Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(13.2545279009091376360016084446 \pm 3 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.25362063 \pm 2.6 \cdot 10^{-8} \) | \(a_{6}= -0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= -0.92043812 \pm 1.2 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.17933687 \pm 3.6 \cdot 10^{-8} \) | \(a_{11}= -0.60127167 \pm 2.3 \cdot 10^{-8} \) | \(a_{12}= +0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= +1.21883607 \pm 2.2 \cdot 10^{-8} \) | \(a_{14}= +0.65084804 \pm 2.2 \cdot 10^{-8} \) | \(a_{15}= +0.14642794 \pm 3.6 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +0.62990649 \pm 1 \cdot 10^{-8} \) | \(a_{18}= -0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= -1.02056651 \pm 1.0 \cdot 10^{-8} \) | \(a_{20}= +0.12681032 \pm 3.6 \cdot 10^{-8} \) | \(a_{21}= -0.53141520 \pm 2.2 \cdot 10^{-8} \) |
\(a_{22}= +0.42516328 \pm 3.4 \cdot 10^{-8} \) | \(a_{23}= -1.90228214 \pm 1.2 \cdot 10^{-8} \) | \(a_{24}= -0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= -0.93567657 \pm 1.2 \cdot 10^{-8} \) | \(a_{26}= -0.86184725 \pm 3.2 \cdot 10^{-8} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.46021906 \pm 2.2 \cdot 10^{-8} \) | \(a_{29}= +1.25185803 \pm 1.8 \cdot 10^{-8} \) | \(a_{30}= -0.10354019 \pm 3.6 \cdot 10^{-8} \) |
\(a_{31}= -1.33588283 \pm 1.1 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.34714436 \pm 3.4 \cdot 10^{-8} \) |
\(a_{34}= -0.44541115 \pm 2.0 \cdot 10^{-8} \) | \(a_{35}= -0.23344210 \pm 1.4 \cdot 10^{-8} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= -0.08472825 \pm 3.3 \cdot 10^{-8} \) | \(a_{38}= +0.72164950 \pm 2.0 \cdot 10^{-8} \) | \(a_{39}= +0.70369533 \pm 3.2 \cdot 10^{-8} \) |
\(a_{40}= -0.08966843 \pm 3.6 \cdot 10^{-8} \) | \(a_{41}= -0.23770994 \pm 2.1 \cdot 10^{-8} \) | \(a_{42}= +0.37576729 \pm 2.2 \cdot 10^{-8} \) |
\(a_{43}= -1.54088966 \pm 3.6 \cdot 10^{-8} \) | \(a_{44}= -0.30063584 \pm 3.4 \cdot 10^{-8} \) | \(a_{45}= +0.08454021 \pm 3.6 \cdot 10^{-8} \) |
\(a_{46}= +1.34511660 \pm 2.2 \cdot 10^{-8} \) | \(a_{47}= -1.39058236 \pm 1.1 \cdot 10^{-8} \) | \(a_{48}= +0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= -0.15279366 \pm 1.6 \cdot 10^{-8} \) | \(a_{50}= +0.66162325 \pm 2.3 \cdot 10^{-8} \) | \(a_{51}= +0.36367668 \pm 2.0 \cdot 10^{-8} \) |
\(a_{52}= +0.60941803 \pm 3.2 \cdot 10^{-8} \) | \(a_{53}= -0.24768209 \pm 1.3 \cdot 10^{-8} \) | \(a_{54}= -0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= -0.15249490 \pm 2.7 \cdot 10^{-8} \) | \(a_{56}= +0.32542402 \pm 2.2 \cdot 10^{-8} \) | \(a_{57}= -0.58922435 \pm 2.0 \cdot 10^{-8} \) |
\(a_{58}= -0.88519730 \pm 2.8 \cdot 10^{-8} \) | \(a_{59}= +0.91644587 \pm 1 \cdot 10^{-8} \) | \(a_{60}= +0.07321397 \pm 3.6 \cdot 10^{-8} \) |
\(a_{61}= -1.39057928 \pm 2.4 \cdot 10^{-8} \) | \(a_{62}= +0.94461181 \pm 2.1 \cdot 10^{-8} \) | \(a_{63}= -0.30681271 \pm 2.2 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.30912197 \pm 2.6 \cdot 10^{-8} \) | \(a_{66}= +0.24546813 \pm 3.4 \cdot 10^{-8} \) |
\(a_{67}= +0.18859353 \pm 2.5 \cdot 10^{-8} \) | \(a_{68}= +0.31495325 \pm 2.0 \cdot 10^{-8} \) | \(a_{69}= -1.09828311 \pm 2.2 \cdot 10^{-8} \) |
\(a_{70}= +0.16506849 \pm 4.8 \cdot 10^{-8} \) | \(a_{71}= +1.15563279 \pm 3.2 \cdot 10^{-8} \) | \(a_{72}= -0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= +0.21870286 \pm 1.1 \cdot 10^{-8} \) | \(a_{74}= +0.05991192 \pm 4.3 \cdot 10^{-8} \) | \(a_{75}= -0.54021312 \pm 2.3 \cdot 10^{-8} \) |
\(a_{76}= -0.51028326 \pm 2.0 \cdot 10^{-8} \) | \(a_{77}= +0.55343337 \pm 1.2 \cdot 10^{-8} \) | \(a_{78}= -0.49758774 \pm 3.2 \cdot 10^{-8} \) |
\(a_{79}= -1.74124134 \pm 2.0 \cdot 10^{-8} \) | \(a_{80}= +0.06340516 \pm 3.6 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.16808631 \pm 3.2 \cdot 10^{-8} \) | \(a_{83}= +1.11844868 \pm 2.0 \cdot 10^{-8} \) | \(a_{84}= -0.26570760 \pm 2.2 \cdot 10^{-8} \) |
\(a_{85}= +0.15975728 \pm 1.1 \cdot 10^{-8} \) | \(a_{86}= +1.08957353 \pm 4.6 \cdot 10^{-8} \) | \(a_{87}= +0.72276057 \pm 2.8 \cdot 10^{-8} \) |
\(a_{88}= +0.21258164 \pm 3.4 \cdot 10^{-8} \) | \(a_{89}= +0.32631412 \pm 2.9 \cdot 10^{-8} \) | \(a_{90}= -0.05977896 \pm 3.6 \cdot 10^{-8} \) |
\(a_{91}= -1.12186318 \pm 1.1 \cdot 10^{-8} \) | \(a_{92}= -0.95114107 \pm 2.2 \cdot 10^{-8} \) | \(a_{93}= -0.77127231 \pm 2.1 \cdot 10^{-8} \) |
\(a_{94}= +0.98329022 \pm 2.2 \cdot 10^{-8} \) | \(a_{95}= -0.25883672 \pm 1.2 \cdot 10^{-8} \) | \(a_{96}= -0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= -0.57353010 \pm 2.3 \cdot 10^{-8} \) | \(a_{98}= +0.10804144 \pm 2.7 \cdot 10^{-8} \) | \(a_{99}= -0.20042389 \pm 3.4 \cdot 10^{-8} \) |
\(a_{100}= -0.46783829 \pm 2.3 \cdot 10^{-8} \) | \(a_{101}= +0.99331303 \pm 1.0 \cdot 10^{-8} \) | \(a_{102}= -0.25715825 \pm 2.0 \cdot 10^{-8} \) |
\(a_{103}= +0.95987185 \pm 1.2 \cdot 10^{-8} \) | \(a_{104}= -0.43092362 \pm 3.2 \cdot 10^{-8} \) | \(a_{105}= -0.13477786 \pm 4.8 \cdot 10^{-8} \) |
\(a_{106}= +0.17513769 \pm 2.3 \cdot 10^{-8} \) | \(a_{107}= +0.87215560 \pm 1.7 \cdot 10^{-8} \) | \(a_{108}= +0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= +0.15893815 \pm 3.0 \cdot 10^{-8} \) | \(a_{110}= +0.10783018 \pm 6.0 \cdot 10^{-8} \) | \(a_{111}= -0.04891788 \pm 4.3 \cdot 10^{-8} \) |
\(a_{112}= -0.23010953 \pm 2.2 \cdot 10^{-8} \) | \(a_{113}= -1.02118282 \pm 1.3 \cdot 10^{-8} \) | \(a_{114}= +0.41664453 \pm 2.0 \cdot 10^{-8} \) |
\(a_{115}= -0.48245800 \pm 1.5 \cdot 10^{-8} \) | \(a_{116}= +0.62592902 \pm 2.8 \cdot 10^{-8} \) | \(a_{117}= +0.40627869 \pm 3.2 \cdot 10^{-8} \) |
\(a_{118}= -0.64802509 \pm 1.9 \cdot 10^{-8} \) | \(a_{119}= -0.57978995 \pm 1 \cdot 10^{-8} \) | \(a_{120}= -0.05177009 \pm 3.6 \cdot 10^{-8} \) |
\(a_{121}= -0.63847238 \pm 1.5 \cdot 10^{-8} \) | \(a_{122}= +0.98328804 \pm 3.5 \cdot 10^{-8} \) | \(a_{123}= -0.13724190 \pm 3.2 \cdot 10^{-8} \) |
\(a_{124}= -0.66794142 \pm 2.1 \cdot 10^{-8} \) | \(a_{125}= -0.49092752 \pm 1.5 \cdot 10^{-8} \) | \(a_{126}= +0.21694935 \pm 2.2 \cdot 10^{-8} \) |
\(a_{127}= +1.72143353 \pm 2.7 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.88963306 \pm 4.6 \cdot 10^{-8} \) |
\(a_{130}= -0.21858224 \pm 5.8 \cdot 10^{-8} \) | \(a_{131}= +0.83106354 \pm 1.0 \cdot 10^{-8} \) | \(a_{132}= -0.17357218 \pm 3.4 \cdot 10^{-8} \) |
\(a_{133}= +0.93936833 \pm 1 \cdot 10^{-8} \) | \(a_{134}= -0.13335576 \pm 3.6 \cdot 10^{-8} \) | \(a_{135}= +0.04880931 \pm 3.6 \cdot 10^{-8} \) |
\(a_{136}= -0.22270558 \pm 2.0 \cdot 10^{-8} \) | \(a_{137}= -0.21753199 \pm 2.2 \cdot 10^{-8} \) | \(a_{138}= +0.77660343 \pm 2.2 \cdot 10^{-8} \) |
\(a_{139}= +0.68351213 \pm 1 \cdot 10^{-8} \) | \(a_{140}= -0.11672105 \pm 4.8 \cdot 10^{-8} \) | \(a_{141}= -0.80285310 \pm 2.2 \cdot 10^{-8} \) |
\(a_{142}= -0.81715578 \pm 4.2 \cdot 10^{-8} \) | \(a_{143}= -0.73285160 \pm 2.3 \cdot 10^{-8} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= +0.31749703 \pm 2.3 \cdot 10^{-8} \) | \(a_{146}= -0.15464628 \pm 2.1 \cdot 10^{-8} \) | \(a_{147}= -0.08821546 \pm 2.7 \cdot 10^{-8} \) |
\(a_{148}= -0.04236412 \pm 4.3 \cdot 10^{-8} \) | \(a_{149}= -0.25316545 \pm 3.2 \cdot 10^{-8} \) | \(a_{150}= +0.38198836 \pm 2.3 \cdot 10^{-8} \) |
\(a_{151}= -1.27043545 \pm 1.3 \cdot 10^{-8} \) | \(a_{152}= +0.36082475 \pm 2.0 \cdot 10^{-8} \) | \(a_{153}= +0.20996883 \pm 2.0 \cdot 10^{-8} \) |
\(a_{154}= -0.39133649 \pm 4.6 \cdot 10^{-8} \) | \(a_{155}= -0.33880745 \pm 1.2 \cdot 10^{-8} \) | \(a_{156}= +0.35184767 \pm 3.2 \cdot 10^{-8} \) |
\(a_{157}= +1.20361202 \pm 1.9 \cdot 10^{-8} \) | \(a_{158}= +1.23124356 \pm 3.0 \cdot 10^{-8} \) | \(a_{159}= -0.14299932 \pm 2.3 \cdot 10^{-8} \) |
\(a_{160}= -0.04483422 \pm 3.6 \cdot 10^{-8} \) | \(a_{161}= +1.75093300 \pm 1 \cdot 10^{-8} \) | \(a_{162}= -0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= -0.28447048 \pm 2.3 \cdot 10^{-8} \) | \(a_{164}= -0.11885497 \pm 3.2 \cdot 10^{-8} \) | \(a_{165}= -0.08804297 \pm 6.0 \cdot 10^{-8} \) |
\(a_{166}= -0.79086264 \pm 3.0 \cdot 10^{-8} \) | \(a_{167}= -1.35054549 \pm 1.0 \cdot 10^{-8} \) | \(a_{168}= +0.18788364 \pm 2.2 \cdot 10^{-8} \) |
\(a_{169}= +0.48556136 \pm 1 \cdot 10^{-8} \) | \(a_{170}= -0.11296546 \pm 4.6 \cdot 10^{-8} \) | \(a_{171}= -0.34018884 \pm 2.0 \cdot 10^{-8} \) |
\(a_{172}= -0.77044483 \pm 4.6 \cdot 10^{-8} \) | \(a_{173}= -0.80133257 \pm 1.1 \cdot 10^{-8} \) | \(a_{174}= -0.51106890 \pm 2.8 \cdot 10^{-8} \) |
\(a_{175}= +0.86123239 \pm 1.0 \cdot 10^{-8} \) | \(a_{176}= -0.15031792 \pm 3.4 \cdot 10^{-8} \) | \(a_{177}= +0.52911027 \pm 1.9 \cdot 10^{-8} \) |
\(a_{178}= -0.23073893 \pm 3.9 \cdot 10^{-8} \) | \(a_{179}= -0.72306664 \pm 2.7 \cdot 10^{-8} \) | \(a_{180}= +0.04227011 \pm 3.6 \cdot 10^{-8} \) |
\(a_{181}= +1.67867903 \pm 2.2 \cdot 10^{-8} \) | \(a_{182}= +0.79327706 \pm 4.4 \cdot 10^{-8} \) | \(a_{183}= -0.80285132 \pm 3.5 \cdot 10^{-8} \) |
\(a_{184}= +0.67255830 \pm 2.2 \cdot 10^{-8} \) | \(a_{185}= -0.02148883 \pm 3.9 \cdot 10^{-8} \) | \(a_{186}= +0.54537188 \pm 2.1 \cdot 10^{-8} \) |
\(a_{187}= -0.37874493 \pm 1.4 \cdot 10^{-8} \) | \(a_{188}= -0.69529118 \pm 2.2 \cdot 10^{-8} \) | \(a_{189}= -0.17713840 \pm 2.2 \cdot 10^{-8} \) |
\(a_{190}= +0.18302520 \pm 4.6 \cdot 10^{-8} \) | \(a_{191}= +0.67520330 \pm 1.8 \cdot 10^{-8} \) | \(a_{192}= +0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= -1.18950317 \pm 2.0 \cdot 10^{-8} \) | \(a_{194}= +0.40554702 \pm 3.4 \cdot 10^{-8} \) | \(a_{195}= +0.17847166 \pm 5.8 \cdot 10^{-8} \) |
\(a_{196}= -0.07639683 \pm 2.7 \cdot 10^{-8} \) | \(a_{197}= +1.25877584 \pm 1.2 \cdot 10^{-8} \) | \(a_{198}= +0.14172109 \pm 3.4 \cdot 10^{-8} \) |
\(a_{199}= -0.50398756 \pm 1.1 \cdot 10^{-8} \) | \(a_{200}= +0.33081163 \pm 2.3 \cdot 10^{-8} \) | \(a_{201}= +0.10888453 \pm 3.6 \cdot 10^{-8} \) |
\(a_{202}= -0.70237838 \pm 2.1 \cdot 10^{-8} \) | \(a_{203}= -1.15225786 \pm 1.2 \cdot 10^{-8} \) | \(a_{204}= +0.18183834 \pm 2.0 \cdot 10^{-8} \) |
\(a_{205}= -0.06028815 \pm 2.6 \cdot 10^{-8} \) | \(a_{206}= -0.67873190 \pm 2.2 \cdot 10^{-8} \) | \(a_{207}= -0.63409405 \pm 2.2 \cdot 10^{-8} \) |
\(a_{208}= +0.30470902 \pm 3.2 \cdot 10^{-8} \) | \(a_{209}= +0.61363773 \pm 1.0 \cdot 10^{-8} \) | \(a_{210}= +0.09530234 \pm 4.8 \cdot 10^{-8} \) |
\(a_{211}= -0.39322378 \pm 2.2 \cdot 10^{-8} \) | \(a_{212}= -0.12384105 \pm 2.3 \cdot 10^{-8} \) | \(a_{213}= +0.66720490 \pm 4.2 \cdot 10^{-8} \) |
\(a_{214}= -0.61670714 \pm 2.7 \cdot 10^{-8} \) | \(a_{215}= -0.39080141 \pm 4.3 \cdot 10^{-8} \) | \(a_{216}= -0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= +1.22959749 \pm 1 \cdot 10^{-8} \) | \(a_{218}= -0.11238624 \pm 4.0 \cdot 10^{-8} \) | \(a_{219}= +0.12626816 \pm 2.1 \cdot 10^{-8} \) |
\(a_{220}= -0.07624745 \pm 6.0 \cdot 10^{-8} \) | \(a_{221}= +0.76775276 \pm 1 \cdot 10^{-8} \) | \(a_{222}= +0.03459016 \pm 4.3 \cdot 10^{-8} \) |
\(a_{223}= +0.33212119 \pm 1 \cdot 10^{-8} \) | \(a_{224}= +0.16271201 \pm 2.2 \cdot 10^{-8} \) | \(a_{225}= -0.31189219 \pm 2.3 \cdot 10^{-8} \) |
\(a_{226}= +0.72208530 \pm 2.3 \cdot 10^{-8} \) | \(a_{227}= -0.87386420 \pm 1.2 \cdot 10^{-8} \) | \(a_{228}= -0.29461218 \pm 2.0 \cdot 10^{-8} \) |
\(a_{229}= +1.11572138 \pm 3.4 \cdot 10^{-8} \) | \(a_{230}= +0.34114932 \pm 4.8 \cdot 10^{-8} \) | \(a_{231}= +0.31952490 \pm 4.6 \cdot 10^{-8} \) |
\(a_{232}= -0.44259865 \pm 2.8 \cdot 10^{-8} \) | \(a_{233}= -0.20555673 \pm 1 \cdot 10^{-8} \) | \(a_{234}= -0.28728242 \pm 3.2 \cdot 10^{-8} \) |
\(a_{235}= -0.35268038 \pm 1.4 \cdot 10^{-8} \) | \(a_{236}= +0.45822294 \pm 1.9 \cdot 10^{-8} \) | \(a_{237}= -1.00530616 \pm 3.0 \cdot 10^{-8} \) |
\(a_{238}= +0.40997341 \pm 3.2 \cdot 10^{-8} \) | \(a_{239}= -1.55610369 \pm 1.9 \cdot 10^{-8} \) | \(a_{240}= +0.03660699 \pm 3.6 \cdot 10^{-8} \) |
\(a_{241}= -0.49933915 \pm 3.8 \cdot 10^{-8} \) | \(a_{242}= +0.45146815 \pm 2.6 \cdot 10^{-8} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.69528964 \pm 3.5 \cdot 10^{-8} \) | \(a_{245}= -0.03875163 \pm 1.9 \cdot 10^{-8} \) | \(a_{246}= +0.09704468 \pm 3.2 \cdot 10^{-8} \) |
\(a_{247}= -1.24390328 \pm 1 \cdot 10^{-8} \) | \(a_{248}= +0.47230591 \pm 2.1 \cdot 10^{-8} \) | \(a_{249}= +0.64573665 \pm 3.0 \cdot 10^{-8} \) |
\(a_{250}= +0.34713818 \pm 2.5 \cdot 10^{-8} \) | \(a_{251}= +1.35694824 \pm 2.5 \cdot 10^{-8} \) | \(a_{252}= -0.15340635 \pm 2.2 \cdot 10^{-8} \) |
\(a_{253}= +1.14378836 \pm 1.1 \cdot 10^{-8} \) | \(a_{254}= -1.21723732 \pm 3.8 \cdot 10^{-8} \) | \(a_{255}= +0.09223591 \pm 4.6 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.38508702 \pm 3.1 \cdot 10^{-8} \) | \(a_{258}= +0.62906557 \pm 4.6 \cdot 10^{-8} \) |
\(a_{259}= +0.07798711 \pm 1.6 \cdot 10^{-8} \) | \(a_{260}= +0.15456099 \pm 5.8 \cdot 10^{-8} \) | \(a_{261}= +0.41728601 \pm 2.8 \cdot 10^{-8} \) |
\(a_{262}= -0.58765067 \pm 2.1 \cdot 10^{-8} \) | \(a_{263}= +1.14619579 \pm 1.5 \cdot 10^{-8} \) | \(a_{264}= +0.12273407 \pm 3.4 \cdot 10^{-8} \) |
\(a_{265}= -0.06281729 \pm 1.6 \cdot 10^{-8} \) | \(a_{266}= -0.66423371 \pm 3.2 \cdot 10^{-8} \) | \(a_{267}= +0.18839755 \pm 3.9 \cdot 10^{-8} \) |
\(a_{268}= +0.09429677 \pm 3.6 \cdot 10^{-8} \) | \(a_{269}= -1.11073698 \pm 2.7 \cdot 10^{-8} \) | \(a_{270}= -0.03451340 \pm 3.6 \cdot 10^{-8} \) |
\(a_{271}= -1.35921609 \pm 1.0 \cdot 10^{-8} \) | \(a_{272}= +0.15747662 \pm 2.0 \cdot 10^{-8} \) | \(a_{273}= -0.64770801 \pm 4.4 \cdot 10^{-8} \) |
\(a_{274}= +0.15381835 \pm 3.2 \cdot 10^{-8} \) | \(a_{275}= +0.56259582 \pm 1.1 \cdot 10^{-8} \) | \(a_{276}= -0.54914155 \pm 2.2 \cdot 10^{-8} \) |
\(a_{277}= +0.38992446 \pm 1.2 \cdot 10^{-8} \) | \(a_{278}= -0.48331606 \pm 2.0 \cdot 10^{-8} \) | \(a_{279}= -0.44529428 \pm 2.1 \cdot 10^{-8} \) |
\(a_{280}= +0.08253425 \pm 4.8 \cdot 10^{-8} \) | \(a_{281}= -0.75675418 \pm 1.4 \cdot 10^{-8} \) | \(a_{282}= +0.56770287 \pm 2.2 \cdot 10^{-8} \) |
\(a_{283}= +0.81063587 \pm 1.2 \cdot 10^{-8} \) | \(a_{284}= +0.57781639 \pm 4.2 \cdot 10^{-8} \) | \(a_{285}= -0.14943945 \pm 4.6 \cdot 10^{-8} \) |
\(a_{286}= +0.51820434 \pm 5.6 \cdot 10^{-8} \) | \(a_{287}= +0.21879729 \pm 1.1 \cdot 10^{-8} \) | \(a_{288}= -0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= -0.60321781 \pm 1.9 \cdot 10^{-8} \) | \(a_{290}= -0.22450430 \pm 5.5 \cdot 10^{-8} \) | \(a_{291}= -0.33112776 \pm 3.4 \cdot 10^{-8} \) |
\(a_{292}= +0.10935143 \pm 2.1 \cdot 10^{-8} \) | \(a_{293}= +1.38910844 \pm 3.3 \cdot 10^{-8} \) | \(a_{294}= +0.06237775 \pm 2.7 \cdot 10^{-8} \) |
\(a_{295}= +0.23242958 \pm 1 \cdot 10^{-8} \) | \(a_{296}= +0.02995596 \pm 4.3 \cdot 10^{-8} \) | \(a_{297}= -0.11571479 \pm 3.4 \cdot 10^{-8} \) |
\(a_{298}= +0.17901501 \pm 4.3 \cdot 10^{-8} \) | \(a_{299}= -2.31857009 \pm 1 \cdot 10^{-8} \) | \(a_{300}= -0.27010656 \pm 2.3 \cdot 10^{-8} \) |
\(a_{301}= +1.41829359 \pm 1.8 \cdot 10^{-8} \) | \(a_{302}= +0.89833352 \pm 2.4 \cdot 10^{-8} \) | \(a_{303}= +0.57348954 \pm 2.1 \cdot 10^{-8} \) |
\(a_{304}= -0.25514163 \pm 2.0 \cdot 10^{-8} \) | \(a_{305}= -0.35267960 \pm 3.0 \cdot 10^{-8} \) | \(a_{306}= -0.14847038 \pm 2.0 \cdot 10^{-8} \) |
\(a_{307}= -0.10522891 \pm 1.2 \cdot 10^{-8} \) | \(a_{308}= +0.27671668 \pm 4.6 \cdot 10^{-8} \) | \(a_{309}= +0.55418227 \pm 2.2 \cdot 10^{-8} \) |
\(a_{310}= +0.23957304 \pm 4.7 \cdot 10^{-8} \) | \(a_{311}= +0.60502784 \pm 1 \cdot 10^{-8} \) | \(a_{312}= -0.24879387 \pm 3.2 \cdot 10^{-8} \) |
\(a_{313}= -0.16043519 \pm 1.7 \cdot 10^{-8} \) | \(a_{314}= -0.85108222 \pm 3.0 \cdot 10^{-8} \) | \(a_{315}= -0.07781403 \pm 4.8 \cdot 10^{-8} \) |
\(a_{316}= -0.87062067 \pm 3.0 \cdot 10^{-8} \) | \(a_{317}= +0.08942604 \pm 1.1 \cdot 10^{-8} \) | \(a_{318}= +0.10111579 \pm 2.3 \cdot 10^{-8} \) |
\(a_{319}= -0.75270677 \pm 1.7 \cdot 10^{-8} \) | \(a_{320}= +0.03170258 \pm 3.6 \cdot 10^{-8} \) | \(a_{321}= +0.50353927 \pm 2.7 \cdot 10^{-8} \) |
\(a_{322}= -1.23809660 \pm 3.4 \cdot 10^{-8} \) | \(a_{323}= -0.64286148 \pm 1 \cdot 10^{-8} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= -1.14043636 \pm 1.0 \cdot 10^{-8} \) | \(a_{326}= +0.20115100 \pm 3.3 \cdot 10^{-8} \) | \(a_{327}= +0.09176298 \pm 4.0 \cdot 10^{-8} \) |
\(a_{328}= +0.08404316 \pm 3.2 \cdot 10^{-8} \) | \(a_{329}= +1.27994501 \pm 1 \cdot 10^{-8} \) | \(a_{330}= +0.06225578 \pm 6.0 \cdot 10^{-8} \) |
\(a_{331}= +0.64828188 \pm 1.7 \cdot 10^{-8} \) | \(a_{332}= +0.55922434 \pm 3.0 \cdot 10^{-8} \) | \(a_{333}= -0.02824275 \pm 4.3 \cdot 10^{-8} \) |
\(a_{334}= +0.95497988 \pm 2.0 \cdot 10^{-8} \) | \(a_{335}= +0.04783121 \pm 3.1 \cdot 10^{-8} \) | \(a_{336}= -0.13285380 \pm 2.2 \cdot 10^{-8} \) |
\(a_{337}= -0.15858032 \pm 3.5 \cdot 10^{-8} \) | \(a_{338}= -0.34334373 \pm 1.7 \cdot 10^{-8} \) | \(a_{339}= -0.58958018 \pm 2.3 \cdot 10^{-8} \) |
\(a_{340}= +0.07987864 \pm 4.6 \cdot 10^{-8} \) | \(a_{341}= +0.80322850 \pm 1.6 \cdot 10^{-8} \) | \(a_{342}= +0.24054983 \pm 2.0 \cdot 10^{-8} \) |
\(a_{343}= +1.06107523 \pm 1.8 \cdot 10^{-8} \) | \(a_{344}= +0.54478677 \pm 4.6 \cdot 10^{-8} \) | \(a_{345}= -0.27854726 \pm 4.8 \cdot 10^{-8} \) |
\(a_{346}= +0.56662769 \pm 2.1 \cdot 10^{-8} \) | \(a_{347}= -0.28098185 \pm 1.6 \cdot 10^{-8} \) | \(a_{348}= +0.36138029 \pm 2.8 \cdot 10^{-8} \) |
\(a_{349}= -0.96820243 \pm 1.2 \cdot 10^{-8} \) | \(a_{350}= -0.60898326 \pm 3.5 \cdot 10^{-8} \) | \(a_{351}= +0.23456511 \pm 3.2 \cdot 10^{-8} \) |
\(a_{352}= +0.10629082 \pm 3.4 \cdot 10^{-8} \) | \(a_{353}= -1.46681936 \pm 1.1 \cdot 10^{-8} \) | \(a_{354}= -0.37413746 \pm 1.9 \cdot 10^{-8} \) |
\(a_{355}= +0.29309232 \pm 3.8 \cdot 10^{-8} \) | \(a_{356}= +0.16315706 \pm 3.9 \cdot 10^{-8} \) | \(a_{357}= -0.33474188 \pm 3.2 \cdot 10^{-8} \) |
\(a_{358}= +0.51128533 \pm 3.7 \cdot 10^{-8} \) | \(a_{359}= -0.30603865 \pm 2.6 \cdot 10^{-8} \) | \(a_{360}= -0.02988948 \pm 3.6 \cdot 10^{-8} \) |
\(a_{361}= +0.04155601 \pm 1.7 \cdot 10^{-8} \) | \(a_{362}= -1.18700533 \pm 3.2 \cdot 10^{-8} \) | \(a_{363}= -0.36862220 \pm 2.6 \cdot 10^{-8} \) |
\(a_{364}= -0.56093159 \pm 4.4 \cdot 10^{-8} \) | \(a_{365}= +0.05546756 \pm 1.4 \cdot 10^{-8} \) | \(a_{366}= +0.56770161 \pm 3.5 \cdot 10^{-8} \) |
\(a_{367}= +0.91023050 \pm 3.2 \cdot 10^{-8} \) | \(a_{368}= -0.47557054 \pm 2.2 \cdot 10^{-8} \) | \(a_{369}= -0.07923665 \pm 3.2 \cdot 10^{-8} \) |
\(a_{370}= +0.01519490 \pm 7.0 \cdot 10^{-8} \) | \(a_{371}= +0.22797604 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.38563616 \pm 2.1 \cdot 10^{-8} \) |
\(a_{373}= -1.24001382 \pm 2.4 \cdot 10^{-8} \) | \(a_{374}= +0.26781311 \pm 4.4 \cdot 10^{-8} \) | \(a_{375}= -0.28343713 \pm 2.5 \cdot 10^{-8} \) |
\(a_{376}= +0.49164511 \pm 2.2 \cdot 10^{-8} \) | \(a_{377}= +1.52580973 \pm 1.7 \cdot 10^{-8} \) | \(a_{378}= +0.12525576 \pm 2.2 \cdot 10^{-8} \) |
\(a_{379}= +1.25721574 \pm 3.6 \cdot 10^{-8} \) | \(a_{380}= -0.12941836 \pm 4.6 \cdot 10^{-8} \) | \(a_{381}= +0.99387011 \pm 3.8 \cdot 10^{-8} \) |
\(a_{382}= -0.47744083 \pm 2.9 \cdot 10^{-8} \) | \(a_{383}= +0.70333902 \pm 2.2 \cdot 10^{-8} \) | \(a_{384}= -0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= +0.14036212 \pm 1.3 \cdot 10^{-8} \) | \(a_{386}= +0.84110576 \pm 3.1 \cdot 10^{-8} \) | \(a_{387}= -0.51362989 \pm 4.6 \cdot 10^{-8} \) |
\(a_{388}= -0.28676505 \pm 3.4 \cdot 10^{-8} \) | \(a_{389}= -0.41573516 \pm 1.7 \cdot 10^{-8} \) | \(a_{390}= -0.12619852 \pm 5.8 \cdot 10^{-8} \) |
\(a_{391}= -1.19825988 \pm 1 \cdot 10^{-8} \) | \(a_{392}= +0.05402072 \pm 2.7 \cdot 10^{-8} \) | \(a_{393}= +0.47981476 \pm 2.1 \cdot 10^{-8} \) |
\(a_{394}= -0.89008893 \pm 2.2 \cdot 10^{-8} \) | \(a_{395}= -0.44161473 \pm 2.4 \cdot 10^{-8} \) | \(a_{396}= -0.10021195 \pm 3.4 \cdot 10^{-8} \) |
\(a_{397}= +0.96313451 \pm 1.1 \cdot 10^{-8} \) | \(a_{398}= +0.35637302 \pm 2.1 \cdot 10^{-8} \) | \(a_{399}= +0.54234456 \pm 3.2 \cdot 10^{-8} \) |
\(a_{400}= -0.23391914 \pm 2.3 \cdot 10^{-8} \) | \(a_{401}= -0.51109306 \pm 1.2 \cdot 10^{-8} \) | \(a_{402}= -0.07699299 \pm 3.6 \cdot 10^{-8} \) |
\(a_{403}= -1.62822218 \pm 1 \cdot 10^{-8} \) | \(a_{404}= +0.49665651 \pm 2.1 \cdot 10^{-8} \) | \(a_{405}= +0.02818007 \pm 3.6 \cdot 10^{-8} \) |
\(a_{406}= +0.81476935 \pm 4.1 \cdot 10^{-8} \) | \(a_{407}= +0.05094470 \pm 3.4 \cdot 10^{-8} \) | \(a_{408}= -0.12857912 \pm 2.0 \cdot 10^{-8} \) |
\(a_{409}= -1.03976405 \pm 1.4 \cdot 10^{-8} \) | \(a_{410}= +0.04263016 \pm 5.8 \cdot 10^{-8} \) | \(a_{411}= -0.12559215 \pm 3.2 \cdot 10^{-8} \) |
\(a_{412}= +0.47993593 \pm 2.2 \cdot 10^{-8} \) | \(a_{413}= -0.84353172 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.44837220 \pm 2.2 \cdot 10^{-8} \) |
\(a_{415}= +0.28366166 \pm 2.4 \cdot 10^{-8} \) | \(a_{416}= -0.21546181 \pm 3.2 \cdot 10^{-8} \) | \(a_{417}= +0.39462591 \pm 2.0 \cdot 10^{-8} \) |
\(a_{418}= -0.43390740 \pm 4.4 \cdot 10^{-8} \) | \(a_{419}= -0.37137081 \pm 1 \cdot 10^{-8} \) | \(a_{420}= -0.06738893 \pm 4.8 \cdot 10^{-8} \) |
\(a_{421}= +1.04711843 \pm 1.5 \cdot 10^{-8} \) | \(a_{422}= +0.27805120 \pm 3.3 \cdot 10^{-8} \) | \(a_{423}= -0.46352745 \pm 2.2 \cdot 10^{-8} \) |
\(a_{424}= +0.08756884 \pm 2.3 \cdot 10^{-8} \) | \(a_{425}= -0.58938875 \pm 1 \cdot 10^{-8} \) | \(a_{426}= -0.47178511 \pm 4.2 \cdot 10^{-8} \) |
\(a_{427}= +1.27994218 \pm 1.2 \cdot 10^{-8} \) | \(a_{428}= +0.43607780 \pm 2.7 \cdot 10^{-8} \) | \(a_{429}= -0.42311207 \pm 5.6 \cdot 10^{-8} \) |
\(a_{430}= +0.27633833 \pm 7.2 \cdot 10^{-8} \) | \(a_{431}= -0.80416095 \pm 2.3 \cdot 10^{-8} \) | \(a_{432}= +0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= +1.25795198 \pm 1.1 \cdot 10^{-8} \) | \(a_{434}= -0.86945672 \pm 3.3 \cdot 10^{-8} \) | \(a_{435}= +0.18330699 \pm 5.5 \cdot 10^{-8} \) |
\(a_{436}= +0.07946907 \pm 4.0 \cdot 10^{-8} \) | \(a_{437}= +1.94140545 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.08928507 \pm 2.1 \cdot 10^{-8} \) |
\(a_{439}= -0.66910801 \pm 1.0 \cdot 10^{-8} \) | \(a_{440}= +0.05391509 \pm 6.0 \cdot 10^{-8} \) | \(a_{441}= -0.05093122 \pm 2.7 \cdot 10^{-8} \) |
\(a_{442}= -0.54288318 \pm 4.2 \cdot 10^{-8} \) | \(a_{443}= +1.65980766 \pm 1 \cdot 10^{-8} \) | \(a_{444}= -0.02445894 \pm 4.3 \cdot 10^{-8} \) |
\(a_{445}= +0.08275999 \pm 3.5 \cdot 10^{-8} \) | \(a_{446}= -0.23484515 \pm 2.0 \cdot 10^{-8} \) | \(a_{447}= -0.14616514 \pm 4.3 \cdot 10^{-8} \) |
\(a_{448}= -0.11505477 \pm 2.2 \cdot 10^{-8} \) | \(a_{449}= -0.73291175 \pm 1.0 \cdot 10^{-8} \) | \(a_{450}= +0.22054108 \pm 2.3 \cdot 10^{-8} \) |
\(a_{451}= +0.14292825 \pm 2.2 \cdot 10^{-8} \) | \(a_{452}= -0.51059141 \pm 2.3 \cdot 10^{-8} \) | \(a_{453}= -0.73348625 \pm 2.4 \cdot 10^{-8} \) |
\(a_{454}= +0.61791530 \pm 2.3 \cdot 10^{-8} \) | \(a_{455}= -0.28452765 \pm 1.2 \cdot 10^{-8} \) | \(a_{456}= +0.20832227 \pm 2.0 \cdot 10^{-8} \) |
\(a_{457}= -1.33800889 \pm 1.5 \cdot 10^{-8} \) | \(a_{458}= -0.78893415 \pm 4.5 \cdot 10^{-8} \) | \(a_{459}= +0.12122556 \pm 2.0 \cdot 10^{-8} \) |
\(a_{460}= -0.24122900 \pm 4.8 \cdot 10^{-8} \) | \(a_{461}= -0.18936274 \pm 1.1 \cdot 10^{-8} \) | \(a_{462}= -0.22593823 \pm 4.6 \cdot 10^{-8} \) |
\(a_{463}= -0.97532230 \pm 1 \cdot 10^{-8} \) | \(a_{464}= +0.31296451 \pm 2.8 \cdot 10^{-8} \) | \(a_{465}= -0.19561057 \pm 4.7 \cdot 10^{-8} \) |
\(a_{466}= +0.14535056 \pm 2.0 \cdot 10^{-8} \) | \(a_{467}= -0.28102040 \pm 2.8 \cdot 10^{-8} \) | \(a_{468}= +0.20313934 \pm 3.2 \cdot 10^{-8} \) |
\(a_{469}= -0.17358868 \pm 1.3 \cdot 10^{-8} \) | \(a_{470}= +0.24938269 \pm 4.8 \cdot 10^{-8} \) | \(a_{471}= +0.69490572 \pm 3.0 \cdot 10^{-8} \) |
\(a_{472}= -0.32401255 \pm 1.9 \cdot 10^{-8} \) | \(a_{473}= +0.92649330 \pm 3.7 \cdot 10^{-8} \) | \(a_{474}= +0.71085880 \pm 3.0 \cdot 10^{-8} \) |
\(a_{475}= +0.95492018 \pm 1 \cdot 10^{-8} \) | \(a_{476}= -0.28989498 \pm 3.2 \cdot 10^{-8} \) | \(a_{477}= -0.08256070 \pm 2.3 \cdot 10^{-8} \) |
\(a_{478}= +1.10033147 \pm 3.0 \cdot 10^{-8} \) | \(a_{479}= +0.37834704 \pm 1.4 \cdot 10^{-8} \) | \(a_{480}= -0.02588505 \pm 3.6 \cdot 10^{-8} \) |
\(a_{481}= -0.10326985 \pm 3.5 \cdot 10^{-8} \) | \(a_{482}= +0.35308610 \pm 4.8 \cdot 10^{-8} \) | \(a_{483}= +1.01090164 \pm 3.4 \cdot 10^{-8} \) |
\(a_{484}= -0.31923619 \pm 2.6 \cdot 10^{-8} \) | \(a_{485}= -0.14545907 \pm 2.9 \cdot 10^{-8} \) | \(a_{486}= -0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= -1.68853212 \pm 2.9 \cdot 10^{-8} \) | \(a_{488}= +0.49164402 \pm 3.5 \cdot 10^{-8} \) | \(a_{489}= -0.16423911 \pm 3.3 \cdot 10^{-8} \) |
\(a_{490}= +0.02740154 \pm 5.3 \cdot 10^{-8} \) | \(a_{491}= -0.03761740 \pm 3.1 \cdot 10^{-8} \) | \(a_{492}= -0.06862095 \pm 3.2 \cdot 10^{-8} \) |
\(a_{493}= +0.78855351 \pm 1 \cdot 10^{-8} \) | \(a_{494}= +0.87957244 \pm 4.2 \cdot 10^{-8} \) | \(a_{495}= -0.05083163 \pm 6.0 \cdot 10^{-8} \) |
\(a_{496}= -0.33397071 \pm 2.1 \cdot 10^{-8} \) | \(a_{497}= -1.06368847 \pm 1.5 \cdot 10^{-8} \) | \(a_{498}= -0.45660476 \pm 3.0 \cdot 10^{-8} \) |
\(a_{499}= +0.28919148 \pm 1 \cdot 10^{-8} \) | \(a_{500}= -0.24546376 \pm 2.5 \cdot 10^{-8} \) | \(a_{501}= -0.77973780 \pm 2.0 \cdot 10^{-8} \) |
\(a_{502}= -0.95950731 \pm 3.5 \cdot 10^{-8} \) | \(a_{503}= +0.79452038 \pm 3.8 \cdot 10^{-8} \) | \(a_{504}= +0.10847467 \pm 2.2 \cdot 10^{-8} \) |
\(a_{505}= +0.25192468 \pm 1.4 \cdot 10^{-8} \) | \(a_{506}= -0.80878051 \pm 4.6 \cdot 10^{-8} \) | \(a_{507}= +0.28033898 \pm 1.7 \cdot 10^{-8} \) |
\(a_{508}= +0.86071676 \pm 3.8 \cdot 10^{-8} \) | \(a_{509}= -1.02082877 \pm 1 \cdot 10^{-8} \) | \(a_{510}= -0.06522064 \pm 4.6 \cdot 10^{-8} \) |
\(a_{511}= -0.20130245 \pm 1 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.19640812 \pm 2.0 \cdot 10^{-8} \) |
\(a_{514}= -0.27229764 \pm 4.2 \cdot 10^{-8} \) | \(a_{515}= +0.24344331 \pm 1.5 \cdot 10^{-8} \) | \(a_{516}= -0.44481653 \pm 4.6 \cdot 10^{-8} \) |
\(a_{517}= +0.83611778 \pm 1.3 \cdot 10^{-8} \) | \(a_{518}= -0.05514521 \pm 5.6 \cdot 10^{-8} \) | \(a_{519}= -0.46264957 \pm 2.1 \cdot 10^{-8} \) |
\(a_{520}= -0.10929112 \pm 5.8 \cdot 10^{-8} \) | \(a_{521}= +0.46080096 \pm 2.1 \cdot 10^{-8} \) | \(a_{522}= -0.29506577 \pm 2.8 \cdot 10^{-8} \) |
\(a_{523}= -0.18238396 \pm 1.9 \cdot 10^{-8} \) | \(a_{524}= +0.41553177 \pm 2.1 \cdot 10^{-8} \) | \(a_{525}= +0.49723275 \pm 3.5 \cdot 10^{-8} \) |
\(a_{526}= -0.81048282 \pm 2.6 \cdot 10^{-8} \) | \(a_{527}= -0.84148127 \pm 1.0 \cdot 10^{-8} \) | \(a_{528}= -0.08678609 \pm 3.4 \cdot 10^{-8} \) |
\(a_{529}= +2.61867734 \pm 1.9 \cdot 10^{-8} \) | \(a_{530}= +0.04441853 \pm 5.0 \cdot 10^{-8} \) | \(a_{531}= +0.30548196 \pm 1.9 \cdot 10^{-8} \) |
\(a_{532}= +0.46968416 \pm 3.2 \cdot 10^{-8} \) | \(a_{533}= -0.28972945 \pm 2.3 \cdot 10^{-8} \) | \(a_{534}= -0.13321718 \pm 3.9 \cdot 10^{-8} \) |
\(a_{535}= +0.22119665 \pm 1.9 \cdot 10^{-8} \) | \(a_{536}= -0.06667788 \pm 3.6 \cdot 10^{-8} \) | \(a_{537}= -0.41746272 \pm 3.7 \cdot 10^{-8} \) |
\(a_{538}= +0.78540965 \pm 3.7 \cdot 10^{-8} \) | \(a_{539}= +0.09187050 \pm 1.8 \cdot 10^{-8} \) | \(a_{540}= +0.02440466 \pm 3.6 \cdot 10^{-8} \) |
\(a_{541}= -0.97794749 \pm 2.2 \cdot 10^{-8} \) | \(a_{542}= +0.96111091 \pm 2.1 \cdot 10^{-8} \) | \(a_{543}= +0.96918579 \pm 3.2 \cdot 10^{-8} \) |
\(a_{544}= -0.11135279 \pm 2.0 \cdot 10^{-8} \) | \(a_{545}= +0.04030999 \pm 3.7 \cdot 10^{-8} \) | \(a_{546}= +0.45799873 \pm 4.4 \cdot 10^{-8} \) |
\(a_{547}= -1.76718921 \pm 1 \cdot 10^{-8} \) | \(a_{548}= -0.10876600 \pm 3.2 \cdot 10^{-8} \) | \(a_{549}= -0.46352643 \pm 3.5 \cdot 10^{-8} \) |
\(a_{550}= -0.39781532 \pm 4.7 \cdot 10^{-8} \) | \(a_{551}= -1.27760439 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.38830172 \pm 2.2 \cdot 10^{-8} \) |
\(a_{553}= +1.60270491 \pm 1.0 \cdot 10^{-8} \) | \(a_{554}= -0.27571823 \pm 2.2 \cdot 10^{-8} \) | \(a_{555}= -0.01240658 \pm 7.0 \cdot 10^{-8} \) |
\(a_{556}= +0.34175606 \pm 2.0 \cdot 10^{-8} \) | \(a_{557}= +0.73349749 \pm 1.8 \cdot 10^{-8} \) | \(a_{558}= +0.31487060 \pm 2.1 \cdot 10^{-8} \) |
\(a_{559}= -1.87809190 \pm 3.7 \cdot 10^{-8} \) | \(a_{560}= -0.05836052 \pm 4.8 \cdot 10^{-8} \) | \(a_{561}= -0.21866849 \pm 4.4 \cdot 10^{-8} \) |
\(a_{562}= +0.53510601 \pm 2.5 \cdot 10^{-8} \) | \(a_{563}= +1.41964855 \pm 2.1 \cdot 10^{-8} \) | \(a_{564}= -0.40142655 \pm 2.2 \cdot 10^{-8} \) |
\(a_{565}= -0.25899303 \pm 1.7 \cdot 10^{-8} \) | \(a_{566}= -0.57320612 \pm 2.2 \cdot 10^{-8} \) | \(a_{567}= -0.10227090 \pm 2.2 \cdot 10^{-8} \) |
\(a_{568}= -0.40857789 \pm 4.2 \cdot 10^{-8} \) | \(a_{569}= -0.90372517 \pm 3.7 \cdot 10^{-8} \) | \(a_{570}= +0.10566965 \pm 4.6 \cdot 10^{-8} \) |
\(a_{571}= -1.00040503 \pm 1.2 \cdot 10^{-8} \) | \(a_{572}= -0.36642580 \pm 5.6 \cdot 10^{-8} \) | \(a_{573}= +0.38982881 \pm 2.9 \cdot 10^{-8} \) |
\(a_{574}= -0.15471305 \pm 4.4 \cdot 10^{-8} \) | \(a_{575}= +1.77992084 \pm 1.1 \cdot 10^{-8} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= -0.86932386 \pm 2.0 \cdot 10^{-8} \) | \(a_{578}= +0.42653940 \pm 3.0 \cdot 10^{-8} \) | \(a_{579}= -0.68675997 \pm 3.1 \cdot 10^{-8} \) |
\(a_{580}= +0.15874851 \pm 5.5 \cdot 10^{-8} \) | \(a_{581}= -1.02946280 \pm 1.0 \cdot 10^{-8} \) | \(a_{582}= +0.23414268 \pm 3.4 \cdot 10^{-8} \) |
\(a_{583}= +0.14892423 \pm 1.4 \cdot 10^{-8} \) | \(a_{584}= -0.07732314 \pm 2.1 \cdot 10^{-8} \) | \(a_{585}= +0.10304066 \pm 5.8 \cdot 10^{-8} \) |
\(a_{586}= -0.98224800 \pm 4.4 \cdot 10^{-8} \) | \(a_{587}= +1.51440393 \pm 1 \cdot 10^{-8} \) | \(a_{588}= -0.04410773 \pm 2.7 \cdot 10^{-8} \) |
\(a_{589}= +1.36335729 \pm 1 \cdot 10^{-8} \) | \(a_{590}= -0.16435253 \pm 4.6 \cdot 10^{-8} \) | \(a_{591}= +0.72675457 \pm 2.2 \cdot 10^{-8} \) |
\(a_{592}= -0.02118206 \pm 4.3 \cdot 10^{-8} \) | \(a_{593}= -0.14534790 \pm 1.0 \cdot 10^{-8} \) | \(a_{594}= +0.08182271 \pm 3.4 \cdot 10^{-8} \) |
\(a_{595}= -0.14704669 \pm 1 \cdot 10^{-8} \) | \(a_{596}= -0.12658273 \pm 4.3 \cdot 10^{-8} \) | \(a_{597}= -0.29097735 \pm 2.1 \cdot 10^{-8} \) |
\(a_{598}= +1.63947663 \pm 4.4 \cdot 10^{-8} \) | \(a_{599}= +1.25324270 \pm 2.6 \cdot 10^{-8} \) | \(a_{600}= +0.19099418 \pm 2.3 \cdot 10^{-8} \) |
\(a_{601}= +0.71199536 \pm 3.2 \cdot 10^{-8} \) | \(a_{602}= -1.00288501 \pm 5.8 \cdot 10^{-8} \) | \(a_{603}= +0.06286451 \pm 3.6 \cdot 10^{-8} \) |
\(a_{604}= -0.63521772 \pm 2.4 \cdot 10^{-8} \) | \(a_{605}= -0.16192977 \pm 1.6 \cdot 10^{-8} \) | \(a_{606}= -0.40551835 \pm 2.1 \cdot 10^{-8} \) |
\(a_{607}= +1.68903477 \pm 2.5 \cdot 10^{-8} \) | \(a_{608}= +0.18041238 \pm 2.0 \cdot 10^{-8} \) | \(a_{609}= -0.66525638 \pm 4.1 \cdot 10^{-8} \) |
\(a_{610}= +0.24938213 \pm 6.1 \cdot 10^{-8} \) | \(a_{611}= -1.69489194 \pm 1.1 \cdot 10^{-8} \) | \(a_{612}= +0.10498442 \pm 2.0 \cdot 10^{-8} \) |
\(a_{613}= +0.25515822 \pm 1.6 \cdot 10^{-8} \) | \(a_{614}= +0.07440808 \pm 2.3 \cdot 10^{-8} \) | \(a_{615}= -0.03480738 \pm 5.8 \cdot 10^{-8} \) |
\(a_{616}= -0.19566824 \pm 4.6 \cdot 10^{-8} \) | \(a_{617}= -1.58032511 \pm 2.1 \cdot 10^{-8} \) | \(a_{618}= -0.39186604 \pm 2.2 \cdot 10^{-8} \) |
\(a_{619}= -1.16860384 \pm 2.7 \cdot 10^{-8} \) | \(a_{620}= -0.16940372 \pm 4.7 \cdot 10^{-8} \) | \(a_{621}= -0.36609437 \pm 2.2 \cdot 10^{-8} \) |
\(a_{622}= -0.42781929 \pm 1.7 \cdot 10^{-8} \) | \(a_{623}= -0.30035196 \pm 1.4 \cdot 10^{-8} \) | \(a_{624}= +0.17592383 \pm 3.2 \cdot 10^{-8} \) |
\(a_{625}= +0.81116723 \pm 2.5 \cdot 10^{-8} \) | \(a_{626}= +0.11344481 \pm 2.7 \cdot 10^{-8} \) | \(a_{627}= +0.35428391 \pm 4.4 \cdot 10^{-8} \) |
\(a_{628}= +0.60180601 \pm 3.0 \cdot 10^{-8} \) | \(a_{629}= -0.05337087 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.05502283 \pm 4.8 \cdot 10^{-8} \) |
\(a_{631}= -1.54873566 \pm 1 \cdot 10^{-8} \) | \(a_{632}= +0.61562178 \pm 3.0 \cdot 10^{-8} \) | \(a_{633}= -0.22702785 \pm 3.3 \cdot 10^{-8} \) |
\(a_{634}= -0.06323376 \pm 2.2 \cdot 10^{-8} \) | \(a_{635}= +0.43659106 \pm 3.3 \cdot 10^{-8} \) | \(a_{636}= -0.07149966 \pm 2.3 \cdot 10^{-8} \) |
\(a_{637}= -0.18623043 \pm 1.7 \cdot 10^{-8} \) | \(a_{638}= +0.53224406 \pm 5.2 \cdot 10^{-8} \) | \(a_{639}= +0.38521093 \pm 4.2 \cdot 10^{-8} \) |
\(a_{640}= -0.02241711 \pm 3.6 \cdot 10^{-8} \) | \(a_{641}= -0.65299950 \pm 1.3 \cdot 10^{-8} \) | \(a_{642}= -0.35605603 \pm 2.7 \cdot 10^{-8} \) |
\(a_{643}= +1.29269948 \pm 1.3 \cdot 10^{-8} \) | \(a_{644}= +0.87546650 \pm 3.4 \cdot 10^{-8} \) | \(a_{645}= -0.22562930 \pm 7.2 \cdot 10^{-8} \) |
\(a_{646}= +0.45457171 \pm 3.0 \cdot 10^{-8} \) | \(a_{647}= +0.00484688 \pm 2.1 \cdot 10^{-8} \) | \(a_{648}= -0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= -0.55103294 \pm 1.5 \cdot 10^{-8} \) | \(a_{650}= +0.80641028 \pm 4.5 \cdot 10^{-8} \) | \(a_{651}= +0.70990844 \pm 3.3 \cdot 10^{-8} \) |
\(a_{652}= -0.14223524 \pm 3.3 \cdot 10^{-8} \) | \(a_{653}= +1.58279977 \pm 1.3 \cdot 10^{-8} \) | \(a_{654}= -0.06488623 \pm 4.0 \cdot 10^{-8} \) |
\(a_{655}= +0.21077486 \pm 1.3 \cdot 10^{-8} \) | \(a_{656}= -0.05942749 \pm 3.2 \cdot 10^{-8} \) | \(a_{657}= +0.07290095 \pm 2.1 \cdot 10^{-8} \) |
\(a_{658}= -0.90505780 \pm 3.4 \cdot 10^{-8} \) | \(a_{659}= -0.79150858 \pm 1 \cdot 10^{-8} \) | \(a_{660}= -0.04402149 \pm 6.0 \cdot 10^{-8} \) |
\(a_{661}= +0.47841818 \pm 1.3 \cdot 10^{-8} \) | \(a_{662}= -0.45840451 \pm 2.8 \cdot 10^{-8} \) | \(a_{663}= +0.44326226 \pm 4.2 \cdot 10^{-8} \) |
\(a_{664}= -0.39543132 \pm 3.0 \cdot 10^{-8} \) | \(a_{665}= +0.23824319 \pm 1 \cdot 10^{-8} \) | \(a_{666}= +0.01997064 \pm 4.3 \cdot 10^{-8} \) |
\(a_{667}= -2.38138718 \pm 1.2 \cdot 10^{-8} \) | \(a_{668}= -0.67527275 \pm 2.0 \cdot 10^{-8} \) | \(a_{669}= +0.19175026 \pm 2.0 \cdot 10^{-8} \) |
\(a_{670}= -0.03382177 \pm 6.2 \cdot 10^{-8} \) | \(a_{671}= +0.83611593 \pm 2.5 \cdot 10^{-8} \) | \(a_{672}= +0.09394182 \pm 2.2 \cdot 10^{-8} \) |
\(a_{673}= +0.88921630 \pm 1.1 \cdot 10^{-8} \) | \(a_{674}= +0.11213322 \pm 4.5 \cdot 10^{-8} \) | \(a_{675}= -0.18007104 \pm 2.3 \cdot 10^{-8} \) |
\(a_{676}= +0.24278068 \pm 1.7 \cdot 10^{-8} \) | \(a_{677}= +0.44819018 \pm 1.1 \cdot 10^{-8} \) | \(a_{678}= +0.41689614 \pm 2.3 \cdot 10^{-8} \) |
\(a_{679}= +0.52789897 \pm 1.3 \cdot 10^{-8} \) | \(a_{680}= -0.05648273 \pm 4.6 \cdot 10^{-8} \) | \(a_{681}= -0.50452573 \pm 2.3 \cdot 10^{-8} \) |
\(a_{682}= -0.56796832 \pm 4.5 \cdot 10^{-8} \) | \(a_{683}= -1.01861645 \pm 2.6 \cdot 10^{-8} \) | \(a_{684}= -0.17009442 \pm 2.0 \cdot 10^{-8} \) |
\(a_{685}= -0.05517060 \pm 2.7 \cdot 10^{-8} \) | \(a_{686}= -0.75029349 \pm 2.8 \cdot 10^{-8} \) | \(a_{687}= +0.64416204 \pm 4.5 \cdot 10^{-8} \) |
\(a_{688}= -0.38522242 \pm 4.6 \cdot 10^{-8} \) | \(a_{689}= -0.30188387 \pm 1.3 \cdot 10^{-8} \) | \(a_{690}= +0.19696265 \pm 4.8 \cdot 10^{-8} \) |
\(a_{691}= -0.47750522 \pm 3.3 \cdot 10^{-8} \) | \(a_{692}= -0.40066628 \pm 2.1 \cdot 10^{-8} \) | \(a_{693}= +0.18447779 \pm 4.6 \cdot 10^{-8} \) |
\(a_{694}= +0.19868417 \pm 2.6 \cdot 10^{-8} \) | \(a_{695}= +0.17335278 \pm 1.2 \cdot 10^{-8} \) | \(a_{696}= -0.25553445 \pm 2.8 \cdot 10^{-8} \) |
\(a_{697}= -0.14973504 \pm 1 \cdot 10^{-8} \) | \(a_{698}= +0.68462250 \pm 2.2 \cdot 10^{-8} \) | \(a_{699}= -0.11867823 \pm 2.0 \cdot 10^{-8} \) |
\(a_{700}= +0.43061619 \pm 3.5 \cdot 10^{-8} \) | \(a_{701}= -0.75682394 \pm 2.6 \cdot 10^{-8} \) | \(a_{702}= -0.16586258 \pm 3.2 \cdot 10^{-8} \) |
\(a_{703}= +0.08647081 \pm 1.4 \cdot 10^{-8} \) | \(a_{704}= -0.07515896 \pm 3.4 \cdot 10^{-8} \) | \(a_{705}= -0.20362011 \pm 4.8 \cdot 10^{-8} \) |
\(a_{706}= +1.03719792 \pm 2.1 \cdot 10^{-8} \) | \(a_{707}= -0.91428318 \pm 1 \cdot 10^{-8} \) | \(a_{708}= +0.26455514 \pm 1.9 \cdot 10^{-8} \) |
\(a_{709}= +1.14620356 \pm 2.1 \cdot 10^{-8} \) | \(a_{710}= -0.20724757 \pm 6.9 \cdot 10^{-8} \) | \(a_{711}= -0.58041378 \pm 3.0 \cdot 10^{-8} \) |
\(a_{712}= -0.11536946 \pm 3.9 \cdot 10^{-8} \) | \(a_{713}= +2.54122606 \pm 1 \cdot 10^{-8} \) | \(a_{714}= +0.23669826 \pm 3.2 \cdot 10^{-8} \) |
\(a_{715}= -0.18586629 \pm 2.7 \cdot 10^{-8} \) | \(a_{716}= -0.36153332 \pm 3.7 \cdot 10^{-8} \) | \(a_{717}= -0.89841688 \pm 3.0 \cdot 10^{-8} \) |
\(a_{718}= +0.21640200 \pm 3.7 \cdot 10^{-8} \) | \(a_{719}= +1.57696141 \pm 2.7 \cdot 10^{-8} \) | \(a_{720}= +0.02113505 \pm 3.6 \cdot 10^{-8} \) |
\(a_{721}= -0.88350265 \pm 1.0 \cdot 10^{-8} \) | \(a_{722}= -0.02938454 \pm 2.8 \cdot 10^{-8} \) | \(a_{723}= -0.28829359 \pm 4.8 \cdot 10^{-8} \) |
\(a_{724}= +0.83933952 \pm 3.2 \cdot 10^{-8} \) | \(a_{725}= -1.17133424 \pm 1.5 \cdot 10^{-8} \) | \(a_{726}= +0.26065526 \pm 2.6 \cdot 10^{-8} \) |
\(a_{727}= +1.43092894 \pm 3.2 \cdot 10^{-8} \) | \(a_{728}= +0.39663853 \pm 4.4 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.03922149 \pm 4.7 \cdot 10^{-8} \) | \(a_{731}= -0.97061641 \pm 1.0 \cdot 10^{-8} \) | \(a_{732}= -0.40142566 \pm 3.5 \cdot 10^{-8} \) |
\(a_{733}= +1.03748195 \pm 1.8 \cdot 10^{-8} \) | \(a_{734}= -0.64363016 \pm 4.3 \cdot 10^{-8} \) | \(a_{735}= -0.02237326 \pm 5.3 \cdot 10^{-8} \) |
\(a_{736}= +0.33627915 \pm 2.2 \cdot 10^{-8} \) | \(a_{737}= -0.11339595 \pm 2.7 \cdot 10^{-8} \) | \(a_{738}= +0.05602877 \pm 3.2 \cdot 10^{-8} \) |
\(a_{739}= -1.94262892 \pm 1 \cdot 10^{-8} \) | \(a_{740}= -0.01074442 \pm 7.0 \cdot 10^{-8} \) | \(a_{741}= -0.71816789 \pm 4.2 \cdot 10^{-8} \) |
\(a_{742}= -0.16120340 \pm 3.6 \cdot 10^{-8} \) | \(a_{743}= +0.91099142 \pm 1.9 \cdot 10^{-8} \) | \(a_{744}= +0.27268594 \pm 2.1 \cdot 10^{-8} \) |
\(a_{745}= -0.06420798 \pm 3.9 \cdot 10^{-8} \) | \(a_{746}= +0.87682218 \pm 3.5 \cdot 10^{-8} \) | \(a_{747}= +0.37281623 \pm 3.0 \cdot 10^{-8} \) |
\(a_{748}= -0.18937247 \pm 4.4 \cdot 10^{-8} \) | \(a_{749}= -0.80276526 \pm 1 \cdot 10^{-8} \) | \(a_{750}= +0.20042032 \pm 2.5 \cdot 10^{-8} \) |
\(a_{751}= -0.76108194 \pm 1.0 \cdot 10^{-8} \) | \(a_{752}= -0.34764559 \pm 2.2 \cdot 10^{-8} \) | \(a_{753}= +0.78343443 \pm 3.5 \cdot 10^{-8} \) |
\(a_{754}= -1.07891040 \pm 5.1 \cdot 10^{-8} \) | \(a_{755}= -0.32220864 \pm 1.8 \cdot 10^{-8} \) | \(a_{756}= -0.08856920 \pm 2.2 \cdot 10^{-8} \) |
\(a_{757}= -0.41614636 \pm 1.9 \cdot 10^{-8} \) | \(a_{758}= -0.88898577 \pm 4.6 \cdot 10^{-8} \) | \(a_{759}= +0.66036652 \pm 4.6 \cdot 10^{-8} \) |
\(a_{760}= +0.09151260 \pm 4.6 \cdot 10^{-8} \) | \(a_{761}= -0.81810379 \pm 3.3 \cdot 10^{-8} \) | \(a_{762}= -0.70277230 \pm 3.8 \cdot 10^{-8} \) |
\(a_{763}= -0.14629273 \pm 1.6 \cdot 10^{-8} \) | \(a_{764}= +0.33760165 \pm 2.9 \cdot 10^{-8} \) | \(a_{765}= +0.05325243 \pm 4.6 \cdot 10^{-8} \) |
\(a_{766}= -0.49733579 \pm 3.3 \cdot 10^{-8} \) | \(a_{767}= +1.11699728 \pm 1 \cdot 10^{-8} \) | \(a_{768}= +0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= +1.19830784 \pm 1.5 \cdot 10^{-8} \) | \(a_{770}= -0.09925101 \pm 7.2 \cdot 10^{-8} \) | \(a_{771}= +0.22233010 \pm 4.2 \cdot 10^{-8} \) |
\(a_{772}= -0.59475158 \pm 3.1 \cdot 10^{-8} \) | \(a_{773}= +0.16654542 \pm 3.4 \cdot 10^{-8} \) | \(a_{774}= +0.36319118 \pm 4.6 \cdot 10^{-8} \) |
\(a_{775}= +1.24995427 \pm 1 \cdot 10^{-8} \) | \(a_{776}= +0.20277351 \pm 3.4 \cdot 10^{-8} \) | \(a_{777}= +0.04502588 \pm 5.6 \cdot 10^{-8} \) |
\(a_{778}= +0.29396915 \pm 2.7 \cdot 10^{-8} \) | \(a_{779}= +0.24259881 \pm 1 \cdot 10^{-8} \) | \(a_{780}= +0.08923583 \pm 5.8 \cdot 10^{-8} \) |
\(a_{781}= -0.69484926 \pm 3.3 \cdot 10^{-8} \) | \(a_{782}= +0.84729768 \pm 3.2 \cdot 10^{-8} \) | \(a_{783}= +0.24092019 \pm 2.8 \cdot 10^{-8} \) |
\(a_{784}= -0.03819842 \pm 2.7 \cdot 10^{-8} \) | \(a_{785}= +0.30526084 \pm 2.2 \cdot 10^{-8} \) | \(a_{786}= -0.33928027 \pm 2.1 \cdot 10^{-8} \) |
\(a_{787}= +1.16513316 \pm 2.6 \cdot 10^{-8} \) | \(a_{788}= +0.62938792 \pm 2.2 \cdot 10^{-8} \) | \(a_{789}= +0.66175645 \pm 2.6 \cdot 10^{-8} \) |
\(a_{790}= +0.31226877 \pm 5.7 \cdot 10^{-8} \) | \(a_{791}= +0.93993560 \pm 1.0 \cdot 10^{-8} \) | \(a_{792}= +0.07086055 \pm 3.4 \cdot 10^{-8} \) |
\(a_{793}= -1.69488818 \pm 2.6 \cdot 10^{-8} \) | \(a_{794}= -0.68103894 \pm 2.1 \cdot 10^{-8} \) | \(a_{795}= -0.03626758 \pm 5.0 \cdot 10^{-8} \) |
\(a_{796}= -0.25199378 \pm 2.1 \cdot 10^{-8} \) | \(a_{797}= -1.07596655 \pm 1.4 \cdot 10^{-8} \) | \(a_{798}= -0.38349551 \pm 3.2 \cdot 10^{-8} \) |
\(a_{799}= -0.87593686 \pm 1 \cdot 10^{-8} \) | \(a_{800}= +0.16540581 \pm 2.3 \cdot 10^{-8} \) | \(a_{801}= +0.10877137 \pm 3.9 \cdot 10^{-8} \) |
\(a_{802}= +0.36139737 \pm 2.3 \cdot 10^{-8} \) | \(a_{803}= -0.13149984 \pm 1.0 \cdot 10^{-8} \) | \(a_{804}= +0.05444226 \pm 3.6 \cdot 10^{-8} \) |
\(a_{805}= +0.44407274 \pm 1.2 \cdot 10^{-8} \) | \(a_{806}= +1.15132695 \pm 4.3 \cdot 10^{-8} \) | \(a_{807}= -0.64128429 \pm 3.7 \cdot 10^{-8} \) |
\(a_{808}= -0.35118919 \pm 2.1 \cdot 10^{-8} \) | \(a_{809}= -1.28851286 \pm 3.2 \cdot 10^{-8} \) | \(a_{810}= -0.01992632 \pm 3.6 \cdot 10^{-8} \) |
\(a_{811}= -1.82112748 \pm 3.7 \cdot 10^{-8} \) | \(a_{812}= -0.57612893 \pm 4.1 \cdot 10^{-8} \) | \(a_{813}= -0.78474377 \pm 2.1 \cdot 10^{-8} \) |
\(a_{814}= -0.03602334 \pm 6.7 \cdot 10^{-8} \) | \(a_{815}= -0.07214758 \pm 2.9 \cdot 10^{-8} \) | \(a_{816}= +0.09091917 \pm 2.0 \cdot 10^{-8} \) |
\(a_{817}= +1.57258039 \pm 1.5 \cdot 10^{-8} \) | \(a_{818}= +0.73522421 \pm 2.4 \cdot 10^{-8} \) | \(a_{819}= -0.37395439 \pm 4.4 \cdot 10^{-8} \) |
\(a_{820}= -0.03014407 \pm 5.8 \cdot 10^{-8} \) | \(a_{821}= -0.24190922 \pm 1.2 \cdot 10^{-8} \) | \(a_{822}= +0.08880706 \pm 3.2 \cdot 10^{-8} \) |
\(a_{823}= +0.69793413 \pm 1.3 \cdot 10^{-8} \) | \(a_{824}= -0.33936595 \pm 2.2 \cdot 10^{-8} \) | \(a_{825}= +0.32481485 \pm 4.7 \cdot 10^{-8} \) |
\(a_{826}= +0.59646700 \pm 3.2 \cdot 10^{-8} \) | \(a_{827}= -0.68520008 \pm 3.1 \cdot 10^{-8} \) | \(a_{828}= -0.31704702 \pm 2.2 \cdot 10^{-8} \) |
\(a_{829}= +1.01905542 \pm 1.3 \cdot 10^{-8} \) | \(a_{830}= -0.20057908 \pm 5.7 \cdot 10^{-8} \) | \(a_{831}= +0.22512299 \pm 2.2 \cdot 10^{-8} \) |
\(a_{832}= +0.15235451 \pm 3.2 \cdot 10^{-8} \) | \(a_{833}= -0.09624572 \pm 1 \cdot 10^{-8} \) | \(a_{834}= -0.27904266 \pm 2.0 \cdot 10^{-8} \) |
\(a_{835}= -0.34252620 \pm 1.1 \cdot 10^{-8} \) | \(a_{836}= +0.30681887 \pm 4.4 \cdot 10^{-8} \) | \(a_{837}= -0.25709077 \pm 2.1 \cdot 10^{-8} \) |
\(a_{838}= +0.26259882 \pm 2.0 \cdot 10^{-8} \) | \(a_{839}= +0.26169327 \pm 2.2 \cdot 10^{-8} \) | \(a_{840}= +0.04765117 \pm 4.8 \cdot 10^{-8} \) |
\(a_{841}= +0.56714854 \pm 1.3 \cdot 10^{-8} \) | \(a_{842}= -0.74042454 \pm 2.6 \cdot 10^{-8} \) | \(a_{843}= -0.43691223 \pm 2.5 \cdot 10^{-8} \) |
\(a_{844}= -0.19661189 \pm 3.3 \cdot 10^{-8} \) | \(a_{845}= +0.12314838 \pm 1 \cdot 10^{-8} \) | \(a_{846}= +0.32776341 \pm 2.2 \cdot 10^{-8} \) |
\(a_{847}= +0.58767432 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.06192052 \pm 2.3 \cdot 10^{-8} \) | \(a_{849}= +0.46802084 \pm 2.2 \cdot 10^{-8} \) |
\(a_{850}= +0.41676078 \pm 3.3 \cdot 10^{-8} \) | \(a_{851}= +0.16117703 \pm 1.3 \cdot 10^{-8} \) | \(a_{852}= +0.33360245 \pm 4.2 \cdot 10^{-8} \) |
\(a_{853}= +0.13088199 \pm 1.2 \cdot 10^{-8} \) | \(a_{854}= -0.90505580 \pm 4.7 \cdot 10^{-8} \) | \(a_{855}= -0.08627891 \pm 4.6 \cdot 10^{-8} \) |
\(a_{856}= -0.30835357 \pm 2.7 \cdot 10^{-8} \) | \(a_{857}= +1.16499996 \pm 3.3 \cdot 10^{-8} \) | \(a_{858}= +0.29918541 \pm 5.6 \cdot 10^{-8} \) |
\(a_{859}= -0.69921236 \pm 2.0 \cdot 10^{-8} \) | \(a_{860}= -0.19540071 \pm 7.2 \cdot 10^{-8} \) | \(a_{861}= +0.12632268 \pm 4.4 \cdot 10^{-8} \) |
\(a_{862}= +0.56862766 \pm 3.4 \cdot 10^{-8} \) | \(a_{863}= +0.03677186 \pm 2.1 \cdot 10^{-8} \) | \(a_{864}= -0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= -0.20323447 \pm 1.4 \cdot 10^{-8} \) | \(a_{866}= -0.88950638 \pm 2.2 \cdot 10^{-8} \) | \(a_{867}= -0.34826796 \pm 3.0 \cdot 10^{-8} \) |
\(a_{868}= +0.61479874 \pm 3.3 \cdot 10^{-8} \) | \(a_{869}= +1.04695909 \pm 2.2 \cdot 10^{-8} \) | \(a_{870}= -0.12961762 \pm 5.5 \cdot 10^{-8} \) |
\(a_{871}= +0.22986460 \pm 2.6 \cdot 10^{-8} \) | \(a_{872}= -0.05619312 \pm 4.0 \cdot 10^{-8} \) | \(a_{873}= -0.19117670 \pm 3.4 \cdot 10^{-8} \) |
\(a_{874}= -1.37278096 \pm 3.2 \cdot 10^{-8} \) | \(a_{875}= +0.45186840 \pm 1 \cdot 10^{-8} \) | \(a_{876}= +0.06313408 \pm 2.1 \cdot 10^{-8} \) |
\(a_{877}= +0.22022385 \pm 1 \cdot 10^{-8} \) | \(a_{878}= +0.47313081 \pm 2.0 \cdot 10^{-8} \) | \(a_{879}= +0.80200213 \pm 4.4 \cdot 10^{-8} \) |
\(a_{880}= -0.03812373 \pm 6.0 \cdot 10^{-8} \) | \(a_{881}= -0.21563827 \pm 2.0 \cdot 10^{-8} \) | \(a_{882}= +0.03601381 \pm 2.7 \cdot 10^{-8} \) |
\(a_{883}= -1.51178365 \pm 3.3 \cdot 10^{-8} \) | \(a_{884}= +0.38387638 \pm 4.2 \cdot 10^{-8} \) | \(a_{885}= +0.13419328 \pm 4.6 \cdot 10^{-8} \) |
\(a_{886}= -1.17366125 \pm 1.9 \cdot 10^{-8} \) | \(a_{887}= -0.23214797 \pm 1.4 \cdot 10^{-8} \) | \(a_{888}= +0.01729508 \pm 4.3 \cdot 10^{-8} \) |
\(a_{889}= -1.58447304 \pm 1.4 \cdot 10^{-8} \) | \(a_{890}= -0.05852015 \pm 6.6 \cdot 10^{-8} \) | \(a_{891}= -0.06680796 \pm 3.4 \cdot 10^{-8} \) |
\(a_{892}= +0.16606060 \pm 2.0 \cdot 10^{-8} \) | \(a_{893}= +1.41918179 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +0.10335436 \pm 4.3 \cdot 10^{-8} \) |
\(a_{895}= -0.18338462 \pm 3.2 \cdot 10^{-8} \) | \(a_{896}= +0.08135600 \pm 2.2 \cdot 10^{-8} \) | \(a_{897}= -1.33862706 \pm 4.4 \cdot 10^{-8} \) |
\(a_{898}= +0.51824687 \pm 2.1 \cdot 10^{-8} \) | \(a_{899}= -1.67233566 \pm 1 \cdot 10^{-8} \) | \(a_{900}= -0.15594610 \pm 2.3 \cdot 10^{-8} \) |
\(a_{901}= -0.15601656 \pm 1 \cdot 10^{-8} \) | \(a_{902}= -0.10106554 \pm 5.6 \cdot 10^{-8} \) | \(a_{903}= +0.81885219 \pm 5.8 \cdot 10^{-8} \) |
\(a_{904}= +0.36104265 \pm 2.3 \cdot 10^{-8} \) | \(a_{905}= +0.42574764 \pm 2.8 \cdot 10^{-8} \) | \(a_{906}= +0.51865310 \pm 2.4 \cdot 10^{-8} \) |
\(a_{907}= +0.24025903 \pm 2.1 \cdot 10^{-8} \) | \(a_{908}= -0.43693210 \pm 2.3 \cdot 10^{-8} \) | \(a_{909}= +0.33110434 \pm 2.1 \cdot 10^{-8} \) |
\(a_{910}= +0.20119143 \pm 7.1 \cdot 10^{-8} \) | \(a_{911}= -0.04573646 \pm 1.5 \cdot 10^{-8} \) | \(a_{912}= -0.14730609 \pm 2.0 \cdot 10^{-8} \) |
\(a_{913}= -0.67249150 \pm 2.3 \cdot 10^{-8} \) | \(a_{914}= +0.94611516 \pm 2.6 \cdot 10^{-8} \) | \(a_{915}= -0.20361966 \pm 6.1 \cdot 10^{-8} \) |
\(a_{916}= +0.55786069 \pm 4.5 \cdot 10^{-8} \) | \(a_{917}= -0.76494257 \pm 1 \cdot 10^{-8} \) | \(a_{918}= -0.08571942 \pm 2.0 \cdot 10^{-8} \) |
\(a_{919}= +1.32181125 \pm 2.5 \cdot 10^{-8} \) | \(a_{920}= +0.17057466 \pm 4.8 \cdot 10^{-8} \) | \(a_{921}= -0.06075394 \pm 2.3 \cdot 10^{-8} \) |
\(a_{922}= +0.13389968 \pm 2.1 \cdot 10^{-8} \) | \(a_{923}= +1.40852692 \pm 3.4 \cdot 10^{-8} \) | \(a_{924}= +0.15976245 \pm 4.6 \cdot 10^{-8} \) |
\(a_{925}= +0.07927824 \pm 1.5 \cdot 10^{-8} \) | \(a_{926}= +0.68965701 \pm 1.8 \cdot 10^{-8} \) | \(a_{927}= +0.31995728 \pm 2.2 \cdot 10^{-8} \) |
\(a_{928}= -0.22129933 \pm 2.8 \cdot 10^{-8} \) | \(a_{929}= -0.92664312 \pm 1.7 \cdot 10^{-8} \) | \(a_{930}= +0.13831756 \pm 4.7 \cdot 10^{-8} \) |
\(a_{931}= +0.15593610 \pm 1 \cdot 10^{-8} \) | \(a_{932}= -0.10277837 \pm 2.0 \cdot 10^{-8} \) | \(a_{933}= +0.34931298 \pm 1.7 \cdot 10^{-8} \) |
\(a_{934}= +0.19871143 \pm 3.9 \cdot 10^{-8} \) | \(a_{935}= -0.09605753 \pm 1.5 \cdot 10^{-8} \) | \(a_{936}= -0.14364121 \pm 3.2 \cdot 10^{-8} \) |
\(a_{937}= +0.83808400 \pm 3.7 \cdot 10^{-8} \) | \(a_{938}= +0.12274573 \pm 4.8 \cdot 10^{-8} \) | \(a_{939}= -0.09262730 \pm 2.7 \cdot 10^{-8} \) |
\(a_{940}= -0.17634019 \pm 4.8 \cdot 10^{-8} \) | \(a_{941}= -0.54300791 \pm 1.3 \cdot 10^{-8} \) | \(a_{942}= -0.49137255 \pm 3.0 \cdot 10^{-8} \) |
\(a_{943}= +0.45219138 \pm 1 \cdot 10^{-8} \) | \(a_{944}= +0.22911147 \pm 1.9 \cdot 10^{-8} \) | \(a_{945}= -0.04492595 \pm 4.8 \cdot 10^{-8} \) |
\(a_{946}= -0.65512970 \pm 7.0 \cdot 10^{-8} \) | \(a_{947}= -1.20021309 \pm 1.7 \cdot 10^{-8} \) | \(a_{948}= -0.50265308 \pm 3.0 \cdot 10^{-8} \) |
\(a_{949}= +0.26656294 \pm 1 \cdot 10^{-8} \) | \(a_{950}= -0.67523054 \pm 3.3 \cdot 10^{-8} \) | \(a_{951}= +0.05163015 \pm 2.2 \cdot 10^{-8} \) |
\(a_{952}= +0.20498670 \pm 3.2 \cdot 10^{-8} \) | \(a_{953}= -0.51243737 \pm 1.3 \cdot 10^{-8} \) | \(a_{954}= +0.05837923 \pm 2.3 \cdot 10^{-8} \) |
\(a_{955}= +0.17124549 \pm 2.2 \cdot 10^{-8} \) | \(a_{956}= -0.77805184 \pm 3.0 \cdot 10^{-8} \) | \(a_{957}= -0.43457546 \pm 5.2 \cdot 10^{-8} \) |
\(a_{958}= -0.26753176 \pm 2.5 \cdot 10^{-8} \) | \(a_{959}= +0.20022474 \pm 1.1 \cdot 10^{-8} \) | \(a_{960}= +0.01830349 \pm 3.6 \cdot 10^{-8} \) |
\(a_{961}= +0.78458294 \pm 1.8 \cdot 10^{-8} \) | \(a_{962}= +0.07302281 \pm 6.6 \cdot 10^{-8} \) | \(a_{963}= +0.29071853 \pm 2.7 \cdot 10^{-8} \) |
\(a_{964}= -0.24966957 \pm 4.8 \cdot 10^{-8} \) | \(a_{965}= -0.30168255 \pm 2.4 \cdot 10^{-8} \) | \(a_{966}= -0.71481540 \pm 3.4 \cdot 10^{-8} \) |
\(a_{967}= +0.45605207 \pm 1.4 \cdot 10^{-8} \) | \(a_{968}= +0.22573407 \pm 2.6 \cdot 10^{-8} \) | \(a_{969}= -0.37115625 \pm 3.0 \cdot 10^{-8} \) |
\(a_{970}= +0.10285509 \pm 6.0 \cdot 10^{-8} \) | \(a_{971}= -0.40205580 \pm 1.2 \cdot 10^{-8} \) | \(a_{972}= +0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -0.62913062 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +1.19397251 \pm 4.0 \cdot 10^{-8} \) | \(a_{975}= -0.65843124 \pm 4.5 \cdot 10^{-8} \) |
\(a_{976}= -0.34764482 \pm 3.5 \cdot 10^{-8} \) | \(a_{977}= -0.50027156 \pm 3.3 \cdot 10^{-8} \) | \(a_{978}= +0.11613459 \pm 3.3 \cdot 10^{-8} \) |
\(a_{979}= -0.19620344 \pm 3.0 \cdot 10^{-8} \) | \(a_{980}= -0.01937581 \pm 5.3 \cdot 10^{-8} \) | \(a_{981}= +0.05297938 \pm 4.0 \cdot 10^{-8} \) |
\(a_{982}= +0.02659952 \pm 4.1 \cdot 10^{-8} \) | \(a_{983}= +0.39512898 \pm 1 \cdot 10^{-8} \) | \(a_{984}= +0.04852234 \pm 3.2 \cdot 10^{-8} \) |
\(a_{985}= +0.31925152 \pm 1.5 \cdot 10^{-8} \) | \(a_{986}= -0.55759153 \pm 3.8 \cdot 10^{-8} \) | \(a_{987}= +0.73897660 \pm 3.4 \cdot 10^{-8} \) |
\(a_{988}= -0.62195164 \pm 4.2 \cdot 10^{-8} \) | \(a_{989}= +2.93120689 \pm 1.6 \cdot 10^{-8} \) | \(a_{990}= +0.03594339 \pm 6.0 \cdot 10^{-8} \) |
\(a_{991}= +0.59823230 \pm 2.2 \cdot 10^{-8} \) | \(a_{992}= +0.23615295 \pm 2.1 \cdot 10^{-8} \) | \(a_{993}= +0.37428572 \pm 2.8 \cdot 10^{-8} \) |
\(a_{994}= +0.75214133 \pm 5.4 \cdot 10^{-8} \) | \(a_{995}= -0.12782164 \pm 1.2 \cdot 10^{-8} \) | \(a_{996}= +0.32286832 \pm 3.0 \cdot 10^{-8} \) |
\(a_{997}= -1.42131973 \pm 1 \cdot 10^{-8} \) | \(a_{998}= -0.20448926 \pm 1.6 \cdot 10^{-8} \) | \(a_{999}= -0.01630596 \pm 4.3 \cdot 10^{-8} \) |
\(a_{1000}= +0.17356909 \pm 2.5 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000