Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(12.1162222939339244410266171732 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.49666880 \pm 9.1 \cdot 10^{-8} \) | \(a_{6}= -0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= +1.41990760 \pm 9.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -1.05830466 \pm 1.0 \cdot 10^{-7} \) | \(a_{11}= -0.58299700 \pm 7.1 \cdot 10^{-8} \) | \(a_{12}= +0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= -0.96665175 \pm 1.1 \cdot 10^{-7} \) | \(a_{14}= -1.00402629 \pm 1.0 \cdot 10^{-7} \) | \(a_{15}= +0.86410214 \pm 1.0 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.57590387 \pm 7.2 \cdot 10^{-8} \) | \(a_{18}= -0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= +0.41263974 \pm 1.5 \cdot 10^{-7} \) | \(a_{20}= +0.74833440 \pm 1.0 \cdot 10^{-7} \) | \(a_{21}= +0.81978404 \pm 1.0 \cdot 10^{-7} \) |
\(a_{22}= +0.41224113 \pm 8.2 \cdot 10^{-8} \) | \(a_{23}= -0.46178627 \pm 1.1 \cdot 10^{-7} \) | \(a_{24}= -0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= +1.24001751 \pm 8.7 \cdot 10^{-8} \) | \(a_{26}= +0.68352600 \pm 1.2 \cdot 10^{-7} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.70995380 \pm 1.0 \cdot 10^{-7} \) | \(a_{29}= -1.21125758 \pm 8.5 \cdot 10^{-8} \) | \(a_{30}= -0.61101248 \pm 1.0 \cdot 10^{-7} \) |
\(a_{31}= +0.90724731 \pm 1.4 \cdot 10^{-7} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.33659347 \pm 8.2 \cdot 10^{-8} \) |
\(a_{34}= -1.11433231 \pm 8.3 \cdot 10^{-8} \) | \(a_{35}= +2.12513141 \pm 7.2 \cdot 10^{-8} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= +0.77366380 \pm 1.2 \cdot 10^{-7} \) | \(a_{38}= -0.29178036 \pm 1.7 \cdot 10^{-7} \) | \(a_{39}= -0.55809665 \pm 1.2 \cdot 10^{-7} \) |
\(a_{40}= -0.52915233 \pm 1.0 \cdot 10^{-7} \) | \(a_{41}= -0.39182704 \pm 6.9 \cdot 10^{-8} \) | \(a_{42}= -0.57967485 \pm 1.0 \cdot 10^{-7} \) |
\(a_{43}= +0.54555449 \pm 6.8 \cdot 10^{-8} \) | \(a_{44}= -0.29149850 \pm 8.2 \cdot 10^{-8} \) | \(a_{45}= +0.49888960 \pm 1.0 \cdot 10^{-7} \) |
\(a_{46}= +0.32653220 \pm 1.2 \cdot 10^{-7} \) | \(a_{47}= -0.18924609 \pm 1.0 \cdot 10^{-7} \) | \(a_{48}= +0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= +1.01613759 \pm 9.9 \cdot 10^{-8} \) | \(a_{50}= -0.87682479 \pm 9.8 \cdot 10^{-8} \) | \(a_{51}= +0.90984852 \pm 8.3 \cdot 10^{-8} \) |
\(a_{52}= -0.48332587 \pm 1.2 \cdot 10^{-7} \) | \(a_{53}= -0.08160840 \pm 1.5 \cdot 10^{-7} \) | \(a_{54}= -0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= -0.87255342 \pm 7.6 \cdot 10^{-8} \) | \(a_{56}= -0.50201315 \pm 1.0 \cdot 10^{-7} \) | \(a_{57}= +0.23823767 \pm 1.7 \cdot 10^{-7} \) |
\(a_{58}= +0.85648845 \pm 9.6 \cdot 10^{-8} \) | \(a_{59}= -1.21904501 \pm 1.2 \cdot 10^{-7} \) | \(a_{60}= +0.43205107 \pm 1.0 \cdot 10^{-7} \) |
\(a_{61}= +1.39444058 \pm 1.1 \cdot 10^{-7} \) | \(a_{62}= -0.64152073 \pm 1.5 \cdot 10^{-7} \) | \(a_{63}= +0.47330253 \pm 1.0 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.44675751 \pm 5.2 \cdot 10^{-8} \) | \(a_{66}= +0.23800753 \pm 8.2 \cdot 10^{-8} \) |
\(a_{67}= +1.45713164 \pm 4.9 \cdot 10^{-8} \) | \(a_{68}= +0.78795194 \pm 8.3 \cdot 10^{-8} \) | \(a_{69}= -0.26661242 \pm 1.2 \cdot 10^{-7} \) |
\(a_{70}= -1.50269483 \pm 1.9 \cdot 10^{-7} \) | \(a_{71}= -0.25191240 \pm 1.2 \cdot 10^{-7} \) | \(a_{72}= -0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= +0.34922252 \pm 1.4 \cdot 10^{-7} \) | \(a_{74}= -0.54706292 \pm 1.3 \cdot 10^{-7} \) | \(a_{75}= +0.71592444 \pm 9.8 \cdot 10^{-8} \) |
\(a_{76}= +0.20631987 \pm 1.7 \cdot 10^{-7} \) | \(a_{77}= -0.82780187 \pm 2.9 \cdot 10^{-8} \) | \(a_{78}= +0.39463392 \pm 1.2 \cdot 10^{-7} \) |
\(a_{79}= -1.42854729 \pm 7.5 \cdot 10^{-8} \) | \(a_{80}= +0.37416720 \pm 1.0 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.27706356 \pm 7.9 \cdot 10^{-8} \) | \(a_{83}= +0.94484632 \pm 7.2 \cdot 10^{-8} \) | \(a_{84}= +0.40989202 \pm 1.0 \cdot 10^{-7} \) |
\(a_{85}= +2.35860616 \pm 7.4 \cdot 10^{-8} \) | \(a_{86}= -0.38576528 \pm 7.9 \cdot 10^{-8} \) | \(a_{87}= -0.69931989 \pm 9.6 \cdot 10^{-8} \) |
\(a_{88}= +0.20612057 \pm 8.2 \cdot 10^{-8} \) | \(a_{89}= -1.69418499 \pm 1.7 \cdot 10^{-7} \) | \(a_{90}= -0.35276822 \pm 1.0 \cdot 10^{-7} \) |
\(a_{91}= -1.37255616 \pm 5.3 \cdot 10^{-8} \) | \(a_{92}= -0.23089313 \pm 1.2 \cdot 10^{-7} \) | \(a_{93}= +0.52379948 \pm 1.5 \cdot 10^{-7} \) |
\(a_{94}= +0.13381719 \pm 1.1 \cdot 10^{-7} \) | \(a_{95}= +0.61758503 \pm 1.0 \cdot 10^{-7} \) | \(a_{96}= -0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= +0.11541769 \pm 1.5 \cdot 10^{-7} \) | \(a_{98}= -0.71851778 \pm 1.0 \cdot 10^{-7} \) | \(a_{99}= -0.19433233 \pm 8.2 \cdot 10^{-8} \) |
\(a_{100}= +0.62000876 \pm 9.8 \cdot 10^{-8} \) | \(a_{101}= +1.65214241 \pm 9.0 \cdot 10^{-8} \) | \(a_{102}= -0.64336006 \pm 8.3 \cdot 10^{-8} \) |
\(a_{103}= -0.33250988 \pm 1.1 \cdot 10^{-7} \) | \(a_{104}= +0.34176300 \pm 1.2 \cdot 10^{-7} \) | \(a_{105}= +1.22694519 \pm 1.9 \cdot 10^{-7} \) |
\(a_{106}= +0.05770586 \pm 1.6 \cdot 10^{-7} \) | \(a_{107}= -0.99279939 \pm 1.1 \cdot 10^{-7} \) | \(a_{108}= +0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= -0.90202716 \pm 1.2 \cdot 10^{-7} \) | \(a_{110}= +0.61698844 \pm 1.7 \cdot 10^{-7} \) | \(a_{111}= +0.44667500 \pm 1.3 \cdot 10^{-7} \) |
\(a_{112}= +0.35497690 \pm 1.0 \cdot 10^{-7} \) | \(a_{113}= -1.47047312 \pm 1.7 \cdot 10^{-7} \) | \(a_{114}= -0.16845947 \pm 1.7 \cdot 10^{-7} \) |
\(a_{115}= -0.69114110 \pm 6.7 \cdot 10^{-8} \) | \(a_{116}= -0.60562879 \pm 9.6 \cdot 10^{-8} \) | \(a_{117}= -0.32221725 \pm 1.2 \cdot 10^{-7} \) |
\(a_{118}= +0.86199499 \pm 1.3 \cdot 10^{-7} \) | \(a_{119}= +2.23763788 \pm 6.8 \cdot 10^{-8} \) | \(a_{120}= -0.30550624 \pm 1.0 \cdot 10^{-7} \) |
\(a_{121}= -0.66011450 \pm 1.0 \cdot 10^{-7} \) | \(a_{122}= -0.98601839 \pm 1.2 \cdot 10^{-7} \) | \(a_{123}= -0.22622145 \pm 7.9 \cdot 10^{-8} \) |
\(a_{124}= +0.45362366 \pm 1.5 \cdot 10^{-7} \) | \(a_{125}= +0.35922672 \pm 1.0 \cdot 10^{-7} \) | \(a_{126}= -0.33467543 \pm 1.0 \cdot 10^{-7} \) |
\(a_{127}= +0.47023233 \pm 3.5 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.31497603 \pm 7.9 \cdot 10^{-8} \) |
\(a_{130}= +1.02301205 \pm 2.2 \cdot 10^{-7} \) | \(a_{131}= +0.30024056 \pm 1.3 \cdot 10^{-7} \) | \(a_{132}= -0.16829674 \pm 8.2 \cdot 10^{-8} \) |
\(a_{133}= +0.58591031 \pm 6.6 \cdot 10^{-8} \) | \(a_{134}= -1.03034766 \pm 6.0 \cdot 10^{-8} \) | \(a_{135}= +0.28803405 \pm 1.0 \cdot 10^{-7} \) |
\(a_{136}= -0.55716616 \pm 8.3 \cdot 10^{-8} \) | \(a_{137}= -0.68588615 \pm 7.3 \cdot 10^{-8} \) | \(a_{138}= +0.18852345 \pm 1.2 \cdot 10^{-7} \) |
\(a_{139}= -1.26035020 \pm 1.2 \cdot 10^{-7} \) | \(a_{140}= +1.06256571 \pm 1.9 \cdot 10^{-7} \) | \(a_{141}= -0.10926128 \pm 1.1 \cdot 10^{-7} \) |
\(a_{142}= +0.17812896 \pm 1.3 \cdot 10^{-7} \) | \(a_{143}= +0.56355507 \pm 5.9 \cdot 10^{-8} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= -1.81285144 \pm 4.9 \cdot 10^{-8} \) | \(a_{146}= -0.24693761 \pm 1.5 \cdot 10^{-7} \) | \(a_{147}= +0.58666731 \pm 1.0 \cdot 10^{-7} \) |
\(a_{148}= +0.38683190 \pm 1.3 \cdot 10^{-7} \) | \(a_{149}= -0.81288361 \pm 9.2 \cdot 10^{-8} \) | \(a_{150}= -0.50623503 \pm 9.8 \cdot 10^{-8} \) |
\(a_{151}= +0.63898812 \pm 1.0 \cdot 10^{-7} \) | \(a_{152}= -0.14589018 \pm 1.7 \cdot 10^{-7} \) | \(a_{153}= +0.52530129 \pm 8.3 \cdot 10^{-8} \) |
\(a_{154}= +0.58534432 \pm 1.7 \cdot 10^{-7} \) | \(a_{155}= +1.35784875 \pm 1.2 \cdot 10^{-7} \) | \(a_{156}= -0.27904832 \pm 1.2 \cdot 10^{-7} \) |
\(a_{157}= +0.42107858 \pm 1.4 \cdot 10^{-7} \) | \(a_{158}= +1.01013547 \pm 8.6 \cdot 10^{-8} \) | \(a_{159}= -0.04711663 \pm 1.6 \cdot 10^{-7} \) |
\(a_{160}= -0.26457617 \pm 1.0 \cdot 10^{-7} \) | \(a_{161}= -0.65569383 \pm 6.7 \cdot 10^{-8} \) | \(a_{162}= -0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= -0.03142671 \pm 1.0 \cdot 10^{-7} \) | \(a_{164}= -0.19591352 \pm 7.9 \cdot 10^{-8} \) | \(a_{165}= -0.50376895 \pm 1.7 \cdot 10^{-7} \) |
\(a_{166}= -0.66810724 \pm 8.2 \cdot 10^{-8} \) | \(a_{167}= +0.36434381 \pm 1.4 \cdot 10^{-7} \) | \(a_{168}= -0.28983743 \pm 1.0 \cdot 10^{-7} \) |
\(a_{169}= -0.06558440 \pm 1.0 \cdot 10^{-7} \) | \(a_{170}= -1.66778641 \pm 1.7 \cdot 10^{-7} \) | \(a_{171}= +0.13754658 \pm 1.7 \cdot 10^{-7} \) |
\(a_{172}= +0.27277724 \pm 7.9 \cdot 10^{-8} \) | \(a_{173}= -1.41296934 \pm 1.4 \cdot 10^{-7} \) | \(a_{174}= +0.49449384 \pm 9.6 \cdot 10^{-8} \) |
\(a_{175}= +1.76071029 \pm 3.7 \cdot 10^{-8} \) | \(a_{176}= -0.14574925 \pm 8.2 \cdot 10^{-8} \) | \(a_{177}= -0.70381596 \pm 1.3 \cdot 10^{-7} \) |
\(a_{178}= +1.19796970 \pm 1.8 \cdot 10^{-7} \) | \(a_{179}= +0.75716735 \pm 1.4 \cdot 10^{-7} \) | \(a_{180}= +0.24944480 \pm 1.0 \cdot 10^{-7} \) |
\(a_{181}= -1.76725712 \pm 1.6 \cdot 10^{-7} \) | \(a_{182}= +0.97054377 \pm 2.1 \cdot 10^{-7} \) | \(a_{183}= +0.80508064 \pm 1.2 \cdot 10^{-7} \) |
\(a_{184}= +0.16326610 \pm 1.2 \cdot 10^{-7} \) | \(a_{185}= +1.15791847 \pm 9.8 \cdot 10^{-8} \) | \(a_{186}= -0.37038216 \pm 1.5 \cdot 10^{-7} \) |
\(a_{187}= -0.91874723 \pm 5.6 \cdot 10^{-8} \) | \(a_{188}= -0.09462305 \pm 1.1 \cdot 10^{-7} \) | \(a_{189}= +0.27326135 \pm 1.0 \cdot 10^{-7} \) |
\(a_{190}= -0.43669856 \pm 2.6 \cdot 10^{-7} \) | \(a_{191}= +0.02139416 \pm 9.0 \cdot 10^{-8} \) | \(a_{192}= +0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= -0.89129246 \pm 8.2 \cdot 10^{-8} \) | \(a_{194}= -0.08161263 \pm 1.6 \cdot 10^{-7} \) | \(a_{195}= -0.83528584 \pm 2.2 \cdot 10^{-7} \) |
\(a_{196}= +0.50806880 \pm 1.0 \cdot 10^{-7} \) | \(a_{197}= +0.95607334 \pm 1.4 \cdot 10^{-7} \) | \(a_{198}= +0.13741371 \pm 8.2 \cdot 10^{-8} \) |
\(a_{199}= +0.89140809 \pm 4.6 \cdot 10^{-8} \) | \(a_{200}= -0.43841240 \pm 9.8 \cdot 10^{-8} \) | \(a_{201}= +0.84127534 \pm 6.0 \cdot 10^{-8} \) |
\(a_{202}= -1.16824111 \pm 1.0 \cdot 10^{-7} \) | \(a_{203}= -1.71987385 \pm 4.0 \cdot 10^{-8} \) | \(a_{204}= +0.45492426 \pm 8.3 \cdot 10^{-8} \) |
\(a_{205}= -0.58643531 \pm 5.5 \cdot 10^{-8} \) | \(a_{206}= +0.23511999 \pm 1.2 \cdot 10^{-7} \) | \(a_{207}= -0.15392876 \pm 1.2 \cdot 10^{-7} \) |
\(a_{208}= -0.24166294 \pm 1.2 \cdot 10^{-7} \) | \(a_{209}= -0.24056773 \pm 9.6 \cdot 10^{-8} \) | \(a_{210}= -0.86758127 \pm 1.9 \cdot 10^{-7} \) |
\(a_{211}= +1.51132130 \pm 9.5 \cdot 10^{-8} \) | \(a_{212}= -0.04080420 \pm 1.6 \cdot 10^{-7} \) | \(a_{213}= -0.14544169 \pm 1.3 \cdot 10^{-7} \) |
\(a_{214}= +0.70201518 \pm 1.2 \cdot 10^{-7} \) | \(a_{215}= +0.81651438 \pm 4.8 \cdot 10^{-8} \) | \(a_{216}= -0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= +1.28820736 \pm 1.6 \cdot 10^{-7} \) | \(a_{218}= +0.63782952 \pm 1.3 \cdot 10^{-7} \) | \(a_{219}= +0.20162371 \pm 1.5 \cdot 10^{-7} \) |
\(a_{220}= -0.43627671 \pm 1.7 \cdot 10^{-7} \) | \(a_{221}= -1.52335023 \pm 3.9 \cdot 10^{-8} \) | \(a_{222}= -0.31584692 \pm 1.3 \cdot 10^{-7} \) |
\(a_{223}= -0.77176599 \pm 9.9 \cdot 10^{-8} \) | \(a_{224}= -0.25100657 \pm 1.0 \cdot 10^{-7} \) | \(a_{225}= +0.41333917 \pm 9.8 \cdot 10^{-8} \) |
\(a_{226}= +1.03978151 \pm 1.8 \cdot 10^{-7} \) | \(a_{227}= +1.21396038 \pm 1.0 \cdot 10^{-7} \) | \(a_{228}= +0.11911883 \pm 1.7 \cdot 10^{-7} \) |
\(a_{229}= -0.44425358 \pm 4.7 \cdot 10^{-8} \) | \(a_{230}= +0.48871056 \pm 2.1 \cdot 10^{-7} \) | \(a_{231}= -0.47793163 \pm 1.7 \cdot 10^{-7} \) |
\(a_{232}= +0.42824423 \pm 9.6 \cdot 10^{-8} \) | \(a_{233}= -1.26804626 \pm 1.9 \cdot 10^{-7} \) | \(a_{234}= +0.22784200 \pm 1.2 \cdot 10^{-7} \) |
\(a_{235}= -0.28323872 \pm 7.0 \cdot 10^{-8} \) | \(a_{236}= -0.60952250 \pm 1.3 \cdot 10^{-7} \) | \(a_{237}= -0.82477216 \pm 8.6 \cdot 10^{-8} \) |
\(a_{238}= -1.58224892 \pm 1.7 \cdot 10^{-7} \) | \(a_{239}= +0.15683349 \pm 1.1 \cdot 10^{-7} \) | \(a_{240}= +0.21602553 \pm 1.0 \cdot 10^{-7} \) |
\(a_{241}= -0.73233316 \pm 6.6 \cdot 10^{-8} \) | \(a_{242}= +0.46677144 \pm 1.1 \cdot 10^{-7} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.69722029 \pm 1.2 \cdot 10^{-7} \) | \(a_{245}= +1.52082144 \pm 7.0 \cdot 10^{-8} \) | \(a_{246}= +0.15996272 \pm 7.9 \cdot 10^{-8} \) |
\(a_{247}= -0.39887893 \pm 1.8 \cdot 10^{-7} \) | \(a_{248}= -0.32076036 \pm 1.5 \cdot 10^{-7} \) | \(a_{249}= +0.54550728 \pm 8.2 \cdot 10^{-8} \) |
\(a_{250}= -0.25401165 \pm 1.1 \cdot 10^{-7} \) | \(a_{251}= +0.22759515 \pm 1.3 \cdot 10^{-7} \) | \(a_{252}= +0.23665127 \pm 1.0 \cdot 10^{-7} \) |
\(a_{253}= +0.26922001 \pm 5.7 \cdot 10^{-8} \) | \(a_{254}= -0.33250447 \pm 4.5 \cdot 10^{-8} \) | \(a_{255}= +1.36174190 \pm 1.7 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.14243997 \pm 7.4 \cdot 10^{-8} \) | \(a_{258}= -0.22272169 \pm 7.9 \cdot 10^{-8} \) |
\(a_{259}= +1.09853110 \pm 1.4 \cdot 10^{-7} \) | \(a_{260}= -0.72337876 \pm 2.2 \cdot 10^{-7} \) | \(a_{261}= -0.40375253 \pm 9.6 \cdot 10^{-8} \) |
\(a_{262}= -0.21230214 \pm 1.4 \cdot 10^{-7} \) | \(a_{263}= +0.31428218 \pm 4.8 \cdot 10^{-8} \) | \(a_{264}= +0.11900376 \pm 8.2 \cdot 10^{-8} \) |
\(a_{265}= -0.12214075 \pm 1.1 \cdot 10^{-7} \) | \(a_{266}= -0.41430115 \pm 2.6 \cdot 10^{-7} \) | \(a_{267}= -0.97813816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{268}= +0.72856582 \pm 6.0 \cdot 10^{-8} \) | \(a_{269}= -0.33771036 \pm 1.2 \cdot 10^{-7} \) | \(a_{270}= -0.20367083 \pm 1.0 \cdot 10^{-7} \) |
\(a_{271}= -1.70404614 \pm 1.4 \cdot 10^{-7} \) | \(a_{272}= +0.39397597 \pm 8.3 \cdot 10^{-8} \) | \(a_{273}= -0.79244567 \pm 2.1 \cdot 10^{-7} \) |
\(a_{274}= +0.48499474 \pm 8.4 \cdot 10^{-8} \) | \(a_{275}= -0.72292649 \pm 5.8 \cdot 10^{-8} \) | \(a_{276}= -0.13330621 \pm 1.2 \cdot 10^{-7} \) |
\(a_{277}= +0.23073303 \pm 1.0 \cdot 10^{-7} \) | \(a_{278}= +0.89120217 \pm 1.3 \cdot 10^{-7} \) | \(a_{279}= +0.30241577 \pm 1.5 \cdot 10^{-7} \) |
\(a_{280}= -0.75134742 \pm 1.9 \cdot 10^{-7} \) | \(a_{281}= -0.05159942 \pm 1.5 \cdot 10^{-7} \) | \(a_{282}= +0.07725939 \pm 1.1 \cdot 10^{-7} \) |
\(a_{283}= +1.79081152 \pm 7.8 \cdot 10^{-8} \) | \(a_{284}= -0.12595620 \pm 1.3 \cdot 10^{-7} \) | \(a_{285}= +0.35656288 \pm 2.6 \cdot 10^{-7} \) |
\(a_{286}= -0.39849361 \pm 2.0 \cdot 10^{-7} \) | \(a_{287}= -0.55635820 \pm 8.1 \cdot 10^{-8} \) | \(a_{288}= -0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= +1.48347301 \pm 9.2 \cdot 10^{-8} \) | \(a_{290}= +1.28187955 \pm 1.8 \cdot 10^{-7} \) | \(a_{291}= +0.06663643 \pm 1.6 \cdot 10^{-7} \) |
\(a_{292}= +0.17461126 \pm 1.5 \cdot 10^{-7} \) | \(a_{293}= -1.27389562 \pm 1.1 \cdot 10^{-7} \) | \(a_{294}= -0.41483644 \pm 1.0 \cdot 10^{-7} \) |
\(a_{295}= -1.82450663 \pm 1.0 \cdot 10^{-7} \) | \(a_{296}= -0.27353146 \pm 1.3 \cdot 10^{-7} \) | \(a_{297}= -0.11219782 \pm 8.2 \cdot 10^{-8} \) |
\(a_{298}= +0.57479551 \pm 1.0 \cdot 10^{-7} \) | \(a_{299}= +0.44638650 \pm 1.2 \cdot 10^{-7} \) | \(a_{300}= +0.35796222 \pm 9.8 \cdot 10^{-8} \) |
\(a_{301}= +0.77463696 \pm 3.0 \cdot 10^{-8} \) | \(a_{302}= -0.45183283 \pm 1.1 \cdot 10^{-7} \) | \(a_{303}= +0.95386487 \pm 1.0 \cdot 10^{-7} \) |
\(a_{304}= +0.10315994 \pm 1.7 \cdot 10^{-7} \) | \(a_{305}= +2.08701572 \pm 1.1 \cdot 10^{-7} \) | \(a_{306}= -0.37144410 \pm 8.3 \cdot 10^{-8} \) |
\(a_{307}= -1.53931321 \pm 6.0 \cdot 10^{-8} \) | \(a_{308}= -0.41390094 \pm 1.7 \cdot 10^{-7} \) | \(a_{309}= -0.19197467 \pm 1.2 \cdot 10^{-7} \) |
\(a_{310}= -0.96014406 \pm 2.4 \cdot 10^{-7} \) | \(a_{311}= -0.37373551 \pm 1.4 \cdot 10^{-7} \) | \(a_{312}= +0.19731696 \pm 1.2 \cdot 10^{-7} \) |
\(a_{313}= -0.16462734 \pm 1.4 \cdot 10^{-7} \) | \(a_{314}= -0.29774752 \pm 1.5 \cdot 10^{-7} \) | \(a_{315}= +0.70837714 \pm 1.9 \cdot 10^{-7} \) |
\(a_{316}= -0.71427364 \pm 8.6 \cdot 10^{-8} \) | \(a_{317}= -1.09226175 \pm 8.8 \cdot 10^{-8} \) | \(a_{318}= +0.03331649 \pm 1.6 \cdot 10^{-7} \) |
\(a_{319}= +0.70615954 \pm 4.6 \cdot 10^{-8} \) | \(a_{320}= +0.18708360 \pm 1.0 \cdot 10^{-7} \) | \(a_{321}= -0.57319299 \pm 1.2 \cdot 10^{-7} \) |
\(a_{322}= +0.46364555 \pm 2.1 \cdot 10^{-7} \) | \(a_{323}= +0.65028057 \pm 6.9 \cdot 10^{-8} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= -1.19866509 \pm 9.6 \cdot 10^{-8} \) | \(a_{326}= +0.02222204 \pm 1.1 \cdot 10^{-7} \) | \(a_{327}= -0.52078563 \pm 1.3 \cdot 10^{-7} \) |
\(a_{328}= +0.13853178 \pm 7.9 \cdot 10^{-8} \) | \(a_{329}= -0.26871196 \pm 9.4 \cdot 10^{-8} \) | \(a_{330}= +0.35621844 \pm 1.7 \cdot 10^{-7} \) |
\(a_{331}= +0.75387477 \pm 2.0 \cdot 10^{-7} \) | \(a_{332}= +0.47242316 \pm 8.2 \cdot 10^{-8} \) | \(a_{333}= +0.25788793 \pm 1.3 \cdot 10^{-7} \) |
\(a_{334}= -0.25762998 \pm 1.5 \cdot 10^{-7} \) | \(a_{335}= +2.18084347 \pm 6.5 \cdot 10^{-8} \) | \(a_{336}= +0.20494601 \pm 1.0 \cdot 10^{-7} \) |
\(a_{337}= +0.31085986 \pm 7.1 \cdot 10^{-8} \) | \(a_{338}= +0.04637518 \pm 1.1 \cdot 10^{-7} \) | \(a_{339}= -0.84897805 \pm 1.8 \cdot 10^{-7} \) |
\(a_{340}= +1.17930308 \pm 1.7 \cdot 10^{-7} \) | \(a_{341}= -0.52892246 \pm 4.9 \cdot 10^{-8} \) | \(a_{342}= -0.09726012 \pm 1.7 \cdot 10^{-7} \) |
\(a_{343}= +0.02291389 \pm 6.8 \cdot 10^{-8} \) | \(a_{344}= -0.19288264 \pm 7.9 \cdot 10^{-8} \) | \(a_{345}= -0.39903050 \pm 2.1 \cdot 10^{-7} \) |
\(a_{346}= +0.99912020 \pm 1.5 \cdot 10^{-7} \) | \(a_{347}= -1.19976805 \pm 1.4 \cdot 10^{-7} \) | \(a_{348}= -0.34965995 \pm 9.6 \cdot 10^{-8} \) |
\(a_{349}= +0.56528285 \pm 1.1 \cdot 10^{-7} \) | \(a_{350}= -1.24501018 \pm 1.8 \cdot 10^{-7} \) | \(a_{351}= -0.18603222 \pm 1.2 \cdot 10^{-7} \) |
\(a_{352}= +0.10306028 \pm 8.2 \cdot 10^{-8} \) | \(a_{353}= -1.00114541 \pm 5.5 \cdot 10^{-8} \) | \(a_{354}= +0.49767304 \pm 1.3 \cdot 10^{-7} \) |
\(a_{355}= -0.37702943 \pm 6.9 \cdot 10^{-8} \) | \(a_{356}= -0.84709250 \pm 1.8 \cdot 10^{-7} \) | \(a_{357}= +1.29190083 \pm 1.7 \cdot 10^{-7} \) |
\(a_{358}= -0.53539817 \pm 1.5 \cdot 10^{-7} \) | \(a_{359}= +0.13739397 \pm 1.4 \cdot 10^{-7} \) | \(a_{360}= -0.17638411 \pm 1.0 \cdot 10^{-7} \) |
\(a_{361}= -0.82972844 \pm 1.4 \cdot 10^{-7} \) | \(a_{362}= +1.24963950 \pm 1.7 \cdot 10^{-7} \) | \(a_{363}= -0.38111728 \pm 1.1 \cdot 10^{-7} \) |
\(a_{364}= -0.68627808 \pm 2.1 \cdot 10^{-7} \) | \(a_{365}= +0.52267045 \pm 1.4 \cdot 10^{-7} \) | \(a_{366}= -0.56927798 \pm 1.2 \cdot 10^{-7} \) |
\(a_{367}= +0.60739793 \pm 6.0 \cdot 10^{-8} \) | \(a_{368}= -0.11544657 \pm 1.2 \cdot 10^{-7} \) | \(a_{369}= -0.13060901 \pm 7.9 \cdot 10^{-8} \) |
\(a_{370}= -0.81877200 \pm 2.2 \cdot 10^{-7} \) | \(a_{371}= -0.11587639 \pm 6.6 \cdot 10^{-8} \) | \(a_{372}= +0.26189974 \pm 1.5 \cdot 10^{-7} \) |
\(a_{373}= +0.85289903 \pm 8.9 \cdot 10^{-8} \) | \(a_{374}= +0.64965240 \pm 1.5 \cdot 10^{-7} \) | \(a_{375}= +0.20739964 \pm 1.1 \cdot 10^{-7} \) |
\(a_{376}= +0.06690860 \pm 1.1 \cdot 10^{-7} \) | \(a_{377}= +1.17086426 \pm 9.8 \cdot 10^{-8} \) | \(a_{378}= -0.19322495 \pm 1.0 \cdot 10^{-7} \) |
\(a_{379}= +0.64421089 \pm 7.9 \cdot 10^{-8} \) | \(a_{380}= +0.30879252 \pm 2.6 \cdot 10^{-7} \) | \(a_{381}= +0.27148876 \pm 4.5 \cdot 10^{-8} \) |
\(a_{382}= -0.01512796 \pm 1.0 \cdot 10^{-7} \) | \(a_{383}= +0.39120122 \pm 1.5 \cdot 10^{-7} \) | \(a_{384}= -0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= -1.23894524 \pm 2.6 \cdot 10^{-8} \) | \(a_{386}= +0.63023894 \pm 9.3 \cdot 10^{-8} \) | \(a_{387}= +0.18185150 \pm 7.9 \cdot 10^{-8} \) |
\(a_{388}= +0.05770884 \pm 1.6 \cdot 10^{-7} \) | \(a_{389}= -0.29929029 \pm 8.8 \cdot 10^{-8} \) | \(a_{390}= +0.59063628 \pm 2.2 \cdot 10^{-7} \) |
\(a_{391}= -0.72773076 \pm 4.9 \cdot 10^{-8} \) | \(a_{392}= -0.35925889 \pm 1.0 \cdot 10^{-7} \) | \(a_{393}= +0.17334397 \pm 1.4 \cdot 10^{-7} \) |
\(a_{394}= -0.67604594 \pm 1.5 \cdot 10^{-7} \) | \(a_{395}= -2.13806216 \pm 8.8 \cdot 10^{-8} \) | \(a_{396}= -0.09716617 \pm 8.2 \cdot 10^{-8} \) |
\(a_{397}= +0.06304077 \pm 1.4 \cdot 10^{-7} \) | \(a_{398}= -0.63032071 \pm 5.7 \cdot 10^{-8} \) | \(a_{399}= +0.33827547 \pm 2.6 \cdot 10^{-7} \) |
\(a_{400}= +0.31000438 \pm 9.8 \cdot 10^{-8} \) | \(a_{401}= +1.65636127 \pm 1.7 \cdot 10^{-7} \) | \(a_{402}= -0.59487150 \pm 6.0 \cdot 10^{-8} \) |
\(a_{403}= -0.87699220 \pm 5.5 \cdot 10^{-8} \) | \(a_{404}= +0.82607121 \pm 1.0 \cdot 10^{-7} \) | \(a_{405}= +0.16629653 \pm 1.0 \cdot 10^{-7} \) |
\(a_{406}= +1.21613446 \pm 1.8 \cdot 10^{-7} \) | \(a_{407}= -0.45104367 \pm 3.4 \cdot 10^{-8} \) | \(a_{408}= -0.32168003 \pm 8.3 \cdot 10^{-8} \) |
\(a_{409}= -0.38682973 \pm 1.1 \cdot 10^{-7} \) | \(a_{410}= +0.41467239 \pm 1.7 \cdot 10^{-7} \) | \(a_{411}= -0.39599655 \pm 8.4 \cdot 10^{-8} \) |
\(a_{412}= -0.16625494 \pm 1.2 \cdot 10^{-7} \) | \(a_{413}= -1.73093127 \pm 1.1 \cdot 10^{-7} \) | \(a_{414}= +0.10884407 \pm 1.2 \cdot 10^{-7} \) |
\(a_{415}= +1.41412201 \pm 5.4 \cdot 10^{-8} \) | \(a_{416}= +0.17088150 \pm 1.2 \cdot 10^{-7} \) | \(a_{417}= -0.72766353 \pm 1.3 \cdot 10^{-7} \) |
\(a_{418}= +0.17010708 \pm 2.4 \cdot 10^{-7} \) | \(a_{419}= -0.93601589 \pm 9.9 \cdot 10^{-8} \) | \(a_{420}= +0.61347260 \pm 1.9 \cdot 10^{-7} \) |
\(a_{421}= +0.69830606 \pm 1.3 \cdot 10^{-7} \) | \(a_{422}= -1.06866554 \pm 1.0 \cdot 10^{-7} \) | \(a_{423}= -0.06308203 \pm 1.1 \cdot 10^{-7} \) |
\(a_{424}= +0.02885293 \pm 1.6 \cdot 10^{-7} \) | \(a_{425}= +1.95414840 \pm 4.4 \cdot 10^{-8} \) | \(a_{426}= +0.10284281 \pm 1.3 \cdot 10^{-7} \) |
\(a_{427}= +1.97997678 \pm 8.8 \cdot 10^{-8} \) | \(a_{428}= -0.49639969 \pm 1.2 \cdot 10^{-7} \) | \(a_{429}= +0.32536867 \pm 2.0 \cdot 10^{-7} \) |
\(a_{430}= -0.57736285 \pm 1.7 \cdot 10^{-7} \) | \(a_{431}= +1.25965081 \pm 1.2 \cdot 10^{-7} \) | \(a_{432}= +0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= -1.54114677 \pm 9.6 \cdot 10^{-8} \) | \(a_{434}= -0.91090016 \pm 2.4 \cdot 10^{-7} \) | \(a_{435}= -1.04665027 \pm 1.8 \cdot 10^{-7} \) |
\(a_{436}= -0.45101358 \pm 1.3 \cdot 10^{-7} \) | \(a_{437}= -0.19055137 \pm 1.6 \cdot 10^{-7} \) | \(a_{438}= -0.14256950 \pm 1.5 \cdot 10^{-7} \) |
\(a_{439}= +1.75617947 \pm 1.1 \cdot 10^{-7} \) | \(a_{440}= +0.30849422 \pm 1.7 \cdot 10^{-7} \) | \(a_{441}= +0.33871253 \pm 1.0 \cdot 10^{-7} \) |
\(a_{442}= +1.07717128 \pm 2.0 \cdot 10^{-7} \) | \(a_{443}= +0.96149255 \pm 4.1 \cdot 10^{-8} \) | \(a_{444}= +0.22333750 \pm 1.3 \cdot 10^{-7} \) |
\(a_{445}= -2.53563383 \pm 8.8 \cdot 10^{-8} \) | \(a_{446}= +0.54572097 \pm 1.0 \cdot 10^{-7} \) | \(a_{447}= -0.46931857 \pm 1.0 \cdot 10^{-7} \) |
\(a_{448}= +0.17748845 \pm 1.0 \cdot 10^{-7} \) | \(a_{449}= +0.93535487 \pm 1.6 \cdot 10^{-7} \) | \(a_{450}= -0.29227493 \pm 9.8 \cdot 10^{-8} \) |
\(a_{451}= +0.22843399 \pm 2.4 \cdot 10^{-8} \) | \(a_{452}= -0.73523656 \pm 1.8 \cdot 10^{-7} \) | \(a_{453}= +0.36891996 \pm 1.1 \cdot 10^{-7} \) |
\(a_{454}= -0.85839962 \pm 1.1 \cdot 10^{-7} \) | \(a_{455}= -2.05426199 \pm 3.6 \cdot 10^{-8} \) | \(a_{456}= -0.08422973 \pm 1.7 \cdot 10^{-7} \) |
\(a_{457}= -1.47979588 \pm 1.5 \cdot 10^{-7} \) | \(a_{458}= +0.31413472 \pm 5.7 \cdot 10^{-8} \) | \(a_{459}= +0.30328284 \pm 8.3 \cdot 10^{-8} \) |
\(a_{460}= -0.34557055 \pm 2.1 \cdot 10^{-7} \) | \(a_{461}= +0.05045369 \pm 1.2 \cdot 10^{-7} \) | \(a_{462}= +0.33794870 \pm 1.7 \cdot 10^{-7} \) |
\(a_{463}= -1.61364554 \pm 1.1 \cdot 10^{-7} \) | \(a_{464}= -0.30281440 \pm 9.6 \cdot 10^{-8} \) | \(a_{465}= +0.78395434 \pm 2.4 \cdot 10^{-7} \) |
\(a_{466}= +0.89664411 \pm 2.0 \cdot 10^{-7} \) | \(a_{467}= +0.19308186 \pm 1.3 \cdot 10^{-7} \) | \(a_{468}= -0.16110862 \pm 1.2 \cdot 10^{-7} \) |
\(a_{469}= +2.06899229 \pm 1.6 \cdot 10^{-8} \) | \(a_{470}= +0.20028002 \pm 2.0 \cdot 10^{-7} \) | \(a_{471}= +0.24310983 \pm 1.5 \cdot 10^{-7} \) |
\(a_{472}= +0.43099750 \pm 1.3 \cdot 10^{-7} \) | \(a_{473}= -0.31805663 \pm 4.4 \cdot 10^{-8} \) | \(a_{474}= +0.58320199 \pm 8.6 \cdot 10^{-8} \) |
\(a_{475}= +0.51168051 \pm 1.2 \cdot 10^{-7} \) | \(a_{476}= +1.11881894 \pm 1.7 \cdot 10^{-7} \) | \(a_{477}= -0.02720280 \pm 1.6 \cdot 10^{-7} \) |
\(a_{478}= -0.11089802 \pm 1.2 \cdot 10^{-7} \) | \(a_{479}= -0.28250182 \pm 1.3 \cdot 10^{-7} \) | \(a_{480}= -0.15275312 \pm 1.0 \cdot 10^{-7} \) |
\(a_{481}= -0.74786346 \pm 6.7 \cdot 10^{-8} \) | \(a_{482}= +0.51783774 \pm 7.6 \cdot 10^{-8} \) | \(a_{483}= -0.37856501 \pm 2.1 \cdot 10^{-7} \) |
\(a_{484}= -0.33005725 \pm 1.1 \cdot 10^{-7} \) | \(a_{485}= +0.17274205 \pm 1.0 \cdot 10^{-7} \) | \(a_{486}= -0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= +1.90231876 \pm 1.5 \cdot 10^{-7} \) | \(a_{488}= -0.49300920 \pm 1.2 \cdot 10^{-7} \) | \(a_{489}= -0.01814422 \pm 1.1 \cdot 10^{-7} \) |
\(a_{490}= -1.07538315 \pm 2.0 \cdot 10^{-7} \) | \(a_{491}= +1.10492997 \pm 1.4 \cdot 10^{-7} \) | \(a_{492}= -0.11311072 \pm 7.9 \cdot 10^{-8} \) |
\(a_{493}= -1.90882551 \pm 3.3 \cdot 10^{-8} \) | \(a_{494}= +0.28205000 \pm 2.8 \cdot 10^{-7} \) | \(a_{495}= -0.29085114 \pm 1.7 \cdot 10^{-7} \) |
\(a_{496}= +0.22681183 \pm 1.5 \cdot 10^{-7} \) | \(a_{497}= -0.35769233 \pm 7.7 \cdot 10^{-8} \) | \(a_{498}= -0.38573189 \pm 8.2 \cdot 10^{-8} \) |
\(a_{499}= -0.50450342 \pm 1.5 \cdot 10^{-7} \) | \(a_{500}= +0.17961336 \pm 1.1 \cdot 10^{-7} \) | \(a_{501}= +0.21035400 \pm 1.5 \cdot 10^{-7} \) |
\(a_{502}= -0.16093408 \pm 1.4 \cdot 10^{-7} \) | \(a_{503}= -1.74430846 \pm 1.1 \cdot 10^{-7} \) | \(a_{504}= -0.16733772 \pm 1.0 \cdot 10^{-7} \) |
\(a_{505}= +2.47271001 \pm 8.7 \cdot 10^{-8} \) | \(a_{506}= -0.19036729 \pm 1.9 \cdot 10^{-7} \) | \(a_{507}= -0.03786517 \pm 1.1 \cdot 10^{-7} \) |
\(a_{508}= +0.23511617 \pm 4.5 \cdot 10^{-8} \) | \(a_{509}= -0.81832670 \pm 9.8 \cdot 10^{-8} \) | \(a_{510}= -0.96289693 \pm 1.7 \cdot 10^{-7} \) |
\(a_{511}= +0.49586371 \pm 1.3 \cdot 10^{-7} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.07941256 \pm 1.7 \cdot 10^{-7} \) |
\(a_{514}= -0.10072027 \pm 8.4 \cdot 10^{-8} \) | \(a_{515}= -0.49765716 \pm 6.2 \cdot 10^{-8} \) | \(a_{516}= +0.15748801 \pm 7.9 \cdot 10^{-8} \) |
\(a_{517}= +0.11032990 \pm 4.0 \cdot 10^{-8} \) | \(a_{518}= -0.77677879 \pm 2.2 \cdot 10^{-7} \) | \(a_{519}= -0.81577823 \pm 1.5 \cdot 10^{-7} \) |
\(a_{520}= +0.51150602 \pm 2.2 \cdot 10^{-7} \) | \(a_{521}= +1.48036699 \pm 1.4 \cdot 10^{-7} \) | \(a_{522}= +0.28549615 \pm 9.6 \cdot 10^{-8} \) |
\(a_{523}= +0.29013792 \pm 1.0 \cdot 10^{-7} \) | \(a_{524}= +0.15012028 \pm 1.4 \cdot 10^{-7} \) | \(a_{525}= +1.01654656 \pm 1.8 \cdot 10^{-7} \) |
\(a_{526}= -0.22223106 \pm 5.9 \cdot 10^{-8} \) | \(a_{527}= +1.42973455 \pm 1.0 \cdot 10^{-7} \) | \(a_{528}= -0.08414837 \pm 8.2 \cdot 10^{-8} \) |
\(a_{529}= -0.78675345 \pm 5.0 \cdot 10^{-8} \) | \(a_{530}= +0.08636655 \pm 2.6 \cdot 10^{-7} \) | \(a_{531}= -0.40634834 \pm 1.3 \cdot 10^{-7} \) |
\(a_{532}= +0.29295515 \pm 2.6 \cdot 10^{-7} \) | \(a_{533}= +0.37876030 \pm 4.3 \cdot 10^{-8} \) | \(a_{534}= +0.69164813 \pm 1.8 \cdot 10^{-7} \) |
\(a_{535}= -1.48589187 \pm 1.1 \cdot 10^{-7} \) | \(a_{536}= -0.51517383 \pm 6.0 \cdot 10^{-8} \) | \(a_{537}= +0.43715078 \pm 1.5 \cdot 10^{-7} \) |
\(a_{538}= +0.23879729 \pm 1.3 \cdot 10^{-7} \) | \(a_{539}= -0.59240517 \pm 6.7 \cdot 10^{-8} \) | \(a_{540}= +0.14401702 \pm 1.0 \cdot 10^{-7} \) |
\(a_{541}= +0.98199969 \pm 1.0 \cdot 10^{-7} \) | \(a_{542}= +1.20494258 \pm 1.5 \cdot 10^{-7} \) | \(a_{543}= -1.02032638 \pm 1.7 \cdot 10^{-7} \) |
\(a_{544}= -0.27858308 \pm 8.3 \cdot 10^{-8} \) | \(a_{545}= -1.35003592 \pm 7.0 \cdot 10^{-8} \) | \(a_{546}= +0.56034371 \pm 2.1 \cdot 10^{-7} \) |
\(a_{547}= +1.18067710 \pm 1.6 \cdot 10^{-7} \) | \(a_{548}= -0.34294307 \pm 8.4 \cdot 10^{-8} \) | \(a_{549}= +0.46481353 \pm 1.2 \cdot 10^{-7} \) |
\(a_{550}= +0.51118622 \pm 1.6 \cdot 10^{-7} \) | \(a_{551}= -0.49981302 \pm 1.2 \cdot 10^{-7} \) | \(a_{552}= +0.09426173 \pm 1.2 \cdot 10^{-7} \) |
\(a_{553}= -2.02840515 \pm 5.5 \cdot 10^{-8} \) | \(a_{554}= -0.16315289 \pm 1.1 \cdot 10^{-7} \) | \(a_{555}= +0.66852454 \pm 2.2 \cdot 10^{-7} \) |
\(a_{556}= -0.63017510 \pm 1.3 \cdot 10^{-7} \) | \(a_{557}= +0.24027770 \pm 4.7 \cdot 10^{-8} \) | \(a_{558}= -0.21384024 \pm 1.5 \cdot 10^{-7} \) |
\(a_{559}= -0.52736120 \pm 7.3 \cdot 10^{-8} \) | \(a_{560}= +0.53128285 \pm 1.9 \cdot 10^{-7} \) | \(a_{561}= -0.53043896 \pm 1.5 \cdot 10^{-7} \) |
\(a_{562}= +0.03648630 \pm 1.6 \cdot 10^{-7} \) | \(a_{563}= +1.25984891 \pm 6.3 \cdot 10^{-8} \) | \(a_{564}= -0.05463064 \pm 1.1 \cdot 10^{-7} \) |
\(a_{565}= -2.20081124 \pm 1.0 \cdot 10^{-7} \) | \(a_{566}= -1.26629497 \pm 8.8 \cdot 10^{-8} \) | \(a_{567}= +0.15776751 \pm 1.0 \cdot 10^{-7} \) |
\(a_{568}= +0.08906448 \pm 1.3 \cdot 10^{-7} \) | \(a_{569}= +1.79006120 \pm 1.3 \cdot 10^{-7} \) | \(a_{570}= -0.25212803 \pm 2.6 \cdot 10^{-7} \) |
\(a_{571}= +1.79099282 \pm 1.2 \cdot 10^{-7} \) | \(a_{572}= +0.28177753 \pm 2.0 \cdot 10^{-7} \) | \(a_{573}= +0.01235192 \pm 1.0 \cdot 10^{-7} \) |
\(a_{574}= +0.39340465 \pm 1.7 \cdot 10^{-7} \) | \(a_{575}= -0.57262306 \pm 8.6 \cdot 10^{-8} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= -1.13256178 \pm 1.3 \cdot 10^{-7} \) | \(a_{578}= -1.04897383 \pm 1.0 \cdot 10^{-7} \) | \(a_{579}= -0.51458794 \pm 9.3 \cdot 10^{-8} \) |
\(a_{580}= -0.90642572 \pm 1.8 \cdot 10^{-7} \) | \(a_{581}= +1.34159447 \pm 7.9 \cdot 10^{-8} \) | \(a_{582}= -0.04711907 \pm 1.6 \cdot 10^{-7} \) |
\(a_{583}= +0.04757745 \pm 1.0 \cdot 10^{-7} \) | \(a_{584}= -0.12346881 \pm 1.5 \cdot 10^{-7} \) | \(a_{585}= -0.48225250 \pm 2.2 \cdot 10^{-7} \) |
\(a_{586}= +0.90078023 \pm 1.2 \cdot 10^{-7} \) | \(a_{587}= -0.44921242 \pm 9.8 \cdot 10^{-8} \) | \(a_{588}= +0.29333366 \pm 1.0 \cdot 10^{-7} \) |
\(a_{589}= +0.37436630 \pm 1.1 \cdot 10^{-7} \) | \(a_{590}= +1.29012101 \pm 2.2 \cdot 10^{-7} \) | \(a_{591}= +0.55198920 \pm 1.5 \cdot 10^{-7} \) |
\(a_{592}= +0.19341595 \pm 1.3 \cdot 10^{-7} \) | \(a_{593}= -0.93622848 \pm 1.7 \cdot 10^{-7} \) | \(a_{594}= +0.07933584 \pm 8.2 \cdot 10^{-8} \) |
\(a_{595}= +3.34900282 \pm 5.4 \cdot 10^{-8} \) | \(a_{596}= -0.40644180 \pm 1.0 \cdot 10^{-7} \) | \(a_{597}= +0.51465470 \pm 5.7 \cdot 10^{-8} \) |
\(a_{598}= -0.31564292 \pm 2.4 \cdot 10^{-7} \) | \(a_{599}= -0.36185358 \pm 1.0 \cdot 10^{-7} \) | \(a_{600}= -0.25311751 \pm 9.8 \cdot 10^{-8} \) |
\(a_{601}= +1.63639883 \pm 1.3 \cdot 10^{-7} \) | \(a_{602}= -0.54775105 \pm 1.6 \cdot 10^{-7} \) | \(a_{603}= +0.48571055 \pm 6.0 \cdot 10^{-8} \) |
\(a_{604}= +0.31949406 \pm 1.1 \cdot 10^{-7} \) | \(a_{605}= -0.98797278 \pm 7.0 \cdot 10^{-8} \) | \(a_{606}= -0.67448432 \pm 1.0 \cdot 10^{-7} \) |
\(a_{607}= -1.88244728 \pm 7.6 \cdot 10^{-8} \) | \(a_{608}= -0.07294509 \pm 1.7 \cdot 10^{-7} \) | \(a_{609}= -0.99296963 \pm 1.8 \cdot 10^{-7} \) |
\(a_{610}= -1.47574297 \pm 2.1 \cdot 10^{-7} \) | \(a_{611}= +0.18293506 \pm 9.1 \cdot 10^{-8} \) | \(a_{612}= +0.26265065 \pm 8.3 \cdot 10^{-8} \) |
\(a_{613}= +0.51916765 \pm 5.6 \cdot 10^{-8} \) | \(a_{614}= +1.08845881 \pm 7.1 \cdot 10^{-8} \) | \(a_{615}= -0.33857859 \pm 1.7 \cdot 10^{-7} \) |
\(a_{616}= +0.29267216 \pm 1.7 \cdot 10^{-7} \) | \(a_{617}= -1.20840335 \pm 1.1 \cdot 10^{-7} \) | \(a_{618}= +0.13574659 \pm 1.2 \cdot 10^{-7} \) |
\(a_{619}= -0.39058829 \pm 1.1 \cdot 10^{-7} \) | \(a_{620}= +0.67892438 \pm 2.4 \cdot 10^{-7} \) | \(a_{621}= -0.08887081 \pm 1.2 \cdot 10^{-7} \) |
\(a_{622}= +0.26427091 \pm 1.5 \cdot 10^{-7} \) | \(a_{623}= -2.40558615 \pm 5.8 \cdot 10^{-8} \) | \(a_{624}= -0.13952416 \pm 1.2 \cdot 10^{-7} \) |
\(a_{625}= -0.70237408 \pm 7.9 \cdot 10^{-8} \) | \(a_{626}= +0.11640911 \pm 1.6 \cdot 10^{-7} \) | \(a_{627}= -0.13889185 \pm 2.4 \cdot 10^{-7} \) |
\(a_{628}= +0.21053929 \pm 1.5 \cdot 10^{-7} \) | \(a_{629}= +1.21921977 \pm 9.1 \cdot 10^{-8} \) | \(a_{630}= -0.50089828 \pm 1.9 \cdot 10^{-7} \) |
\(a_{631}= +0.15418673 \pm 1.5 \cdot 10^{-7} \) | \(a_{632}= +0.50506774 \pm 8.6 \cdot 10^{-8} \) | \(a_{633}= +0.87256176 \pm 1.0 \cdot 10^{-7} \) |
\(a_{634}= +0.77234569 \pm 9.8 \cdot 10^{-8} \) | \(a_{635}= +0.70378206 \pm 2.6 \cdot 10^{-8} \) | \(a_{636}= -0.02355832 \pm 1.6 \cdot 10^{-7} \) |
\(a_{637}= -0.98225118 \pm 1.1 \cdot 10^{-7} \) | \(a_{638}= -0.49933020 \pm 1.6 \cdot 10^{-7} \) | \(a_{639}= -0.08397080 \pm 1.3 \cdot 10^{-7} \) |
\(a_{640}= -0.13228808 \pm 1.0 \cdot 10^{-7} \) | \(a_{641}= +1.54624930 \pm 1.1 \cdot 10^{-7} \) | \(a_{642}= +0.40530865 \pm 1.2 \cdot 10^{-7} \) |
\(a_{643}= -0.84999802 \pm 5.3 \cdot 10^{-8} \) | \(a_{644}= -0.32784691 \pm 2.1 \cdot 10^{-7} \) | \(a_{645}= +0.47141480 \pm 1.7 \cdot 10^{-7} \) |
\(a_{646}= -0.45981780 \pm 2.4 \cdot 10^{-7} \) | \(a_{647}= +0.92269577 \pm 1.5 \cdot 10^{-7} \) | \(a_{648}= -0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= +0.71069958 \pm 7.2 \cdot 10^{-8} \) | \(a_{650}= +0.84758421 \pm 2.1 \cdot 10^{-7} \) | \(a_{651}= +0.74374686 \pm 2.4 \cdot 10^{-7} \) |
\(a_{652}= -0.01571335 \pm 1.1 \cdot 10^{-7} \) | \(a_{653}= -0.58153505 \pm 1.4 \cdot 10^{-7} \) | \(a_{654}= +0.36825105 \pm 1.3 \cdot 10^{-7} \) |
\(a_{655}= +0.44936069 \pm 1.1 \cdot 10^{-7} \) | \(a_{656}= -0.09795676 \pm 7.9 \cdot 10^{-8} \) | \(a_{657}= +0.11640751 \pm 1.5 \cdot 10^{-7} \) |
\(a_{658}= +0.19000805 \pm 2.0 \cdot 10^{-7} \) | \(a_{659}= -0.31639121 \pm 1.7 \cdot 10^{-7} \) | \(a_{660}= -0.25188448 \pm 1.7 \cdot 10^{-7} \) |
\(a_{661}= -1.43685190 \pm 5.6 \cdot 10^{-8} \) | \(a_{662}= -0.53306997 \pm 2.1 \cdot 10^{-7} \) | \(a_{663}= -0.87950666 \pm 2.0 \cdot 10^{-7} \) |
\(a_{664}= -0.33405362 \pm 8.2 \cdot 10^{-8} \) | \(a_{665}= +0.87691368 \pm 5.1 \cdot 10^{-8} \) | \(a_{666}= -0.18235431 \pm 1.3 \cdot 10^{-7} \) |
\(a_{667}= +0.55934212 \pm 8.7 \cdot 10^{-8} \) | \(a_{668}= +0.18217190 \pm 1.5 \cdot 10^{-7} \) | \(a_{669}= -0.44557930 \pm 1.0 \cdot 10^{-7} \) |
\(a_{670}= -1.54208920 \pm 1.5 \cdot 10^{-7} \) | \(a_{671}= -0.81295468 \pm 8.9 \cdot 10^{-8} \) | \(a_{672}= -0.14491871 \pm 1.0 \cdot 10^{-7} \) |
\(a_{673}= +1.40652695 \pm 6.2 \cdot 10^{-8} \) | \(a_{674}= -0.21981111 \pm 8.2 \cdot 10^{-8} \) | \(a_{675}= +0.23864148 \pm 9.8 \cdot 10^{-8} \) |
\(a_{676}= -0.03279220 \pm 1.1 \cdot 10^{-7} \) | \(a_{677}= +0.31774252 \pm 1.8 \cdot 10^{-7} \) | \(a_{678}= +0.60031814 \pm 1.8 \cdot 10^{-7} \) |
\(a_{679}= +0.16388245 \pm 7.2 \cdot 10^{-8} \) | \(a_{680}= -0.83389321 \pm 1.7 \cdot 10^{-7} \) | \(a_{681}= +0.70088035 \pm 1.1 \cdot 10^{-7} \) |
\(a_{682}= +0.37400466 \pm 2.2 \cdot 10^{-7} \) | \(a_{683}= +0.18740486 \pm 1.0 \cdot 10^{-7} \) | \(a_{684}= +0.06877329 \pm 1.7 \cdot 10^{-7} \) |
\(a_{685}= -1.02654440 \pm 7.2 \cdot 10^{-8} \) | \(a_{686}= -0.01620257 \pm 7.8 \cdot 10^{-8} \) | \(a_{687}= -0.25648993 \pm 5.7 \cdot 10^{-8} \) |
\(a_{688}= +0.13638862 \pm 7.9 \cdot 10^{-8} \) | \(a_{689}= +0.07888691 \pm 1.7 \cdot 10^{-7} \) | \(a_{690}= +0.28215717 \pm 2.1 \cdot 10^{-7} \) |
\(a_{691}= -0.21618075 \pm 7.8 \cdot 10^{-8} \) | \(a_{692}= -0.70648467 \pm 1.5 \cdot 10^{-7} \) | \(a_{693}= -0.27593396 \pm 1.7 \cdot 10^{-7} \) |
\(a_{694}= +0.84836413 \pm 1.5 \cdot 10^{-7} \) | \(a_{695}= -1.88632682 \pm 9.0 \cdot 10^{-8} \) | \(a_{696}= +0.24724692 \pm 9.6 \cdot 10^{-8} \) |
\(a_{697}= -0.61748176 \pm 5.3 \cdot 10^{-8} \) | \(a_{698}= -0.39971534 \pm 1.2 \cdot 10^{-7} \) | \(a_{699}= -0.73210685 \pm 2.0 \cdot 10^{-7} \) |
\(a_{700}= +0.88035514 \pm 1.8 \cdot 10^{-7} \) | \(a_{701}= +0.44543324 \pm 1.1 \cdot 10^{-7} \) | \(a_{702}= +0.13154464 \pm 1.2 \cdot 10^{-7} \) |
\(a_{703}= +0.31924443 \pm 1.0 \cdot 10^{-7} \) | \(a_{704}= -0.07287463 \pm 8.2 \cdot 10^{-8} \) | \(a_{705}= -0.16352795 \pm 2.0 \cdot 10^{-7} \) |
\(a_{706}= +0.70791671 \pm 6.5 \cdot 10^{-8} \) | \(a_{707}= +2.34588957 \pm 8.6 \cdot 10^{-8} \) | \(a_{708}= -0.35190798 \pm 1.3 \cdot 10^{-7} \) |
\(a_{709}= +1.14898586 \pm 1.6 \cdot 10^{-7} \) | \(a_{710}= +0.26660006 \pm 2.2 \cdot 10^{-7} \) | \(a_{711}= -0.47618243 \pm 8.6 \cdot 10^{-8} \) |
\(a_{712}= +0.59898485 \pm 1.8 \cdot 10^{-7} \) | \(a_{713}= -0.41895435 \pm 1.1 \cdot 10^{-7} \) | \(a_{714}= -0.91351184 \pm 1.7 \cdot 10^{-7} \) |
\(a_{715}= +0.84345529 \pm 2.9 \cdot 10^{-8} \) | \(a_{716}= +0.37858368 \pm 1.5 \cdot 10^{-7} \) | \(a_{717}= +0.09054786 \pm 1.2 \cdot 10^{-7} \) |
\(a_{718}= -0.09715221 \pm 1.5 \cdot 10^{-7} \) | \(a_{719}= +0.70092012 \pm 7.4 \cdot 10^{-8} \) | \(a_{720}= +0.12472240 \pm 1.0 \cdot 10^{-7} \) |
\(a_{721}= -0.47213330 \pm 8.2 \cdot 10^{-8} \) | \(a_{722}= +0.58670661 \pm 1.5 \cdot 10^{-7} \) | \(a_{723}= -0.42281275 \pm 7.6 \cdot 10^{-8} \) |
\(a_{724}= -0.88362856 \pm 1.7 \cdot 10^{-7} \) | \(a_{725}= -1.50198061 \pm 6.8 \cdot 10^{-8} \) | \(a_{726}= +0.26949062 \pm 1.1 \cdot 10^{-7} \) |
\(a_{727}= -1.51012271 \pm 1.9 \cdot 10^{-7} \) | \(a_{728}= +0.48527188 \pm 2.1 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.36958382 \pm 2.4 \cdot 10^{-7} \) | \(a_{731}= +0.85974143 \pm 3.3 \cdot 10^{-8} \) | \(a_{732}= +0.40254032 \pm 1.2 \cdot 10^{-7} \) |
\(a_{733}= +0.88082199 \pm 6.4 \cdot 10^{-8} \) | \(a_{734}= -0.42949520 \pm 7.0 \cdot 10^{-8} \) | \(a_{735}= +0.87804667 \pm 2.0 \cdot 10^{-7} \) |
\(a_{736}= +0.08163305 \pm 1.2 \cdot 10^{-7} \) | \(a_{737}= -0.84950337 \pm 5.9 \cdot 10^{-8} \) | \(a_{738}= +0.09235452 \pm 7.9 \cdot 10^{-8} \) |
\(a_{739}= +0.97877877 \pm 1.7 \cdot 10^{-7} \) | \(a_{740}= +0.57895923 \pm 2.2 \cdot 10^{-7} \) | \(a_{741}= -0.23029286 \pm 2.8 \cdot 10^{-7} \) |
\(a_{742}= +0.08193698 \pm 2.5 \cdot 10^{-7} \) | \(a_{743}= -0.83994247 \pm 7.7 \cdot 10^{-8} \) | \(a_{744}= -0.18519108 \pm 1.5 \cdot 10^{-7} \) |
\(a_{745}= -1.21661754 \pm 7.7 \cdot 10^{-8} \) | \(a_{746}= -0.60309068 \pm 9.9 \cdot 10^{-8} \) | \(a_{747}= +0.31494877 \pm 8.2 \cdot 10^{-8} \) |
\(a_{748}= -0.45937361 \pm 1.5 \cdot 10^{-7} \) | \(a_{749}= -1.40968339 \pm 1.1 \cdot 10^{-7} \) | \(a_{750}= -0.14665369 \pm 1.1 \cdot 10^{-7} \) |
\(a_{751}= -0.75313649 \pm 2.0 \cdot 10^{-7} \) | \(a_{752}= -0.04731152 \pm 1.1 \cdot 10^{-7} \) | \(a_{753}= +0.13140212 \pm 1.4 \cdot 10^{-7} \) |
\(a_{754}= -0.82792606 \pm 2.1 \cdot 10^{-7} \) | \(a_{755}= +0.95635358 \pm 9.0 \cdot 10^{-8} \) | \(a_{756}= +0.13663067 \pm 1.0 \cdot 10^{-7} \) |
\(a_{757}= +1.28969269 \pm 1.3 \cdot 10^{-7} \) | \(a_{758}= -0.45552589 \pm 9.0 \cdot 10^{-8} \) | \(a_{759}= +0.15543424 \pm 1.9 \cdot 10^{-7} \) |
\(a_{760}= -0.21834928 \pm 2.6 \cdot 10^{-7} \) | \(a_{761}= +0.46637464 \pm 1.4 \cdot 10^{-7} \) | \(a_{762}= -0.19197154 \pm 4.5 \cdot 10^{-8} \) |
\(a_{763}= -1.28079522 \pm 6.2 \cdot 10^{-8} \) | \(a_{764}= +0.01069708 \pm 1.0 \cdot 10^{-7} \) | \(a_{765}= +0.78620205 \pm 1.7 \cdot 10^{-7} \) |
\(a_{766}= -0.27662104 \pm 1.6 \cdot 10^{-7} \) | \(a_{767}= +1.17839198 \pm 7.7 \cdot 10^{-8} \) | \(a_{768}= +0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= -0.03236713 \pm 9.0 \cdot 10^{-8} \) | \(a_{770}= +0.87606658 \pm 2.6 \cdot 10^{-7} \) | \(a_{771}= +0.08223775 \pm 8.4 \cdot 10^{-8} \) |
\(a_{772}= -0.44564623 \pm 9.3 \cdot 10^{-8} \) | \(a_{773}= +0.43217066 \pm 1.0 \cdot 10^{-7} \) | \(a_{774}= -0.12858843 \pm 7.9 \cdot 10^{-8} \) |
\(a_{775}= +1.12500256 \pm 6.6 \cdot 10^{-8} \) | \(a_{776}= -0.04080631 \pm 1.6 \cdot 10^{-7} \) | \(a_{777}= +0.63423723 \pm 2.2 \cdot 10^{-7} \) |
\(a_{778}= +0.21163019 \pm 9.8 \cdot 10^{-8} \) | \(a_{779}= -0.16168341 \pm 4.6 \cdot 10^{-8} \) | \(a_{780}= -0.41764292 \pm 2.2 \cdot 10^{-7} \) |
\(a_{781}= +0.14686417 \pm 5.6 \cdot 10^{-8} \) | \(a_{782}= +0.51458336 \pm 1.9 \cdot 10^{-7} \) | \(a_{783}= -0.23310663 \pm 9.6 \cdot 10^{-8} \) |
\(a_{784}= +0.25403440 \pm 1.0 \cdot 10^{-7} \) | \(a_{785}= +0.63021517 \pm 7.7 \cdot 10^{-8} \) | \(a_{786}= -0.12257270 \pm 1.4 \cdot 10^{-7} \) |
\(a_{787}= +0.74768706 \pm 1.4 \cdot 10^{-7} \) | \(a_{788}= +0.47803667 \pm 1.5 \cdot 10^{-7} \) | \(a_{789}= +0.18145090 \pm 5.9 \cdot 10^{-8} \) |
\(a_{790}= +1.51183825 \pm 1.7 \cdot 10^{-7} \) | \(a_{791}= -2.08793595 \pm 1.2 \cdot 10^{-7} \) | \(a_{792}= +0.06870686 \pm 8.2 \cdot 10^{-8} \) |
\(a_{793}= -1.34793842 \pm 7.2 \cdot 10^{-8} \) | \(a_{794}= -0.04457656 \pm 1.5 \cdot 10^{-7} \) | \(a_{795}= -0.07051800 \pm 2.6 \cdot 10^{-7} \) |
\(a_{796}= +0.44570405 \pm 5.7 \cdot 10^{-8} \) | \(a_{797}= -0.08165326 \pm 1.7 \cdot 10^{-7} \) | \(a_{798}= -0.23919688 \pm 2.6 \cdot 10^{-7} \) |
\(a_{799}= -0.29823365 \pm 6.2 \cdot 10^{-8} \) | \(a_{800}= -0.21920620 \pm 9.8 \cdot 10^{-8} \) | \(a_{801}= -0.56472833 \pm 1.8 \cdot 10^{-7} \) |
\(a_{802}= -1.17122428 \pm 1.8 \cdot 10^{-7} \) | \(a_{803}= -0.20359568 \pm 1.0 \cdot 10^{-7} \) | \(a_{804}= +0.42063767 \pm 6.0 \cdot 10^{-8} \) |
\(a_{805}= -0.98135650 \pm 5.4 \cdot 10^{-8} \) | \(a_{806}= +0.62012713 \pm 2.7 \cdot 10^{-7} \) | \(a_{807}= -0.19497717 \pm 1.3 \cdot 10^{-7} \) |
\(a_{808}= -0.58412055 \pm 1.0 \cdot 10^{-7} \) | \(a_{809}= -0.77550972 \pm 1.8 \cdot 10^{-7} \) | \(a_{810}= -0.11758941 \pm 1.0 \cdot 10^{-7} \) |
\(a_{811}= +1.49024023 \pm 1.4 \cdot 10^{-7} \) | \(a_{812}= -0.85993692 \pm 1.8 \cdot 10^{-7} \) | \(a_{813}= -0.98383150 \pm 1.5 \cdot 10^{-7} \) |
\(a_{814}= +0.31893604 \pm 2.0 \cdot 10^{-7} \) | \(a_{815}= -0.04703537 \pm 7.1 \cdot 10^{-8} \) | \(a_{816}= +0.22746213 \pm 8.3 \cdot 10^{-8} \) |
\(a_{817}= +0.22511746 \pm 1.0 \cdot 10^{-7} \) | \(a_{818}= +0.27352993 \pm 1.2 \cdot 10^{-7} \) | \(a_{819}= -0.45751872 \pm 2.1 \cdot 10^{-7} \) |
\(a_{820}= -0.29321766 \pm 1.7 \cdot 10^{-7} \) | \(a_{821}= +1.31883516 \pm 5.1 \cdot 10^{-8} \) | \(a_{822}= +0.28001185 \pm 8.4 \cdot 10^{-8} \) |
\(a_{823}= -0.75338494 \pm 7.8 \cdot 10^{-8} \) | \(a_{824}= +0.11756000 \pm 1.2 \cdot 10^{-7} \) | \(a_{825}= -0.41738180 \pm 1.6 \cdot 10^{-7} \) |
\(a_{826}= +1.22395324 \pm 2.2 \cdot 10^{-7} \) | \(a_{827}= -0.79152303 \pm 1.3 \cdot 10^{-7} \) | \(a_{828}= -0.07696438 \pm 1.2 \cdot 10^{-7} \) |
\(a_{829}= +1.07028860 \pm 4.7 \cdot 10^{-8} \) | \(a_{830}= -0.99993526 \pm 1.7 \cdot 10^{-7} \) | \(a_{831}= +0.13321378 \pm 1.1 \cdot 10^{-7} \) |
\(a_{832}= -0.12083147 \pm 1.2 \cdot 10^{-7} \) | \(a_{833}= +1.60133517 \pm 5.0 \cdot 10^{-8} \) | \(a_{834}= +0.51453581 \pm 1.3 \cdot 10^{-7} \) |
\(a_{835}= +0.54530201 \pm 7.0 \cdot 10^{-8} \) | \(a_{836}= -0.12028387 \pm 2.4 \cdot 10^{-7} \) | \(a_{837}= +0.17459983 \pm 1.5 \cdot 10^{-7} \) |
\(a_{838}= +0.66186318 \pm 1.0 \cdot 10^{-7} \) | \(a_{839}= -1.17030929 \pm 1.2 \cdot 10^{-7} \) | \(a_{840}= -0.43379063 \pm 1.9 \cdot 10^{-7} \) |
\(a_{841}= +0.46714493 \pm 7.3 \cdot 10^{-8} \) | \(a_{842}= -0.49377695 \pm 1.4 \cdot 10^{-7} \) | \(a_{843}= -0.02979094 \pm 1.6 \cdot 10^{-7} \) |
\(a_{844}= +0.75566065 \pm 1.0 \cdot 10^{-7} \) | \(a_{845}= -0.09815813 \pm 8.7 \cdot 10^{-8} \) | \(a_{846}= +0.04460573 \pm 1.1 \cdot 10^{-7} \) |
\(a_{847}= -0.93730159 \pm 8.3 \cdot 10^{-8} \) | \(a_{848}= -0.02040210 \pm 1.6 \cdot 10^{-7} \) | \(a_{849}= +1.03392552 \pm 8.8 \cdot 10^{-8} \) |
\(a_{850}= -1.38179158 \pm 1.7 \cdot 10^{-7} \) | \(a_{851}= -0.35726731 \pm 9.8 \cdot 10^{-8} \) | \(a_{852}= -0.07272084 \pm 1.3 \cdot 10^{-7} \) |
\(a_{853}= +1.79536932 \pm 6.5 \cdot 10^{-8} \) | \(a_{854}= -1.40005501 \pm 2.1 \cdot 10^{-7} \) | \(a_{855}= +0.20586168 \pm 2.6 \cdot 10^{-7} \) |
\(a_{856}= +0.35100759 \pm 1.2 \cdot 10^{-7} \) | \(a_{857}= +1.14265420 \pm 8.1 \cdot 10^{-8} \) | \(a_{858}= -0.23007039 \pm 2.0 \cdot 10^{-7} \) |
\(a_{859}= -0.01072795 \pm 1.8 \cdot 10^{-7} \) | \(a_{860}= +0.40825719 \pm 1.7 \cdot 10^{-7} \) | \(a_{861}= -0.32121356 \pm 1.7 \cdot 10^{-7} \) |
\(a_{862}= -0.89070763 \pm 1.3 \cdot 10^{-7} \) | \(a_{863}= +1.14942418 \pm 1.1 \cdot 10^{-7} \) | \(a_{864}= -0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= -2.11474713 \pm 1.1 \cdot 10^{-7} \) | \(a_{866}= +1.08975533 \pm 1.0 \cdot 10^{-7} \) | \(a_{867}= +0.85648354 \pm 1.0 \cdot 10^{-7} \) |
\(a_{868}= +0.64410368 \pm 2.4 \cdot 10^{-7} \) | \(a_{869}= +0.83283878 \pm 7.6 \cdot 10^{-8} \) | \(a_{870}= +0.74009350 \pm 1.8 \cdot 10^{-7} \) |
\(a_{871}= -1.40853884 \pm 1.8 \cdot 10^{-8} \) | \(a_{872}= +0.31891476 \pm 1.3 \cdot 10^{-7} \) | \(a_{873}= +0.03847256 \pm 1.6 \cdot 10^{-7} \) |
\(a_{874}= +0.13474016 \pm 2.8 \cdot 10^{-7} \) | \(a_{875}= +0.51006875 \pm 9.5 \cdot 10^{-8} \) | \(a_{876}= +0.10081186 \pm 1.5 \cdot 10^{-7} \) |
\(a_{877}= -1.57930237 \pm 1.5 \cdot 10^{-7} \) | \(a_{878}= -1.24180642 \pm 1.2 \cdot 10^{-7} \) | \(a_{879}= -0.73548398 \pm 1.2 \cdot 10^{-7} \) |
\(a_{880}= -0.21813836 \pm 1.7 \cdot 10^{-7} \) | \(a_{881}= -1.28116395 \pm 8.2 \cdot 10^{-8} \) | \(a_{882}= -0.23950593 \pm 1.0 \cdot 10^{-7} \) |
\(a_{883}= +0.38058544 \pm 3.8 \cdot 10^{-8} \) | \(a_{884}= -0.76167511 \pm 2.0 \cdot 10^{-7} \) | \(a_{885}= -1.05337940 \pm 2.2 \cdot 10^{-7} \) |
\(a_{886}= -0.67987790 \pm 5.1 \cdot 10^{-8} \) | \(a_{887}= +1.50180651 \pm 1.2 \cdot 10^{-7} \) | \(a_{888}= -0.15792346 \pm 1.3 \cdot 10^{-7} \) |
\(a_{889}= +0.66768646 \pm 4.7 \cdot 10^{-8} \) | \(a_{890}= +1.79296387 \pm 2.7 \cdot 10^{-7} \) | \(a_{891}= -0.06477744 \pm 8.2 \cdot 10^{-8} \) |
\(a_{892}= -0.38588300 \pm 1.0 \cdot 10^{-7} \) | \(a_{893}= -0.07809046 \pm 1.1 \cdot 10^{-7} \) | \(a_{894}= +0.33185834 \pm 1.0 \cdot 10^{-7} \) |
\(a_{895}= +1.13322876 \pm 7.4 \cdot 10^{-8} \) | \(a_{896}= -0.12550329 \pm 1.0 \cdot 10^{-7} \) | \(a_{897}= +0.25772137 \pm 2.4 \cdot 10^{-7} \) |
\(a_{898}= -0.66139577 \pm 1.7 \cdot 10^{-7} \) | \(a_{899}= -1.09891019 \pm 7.0 \cdot 10^{-8} \) | \(a_{900}= +0.20666959 \pm 9.8 \cdot 10^{-8} \) |
\(a_{901}= -0.12860700 \pm 8.0 \cdot 10^{-8} \) | \(a_{902}= -0.16152722 \pm 1.5 \cdot 10^{-7} \) | \(a_{903}= +0.44723686 \pm 1.6 \cdot 10^{-7} \) |
\(a_{904}= +0.51989076 \pm 1.8 \cdot 10^{-7} \) | \(a_{905}= -2.64499861 \pm 1.2 \cdot 10^{-7} \) | \(a_{906}= -0.26086581 \pm 1.1 \cdot 10^{-7} \) |
\(a_{907}= -1.04809628 \pm 1.3 \cdot 10^{-7} \) | \(a_{908}= +0.60698019 \pm 1.1 \cdot 10^{-7} \) | \(a_{909}= +0.55071414 \pm 1.0 \cdot 10^{-7} \) |
\(a_{910}= +1.45258258 \pm 3.1 \cdot 10^{-7} \) | \(a_{911}= -0.05880488 \pm 1.4 \cdot 10^{-7} \) | \(a_{912}= +0.05955942 \pm 1.7 \cdot 10^{-7} \) |
\(a_{913}= -0.55084257 \pm 2.7 \cdot 10^{-8} \) | \(a_{914}= +1.04637370 \pm 1.6 \cdot 10^{-7} \) | \(a_{915}= +1.20493909 \pm 2.1 \cdot 10^{-7} \) |
\(a_{916}= -0.22212679 \pm 5.7 \cdot 10^{-8} \) | \(a_{917}= +0.42631386 \pm 7.1 \cdot 10^{-8} \) | \(a_{918}= -0.21445335 \pm 8.3 \cdot 10^{-8} \) |
\(a_{919}= +1.49258218 \pm 8.8 \cdot 10^{-8} \) | \(a_{920}= +0.24435528 \pm 2.1 \cdot 10^{-7} \) | \(a_{921}= -0.88872290 \pm 7.1 \cdot 10^{-8} \) |
\(a_{922}= -0.03567615 \pm 1.3 \cdot 10^{-7} \) | \(a_{923}= +0.24351156 \pm 1.4 \cdot 10^{-7} \) | \(a_{924}= -0.23896582 \pm 1.7 \cdot 10^{-7} \) |
\(a_{925}= +0.95935665 \pm 5.6 \cdot 10^{-8} \) | \(a_{926}= +1.14101970 \pm 1.2 \cdot 10^{-7} \) | \(a_{927}= -0.11083663 \pm 1.2 \cdot 10^{-7} \) |
\(a_{928}= +0.21412211 \pm 9.6 \cdot 10^{-8} \) | \(a_{929}= +1.55400968 \pm 1.4 \cdot 10^{-7} \) | \(a_{930}= -0.55433943 \pm 2.4 \cdot 10^{-7} \) |
\(a_{931}= +0.41929876 \pm 1.4 \cdot 10^{-7} \) | \(a_{932}= -0.63402313 \pm 2.0 \cdot 10^{-7} \) | \(a_{933}= -0.21577630 \pm 1.5 \cdot 10^{-7} \) |
\(a_{934}= -0.13652949 \pm 1.4 \cdot 10^{-7} \) | \(a_{935}= -1.37506032 \pm 7.3 \cdot 10^{-8} \) | \(a_{936}= +0.11392100 \pm 1.2 \cdot 10^{-7} \) |
\(a_{937}= +0.76082928 \pm 9.0 \cdot 10^{-8} \) | \(a_{938}= -1.46299848 \pm 1.5 \cdot 10^{-7} \) | \(a_{939}= -0.09504764 \pm 1.6 \cdot 10^{-7} \) |
\(a_{940}= -0.14161936 \pm 2.0 \cdot 10^{-7} \) | \(a_{941}= -1.17597826 \pm 1.0 \cdot 10^{-7} \) | \(a_{942}= -0.17190461 \pm 1.5 \cdot 10^{-7} \) |
\(a_{943}= +0.18094035 \pm 4.9 \cdot 10^{-8} \) | \(a_{944}= -0.30476125 \pm 1.3 \cdot 10^{-7} \) | \(a_{945}= +0.40898173 \pm 1.9 \cdot 10^{-7} \) |
\(a_{946}= +0.22490000 \pm 1.5 \cdot 10^{-7} \) | \(a_{947}= -0.36483963 \pm 1.1 \cdot 10^{-7} \) | \(a_{948}= -0.41238608 \pm 8.6 \cdot 10^{-8} \) |
\(a_{949}= -0.33757656 \pm 3.8 \cdot 10^{-8} \) | \(a_{950}= -0.36181276 \pm 2.5 \cdot 10^{-7} \) | \(a_{951}= -0.63061761 \pm 9.8 \cdot 10^{-8} \) |
\(a_{952}= -0.79112446 \pm 1.7 \cdot 10^{-7} \) | \(a_{953}= +1.40138263 \pm 1.1 \cdot 10^{-7} \) | \(a_{954}= +0.01923529 \pm 1.6 \cdot 10^{-7} \) |
\(a_{955}= +0.03201997 \pm 4.7 \cdot 10^{-8} \) | \(a_{956}= +0.07841675 \pm 1.2 \cdot 10^{-7} \) | \(a_{957}= +0.40770140 \pm 1.6 \cdot 10^{-7} \) |
\(a_{958}= +0.19975895 \pm 1.4 \cdot 10^{-7} \) | \(a_{959}= -0.97389495 \pm 5.2 \cdot 10^{-8} \) | \(a_{960}= +0.10801277 \pm 1.0 \cdot 10^{-7} \) |
\(a_{961}= -0.17690231 \pm 2.0 \cdot 10^{-7} \) | \(a_{962}= +0.52881932 \pm 2.5 \cdot 10^{-7} \) | \(a_{963}= -0.33093313 \pm 1.2 \cdot 10^{-7} \) |
\(a_{964}= -0.36616658 \pm 7.6 \cdot 10^{-8} \) | \(a_{965}= -1.33396962 \pm 6.8 \cdot 10^{-8} \) | \(a_{966}= +0.26768588 \pm 2.1 \cdot 10^{-7} \) |
\(a_{967}= +0.78883055 \pm 1.4 \cdot 10^{-7} \) | \(a_{968}= +0.23338572 \pm 1.1 \cdot 10^{-7} \) | \(a_{969}= +0.37543966 \pm 2.4 \cdot 10^{-7} \) |
\(a_{970}= -0.12214707 \pm 2.5 \cdot 10^{-7} \) | \(a_{971}= +1.33712752 \pm 6.3 \cdot 10^{-8} \) | \(a_{972}= +0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -1.78958083 \pm 6.2 \cdot 10^{-8} \) | \(a_{974}= -1.34514250 \pm 1.6 \cdot 10^{-7} \) | \(a_{975}= -0.69204961 \pm 2.1 \cdot 10^{-7} \) |
\(a_{976}= +0.34861015 \pm 1.2 \cdot 10^{-7} \) | \(a_{977}= -0.04275182 \pm 9.0 \cdot 10^{-8} \) | \(a_{978}= +0.01282990 \pm 1.1 \cdot 10^{-7} \) |
\(a_{979}= +0.98770477 \pm 9.2 \cdot 10^{-8} \) | \(a_{980}= +0.76041072 \pm 2.0 \cdot 10^{-7} \) | \(a_{981}= -0.30067572 \pm 1.3 \cdot 10^{-7} \) |
\(a_{982}= -0.78130347 \pm 1.5 \cdot 10^{-7} \) | \(a_{983}= +1.53609742 \pm 1.4 \cdot 10^{-7} \) | \(a_{984}= +0.07998136 \pm 7.9 \cdot 10^{-8} \) |
\(a_{985}= +1.43092514 \pm 1.3 \cdot 10^{-7} \) | \(a_{986}= +1.34974347 \pm 1.6 \cdot 10^{-7} \) | \(a_{987}= -0.15514092 \pm 2.0 \cdot 10^{-7} \) |
\(a_{988}= -0.19943946 \pm 2.8 \cdot 10^{-7} \) | \(a_{989}= -0.25192957 \pm 6.7 \cdot 10^{-8} \) | \(a_{990}= +0.20566281 \pm 1.7 \cdot 10^{-7} \) |
\(a_{991}= -1.18981509 \pm 8.0 \cdot 10^{-8} \) | \(a_{992}= -0.16038018 \pm 1.5 \cdot 10^{-7} \) | \(a_{993}= +0.43524980 \pm 2.1 \cdot 10^{-7} \) |
\(a_{994}= +0.25292667 \pm 2.2 \cdot 10^{-7} \) | \(a_{995}= +1.33414268 \pm 5.1 \cdot 10^{-8} \) | \(a_{996}= +0.27275364 \pm 8.2 \cdot 10^{-8} \) |
\(a_{997}= +0.31163822 \pm 1.4 \cdot 10^{-7} \) | \(a_{998}= +0.35673779 \pm 1.6 \cdot 10^{-7} \) | \(a_{999}= +0.14889167 \pm 1.3 \cdot 10^{-7} \) |
\(a_{1000}= -0.12700583 \pm 1.1 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000