^{-4} \) | \(a_{504}= +0.92300531 \pm 1.0 \cdot 10^{-4} \) |
\(a_{505}= -0.20689441 \pm 2.8 \cdot 10^{-4} \) | \(a_{506}= +0.68907269 \pm 1.4 \cdot 10^{-4} \) | \(a_{507}= -0.16533871 \pm 2.9 \cdot 10^{-4} \) |
\(a_{508}= -0.01552554 \pm 2.5 \cdot 10^{-4} \) | \(a_{509}= +0.64686065 \pm 2.5 \cdot 10^{-4} \) | \(a_{510}= +0.01277572 \pm 1.0 \cdot 10^{-3} \) |
\(a_{511}= -1.46272590 \pm 1.0 \cdot 10^{-4} \) | \(a_{512}= -1.08999471 \pm 2.3 \cdot 10^{-4} \) | \(a_{513}= +0.68773818 \pm 2.7 \cdot 10^{-4} \) |
\(a_{514}= +0.53272751 \pm 4.0 \cdot 10^{-4} \) | \(a_{515}= +0.27799213 \pm 2.7 \cdot 10^{-4} \) | \(a_{516}= -0.00608966 \pm 2.7 \cdot 10^{-4} \) |
\(a_{517}= +0.74672780 \pm 2.3 \cdot 10^{-4} \) | \(a_{518}= +0.25615299 \pm 1.2 \cdot 10^{-4} \) | \(a_{519}= +0.16348988 \pm 3.3 \cdot 10^{-4} \) |
\(a_{520}= -0.60157847 \pm 5.4 \cdot 10^{-4} \) | \(a_{521}= +0.07923204 \pm 3.2 \cdot 10^{-4} \) | \(a_{522}= -1.36017893 \pm 1.2 \cdot 10^{-4} \) |
\(a_{523}= +0.40382028 \pm 4.6 \cdot 10^{-4} \) | \(a_{524}= +0.14545123 \pm 3.6 \cdot 10^{-4} \) | \(a_{525}= -0.04536330 \pm 5.0 \cdot 10^{-4} \) |
\(a_{526}= +0.06433437 \pm 4.4 \cdot 10^{-4} \) | \(a_{527}= +0.00402101 \pm 3.8 \cdot 10^{-4} \) | \(a_{528}= +0.18388869 \pm 8.4 \cdot 10^{-5} \) |
\(a_{529}= -0.26524385 \pm 3.1 \cdot 10^{-4} \) | \(a_{530}= -0.78550246 \pm 6.8 \cdot 10^{-4} \) | \(a_{531}= -1.29296275 \pm 1.6 \cdot 10^{-4} \) |
\(a_{532}= -0.10796035 \pm 8.9 \cdot 10^{-5} \) | \(a_{533}= -0.61773209 \pm 3.2 \cdot 10^{-4} \) | \(a_{534}= -0.01820718 \pm 4.2 \cdot 10^{-4} \) |
\(a_{535}= +0.22068454 \pm 2.8 \cdot 10^{-4} \) | \(a_{536}= +1.21552131 \pm 2.1 \cdot 10^{-4} \) | \(a_{537}= +0.18156169 \pm 3.6 \cdot 10^{-4} \) |
\(a_{538}= +0.06418735 \pm 3.1 \cdot 10^{-4} \) | \(a_{539}= -0.08741720 \pm 1.5 \cdot 10^{-4} \) | \(a_{540}= -0.01608139 \pm 5.7 \cdot 10^{-4} \) |
\(a_{541}= -0.00513153 \pm 3.0 \cdot 10^{-4} \) | \(a_{542}= -1.45042107 \pm 2.6 \cdot 10^{-4} \) | \(a_{543}= -0.30606502 \pm 3.7 \cdot 10^{-4} \) |
\(a_{544}= -0.01912173 \pm 3.8 \cdot 10^{-4} \) | \(a_{545}= +0.79060017 \pm 1.7 \cdot 10^{-4} \) | \(a_{546}= -0.28323192 \pm 1.0 \cdot 10^{-4} \) |
\(a_{547}= +1.11801854 \pm 2.5 \cdot 10^{-4} \) | \(a_{548}= -0.05947211 \pm 4.4 \cdot 10^{-4} \) | \(a_{549}= +0.96622344 \pm 1.2 \cdot 10^{-4} \) |
\(a_{550}= +0.16077681 \pm 5.2 \cdot 10^{-4} \) | \(a_{551}= +2.21902477 \pm 1.7 \cdot 10^{-4} \) | \(a_{552}= +0.21259811 \pm 1.5 \cdot 10^{-4} \) |
\(a_{553}= +1.21178859 \pm 1.5 \cdot 10^{-4} \) | \(a_{554}= -0.47164504 \pm 4.7 \cdot 10^{-4} \) | \(a_{555}= -0.03020355 \pm 8.0 \cdot 10^{-4} \) |
\(a_{556}= -0.01448279 \pm 2.4 \cdot 10^{-4} \) | \(a_{557}= -1.53408202 \pm 2.7 \cdot 10^{-4} \) | \(a_{558}= +0.02934233 \pm 1.0 \cdot 10^{-4} \) |
\(a_{559}= -0.42764055 \pm 5.1 \cdot 10^{-5} \) | \(a_{560}= -0.38800117 \pm 2.8 \cdot 10^{-4} \) | \(a_{561}= +0.02488696 \pm 1.2 \cdot 10^{-4} \) |
\(a_{562}= +1.10176000 \pm 1.5 \cdot 10^{-4} \) | \(a_{563}= -0.79585514 \pm 1.2 \cdot 10^{-4} \) | \(a_{564}= +0.01651774 \pm 1.2 \cdot 10^{-4} \) |
\(a_{565}= +0.72829765 \pm 2.5 \cdot 10^{-4} \) | \(a_{566}= +0.44373747 \pm 5.0 \cdot 10^{-4} \) | \(a_{567}= +0.78636258 \pm 1.3 \cdot 10^{-4} \) |
\(a_{568}= +0.00767716 \pm 1.7 \cdot 10^{-4} \) | \(a_{569}= -1.95047551 \pm 2.1 \cdot 10^{-4} \) | \(a_{570}= -0.15209368 \pm 1.0 \cdot 10^{-3} \) |
\(a_{571}= -1.41028374 \pm 2.9 \cdot 10^{-4} \) | \(a_{572}= -0.08401806 \pm 1.3 \cdot 10^{-4} \) | \(a_{573}= +0.03659749 \pm 1.0 \cdot 10^{-4} \) |
\(a_{574}= -0.43198344 \pm 1.9 \cdot 10^{-4} \) | \(a_{575}= +0.17143584 \pm 1.4 \cdot 10^{-4} \) | \(a_{576}= -1.00367097 \pm 1.7 \cdot 10^{-4} \) |
\(a_{577}= +1.18431189 \pm 3.1 \cdot 10^{-4} \) | \(a_{578}= -0.94581883 \pm 1.3 \cdot 10^{-4} \) | \(a_{579}= -0.11317110 \pm 1.3 \cdot 10^{-4} \) |
\(a_{580}= -0.05188750 \pm 4.6 \cdot 10^{-4} \) | \(a_{581}= -0.80182899 \pm 1.4 \cdot 10^{-4} \) | \(a_{582}= -0.14391014 \pm 2.5 \cdot 10^{-4} \) |
\(a_{583}= -1.53014992 \pm 1.5 \cdot 10^{-4} \) | \(a_{584}= +1.59947009 \pm 2.7 \cdot 10^{-4} \) | \(a_{585}= -0.54795205 \pm 4.1 \cdot 10^{-4} \) |
\(a_{586}= +0.67088695 \pm 2.8 \cdot 10^{-4} \) | \(a_{587}= +0.94758600 \pm 3.0 \cdot 10^{-4} \) | \(a_{588}= -0.00193368 \pm 2.7 \cdot 10^{-4} \) |
\(a_{589}= -0.04786970 \pm 2.2 \cdot 10^{-4} \) | \(a_{590}= +0.58930623 \pm 6.2 \cdot 10^{-4} \) | \(a_{591}= +0.01719557 \pm 3.5 \cdot 10^{-4} \) |
\(a_{592}= -0.25833688 \pm 1.1 \cdot 10^{-4} \) | \(a_{593}= +1.19057054 \pm 4.1 \cdot 10^{-4} \) | \(a_{594}= +0.37428160 \pm 1.3 \cdot 10^{-4} \) |
\(a_{595}= -0.05251094 \pm 5.1 \cdot 10^{-4} \) | \(a_{596}= +0.13304022 \pm 1.0 \cdot 10^{-4} \) | \(a_{597}= +0.23977451 \pm 4.9 \cdot 10^{-4} \) |
\(a_{598}= +1.07038298 \pm 1.4 \cdot 10^{-4} \) | \(a_{599}= -0.90578206 \pm 4.2 \cdot 10^{-4} \) | \(a_{600}= +0.04960412 \pm 6.7 \cdot 10^{-4} \) |
\(a_{601}= -0.48174312 \pm 4.2 \cdot 10^{-4} \) | \(a_{602}= -0.29905138 \pm 7.4 \cdot 10^{-5} \) | \(a_{603}= +1.10716629 \pm 1.0 \cdot 10^{-4} \) |
\(a_{604}= -0.02678108 \pm 2.3 \cdot 10^{-4} \) | \(a_{605}= -0.13402218 \pm 2.9 \cdot 10^{-4} \) | \(a_{606}= +0.10651526 \pm 2.6 \cdot 10^{-4} \) |
\(a_{607}= +0.58627666 \pm 2.4 \cdot 10^{-4} \) | \(a_{608}= +0.22764231 \pm 3.3 \cdot 10^{-4} \) | \(a_{609}= -0.34073652 \pm 1.2 \cdot 10^{-4} \) |
\(a_{610}= -0.44038507 \pm 5.4 \cdot 10^{-4} \) | \(a_{611}= +1.15994254 \pm 2.8 \cdot 10^{-4} \) | \(a_{612}= -0.00903237 \pm 8.2 \cdot 10^{-5} \) |
\(a_{613}= -1.88093140 \pm 3.7 \cdot 10^{-4} \) | \(a_{614}= +0.99229022 \pm 2.1 \cdot 10^{-4} \) | \(a_{615}= +0.05093610 \pm 7.4 \cdot 10^{-4} \) |
\(a_{616}= -0.81949377 \pm 6.7 \cdot 10^{-5} \) | \(a_{617}= -0.66065514 \pm 4.8 \cdot 10^{-4} \) | \(a_{618}= -0.14311844 \pm 4.2 \cdot 10^{-4} \) |
\(a_{619}= +0.35208110 \pm 4.9 \cdot 10^{-4} \) | \(a_{620}= +0.00111934 \pm 6.5 \cdot 10^{-4} \) | \(a_{621}= +0.39909535 \pm 9.4 \cdot 10^{-5} \) |
\(a_{622}= -1.14254268 \pm 3.1 \cdot 10^{-4} \) | \(a_{623}= +0.07483540 \pm 1.4 \cdot 10^{-4} \) | \(a_{624}= +0.28564668 \pm 1.1 \cdot 10^{-4} \) |
\(a_{625}= +0.04 \) | \(a_{626}= -0.02000865 \pm 3.0 \cdot 10^{-4} \) | \(a_{627}= -0.29627676 \pm 1.0 \cdot 10^{-4} \) |
\(a_{628}= +0.11366576 \pm 2.1 \cdot 10^{-4} \) | \(a_{629}= -0.03496256 \pm 4.6 \cdot 10^{-4} \) | \(a_{630}= -0.38318588 \pm 6.5 \cdot 10^{-4} \) |
\(a_{631}= +0.05108161 \pm 3.9 \cdot 10^{-4} \) | \(a_{632}= -1.32507369 \pm 4.1 \cdot 10^{-4} \) | \(a_{633}= +0.35601814 \pm 1.3 \cdot 10^{-4} \) |
\(a_{634}= -0.10603856 \pm 3.4 \cdot 10^{-4} \) | \(a_{635}= +0.08989964 \pm 3.9 \cdot 10^{-4} \) | \(a_{636}= -0.03384717 \pm 2.8 \cdot 10^{-4} \) |
\(a_{637}= -0.13579102 \pm 2.0 \cdot 10^{-4} \) | \(a_{638}= +1.20764002 \pm 9.4 \cdot 10^{-5} \) | \(a_{639}= +0.00699280 \pm 1.8 \cdot 10^{-4} \) |
\(a_{640}= +0.38853216 \pm 2.5 \cdot 10^{-4} \) | \(a_{641}= +1.18151552 \pm 2.6 \cdot 10^{-4} \) | \(a_{642}= -0.11361482 \pm 3.0 \cdot 10^{-4} \) |
\(a_{643}= -0.64267080 \pm 2.0 \cdot 10^{-4} \) | \(a_{644}= -0.06264953 \pm 7.0 \cdot 10^{-5} \) | \(a_{645}= +0.03526179 \pm 7.3 \cdot 10^{-4} \) |
\(a_{646}= -0.17605824 \pm 2.3 \cdot 10^{-4} \) | \(a_{647}= -1.24664325 \pm 4.2 \cdot 10^{-4} \) | \(a_{648}= -0.85987637 \pm 3.3 \cdot 10^{-4} \) |
\(a_{649}= +1.14796188 \pm 1.1 \cdot 10^{-4} \) | \(a_{650}= +0.24974545 \pm 5.7 \cdot 10^{-4} \) | \(a_{651}= +0.00735051 \pm 1.4 \cdot 10^{-4} \) |
\(a_{652}= -0.04796585 \pm 2.2 \cdot 10^{-4} \) | \(a_{653}= +0.10409044 \pm 2.4 \cdot 10^{-4} \) | \(a_{654}= -0.40702397 \pm 2.3 \cdot 10^{-4} \) |
\(a_{655}= -0.84222618 \pm 3.4 \cdot 10^{-4} \) | \(a_{656}= +0.43566642 \pm 2.0 \cdot 10^{-4} \) | \(a_{657}= +1.45688877 \pm 1.1 \cdot 10^{-4} \) |
\(a_{658}= +0.81115419 \pm 7.0 \cdot 10^{-5} \) | \(a_{659}= -0.79207047 \pm 4.6 \cdot 10^{-4} \) | \(a_{660}= +0.00692785 \pm 8.4 \cdot 10^{-4} \) |
\(a_{661}= -0.45266475 \pm 3.3 \cdot 10^{-4} \) | \(a_{662}= +0.43405173 \pm 3.3 \cdot 10^{-4} \) | \(a_{663}= +0.03865859 \pm 1.8 \cdot 10^{-4} \) |
\(a_{664}= +0.87678866 \pm 3.4 \cdot 10^{-4} \) | \(a_{665}= +0.62513757 \pm 4.8 \cdot 10^{-4} \) | \(a_{666}= -0.25513079 \pm 1.2 \cdot 10^{-4} \) |
\(a_{667}= +1.28770294 \pm 1.1 \cdot 10^{-4} \) | \(a_{668}= -0.02341551 \pm 1.7 \cdot 10^{-4} \) | \(a_{669}= +0.18020352 \pm 4.0 \cdot 10^{-4} \) |
\(a_{670}= -0.50462397 \pm 5.6 \cdot 10^{-4} \) | \(a_{671}= -0.85786515 \pm 1.0 \cdot 10^{-4} \) | \(a_{672}= -0.03495502 \pm 1.2 \cdot 10^{-4} \) |
\(a_{673}= +0.21256810 \pm 2.8 \cdot 10^{-4} \) | \(a_{674}= -0.67735145 \pm 3.1 \cdot 10^{-4} \) | \(a_{675}= +0.09311830 \pm 2.7 \cdot 10^{-4} \) |
\(a_{676}= -0.05327778 \pm 1.8 \cdot 10^{-4} \) | \(a_{677}= +0.70646129 \pm 3.3 \cdot 10^{-4} \) | \(a_{678}= -0.37494882 \pm 3.4 \cdot 10^{-4} \) |
\(a_{679}= +0.59150149 \pm 1.3 \cdot 10^{-4} \) | \(a_{680}= +0.05741997 \pm 6.8 \cdot 10^{-4} \) | \(a_{681}= -0.46374807 \pm 2.8 \cdot 10^{-4} \) |
\(a_{682}= -0.02605170 \pm 2.5 \cdot 10^{-4} \) | \(a_{683}= -0.85498157 \pm 4.6 \cdot 10^{-4} \) | \(a_{684}= +0.10752952 \pm 6.5 \cdot 10^{-5} \) |
\(a_{685}= +0.34436948 \pm 4.1 \cdot 10^{-4} \) | \(a_{686}= -1.00401098 \pm 2.1 \cdot 10^{-4} \) | \(a_{687}= +0.23647084 \pm 5.5 \cdot 10^{-4} \) |
\(a_{688}= +0.30160102 \pm 4.3 \cdot 10^{-5} \) | \(a_{689}= -2.37688485 \pm 1.9 \cdot 10^{-4} \) | \(a_{690}= -0.08826016 \pm 8.4 \cdot 10^{-4} \) |
\(a_{691}= +0.02121267 \pm 2.3 \cdot 10^{-4} \) | \(a_{692}= +0.05268202 \pm 3.5 \cdot 10^{-4} \) | \(a_{693}= -0.74644176 \pm 8.8 \cdot 10^{-5} \) |
\(a_{694}= -1.25798421 \pm 1.9 \cdot 10^{-4} \) | \(a_{695}= +0.08386167 \pm 4.0 \cdot 10^{-4} \) | \(a_{696}= +0.37259057 \pm 2.0 \cdot 10^{-4} \) |
\(a_{697}= +0.05896182 \pm 4.0 \cdot 10^{-4} \) | \(a_{698}= -0.08113940 \pm 4.4 \cdot 10^{-4} \) | \(a_{699}= +0.09170192 \pm 5.0 \cdot 10^{-4} \) |
\(a_{700}= -0.01461760 \pm 4.3 \cdot 10^{-4} \) | \(a_{701}= +1.01818332 \pm 1.9 \cdot 10^{-4} \) | \(a_{702}= +0.58139680 \pm 2.3 \cdot 10^{-4} \) |
\(a_{703}= +0.41622578 \pm 5.2 \cdot 10^{-4} \) | \(a_{704}= +0.89111307 \pm 2.0 \cdot 10^{-4} \) | \(a_{705}= -0.09564493 \pm 5.8 \cdot 10^{-4} \) |
\(a_{706}= +1.29662569 \pm 1.2 \cdot 10^{-4} \) | \(a_{707}= -0.43780054 \pm 1.2 \cdot 10^{-4} \) | \(a_{708}= +0.02539310 \pm 2.4 \cdot 10^{-4} \) |
\(a_{709}= +0.46450850 \pm 4.3 \cdot 10^{-4} \) | \(a_{710}= -0.00318718 \pm 5.1 \cdot 10^{-4} \) | \(a_{711}= -1.20695286 \pm 2.0 \cdot 10^{-4} \) |
\(a_{712}= -0.08183145 \pm 3.8 \cdot 10^{-4} \) | \(a_{713}= -0.02777885 \pm 1.6 \cdot 10^{-4} \) | \(a_{714}= +0.02703416 \pm 1.2 \cdot 10^{-4} \) |
\(a_{715}= +0.48650131 \pm 4.2 \cdot 10^{-4} \) | \(a_{716}= +0.05850538 \pm 4.3 \cdot 10^{-4} \) | \(a_{717}= +0.02579474 \pm 2.8 \cdot 10^{-4} \) |
\(a_{718}= +0.75086986 \pm 1.9 \cdot 10^{-4} \) | \(a_{719}= +1.24521127 \pm 1.3 \cdot 10^{-4} \) | \(a_{720}= +0.38645282 \pm 3.2 \cdot 10^{-4} \) |
\(a_{721}= +0.58824742 \pm 1.1 \cdot 10^{-4} \) | \(a_{722}= +1.13534839 \pm 2.8 \cdot 10^{-4} \) | \(a_{723}= +0.08654236 \pm 2.0 \cdot 10^{-4} \) |
\(a_{724}= -0.09862460 \pm 3.4 \cdot 10^{-4} \) | \(a_{725}= +0.30045129 \pm 1.6 \cdot 10^{-4} \) | \(a_{726}= +0.06899852 \pm 2.7 \cdot 10^{-4} \) |
\(a_{727}= -1.65667362 \pm 3.8 \cdot 10^{-4} \) | \(a_{728}= -1.27297481 \pm 7.9 \cdot 10^{-5} \) | \(a_{729}= -0.67163149 \pm 2.7 \cdot 10^{-4} \) |
\(a_{730}= -0.66402039 \pm 6.3 \cdot 10^{-4} \) | \(a_{731}= +0.04081780 \pm 3.9 \cdot 10^{-4} \) | \(a_{732}= -0.01897612 \pm 1.4 \cdot 10^{-4} \) |
\(a_{733}= -0.13718798 \pm 2.4 \cdot 10^{-4} \) | \(a_{734}= -0.09680005 \pm 4.4 \cdot 10^{-4} \) | \(a_{735}= +0.01119687 \pm 6.6 \cdot 10^{-4} \) |
\(a_{736}= +0.13210112 \pm 1.4 \cdot 10^{-4} \) | \(a_{737}= -0.98300179 \pm 7.5 \cdot 10^{-5} \) | \(a_{738}= +0.43025958 \pm 1.5 \cdot 10^{-4} \) |
\(a_{739}= -0.70367381 \pm 2.9 \cdot 10^{-4} \) | \(a_{740}= -0.00973262 \pm 7.3 \cdot 10^{-4} \) | \(a_{741}= -0.46022663 \pm 1.2 \cdot 10^{-4} \) |
\(a_{742}= -1.66216862 \pm 9.4 \cdot 10^{-5} \) | \(a_{743}= +1.29302802 \pm 4.8 \cdot 10^{-4} \) | \(a_{744}= -0.00803767 \pm 2.4 \cdot 10^{-4} \) |
\(a_{745}= -0.77036098 \pm 1.2 \cdot 10^{-4} \) | \(a_{746}= +1.25377807 \pm 4.9 \cdot 10^{-4} \) | \(a_{747}= +0.79862923 \pm 1.5 \cdot 10^{-4} \) |
\(a_{748}= +0.00801943 \pm 1.5 \cdot 10^{-4} \) | \(a_{749}= +0.46698124 \pm 1.7 \cdot 10^{-4} \) | \(a_{750}= -0.02059316 \pm 6.9 \cdot 10^{-4} \) |
\(a_{751}= -1.06522102 \pm 3.2 \cdot 10^{-4} \) | \(a_{752}= -0.81806987 \pm 1.1 \cdot 10^{-4} \) | \(a_{753}= -0.15859178 \pm 5.3 \cdot 10^{-4} \) |
\(a_{754}= +1.87590851 \pm 1.0 \cdot 10^{-4} \) | \(a_{755}= +0.15507416 \pm 2.2 \cdot 10^{-4} \) | \(a_{756}= -0.03402916 \pm 9.8 \cdot 10^{-5} \) |
\(a_{757}= +0.22685331 \pm 2.7 \cdot 10^{-4} \) | \(a_{758}= -1.62875127 \pm 2.8 \cdot 10^{-4} \) | \(a_{759}= -0.17192979 \pm 1.0 \cdot 10^{-4} \) |
\(a_{760}= -0.68357910 \pm 6.5 \cdot 10^{-4} \) | \(a_{761}= +0.60789797 \pm 3.3 \cdot 10^{-4} \) | \(a_{762}= -0.04628295 \pm 3.0 \cdot 10^{-4} \) |
\(a_{763}= +1.67295567 \pm 8.3 \cdot 10^{-5} \) | \(a_{764}= +0.01179296 \pm 8.6 \cdot 10^{-5} \) | \(a_{765}= +0.05230139 \pm 5.4 \cdot 10^{-4} \) |
\(a_{766}= -1.61284770 \pm 3.8 \cdot 10^{-4} \) | \(a_{767}= +1.78320643 \pm 1.6 \cdot 10^{-4} \) | \(a_{768}= +0.05519397 \pm 2.7 \cdot 10^{-4} \) |
\(a_{769}= +0.84968969 \pm 2.4 \cdot 10^{-4} \) | \(a_{770}= +0.34021303 \pm 6.6 \cdot 10^{-4} \) | \(a_{771}= -0.13292027 \pm 2.6 \cdot 10^{-4} \) |
\(a_{772}= -0.03646760 \pm 9.7 \cdot 10^{-5} \) | \(a_{773}= -0.00666537 \pm 1.9 \cdot 10^{-4} \) | \(a_{774}= +0.29785800 \pm 6.1 \cdot 10^{-5} \) |
\(a_{775}= -0.00648146 \pm 3.5 \cdot 10^{-4} \) | \(a_{776}= -0.64679852 \pm 2.6 \cdot 10^{-4} \) | \(a_{777}= -0.06391246 \pm 1.4 \cdot 10^{-4} \) |
\(a_{778}= +0.38870374 \pm 2.7 \cdot 10^{-4} \) | \(a_{779}= -0.70193460 \pm 2.5 \cdot 10^{-4} \) | \(a_{780}= +0.01076149 \pm 8.9 \cdot 10^{-4} \) |
\(a_{781}= -0.00620858 \pm 1.3 \cdot 10^{-4} \) | \(a_{782}= -0.10216683 \pm 1.5 \cdot 10^{-4} \) | \(a_{783}= +0.69943785 \pm 1.1 \cdot 10^{-4} \) |
\(a_{784}= +0.09576900 \pm 1.1 \cdot 10^{-4} \) | \(a_{785}= -0.65817443 \pm 3.2 \cdot 10^{-4} \) | \(a_{786}= +0.43360254 \pm 4.3 \cdot 10^{-4} \) |
\(a_{787}= -0.80471615 \pm 2.3 \cdot 10^{-4} \) | \(a_{788}= +0.00554100 \pm 3.5 \cdot 10^{-4} \) | \(a_{789}= -0.01605200 \pm 3.9 \cdot 10^{-4} \) |
\(a_{790}= +0.55010466 \pm 7.5 \cdot 10^{-4} \) | \(a_{791}= +1.54111994 \pm 1.2 \cdot 10^{-4} \) | \(a_{792}= +0.81622351 \pm 1.6 \cdot 10^{-4} \) |
\(a_{793}= -1.33257966 \pm 1.2 \cdot 10^{-4} \) | \(a_{794}= -1.06866585 \pm 4.1 \cdot 10^{-4} \) | \(a_{795}= +0.19598988 \pm 7.1 \cdot 10^{-4} \) |
\(a_{796}= +0.07726354 \pm 3.7 \cdot 10^{-4} \) | \(a_{797}= +0.29866839 \pm 2.9 \cdot 10^{-4} \) | \(a_{798}= -0.32183901 \pm 1.5 \cdot 10^{-4} \) |
\(a_{799}= -0.11071518 \pm 3.0 \cdot 10^{-4} \) | \(a_{800}= +0.03082229 \pm 3.6 \cdot 10^{-4} \) | \(a_{801}= -0.07453676 \pm 1.4 \cdot 10^{-4} \) |
\(a_{802}= +0.08310990 \pm 5.0 \cdot 10^{-4} \) | \(a_{803}= -1.29350422 \pm 1.3 \cdot 10^{-4} \) | \(a_{804}= -0.02174416 \pm 1.6 \cdot 10^{-4} \) |
\(a_{805}= +0.36276814 \pm 2.8 \cdot 10^{-4} \) | \(a_{806}= -0.04046786 \pm 4.4 \cdot 10^{-4} \) | \(a_{807}= -0.01601532 \pm 3.5 \cdot 10^{-4} \) |
\(a_{808}= +0.47872870 \pm 2.6 \cdot 10^{-4} \) | \(a_{809}= -0.73785807 \pm 2.7 \cdot 10^{-4} \) | \(a_{810}= +0.35697788 \pm 7.1 \cdot 10^{-4} \) |
\(a_{811}= -0.93356109 \pm 2.2 \cdot 10^{-4} \) | \(a_{812}= -0.10979695 \pm 4.8 \cdot 10^{-5} \) | \(a_{813}= +0.36189301 \pm 2.7 \cdot 10^{-4} \) |
\(a_{814}= +0.22651884 \pm 1.6 \cdot 10^{-4} \) | \(a_{815}= +0.27774321 \pm 2.9 \cdot 10^{-4} \) | \(a_{816}= -0.02726465 \pm 1.3 \cdot 10^{-4} \) |
\(a_{817}= -0.48593186 \pm 4.6 \cdot 10^{-4} \) | \(a_{818}= +0.62058062 \pm 3.9 \cdot 10^{-4} \) | \(a_{819}= -1.15949822 \pm 8.9 \cdot 10^{-5} \) |
\(a_{820}= +0.01641335 \pm 6.7 \cdot 10^{-4} \) | \(a_{821}= -0.36563878 \pm 2.4 \cdot 10^{-4} \) | \(a_{822}= -0.17729143 \pm 5.2 \cdot 10^{-4} \) |
\(a_{823}= -1.12323450 \pm 3.9 \cdot 10^{-4} \) | \(a_{824}= -0.64324024 \pm 1.5 \cdot 10^{-4} \) | \(a_{825}= -0.04011525 \pm 5.4 \cdot 10^{-4} \) |
\(a_{826}= +1.24700605 \pm 1.5 \cdot 10^{-4} \) | \(a_{827}= +0.87301831 \pm 2.5 \cdot 10^{-4} \) | \(a_{828}= +0.06239952 \pm 5.6 \cdot 10^{-5} \) |
\(a_{829}= +0.34554574 \pm 5.0 \cdot 10^{-4} \) | \(a_{830}= -0.36399902 \pm 7.0 \cdot 10^{-4} \) | \(a_{831}= +0.11767965 \pm 3.3 \cdot 10^{-4} \) |
\(a_{832}= +1.38422591 \pm 3.0 \cdot 10^{-4} \) | \(a_{833}= +0.01296110 \pm 3.3 \cdot 10^{-4} \) | \(a_{834}= -0.04317443 \pm 3.0 \cdot 10^{-4} \) |
\(a_{835}= +0.13558603 \pm 2.8 \cdot 10^{-4} \) | \(a_{836}= -0.09547049 \pm 6.3 \cdot 10^{-5} \) | \(a_{837}= -0.01508856 \pm 3.2 \cdot 10^{-4} \) |
\(a_{838}= -0.00014369 \pm 1.5 \cdot 10^{-4} \) | \(a_{839}= +0.88929997 \pm 1.9 \cdot 10^{-4} \) | \(a_{840}= +0.10496519 \pm 8.1 \cdot 10^{-4} \) |
\(a_{841}= +1.25677440 \pm 2.9 \cdot 10^{-4} \) | \(a_{842}= -0.02947959 \pm 1.9 \cdot 10^{-4} \) | \(a_{843}= -0.27489896 \pm 1.3 \cdot 10^{-4} \) |
\(a_{844}= +0.11472120 \pm 1.1 \cdot 10^{-4} \) | \(a_{845}= +0.30850162 \pm 2.8 \cdot 10^{-4} \) | \(a_{846}= -0.80791721 \pm 1.5 \cdot 10^{-4} \) |
\(a_{847}= -0.28359868 \pm 1.1 \cdot 10^{-4} \) | \(a_{848}= +1.67633984 \pm 1.0 \cdot 10^{-4} \) | \(a_{849}= -0.11071646 \pm 3.9 \cdot 10^{-4} \) |
\(a_{850}= -0.02383792 \pm 7.0 \cdot 10^{-4} \) | \(a_{851}= +0.24153636 \pm 1.1 \cdot 10^{-4} \) | \(a_{852}= -0.00013733 \pm 7.7 \cdot 10^{-5} \) |
\(a_{853}= +0.29690114 \pm 2.9 \cdot 10^{-4} \) | \(a_{854}= -0.93188027 \pm 1.0 \cdot 10^{-4} \) | \(a_{855}= -0.62264291 \pm 5.2 \cdot 10^{-4} \) |
\(a_{856}= -0.51063739 \pm 2.5 \cdot 10^{-4} \) | \(a_{857}= +0.33709451 \pm 3.1 \cdot 10^{-4} \) | \(a_{858}= -0.25046503 \pm 1.3 \cdot 10^{-4} \) |
\(a_{859}= +0.69061767 \pm 3.0 \cdot 10^{-4} \) | \(a_{860}= +0.01136255 \pm 6.6 \cdot 10^{-4} \) | \(a_{861}= +0.10778373 \pm 1.3 \cdot 10^{-4} \) |
\(a_{862}= -0.71320878 \pm 2.3 \cdot 10^{-4} \) | \(a_{863}= -0.77327967 \pm 4.6 \cdot 10^{-4} \) | \(a_{864}= +0.07175298 \pm 3.1 \cdot 10^{-4} \) |
\(a_{865}= -0.30505193 \pm 3.2 \cdot 10^{-4} \) | \(a_{866}= -1.63437483 \pm 2.7 \cdot 10^{-4} \) | \(a_{867}= +0.23599024 \pm 9.9 \cdot 10^{-5} \) |
\(a_{868}= +0.00236858 \pm 1.6 \cdot 10^{-4} \) | \(a_{869}= +1.07159767 \pm 1.6 \cdot 10^{-4} \) | \(a_{870}= -0.15468106 \pm 8.6 \cdot 10^{-4} \) |
\(a_{871}= -1.52696282 \pm 8.3 \cdot 10^{-5} \) | \(a_{872}= -1.82935337 \pm 1.3 \cdot 10^{-4} \) | \(a_{873}= -0.58914106 \pm 1.9 \cdot 10^{-4} \) |
\(a_{874}= +1.21628594 \pm 1.1 \cdot 10^{-4} \) | \(a_{875}= +0.08464231 \pm 1.3 \cdot 10^{-4} \) | \(a_{876}= -0.02861252 \pm 2.4 \cdot 10^{-4} \) |
\(a_{877}= +0.02744143 \pm 2.8 \cdot 10^{-4} \) | \(a_{878}= -0.24950013 \pm 3.1 \cdot 10^{-4} \) | \(a_{879}= -0.16739228 \pm 4.8 \cdot 10^{-4} \) |
\(a_{880}= -0.34311360 \pm 3.3 \cdot 10^{-4} \) | \(a_{881}= +0.13622349 \pm 2.5 \cdot 10^{-4} \) | \(a_{882}= +0.09458046 \pm 9.9 \cdot 10^{-5} \) |
\(a_{883}= +0.80975509 \pm 2.6 \cdot 10^{-4} \) | \(a_{884}= +0.01245712 \pm 2.3 \cdot 10^{-4} \) | \(a_{885}= -0.14703717 \pm 6.4 \cdot 10^{-4} \) |
\(a_{886}= +1.33735946 \pm 3.6 \cdot 10^{-4} \) | \(a_{887}= +0.23610732 \pm 4.4 \cdot 10^{-4} \) | \(a_{888}= +0.06988737 \pm 4.6 \cdot 10^{-4} \) |
\(a_{889}= +0.19023284 \pm 1.4 \cdot 10^{-4} \) | \(a_{890}= +0.03397235 \pm 7.6 \cdot 10^{-4} \) | \(a_{891}= +0.69538888 \pm 1.6 \cdot 10^{-4} \) |
\(a_{892}= +0.05806773 \pm 3.2 \cdot 10^{-4} \) | \(a_{893}= +1.31805328 \pm 5.5 \cdot 10^{-5} \) | \(a_{894}= +0.39660425 \pm 1.7 \cdot 10^{-4} \) |
\(a_{895}= -0.33877171 \pm 3.4 \cdot 10^{-4} \) | \(a_{896}= +0.82215652 \pm 1.0 \cdot 10^{-4} \) | \(a_{897}= -0.26707011 \pm 1.1 \cdot 10^{-4} \) |
\(a_{898}= -0.06111437 \pm 3.4 \cdot 10^{-4} \) | \(a_{899}= -0.04868405 \pm 1.0 \cdot 10^{-4} \) | \(a_{900}= +0.01455927 \pm 4.6 \cdot 10^{-4} \) |
\(a_{901}= +0.22687093 \pm 3.8 \cdot 10^{-4} \) | \(a_{902}= -0.38200760 \pm 2.9 \cdot 10^{-4} \) | \(a_{903}= +0.07461599 \pm 1.2 \cdot 10^{-4} \) |
\(a_{904}= -1.68519287 \pm 2.0 \cdot 10^{-4} \) | \(a_{905}= +0.57107955 \pm 3.6 \cdot 10^{-4} \) | \(a_{906}= -0.07983669 \pm 2.8 \cdot 10^{-4} \) |
\(a_{907}= -0.42897246 \pm 4.5 \cdot 10^{-4} \) | \(a_{908}= -0.14943547 \pm 2.5 \cdot 10^{-4} \) | \(a_{909}= +0.43605347 \pm 1.9 \cdot 10^{-4} \) |
\(a_{910}= +0.52847580 \pm 7.1 \cdot 10^{-4} \) | \(a_{911}= +0.65377318 \pm 4.6 \cdot 10^{-4} \) | \(a_{912}= +0.32458293 \pm 1.5 \cdot 10^{-4} \) |
\(a_{913}= -0.70906599 \pm 1.3 \cdot 10^{-4} \) | \(a_{914}= +1.53368192 \pm 3.5 \cdot 10^{-4} \) | \(a_{915}= +0.10988001 \pm 5.6 \cdot 10^{-4} \) |
\(a_{916}= +0.07619898 \pm 3.6 \cdot 10^{-4} \) | \(a_{917}= -1.78219929 \pm 1.5 \cdot 10^{-4} \) | \(a_{918}= -0.05549366 \pm 3.0 \cdot 10^{-4} \) |
\(a_{919}= -0.78784370 \pm 3.2 \cdot 10^{-4} \) | \(a_{920}= -0.39668183 \pm 4.5 \cdot 10^{-4} \) | \(a_{921}= -0.24758527 \pm 3.0 \cdot 10^{-4} \) |
\(a_{922}= +0.98100217 \pm 3.4 \cdot 10^{-4} \) | \(a_{923}= -0.00964421 \pm 1.4 \cdot 10^{-4} \) | \(a_{924}= +0.01465972 \pm 5.1 \cdot 10^{-5} \) |
\(a_{925}= +0.05635610 \pm 4.4 \cdot 10^{-4} \) | \(a_{926}= -0.94090631 \pm 2.5 \cdot 10^{-4} \) | \(a_{927}= -0.58589998 \pm 9.5 \cdot 10^{-5} \) |
\(a_{928}= +0.23151491 \pm 1.3 \cdot 10^{-4} \) | \(a_{929}= -0.54235365 \pm 1.7 \cdot 10^{-4} \) | \(a_{930}= +0.00333684 \pm 1.0 \cdot 10^{-3} \) |
\(a_{931}= -0.15430057 \pm 2.9 \cdot 10^{-4} \) | \(a_{932}= +0.02954949 \pm 3.1 \cdot 10^{-4} \) | \(a_{933}= +0.28507460 \pm 2.7 \cdot 10^{-4} \) |
\(a_{934}= -0.42793473 \pm 2.0 \cdot 10^{-4} \) | \(a_{935}= -0.04643599 \pm 5.5 \cdot 10^{-4} \) | \(a_{936}= +1.26789491 \pm 1.8 \cdot 10^{-4} \) |
\(a_{937}= +1.77680738 \pm 5.4 \cdot 10^{-4} \) | \(a_{938}= -1.06781349 \pm 7.9 \cdot 10^{-5} \) | \(a_{939}= +0.00499234 \pm 2.8 \cdot 10^{-4} \) |
\(a_{940}= -0.03082007 \pm 5.1 \cdot 10^{-4} \) | \(a_{941}= -0.85309063 \pm 3.8 \cdot 10^{-4} \) | \(a_{942}= +0.33884734 \pm 3.0 \cdot 10^{-4} \) |
\(a_{943}= -0.40733356 \pm 1.9 \cdot 10^{-4} \) | \(a_{944}= -1.25763770 \pm 1.4 \cdot 10^{-4} \) | \(a_{945}= +0.19704371 \pm 4.1 \cdot 10^{-4} \) |
\(a_{946}= -0.26445435 \pm 5.0 \cdot 10^{-5} \) | \(a_{947}= +1.03077521 \pm 4.3 \cdot 10^{-4} \) | \(a_{948}= +0.02370391 \pm 3.0 \cdot 10^{-4} \) |
\(a_{949}= -2.00928716 \pm 1.6 \cdot 10^{-4} \) | \(a_{950}= +0.28378803 \pm 6.8 \cdot 10^{-4} \) | \(a_{951}= +0.02645757 \pm 5.4 \cdot 10^{-4} \) |
\(a_{952}= +0.12150398 \pm 1.0 \cdot 10^{-4} \) | \(a_{953}= +1.20297958 \pm 4.8 \cdot 10^{-4} \) | \(a_{954}= +1.65553561 \pm 1.1 \cdot 10^{-4} \) |
\(a_{955}= -0.06828641 \pm 9.3 \cdot 10^{-5} \) | \(a_{956}= +0.00831195 \pm 2.3 \cdot 10^{-4} \) | \(a_{957}= -0.30131697 \pm 1.1 \cdot 10^{-4} \) |
\(a_{958}= -1.19154769 \pm 4.0 \cdot 10^{-4} \) | \(a_{959}= +0.72870574 \pm 1.5 \cdot 10^{-4} \) | \(a_{960}= -0.11413858 \pm 6.9 \cdot 10^{-4} \) |
\(a_{961}= -0.99894977 \pm 4.4 \cdot 10^{-4} \) | \(a_{962}= +0.35186695 \pm 1.8 \cdot 10^{-4} \) | \(a_{963}= -0.46511772 \pm 2.3 \cdot 10^{-4} \) |
\(a_{964}= +0.02788690 \pm 2.0 \cdot 10^{-4} \) | \(a_{965}= +0.21116331 \pm 1.4 \cdot 10^{-4} \) | \(a_{966}= -0.18676359 \pm 1.1 \cdot 10^{-4} \) |
\(a_{967}= +0.34602959 \pm 2.2 \cdot 10^{-4} \) | \(a_{968}= +0.31011114 \pm 2.6 \cdot 10^{-4} \) | \(a_{969}= +0.04392810 \pm 3.9 \cdot 10^{-4} \) |
\(a_{970}= +0.26851856 \pm 6.1 \cdot 10^{-4} \) | \(a_{971}= +0.20593505 \pm 2.6 \cdot 10^{-4} \) | \(a_{972}= +0.05134121 \pm 1.0 \cdot 10^{-4} \) |
\(a_{973}= +0.17745615 \pm 1.6 \cdot 10^{-4} \) | \(a_{974}= +0.39864237 \pm 3.2 \cdot 10^{-4} \) | \(a_{975}= -0.06231372 \pm 5.9 \cdot 10^{-4} \) |
\(a_{976}= +0.93982524 \pm 8.9 \cdot 10^{-5} \) | \(a_{977}= +1.35869494 \pm 2.2 \cdot 10^{-4} \) | \(a_{978}= -0.14299028 \pm 2.7 \cdot 10^{-4} \) |
\(a_{979}= +0.06617775 \pm 1.5 \cdot 10^{-4} \) | \(a_{980}= +0.00360801 \pm 5.9 \cdot 10^{-4} \) | \(a_{981}= -1.66627961 \pm 9.6 \cdot 10^{-5} \) |
\(a_{982}= +0.31019813 \pm 1.7 \cdot 10^{-4} \) | \(a_{983}= +1.19438725 \pm 3.4 \cdot 10^{-4} \) | \(a_{984}= -0.11785998 \pm 2.6 \cdot 10^{-4} \) |
\(a_{985}= -0.03208482 \pm 3.4 \cdot 10^{-4} \) | \(a_{986}= -0.17905331 \pm 1.2 \cdot 10^{-4} \) | \(a_{987}= -0.20239021 \pm 6.8 \cdot 10^{-5} \) |
\(a_{988}= -0.14830074 \pm 8.5 \cdot 10^{-5} \) | \(a_{989}= -0.28198688 \pm 5.6 \cdot 10^{-5} \) | \(a_{990}= -0.33885539 \pm 6.9 \cdot 10^{-4} \) |
\(a_{991}= +0.92868770 \pm 3.4 \cdot 10^{-4} \) | \(a_{992}= -0.00499433 \pm 4.4 \cdot 10^{-4} \) | \(a_{993}= -0.10829978 \pm 2.4 \cdot 10^{-4} \) |
\(a_{994}= -0.00674425 \pm 1.4 \cdot 10^{-4} \) | \(a_{995}= -0.44738965 \pm 4.6 \cdot 10^{-4} \) | \(a_{996}= -0.01568466 \pm 2.8 \cdot 10^{-4} \) |
\(a_{997}= -0.27873450 \pm 4.7 \cdot 10^{-4} \) | \(a_{998}= -1.20673864 \pm 3.6 \cdot 10^{-4} \) | \(a_{999}= +0.13119460 \pm 3.6 \cdot 10^{-4} \) |
\(a_{1000}= -0.09255517 \pm 3.1 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000