Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(10.1961201777286022110710364105 \pm 3 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.16609433 \pm 3.4 \cdot 10^{-7} \) | \(a_{6}= -0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= -1.22121809 \pm 3.3 \cdot 10^{-7} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.82455321 \pm 3.5 \cdot 10^{-7} \) | \(a_{11}= +0.66633898 \pm 2.6 \cdot 10^{-7} \) | \(a_{12}= +0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= +1.10843532 \pm 4.4 \cdot 10^{-7} \) | \(a_{14}= +0.86353159 \pm 3.4 \cdot 10^{-7} \) | \(a_{15}= +0.67324488 \pm 3.5 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.81084087 \pm 2.7 \cdot 10^{-7} \) | \(a_{18}= -0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= +1.81939405 \pm 5.9 \cdot 10^{-7} \) | \(a_{20}= +0.58304717 \pm 3.5 \cdot 10^{-7} \) | \(a_{21}= -0.70507059 \pm 3.4 \cdot 10^{-7} \) |
\(a_{22}= -0.47117281 \pm 2.7 \cdot 10^{-7} \) | \(a_{23}= +0.90816965 \pm 4.2 \cdot 10^{-7} \) | \(a_{24}= -0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= +0.35977600 \pm 3.2 \cdot 10^{-7} \) | \(a_{26}= -0.78378213 \pm 4.5 \cdot 10^{-7} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.61060905 \pm 3.4 \cdot 10^{-7} \) | \(a_{29}= +0.55744999 \pm 3.2 \cdot 10^{-7} \) | \(a_{30}= -0.47605602 \pm 3.5 \cdot 10^{-7} \) |
\(a_{31}= +1.22404245 \pm 5.5 \cdot 10^{-7} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.38471099 \pm 2.7 \cdot 10^{-7} \) |
\(a_{34}= +0.57335108 \pm 2.8 \cdot 10^{-7} \) | \(a_{35}= -1.42405550 \pm 2.6 \cdot 10^{-7} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= +0.05711803 \pm 4.7 \cdot 10^{-7} \) | \(a_{38}= -1.28650587 \pm 6.0 \cdot 10^{-7} \) | \(a_{39}= +0.63995543 \pm 4.5 \cdot 10^{-7} \) |
\(a_{40}= -0.41227661 \pm 3.5 \cdot 10^{-7} \) | \(a_{41}= -0.00975442 \pm 2.5 \cdot 10^{-7} \) | \(a_{42}= +0.49856020 \pm 3.4 \cdot 10^{-7} \) |
\(a_{43}= +1.35478126 \pm 2.5 \cdot 10^{-7} \) | \(a_{44}= +0.33316949 \pm 2.7 \cdot 10^{-7} \) | \(a_{45}= +0.38869811 \pm 3.5 \cdot 10^{-7} \) |
\(a_{46}= -0.64217292 \pm 4.3 \cdot 10^{-7} \) | \(a_{47}= -1.36877108 \pm 3.8 \cdot 10^{-7} \) | \(a_{48}= +0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= +0.49137363 \pm 3.7 \cdot 10^{-7} \) | \(a_{50}= -0.25440005 \pm 3.3 \cdot 10^{-7} \) | \(a_{51}= -0.46813920 \pm 2.8 \cdot 10^{-7} \) |
\(a_{52}= +0.55421766 \pm 4.5 \cdot 10^{-7} \) | \(a_{53}= -1.37827780 \pm 5.9 \cdot 10^{-7} \) | \(a_{54}= -0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= +0.77701411 \pm 2.8 \cdot 10^{-7} \) | \(a_{56}= +0.43176580 \pm 3.4 \cdot 10^{-7} \) | \(a_{57}= +1.05042765 \pm 6.0 \cdot 10^{-7} \) |
\(a_{58}= -0.39417667 \pm 3.3 \cdot 10^{-7} \) | \(a_{59}= +0.28180059 \pm 4.7 \cdot 10^{-7} \) | \(a_{60}= +0.33662244 \pm 3.5 \cdot 10^{-7} \) |
\(a_{61}= -0.04179652 \pm 4.2 \cdot 10^{-7} \) | \(a_{62}= -0.86552872 \pm 5.6 \cdot 10^{-7} \) | \(a_{63}= -0.40707270 \pm 3.4 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +1.29254015 \pm 1.9 \cdot 10^{-7} \) | \(a_{66}= -0.27203175 \pm 2.7 \cdot 10^{-7} \) |
\(a_{67}= -1.81982643 \pm 1.8 \cdot 10^{-7} \) | \(a_{68}= -0.40542044 \pm 2.8 \cdot 10^{-7} \) | \(a_{69}= +0.52433199 \pm 4.3 \cdot 10^{-7} \) |
\(a_{70}= +1.00695930 \pm 6.8 \cdot 10^{-7} \) | \(a_{71}= -0.57178501 \pm 4.7 \cdot 10^{-7} \) | \(a_{72}= -0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= +0.16815033 \pm 5.3 \cdot 10^{-7} \) | \(a_{74}= -0.04038855 \pm 4.8 \cdot 10^{-7} \) | \(a_{75}= +0.20771677 \pm 3.3 \cdot 10^{-7} \) |
\(a_{76}= +0.90969703 \pm 6.0 \cdot 10^{-7} \) | \(a_{77}= -0.81374521 \pm 1.1 \cdot 10^{-7} \) | \(a_{78}= -0.45251682 \pm 4.5 \cdot 10^{-7} \) |
\(a_{79}= +0.80565446 \pm 2.8 \cdot 10^{-7} \) | \(a_{80}= +0.29152358 \pm 3.5 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.00689742 \pm 2.6 \cdot 10^{-7} \) | \(a_{83}= +1.31568362 \pm 2.6 \cdot 10^{-7} \) | \(a_{84}= -0.35253530 \pm 3.4 \cdot 10^{-7} \) |
\(a_{85}= -0.94551695 \pm 2.7 \cdot 10^{-7} \) | \(a_{86}= -0.95797502 \pm 2.6 \cdot 10^{-7} \) | \(a_{87}= +0.32184390 \pm 3.3 \cdot 10^{-7} \) |
\(a_{88}= -0.23558640 \pm 2.7 \cdot 10^{-7} \) | \(a_{89}= -1.02513748 \pm 6.4 \cdot 10^{-7} \) | \(a_{90}= -0.27485107 \pm 3.5 \cdot 10^{-7} \) |
\(a_{91}= -1.35364127 \pm 2.0 \cdot 10^{-7} \) | \(a_{92}= +0.45408483 \pm 4.3 \cdot 10^{-7} \) | \(a_{93}= +0.70670124 \pm 5.6 \cdot 10^{-7} \) |
\(a_{94}= +0.96786731 \pm 3.9 \cdot 10^{-7} \) | \(a_{95}= +2.12158510 \pm 3.7 \cdot 10^{-7} \) | \(a_{96}= -0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= -0.28724622 \pm 5.7 \cdot 10^{-7} \) | \(a_{98}= -0.34745362 \pm 3.8 \cdot 10^{-7} \) | \(a_{99}= +0.22211299 \pm 2.7 \cdot 10^{-7} \) |
\(a_{100}= +0.17988800 \pm 3.3 \cdot 10^{-7} \) | \(a_{101}= -0.63468765 \pm 3.4 \cdot 10^{-7} \) | \(a_{102}= +0.33102440 \pm 2.8 \cdot 10^{-7} \) |
\(a_{103}= +0.38452034 \pm 4.2 \cdot 10^{-7} \) | \(a_{104}= -0.39189107 \pm 4.5 \cdot 10^{-7} \) | \(a_{105}= -0.82217882 \pm 6.8 \cdot 10^{-7} \) |
\(a_{106}= +0.97458958 \pm 6.0 \cdot 10^{-7} \) | \(a_{107}= -0.76888398 \pm 4.3 \cdot 10^{-7} \) | \(a_{108}= +0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= -0.95584906 \pm 4.5 \cdot 10^{-7} \) | \(a_{110}= -0.54943194 \pm 6.1 \cdot 10^{-7} \) | \(a_{111}= +0.03297711 \pm 4.8 \cdot 10^{-7} \) |
\(a_{112}= -0.30530452 \pm 3.4 \cdot 10^{-7} \) | \(a_{113}= +0.66137465 \pm 6.6 \cdot 10^{-7} \) | \(a_{114}= -0.74276451 \pm 6.0 \cdot 10^{-7} \) |
\(a_{115}= +1.05901149 \pm 2.5 \cdot 10^{-7} \) | \(a_{116}= +0.27872499 \pm 3.3 \cdot 10^{-7} \) | \(a_{117}= +0.36947844 \pm 4.5 \cdot 10^{-7} \) |
\(a_{118}= -0.19926311 \pm 4.8 \cdot 10^{-7} \) | \(a_{119}= +0.99021354 \pm 2.5 \cdot 10^{-7} \) | \(a_{120}= -0.23802801 \pm 3.5 \cdot 10^{-7} \) |
\(a_{121}= -0.55599237 \pm 3.7 \cdot 10^{-7} \) | \(a_{122}= +0.02955460 \pm 4.3 \cdot 10^{-7} \) | \(a_{123}= -0.00563172 \pm 2.6 \cdot 10^{-7} \) |
\(a_{124}= +0.61202123 \pm 5.6 \cdot 10^{-7} \) | \(a_{125}= -0.74656158 \pm 3.8 \cdot 10^{-7} \) | \(a_{126}= +0.28784386 \pm 3.4 \cdot 10^{-7} \) |
\(a_{127}= +0.87550867 \pm 1.3 \cdot 10^{-7} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.78218333 \pm 2.6 \cdot 10^{-7} \) |
\(a_{130}= -0.91396390 \pm 7.9 \cdot 10^{-7} \) | \(a_{131}= -0.59474169 \pm 4.9 \cdot 10^{-7} \) | \(a_{132}= +0.19235549 \pm 2.7 \cdot 10^{-7} \) |
\(a_{133}= -2.22187693 \pm 2.4 \cdot 10^{-7} \) | \(a_{134}= +1.28681161 \pm 1.9 \cdot 10^{-7} \) | \(a_{135}= +0.22441496 \pm 3.5 \cdot 10^{-7} \) |
\(a_{136}= +0.28667554 \pm 2.8 \cdot 10^{-7} \) | \(a_{137}= -0.35666009 \pm 2.7 \cdot 10^{-7} \) | \(a_{138}= -0.37075871 \pm 4.3 \cdot 10^{-7} \) |
\(a_{139}= +0.27002019 \pm 4.7 \cdot 10^{-7} \) | \(a_{140}= -0.71202775 \pm 6.8 \cdot 10^{-7} \) | \(a_{141}= -0.79026035 \pm 3.9 \cdot 10^{-7} \) |
\(a_{142}= +0.40431306 \pm 4.8 \cdot 10^{-7} \) | \(a_{143}= +0.73859366 \pm 2.2 \cdot 10^{-7} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= +0.65003927 \pm 1.8 \cdot 10^{-7} \) | \(a_{146}= -0.11890024 \pm 5.4 \cdot 10^{-7} \) | \(a_{147}= +0.28369470 \pm 3.8 \cdot 10^{-7} \) |
\(a_{148}= +0.02855902 \pm 4.8 \cdot 10^{-7} \) | \(a_{149}= +0.16062708 \pm 3.4 \cdot 10^{-7} \) | \(a_{150}= -0.14687794 \pm 3.3 \cdot 10^{-7} \) |
\(a_{151}= +0.42769343 \pm 4.0 \cdot 10^{-7} \) | \(a_{152}= -0.64325294 \pm 6.0 \cdot 10^{-7} \) | \(a_{153}= -0.27028029 \pm 2.8 \cdot 10^{-7} \) |
\(a_{154}= +0.57540476 \pm 6.1 \cdot 10^{-7} \) | \(a_{155}= +1.42734897 \pm 4.4 \cdot 10^{-7} \) | \(a_{156}= +0.31997772 \pm 4.5 \cdot 10^{-7} \) |
\(a_{157}= +0.65170270 \pm 5.3 \cdot 10^{-7} \) | \(a_{158}= -0.56968373 \pm 2.9 \cdot 10^{-7} \) | \(a_{159}= -0.79574906 \pm 6.0 \cdot 10^{-7} \) |
\(a_{160}= -0.20613830 \pm 3.5 \cdot 10^{-7} \) | \(a_{161}= -1.10907321 \pm 2.5 \cdot 10^{-7} \) | \(a_{162}= -0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= -1.08879875 \pm 4.0 \cdot 10^{-7} \) | \(a_{164}= -0.00487721 \pm 2.6 \cdot 10^{-7} \) | \(a_{165}= +0.44860930 \pm 6.1 \cdot 10^{-7} \) |
\(a_{166}= -0.93032881 \pm 2.8 \cdot 10^{-7} \) | \(a_{167}= -1.05483870 \pm 5.3 \cdot 10^{-7} \) | \(a_{168}= +0.24928010 \pm 3.4 \cdot 10^{-7} \) |
\(a_{169}= +0.22862886 \pm 3.9 \cdot 10^{-7} \) | \(a_{170}= +0.66858145 \pm 6.2 \cdot 10^{-7} \) | \(a_{171}= +0.60646468 \pm 6.0 \cdot 10^{-7} \) |
\(a_{172}= +0.67739063 \pm 2.6 \cdot 10^{-7} \) | \(a_{173}= +0.39960930 \pm 5.2 \cdot 10^{-7} \) | \(a_{174}= -0.22757800 \pm 3.3 \cdot 10^{-7} \) |
\(a_{175}= -0.43936495 \pm 1.4 \cdot 10^{-7} \) | \(a_{176}= +0.16658474 \pm 2.7 \cdot 10^{-7} \) | \(a_{177}= +0.16269765 \pm 4.8 \cdot 10^{-7} \) |
\(a_{178}= +0.72488167 \pm 6.5 \cdot 10^{-7} \) | \(a_{179}= +1.09332418 \pm 5.4 \cdot 10^{-7} \) | \(a_{180}= +0.19434906 \pm 3.5 \cdot 10^{-7} \) |
\(a_{181}= -0.71361173 \pm 6.2 \cdot 10^{-7} \) | \(a_{182}= +0.95716892 \pm 7.9 \cdot 10^{-7} \) | \(a_{183}= -0.02413123 \pm 4.3 \cdot 10^{-7} \) |
\(a_{184}= -0.32108646 \pm 4.3 \cdot 10^{-7} \) | \(a_{185}= +0.06660501 \pm 3.6 \cdot 10^{-7} \) | \(a_{186}= -0.49971324 \pm 5.6 \cdot 10^{-7} \) |
\(a_{187}= -0.54029488 \pm 2.1 \cdot 10^{-7} \) | \(a_{188}= -0.68438554 \pm 3.9 \cdot 10^{-7} \) | \(a_{189}= -0.23502353 \pm 3.4 \cdot 10^{-7} \) |
\(a_{190}= -1.50018721 \pm 9.4 \cdot 10^{-7} \) | \(a_{191}= -0.42777106 \pm 3.3 \cdot 10^{-7} \) | \(a_{192}= +0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= +1.68192293 \pm 3.0 \cdot 10^{-7} \) | \(a_{194}= +0.20311375 \pm 5.8 \cdot 10^{-7} \) | \(a_{195}= +0.74624840 \pm 7.9 \cdot 10^{-7} \) |
\(a_{196}= +0.24568681 \pm 3.8 \cdot 10^{-7} \) | \(a_{197}= -1.38055136 \pm 5.5 \cdot 10^{-7} \) | \(a_{198}= -0.15705760 \pm 2.7 \cdot 10^{-7} \) |
\(a_{199}= +0.98486239 \pm 1.7 \cdot 10^{-7} \) | \(a_{200}= -0.12720002 \pm 3.3 \cdot 10^{-7} \) | \(a_{201}= -1.05067728 \pm 1.9 \cdot 10^{-7} \) |
\(a_{202}= +0.44879194 \pm 3.5 \cdot 10^{-7} \) | \(a_{203}= -0.68076801 \pm 1.5 \cdot 10^{-7} \) | \(a_{204}= -0.23406960 \pm 2.8 \cdot 10^{-7} \) |
\(a_{205}= -0.01137458 \pm 2.0 \cdot 10^{-7} \) | \(a_{206}= -0.27189694 \pm 4.4 \cdot 10^{-7} \) | \(a_{207}= +0.30272322 \pm 4.3 \cdot 10^{-7} \) |
\(a_{208}= +0.27710883 \pm 4.5 \cdot 10^{-7} \) | \(a_{209}= +1.21233317 \pm 3.6 \cdot 10^{-7} \) | \(a_{210}= +0.58136822 \pm 6.8 \cdot 10^{-7} \) |
\(a_{211}= +0.20959329 \pm 3.5 \cdot 10^{-7} \) | \(a_{212}= -0.68913890 \pm 6.0 \cdot 10^{-7} \) | \(a_{213}= -0.33012023 \pm 4.8 \cdot 10^{-7} \) |
\(a_{214}= +0.54368308 \pm 4.4 \cdot 10^{-7} \) | \(a_{215}= +1.57980276 \pm 1.8 \cdot 10^{-7} \) | \(a_{216}= -0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= -1.49482279 \pm 5.9 \cdot 10^{-7} \) | \(a_{218}= +0.67588735 \pm 4.6 \cdot 10^{-7} \) | \(a_{219}= +0.09708164 \pm 5.4 \cdot 10^{-7} \) |
\(a_{220}= +0.38850705 \pm 6.1 \cdot 10^{-7} \) | \(a_{221}= -0.89876466 \pm 1.4 \cdot 10^{-7} \) | \(a_{222}= -0.02331834 \pm 4.8 \cdot 10^{-7} \) |
\(a_{223}= -0.61923926 \pm 3.7 \cdot 10^{-7} \) | \(a_{224}= +0.21588290 \pm 3.4 \cdot 10^{-7} \) | \(a_{225}= +0.11992533 \pm 3.3 \cdot 10^{-7} \) |
\(a_{226}= -0.46766250 \pm 6.7 \cdot 10^{-7} \) | \(a_{227}= -0.41401950 \pm 3.8 \cdot 10^{-7} \) | \(a_{228}= +0.52521382 \pm 6.0 \cdot 10^{-7} \) |
\(a_{229}= +0.47597789 \pm 1.7 \cdot 10^{-7} \) | \(a_{230}= -0.74883420 \pm 7.7 \cdot 10^{-7} \) | \(a_{231}= -0.46981602 \pm 6.1 \cdot 10^{-7} \) |
\(a_{232}= -0.19708833 \pm 3.3 \cdot 10^{-7} \) | \(a_{233}= +0.95113527 \pm 7.3 \cdot 10^{-7} \) | \(a_{234}= -0.26126071 \pm 4.5 \cdot 10^{-7} \) |
\(a_{235}= -1.59611620 \pm 2.6 \cdot 10^{-7} \) | \(a_{236}= +0.14090030 \pm 4.8 \cdot 10^{-7} \) | \(a_{237}= +0.46514482 \pm 2.9 \cdot 10^{-7} \) |
\(a_{238}= -0.70018671 \pm 6.2 \cdot 10^{-7} \) | \(a_{239}= -0.19491910 \pm 4.3 \cdot 10^{-7} \) | \(a_{240}= +0.16831122 \pm 3.5 \cdot 10^{-7} \) |
\(a_{241}= +0.32484986 \pm 2.4 \cdot 10^{-7} \) | \(a_{242}= +0.39314597 \pm 3.8 \cdot 10^{-7} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.02089826 \pm 4.3 \cdot 10^{-7} \) | \(a_{245}= +0.57298800 \pm 2.6 \cdot 10^{-7} \) | \(a_{246}= +0.00398223 \pm 2.6 \cdot 10^{-7} \) |
\(a_{247}= +2.01668063 \pm 6.8 \cdot 10^{-7} \) | \(a_{248}= -0.43276436 \pm 5.6 \cdot 10^{-7} \) | \(a_{249}= +0.75961029 \pm 2.8 \cdot 10^{-7} \) |
\(a_{250}= +0.52789876 \pm 3.9 \cdot 10^{-7} \) | \(a_{251}= -0.33877666 \pm 5.0 \cdot 10^{-7} \) | \(a_{252}= -0.20353635 \pm 3.4 \cdot 10^{-7} \) |
\(a_{253}= +0.60514884 \pm 2.1 \cdot 10^{-7} \) | \(a_{254}= -0.61907812 \pm 1.4 \cdot 10^{-7} \) | \(a_{255}= -0.54589446 \pm 6.2 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.63839823 \pm 2.7 \cdot 10^{-7} \) | \(a_{258}= -0.55308714 \pm 2.6 \cdot 10^{-7} \) |
\(a_{259}= -0.06975358 \pm 5.2 \cdot 10^{-7} \) | \(a_{260}= +0.64627007 \pm 7.9 \cdot 10^{-7} \) | \(a_{261}= +0.18581666 \pm 3.3 \cdot 10^{-7} \) |
\(a_{262}= +0.42054588 \pm 5.0 \cdot 10^{-7} \) | \(a_{263}= -0.61330000 \pm 1.8 \cdot 10^{-7} \) | \(a_{264}= -0.13601587 \pm 2.7 \cdot 10^{-7} \) |
\(a_{265}= -1.60720193 \pm 4.2 \cdot 10^{-7} \) | \(a_{266}= +1.57110425 \pm 9.4 \cdot 10^{-7} \) | \(a_{267}= -0.59186340 \pm 6.5 \cdot 10^{-7} \) |
\(a_{268}= -0.90991321 \pm 1.9 \cdot 10^{-7} \) | \(a_{269}= -1.48737949 \pm 4.6 \cdot 10^{-7} \) | \(a_{270}= -0.15868534 \pm 3.5 \cdot 10^{-7} \) |
\(a_{271}= +1.09878244 \pm 5.2 \cdot 10^{-7} \) | \(a_{272}= -0.20271022 \pm 2.8 \cdot 10^{-7} \) | \(a_{273}= -0.78152515 \pm 7.9 \cdot 10^{-7} \) |
\(a_{274}= +0.25219677 \pm 2.8 \cdot 10^{-7} \) | \(a_{275}= +0.23973277 \pm 2.2 \cdot 10^{-7} \) | \(a_{276}= +0.26216600 \pm 4.3 \cdot 10^{-7} \) |
\(a_{277}= +0.65635137 \pm 3.8 \cdot 10^{-7} \) | \(a_{278}= -0.19093311 \pm 4.9 \cdot 10^{-7} \) | \(a_{279}= +0.40801415 \pm 5.6 \cdot 10^{-7} \) |
\(a_{280}= +0.50347965 \pm 6.8 \cdot 10^{-7} \) | \(a_{281}= +1.77768369 \pm 5.7 \cdot 10^{-7} \) | \(a_{282}= +0.55879845 \pm 3.9 \cdot 10^{-7} \) |
\(a_{283}= -0.88093361 \pm 2.9 \cdot 10^{-7} \) | \(a_{284}= -0.28589250 \pm 4.8 \cdot 10^{-7} \) | \(a_{285}= +1.22489773 \pm 9.4 \cdot 10^{-7} \) |
\(a_{286}= -0.52226458 \pm 7.2 \cdot 10^{-7} \) | \(a_{287}= +0.01191228 \pm 3.0 \cdot 10^{-7} \) | \(a_{288}= -0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= -0.34253708 \pm 3.4 \cdot 10^{-7} \) | \(a_{290}= -0.45964718 \pm 6.7 \cdot 10^{-7} \) | \(a_{291}= -0.16584168 \pm 5.8 \cdot 10^{-7} \) |
\(a_{292}= +0.08407516 \pm 5.4 \cdot 10^{-7} \) | \(a_{293}= -0.33868676 \pm 4.3 \cdot 10^{-7} \) | \(a_{294}= -0.20060244 \pm 3.8 \cdot 10^{-7} \) |
\(a_{295}= +0.32860608 \pm 4.0 \cdot 10^{-7} \) | \(a_{296}= -0.02019427 \pm 4.8 \cdot 10^{-7} \) | \(a_{297}= +0.12823700 \pm 2.7 \cdot 10^{-7} \) |
\(a_{298}= -0.11358050 \pm 3.5 \cdot 10^{-7} \) | \(a_{299}= +1.00664732 \pm 4.6 \cdot 10^{-7} \) | \(a_{300}= +0.10385838 \pm 3.3 \cdot 10^{-7} \) |
\(a_{301}= -1.65448339 \pm 1.1 \cdot 10^{-7} \) | \(a_{302}= -0.30242492 \pm 4.1 \cdot 10^{-7} \) | \(a_{303}= -0.36643708 \pm 3.5 \cdot 10^{-7} \) |
\(a_{304}= +0.45484851 \pm 6.0 \cdot 10^{-7} \) | \(a_{305}= -0.04873869 \pm 4.1 \cdot 10^{-7} \) | \(a_{306}= +0.19111703 \pm 2.8 \cdot 10^{-7} \) |
\(a_{307}= +1.54813743 \pm 2.2 \cdot 10^{-7} \) | \(a_{308}= -0.40687261 \pm 6.1 \cdot 10^{-7} \) | \(a_{309}= +0.22200292 \pm 4.4 \cdot 10^{-7} \) |
\(a_{310}= -1.00928813 \pm 9.0 \cdot 10^{-7} \) | \(a_{311}= +0.18865510 \pm 5.3 \cdot 10^{-7} \) | \(a_{312}= -0.22625841 \pm 4.5 \cdot 10^{-7} \) |
\(a_{313}= -1.57022892 \pm 5.6 \cdot 10^{-7} \) | \(a_{314}= -0.46082340 \pm 5.5 \cdot 10^{-7} \) | \(a_{315}= -0.47468517 \pm 6.8 \cdot 10^{-7} \) |
\(a_{316}= +0.40282723 \pm 2.9 \cdot 10^{-7} \) | \(a_{317}= +0.45163836 \pm 3.2 \cdot 10^{-7} \) | \(a_{318}= +0.56267956 \pm 6.0 \cdot 10^{-7} \) |
\(a_{319}= +0.37145065 \pm 1.7 \cdot 10^{-7} \) | \(a_{320}= +0.14576179 \pm 3.5 \cdot 10^{-7} \) | \(a_{321}= -0.44391537 \pm 4.4 \cdot 10^{-7} \) |
\(a_{322}= +0.78423319 \pm 7.7 \cdot 10^{-7} \) | \(a_{323}= -1.47523906 \pm 2.5 \cdot 10^{-7} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= +0.39878842 \pm 3.6 \cdot 10^{-7} \) | \(a_{326}= +0.76989698 \pm 4.1 \cdot 10^{-7} \) | \(a_{327}= -0.55185971 \pm 4.6 \cdot 10^{-7} \) |
\(a_{328}= +0.00344871 \pm 2.6 \cdot 10^{-7} \) | \(a_{329}= +1.67156800 \pm 3.5 \cdot 10^{-7} \) | \(a_{330}= -0.31721468 \pm 6.1 \cdot 10^{-7} \) |
\(a_{331}= +1.70173217 \pm 7.5 \cdot 10^{-7} \) | \(a_{332}= +0.65784181 \pm 2.8 \cdot 10^{-7} \) | \(a_{333}= +0.01903934 \pm 4.8 \cdot 10^{-7} \) |
\(a_{334}= +0.74588360 \pm 5.4 \cdot 10^{-7} \) | \(a_{335}= -2.12208928 \pm 2.4 \cdot 10^{-7} \) | \(a_{336}= -0.17626765 \pm 3.4 \cdot 10^{-7} \) |
\(a_{337}= -0.18214547 \pm 2.6 \cdot 10^{-7} \) | \(a_{338}= -0.16166502 \pm 4.0 \cdot 10^{-7} \) | \(a_{339}= +0.38184483 \pm 6.7 \cdot 10^{-7} \) |
\(a_{340}= -0.47275847 \pm 6.2 \cdot 10^{-7} \) | \(a_{341}= +0.81562720 \pm 1.8 \cdot 10^{-7} \) | \(a_{342}= -0.42883529 \pm 6.0 \cdot 10^{-7} \) |
\(a_{343}= +0.62114373 \pm 2.5 \cdot 10^{-7} \) | \(a_{344}= -0.47898751 \pm 2.6 \cdot 10^{-7} \) | \(a_{345}= +0.61142057 \pm 7.7 \cdot 10^{-7} \) |
\(a_{346}= -0.28256644 \pm 5.3 \cdot 10^{-7} \) | \(a_{347}= -1.52544214 \pm 5.5 \cdot 10^{-7} \) | \(a_{348}= +0.16092195 \pm 3.3 \cdot 10^{-7} \) |
\(a_{349}= -1.75785064 \pm 4.1 \cdot 10^{-7} \) | \(a_{350}= +0.31067794 \pm 6.7 \cdot 10^{-7} \) | \(a_{351}= +0.21331848 \pm 4.5 \cdot 10^{-7} \) |
\(a_{352}= -0.11779320 \pm 2.7 \cdot 10^{-7} \) | \(a_{353}= -0.54059737 \pm 2.0 \cdot 10^{-7} \) | \(a_{354}= -0.11504461 \pm 4.8 \cdot 10^{-7} \) |
\(a_{355}= -0.66675526 \pm 2.5 \cdot 10^{-7} \) | \(a_{356}= -0.51256874 \pm 6.5 \cdot 10^{-7} \) | \(a_{357}= +0.57170006 \pm 6.2 \cdot 10^{-7} \) |
\(a_{358}= -0.77309694 \pm 5.5 \cdot 10^{-7} \) | \(a_{359}= +1.23294187 \pm 5.4 \cdot 10^{-7} \) | \(a_{360}= -0.13742554 \pm 3.5 \cdot 10^{-7} \) |
\(a_{361}= +2.31019472 \pm 5.5 \cdot 10^{-7} \) | \(a_{362}= +0.50459969 \pm 6.3 \cdot 10^{-7} \) | \(a_{363}= -0.32100234 \pm 3.8 \cdot 10^{-7} \) |
\(a_{364}= -0.67682063 \pm 7.9 \cdot 10^{-7} \) | \(a_{365}= +0.19607914 \pm 5.3 \cdot 10^{-7} \) | \(a_{366}= +0.01706336 \pm 4.3 \cdot 10^{-7} \) |
\(a_{367}= -1.25562834 \pm 2.2 \cdot 10^{-7} \) | \(a_{368}= +0.22704241 \pm 4.3 \cdot 10^{-7} \) | \(a_{369}= -0.00325147 \pm 2.6 \cdot 10^{-7} \) |
\(a_{370}= -0.04709686 \pm 8.2 \cdot 10^{-7} \) | \(a_{371}= +1.68317778 \pm 2.4 \cdot 10^{-7} \) | \(a_{372}= +0.35335062 \pm 5.6 \cdot 10^{-7} \) |
\(a_{373}= -1.17996850 \pm 3.3 \cdot 10^{-7} \) | \(a_{374}= +0.38204617 \pm 5.5 \cdot 10^{-7} \) | \(a_{375}= -0.43102753 \pm 3.9 \cdot 10^{-7} \) |
\(a_{376}= +0.48393366 \pm 3.9 \cdot 10^{-7} \) | \(a_{377}= +0.61789726 \pm 3.6 \cdot 10^{-7} \) | \(a_{378}= +0.16618673 \pm 3.4 \cdot 10^{-7} \) |
\(a_{379}= +1.81634866 \pm 2.9 \cdot 10^{-7} \) | \(a_{380}= +1.06079255 \pm 9.4 \cdot 10^{-7} \) | \(a_{381}= +0.50547517 \pm 1.4 \cdot 10^{-7} \) |
\(a_{382}= +0.30247982 \pm 3.5 \cdot 10^{-7} \) | \(a_{383}= -1.97515924 \pm 5.8 \cdot 10^{-7} \) | \(a_{384}= -0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= -0.94890368 \pm 9.9 \cdot 10^{-8} \) | \(a_{386}= -1.18929911 \pm 3.1 \cdot 10^{-7} \) | \(a_{387}= +0.45159375 \pm 2.6 \cdot 10^{-7} \) |
\(a_{388}= -0.14362311 \pm 5.8 \cdot 10^{-7} \) | \(a_{389}= -1.27012854 \pm 3.2 \cdot 10^{-7} \) | \(a_{390}= -0.52767730 \pm 7.9 \cdot 10^{-7} \) |
\(a_{391}= -0.73638107 \pm 1.8 \cdot 10^{-7} \) | \(a_{392}= -0.17372681 \pm 3.8 \cdot 10^{-7} \) | \(a_{393}= -0.34337427 \pm 5.0 \cdot 10^{-7} \) |
\(a_{394}= +0.97619723 \pm 5.6 \cdot 10^{-7} \) | \(a_{395}= +0.93946910 \pm 3.3 \cdot 10^{-7} \) | \(a_{396}= +0.11105650 \pm 2.7 \cdot 10^{-7} \) |
\(a_{397}= -0.18874304 \pm 5.2 \cdot 10^{-7} \) | \(a_{398}= -0.69640288 \pm 1.8 \cdot 10^{-7} \) | \(a_{399}= -1.28280125 \pm 9.4 \cdot 10^{-7} \) |
\(a_{400}= +0.08994400 \pm 3.3 \cdot 10^{-7} \) | \(a_{401}= +0.27163033 \pm 6.4 \cdot 10^{-7} \) | \(a_{402}= +0.74294103 \pm 1.9 \cdot 10^{-7} \) |
\(a_{403}= +1.35677188 \pm 2.0 \cdot 10^{-7} \) | \(a_{404}= -0.31734382 \pm 3.5 \cdot 10^{-7} \) | \(a_{405}= +0.12956604 \pm 3.5 \cdot 10^{-7} \) |
\(a_{406}= +0.48137568 \pm 6.6 \cdot 10^{-7} \) | \(a_{407}= +0.03805997 \pm 1.2 \cdot 10^{-7} \) | \(a_{408}= +0.16551220 \pm 2.8 \cdot 10^{-7} \) |
\(a_{409}= -1.56277266 \pm 4.1 \cdot 10^{-7} \) | \(a_{410}= +0.00804304 \pm 6.0 \cdot 10^{-7} \) | \(a_{411}= -0.20591780 \pm 2.8 \cdot 10^{-7} \) |
\(a_{412}= +0.19226017 \pm 4.4 \cdot 10^{-7} \) | \(a_{413}= -0.34413998 \pm 4.3 \cdot 10^{-7} \) | \(a_{414}= -0.21405764 \pm 4.3 \cdot 10^{-7} \) |
\(a_{415}= +1.53421122 \pm 2.0 \cdot 10^{-7} \) | \(a_{416}= -0.19594553 \pm 4.5 \cdot 10^{-7} \) | \(a_{417}= +0.15589623 \pm 4.9 \cdot 10^{-7} \) |
\(a_{418}= -0.85724901 \pm 8.7 \cdot 10^{-7} \) | \(a_{419}= +0.99023096 \pm 3.7 \cdot 10^{-7} \) | \(a_{420}= -0.41108941 \pm 6.8 \cdot 10^{-7} \) |
\(a_{421}= +1.81259108 \pm 5.1 \cdot 10^{-7} \) | \(a_{422}= -0.14820484 \pm 3.6 \cdot 10^{-7} \) | \(a_{423}= -0.45625703 \pm 3.9 \cdot 10^{-7} \) |
\(a_{424}= +0.48729479 \pm 6.0 \cdot 10^{-7} \) | \(a_{425}= -0.29172108 \pm 1.6 \cdot 10^{-7} \) | \(a_{426}= +0.23343025 \pm 4.8 \cdot 10^{-7} \) |
\(a_{427}= +0.05104267 \pm 3.2 \cdot 10^{-7} \) | \(a_{428}= -0.38444199 \pm 4.4 \cdot 10^{-7} \) | \(a_{429}= +0.42642725 \pm 7.2 \cdot 10^{-7} \) |
\(a_{430}= -1.11708924 \pm 6.0 \cdot 10^{-7} \) | \(a_{431}= +0.20822695 \pm 4.6 \cdot 10^{-7} \) | \(a_{432}= +0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= -0.90006781 \pm 3.5 \cdot 10^{-7} \) | \(a_{434}= +1.05699933 \pm 9.0 \cdot 10^{-7} \) | \(a_{435}= +0.37530035 \pm 6.7 \cdot 10^{-7} \) |
\(a_{436}= -0.47792453 \pm 4.6 \cdot 10^{-7} \) | \(a_{437}= +1.65231847 \pm 6.0 \cdot 10^{-7} \) | \(a_{438}= -0.06864708 \pm 5.4 \cdot 10^{-7} \) |
\(a_{439}= -1.55784996 \pm 4.4 \cdot 10^{-7} \) | \(a_{440}= -0.27471597 \pm 6.1 \cdot 10^{-7} \) | \(a_{441}= +0.16379121 \pm 3.8 \cdot 10^{-7} \) |
\(a_{442}= +0.63552259 \pm 7.2 \cdot 10^{-7} \) | \(a_{443}= -0.38144037 \pm 1.5 \cdot 10^{-7} \) | \(a_{444}= +0.01648856 \pm 4.8 \cdot 10^{-7} \) |
\(a_{445}= -1.19540701 \pm 3.2 \cdot 10^{-7} \) | \(a_{446}= +0.43786828 \pm 3.8 \cdot 10^{-7} \) | \(a_{447}= +0.09273809 \pm 3.5 \cdot 10^{-7} \) |
\(a_{448}= -0.15265226 \pm 3.4 \cdot 10^{-7} \) | \(a_{449}= -0.77570663 \pm 6.3 \cdot 10^{-7} \) | \(a_{450}= -0.08480002 \pm 3.3 \cdot 10^{-7} \) |
\(a_{451}= -0.00649975 \pm 9.0 \cdot 10^{-8} \) | \(a_{452}= +0.33068732 \pm 6.7 \cdot 10^{-7} \) | \(a_{453}= +0.24692892 \pm 4.1 \cdot 10^{-7} \) |
\(a_{454}= +0.29275600 \pm 3.9 \cdot 10^{-7} \) | \(a_{455}= -1.57847341 \pm 1.3 \cdot 10^{-7} \) | \(a_{456}= -0.37138226 \pm 6.0 \cdot 10^{-7} \) |
\(a_{457}= -0.12608106 \pm 5.7 \cdot 10^{-7} \) | \(a_{458}= -0.33656720 \pm 1.8 \cdot 10^{-7} \) | \(a_{459}= -0.15604640 \pm 2.8 \cdot 10^{-7} \) |
\(a_{460}= +0.52950574 \pm 7.7 \cdot 10^{-7} \) | \(a_{461}= -0.74743076 \pm 4.6 \cdot 10^{-7} \) | \(a_{462}= +0.33221009 \pm 6.1 \cdot 10^{-7} \) |
\(a_{463}= -0.22850900 \pm 4.2 \cdot 10^{-7} \) | \(a_{464}= +0.13936250 \pm 3.3 \cdot 10^{-7} \) | \(a_{465}= +0.82408031 \pm 9.0 \cdot 10^{-7} \) |
\(a_{466}= -0.67255420 \pm 7.5 \cdot 10^{-7} \) | \(a_{467}= +0.39513890 \pm 5.1 \cdot 10^{-7} \) | \(a_{468}= +0.18473922 \pm 4.5 \cdot 10^{-7} \) |
\(a_{469}= +2.22240495 \pm 6.1 \cdot 10^{-8} \) | \(a_{470}= +1.12862459 \pm 7.3 \cdot 10^{-7} \) | \(a_{471}= +0.37626073 \pm 5.5 \cdot 10^{-7} \) |
\(a_{472}= -0.09963156 \pm 4.8 \cdot 10^{-7} \) | \(a_{473}= +0.90274356 \pm 1.6 \cdot 10^{-7} \) | \(a_{474}= -0.32890706 \pm 2.9 \cdot 10^{-7} \) |
\(a_{475}= +0.65457431 \pm 4.8 \cdot 10^{-7} \) | \(a_{476}= +0.49510677 \pm 6.2 \cdot 10^{-7} \) | \(a_{477}= -0.45942593 \pm 6.0 \cdot 10^{-7} \) |
\(a_{478}= +0.13782862 \pm 4.4 \cdot 10^{-7} \) | \(a_{479}= -0.74858865 \pm 4.9 \cdot 10^{-7} \) | \(a_{480}= -0.11901400 \pm 3.5 \cdot 10^{-7} \) |
\(a_{481}= +0.06331165 \pm 2.5 \cdot 10^{-7} \) | \(a_{482}= -0.22970354 \pm 2.5 \cdot 10^{-7} \) | \(a_{483}= -0.64032372 \pm 7.7 \cdot 10^{-7} \) |
\(a_{484}= -0.27799618 \pm 3.8 \cdot 10^{-7} \) | \(a_{485}= -0.33495619 \pm 3.8 \cdot 10^{-7} \) | \(a_{486}= -0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= -0.23848772 \pm 5.8 \cdot 10^{-7} \) | \(a_{488}= +0.01477730 \pm 4.3 \cdot 10^{-7} \) | \(a_{489}= -0.62861825 \pm 4.1 \cdot 10^{-7} \) |
\(a_{490}= -0.40516370 \pm 7.2 \cdot 10^{-7} \) | \(a_{491}= +0.76812494 \pm 5.4 \cdot 10^{-7} \) | \(a_{492}= -0.00281586 \pm 2.6 \cdot 10^{-7} \) |
\(a_{493}= -0.45200323 \pm 1.2 \cdot 10^{-7} \) | \(a_{494}= -1.42600855 \pm 1.0 \cdot 10^{-6} \) | \(a_{495}= +0.25900470 \pm 6.1 \cdot 10^{-7} \) |
\(a_{496}= +0.30601061 \pm 5.6 \cdot 10^{-7} \) | \(a_{497}= +0.69827420 \pm 2.8 \cdot 10^{-7} \) | \(a_{498}= -0.53712559 \pm 2.8 \cdot 10^{-7} \) |
\(a_{499}= +1.19949629 \pm 5.6 \cdot 10^{-7} \) | \(a_{500}= -0.37328079 \pm 3.9 \cdot 10^{-7} \) | \(a_{501}= -0.60901141 \pm 5.4 \cdot 10^{-7} \) |
\(a_{502}= +0.23955127 \pm 5.1 \cdot 10^{-7} \) | \(a_{503}= -1.42792134 \pm 4.1 \cdot 10^{-7} \) | \(a_{504}= +0.14392193 \pm 3.4 \cdot 10^{-7} \) |
\(a_{505}= -0.74010567 \pm 3.2 \cdot 10^{-7} \) | \(a_{506}= -0.42790485 \pm 7.0 \cdot 10^{-7} \) | \(a_{507}= +0.13199893 \pm 4.0 \cdot 10^{-7} \) |
\(a_{508}= +0.43775434 \pm 1.4 \cdot 10^{-7} \) | \(a_{509}= +0.63445542 \pm 3.6 \cdot 10^{-7} \) | \(a_{510}= +0.38600568 \pm 6.2 \cdot 10^{-7} \) |
\(a_{511}= -0.20534822 \pm 5.1 \cdot 10^{-7} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.35014255 \pm 6.0 \cdot 10^{-7} \) |
\(a_{514}= +0.45141572 \pm 2.8 \cdot 10^{-7} \) | \(a_{515}= +0.44838699 \pm 2.3 \cdot 10^{-7} \) | \(a_{516}= +0.39109166 \pm 2.6 \cdot 10^{-7} \) |
\(a_{517}= -0.91206552 \pm 1.5 \cdot 10^{-7} \) | \(a_{518}= +0.04932323 \pm 8.2 \cdot 10^{-7} \) | \(a_{519}= +0.23071453 \pm 5.3 \cdot 10^{-7} \) |
\(a_{520}= -0.45698195 \pm 7.9 \cdot 10^{-7} \) | \(a_{521}= +1.51881041 \pm 5.3 \cdot 10^{-7} \) | \(a_{522}= -0.13139222 \pm 3.3 \cdot 10^{-7} \) |
\(a_{523}= +1.22399597 \pm 3.7 \cdot 10^{-7} \) | \(a_{524}= -0.29737084 \pm 5.0 \cdot 10^{-7} \) | \(a_{525}= -0.25366747 \pm 6.7 \cdot 10^{-7} \) |
\(a_{526}= +0.43366859 \pm 1.9 \cdot 10^{-7} \) | \(a_{527}= -0.99250365 \pm 4.0 \cdot 10^{-7} \) | \(a_{528}= +0.09617775 \pm 2.7 \cdot 10^{-7} \) |
\(a_{529}= -0.17522788 \pm 1.8 \cdot 10^{-7} \) | \(a_{530}= +1.13646339 \pm 9.4 \cdot 10^{-7} \) | \(a_{531}= +0.09393353 \pm 4.8 \cdot 10^{-7} \) |
\(a_{532}= -1.11093847 \pm 9.4 \cdot 10^{-7} \) | \(a_{533}= -0.01081215 \pm 1.6 \cdot 10^{-7} \) | \(a_{534}= +0.41851063 \pm 6.5 \cdot 10^{-7} \) |
\(a_{535}= -0.89659126 \pm 4.2 \cdot 10^{-7} \) | \(a_{536}= +0.64340580 \pm 1.9 \cdot 10^{-7} \) | \(a_{537}= +0.63123101 \pm 5.5 \cdot 10^{-7} \) |
\(a_{538}= +1.05173612 \pm 4.7 \cdot 10^{-7} \) | \(a_{539}= +0.32742140 \pm 2.5 \cdot 10^{-7} \) | \(a_{540}= +0.11220748 \pm 3.5 \cdot 10^{-7} \) |
\(a_{541}= -1.27861260 \pm 3.9 \cdot 10^{-7} \) | \(a_{542}= -0.77695652 \pm 5.3 \cdot 10^{-7} \) | \(a_{543}= -0.41200392 \pm 6.3 \cdot 10^{-7} \) |
\(a_{544}= +0.14333777 \pm 2.8 \cdot 10^{-7} \) | \(a_{545}= -1.11461017 \pm 2.6 \cdot 10^{-7} \) | \(a_{546}= +0.55262173 \pm 7.9 \cdot 10^{-7} \) |
\(a_{547}= -0.33942624 \pm 6.2 \cdot 10^{-7} \) | \(a_{548}= -0.17833005 \pm 2.8 \cdot 10^{-7} \) | \(a_{549}= -0.01393217 \pm 4.3 \cdot 10^{-7} \) |
\(a_{550}= -0.16951667 \pm 6.0 \cdot 10^{-7} \) | \(a_{551}= +1.01422119 \pm 4.7 \cdot 10^{-7} \) | \(a_{552}= -0.18537935 \pm 4.3 \cdot 10^{-7} \) |
\(a_{553}= -0.98387980 \pm 2.0 \cdot 10^{-7} \) | \(a_{554}= -0.46411051 \pm 3.9 \cdot 10^{-7} \) | \(a_{555}= +0.03845442 \pm 8.2 \cdot 10^{-7} \) |
\(a_{556}= +0.13501010 \pm 4.9 \cdot 10^{-7} \) | \(a_{557}= +0.00742773 \pm 1.7 \cdot 10^{-7} \) | \(a_{558}= -0.28850957 \pm 5.6 \cdot 10^{-7} \) |
\(a_{559}= +1.50168740 \pm 2.7 \cdot 10^{-7} \) | \(a_{560}= -0.35601387 \pm 6.8 \cdot 10^{-7} \) | \(a_{561}= -0.31193939 \pm 5.5 \cdot 10^{-7} \) |
\(a_{562}= -1.25701219 \pm 5.8 \cdot 10^{-7} \) | \(a_{563}= +0.67913185 \pm 2.3 \cdot 10^{-7} \) | \(a_{564}= -0.39513017 \pm 3.9 \cdot 10^{-7} \) |
\(a_{565}= +0.77122523 \pm 3.8 \cdot 10^{-7} \) | \(a_{566}= +0.62291413 \pm 3.0 \cdot 10^{-7} \) | \(a_{567}= -0.13569090 \pm 3.4 \cdot 10^{-7} \) |
\(a_{568}= +0.20215653 \pm 4.8 \cdot 10^{-7} \) | \(a_{569}= -0.45265502 \pm 5.1 \cdot 10^{-7} \) | \(a_{570}= -0.86613349 \pm 9.4 \cdot 10^{-7} \) |
\(a_{571}= -0.29693673 \pm 4.6 \cdot 10^{-7} \) | \(a_{572}= +0.36929683 \pm 7.2 \cdot 10^{-7} \) | \(a_{573}= -0.24697374 \pm 3.5 \cdot 10^{-7} \) |
\(a_{574}= -0.00842325 \pm 6.0 \cdot 10^{-7} \) | \(a_{575}= +0.32673764 \pm 3.2 \cdot 10^{-7} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= +1.01424724 \pm 4.9 \cdot 10^{-7} \) | \(a_{578}= +0.24221029 \pm 3.5 \cdot 10^{-7} \) | \(a_{579}= +0.97105866 \pm 3.1 \cdot 10^{-7} \) |
\(a_{580}= +0.32501964 \pm 6.7 \cdot 10^{-7} \) | \(a_{581}= -1.60673665 \pm 2.9 \cdot 10^{-7} \) | \(a_{582}= +0.11726778 \pm 5.8 \cdot 10^{-7} \) |
\(a_{583}= -0.91840022 \pm 4.0 \cdot 10^{-7} \) | \(a_{584}= -0.05945012 \pm 5.4 \cdot 10^{-7} \) | \(a_{585}= +0.43084672 \pm 7.9 \cdot 10^{-7} \) |
\(a_{586}= +0.23948771 \pm 4.4 \cdot 10^{-7} \) | \(a_{587}= +0.24892602 \pm 3.6 \cdot 10^{-7} \) | \(a_{588}= +0.14184735 \pm 3.8 \cdot 10^{-7} \) |
\(a_{589}= +2.22701556 \pm 4.4 \cdot 10^{-7} \) | \(a_{590}= -0.23235958 \pm 8.2 \cdot 10^{-7} \) | \(a_{591}= -0.79706170 \pm 5.6 \cdot 10^{-7} \) |
\(a_{592}= +0.01427951 \pm 4.8 \cdot 10^{-7} \) | \(a_{593}= +0.72182307 \pm 6.5 \cdot 10^{-7} \) | \(a_{594}= -0.09067725 \pm 2.7 \cdot 10^{-7} \) |
\(a_{595}= +1.15468240 \pm 2.0 \cdot 10^{-7} \) | \(a_{596}= +0.08031354 \pm 3.5 \cdot 10^{-7} \) | \(a_{597}= +0.56861057 \pm 1.8 \cdot 10^{-7} \) |
\(a_{598}= -0.71180715 \pm 8.7 \cdot 10^{-7} \) | \(a_{599}= -1.87364396 \pm 3.9 \cdot 10^{-7} \) | \(a_{600}= -0.07343897 \pm 3.3 \cdot 10^{-7} \) |
\(a_{601}= +0.91357141 \pm 5.1 \cdot 10^{-7} \) | \(a_{602}= +1.16989642 \pm 6.0 \cdot 10^{-7} \) | \(a_{603}= -0.60660881 \pm 1.9 \cdot 10^{-7} \) |
\(a_{604}= +0.21384671 \pm 4.1 \cdot 10^{-7} \) | \(a_{605}= -0.64833955 \pm 2.6 \cdot 10^{-7} \) | \(a_{606}= +0.25911015 \pm 3.5 \cdot 10^{-7} \) |
\(a_{607}= -0.91742241 \pm 2.8 \cdot 10^{-7} \) | \(a_{608}= -0.32162647 \pm 6.0 \cdot 10^{-7} \) | \(a_{609}= -0.39304159 \pm 6.6 \cdot 10^{-7} \) |
\(a_{610}= +0.03446346 \pm 7.7 \cdot 10^{-7} \) | \(a_{611}= -1.51719421 \pm 3.4 \cdot 10^{-7} \) | \(a_{612}= -0.13514015 \pm 2.8 \cdot 10^{-7} \) |
\(a_{613}= -1.57253292 \pm 2.1 \cdot 10^{-7} \) | \(a_{614}= -1.09469847 \pm 2.3 \cdot 10^{-7} \) | \(a_{615}= -0.00656712 \pm 6.0 \cdot 10^{-7} \) |
\(a_{616}= +0.28770238 \pm 6.1 \cdot 10^{-7} \) | \(a_{617}= +1.54533647 \pm 4.2 \cdot 10^{-7} \) | \(a_{618}= -0.15697977 \pm 4.4 \cdot 10^{-7} \) |
\(a_{619}= -1.74551219 \pm 4.3 \cdot 10^{-7} \) | \(a_{620}= +0.71367448 \pm 9.0 \cdot 10^{-7} \) | \(a_{621}= +0.17477733 \pm 4.3 \cdot 10^{-7} \) |
\(a_{622}= -0.13339930 \pm 5.4 \cdot 10^{-7} \) | \(a_{623}= +1.25191644 \pm 2.1 \cdot 10^{-7} \) | \(a_{624}= +0.15998886 \pm 4.5 \cdot 10^{-7} \) |
\(a_{625}= -1.23033723 \pm 2.9 \cdot 10^{-7} \) | \(a_{626}= +1.11031952 \pm 5.7 \cdot 10^{-7} \) | \(a_{627}= +0.69994088 \pm 8.7 \cdot 10^{-7} \) |
\(a_{628}= +0.32585135 \pm 5.5 \cdot 10^{-7} \) | \(a_{629}= -0.04631364 \pm 3.4 \cdot 10^{-7} \) | \(a_{630}= +0.33565310 \pm 6.8 \cdot 10^{-7} \) |
\(a_{631}= +0.24626487 \pm 5.7 \cdot 10^{-7} \) | \(a_{632}= -0.28484187 \pm 2.9 \cdot 10^{-7} \) | \(a_{633}= +0.12100874 \pm 3.6 \cdot 10^{-7} \) |
\(a_{634}= -0.31935654 \pm 3.4 \cdot 10^{-7} \) | \(a_{635}= +1.02092570 \pm 1.0 \cdot 10^{-7} \) | \(a_{636}= -0.39787453 \pm 6.0 \cdot 10^{-7} \) |
\(a_{637}= +0.54465588 \pm 4.2 \cdot 10^{-7} \) | \(a_{638}= -0.26265528 \pm 5.9 \cdot 10^{-7} \) | \(a_{639}= -0.19059500 \pm 4.8 \cdot 10^{-7} \) |
\(a_{640}= -0.10306915 \pm 3.5 \cdot 10^{-7} \) | \(a_{641}= -0.35944224 \pm 4.1 \cdot 10^{-7} \) | \(a_{642}= +0.31389557 \pm 4.4 \cdot 10^{-7} \) |
\(a_{643}= +0.88362036 \pm 2.0 \cdot 10^{-7} \) | \(a_{644}= -0.55453661 \pm 7.7 \cdot 10^{-7} \) | \(a_{645}= +0.91209955 \pm 6.0 \cdot 10^{-7} \) |
\(a_{646}= +1.04315155 \pm 8.8 \cdot 10^{-7} \) | \(a_{647}= +0.72942907 \pm 5.7 \cdot 10^{-7} \) | \(a_{648}= -0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= +0.18777472 \pm 2.6 \cdot 10^{-7} \) | \(a_{650}= -0.28198600 \pm 7.8 \cdot 10^{-7} \) | \(a_{651}= -0.86303634 \pm 9.0 \cdot 10^{-7} \) |
\(a_{652}= -0.54439937 \pm 4.1 \cdot 10^{-7} \) | \(a_{653}= +1.28256443 \pm 5.5 \cdot 10^{-7} \) | \(a_{654}= +0.39022374 \pm 4.6 \cdot 10^{-7} \) |
\(a_{655}= -0.69352491 \pm 4.3 \cdot 10^{-7} \) | \(a_{656}= -0.00243861 \pm 2.6 \cdot 10^{-7} \) | \(a_{657}= +0.05605011 \pm 5.4 \cdot 10^{-7} \) |
\(a_{658}= -1.18197707 \pm 7.3 \cdot 10^{-7} \) | \(a_{659}= +1.04049086 \pm 6.6 \cdot 10^{-7} \) | \(a_{660}= +0.22430465 \pm 6.1 \cdot 10^{-7} \) |
\(a_{661}= -0.72864617 \pm 2.1 \cdot 10^{-7} \) | \(a_{662}= -1.20330636 \pm 7.6 \cdot 10^{-7} \) | \(a_{663}= -0.51890202 \pm 7.2 \cdot 10^{-7} \) |
\(a_{664}= -0.46516441 \pm 2.8 \cdot 10^{-7} \) | \(a_{665}= -2.59091810 \pm 1.9 \cdot 10^{-7} \) | \(a_{666}= -0.01346285 \pm 4.8 \cdot 10^{-7} \) |
\(a_{667}= +0.50625916 \pm 3.2 \cdot 10^{-7} \) | \(a_{668}= -0.52741935 \pm 5.4 \cdot 10^{-7} \) | \(a_{669}= -0.35751795 \pm 3.8 \cdot 10^{-7} \) |
\(a_{670}= +1.50054372 \pm 5.3 \cdot 10^{-7} \) | \(a_{671}= -0.02785065 \pm 3.3 \cdot 10^{-7} \) | \(a_{672}= +0.12464005 \pm 3.4 \cdot 10^{-7} \) |
\(a_{673}= +1.02830615 \pm 2.3 \cdot 10^{-7} \) | \(a_{674}= +0.12879630 \pm 2.7 \cdot 10^{-7} \) | \(a_{675}= +0.06923892 \pm 3.3 \cdot 10^{-7} \) |
\(a_{676}= +0.11431443 \pm 4.0 \cdot 10^{-7} \) | \(a_{677}= +1.66763706 \pm 6.7 \cdot 10^{-7} \) | \(a_{678}= -0.27000507 \pm 6.7 \cdot 10^{-7} \) |
\(a_{679}= +0.35079029 \pm 2.7 \cdot 10^{-7} \) | \(a_{680}= +0.33429072 \pm 6.2 \cdot 10^{-7} \) | \(a_{681}= -0.23903427 \pm 3.9 \cdot 10^{-7} \) |
\(a_{682}= -0.57673552 \pm 8.2 \cdot 10^{-7} \) | \(a_{683}= -1.74563563 \pm 4.0 \cdot 10^{-7} \) | \(a_{684}= +0.30323234 \pm 6.0 \cdot 10^{-7} \) |
\(a_{685}= -0.41589931 \pm 2.7 \cdot 10^{-7} \) | \(a_{686}= -0.43921494 \pm 2.6 \cdot 10^{-7} \) | \(a_{687}= +0.27480597 \pm 1.8 \cdot 10^{-7} \) |
\(a_{688}= +0.33869532 \pm 2.6 \cdot 10^{-7} \) | \(a_{689}= -1.52773179 \pm 6.4 \cdot 10^{-7} \) | \(a_{690}= -0.43233963 \pm 7.7 \cdot 10^{-7} \) |
\(a_{691}= +0.37848078 \pm 2.9 \cdot 10^{-7} \) | \(a_{692}= +0.19980465 \pm 5.3 \cdot 10^{-7} \) | \(a_{693}= -0.27124840 \pm 6.1 \cdot 10^{-7} \) |
\(a_{694}= +1.07865048 \pm 5.6 \cdot 10^{-7} \) | \(a_{695}= +0.31486902 \pm 3.3 \cdot 10^{-7} \) | \(a_{696}= -0.11378900 \pm 3.3 \cdot 10^{-7} \) |
\(a_{697}= +0.00790929 \pm 2.0 \cdot 10^{-7} \) | \(a_{698}= +1.24298811 \pm 4.2 \cdot 10^{-7} \) | \(a_{699}= +0.54913820 \pm 7.5 \cdot 10^{-7} \) |
\(a_{700}= -0.21968248 \pm 6.7 \cdot 10^{-7} \) | \(a_{701}= -0.06856781 \pm 4.3 \cdot 10^{-7} \) | \(a_{702}= -0.15083894 \pm 4.5 \cdot 10^{-7} \) |
\(a_{703}= +0.10392021 \pm 3.8 \cdot 10^{-7} \) | \(a_{704}= +0.08329237 \pm 2.7 \cdot 10^{-7} \) | \(a_{705}= -0.92151812 \pm 7.3 \cdot 10^{-7} \) |
\(a_{706}= +0.38226007 \pm 2.1 \cdot 10^{-7} \) | \(a_{707}= +0.77509204 \pm 3.2 \cdot 10^{-7} \) | \(a_{708}= +0.08134882 \pm 4.8 \cdot 10^{-7} \) |
\(a_{709}= -0.50168558 \pm 6.1 \cdot 10^{-7} \) | \(a_{710}= +0.47146716 \pm 8.2 \cdot 10^{-7} \) | \(a_{711}= +0.26855149 \pm 2.9 \cdot 10^{-7} \) |
\(a_{712}= +0.36244083 \pm 6.5 \cdot 10^{-7} \) | \(a_{713}= +1.11163821 \pm 4.2 \cdot 10^{-7} \) | \(a_{714}= -0.40425299 \pm 6.2 \cdot 10^{-7} \) |
\(a_{715}= +0.86126988 \pm 1.1 \cdot 10^{-7} \) | \(a_{716}= +0.54666209 \pm 5.5 \cdot 10^{-7} \) | \(a_{717}= -0.11253660 \pm 4.4 \cdot 10^{-7} \) |
\(a_{718}= -0.87182156 \pm 5.5 \cdot 10^{-7} \) | \(a_{719}= +0.12591456 \pm 2.7 \cdot 10^{-7} \) | \(a_{720}= +0.09717453 \pm 3.5 \cdot 10^{-7} \) |
\(a_{721}= -0.46958320 \pm 3.0 \cdot 10^{-7} \) | \(a_{722}= -1.63355436 \pm 5.6 \cdot 10^{-7} \) | \(a_{723}= +0.18755216 \pm 2.5 \cdot 10^{-7} \) |
\(a_{724}= -0.35680587 \pm 6.3 \cdot 10^{-7} \) | \(a_{725}= +0.20055712 \pm 2.5 \cdot 10^{-7} \) | \(a_{726}= +0.22698293 \pm 3.8 \cdot 10^{-7} \) |
\(a_{727}= -0.62681398 \pm 7.1 \cdot 10^{-7} \) | \(a_{728}= +0.47858446 \pm 7.9 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.13864889 \pm 8.8 \cdot 10^{-7} \) | \(a_{731}= -1.09851202 \pm 1.2 \cdot 10^{-7} \) | \(a_{732}= -0.01206562 \pm 4.3 \cdot 10^{-7} \) |
\(a_{733}= +0.27983248 \pm 2.3 \cdot 10^{-7} \) | \(a_{734}= +0.88786331 \pm 2.3 \cdot 10^{-7} \) | \(a_{735}= +0.33081478 \pm 7.2 \cdot 10^{-7} \) |
\(a_{736}= -0.16054323 \pm 4.3 \cdot 10^{-7} \) | \(a_{737}= -1.21262128 \pm 2.2 \cdot 10^{-7} \) | \(a_{738}= +0.00229914 \pm 2.6 \cdot 10^{-7} \) |
\(a_{739}= +0.12376951 \pm 6.6 \cdot 10^{-7} \) | \(a_{740}= +0.03330251 \pm 8.2 \cdot 10^{-7} \) | \(a_{741}= +1.16433110 \pm 1.0 \cdot 10^{-6} \) |
\(a_{742}= -1.19018642 \pm 9.4 \cdot 10^{-7} \) | \(a_{743}= -1.72292677 \pm 2.8 \cdot 10^{-7} \) | \(a_{744}= -0.24985662 \pm 5.6 \cdot 10^{-7} \) |
\(a_{745}= +0.18730633 \pm 2.9 \cdot 10^{-7} \) | \(a_{746}= +0.83436373 \pm 3.4 \cdot 10^{-7} \) | \(a_{747}= +0.43856121 \pm 2.8 \cdot 10^{-7} \) |
\(a_{748}= -0.27014744 \pm 5.5 \cdot 10^{-7} \) | \(a_{749}= +0.93897503 \pm 4.1 \cdot 10^{-7} \) | \(a_{750}= +0.30478249 \pm 3.9 \cdot 10^{-7} \) |
\(a_{751}= -1.07752979 \pm 7.5 \cdot 10^{-7} \) | \(a_{752}= -0.34219277 \pm 3.9 \cdot 10^{-7} \) | \(a_{753}= -0.19559279 \pm 5.1 \cdot 10^{-7} \) |
\(a_{754}= -0.43691934 \pm 7.7 \cdot 10^{-7} \) | \(a_{755}= +0.49873088 \pm 3.3 \cdot 10^{-7} \) | \(a_{756}= -0.11751177 \pm 3.4 \cdot 10^{-7} \) |
\(a_{757}= -0.77016043 \pm 4.8 \cdot 10^{-7} \) | \(a_{758}= -1.28435246 \pm 3.0 \cdot 10^{-7} \) | \(a_{759}= +0.34938284 \pm 7.0 \cdot 10^{-7} \) |
\(a_{760}= -0.75009360 \pm 9.4 \cdot 10^{-7} \) | \(a_{761}= +1.90767204 \pm 5.5 \cdot 10^{-7} \) | \(a_{762}= -0.35742492 \pm 1.4 \cdot 10^{-7} \) |
\(a_{763}= +1.16730016 \pm 2.3 \cdot 10^{-7} \) | \(a_{764}= -0.21388553 \pm 3.5 \cdot 10^{-7} \) | \(a_{765}= -0.31517232 \pm 6.2 \cdot 10^{-7} \) |
\(a_{766}= +1.39664849 \pm 5.9 \cdot 10^{-7} \) | \(a_{767}= +0.31235773 \pm 2.9 \cdot 10^{-7} \) | \(a_{768}= +0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= +0.96566885 \pm 3.3 \cdot 10^{-7} \) | \(a_{770}= +0.67097623 \pm 9.5 \cdot 10^{-7} \) | \(a_{771}= -0.36857939 \pm 2.8 \cdot 10^{-7} \) |
\(a_{772}= +0.84096147 \pm 3.1 \cdot 10^{-7} \) | \(a_{773}= -0.60343043 \pm 3.8 \cdot 10^{-7} \) | \(a_{774}= -0.31932501 \pm 2.6 \cdot 10^{-7} \) |
\(a_{775}= +0.44038109 \pm 2.4 \cdot 10^{-7} \) | \(a_{776}= +0.10155688 \pm 5.8 \cdot 10^{-7} \) | \(a_{777}= -0.04027225 \pm 8.2 \cdot 10^{-7} \) |
\(a_{778}= +0.89811650 \pm 3.4 \cdot 10^{-7} \) | \(a_{779}= -0.01774714 \pm 1.7 \cdot 10^{-7} \) | \(a_{780}= +0.37312420 \pm 7.9 \cdot 10^{-7} \) |
\(a_{781}= -0.38100264 \pm 2.1 \cdot 10^{-7} \) | \(a_{782}= +0.52070005 \pm 7.0 \cdot 10^{-7} \) | \(a_{783}= +0.10728130 \pm 3.3 \cdot 10^{-7} \) |
\(a_{784}= +0.12284341 \pm 3.8 \cdot 10^{-7} \) | \(a_{785}= +0.75994683 \pm 2.8 \cdot 10^{-7} \) | \(a_{786}= +0.24280228 \pm 5.0 \cdot 10^{-7} \) |
\(a_{787}= -1.28250006 \pm 5.2 \cdot 10^{-7} \) | \(a_{788}= -0.69027568 \pm 5.6 \cdot 10^{-7} \) | \(a_{789}= -0.35408892 \pm 1.9 \cdot 10^{-7} \) |
\(a_{790}= -0.66430497 \pm 6.3 \cdot 10^{-7} \) | \(a_{791}= -0.80768269 \pm 4.5 \cdot 10^{-7} \) | \(a_{792}= -0.07852880 \pm 2.7 \cdot 10^{-7} \) |
\(a_{793}= -0.04632874 \pm 2.7 \cdot 10^{-7} \) | \(a_{794}= +0.13346148 \pm 5.3 \cdot 10^{-7} \) | \(a_{795}= -0.92791847 \pm 9.4 \cdot 10^{-7} \) |
\(a_{796}= +0.49243120 \pm 1.8 \cdot 10^{-7} \) | \(a_{797}= -0.81091819 \pm 6.4 \cdot 10^{-7} \) | \(a_{798}= +0.90707746 \pm 9.4 \cdot 10^{-7} \) |
\(a_{799}= +1.10985553 \pm 2.3 \cdot 10^{-7} \) | \(a_{800}= -0.06360001 \pm 3.3 \cdot 10^{-7} \) | \(a_{801}= -0.34171249 \pm 6.5 \cdot 10^{-7} \) |
\(a_{802}= -0.19207165 \pm 6.5 \cdot 10^{-7} \) | \(a_{803}= +0.11204512 \pm 3.7 \cdot 10^{-7} \) | \(a_{804}= -0.52533864 \pm 1.9 \cdot 10^{-7} \) |
\(a_{805}= -1.29328399 \pm 2.0 \cdot 10^{-7} \) | \(a_{806}= -0.95938260 \pm 1.0 \cdot 10^{-6} \) | \(a_{807}= -0.85873895 \pm 4.7 \cdot 10^{-7} \) |
\(a_{808}= +0.22439597 \pm 3.5 \cdot 10^{-7} \) | \(a_{809}= +0.39602230 \pm 7.0 \cdot 10^{-7} \) | \(a_{810}= -0.09161702 \pm 3.5 \cdot 10^{-7} \) |
\(a_{811}= -1.22783817 \pm 5.3 \cdot 10^{-7} \) | \(a_{812}= -0.34038401 \pm 6.6 \cdot 10^{-7} \) | \(a_{813}= +0.63438234 \pm 5.3 \cdot 10^{-7} \) |
\(a_{814}= -0.02691246 \pm 7.5 \cdot 10^{-7} \) | \(a_{815}= -1.26964205 \pm 2.6 \cdot 10^{-7} \) | \(a_{816}= -0.11703480 \pm 2.8 \cdot 10^{-7} \) |
\(a_{817}= +2.46488098 \pm 3.7 \cdot 10^{-7} \) | \(a_{818}= +1.10504714 \pm 4.2 \cdot 10^{-7} \) | \(a_{819}= -0.45121376 \pm 7.9 \cdot 10^{-7} \) |
\(a_{820}= -0.00568729 \pm 6.0 \cdot 10^{-7} \) | \(a_{821}= +0.12084546 \pm 1.9 \cdot 10^{-7} \) | \(a_{822}= +0.14560587 \pm 2.8 \cdot 10^{-7} \) |
\(a_{823}= +1.22324798 \pm 2.9 \cdot 10^{-7} \) | \(a_{824}= -0.13594847 \pm 4.4 \cdot 10^{-7} \) | \(a_{825}= +0.13840978 \pm 6.0 \cdot 10^{-7} \) |
\(a_{826}= +0.24334372 \pm 8.2 \cdot 10^{-7} \) | \(a_{827}= +1.45086194 \pm 5.2 \cdot 10^{-7} \) | \(a_{828}= +0.15136161 \pm 4.3 \cdot 10^{-7} \) |
\(a_{829}= +0.27237107 \pm 1.7 \cdot 10^{-7} \) | \(a_{830}= -1.08485116 \pm 6.2 \cdot 10^{-7} \) | \(a_{831}= +0.37894464 \pm 3.9 \cdot 10^{-7} \) |
\(a_{832}= +0.13855441 \pm 4.5 \cdot 10^{-7} \) | \(a_{833}= -0.39842582 \pm 1.8 \cdot 10^{-7} \) | \(a_{834}= -0.11023528 \pm 4.9 \cdot 10^{-7} \) |
\(a_{835}= -1.23004143 \pm 2.6 \cdot 10^{-7} \) | \(a_{836}= +0.60616659 \pm 8.7 \cdot 10^{-7} \) | \(a_{837}= +0.23556708 \pm 5.6 \cdot 10^{-7} \) |
\(a_{838}= -0.70019902 \pm 3.8 \cdot 10^{-7} \) | \(a_{839}= +1.24393197 \pm 4.5 \cdot 10^{-7} \) | \(a_{840}= +0.29068411 \pm 6.8 \cdot 10^{-7} \) |
\(a_{841}= -0.68924951 \pm 2.7 \cdot 10^{-7} \) | \(a_{842}= -1.28169545 \pm 5.2 \cdot 10^{-7} \) | \(a_{843}= +1.02634616 \pm 5.8 \cdot 10^{-7} \) |
\(a_{844}= +0.10479664 \pm 3.6 \cdot 10^{-7} \) | \(a_{845}= +0.26660282 \pm 3.2 \cdot 10^{-7} \) | \(a_{846}= +0.32262244 \pm 3.9 \cdot 10^{-7} \) |
\(a_{847}= +0.67898794 \pm 3.1 \cdot 10^{-7} \) | \(a_{848}= -0.34456945 \pm 6.0 \cdot 10^{-7} \) | \(a_{849}= -0.50860726 \pm 3.0 \cdot 10^{-7} \) |
\(a_{850}= +0.20627796 \pm 6.1 \cdot 10^{-7} \) | \(a_{851}= +0.05187286 \pm 3.6 \cdot 10^{-7} \) | \(a_{852}= -0.16506011 \pm 4.8 \cdot 10^{-7} \) |
\(a_{853}= -0.97929203 \pm 2.4 \cdot 10^{-7} \) | \(a_{854}= -0.03609262 \pm 7.7 \cdot 10^{-7} \) | \(a_{855}= +0.70719503 \pm 9.4 \cdot 10^{-7} \) |
\(a_{856}= +0.27184154 \pm 4.4 \cdot 10^{-7} \) | \(a_{857}= -0.09893204 \pm 3.0 \cdot 10^{-7} \) | \(a_{858}= -0.30152960 \pm 7.2 \cdot 10^{-7} \) |
\(a_{859}= -0.10242715 \pm 7.0 \cdot 10^{-7} \) | \(a_{860}= +0.78990138 \pm 6.0 \cdot 10^{-7} \) | \(a_{861}= +0.00687756 \pm 6.0 \cdot 10^{-7} \) |
\(a_{862}= -0.14723869 \pm 4.7 \cdot 10^{-7} \) | \(a_{863}= -0.15937595 \pm 4.3 \cdot 10^{-7} \) | \(a_{864}= -0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= +0.46598214 \pm 4.1 \cdot 10^{-7} \) | \(a_{866}= +0.63644405 \pm 3.7 \cdot 10^{-7} \) | \(a_{867}= -0.19776387 \pm 3.5 \cdot 10^{-7} \) |
\(a_{868}= -0.74741139 \pm 9.0 \cdot 10^{-7} \) | \(a_{869}= +0.53683897 \pm 2.8 \cdot 10^{-7} \) | \(a_{870}= -0.26537742 \pm 6.7 \cdot 10^{-7} \) |
\(a_{871}= -2.01715989 \pm 6.9 \cdot 10^{-8} \) | \(a_{872}= +0.33794368 \pm 4.6 \cdot 10^{-7} \) | \(a_{873}= -0.09574874 \pm 5.8 \cdot 10^{-7} \) |
\(a_{874}= -1.16836559 \pm 1.0 \cdot 10^{-6} \) | \(a_{875}= +0.91171451 \pm 3.5 \cdot 10^{-7} \) | \(a_{876}= +0.04854082 \pm 5.4 \cdot 10^{-7} \) |
\(a_{877}= -0.14821175 \pm 5.9 \cdot 10^{-7} \) | \(a_{878}= +1.10156627 \pm 4.5 \cdot 10^{-7} \) | \(a_{879}= -0.19554089 \pm 4.4 \cdot 10^{-7} \) |
\(a_{880}= +0.19425353 \pm 6.1 \cdot 10^{-7} \) | \(a_{881}= -1.97087474 \pm 3.0 \cdot 10^{-7} \) | \(a_{882}= -0.11581787 \pm 3.8 \cdot 10^{-7} \) |
\(a_{883}= +0.72381683 \pm 1.4 \cdot 10^{-7} \) | \(a_{884}= -0.44938233 \pm 7.2 \cdot 10^{-7} \) | \(a_{885}= +0.18972081 \pm 8.2 \cdot 10^{-7} \) |
\(a_{886}= +0.26971907 \pm 1.6 \cdot 10^{-7} \) | \(a_{887}= +0.13081652 \pm 4.5 \cdot 10^{-7} \) | \(a_{888}= -0.01165917 \pm 4.8 \cdot 10^{-7} \) |
\(a_{889}= -1.06918703 \pm 1.7 \cdot 10^{-7} \) | \(a_{890}= +0.84528040 \pm 9.9 \cdot 10^{-7} \) | \(a_{891}= +0.07403766 \pm 2.7 \cdot 10^{-7} \) |
\(a_{892}= -0.30961963 \pm 3.8 \cdot 10^{-7} \) | \(a_{893}= -2.49033396 \pm 4.4 \cdot 10^{-7} \) | \(a_{894}= -0.06557573 \pm 3.5 \cdot 10^{-7} \) |
\(a_{895}= +1.27491914 \pm 2.8 \cdot 10^{-7} \) | \(a_{896}= +0.10794145 \pm 3.4 \cdot 10^{-7} \) | \(a_{897}= +0.58118810 \pm 8.7 \cdot 10^{-7} \) |
\(a_{898}= +0.54850742 \pm 6.4 \cdot 10^{-7} \) | \(a_{899}= +0.68234245 \pm 2.6 \cdot 10^{-7} \) | \(a_{900}= +0.05996267 \pm 3.3 \cdot 10^{-7} \) |
\(a_{901}= +1.11756397 \pm 2.9 \cdot 10^{-7} \) | \(a_{902}= +0.00459602 \pm 5.3 \cdot 10^{-7} \) | \(a_{903}= -0.95521643 \pm 6.0 \cdot 10^{-7} \) |
\(a_{904}= -0.23383125 \pm 6.7 \cdot 10^{-7} \) | \(a_{905}= -0.83213860 \pm 4.6 \cdot 10^{-7} \) | \(a_{906}= -0.17460511 \pm 4.1 \cdot 10^{-7} \) |
\(a_{907}= +0.82257350 \pm 5.0 \cdot 10^{-7} \) | \(a_{908}= -0.20700975 \pm 3.9 \cdot 10^{-7} \) | \(a_{909}= -0.21156255 \pm 3.5 \cdot 10^{-7} \) |
\(a_{910}= +1.11614925 \pm 1.1 \cdot 10^{-6} \) | \(a_{911}= +0.21821117 \pm 5.3 \cdot 10^{-7} \) | \(a_{912}= +0.26260691 \pm 6.0 \cdot 10^{-7} \) |
\(a_{913}= +0.87669128 \pm 1.0 \cdot 10^{-7} \) | \(a_{914}= +0.08915277 \pm 5.8 \cdot 10^{-7} \) | \(a_{915}= -0.02813929 \pm 7.7 \cdot 10^{-7} \) |
\(a_{916}= +0.23798895 \pm 1.8 \cdot 10^{-7} \) | \(a_{917}= +0.72630931 \pm 2.6 \cdot 10^{-7} \) | \(a_{918}= +0.11034147 \pm 2.8 \cdot 10^{-7} \) |
\(a_{919}= -1.04714505 \pm 3.3 \cdot 10^{-7} \) | \(a_{920}= -0.37441710 \pm 7.7 \cdot 10^{-7} \) | \(a_{921}= +0.89381756 \pm 2.3 \cdot 10^{-7} \) |
\(a_{922}= +0.52851336 \pm 4.7 \cdot 10^{-7} \) | \(a_{923}= -0.63378670 \pm 5.2 \cdot 10^{-7} \) | \(a_{924}= -0.23490801 \pm 6.1 \cdot 10^{-7} \) |
\(a_{925}= +0.02054970 \pm 2.1 \cdot 10^{-7} \) | \(a_{926}= +0.16158026 \pm 4.3 \cdot 10^{-7} \) | \(a_{927}= +0.12817345 \pm 4.4 \cdot 10^{-7} \) |
\(a_{928}= -0.09854417 \pm 3.3 \cdot 10^{-7} \) | \(a_{929}= +1.64431808 \pm 5.6 \cdot 10^{-7} \) | \(a_{930}= -0.58271278 \pm 9.0 \cdot 10^{-7} \) |
\(a_{931}= +0.89400226 \pm 5.4 \cdot 10^{-7} \) | \(a_{932}= +0.47556763 \pm 7.5 \cdot 10^{-7} \) | \(a_{933}= +0.10892007 \pm 5.4 \cdot 10^{-7} \) |
\(a_{934}= -0.27940539 \pm 5.2 \cdot 10^{-7} \) | \(a_{935}= -0.63003480 \pm 2.7 \cdot 10^{-7} \) | \(a_{936}= -0.13063036 \pm 4.5 \cdot 10^{-7} \) |
\(a_{937}= -0.03993417 \pm 3.3 \cdot 10^{-7} \) | \(a_{938}= -1.57147761 \pm 5.3 \cdot 10^{-7} \) | \(a_{939}= -0.90657209 \pm 5.7 \cdot 10^{-7} \) |
\(a_{940}= -0.79805810 \pm 7.3 \cdot 10^{-7} \) | \(a_{941}= -0.32977918 \pm 3.8 \cdot 10^{-7} \) | \(a_{942}= -0.26605651 \pm 5.5 \cdot 10^{-7} \) |
\(a_{943}= -0.00885867 \pm 1.8 \cdot 10^{-7} \) | \(a_{944}= +0.07045015 \pm 4.8 \cdot 10^{-7} \) | \(a_{945}= -0.27405961 \pm 6.8 \cdot 10^{-7} \) |
\(a_{946}= -0.63833609 \pm 5.3 \cdot 10^{-7} \) | \(a_{947}= -0.26114685 \pm 4.4 \cdot 10^{-7} \) | \(a_{948}= +0.23257241 \pm 2.9 \cdot 10^{-7} \) |
\(a_{949}= +0.18638376 \pm 1.4 \cdot 10^{-7} \) | \(a_{950}= -0.46285393 \pm 9.3 \cdot 10^{-7} \) | \(a_{951}= +0.26075353 \pm 3.4 \cdot 10^{-7} \) |
\(a_{952}= -0.35009336 \pm 6.2 \cdot 10^{-7} \) | \(a_{953}= -0.78873523 \pm 4.3 \cdot 10^{-7} \) | \(a_{954}= +0.32486319 \pm 6.0 \cdot 10^{-7} \) |
\(a_{955}= -0.49882141 \pm 1.7 \cdot 10^{-7} \) | \(a_{956}= -0.09745955 \pm 4.4 \cdot 10^{-7} \) | \(a_{957}= +0.21445714 \pm 5.9 \cdot 10^{-7} \) |
\(a_{958}= +0.52933211 \pm 5.0 \cdot 10^{-7} \) | \(a_{959}= +0.43555976 \pm 1.9 \cdot 10^{-7} \) | \(a_{960}= +0.08415561 \pm 3.5 \cdot 10^{-7} \) |
\(a_{961}= +0.49827992 \pm 7.7 \cdot 10^{-7} \) | \(a_{962}= -0.04476809 \pm 9.3 \cdot 10^{-7} \) | \(a_{963}= -0.25629466 \pm 4.4 \cdot 10^{-7} \) |
\(a_{964}= +0.16242493 \pm 2.5 \cdot 10^{-7} \) | \(a_{965}= +1.96128080 \pm 2.5 \cdot 10^{-7} \) | \(a_{966}= +0.45277724 \pm 7.7 \cdot 10^{-7} \) |
\(a_{967}= -0.98040230 \pm 5.2 \cdot 10^{-7} \) | \(a_{968}= +0.19657299 \pm 3.8 \cdot 10^{-7} \) | \(a_{969}= -0.85172967 \pm 8.8 \cdot 10^{-7} \) |
\(a_{970}= +0.23684980 \pm 9.2 \cdot 10^{-7} \) | \(a_{971}= -1.59828420 \pm 2.3 \cdot 10^{-7} \) | \(a_{972}= +0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -0.32975355 \pm 2.3 \cdot 10^{-7} \) | \(a_{974}= +0.16863628 \pm 5.9 \cdot 10^{-7} \) | \(a_{975}= +0.23024060 \pm 7.8 \cdot 10^{-7} \) |
\(a_{976}= -0.01044913 \pm 4.3 \cdot 10^{-7} \) | \(a_{977}= +1.06746105 \pm 3.3 \cdot 10^{-7} \) | \(a_{978}= +0.44450023 \pm 4.1 \cdot 10^{-7} \) |
\(a_{979}= -0.68308906 \pm 3.4 \cdot 10^{-7} \) | \(a_{980}= +0.28649400 \pm 7.2 \cdot 10^{-7} \) | \(a_{981}= -0.31861635 \pm 4.6 \cdot 10^{-7} \) |
\(a_{982}= -0.54314636 \pm 5.5 \cdot 10^{-7} \) | \(a_{983}= +1.92450521 \pm 5.3 \cdot 10^{-7} \) | \(a_{984}= +0.00199111 \pm 2.6 \cdot 10^{-7} \) |
\(a_{985}= -1.60985312 \pm 5.1 \cdot 10^{-7} \) | \(a_{986}= +0.31961455 \pm 6.0 \cdot 10^{-7} \) | \(a_{987}= +0.96508024 \pm 7.3 \cdot 10^{-7} \) |
\(a_{988}= +1.00834031 \pm 1.0 \cdot 10^{-6} \) | \(a_{989}= +1.23037123 \pm 2.5 \cdot 10^{-7} \) | \(a_{990}= -0.18314398 \pm 6.1 \cdot 10^{-7} \) |
\(a_{991}= +0.65804798 \pm 3.0 \cdot 10^{-7} \) | \(a_{992}= -0.21638218 \pm 5.6 \cdot 10^{-7} \) | \(a_{993}= +0.98249553 \pm 7.6 \cdot 10^{-7} \) |
\(a_{994}= -0.49375442 \pm 8.2 \cdot 10^{-7} \) | \(a_{995}= +1.14844245 \pm 1.9 \cdot 10^{-7} \) | \(a_{996}= +0.37980515 \pm 2.8 \cdot 10^{-7} \) |
\(a_{997}= +0.31636307 \pm 5.5 \cdot 10^{-7} \) | \(a_{998}= -0.84817196 \pm 5.7 \cdot 10^{-7} \) | \(a_{999}= +0.01099237 \pm 4.8 \cdot 10^{-7} \) |
\(a_{1000}= +0.26394938 \pm 3.9 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000