Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(16.1350656626952838892792751054 \pm 4 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.11804145 \pm 4.3 \cdot 10^{-4} \) | \(a_{6}= -0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= +1.57650130 \pm 4.3 \cdot 10^{-4} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.79057469 \pm 4.3 \cdot 10^{-4} \) | \(a_{11}= -0.54859093 \pm 3.4 \cdot 10^{-4} \) | \(a_{12}= -0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= -1.48076976 \pm 5.6 \cdot 10^{-4} \) | \(a_{14}= +1.11475476 \pm 4.3 \cdot 10^{-4} \) | \(a_{15}= -0.64550153 \pm 4.3 \cdot 10^{-4} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +0.83954495 \pm 3.4 \cdot 10^{-4} \) | \(a_{18}= +0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= +1.46995620 \pm 7.6 \cdot 10^{-4} \) | \(a_{20}= +0.55902072 \pm 4.3 \cdot 10^{-4} \) | \(a_{21}= -0.91019345 \pm 4.3 \cdot 10^{-4} \) |
\(a_{22}= -0.38791237 \pm 3.4 \cdot 10^{-4} \) | \(a_{23}= -0.18937809 \pm 5.4 \cdot 10^{-4} \) | \(a_{24}= -0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= +0.25001667 \pm 4.2 \cdot 10^{-4} \) | \(a_{26}= -1.04706234 \pm 5.6 \cdot 10^{-4} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.78825065 \pm 4.3 \cdot 10^{-4} \) | \(a_{29}= +1.46575056 \pm 4.0 \cdot 10^{-4} \) | \(a_{30}= -0.45643851 \pm 4.3 \cdot 10^{-4} \) |
\(a_{31}= +0.03377559 \pm 7.0 \cdot 10^{-4} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.31672912 \pm 3.4 \cdot 10^{-4} \) |
\(a_{34}= +0.59364793 \pm 3.4 \cdot 10^{-4} \) | \(a_{35}= +1.76259379 \pm 3.4 \cdot 10^{-4} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= +0.00310624 \pm 6.0 \cdot 10^{-4} \) | \(a_{38}= +1.03941600 \pm 7.6 \cdot 10^{-4} \) | \(a_{39}= +0.85492282 \pm 5.6 \cdot 10^{-4} \) |
\(a_{40}= +0.39528734 \pm 4.3 \cdot 10^{-4} \) | \(a_{41}= -0.90020675 \pm 3.2 \cdot 10^{-4} \) | \(a_{42}= -0.64360396 \pm 4.3 \cdot 10^{-4} \) |
\(a_{43}= +1.41185778 \pm 3.2 \cdot 10^{-4} \) | \(a_{44}= -0.27429547 \pm 3.4 \cdot 10^{-4} \) | \(a_{45}= +0.37268048 \pm 4.3 \cdot 10^{-4} \) |
\(a_{46}= -0.13391053 \pm 5.4 \cdot 10^{-4} \) | \(a_{47}= +0.69758544 \pm 4.9 \cdot 10^{-4} \) | \(a_{48}= -0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= +1.48535634 \pm 4.7 \cdot 10^{-4} \) | \(a_{50}= +0.17678849 \pm 4.2 \cdot 10^{-4} \) | \(a_{51}= -0.48471150 \pm 3.4 \cdot 10^{-4} \) |
\(a_{52}= -0.74038488 \pm 5.6 \cdot 10^{-4} \) | \(a_{53}= -0.03577334 \pm 7.5 \cdot 10^{-4} \) | \(a_{54}= -0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= -0.61334740 \pm 3.6 \cdot 10^{-4} \) | \(a_{56}= +0.55737738 \pm 4.3 \cdot 10^{-4} \) | \(a_{57}= -0.84867961 \pm 7.6 \cdot 10^{-4} \) |
\(a_{58}= +1.03644216 \pm 4.0 \cdot 10^{-4} \) | \(a_{59}= -0.23452108 \pm 6.0 \cdot 10^{-4} \) | \(a_{60}= -0.32275076 \pm 4.3 \cdot 10^{-4} \) |
\(a_{61}= +1.80021750 \pm 5.4 \cdot 10^{-4} \) | \(a_{62}= +0.02388295 \pm 7.0 \cdot 10^{-4} \) | \(a_{63}= +0.52550043 \pm 4.3 \cdot 10^{-4} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.65556196 \pm 2.4 \cdot 10^{-4} \) | \(a_{66}= +0.22396131 \pm 3.4 \cdot 10^{-4} \) |
\(a_{67}= -1.56466438 \pm 2.3 \cdot 10^{-4} \) | \(a_{68}= +0.41977248 \pm 3.4 \cdot 10^{-4} \) | \(a_{69}= +0.10933749 \pm 5.4 \cdot 10^{-4} \) |
\(a_{70}= +1.24634202 \pm 8.6 \cdot 10^{-4} \) | \(a_{71}= -0.52838955 \pm 6.0 \cdot 10^{-4} \) | \(a_{72}= +0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= -0.33949978 \pm 6.8 \cdot 10^{-4} \) | \(a_{74}= +0.00219645 \pm 6.0 \cdot 10^{-4} \) | \(a_{75}= -0.14434719 \pm 4.2 \cdot 10^{-4} \) |
\(a_{76}= +0.73497810 \pm 7.6 \cdot 10^{-4} \) | \(a_{77}= -0.86485432 \pm 1.4 \cdot 10^{-4} \) | \(a_{78}= +0.60452172 \pm 5.6 \cdot 10^{-4} \) |
\(a_{79}= +0.83039844 \pm 3.6 \cdot 10^{-4} \) | \(a_{80}= +0.27951036 \pm 4.3 \cdot 10^{-4} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.63654230 \pm 3.2 \cdot 10^{-4} \) | \(a_{83}= -1.09875030 \pm 3.4 \cdot 10^{-4} \) | \(a_{84}= -0.45509672 \pm 4.3 \cdot 10^{-4} \) |
\(a_{85}= +0.93864605 \pm 3.5 \cdot 10^{-4} \) | \(a_{86}= +0.99833421 \pm 3.2 \cdot 10^{-4} \) | \(a_{87}= -0.84625148 \pm 4.0 \cdot 10^{-4} \) |
\(a_{88}= -0.19395618 \pm 3.4 \cdot 10^{-4} \) | \(a_{89}= +0.48162880 \pm 8.2 \cdot 10^{-4} \) | \(a_{90}= +0.26352490 \pm 4.3 \cdot 10^{-4} \) |
\(a_{91}= -2.33443545 \pm 2.5 \cdot 10^{-4} \) | \(a_{92}= -0.09468904 \pm 5.4 \cdot 10^{-4} \) | \(a_{93}= -0.01950035 \pm 7.0 \cdot 10^{-4} \) |
\(a_{94}= +0.49326739 \pm 4.9 \cdot 10^{-4} \) | \(a_{95}= +1.64347196 \pm 4.8 \cdot 10^{-4} \) | \(a_{96}= -0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= -0.17419540 \pm 7.3 \cdot 10^{-4} \) | \(a_{98}= +1.05030554 \pm 4.7 \cdot 10^{-4} \) | \(a_{99}= -0.18286364 \pm 3.4 \cdot 10^{-4} \) |
\(a_{100}= +0.12500834 \pm 4.2 \cdot 10^{-4} \) | \(a_{101}= +0.90110880 \pm 4.3 \cdot 10^{-4} \) | \(a_{102}= -0.34274279 \pm 3.4 \cdot 10^{-4} \) |
\(a_{103}= -0.79165924 \pm 5.4 \cdot 10^{-4} \) | \(a_{104}= -0.52353117 \pm 5.6 \cdot 10^{-4} \) | \(a_{105}= -1.01763400 \pm 8.6 \cdot 10^{-4} \) |
\(a_{106}= -0.02529557 \pm 7.5 \cdot 10^{-4} \) | \(a_{107}= +0.23063008 \pm 5.5 \cdot 10^{-4} \) | \(a_{108}= -0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= -0.36524353 \pm 5.7 \cdot 10^{-4} \) | \(a_{110}= -0.43370210 \pm 7.7 \cdot 10^{-4} \) | \(a_{111}= -0.00179339 \pm 6.0 \cdot 10^{-4} \) |
\(a_{112}= +0.39412532 \pm 4.3 \cdot 10^{-4} \) | \(a_{113}= +1.36464507 \pm 8.4 \cdot 10^{-4} \) | \(a_{114}= -0.60010711 \pm 7.6 \cdot 10^{-4} \) |
\(a_{115}= -0.21173255 \pm 3.2 \cdot 10^{-4} \) | \(a_{116}= +0.73287528 \pm 4.0 \cdot 10^{-4} \) | \(a_{117}= -0.49358992 \pm 5.6 \cdot 10^{-4} \) |
\(a_{118}= -0.16583145 \pm 6.0 \cdot 10^{-4} \) | \(a_{119}= +1.32354370 \pm 3.2 \cdot 10^{-4} \) | \(a_{120}= -0.22821925 \pm 4.3 \cdot 10^{-4} \) |
\(a_{121}= -0.69904799 \pm 4.8 \cdot 10^{-4} \) | \(a_{122}= +1.27294600 \pm 5.4 \cdot 10^{-4} \) | \(a_{123}= +0.51973461 \pm 3.2 \cdot 10^{-4} \) |
\(a_{124}= +0.01688779 \pm 7.0 \cdot 10^{-4} \) | \(a_{125}= -0.83851244 \pm 4.9 \cdot 10^{-4} \) | \(a_{126}= +0.37158492 \pm 4.3 \cdot 10^{-4} \) |
\(a_{127}= -1.38334491 \pm 1.6 \cdot 10^{-4} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.81513647 \pm 3.2 \cdot 10^{-4} \) |
\(a_{130}= -1.17065909 \pm 1.0 \cdot 10^{-3} \) | \(a_{131}= -0.26939627 \pm 6.2 \cdot 10^{-4} \) | \(a_{132}= +0.15836456 \pm 3.4 \cdot 10^{-4} \) |
\(a_{133}= +2.31738786 \pm 3.1 \cdot 10^{-4} \) | \(a_{134}= -1.10638479 \pm 2.3 \cdot 10^{-4} \) | \(a_{135}= -0.21516718 \pm 4.3 \cdot 10^{-4} \) |
\(a_{136}= +0.29682396 \pm 3.4 \cdot 10^{-4} \) | \(a_{137}= +1.48859269 \pm 3.5 \cdot 10^{-4} \) | \(a_{138}= +0.07731328 \pm 5.4 \cdot 10^{-4} \) |
\(a_{139}= -1.47631202 \pm 6.1 \cdot 10^{-4} \) | \(a_{140}= +0.88129689 \pm 8.6 \cdot 10^{-4} \) | \(a_{141}= -0.40275114 \pm 4.9 \cdot 10^{-4} \) |
\(a_{142}= -0.37362783 \pm 6.0 \cdot 10^{-4} \) | \(a_{143}= +0.81233686 \pm 2.8 \cdot 10^{-4} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= +1.63876988 \pm 2.3 \cdot 10^{-4} \) | \(a_{146}= -0.24006260 \pm 6.8 \cdot 10^{-4} \) | \(a_{147}= -0.85757088 \pm 4.7 \cdot 10^{-4} \) |
\(a_{148}= +0.00155312 \pm 6.0 \cdot 10^{-4} \) | \(a_{149}= -1.52625686 \pm 4.4 \cdot 10^{-4} \) | \(a_{150}= -0.10206888 \pm 4.2 \cdot 10^{-4} \) |
\(a_{151}= +0.59025539 \pm 5.1 \cdot 10^{-4} \) | \(a_{152}= +0.51970800 \pm 7.6 \cdot 10^{-4} \) | \(a_{153}= +0.27984832 \pm 3.4 \cdot 10^{-4} \) |
\(a_{154}= -0.61154435 \pm 7.7 \cdot 10^{-4} \) | \(a_{155}= +0.03776251 \pm 5.7 \cdot 10^{-4} \) | \(a_{156}= +0.42746141 \pm 5.6 \cdot 10^{-4} \) |
\(a_{157}= -1.30694841 \pm 6.8 \cdot 10^{-4} \) | \(a_{158}= +0.58718037 \pm 3.6 \cdot 10^{-4} \) | \(a_{159}= +0.02065375 \pm 7.5 \cdot 10^{-4} \) |
\(a_{160}= +0.19764367 \pm 4.3 \cdot 10^{-4} \) | \(a_{161}= -0.29855480 \pm 3.2 \cdot 10^{-4} \) | \(a_{162}= +0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= -0.83060156 \pm 5.1 \cdot 10^{-4} \) | \(a_{164}= -0.45010337 \pm 3.2 \cdot 10^{-4} \) | \(a_{165}= +0.35411629 \pm 7.7 \cdot 10^{-4} \) |
\(a_{166}= -0.77693379 \pm 3.4 \cdot 10^{-4} \) | \(a_{167}= +0.85382956 \pm 6.8 \cdot 10^{-4} \) | \(a_{168}= -0.32180198 \pm 4.3 \cdot 10^{-4} \) |
\(a_{169}= +1.19267909 \pm 5.0 \cdot 10^{-4} \) | \(a_{170}= +0.66372299 \pm 7.8 \cdot 10^{-4} \) | \(a_{171}= +0.48998540 \pm 7.6 \cdot 10^{-4} \) |
\(a_{172}= +0.70592889 \pm 3.2 \cdot 10^{-4} \) | \(a_{173}= -0.47830896 \pm 6.6 \cdot 10^{-4} \) | \(a_{174}= -0.59839016 \pm 4.0 \cdot 10^{-4} \) |
\(a_{175}= +0.39415161 \pm 1.8 \cdot 10^{-4} \) | \(a_{176}= -0.13714773 \pm 3.4 \cdot 10^{-4} \) | \(a_{177}= +0.13540081 \pm 6.0 \cdot 10^{-4} \) |
\(a_{178}= +0.34056299 \pm 8.2 \cdot 10^{-4} \) | \(a_{179}= +1.25016078 \pm 6.9 \cdot 10^{-4} \) | \(a_{180}= +0.18634024 \pm 4.3 \cdot 10^{-4} \) |
\(a_{181}= -1.22673048 \pm 7.9 \cdot 10^{-4} \) | \(a_{182}= -1.65069514 \pm 9.9 \cdot 10^{-4} \) | \(a_{183}= -1.03935606 \pm 5.4 \cdot 10^{-4} \) |
\(a_{184}= -0.06695526 \pm 5.4 \cdot 10^{-4} \) | \(a_{185}= +0.00347291 \pm 4.6 \cdot 10^{-4} \) | \(a_{186}= -0.01378883 \pm 7.0 \cdot 10^{-4} \) |
\(a_{187}= -0.46056675 \pm 2.6 \cdot 10^{-4} \) | \(a_{188}= +0.34879272 \pm 4.9 \cdot 10^{-4} \) | \(a_{189}= -0.30339782 \pm 4.3 \cdot 10^{-4} \) |
\(a_{190}= +1.16211016 \pm 1.1 \cdot 10^{-3} \) | \(a_{191}= -0.68107078 \pm 4.3 \cdot 10^{-4} \) | \(a_{192}= -0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= +0.03348721 \pm 3.9 \cdot 10^{-4} \) | \(a_{194}= -0.12317475 \pm 7.3 \cdot 10^{-4} \) | \(a_{195}= +0.95583915 \pm 1.0 \cdot 10^{-3} \) |
\(a_{196}= +0.74267817 \pm 4.7 \cdot 10^{-4} \) | \(a_{197}= -0.42458064 \pm 7.0 \cdot 10^{-4} \) | \(a_{198}= -0.12930412 \pm 3.4 \cdot 10^{-4} \) |
\(a_{199}= -0.36450951 \pm 2.2 \cdot 10^{-4} \) | \(a_{200}= +0.08839424 \pm 4.2 \cdot 10^{-4} \) | \(a_{201}= +0.90335940 \pm 2.3 \cdot 10^{-4} \) |
\(a_{202}= +0.63718015 \pm 4.3 \cdot 10^{-4} \) | \(a_{203}= +2.31075766 \pm 1.9 \cdot 10^{-4} \) | \(a_{204}= -0.24235575 \pm 3.4 \cdot 10^{-4} \) |
\(a_{205}= -1.00646845 \pm 2.6 \cdot 10^{-4} \) | \(a_{206}= -0.55978762 \pm 5.4 \cdot 10^{-4} \) | \(a_{207}= -0.06312603 \pm 5.4 \cdot 10^{-4} \) |
\(a_{208}= -0.37019244 \pm 5.6 \cdot 10^{-4} \) | \(a_{209}= -0.80640464 \pm 4.6 \cdot 10^{-4} \) | \(a_{210}= -0.71957590 \pm 8.6 \cdot 10^{-4} \) |
\(a_{211}= -1.19116311 \pm 4.5 \cdot 10^{-4} \) | \(a_{212}= -0.01788667 \pm 7.5 \cdot 10^{-4} \) | \(a_{213}= +0.30506585 \pm 6.0 \cdot 10^{-4} \) |
\(a_{214}= +0.16308009 \pm 5.5 \cdot 10^{-4} \) | \(a_{215}= +1.57851551 \pm 2.3 \cdot 10^{-4} \) | \(a_{216}= -0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= +0.05324726 \pm 7.6 \cdot 10^{-4} \) | \(a_{218}= -0.25826618 \pm 5.7 \cdot 10^{-4} \) | \(a_{219}= +0.19601029 \pm 6.8 \cdot 10^{-4} \) |
\(a_{220}= -0.30667370 \pm 7.7 \cdot 10^{-4} \) | \(a_{221}= -1.24317278 \pm 1.8 \cdot 10^{-4} \) | \(a_{222}= -0.00126812 \pm 6.0 \cdot 10^{-4} \) |
\(a_{223}= -0.60700277 \pm 4.7 \cdot 10^{-4} \) | \(a_{224}= +0.27868869 \pm 4.3 \cdot 10^{-4} \) | \(a_{225}= +0.08333889 \pm 4.2 \cdot 10^{-4} \) |
\(a_{226}= +0.96494978 \pm 8.4 \cdot 10^{-4} \) | \(a_{227}= -0.69523212 \pm 4.8 \cdot 10^{-4} \) | \(a_{228}= -0.42433980 \pm 7.6 \cdot 10^{-4} \) |
\(a_{229}= +0.96761243 \pm 2.2 \cdot 10^{-4} \) | \(a_{230}= -0.14971752 \pm 9.7 \cdot 10^{-4} \) | \(a_{231}= +0.49932387 \pm 7.7 \cdot 10^{-4} \) |
\(a_{232}= +0.51822108 \pm 4.0 \cdot 10^{-4} \) | \(a_{233}= +1.38578015 \pm 9.4 \cdot 10^{-4} \) | \(a_{234}= -0.34902078 \pm 5.6 \cdot 10^{-4} \) |
\(a_{235}= +0.77992943 \pm 3.3 \cdot 10^{-4} \) | \(a_{236}= -0.11726054 \pm 6.0 \cdot 10^{-4} \) | \(a_{237}= -0.47943076 \pm 3.6 \cdot 10^{-4} \) |
\(a_{238}= +0.93588673 \pm 7.8 \cdot 10^{-4} \) | \(a_{239}= -1.78646493 \pm 5.5 \cdot 10^{-4} \) | \(a_{240}= -0.16137538 \pm 4.3 \cdot 10^{-4} \) |
\(a_{241}= -1.01108911 \pm 3.1 \cdot 10^{-4} \) | \(a_{242}= -0.49430157 \pm 4.8 \cdot 10^{-4} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.90010875 \pm 5.4 \cdot 10^{-4} \) | \(a_{245}= +1.66068994 \pm 3.3 \cdot 10^{-4} \) | \(a_{246}= +0.36750787 \pm 3.2 \cdot 10^{-4} \) |
\(a_{247}= -2.17666669 \pm 8.7 \cdot 10^{-4} \) | \(a_{248}= +0.01194147 \pm 7.0 \cdot 10^{-4} \) | \(a_{249}= +0.63436378 \pm 3.4 \cdot 10^{-4} \) |
\(a_{250}= -0.59291783 \pm 4.9 \cdot 10^{-4} \) | \(a_{251}= +0.58270285 \pm 6.4 \cdot 10^{-4} \) | \(a_{252}= +0.26275022 \pm 4.3 \cdot 10^{-4} \) |
\(a_{253}= +0.10389110 \pm 2.7 \cdot 10^{-4} \) | \(a_{254}= -0.97817256 \pm 1.6 \cdot 10^{-4} \) | \(a_{255}= -0.54192755 \pm 7.8 \cdot 10^{-4} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.52644636 \pm 3.5 \cdot 10^{-4} \) | \(a_{258}= -0.57638852 \pm 3.2 \cdot 10^{-4} \) |
\(a_{259}= +0.00489700 \pm 6.7 \cdot 10^{-4} \) | \(a_{260}= -0.82778098 \pm 1.0 \cdot 10^{-3} \) | \(a_{261}= +0.48858352 \pm 4.0 \cdot 10^{-4} \) |
\(a_{262}= -0.19049193 \pm 6.2 \cdot 10^{-4} \) | \(a_{263}= -0.43841456 \pm 2.3 \cdot 10^{-4} \) | \(a_{264}= +0.11198066 \pm 3.4 \cdot 10^{-4} \) |
\(a_{265}= -0.03999608 \pm 5.4 \cdot 10^{-4} \) | \(a_{266}= +1.63864067 \pm 1.1 \cdot 10^{-3} \) | \(a_{267}= -0.27806852 \pm 8.2 \cdot 10^{-4} \) |
\(a_{268}= -0.78233219 \pm 2.3 \cdot 10^{-4} \) | \(a_{269}= +1.27683594 \pm 5.9 \cdot 10^{-4} \) | \(a_{270}= -0.15214617 \pm 4.3 \cdot 10^{-4} \) |
\(a_{271}= -0.13776774 \pm 6.7 \cdot 10^{-4} \) | \(a_{272}= +0.20988624 \pm 3.4 \cdot 10^{-4} \) | \(a_{273}= +1.34778693 \pm 9.9 \cdot 10^{-4} \) |
\(a_{274}= +1.05259399 \pm 3.5 \cdot 10^{-4} \) | \(a_{275}= -0.13715688 \pm 2.8 \cdot 10^{-4} \) | \(a_{276}= +0.05466874 \pm 5.4 \cdot 10^{-4} \) |
\(a_{277}= +0.58872784 \pm 4.8 \cdot 10^{-4} \) | \(a_{278}= -1.04391024 \pm 6.1 \cdot 10^{-4} \) | \(a_{279}= +0.01125853 \pm 7.0 \cdot 10^{-4} \) |
\(a_{280}= +0.62317101 \pm 8.6 \cdot 10^{-4} \) | \(a_{281}= -1.10386570 \pm 7.4 \cdot 10^{-4} \) | \(a_{282}= -0.28478806 \pm 4.9 \cdot 10^{-4} \) |
\(a_{283}= -0.56993086 \pm 3.7 \cdot 10^{-4} \) | \(a_{284}= -0.26419477 \pm 6.0 \cdot 10^{-4} \) | \(a_{285}= -0.94885898 \pm 1.1 \cdot 10^{-3} \) |
\(a_{286}= +0.57440890 \pm 9.0 \cdot 10^{-4} \) | \(a_{287}= -1.41917710 \pm 3.8 \cdot 10^{-4} \) | \(a_{288}= +0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= -0.29516427 \pm 4.4 \cdot 10^{-4} \) | \(a_{290}= +1.15878529 \pm 8.4 \cdot 10^{-4} \) | \(a_{291}= +0.10057176 \pm 7.3 \cdot 10^{-4} \) |
\(a_{292}= -0.16974989 \pm 6.8 \cdot 10^{-4} \) | \(a_{293}= -0.34489129 \pm 5.5 \cdot 10^{-4} \) | \(a_{294}= -0.60639418 \pm 4.7 \cdot 10^{-4} \) |
\(a_{295}= -0.26220429 \pm 5.1 \cdot 10^{-4} \) | \(a_{296}= +0.00109822 \pm 6.0 \cdot 10^{-4} \) | \(a_{297}= +0.10557637 \pm 3.4 \cdot 10^{-4} \) |
\(a_{298}= -1.07922657 \pm 4.4 \cdot 10^{-4} \) | \(a_{299}= +0.28042534 \pm 5.9 \cdot 10^{-4} \) | \(a_{300}= -0.07217360 \pm 4.2 \cdot 10^{-4} \) |
\(a_{301}= +2.22579562 \pm 1.4 \cdot 10^{-4} \) | \(a_{302}= +0.41737359 \pm 5.1 \cdot 10^{-4} \) | \(a_{303}= -0.52025541 \pm 4.3 \cdot 10^{-4} \) |
\(a_{304}= +0.36748905 \pm 7.6 \cdot 10^{-4} \) | \(a_{305}= +2.01271778 \pm 5.3 \cdot 10^{-4} \) | \(a_{306}= +0.19788264 \pm 3.4 \cdot 10^{-4} \) |
\(a_{307}= -0.67351888 \pm 2.8 \cdot 10^{-4} \) | \(a_{308}= -0.43242716 \pm 7.7 \cdot 10^{-4} \) | \(a_{309}= +0.45706468 \pm 5.4 \cdot 10^{-4} \) |
\(a_{310}= +0.02670213 \pm 1.1 \cdot 10^{-3} \) | \(a_{311}= -0.02787123 \pm 6.7 \cdot 10^{-4} \) | \(a_{312}= +0.30226086 \pm 5.6 \cdot 10^{-4} \) |
\(a_{313}= -0.43422152 \pm 7.1 \cdot 10^{-4} \) | \(a_{314}= -0.92415209 \pm 6.8 \cdot 10^{-4} \) | \(a_{315}= +0.58753126 \pm 8.6 \cdot 10^{-4} \) |
\(a_{316}= +0.41519922 \pm 3.6 \cdot 10^{-4} \) | \(a_{317}= -0.86374416 \pm 4.2 \cdot 10^{-4} \) | \(a_{318}= +0.01460440 \pm 7.5 \cdot 10^{-4} \) |
\(a_{319}= -0.80409747 \pm 2.2 \cdot 10^{-4} \) | \(a_{320}= +0.13975518 \pm 4.3 \cdot 10^{-4} \) | \(a_{321}= -0.13315434 \pm 5.5 \cdot 10^{-4} \) |
\(a_{322}= -0.21111012 \pm 9.7 \cdot 10^{-4} \) | \(a_{323}= +1.23409431 \pm 3.3 \cdot 10^{-4} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= -0.37021713 \pm 4.6 \cdot 10^{-4} \) | \(a_{326}= -0.58732399 \pm 5.1 \cdot 10^{-4} \) | \(a_{327}= +0.21087345 \pm 5.7 \cdot 10^{-4} \) |
\(a_{328}= -0.31827115 \pm 3.2 \cdot 10^{-4} \) | \(a_{329}= +1.09974434 \pm 4.5 \cdot 10^{-4} \) | \(a_{330}= +0.25039803 \pm 7.7 \cdot 10^{-4} \) |
\(a_{331}= -1.89583910 \pm 9.6 \cdot 10^{-4} \) | \(a_{332}= -0.54937515 \pm 3.4 \cdot 10^{-4} \) | \(a_{333}= +0.00103541 \pm 6.0 \cdot 10^{-4} \) |
\(a_{334}= +0.60374867 \pm 6.8 \cdot 10^{-4} \) | \(a_{335}= -1.74935962 \pm 3.1 \cdot 10^{-4} \) | \(a_{336}= -0.22754836 \pm 4.3 \cdot 10^{-4} \) |
\(a_{337}= +1.33125101 \pm 3.4 \cdot 10^{-4} \) | \(a_{338}= +0.84335147 \pm 5.0 \cdot 10^{-4} \) | \(a_{339}= -0.78787820 \pm 8.4 \cdot 10^{-4} \) |
\(a_{340}= +0.46932303 \pm 7.8 \cdot 10^{-4} \) | \(a_{341}= -0.01852898 \pm 2.3 \cdot 10^{-4} \) | \(a_{342}= +0.34647200 \pm 7.6 \cdot 10^{-4} \) |
\(a_{343}= +0.76516489 \pm 3.2 \cdot 10^{-4} \) | \(a_{344}= +0.49916710 \pm 3.2 \cdot 10^{-4} \) | \(a_{345}= +0.12224384 \pm 9.7 \cdot 10^{-4} \) |
\(a_{346}= -0.33821551 \pm 6.7 \cdot 10^{-4} \) | \(a_{347}= -1.20020070 \pm 7.1 \cdot 10^{-4} \) | \(a_{348}= -0.42312574 \pm 4.0 \cdot 10^{-4} \) |
\(a_{349}= +0.25430026 \pm 5.3 \cdot 10^{-4} \) | \(a_{350}= +0.27870728 \pm 8.5 \cdot 10^{-4} \) | \(a_{351}= +0.28497427 \pm 5.6 \cdot 10^{-4} \) |
\(a_{352}= -0.09697809 \pm 3.4 \cdot 10^{-4} \) | \(a_{353}= +1.57958800 \pm 2.6 \cdot 10^{-4} \) | \(a_{354}= +0.09574283 \pm 6.0 \cdot 10^{-4} \) |
\(a_{355}= -0.59076141 \pm 3.3 \cdot 10^{-4} \) | \(a_{356}= +0.24081440 \pm 8.2 \cdot 10^{-4} \) | \(a_{357}= -0.76414831 \pm 7.8 \cdot 10^{-4} \) |
\(a_{358}= +0.88399716 \pm 6.9 \cdot 10^{-4} \) | \(a_{359}= +0.29628605 \pm 6.9 \cdot 10^{-4} \) | \(a_{360}= +0.13176245 \pm 4.3 \cdot 10^{-4} \) |
\(a_{361}= +1.16077123 \pm 7.0 \cdot 10^{-4} \) | \(a_{362}= -0.86742944 \pm 7.9 \cdot 10^{-4} \) | \(a_{363}= +0.40359554 \pm 4.8 \cdot 10^{-4} \) |
\(a_{364}= -1.16721772 \pm 9.9 \cdot 10^{-4} \) | \(a_{365}= -0.37957482 \pm 6.8 \cdot 10^{-4} \) | \(a_{366}= -0.73493572 \pm 5.4 \cdot 10^{-4} \) |
\(a_{367}= +0.68412790 \pm 2.8 \cdot 10^{-4} \) | \(a_{368}= -0.04734452 \pm 5.4 \cdot 10^{-4} \) | \(a_{369}= -0.30006892 \pm 3.2 \cdot 10^{-4} \) |
\(a_{370}= +0.00245572 \pm 1.0 \cdot 10^{-3} \) | \(a_{371}= -0.05639672 \pm 3.1 \cdot 10^{-4} \) | \(a_{372}= -0.00975017 \pm 7.0 \cdot 10^{-4} \) |
\(a_{373}= -0.45437236 \pm 4.2 \cdot 10^{-4} \) | \(a_{374}= -0.32566987 \pm 6.9 \cdot 10^{-4} \) | \(a_{375}= +0.48411538 \pm 4.9 \cdot 10^{-4} \) |
\(a_{376}= +0.24663370 \pm 4.9 \cdot 10^{-4} \) | \(a_{377}= -2.17043911 \pm 4.7 \cdot 10^{-4} \) | \(a_{378}= -0.21453465 \pm 4.3 \cdot 10^{-4} \) |
\(a_{379}= -0.16541360 \pm 3.8 \cdot 10^{-4} \) | \(a_{380}= +0.82173598 \pm 1.1 \cdot 10^{-3} \) | \(a_{381}= +0.79867455 \pm 1.6 \cdot 10^{-4} \) |
\(a_{382}= -0.48158977 \pm 4.3 \cdot 10^{-4} \) | \(a_{383}= +0.31088131 \pm 7.4 \cdot 10^{-4} \) | \(a_{384}= -0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= -0.96694297 \pm 1.2 \cdot 10^{-4} \) | \(a_{386}= +0.02367904 \pm 3.9 \cdot 10^{-4} \) | \(a_{387}= +0.47061926 \pm 3.2 \cdot 10^{-4} \) |
\(a_{388}= -0.08709770 \pm 7.3 \cdot 10^{-4} \) | \(a_{389}= +0.60611647 \pm 4.2 \cdot 10^{-4} \) | \(a_{390}= +0.67588034 \pm 1.0 \cdot 10^{-3} \) |
\(a_{391}= -0.15899142 \pm 2.3 \cdot 10^{-4} \) | \(a_{392}= +0.52515277 \pm 4.7 \cdot 10^{-4} \) | \(a_{393}= +0.15553601 \pm 6.2 \cdot 10^{-4} \) |
\(a_{394}= -0.30022385 \pm 7.0 \cdot 10^{-4} \) | \(a_{395}= +0.92841987 \pm 4.2 \cdot 10^{-4} \) | \(a_{396}= -0.09143182 \pm 3.4 \cdot 10^{-4} \) |
\(a_{397}= +0.25599023 \pm 6.6 \cdot 10^{-4} \) | \(a_{398}= -0.25774715 \pm 2.2 \cdot 10^{-4} \) | \(a_{399}= -1.33794450 \pm 1.1 \cdot 10^{-3} \) |
\(a_{400}= +0.06250417 \pm 4.2 \cdot 10^{-4} \) | \(a_{401}= +1.32779408 \pm 8.2 \cdot 10^{-4} \) | \(a_{402}= +0.63877156 \pm 2.3 \cdot 10^{-4} \) |
\(a_{403}= -0.05001387 \pm 2.6 \cdot 10^{-4} \) | \(a_{404}= +0.45055440 \pm 4.3 \cdot 10^{-4} \) | \(a_{405}= +0.12422683 \pm 4.3 \cdot 10^{-4} \) |
\(a_{406}= +1.63395241 \pm 8.4 \cdot 10^{-4} \) | \(a_{407}= -0.00170406 \pm 1.6 \cdot 10^{-4} \) | \(a_{408}= -0.17137140 \pm 3.4 \cdot 10^{-4} \) |
\(a_{409}= -0.29050279 \pm 5.3 \cdot 10^{-4} \) | \(a_{410}= -0.71168067 \pm 7.6 \cdot 10^{-4} \) | \(a_{411}= -0.85943939 \pm 3.5 \cdot 10^{-4} \) |
\(a_{412}= -0.39582962 \pm 5.4 \cdot 10^{-4} \) | \(a_{413}= -0.36972279 \pm 5.5 \cdot 10^{-4} \) | \(a_{414}= -0.04463684 \pm 5.4 \cdot 10^{-4} \) |
\(a_{415}= -1.22844837 \pm 2.6 \cdot 10^{-4} \) | \(a_{416}= -0.26176558 \pm 5.6 \cdot 10^{-4} \) | \(a_{417}= +0.85234914 \pm 6.1 \cdot 10^{-4} \) |
\(a_{418}= -0.57021419 \pm 1.1 \cdot 10^{-3} \) | \(a_{419}= -1.71815351 \pm 4.7 \cdot 10^{-4} \) | \(a_{420}= -0.50881700 \pm 8.6 \cdot 10^{-4} \) |
\(a_{421}= -0.65142897 \pm 6.5 \cdot 10^{-4} \) | \(a_{422}= -0.84227952 \pm 4.5 \cdot 10^{-4} \) | \(a_{423}= +0.23252848 \pm 4.9 \cdot 10^{-4} \) |
\(a_{424}= -0.01264779 \pm 7.5 \cdot 10^{-4} \) | \(a_{425}= +0.20990024 \pm 2.1 \cdot 10^{-4} \) | \(a_{426}= +0.21571413 \pm 6.0 \cdot 10^{-4} \) |
\(a_{427}= +2.83804523 \pm 4.2 \cdot 10^{-4} \) | \(a_{428}= +0.11531504 \pm 5.5 \cdot 10^{-4} \) | \(a_{429}= -0.46900291 \pm 9.0 \cdot 10^{-4} \) |
\(a_{430}= +1.11617902 \pm 7.6 \cdot 10^{-4} \) | \(a_{431}= +0.88201774 \pm 5.9 \cdot 10^{-4} \) | \(a_{432}= -0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= +0.82202245 \pm 4.5 \cdot 10^{-4} \) | \(a_{434}= +0.03765150 \pm 1.1 \cdot 10^{-3} \) | \(a_{435}= -0.94614423 \pm 8.4 \cdot 10^{-4} \) |
\(a_{436}= -0.18262176 \pm 5.7 \cdot 10^{-4} \) | \(a_{437}= -0.27837749 \pm 7.7 \cdot 10^{-4} \) | \(a_{438}= +0.13860020 \pm 6.8 \cdot 10^{-4} \) |
\(a_{439}= -0.92721097 \pm 5.7 \cdot 10^{-4} \) | \(a_{440}= -0.21685105 \pm 7.7 \cdot 10^{-4} \) | \(a_{441}= +0.49511878 \pm 4.7 \cdot 10^{-4} \) |
\(a_{442}= -0.87905590 \pm 9.1 \cdot 10^{-4} \) | \(a_{443}= +0.52127695 \pm 1.9 \cdot 10^{-4} \) | \(a_{444}= -0.00089670 \pm 6.0 \cdot 10^{-4} \) |
\(a_{445}= +0.53848096 \pm 4.2 \cdot 10^{-4} \) | \(a_{446}= -0.42921578 \pm 4.7 \cdot 10^{-4} \) | \(a_{447}= +0.88118481 \pm 4.4 \cdot 10^{-4} \) |
\(a_{448}= +0.19706266 \pm 4.3 \cdot 10^{-4} \) | \(a_{449}= +1.25494222 \pm 8.0 \cdot 10^{-4} \) | \(a_{450}= +0.05892950 \pm 4.2 \cdot 10^{-4} \) |
\(a_{451}= +0.49384526 \pm 1.1 \cdot 10^{-4} \) | \(a_{452}= +0.68232253 \pm 8.4 \cdot 10^{-4} \) | \(a_{453}= -0.34078411 \pm 5.1 \cdot 10^{-4} \) |
\(a_{454}= -0.49160335 \pm 4.8 \cdot 10^{-4} \) | \(a_{455}= -2.60999558 \pm 1.7 \cdot 10^{-4} \) | \(a_{456}= -0.30005355 \pm 7.6 \cdot 10^{-4} \) |
\(a_{457}= -0.19125411 \pm 7.3 \cdot 10^{-4} \) | \(a_{458}= +0.68420531 \pm 2.2 \cdot 10^{-4} \) | \(a_{459}= -0.16157050 \pm 3.4 \cdot 10^{-4} \) |
\(a_{460}= -0.10586627 \pm 9.7 \cdot 10^{-4} \) | \(a_{461}= +0.70981483 \pm 5.9 \cdot 10^{-4} \) | \(a_{462}= +0.35307530 \pm 7.7 \cdot 10^{-4} \) |
\(a_{463}= -0.70395706 \pm 5.4 \cdot 10^{-4} \) | \(a_{464}= +0.36643764 \pm 4.0 \cdot 10^{-4} \) | \(a_{465}= -0.02180219 \pm 1.1 \cdot 10^{-3} \) |
\(a_{466}= +0.97989454 \pm 9.4 \cdot 10^{-4} \) | \(a_{467}= -0.14032757 \pm 6.5 \cdot 10^{-4} \) | \(a_{468}= -0.24679496 \pm 5.6 \cdot 10^{-4} \) |
\(a_{469}= -2.46669542 \pm 7.8 \cdot 10^{-5} \) | \(a_{470}= +0.55149339 \pm 9.2 \cdot 10^{-4} \) | \(a_{471}= +0.75456702 \pm 6.8 \cdot 10^{-4} \) |
\(a_{472}= -0.08291572 \pm 6.0 \cdot 10^{-4} \) | \(a_{473}= -0.77453238 \pm 2.1 \cdot 10^{-4} \) | \(a_{474}= -0.33900874 \pm 3.6 \cdot 10^{-4} \) |
\(a_{475}= +0.36751356 \pm 6.1 \cdot 10^{-4} \) | \(a_{476}= +0.66177185 \pm 7.8 \cdot 10^{-4} \) | \(a_{477}= -0.01192445 \pm 7.5 \cdot 10^{-4} \) |
\(a_{478}= -1.26322147 \pm 5.5 \cdot 10^{-4} \) | \(a_{479}= +0.84461970 \pm 6.2 \cdot 10^{-4} \) | \(a_{480}= -0.11410963 \pm 4.3 \cdot 10^{-4} \) |
\(a_{481}= -0.00459963 \pm 3.2 \cdot 10^{-4} \) | \(a_{482}= -0.71494797 \pm 3.1 \cdot 10^{-4} \) | \(a_{483}= +0.17237069 \pm 9.7 \cdot 10^{-4} \) |
\(a_{484}= -0.34952399 \pm 4.8 \cdot 10^{-4} \) | \(a_{485}= -0.19475768 \pm 4.9 \cdot 10^{-4} \) | \(a_{486}= -0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= -0.24310662 \pm 7.4 \cdot 10^{-4} \) | \(a_{488}= +0.63647300 \pm 5.4 \cdot 10^{-4} \) | \(a_{489}= +0.47954803 \pm 5.1 \cdot 10^{-4} \) |
\(a_{490}= +1.17428512 \pm 9.1 \cdot 10^{-4} \) | \(a_{491}= +0.43492483 \pm 6.9 \cdot 10^{-4} \) | \(a_{492}= +0.25986730 \pm 3.2 \cdot 10^{-4} \) |
\(a_{493}= +1.23056348 \pm 1.6 \cdot 10^{-4} \) | \(a_{494}= -1.53913578 \pm 1.3 \cdot 10^{-3} \) | \(a_{495}= -0.20444913 \pm 7.7 \cdot 10^{-4} \) |
\(a_{496}= +0.00844390 \pm 7.0 \cdot 10^{-4} \) | \(a_{497}= -0.83300680 \pm 3.6 \cdot 10^{-4} \) | \(a_{498}= +0.44856293 \pm 3.4 \cdot 10^{-4} \) |
\(a_{499}= +1.72250931 \pm 7.2 \cdot 10^{-4} \) | \(a_{500}= -0.41925622 \pm 4.9 \cdot 10^{-4} \) | \(a_{501}= -0.49295873 \pm 6.8 \cdot 10^{-4} \) |
\(a_{502}= +0.41203313 \pm 6.4 \cdot 10^{-4} \) | \(a_{503}= +0.91163760 \pm 5.3 \cdot 10^{-4} \) | \(a_{504}= +0.18579246 \pm 4.3 \cdot 10^{-4} \) |
\(a_{505}= +1.00747699 \pm 4.1 \cdot 10^{-4} \) | \(a_{506}= +0.07346210 \pm 8.8 \cdot 10^{-4} \) | \(a_{507}= -0.68859359 \pm 5.0 \cdot 10^{-4} \) |
\(a_{508}= -0.69167245 \pm 1.6 \cdot 10^{-4} \) | \(a_{509}= +0.26010752 \pm 4.6 \cdot 10^{-4} \) | \(a_{510}= -0.38320065 \pm 7.8 \cdot 10^{-4} \) |
\(a_{511}= -0.53522184 \pm 6.6 \cdot 10^{-4} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.28289320 \pm 7.6 \cdot 10^{-4} \) |
\(a_{514}= +0.37225379 \pm 3.5 \cdot 10^{-4} \) | \(a_{515}= -0.88510784 \pm 2.9 \cdot 10^{-4} \) | \(a_{516}= -0.40756823 \pm 3.2 \cdot 10^{-4} \) |
\(a_{517}= -0.38268904 \pm 1.9 \cdot 10^{-4} \) | \(a_{518}= +0.00346270 \pm 1.0 \cdot 10^{-3} \) | \(a_{519}= +0.27615181 \pm 6.7 \cdot 10^{-4} \) |
\(a_{520}= -0.58532955 \pm 1.0 \cdot 10^{-3} \) | \(a_{521}= +0.17644315 \pm 6.8 \cdot 10^{-4} \) | \(a_{522}= +0.34548072 \pm 4.0 \cdot 10^{-4} \) |
\(a_{523}= -1.02111773 \pm 4.8 \cdot 10^{-4} \) | \(a_{524}= -0.13469814 \pm 6.2 \cdot 10^{-4} \) | \(a_{525}= -0.22756354 \pm 8.5 \cdot 10^{-4} \) |
\(a_{526}= -0.31000591 \pm 2.3 \cdot 10^{-4} \) | \(a_{527}= +0.02835613 \pm 5.1 \cdot 10^{-4} \) | \(a_{528}= +0.07918228 \pm 3.4 \cdot 10^{-4} \) |
\(a_{529}= -0.96413594 \pm 2.4 \cdot 10^{-4} \) | \(a_{530}= -0.02828150 \pm 1.1 \cdot 10^{-3} \) | \(a_{531}= -0.07817369 \pm 6.0 \cdot 10^{-4} \) |
\(a_{532}= +1.15869393 \pm 1.1 \cdot 10^{-3} \) | \(a_{533}= +1.33299893 \pm 2.0 \cdot 10^{-4} \) | \(a_{534}= -0.19662414 \pm 8.2 \cdot 10^{-4} \) |
\(a_{535}= +0.25785399 \pm 5.4 \cdot 10^{-4} \) | \(a_{536}= -0.55319240 \pm 2.3 \cdot 10^{-4} \) | \(a_{537}= -0.72178066 \pm 6.9 \cdot 10^{-4} \) |
\(a_{538}= +0.90285935 \pm 5.9 \cdot 10^{-4} \) | \(a_{539}= -0.81485302 \pm 3.2 \cdot 10^{-4} \) | \(a_{540}= -0.10758359 \pm 4.3 \cdot 10^{-4} \) |
\(a_{541}= +0.05424122 \pm 4.9 \cdot 10^{-4} \) | \(a_{542}= -0.09741651 \pm 6.7 \cdot 10^{-4} \) | \(a_{543}= +0.70825317 \pm 7.9 \cdot 10^{-4} \) |
\(a_{544}= +0.14841198 \pm 3.4 \cdot 10^{-4} \) | \(a_{545}= -0.40835740 \pm 3.3 \cdot 10^{-4} \) | \(a_{546}= +0.95302928 \pm 9.9 \cdot 10^{-4} \) |
\(a_{547}= -0.48330001 \pm 7.9 \cdot 10^{-4} \) | \(a_{548}= +0.74429635 \pm 3.5 \cdot 10^{-4} \) | \(a_{549}= +0.60007250 \pm 5.4 \cdot 10^{-4} \) |
\(a_{550}= -0.09698456 \pm 7.6 \cdot 10^{-4} \) | \(a_{551}= +2.15458913 \pm 6.1 \cdot 10^{-4} \) | \(a_{552}= +0.03865664 \pm 5.4 \cdot 10^{-4} \) |
\(a_{553}= +1.30912422 \pm 2.6 \cdot 10^{-4} \) | \(a_{554}= +0.41629345 \pm 4.8 \cdot 10^{-4} \) | \(a_{555}= -0.00200509 \pm 1.0 \cdot 10^{-3} \) |
\(a_{556}= -0.73815601 \pm 6.1 \cdot 10^{-4} \) | \(a_{557}= -1.26867783 \pm 2.2 \cdot 10^{-4} \) | \(a_{558}= +0.00796098 \pm 7.0 \cdot 10^{-4} \) |
\(a_{559}= -2.09063631 \pm 3.5 \cdot 10^{-4} \) | \(a_{560}= +0.44064845 \pm 8.6 \cdot 10^{-4} \) | \(a_{561}= +0.26590834 \pm 6.9 \cdot 10^{-4} \) |
\(a_{562}= -0.78055092 \pm 7.4 \cdot 10^{-4} \) | \(a_{563}= -0.30679372 \pm 3.0 \cdot 10^{-4} \) | \(a_{564}= -0.20137557 \pm 4.9 \cdot 10^{-4} \) |
\(a_{565}= +1.52572975 \pm 4.9 \cdot 10^{-4} \) | \(a_{566}= -0.40300198 \pm 3.7 \cdot 10^{-4} \) | \(a_{567}= +0.17516681 \pm 4.3 \cdot 10^{-4} \) |
\(a_{568}= -0.18681392 \pm 6.0 \cdot 10^{-4} \) | \(a_{569}= -0.34791955 \pm 6.5 \cdot 10^{-4} \) | \(a_{570}= -0.67094462 \pm 1.1 \cdot 10^{-3} \) |
\(a_{571}= -1.29702526 \pm 5.9 \cdot 10^{-4} \) | \(a_{572}= +0.40616843 \pm 9.0 \cdot 10^{-4} \) | \(a_{573}= +0.39321640 \pm 4.3 \cdot 10^{-4} \) |
\(a_{574}= -1.00350975 \pm 7.6 \cdot 10^{-4} \) | \(a_{575}= -0.04734768 \pm 4.1 \cdot 10^{-4} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= +1.30719847 \pm 6.3 \cdot 10^{-4} \) | \(a_{578}= -0.20871266 \pm 4.4 \cdot 10^{-4} \) | \(a_{579}= -0.01933385 \pm 3.9 \cdot 10^{-4} \) |
\(a_{580}= +0.81938494 \pm 8.4 \cdot 10^{-4} \) | \(a_{581}= -1.73218127 \pm 3.8 \cdot 10^{-4} \) | \(a_{582}= +0.07111497 \pm 7.3 \cdot 10^{-4} \) |
\(a_{583}= +0.01962493 \pm 5.1 \cdot 10^{-4} \) | \(a_{584}= -0.12003130 \pm 6.8 \cdot 10^{-4} \) | \(a_{585}= -0.55185399 \pm 1.0 \cdot 10^{-3} \) |
\(a_{586}= -0.24387497 \pm 5.5 \cdot 10^{-4} \) | \(a_{587}= +0.75933726 \pm 4.6 \cdot 10^{-4} \) | \(a_{588}= -0.42878544 \pm 4.7 \cdot 10^{-4} \) |
\(a_{589}= +0.04964864 \pm 5.7 \cdot 10^{-4} \) | \(a_{590}= -0.18540643 \pm 1.0 \cdot 10^{-3} \) | \(a_{591}= +0.24513175 \pm 7.0 \cdot 10^{-4} \) |
\(a_{592}= +0.00077656 \pm 6.0 \cdot 10^{-4} \) | \(a_{593}= +1.34413030 \pm 8.3 \cdot 10^{-4} \) | \(a_{594}= +0.07465377 \pm 3.4 \cdot 10^{-4} \) |
\(a_{595}= +1.47977672 \pm 2.6 \cdot 10^{-4} \) | \(a_{596}= -0.76312843 \pm 4.4 \cdot 10^{-4} \) | \(a_{597}= +0.21044966 \pm 2.2 \cdot 10^{-4} \) |
\(a_{598}= +0.19829066 \pm 1.1 \cdot 10^{-3} \) | \(a_{599}= +0.48384953 \pm 5.0 \cdot 10^{-4} \) | \(a_{600}= -0.05103444 \pm 4.2 \cdot 10^{-4} \) |
\(a_{601}= -0.68819795 \pm 6.6 \cdot 10^{-4} \) | \(a_{602}= +1.57387518 \pm 7.5 \cdot 10^{-4} \) | \(a_{603}= -0.52155479 \pm 2.3 \cdot 10^{-4} \) |
\(a_{604}= +0.29512770 \pm 5.1 \cdot 10^{-4} \) | \(a_{605}= -0.78156462 \pm 3.3 \cdot 10^{-4} \) | \(a_{606}= -0.36787613 \pm 4.3 \cdot 10^{-4} \) |
\(a_{607}= -1.01143353 \pm 3.6 \cdot 10^{-4} \) | \(a_{608}= +0.25985400 \pm 7.6 \cdot 10^{-4} \) | \(a_{609}= -1.33411656 \pm 8.4 \cdot 10^{-4} \) |
\(a_{610}= +1.42320639 \pm 9.8 \cdot 10^{-4} \) | \(a_{611}= -1.03296342 \pm 4.3 \cdot 10^{-4} \) | \(a_{612}= +0.13992416 \pm 3.4 \cdot 10^{-4} \) |
\(a_{613}= +1.30537593 \pm 2.6 \cdot 10^{-4} \) | \(a_{614}= -0.47624976 \pm 2.8 \cdot 10^{-4} \) | \(a_{615}= +0.58108483 \pm 7.6 \cdot 10^{-4} \) |
\(a_{616}= -0.30577218 \pm 7.7 \cdot 10^{-4} \) | \(a_{617}= -0.09379706 \pm 5.4 \cdot 10^{-4} \) | \(a_{618}= +0.32319353 \pm 5.4 \cdot 10^{-4} \) |
\(a_{619}= +0.89566548 \pm 5.5 \cdot 10^{-4} \) | \(a_{620}= +0.01888125 \pm 1.1 \cdot 10^{-3} \) | \(a_{621}= +0.03644583 \pm 5.4 \cdot 10^{-4} \) |
\(a_{622}= -0.01970793 \pm 6.7 \cdot 10^{-4} \) | \(a_{623}= +0.75928843 \pm 2.7 \cdot 10^{-4} \) | \(a_{624}= +0.21373071 \pm 5.6 \cdot 10^{-4} \) |
\(a_{625}= -1.18750834 \pm 3.7 \cdot 10^{-4} \) | \(a_{626}= -0.30704098 \pm 7.1 \cdot 10^{-4} \) | \(a_{627}= +0.46557794 \pm 1.1 \cdot 10^{-3} \) |
\(a_{628}= -0.65347421 \pm 6.8 \cdot 10^{-4} \) | \(a_{629}= +0.00260783 \pm 4.3 \cdot 10^{-4} \) | \(a_{630}= +0.41544734 \pm 8.6 \cdot 10^{-4} \) |
\(a_{631}= +1.08533662 \pm 7.3 \cdot 10^{-4} \) | \(a_{632}= +0.29359018 \pm 3.6 \cdot 10^{-4} \) | \(a_{633}= +0.68771834 \pm 4.5 \cdot 10^{-4} \) |
\(a_{634}= -0.61075935 \pm 4.2 \cdot 10^{-4} \) | \(a_{635}= -1.54663694 \pm 1.2 \cdot 10^{-4} \) | \(a_{636}= +0.01032687 \pm 7.5 \cdot 10^{-4} \) |
\(a_{637}= -2.19947075 \pm 5.3 \cdot 10^{-4} \) | \(a_{638}= -0.56858277 \pm 7.5 \cdot 10^{-4} \) | \(a_{639}= -0.17612985 \pm 6.0 \cdot 10^{-4} \) |
\(a_{640}= +0.09882184 \pm 4.3 \cdot 10^{-4} \) | \(a_{641}= -0.00836844 \pm 5.2 \cdot 10^{-4} \) | \(a_{642}= -0.09415434 \pm 5.5 \cdot 10^{-4} \) |
\(a_{643}= -0.83085491 \pm 2.5 \cdot 10^{-4} \) | \(a_{644}= -0.14927740 \pm 9.7 \cdot 10^{-4} \) | \(a_{645}= -0.91135636 \pm 7.6 \cdot 10^{-4} \) |
\(a_{646}= +0.87263645 \pm 1.1 \cdot 10^{-3} \) | \(a_{647}= +0.80853302 \pm 7.3 \cdot 10^{-4} \) | \(a_{648}= +0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= +0.12865614 \pm 3.4 \cdot 10^{-4} \) | \(a_{650}= -0.26178304 \pm 9.8 \cdot 10^{-4} \) | \(a_{651}= -0.03074232 \pm 1.1 \cdot 10^{-3} \) |
\(a_{652}= -0.41530078 \pm 5.1 \cdot 10^{-4} \) | \(a_{653}= +1.03740738 \pm 7.0 \cdot 10^{-4} \) | \(a_{654}= +0.14911005 \pm 5.7 \cdot 10^{-4} \) |
\(a_{655}= -0.30119620 \pm 5.5 \cdot 10^{-4} \) | \(a_{656}= -0.22505169 \pm 3.2 \cdot 10^{-4} \) | \(a_{657}= -0.11316659 \pm 6.8 \cdot 10^{-4} \) |
\(a_{658}= +0.77763668 \pm 9.2 \cdot 10^{-4} \) | \(a_{659}= +1.85722995 \pm 8.5 \cdot 10^{-4} \) | \(a_{660}= +0.17705814 \pm 7.7 \cdot 10^{-4} \) |
\(a_{661}= +0.36866892 \pm 2.6 \cdot 10^{-4} \) | \(a_{662}= -1.34056068 \pm 9.6 \cdot 10^{-4} \) | \(a_{663}= +0.71774614 \pm 9.1 \cdot 10^{-4} \) |
\(a_{664}= -0.38846689 \pm 3.4 \cdot 10^{-4} \) | \(a_{665}= +2.59093567 \pm 2.4 \cdot 10^{-4} \) | \(a_{666}= +0.00073215 \pm 6.0 \cdot 10^{-4} \) |
\(a_{667}= -0.27758104 \pm 4.1 \cdot 10^{-4} \) | \(a_{668}= +0.42691478 \pm 6.8 \cdot 10^{-4} \) | \(a_{669}= +0.35045321 \pm 4.7 \cdot 10^{-4} \) |
\(a_{670}= -1.23698405 \pm 6.7 \cdot 10^{-4} \) | \(a_{671}= -0.98758300 \pm 4.2 \cdot 10^{-4} \) | \(a_{672}= -0.16090099 \pm 4.3 \cdot 10^{-4} \) |
\(a_{673}= +0.45876272 \pm 2.9 \cdot 10^{-4} \) | \(a_{674}= +0.94133662 \pm 3.4 \cdot 10^{-4} \) | \(a_{675}= -0.04811573 \pm 4.2 \cdot 10^{-4} \) |
\(a_{676}= +0.59633954 \pm 5.0 \cdot 10^{-4} \) | \(a_{677}= -1.49481869 \pm 8.6 \cdot 10^{-4} \) | \(a_{678}= -0.55711402 \pm 8.4 \cdot 10^{-4} \) |
\(a_{679}= -0.27461928 \pm 3.4 \cdot 10^{-4} \) | \(a_{680}= +0.33186149 \pm 7.8 \cdot 10^{-4} \) | \(a_{681}= +0.40139245 \pm 4.8 \cdot 10^{-4} \) |
\(a_{682}= -0.01310197 \pm 1.0 \cdot 10^{-3} \) | \(a_{683}= -1.32885487 \pm 5.2 \cdot 10^{-4} \) | \(a_{684}= +0.24499270 \pm 7.6 \cdot 10^{-4} \) |
\(a_{685}= +1.66430832 \pm 3.4 \cdot 10^{-4} \) | \(a_{686}= +0.54105328 \pm 3.2 \cdot 10^{-4} \) | \(a_{687}= -0.55865129 \pm 2.2 \cdot 10^{-4} \) |
\(a_{688}= +0.35296444 \pm 3.2 \cdot 10^{-4} \) | \(a_{689}= +0.05297208 \pm 8.2 \cdot 10^{-4} \) | \(a_{690}= +0.08643945 \pm 9.7 \cdot 10^{-4} \) |
\(a_{691}= -0.01679999 \pm 3.7 \cdot 10^{-4} \) | \(a_{692}= -0.23915448 \pm 6.7 \cdot 10^{-4} \) | \(a_{693}= -0.28828477 \pm 7.7 \cdot 10^{-4} \) |
\(a_{694}= -0.84867006 \pm 7.1 \cdot 10^{-4} \) | \(a_{695}= -1.65057802 \pm 4.3 \cdot 10^{-4} \) | \(a_{696}= -0.29919508 \pm 4.0 \cdot 10^{-4} \) |
\(a_{697}= -0.75576403 \pm 2.5 \cdot 10^{-4} \) | \(a_{698}= +0.17981744 \pm 5.3 \cdot 10^{-4} \) | \(a_{699}= -0.80008054 \pm 9.4 \cdot 10^{-4} \) |
\(a_{700}= +0.19707581 \pm 8.5 \cdot 10^{-4} \) | \(a_{701}= -1.60744337 \pm 5.5 \cdot 10^{-4} \) | \(a_{702}= +0.20150724 \pm 5.6 \cdot 10^{-4} \) |
\(a_{703}= +0.00456604 \pm 4.9 \cdot 10^{-4} \) | \(a_{704}= -0.06857387 \pm 3.4 \cdot 10^{-4} \) | \(a_{705}= -0.45029247 \pm 9.2 \cdot 10^{-4} \) |
\(a_{706}= +1.11693739 \pm 2.6 \cdot 10^{-4} \) | \(a_{707}= +1.42059920 \pm 4.1 \cdot 10^{-4} \) | \(a_{708}= +0.06770040 \pm 6.0 \cdot 10^{-4} \) |
\(a_{709}= +0.89358831 \pm 7.8 \cdot 10^{-4} \) | \(a_{710}= -0.41773140 \pm 1.0 \cdot 10^{-3} \) | \(a_{711}= +0.27679948 \pm 3.6 \cdot 10^{-4} \) |
\(a_{712}= +0.17028150 \pm 8.2 \cdot 10^{-4} \) | \(a_{713}= -0.00639636 \pm 5.3 \cdot 10^{-4} \) | \(a_{714}= -0.54033445 \pm 7.8 \cdot 10^{-4} \) |
\(a_{715}= +0.90822628 \pm 1.4 \cdot 10^{-4} \) | \(a_{716}= +0.62508039 \pm 6.9 \cdot 10^{-4} \) | \(a_{717}= +1.03141601 \pm 5.5 \cdot 10^{-4} \) |
\(a_{718}= +0.20950588 \pm 6.9 \cdot 10^{-4} \) | \(a_{719}= -1.05765656 \pm 3.5 \cdot 10^{-4} \) | \(a_{720}= +0.09317012 \pm 4.3 \cdot 10^{-4} \) |
\(a_{721}= -1.24805182 \pm 3.9 \cdot 10^{-4} \) | \(a_{722}= +0.82078921 \pm 7.0 \cdot 10^{-4} \) | \(a_{723}= +0.58375257 \pm 3.1 \cdot 10^{-4} \) |
\(a_{724}= -0.61336524 \pm 7.9 \cdot 10^{-4} \) | \(a_{725}= +0.36646208 \pm 3.2 \cdot 10^{-4} \) | \(a_{726}= +0.28538515 \pm 4.8 \cdot 10^{-4} \) |
\(a_{727}= +0.52027862 \pm 9.1 \cdot 10^{-4} \) | \(a_{728}= -0.82534757 \pm 9.9 \cdot 10^{-4} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.26839993 \pm 1.1 \cdot 10^{-3} \) | \(a_{731}= +1.18531807 \pm 1.6 \cdot 10^{-4} \) | \(a_{732}= -0.51967803 \pm 5.4 \cdot 10^{-4} \) |
\(a_{733}= -0.19301164 \pm 3.0 \cdot 10^{-4} \) | \(a_{734}= +0.48375147 \pm 2.8 \cdot 10^{-4} \) | \(a_{735}= -0.95879979 \pm 9.1 \cdot 10^{-4} \) |
\(a_{736}= -0.03347763 \pm 5.4 \cdot 10^{-4} \) | \(a_{737}= +0.85836069 \pm 2.8 \cdot 10^{-4} \) | \(a_{738}= -0.21218077 \pm 3.2 \cdot 10^{-4} \) |
\(a_{739}= +1.84673431 \pm 8.5 \cdot 10^{-4} \) | \(a_{740}= +0.00173646 \pm 1.0 \cdot 10^{-3} \) | \(a_{741}= +1.25669910 \pm 1.3 \cdot 10^{-3} \) |
\(a_{742}= -0.03987850 \pm 1.1 \cdot 10^{-3} \) | \(a_{743}= -0.85871577 \pm 3.6 \cdot 10^{-4} \) | \(a_{744}= -0.00689441 \pm 7.0 \cdot 10^{-4} \) |
\(a_{745}= -1.70641842 \pm 3.7 \cdot 10^{-4} \) | \(a_{746}= -0.32128978 \pm 4.2 \cdot 10^{-4} \) | \(a_{747}= -0.36625010 \pm 3.4 \cdot 10^{-4} \) |
\(a_{748}= -0.23028337 \pm 6.9 \cdot 10^{-4} \) | \(a_{749}= +0.36358862 \pm 5.2 \cdot 10^{-4} \) | \(a_{750}= +0.34232127 \pm 4.9 \cdot 10^{-4} \) |
\(a_{751}= -0.88311343 \pm 9.6 \cdot 10^{-4} \) | \(a_{752}= +0.17439636 \pm 4.9 \cdot 10^{-4} \) | \(a_{753}= -0.33642365 \pm 6.4 \cdot 10^{-4} \) |
\(a_{754}= -1.53473221 \pm 9.7 \cdot 10^{-4} \) | \(a_{755}= +0.65992999 \pm 4.3 \cdot 10^{-4} \) | \(a_{756}= -0.15169891 \pm 4.3 \cdot 10^{-4} \) |
\(a_{757}= -0.96042896 \pm 6.2 \cdot 10^{-4} \) | \(a_{758}= -0.11696508 \pm 3.8 \cdot 10^{-4} \) | \(a_{759}= -0.05998155 \pm 8.8 \cdot 10^{-4} \) |
\(a_{760}= +0.58105508 \pm 1.1 \cdot 10^{-3} \) | \(a_{761}= +0.99023877 \pm 7.1 \cdot 10^{-4} \) | \(a_{762}= +0.56474819 \pm 1.6 \cdot 10^{-4} \) |
\(a_{763}= -0.57580689 \pm 3.0 \cdot 10^{-4} \) | \(a_{764}= -0.34053539 \pm 4.3 \cdot 10^{-4} \) | \(a_{765}= +0.31288202 \pm 7.8 \cdot 10^{-4} \) |
\(a_{766}= +0.21982628 \pm 7.4 \cdot 10^{-4} \) | \(a_{767}= +0.34727172 \pm 3.7 \cdot 10^{-4} \) | \(a_{768}= -0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= +0.54901071 \pm 4.3 \cdot 10^{-4} \) | \(a_{770}= -0.68373193 \pm 1.2 \cdot 10^{-3} \) | \(a_{771}= -0.30394395 \pm 3.5 \cdot 10^{-4} \) |
\(a_{772}= +0.01674361 \pm 3.9 \cdot 10^{-4} \) | \(a_{773}= -0.68960692 \pm 4.8 \cdot 10^{-4} \) | \(a_{774}= +0.33277807 \pm 3.2 \cdot 10^{-4} \) |
\(a_{775}= +0.00844446 \pm 3.1 \cdot 10^{-4} \) | \(a_{776}= -0.06158737 \pm 7.3 \cdot 10^{-4} \) | \(a_{777}= -0.00282728 \pm 1.0 \cdot 10^{-3} \) |
\(a_{778}= +0.42858907 \pm 4.2 \cdot 10^{-4} \) | \(a_{779}= -1.32326449 \pm 2.2 \cdot 10^{-4} \) | \(a_{780}= +0.47791957 \pm 1.0 \cdot 10^{-3} \) |
\(a_{781}= +0.28986971 \pm 2.7 \cdot 10^{-4} \) | \(a_{782}= -0.11242391 \pm 8.8 \cdot 10^{-4} \) | \(a_{783}= -0.28208383 \pm 4.0 \cdot 10^{-4} \) |
\(a_{784}= +0.37133908 \pm 4.7 \cdot 10^{-4} \) | \(a_{785}= -1.46122249 \pm 3.7 \cdot 10^{-4} \) | \(a_{786}= +0.10998057 \pm 6.2 \cdot 10^{-4} \) |
\(a_{787}= +1.93169929 \pm 6.7 \cdot 10^{-4} \) | \(a_{788}= -0.21229032 \pm 7.0 \cdot 10^{-4} \) | \(a_{789}= +0.25311877 \pm 2.3 \cdot 10^{-4} \) |
\(a_{790}= +0.65649199 \pm 7.9 \cdot 10^{-4} \) | \(a_{791}= +2.15136472 \pm 5.8 \cdot 10^{-4} \) | \(a_{792}= -0.06465206 \pm 3.4 \cdot 10^{-4} \) |
\(a_{793}= -2.66570764 \pm 3.4 \cdot 10^{-4} \) | \(a_{794}= +0.18101243 \pm 6.6 \cdot 10^{-4} \) | \(a_{795}= +0.02309175 \pm 1.1 \cdot 10^{-3} \) |
\(a_{796}= -0.18225476 \pm 2.2 \cdot 10^{-4} \) | \(a_{797}= +0.71878978 \pm 8.2 \cdot 10^{-4} \) | \(a_{798}= -0.94606963 \pm 1.1 \cdot 10^{-3} \) |
\(a_{799}= +0.58565433 \pm 2.9 \cdot 10^{-4} \) | \(a_{800}= +0.04419712 \pm 4.2 \cdot 10^{-4} \) | \(a_{801}= +0.16054293 \pm 8.2 \cdot 10^{-4} \) |
\(a_{802}= +0.93889220 \pm 8.2 \cdot 10^{-4} \) | \(a_{803}= +0.18624650 \pm 4.8 \cdot 10^{-4} \) | \(a_{804}= +0.45167970 \pm 2.3 \cdot 10^{-4} \) |
\(a_{805}= -0.33379664 \pm 2.5 \cdot 10^{-4} \) | \(a_{806}= -0.03536515 \pm 1.2 \cdot 10^{-3} \) | \(a_{807}= -0.73718157 \pm 5.9 \cdot 10^{-4} \) |
\(a_{808}= +0.31859007 \pm 4.3 \cdot 10^{-4} \) | \(a_{809}= +0.02619403 \pm 9.0 \cdot 10^{-4} \) | \(a_{810}= +0.08784163 \pm 4.3 \cdot 10^{-4} \) |
\(a_{811}= +0.89734866 \pm 6.8 \cdot 10^{-4} \) | \(a_{812}= +1.15537883 \pm 8.4 \cdot 10^{-4} \) | \(a_{813}= +0.07954024 \pm 6.7 \cdot 10^{-4} \) |
\(a_{814}= -0.00120495 \pm 9.5 \cdot 10^{-4} \) | \(a_{815}= -0.92864697 \pm 3.4 \cdot 10^{-4} \) | \(a_{816}= -0.12117788 \pm 3.4 \cdot 10^{-4} \) |
\(a_{817}= +2.07536910 \pm 4.8 \cdot 10^{-4} \) | \(a_{818}= -0.20541649 \pm 5.3 \cdot 10^{-4} \) | \(a_{819}= -0.77814515 \pm 9.9 \cdot 10^{-4} \) |
\(a_{820}= -0.50323423 \pm 7.6 \cdot 10^{-4} \) | \(a_{821}= -0.82984316 \pm 2.4 \cdot 10^{-4} \) | \(a_{822}= -0.60771542 \pm 3.5 \cdot 10^{-4} \) |
\(a_{823}= -0.90218523 \pm 3.7 \cdot 10^{-4} \) | \(a_{824}= -0.27989381 \pm 5.4 \cdot 10^{-4} \) | \(a_{825}= +0.07918756 \pm 7.6 \cdot 10^{-4} \) |
\(a_{826}= -0.26143349 \pm 1.0 \cdot 10^{-3} \) | \(a_{827}= -0.94167639 \pm 6.6 \cdot 10^{-4} \) | \(a_{828}= -0.03156301 \pm 5.4 \cdot 10^{-4} \) |
\(a_{829}= -1.19904719 \pm 2.2 \cdot 10^{-4} \) | \(a_{830}= -0.86864418 \pm 7.8 \cdot 10^{-4} \) | \(a_{831}= -0.33990218 \pm 4.8 \cdot 10^{-4} \) |
\(a_{832}= -0.18509622 \pm 5.6 \cdot 10^{-4} \) | \(a_{833}= +1.24702341 \pm 2.4 \cdot 10^{-4} \) | \(a_{834}= +0.60270186 \pm 6.1 \cdot 10^{-4} \) |
\(a_{835}= +0.95461684 \pm 3.3 \cdot 10^{-4} \) | \(a_{836}= -0.40320232 \pm 1.1 \cdot 10^{-3} \) | \(a_{837}= -0.00650012 \pm 7.0 \cdot 10^{-4} \) |
\(a_{838}= -1.21491800 \pm 4.7 \cdot 10^{-4} \) | \(a_{839}= -0.63566047 \pm 5.7 \cdot 10^{-4} \) | \(a_{840}= -0.35978795 \pm 8.6 \cdot 10^{-4} \) |
\(a_{841}= +1.14842471 \pm 3.5 \cdot 10^{-4} \) | \(a_{842}= -0.46062984 \pm 6.5 \cdot 10^{-4} \) | \(a_{843}= +0.63731716 \pm 7.4 \cdot 10^{-4} \) |
\(a_{844}= -0.59558156 \pm 4.5 \cdot 10^{-4} \) | \(a_{845}= +1.33346465 \pm 4.1 \cdot 10^{-4} \) | \(a_{846}= +0.16442246 \pm 4.9 \cdot 10^{-4} \) |
\(a_{847}= -1.10205006 \pm 3.9 \cdot 10^{-4} \) | \(a_{848}= -0.00894333 \pm 7.5 \cdot 10^{-4} \) | \(a_{849}= +0.32904974 \pm 3.7 \cdot 10^{-4} \) |
\(a_{850}= +0.14842188 \pm 7.6 \cdot 10^{-4} \) | \(a_{851}= -0.00058825 \pm 4.6 \cdot 10^{-4} \) | \(a_{852}= +0.15253292 \pm 6.0 \cdot 10^{-4} \) |
\(a_{853}= -1.80365384 \pm 3.1 \cdot 10^{-4} \) | \(a_{854}= +2.00680102 \pm 9.7 \cdot 10^{-4} \) | \(a_{855}= +0.54782399 \pm 1.1 \cdot 10^{-3} \) |
\(a_{856}= +0.08154005 \pm 5.5 \cdot 10^{-4} \) | \(a_{857}= +1.16729441 \pm 3.9 \cdot 10^{-4} \) | \(a_{858}= -0.33163514 \pm 9.0 \cdot 10^{-4} \) |
\(a_{859}= +1.59762285 \pm 9.0 \cdot 10^{-4} \) | \(a_{860}= +0.78925776 \pm 7.6 \cdot 10^{-4} \) | \(a_{861}= +0.81936228 \pm 7.6 \cdot 10^{-4} \) |
\(a_{862}= +0.62368072 \pm 5.9 \cdot 10^{-4} \) | \(a_{863}= -1.70014350 \pm 5.5 \cdot 10^{-4} \) | \(a_{864}= -0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= -0.53476924 \pm 5.3 \cdot 10^{-4} \) | \(a_{866}= +0.58125765 \pm 4.5 \cdot 10^{-4} \) | \(a_{867}= +0.17041317 \pm 4.4 \cdot 10^{-4} \) |
\(a_{868}= +0.02662363 \pm 1.1 \cdot 10^{-3} \) | \(a_{869}= -0.45554905 \pm 3.6 \cdot 10^{-4} \) | \(a_{870}= -0.66902500 \pm 8.4 \cdot 10^{-4} \) |
\(a_{871}= +2.31690770 \pm 8.8 \cdot 10^{-5} \) | \(a_{872}= -0.12913309 \pm 5.7 \cdot 10^{-4} \) | \(a_{873}= -0.05806513 \pm 7.3 \cdot 10^{-4} \) |
\(a_{874}= -0.19684261 \pm 1.3 \cdot 10^{-3} \) | \(a_{875}= -1.32191595 \pm 4.5 \cdot 10^{-4} \) | \(a_{876}= +0.09800514 \pm 6.8 \cdot 10^{-4} \) |
\(a_{877}= -0.62958820 \pm 7.6 \cdot 10^{-4} \) | \(a_{878}= -0.65563717 \pm 5.7 \cdot 10^{-4} \) | \(a_{879}= +0.19912308 \pm 5.5 \cdot 10^{-4} \) |
\(a_{880}= -0.15333685 \pm 7.7 \cdot 10^{-4} \) | \(a_{881}= +1.61760909 \pm 3.9 \cdot 10^{-4} \) | \(a_{882}= +0.35010185 \pm 4.7 \cdot 10^{-4} \) |
\(a_{883}= -1.96065159 \pm 1.8 \cdot 10^{-4} \) | \(a_{884}= -0.62158639 \pm 9.1 \cdot 10^{-4} \) | \(a_{885}= +0.15138372 \pm 1.0 \cdot 10^{-3} \) |
\(a_{886}= +0.36859847 \pm 1.9 \cdot 10^{-4} \) | \(a_{887}= -1.21489863 \pm 5.8 \cdot 10^{-4} \) | \(a_{888}= -0.00063406 \pm 6.0 \cdot 10^{-4} \) |
\(a_{889}= -2.18084504 \pm 2.2 \cdot 10^{-4} \) | \(a_{890}= +0.38076354 \pm 1.2 \cdot 10^{-3} \) | \(a_{891}= -0.06095455 \pm 3.4 \cdot 10^{-4} \) |
\(a_{892}= -0.30350139 \pm 4.7 \cdot 10^{-4} \) | \(a_{893}= +1.02542004 \pm 5.6 \cdot 10^{-4} \) | \(a_{894}= +0.62309175 \pm 4.4 \cdot 10^{-4} \) |
\(a_{895}= +1.39773156 \pm 3.5 \cdot 10^{-4} \) | \(a_{896}= +0.13934434 \pm 4.3 \cdot 10^{-4} \) | \(a_{897}= -0.16190365 \pm 1.1 \cdot 10^{-3} \) |
\(a_{898}= +0.88737816 \pm 8.0 \cdot 10^{-4} \) | \(a_{899}= +0.04950659 \pm 3.3 \cdot 10^{-4} \) | \(a_{900}= +0.04166945 \pm 4.2 \cdot 10^{-4} \) |
\(a_{901}= -0.03003333 \pm 3.8 \cdot 10^{-4} \) | \(a_{902}= +0.34920133 \pm 6.7 \cdot 10^{-4} \) | \(a_{903}= -1.28506370 \pm 7.5 \cdot 10^{-4} \) |
\(a_{904}= +0.48247489 \pm 8.4 \cdot 10^{-4} \) | \(a_{905}= -1.37153551 \pm 5.9 \cdot 10^{-4} \) | \(a_{906}= -0.24097076 \pm 5.1 \cdot 10^{-4} \) |
\(a_{907}= -0.61194753 \pm 6.4 \cdot 10^{-4} \) | \(a_{908}= -0.34761606 \pm 4.8 \cdot 10^{-4} \) | \(a_{909}= +0.30036960 \pm 4.3 \cdot 10^{-4} \) |
\(a_{910}= -1.84554558 \pm 1.4 \cdot 10^{-3} \) | \(a_{911}= +1.38633335 \pm 6.7 \cdot 10^{-4} \) | \(a_{912}= -0.21216990 \pm 7.6 \cdot 10^{-4} \) |
\(a_{913}= +0.60276445 \pm 1.3 \cdot 10^{-4} \) | \(a_{914}= -0.13523707 \pm 7.3 \cdot 10^{-4} \) | \(a_{915}= -1.16204315 \pm 9.8 \cdot 10^{-4} \) |
\(a_{916}= +0.48380621 \pm 2.2 \cdot 10^{-4} \) | \(a_{917}= -0.42470357 \pm 3.3 \cdot 10^{-4} \) | \(a_{918}= -0.11424760 \pm 3.4 \cdot 10^{-4} \) |
\(a_{919}= +0.84476692 \pm 4.2 \cdot 10^{-4} \) | \(a_{920}= -0.07485876 \pm 9.7 \cdot 10^{-4} \) | \(a_{921}= +0.38885630 \pm 2.8 \cdot 10^{-4} \) |
\(a_{922}= +0.50191488 \pm 5.9 \cdot 10^{-4} \) | \(a_{923}= +0.78242326 \pm 6.7 \cdot 10^{-4} \) | \(a_{924}= +0.24966194 \pm 7.7 \cdot 10^{-4} \) |
\(a_{925}= +0.00077661 \pm 2.7 \cdot 10^{-4} \) | \(a_{926}= -0.49777281 \pm 5.4 \cdot 10^{-4} \) | \(a_{927}= -0.26388641 \pm 5.4 \cdot 10^{-4} \) |
\(a_{928}= +0.25911054 \pm 4.0 \cdot 10^{-4} \) | \(a_{929}= +0.93344648 \pm 7.1 \cdot 10^{-4} \) | \(a_{930}= -0.01541648 \pm 1.1 \cdot 10^{-3} \) |
\(a_{931}= +2.18340876 \pm 7.0 \cdot 10^{-4} \) | \(a_{932}= +0.69289008 \pm 9.4 \cdot 10^{-4} \) | \(a_{933}= +0.01609146 \pm 6.7 \cdot 10^{-4} \) |
\(a_{934}= -0.09922658 \pm 6.5 \cdot 10^{-4} \) | \(a_{935}= -0.51493271 \pm 3.5 \cdot 10^{-4} \) | \(a_{936}= -0.17451039 \pm 5.6 \cdot 10^{-4} \) |
\(a_{937}= -0.17299141 \pm 4.3 \cdot 10^{-4} \) | \(a_{938}= -1.74421706 \pm 6.6 \cdot 10^{-4} \) | \(a_{939}= +0.25069791 \pm 7.1 \cdot 10^{-4} \) |
\(a_{940}= +0.38996471 \pm 9.2 \cdot 10^{-4} \) | \(a_{941}= -0.33691989 \pm 4.9 \cdot 10^{-4} \) | \(a_{942}= +0.53355946 \pm 6.8 \cdot 10^{-4} \) |
\(a_{943}= +0.17047943 \pm 2.3 \cdot 10^{-4} \) | \(a_{944}= -0.05863027 \pm 6.0 \cdot 10^{-4} \) | \(a_{945}= -0.33921133 \pm 8.6 \cdot 10^{-4} \) |
\(a_{946}= -0.54767709 \pm 6.6 \cdot 10^{-4} \) | \(a_{947}= +0.01985881 \pm 5.7 \cdot 10^{-4} \) | \(a_{948}= -0.23971538 \pm 3.6 \cdot 10^{-4} \) |
\(a_{949}= +0.50272101 \pm 1.8 \cdot 10^{-4} \) | \(a_{950}= +0.25987133 \pm 1.1 \cdot 10^{-3} \) | \(a_{951}= +0.49868292 \pm 4.2 \cdot 10^{-4} \) |
\(a_{952}= +0.46794336 \pm 7.8 \cdot 10^{-4} \) | \(a_{953}= -1.21907288 \pm 5.5 \cdot 10^{-4} \) | \(a_{954}= -0.00843186 \pm 7.5 \cdot 10^{-4} \) |
\(a_{955}= -0.76146536 \pm 2.2 \cdot 10^{-4} \) | \(a_{956}= -0.89323247 \pm 5.5 \cdot 10^{-4} \) | \(a_{957}= +0.46424589 \pm 7.5 \cdot 10^{-4} \) |
\(a_{958}= +0.59723632 \pm 6.2 \cdot 10^{-4} \) | \(a_{959}= +2.34676831 \pm 2.5 \cdot 10^{-4} \) | \(a_{960}= -0.08068769 \pm 4.3 \cdot 10^{-4} \) |
\(a_{961}= -0.99885921 \pm 9.9 \cdot 10^{-4} \) | \(a_{962}= -0.00325243 \pm 1.1 \cdot 10^{-3} \) | \(a_{963}= +0.07687669 \pm 5.5 \cdot 10^{-4} \) |
\(a_{964}= -0.50554455 \pm 3.1 \cdot 10^{-4} \) | \(a_{965}= +0.03744009 \pm 3.2 \cdot 10^{-4} \) | \(a_{966}= +0.12188449 \pm 9.7 \cdot 10^{-4} \) |
\(a_{967}= +0.91990316 \pm 6.7 \cdot 10^{-4} \) | \(a_{968}= -0.24715079 \pm 4.8 \cdot 10^{-4} \) | \(a_{969}= -0.71250468 \pm 1.1 \cdot 10^{-3} \) |
\(a_{970}= -0.13771448 \pm 1.1 \cdot 10^{-3} \) | \(a_{971}= -0.64044876 \pm 3.0 \cdot 10^{-4} \) | \(a_{972}= -0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -2.32740781 \pm 3.0 \cdot 10^{-4} \) | \(a_{974}= -0.17190234 \pm 7.4 \cdot 10^{-4} \) | \(a_{975}= +0.21374496 \pm 9.8 \cdot 10^{-4} \) |
\(a_{976}= +0.45005438 \pm 5.4 \cdot 10^{-4} \) | \(a_{977}= +0.89466016 \pm 4.3 \cdot 10^{-4} \) | \(a_{978}= +0.33909167 \pm 5.1 \cdot 10^{-4} \) |
\(a_{979}= -0.26421719 \pm 4.4 \cdot 10^{-4} \) | \(a_{980}= +0.83034497 \pm 9.1 \cdot 10^{-4} \) | \(a_{981}= -0.12174784 \pm 5.7 \cdot 10^{-4} \) |
\(a_{982}= +0.30753830 \pm 6.9 \cdot 10^{-4} \) | \(a_{983}= -1.47758476 \pm 6.8 \cdot 10^{-4} \) | \(a_{984}= +0.18375393 \pm 3.2 \cdot 10^{-4} \) |
\(a_{985}= -0.47469875 \pm 6.5 \cdot 10^{-4} \) | \(a_{986}= +0.87013978 \pm 7.5 \cdot 10^{-4} \) | \(a_{987}= -0.63493769 \pm 9.2 \cdot 10^{-4} \) |
\(a_{988}= -1.08833335 \pm 1.3 \cdot 10^{-3} \) | \(a_{989}= -0.26737492 \pm 3.2 \cdot 10^{-4} \) | \(a_{990}= -0.14456737 \pm 7.7 \cdot 10^{-4} \) |
\(a_{991}= -1.76577092 \pm 3.8 \cdot 10^{-4} \) | \(a_{992}= +0.00597074 \pm 7.0 \cdot 10^{-4} \) | \(a_{993}= +1.09456321 \pm 9.6 \cdot 10^{-4} \) |
\(a_{994}= -0.58902476 \pm 1.0 \cdot 10^{-3} \) | \(a_{995}= -0.40753674 \pm 2.4 \cdot 10^{-4} \) | \(a_{996}= +0.31718189 \pm 3.4 \cdot 10^{-4} \) |
\(a_{997}= +1.92652381 \pm 7.1 \cdot 10^{-4} \) | \(a_{998}= +1.21799802 \pm 7.2 \cdot 10^{-4} \) | \(a_{999}= -0.00059780 \pm 6.0 \cdot 10^{-4} \) |
\(a_{1000}= -0.29645892 \pm 4.9 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000