Maass form invariants
Level: | \( 7 \) |
Weight: | \( 0 \) |
Character: | 7.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(10.6456998610881626671684696437 \pm 10 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.50376920 \pm 4.6 \cdot 10^{-7} \) | \(a_{3}= -1.80106382 \pm 3.0 \cdot 10^{-7} \) |
\(a_{4}= -0.74621660 \pm 2.7 \cdot 10^{-7} \) | \(a_{5}= +1.49735757 \pm 3.2 \cdot 10^{-7} \) | \(a_{6}= +0.90732047 \pm 3.6 \cdot 10^{-7} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.87969013 \pm 3.0 \cdot 10^{-7} \) | \(a_{9}= +2.24383089 \pm 2.9 \cdot 10^{-7} \) |
\(a_{10}= -0.75432262 \pm 3.3 \cdot 10^{-7} \) | \(a_{11}= -0.34690316 \pm 2.7 \cdot 10^{-7} \) | \(a_{12}= +1.34398372 \pm 2.4 \cdot 10^{-7} \) |
\(a_{13}= +0.18010998 \pm 3.3 \cdot 10^{-7} \) | \(a_{14}= +0.19040686 \pm 4.7 \cdot 10^{-7} \) | \(a_{15}= -2.69683655 \pm 2.5 \cdot 10^{-7} \) |
\(a_{16}= +0.30305581 \pm 3.8 \cdot 10^{-7} \) | \(a_{17}= +0.09654488 \pm 2.5 \cdot 10^{-7} \) | \(a_{18}= -1.13037288 \pm 2.7 \cdot 10^{-7} \) |
\(a_{19}= -0.38277255 \pm 3.2 \cdot 10^{-7} \) | \(a_{20}= -1.11735307 \pm 2.1 \cdot 10^{-7} \) | \(a_{21}= +0.68073814 \pm 3.1 \cdot 10^{-7} \) |
\(a_{22}= +0.17475913 \pm 2.7 \cdot 10^{-7} \) | \(a_{23}= -0.11414604 \pm 4.1 \cdot 10^{-7} \) | \(a_{24}= -1.58437807 \pm 2.0 \cdot 10^{-7} \) |
\(a_{25}= +1.24207970 \pm 3.1 \cdot 10^{-7} \) | \(a_{26}= -0.09073386 \pm 4.1 \cdot 10^{-7} \) | \(a_{27}= -2.24021881 \pm 3.3 \cdot 10^{-7} \) |
\(a_{28}= +0.28204336 \pm 2.8 \cdot 10^{-7} \) | \(a_{29}= +0.26151215 \pm 3.0 \cdot 10^{-7} \) | \(a_{30}= +1.35858318 \pm 2.9 \cdot 10^{-7} \) |
\(a_{31}= +0.52560445 \pm 2.5 \cdot 10^{-7} \) | \(a_{32}= -1.03236031 \pm 4.0 \cdot 10^{-7} \) | \(a_{33}= +0.62479474 \pm 2.3 \cdot 10^{-7} \) |
\(a_{34}= -0.04863634 \pm 2.9 \cdot 10^{-7} \) | \(a_{35}= -0.56594797 \pm 3.3 \cdot 10^{-7} \) | \(a_{36}= -1.67438385 \pm 1.6 \cdot 10^{-7} \) |
\(a_{37}= +1.40023940 \pm 3.1 \cdot 10^{-7} \) | \(a_{38}= +0.19282902 \pm 3.2 \cdot 10^{-7} \) | \(a_{39}= -0.32438958 \pm 2.5 \cdot 10^{-7} \) |
\(a_{40}= +1.31721068 \pm 3.1 \cdot 10^{-7} \) | \(a_{41}= -1.71375614 \pm 4.0 \cdot 10^{-7} \) | \(a_{42}= -0.34293490 \pm 7.8 \cdot 10^{-7} \) |
\(a_{43}= -0.81463946 \pm 2.4 \cdot 10^{-7} \) | \(a_{44}= +0.25886490 \pm 2.0 \cdot 10^{-7} \) | \(a_{45}= +3.35981718 \pm 2.6 \cdot 10^{-7} \) |
\(a_{46}= +0.05750326 \pm 4.9 \cdot 10^{-7} \) | \(a_{47}= -0.74773270 \pm 3.7 \cdot 10^{-7} \) | \(a_{48}= -0.54582285 \pm 2.9 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.62572149 \pm 3.7 \cdot 10^{-7} \) | \(a_{51}= -0.17388349 \pm 1.8 \cdot 10^{-7} \) |
\(a_{52}= -0.13440106 \pm 2.2 \cdot 10^{-7} \) | \(a_{53}= -1.51277851 \pm 2.5 \cdot 10^{-7} \) | \(a_{54}= +1.12855323 \pm 4.2 \cdot 10^{-7} \) |
\(a_{55}= -0.51943808 \pm 2.7 \cdot 10^{-7} \) | \(a_{56}= -0.33249162 \pm 3.1 \cdot 10^{-7} \) | \(a_{57}= +0.68939780 \pm 1.6 \cdot 10^{-7} \) |
\(a_{58}= -0.13174177 \pm 3.1 \cdot 10^{-7} \) | \(a_{59}= +0.97360644 \pm 5.0 \cdot 10^{-7} \) | \(a_{60}= +2.01242420 \pm 2.0 \cdot 10^{-7} \) |
\(a_{61}= -0.62719943 \pm 3.5 \cdot 10^{-7} \) | \(a_{62}= -0.26478333 \pm 3.2 \cdot 10^{-7} \) | \(a_{63}= -0.84808836 \pm 3.0 \cdot 10^{-7} \) |
\(a_{64}= +0.21701552 \pm 3.2 \cdot 10^{-7} \) | \(a_{65}= +0.26968905 \pm 2.6 \cdot 10^{-7} \) | \(a_{66}= -0.31475234 \pm 2.0 \cdot 10^{-7} \) |
\(a_{67}= -1.87544619 \pm 4.5 \cdot 10^{-7} \) | \(a_{68}= -0.07204339 \pm 1.8 \cdot 10^{-7} \) | \(a_{69}= +0.20558430 \pm 3.0 \cdot 10^{-7} \) |
\(a_{70}= +0.28510715 \pm 8.0 \cdot 10^{-7} \) | \(a_{71}= +0.54751017 \pm 2.6 \cdot 10^{-7} \) | \(a_{72}= +1.97387589 \pm 2.8 \cdot 10^{-7} \) |
\(a_{73}= -0.18101354 \pm 4.3 \cdot 10^{-7} \) | \(a_{74}= -0.70539748 \pm 2.8 \cdot 10^{-7} \) | \(a_{75}= -2.23706482 \pm 2.7 \cdot 10^{-7} \) |
\(a_{76}= +0.28563123 \pm 1.7 \cdot 10^{-7} \) | \(a_{77}= +0.13111707 \pm 2.9 \cdot 10^{-7} \) | \(a_{78}= +0.16341748 \pm 3.3 \cdot 10^{-7} \) |
\(a_{79}= -0.58355108 \pm 2.6 \cdot 10^{-7} \) | \(a_{80}= +0.45378291 \pm 2.5 \cdot 10^{-7} \) | \(a_{81}= +1.79094617 \pm 3.0 \cdot 10^{-7} \) |
\(a_{82}= +0.86333755 \pm 4.9 \cdot 10^{-7} \) | \(a_{83}= +0.02874643 \pm 2.5 \cdot 10^{-7} \) | \(a_{84}= -0.50797810 \pm 5.9 \cdot 10^{-7} \) |
\(a_{85}= +0.14456221 \pm 2.1 \cdot 10^{-7} \) | \(a_{86}= +0.41039026 \pm 2.7 \cdot 10^{-7} \) | \(a_{87}= -0.47100008 \pm 1.6 \cdot 10^{-7} \) |
\(a_{88}= -0.30516729 \pm 2.8 \cdot 10^{-7} \) | \(a_{89}= -0.36382042 \pm 2.8 \cdot 10^{-7} \) | \(a_{90}= -1.69257240 \pm 2.3 \cdot 10^{-7} \) |
\(a_{91}= -0.06807518 \pm 3.4 \cdot 10^{-7} \) | \(a_{92}= +0.08517767 \pm 2.6 \cdot 10^{-7} \) | \(a_{93}= -0.94664717 \pm 2.3 \cdot 10^{-7} \) |
\(a_{94}= +0.37668470 \pm 3.8 \cdot 10^{-7} \) | \(a_{95}= -0.57314738 \pm 3.2 \cdot 10^{-7} \) | \(a_{96}= +1.85934681 \pm 3.5 \cdot 10^{-7} \) |
\(a_{97}= +1.64752202 \pm 5.6 \cdot 10^{-7} \) | \(a_{98}= -0.07196703 \pm 4.7 \cdot 10^{-7} \) | \(a_{99}= -0.77839204 \pm 2.7 \cdot 10^{-7} \) |
\(a_{100}= -0.92686049 \pm 2.2 \cdot 10^{-7} \) | \(a_{101}= +0.22986467 \pm 3.3 \cdot 10^{-7} \) | \(a_{102}= +0.08759715 \pm 2.3 \cdot 10^{-7} \) |
\(a_{103}= -0.35946620 \pm 4.4 \cdot 10^{-7} \) | \(a_{104}= +0.15844098 \pm 2.2 \cdot 10^{-7} \) | \(a_{105}= +1.01930841 \pm 6.4 \cdot 10^{-7} \) |
\(a_{106}= +0.76209121 \pm 2.7 \cdot 10^{-7} \) | \(a_{107}= -1.43888084 \pm 2.8 \cdot 10^{-7} \) | \(a_{108}= +1.67168846 \pm 2.6 \cdot 10^{-7} \) |
\(a_{109}= +0.43049565 \pm 5.7 \cdot 10^{-7} \) | \(a_{110}= +0.26167690 \pm 2.5 \cdot 10^{-7} \) | \(a_{111}= -2.52192052 \pm 2.9 \cdot 10^{-7} \) |
\(a_{112}= -0.11454433 \pm 4.0 \cdot 10^{-7} \) | \(a_{113}= +0.88446588 \pm 3.6 \cdot 10^{-7} \) | \(a_{114}= -0.34729737 \pm 1.8 \cdot 10^{-7} \) |
\(a_{115}= -0.17091744 \pm 2.5 \cdot 10^{-7} \) | \(a_{116}= -0.19514471 \pm 1.7 \cdot 10^{-7} \) | \(a_{117}= +0.40413635 \pm 2.3 \cdot 10^{-7} \) |
\(a_{118}= -0.49047293 \pm 6.5 \cdot 10^{-7} \) | \(a_{119}= -0.03649053 \pm 2.6 \cdot 10^{-7} \) | \(a_{120}= -2.37238050 \pm 2.1 \cdot 10^{-7} \) |
\(a_{121}= -0.87965819 \pm 2.9 \cdot 10^{-7} \) | \(a_{122}= +0.31596375 \pm 4.0 \cdot 10^{-7} \) | \(a_{123}= +3.08658418 \pm 2.8 \cdot 10^{-7} \) |
\(a_{124}= -0.39221477 \pm 2.1 \cdot 10^{-7} \) | \(a_{125}= +0.36247988 \pm 3.0 \cdot 10^{-7} \) | \(a_{126}= +0.42724079 \pm 7.6 \cdot 10^{-7} \) |
\(a_{127}= -1.20055227 \pm 3.9 \cdot 10^{-7} \) | \(a_{128}= +0.92303458 \pm 2.6 \cdot 10^{-7} \) | \(a_{129}= +1.46721765 \pm 2.0 \cdot 10^{-7} \) |
\(a_{130}= -0.13586104 \pm 3.1 \cdot 10^{-7} \) | \(a_{131}= +1.58995902 \pm 2.9 \cdot 10^{-7} \) | \(a_{132}= -0.46623220 \pm 1.7 \cdot 10^{-7} \) |
\(a_{133}= +0.14467443 \pm 3.3 \cdot 10^{-7} \) | \(a_{134}= +0.94479202 \pm 5.6 \cdot 10^{-7} \) | \(a_{135}= -3.35440861 \pm 2.1 \cdot 10^{-7} \) |
\(a_{136}= +0.08492958 \pm 2.0 \cdot 10^{-7} \) | \(a_{137}= -1.80749461 \pm 2.5 \cdot 10^{-7} \) | \(a_{138}= -0.10356704 \pm 3.5 \cdot 10^{-7} \) |
\(a_{139}= -0.09734398 \pm 2.4 \cdot 10^{-7} \) | \(a_{140}= +0.42231977 \pm 6.1 \cdot 10^{-7} \) | \(a_{141}= +1.34671432 \pm 2.4 \cdot 10^{-7} \) |
\(a_{142}= -0.27581876 \pm 3.2 \cdot 10^{-7} \) | \(a_{143}= -0.06248072 \pm 1.5 \cdot 10^{-7} \) | \(a_{144}= +0.68000598 \pm 2.2 \cdot 10^{-7} \) |
\(a_{145}= +0.39157720 \pm 2.9 \cdot 10^{-7} \) | \(a_{146}= +0.09118905 \pm 5.6 \cdot 10^{-7} \) | \(a_{147}= -0.25729483 \pm 3.1 \cdot 10^{-7} \) |
\(a_{148}= -1.04488188 \pm 1.8 \cdot 10^{-7} \) | \(a_{149}= -1.05130557 \pm 5.2 \cdot 10^{-7} \) | \(a_{150}= +1.12696434 \pm 3.2 \cdot 10^{-7} \) |
\(a_{151}= -0.47132986 \pm 3.6 \cdot 10^{-7} \) | \(a_{152}= -0.33672124 \pm 3.2 \cdot 10^{-7} \) | \(a_{153}= +0.21663038 \pm 2.0 \cdot 10^{-7} \) |
\(a_{154}= -0.06605274 \pm 7.5 \cdot 10^{-7} \) | \(a_{155}= +0.78701781 \pm 2.0 \cdot 10^{-7} \) | \(a_{156}= +0.24206489 \pm 2.0 \cdot 10^{-7} \) |
\(a_{157}= -1.21580296 \pm 4.3 \cdot 10^{-7} \) | \(a_{158}= +0.29397506 \pm 3.2 \cdot 10^{-7} \) | \(a_{159}= +2.72461064 \pm 2.2 \cdot 10^{-7} \) |
\(a_{160}= -1.54581253 \pm 2.6 \cdot 10^{-7} \) | \(a_{161}= +0.04314315 \pm 4.2 \cdot 10^{-7} \) | \(a_{162}= -0.90222351 \pm 3.4 \cdot 10^{-7} \) |
\(a_{163}= +0.48464018 \pm 3.5 \cdot 10^{-7} \) | \(a_{164}= +1.27883327 \pm 2.9 \cdot 10^{-7} \) | \(a_{165}= +0.93554114 \pm 1.9 \cdot 10^{-7} \) |
\(a_{166}= -0.01448156 \pm 2.5 \cdot 10^{-7} \) | \(a_{167}= -0.48189924 \pm 2.9 \cdot 10^{-7} \) | \(a_{168}= +0.59883862 \pm 6.2 \cdot 10^{-7} \) |
\(a_{169}= -0.96756039 \pm 2.7 \cdot 10^{-7} \) | \(a_{170}= -0.07282599 \pm 2.6 \cdot 10^{-7} \) | \(a_{171}= -0.85887688 \pm 2.7 \cdot 10^{-7} \) |
\(a_{172}= +0.60789748 \pm 1.5 \cdot 10^{-7} \) | \(a_{173}= -0.39954519 \pm 2.8 \cdot 10^{-7} \) | \(a_{174}= +0.23727533 \pm 2.0 \cdot 10^{-7} \) |
\(a_{175}= -0.46946200 \pm 3.2 \cdot 10^{-7} \) | \(a_{176}= -0.10513102 \pm 2.0 \cdot 10^{-7} \) | \(a_{177}= -1.75352733 \pm 4.1 \cdot 10^{-7} \) |
\(a_{178}= +0.18328152 \pm 2.9 \cdot 10^{-7} \) | \(a_{179}= +0.00986231 \pm 2.9 \cdot 10^{-7} \) | \(a_{180}= -2.50715134 \pm 1.3 \cdot 10^{-7} \) |
\(a_{181}= +0.52811755 \pm 4.8 \cdot 10^{-7} \) | \(a_{182}= +0.03429418 \pm 8.1 \cdot 10^{-7} \) | \(a_{183}= +1.12962621 \pm 2.3 \cdot 10^{-7} \) |
\(a_{184}= -0.10041314 \pm 2.8 \cdot 10^{-7} \) | \(a_{185}= +2.09665907 \pm 2.9 \cdot 10^{-7} \) | \(a_{186}= +0.47689168 \pm 3.0 \cdot 10^{-7} \) |
\(a_{187}= -0.03349172 \pm 1.4 \cdot 10^{-7} \) | \(a_{188}= +0.55797055 \pm 2.1 \cdot 10^{-7} \) | \(a_{189}= +0.84672312 \pm 3.4 \cdot 10^{-7} \) |
\(a_{190}= +0.28873400 \pm 2.8 \cdot 10^{-7} \) | \(a_{191}= +1.50192439 \pm 1.7 \cdot 10^{-7} \) | \(a_{192}= -0.39085879 \pm 2.1 \cdot 10^{-7} \) |
\(a_{193}= -1.86367035 \pm 4.5 \cdot 10^{-7} \) | \(a_{194}= -0.82997084 \pm 6.4 \cdot 10^{-7} \) | \(a_{195}= -0.48572719 \pm 2.3 \cdot 10^{-7} \) |
\(a_{196}= -0.10660237 \pm 2.8 \cdot 10^{-7} \) | \(a_{197}= -1.35756819 \pm 3.2 \cdot 10^{-7} \) | \(a_{198}= +0.39212993 \pm 2.3 \cdot 10^{-7} \) |
\(a_{199}= -0.44495941 \pm 5.6 \cdot 10^{-7} \) | \(a_{200}= +1.09264526 \pm 1.9 \cdot 10^{-7} \) | \(a_{201}= +3.37779828 \pm 3.5 \cdot 10^{-7} \) |
\(a_{202}= -0.11579874 \pm 4.1 \cdot 10^{-7} \) | \(a_{203}= -0.09884230 \pm 3.1 \cdot 10^{-7} \) | \(a_{204}= +0.12975475 \pm 1.7 \cdot 10^{-7} \) |
\(a_{205}= -2.56610573 \pm 2.9 \cdot 10^{-7} \) | \(a_{206}= +0.18108800 \pm 5.7 \cdot 10^{-7} \) | \(a_{207}= -0.25612441 \pm 2.9 \cdot 10^{-7} \) |
\(a_{208}= +0.05458338 \pm 3.6 \cdot 10^{-7} \) | \(a_{209}= +0.13278501 \pm 3.0 \cdot 10^{-7} \) | \(a_{210}= -0.51349618 \pm 1.1 \cdot 10^{-6} \) |
\(a_{211}= -0.39433563 \pm 2.3 \cdot 10^{-7} \) | \(a_{212}= +1.12886043 \pm 1.4 \cdot 10^{-7} \) | \(a_{213}= -0.98610076 \pm 2.0 \cdot 10^{-7} \) |
\(a_{214}= +0.72486384 \pm 2.9 \cdot 10^{-7} \) | \(a_{215}= -1.21980656 \pm 2.4 \cdot 10^{-7} \) | \(a_{216}= -1.97069838 \pm 1.8 \cdot 10^{-7} \) |
\(a_{217}= -0.19865981 \pm 2.6 \cdot 10^{-7} \) | \(a_{218}= -0.21687045 \pm 6.5 \cdot 10^{-7} \) | \(a_{219}= +0.32601695 \pm 3.6 \cdot 10^{-7} \) |
\(a_{220}= +0.38761332 \pm 1.9 \cdot 10^{-7} \) | \(a_{221}= +0.01738870 \pm 3.0 \cdot 10^{-7} \) | \(a_{222}= +1.27046587 \pm 2.4 \cdot 10^{-7} \) |
\(a_{223}= +0.98315784 \pm 3.5 \cdot 10^{-7} \) | \(a_{224}= +0.39019552 \pm 4.1 \cdot 10^{-7} \) | \(a_{225}= +2.78701681 \pm 1.5 \cdot 10^{-7} \) |
\(a_{226}= -0.44556667 \pm 4.4 \cdot 10^{-7} \) | \(a_{227}= -0.87557637 \pm 2.0 \cdot 10^{-7} \) | \(a_{228}= -0.51444008 \pm 1.1 \cdot 10^{-7} \) |
\(a_{229}= +0.94153564 \pm 3.5 \cdot 10^{-7} \) | \(a_{230}= +0.08610294 \pm 2.4 \cdot 10^{-7} \) | \(a_{231}= -0.23615021 \pm 5.9 \cdot 10^{-7} \) |
\(a_{232}= +0.23004966 \pm 2.7 \cdot 10^{-7} \) | \(a_{233}= -0.26762911 \pm 2.2 \cdot 10^{-7} \) | \(a_{234}= -0.20359144 \pm 2.4 \cdot 10^{-7} \) |
\(a_{235}= -1.11962323 \pm 3.6 \cdot 10^{-7} \) | \(a_{236}= -0.72652128 \pm 4.0 \cdot 10^{-7} \) | \(a_{237}= +1.05101273 \pm 2.6 \cdot 10^{-7} \) |
\(a_{238}= +0.01838281 \pm 7.2 \cdot 10^{-7} \) | \(a_{239}= -1.23285256 \pm 4.4 \cdot 10^{-7} \) | \(a_{240}= -0.81729198 \pm 2.1 \cdot 10^{-7} \) |
\(a_{241}= +1.78711087 \pm 3.2 \cdot 10^{-7} \) | \(a_{242}= +0.44314470 \pm 3.7 \cdot 10^{-7} \) | \(a_{243}= -0.98538954 \pm 2.8 \cdot 10^{-7} \) |
\(a_{244}= +0.46802663 \pm 2.1 \cdot 10^{-7} \) | \(a_{245}= +0.21390822 \pm 3.3 \cdot 10^{-7} \) | \(a_{246}= -1.55492603 \pm 3.6 \cdot 10^{-7} \) |
\(a_{247}= -0.06894116 \pm 1.7 \cdot 10^{-7} \) | \(a_{248}= +0.46236905 \pm 1.3 \cdot 10^{-7} \) | \(a_{249}= -0.05177415 \pm 2.1 \cdot 10^{-7} \) |
\(a_{250}= -0.18260620 \pm 3.0 \cdot 10^{-7} \) | \(a_{251}= +0.51723985 \pm 4.4 \cdot 10^{-7} \) | \(a_{252}= +0.63285761 \pm 5.7 \cdot 10^{-7} \) |
\(a_{253}= +0.03959762 \pm 2.3 \cdot 10^{-7} \) | \(a_{254}= +0.60480125 \pm 4.8 \cdot 10^{-7} \) | \(a_{255}= -0.26036576 \pm 1.9 \cdot 10^{-7} \) |
\(a_{256}= -0.68201190 \pm 4.2 \cdot 10^{-7} \) | \(a_{257}= -0.48964028 \pm 4.8 \cdot 10^{-7} \) | \(a_{258}= -0.73913906 \pm 2.4 \cdot 10^{-7} \) |
\(a_{259}= -0.52924075 \pm 3.2 \cdot 10^{-7} \) | \(a_{260}= -0.20124644 \pm 1.8 \cdot 10^{-7} \) | \(a_{261}= +0.58678905 \pm 2.5 \cdot 10^{-7} \) |
\(a_{262}= -0.80097238 \pm 3.1 \cdot 10^{-7} \) | \(a_{263}= +1.42800116 \pm 3.1 \cdot 10^{-7} \) | \(a_{264}= +0.54962577 \pm 2.1 \cdot 10^{-7} \) |
\(a_{265}= -2.26517036 \pm 1.9 \cdot 10^{-7} \) | \(a_{266}= -0.07288252 \pm 7.9 \cdot 10^{-7} \) | \(a_{267}= +0.65526380 \pm 2.5 \cdot 10^{-7} \) |
\(a_{268}= +1.39948907 \pm 3.6 \cdot 10^{-7} \) | \(a_{269}= +0.67926792 \pm 6.3 \cdot 10^{-7} \) | \(a_{270}= +1.68984773 \pm 2.2 \cdot 10^{-7} \) |
\(a_{271}= -1.21989368 \pm 4.4 \cdot 10^{-7} \) | \(a_{272}= +0.02925849 \pm 2.6 \cdot 10^{-7} \) | \(a_{273}= +0.12260774 \pm 6.5 \cdot 10^{-7} \) |
\(a_{274}= +0.91056010 \pm 2.6 \cdot 10^{-7} \) | \(a_{275}= -0.43088138 \pm 1.6 \cdot 10^{-7} \) | \(a_{276}= -0.15341042 \pm 2.2 \cdot 10^{-7} \) |
\(a_{277}= +0.90833657 \pm 2.6 \cdot 10^{-7} \) | \(a_{278}= +0.04903890 \pm 2.6 \cdot 10^{-7} \) | \(a_{279}= +1.17936751 \pm 1.4 \cdot 10^{-7} \) |
\(a_{280}= -0.49785884 \pm 6.4 \cdot 10^{-7} \) | \(a_{281}= -0.10263688 \pm 4.8 \cdot 10^{-7} \) | \(a_{282}= -0.67843319 \pm 2.7 \cdot 10^{-7} \) |
\(a_{283}= -0.90102127 \pm 3.8 \cdot 10^{-7} \) | \(a_{284}= -0.40856118 \pm 2.2 \cdot 10^{-7} \) | \(a_{285}= +1.03227502 \pm 1.1 \cdot 10^{-7} \) |
\(a_{286}= +0.03147586 \pm 1.7 \cdot 10^{-7} \) | \(a_{287}= +0.64773894 \pm 4.1 \cdot 10^{-7} \) | \(a_{288}= -2.31644195 \pm 2.2 \cdot 10^{-7} \) |
\(a_{289}= -0.99067909 \pm 3.2 \cdot 10^{-7} \) | \(a_{290}= -0.19726453 \pm 2.6 \cdot 10^{-7} \) | \(a_{291}= -2.96729230 \pm 4.4 \cdot 10^{-7} \) |
\(a_{292}= +0.13507531 \pm 3.4 \cdot 10^{-7} \) | \(a_{293}= -1.19155771 \pm 4.6 \cdot 10^{-7} \) | \(a_{294}= +0.12961721 \pm 7.8 \cdot 10^{-7} \) |
\(a_{295}= +1.45783698 \pm 2.1 \cdot 10^{-7} \) | \(a_{296}= +1.23177678 \pm 2.8 \cdot 10^{-7} \) | \(a_{297}= +0.77713900 \pm 1.9 \cdot 10^{-7} \) |
\(a_{298}= +0.52961536 \pm 6.9 \cdot 10^{-7} \) | \(a_{299}= -0.02055884 \pm 3.9 \cdot 10^{-7} \) | \(a_{300}= +1.66933490 \pm 2.0 \cdot 10^{-7} \) |
\(a_{301}= +0.30790477 \pm 2.5 \cdot 10^{-7} \) | \(a_{302}= +0.23744147 \pm 3.2 \cdot 10^{-7} \) | \(a_{303}= -0.41400093 \pm 2.9 \cdot 10^{-7} \) |
\(a_{304}= -0.11600145 \pm 2.4 \cdot 10^{-7} \) | \(a_{305}= -0.93914182 \pm 2.5 \cdot 10^{-7} \) | \(a_{306}= -0.10913171 \pm 2.1 \cdot 10^{-7} \) |
\(a_{307}= -0.59914705 \pm 3.8 \cdot 10^{-7} \) | \(a_{308}= -0.09784174 \pm 5.6 \cdot 10^{-7} \) | \(a_{309}= +0.64742157 \pm 3.6 \cdot 10^{-7} \) |
\(a_{310}= -0.39647533 \pm 2.6 \cdot 10^{-7} \) | \(a_{311}= +1.42427531 \pm 2.8 \cdot 10^{-7} \) | \(a_{312}= -0.28536231 \pm 9.0 \cdot 10^{-8} \) |
\(a_{313}= +1.15554709 \pm 4.9 \cdot 10^{-7} \) | \(a_{314}= +0.61248408 \pm 4.3 \cdot 10^{-7} \) | \(a_{315}= -1.26989153 \pm 6.2 \cdot 10^{-7} \) |
\(a_{316}= +0.43545550 \pm 2.0 \cdot 10^{-7} \) | \(a_{317}= -0.11316327 \pm 2.9 \cdot 10^{-7} \) | \(a_{318}= -1.37257491 \pm 2.0 \cdot 10^{-7} \) |
\(a_{319}= -0.09071939 \pm 2.6 \cdot 10^{-7} \) | \(a_{320}= +0.32494983 \pm 3.2 \cdot 10^{-7} \) | \(a_{321}= +2.59151623 \pm 2.3 \cdot 10^{-7} \) |
\(a_{322}= -0.02173419 \pm 8.8 \cdot 10^{-7} \) | \(a_{323}= -0.03695473 \pm 8.7 \cdot 10^{-8} \) | \(a_{324}= -1.33643376 \pm 2.0 \cdot 10^{-7} \) |
\(a_{325}= +0.22371096 \pm 2.4 \cdot 10^{-7} \) | \(a_{326}= -0.24414679 \pm 4.5 \cdot 10^{-7} \) | \(a_{327}= -0.77535014 \pm 3.8 \cdot 10^{-7} \) |
\(a_{328}= -1.50757436 \pm 2.9 \cdot 10^{-7} \) | \(a_{329}= +0.28261640 \pm 3.8 \cdot 10^{-7} \) | \(a_{330}= -0.47129680 \pm 1.7 \cdot 10^{-7} \) |
\(a_{331}= +0.40754412 \pm 5.5 \cdot 10^{-7} \) | \(a_{332}= -0.02145106 \pm 1.2 \cdot 10^{-7} \) | \(a_{333}= +3.14190042 \pm 3.1 \cdot 10^{-7} \) |
\(a_{334}= +0.24276599 \pm 3.0 \cdot 10^{-7} \) | \(a_{335}= -2.80821356 \pm 3.5 \cdot 10^{-7} \) | \(a_{336}= +0.20630165 \pm 7.0 \cdot 10^{-7} \) |
\(a_{337}= +0.01374705 \pm 4.0 \cdot 10^{-7} \) | \(a_{338}= +0.48742712 \pm 2.8 \cdot 10^{-7} \) | \(a_{339}= -1.59297950 \pm 3.2 \cdot 10^{-7} \) |
\(a_{340}= -0.10787472 \pm 1.9 \cdot 10^{-7} \) | \(a_{341}= -0.18233385 \pm 1.4 \cdot 10^{-7} \) | \(a_{342}= +0.43267571 \pm 2.4 \cdot 10^{-7} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.71663029 \pm 1.9 \cdot 10^{-7} \) | \(a_{345}= +0.30783321 \pm 1.9 \cdot 10^{-7} \) |
\(a_{346}= +0.20127856 \pm 3.1 \cdot 10^{-7} \) | \(a_{347}= -1.08872308 \pm 2.3 \cdot 10^{-7} \) | \(a_{348}= +0.35146808 \pm 1.4 \cdot 10^{-7} \) |
\(a_{349}= +0.32510522 \pm 4.0 \cdot 10^{-7} \) | \(a_{350}= +0.23650049 \pm 7.8 \cdot 10^{-7} \) | \(a_{351}= -0.40348578 \pm 2.6 \cdot 10^{-7} \) |
\(a_{352}= +0.35812906 \pm 2.3 \cdot 10^{-7} \) | \(a_{353}= -0.75601080 \pm 4.6 \cdot 10^{-7} \) | \(a_{354}= +0.88337305 \pm 5.3 \cdot 10^{-7} \) |
\(a_{355}= +0.81981850 \pm 2.5 \cdot 10^{-7} \) | \(a_{356}= +0.27148884 \pm 1.8 \cdot 10^{-7} \) | \(a_{357}= +0.06572178 \pm 5.7 \cdot 10^{-7} \) |
\(a_{358}= -0.00496833 \pm 3.0 \cdot 10^{-7} \) | \(a_{359}= +0.89781235 \pm 3.0 \cdot 10^{-7} \) | \(a_{360}= +2.95559801 \pm 2.7 \cdot 10^{-7} \) |
\(a_{361}= -0.85348517 \pm 3.4 \cdot 10^{-7} \) | \(a_{362}= -0.26604935 \pm 6.1 \cdot 10^{-7} \) | \(a_{363}= +1.58432055 \pm 2.6 \cdot 10^{-7} \) |
\(a_{364}= +0.05079883 \pm 6.2 \cdot 10^{-7} \) | \(a_{365}= -0.27104200 \pm 2.5 \cdot 10^{-7} \) | \(a_{366}= -0.56907089 \pm 2.7 \cdot 10^{-7} \) |
\(a_{367}= -0.57440075 \pm 3.6 \cdot 10^{-7} \) | \(a_{368}= -0.03459262 \pm 4.3 \cdot 10^{-7} \) | \(a_{369}= -3.84537896 \pm 2.6 \cdot 10^{-7} \) |
\(a_{370}= -1.05623225 \pm 2.3 \cdot 10^{-7} \) | \(a_{371}= +0.57177653 \pm 2.6 \cdot 10^{-7} \) | \(a_{372}= +0.70640383 \pm 2.0 \cdot 10^{-7} \) |
\(a_{373}= +0.79123708 \pm 4.8 \cdot 10^{-7} \) | \(a_{374}= +0.01687210 \pm 1.7 \cdot 10^{-7} \) | \(a_{375}= -0.65284940 \pm 2.3 \cdot 10^{-7} \) |
\(a_{376}= -0.65777308 \pm 3.2 \cdot 10^{-7} \) | \(a_{377}= +0.04710095 \pm 2.1 \cdot 10^{-7} \) | \(a_{378}= -0.42655303 \pm 8.1 \cdot 10^{-7} \) |
\(a_{379}= +1.04640737 \pm 5.2 \cdot 10^{-7} \) | \(a_{380}= +0.42769209 \pm 1.4 \cdot 10^{-7} \) | \(a_{381}= +2.16227125 \pm 2.8 \cdot 10^{-7} \) |
\(a_{382}= -0.75662324 \pm 2.2 \cdot 10^{-7} \) | \(a_{383}= +1.76902570 \pm 2.0 \cdot 10^{-7} \) | \(a_{384}= -1.66244419 \pm 1.9 \cdot 10^{-7} \) |
\(a_{385}= +0.19632914 \pm 6.1 \cdot 10^{-7} \) | \(a_{386}= +0.93885971 \pm 4.8 \cdot 10^{-7} \) | \(a_{387}= -1.82791317 \pm 2.0 \cdot 10^{-7} \) |
\(a_{388}= -1.22940827 \pm 3.7 \cdot 10^{-7} \) | \(a_{389}= +1.09033621 \pm 1.8 \cdot 10^{-7} \) | \(a_{390}= +0.24469440 \pm 3.1 \cdot 10^{-7} \) |
\(a_{391}= -0.01102022 \pm 3.0 \cdot 10^{-7} \) | \(a_{392}= +0.12567002 \pm 3.1 \cdot 10^{-7} \) | \(a_{393}= -2.86361767 \pm 2.5 \cdot 10^{-7} \) |
\(a_{394}= +0.68390103 \pm 3.0 \cdot 10^{-7} \) | \(a_{395}= -0.87378462 \pm 3.2 \cdot 10^{-7} \) | \(a_{396}= +0.58084906 \pm 1.8 \cdot 10^{-7} \) |
\(a_{397}= -0.48088113 \pm 3.3 \cdot 10^{-7} \) | \(a_{398}= +0.22415684 \pm 6.8 \cdot 10^{-7} \) | \(a_{399}= -0.26056788 \pm 6.4 \cdot 10^{-7} \) |
\(a_{400}= +0.37641947 \pm 3.1 \cdot 10^{-7} \) | \(a_{401}= -0.48131688 \pm 3.5 \cdot 10^{-7} \) | \(a_{402}= -1.70163072 \pm 4.5 \cdot 10^{-7} \) |
\(a_{403}= +0.09466661 \pm 2.2 \cdot 10^{-7} \) | \(a_{404}= -0.17152883 \pm 2.7 \cdot 10^{-7} \) | \(a_{405}= +2.68168681 \pm 3.1 \cdot 10^{-7} \) |
\(a_{406}= +0.04979371 \pm 7.8 \cdot 10^{-7} \) | \(a_{407}= -0.48574748 \pm 3.2 \cdot 10^{-7} \) | \(a_{408}= -0.15296359 \pm 1.1 \cdot 10^{-7} \) |
\(a_{409}= +1.32136766 \pm 3.3 \cdot 10^{-7} \) | \(a_{410}= +1.29272502 \pm 3.0 \cdot 10^{-7} \) | \(a_{411}= +3.25541314 \pm 1.9 \cdot 10^{-7} \) |
\(a_{412}= +0.26823965 \pm 3.6 \cdot 10^{-7} \) | \(a_{413}= -0.36798864 \pm 5.1 \cdot 10^{-7} \) | \(a_{414}= +0.12902759 \pm 2.9 \cdot 10^{-7} \) |
\(a_{415}= +0.04304368 \pm 2.8 \cdot 10^{-7} \) | \(a_{416}= -0.18593840 \pm 3.3 \cdot 10^{-7} \) | \(a_{417}= +0.17532273 \pm 2.8 \cdot 10^{-7} \) |
\(a_{418}= -0.06689300 \pm 2.8 \cdot 10^{-7} \) | \(a_{419}= -1.45178725 \pm 5.2 \cdot 10^{-7} \) | \(a_{420}= -0.76062485 \pm 9.2 \cdot 10^{-7} \) |
\(a_{421}= +0.83820930 \pm 3.8 \cdot 10^{-7} \) | \(a_{422}= +0.19865414 \pm 2.6 \cdot 10^{-7} \) | \(a_{423}= -1.67778574 \pm 2.7 \cdot 10^{-7} \) |
\(a_{424}= -1.33077632 \pm 2.1 \cdot 10^{-7} \) | \(a_{425}= +0.11991644 \pm 1.6 \cdot 10^{-7} \) | \(a_{426}= +0.49676719 \pm 2.7 \cdot 10^{-7} \) |
\(a_{427}= +0.23705910 \pm 3.6 \cdot 10^{-7} \) | \(a_{428}= +1.07371677 \pm 1.8 \cdot 10^{-7} \) | \(a_{429}= +0.11253177 \pm 9.3 \cdot 10^{-8} \) |
\(a_{430}= +0.61450097 \pm 2.8 \cdot 10^{-7} \) | \(a_{431}= -1.13030725 \pm 2.0 \cdot 10^{-7} \) | \(a_{432}= -0.67891132 \pm 3.6 \cdot 10^{-7} \) |
\(a_{433}= -1.84588891 \pm 3.1 \cdot 10^{-7} \) | \(a_{434}= +0.10007869 \pm 7.2 \cdot 10^{-7} \) | \(a_{435}= -0.70525554 \pm 1.2 \cdot 10^{-7} \) |
\(a_{436}= -0.32124300 \pm 3.7 \cdot 10^{-7} \) | \(a_{437}= +0.04369197 \pm 2.4 \cdot 10^{-7} \) | \(a_{438}= -0.16423729 \pm 4.7 \cdot 10^{-7} \) |
\(a_{439}= -0.18692024 \pm 5.6 \cdot 10^{-7} \) | \(a_{440}= -0.45694455 \pm 2.9 \cdot 10^{-7} \) | \(a_{441}= +0.32054727 \pm 3.0 \cdot 10^{-7} \) |
\(a_{442}= -0.00875989 \pm 3.4 \cdot 10^{-7} \) | \(a_{443}= +0.17695866 \pm 4.0 \cdot 10^{-7} \) | \(a_{444}= +1.88189895 \pm 1.9 \cdot 10^{-7} \) |
\(a_{445}= -0.54476927 \pm 3.3 \cdot 10^{-7} \) | \(a_{446}= -0.49528464 \pm 3.4 \cdot 10^{-7} \) | \(a_{447}= +1.89346843 \pm 4.3 \cdot 10^{-7} \) |
\(a_{448}= -0.08202415 \pm 3.3 \cdot 10^{-7} \) | \(a_{449}= +0.69720936 \pm 4.4 \cdot 10^{-7} \) | \(a_{450}= -1.40401321 \pm 1.6 \cdot 10^{-7} \) |
\(a_{451}= +0.59450743 \pm 2.5 \cdot 10^{-7} \) | \(a_{452}= -0.66000312 \pm 2.9 \cdot 10^{-7} \) | \(a_{453}= +0.84889517 \pm 2.2 \cdot 10^{-7} \) |
\(a_{454}= +0.44108840 \pm 2.4 \cdot 10^{-7} \) | \(a_{455}= -0.10193288 \pm 6.7 \cdot 10^{-7} \) | \(a_{456}= +0.60645644 \pm 1.2 \cdot 10^{-7} \) |
\(a_{457}= -0.63709241 \pm 4.3 \cdot 10^{-7} \) | \(a_{458}= -0.47431665 \pm 4.3 \cdot 10^{-7} \) | \(a_{459}= -0.21628166 \pm 1.7 \cdot 10^{-7} \) |
\(a_{460}= +0.12754143 \pm 1.2 \cdot 10^{-7} \) | \(a_{461}= +0.50843250 \pm 3.8 \cdot 10^{-7} \) | \(a_{462}= +0.11896520 \pm 1.0 \cdot 10^{-6} \) |
\(a_{463}= +0.12544829 \pm 3.1 \cdot 10^{-7} \) | \(a_{464}= +0.07925278 \pm 2.5 \cdot 10^{-7} \) | \(a_{465}= -1.41746931 \pm 2.2 \cdot 10^{-7} \) |
\(a_{466}= +0.13482330 \pm 2.9 \cdot 10^{-7} \) | \(a_{467}= -0.45604380 \pm 3.6 \cdot 10^{-7} \) | \(a_{468}= -0.30157325 \pm 9.6 \cdot 10^{-8} \) |
\(a_{469}= +0.70885203 \pm 4.6 \cdot 10^{-7} \) | \(a_{470}= +0.56403169 \pm 3.0 \cdot 10^{-7} \) | \(a_{471}= +2.18973873 \pm 2.2 \cdot 10^{-7} \) |
\(a_{472}= +0.85647198 \pm 2.1 \cdot 10^{-7} \) | \(a_{473}= +0.28260101 \pm 1.3 \cdot 10^{-7} \) | \(a_{474}= -0.52946784 \pm 3.4 \cdot 10^{-7} \) |
\(a_{475}= -0.47543402 \pm 1.6 \cdot 10^{-7} \) | \(a_{476}= +0.02722984 \pm 5.4 \cdot 10^{-7} \) | \(a_{477}= -3.39441914 \pm 2.4 \cdot 10^{-7} \) |
\(a_{478}= +0.62107314 \pm 5.3 \cdot 10^{-7} \) | \(a_{479}= -1.54265401 \pm 5.2 \cdot 10^{-7} \) | \(a_{480}= +2.78410702 \pm 2.7 \cdot 10^{-7} \) |
\(a_{481}= +0.25219710 \pm 1.5 \cdot 10^{-7} \) | \(a_{482}= -0.90029141 \pm 3.8 \cdot 10^{-7} \) | \(a_{483}= -0.07770356 \pm 7.3 \cdot 10^{-7} \) |
\(a_{484}= +0.65641554 \pm 2.3 \cdot 10^{-7} \) | \(a_{485}= +2.46692957 \pm 4.5 \cdot 10^{-7} \) | \(a_{486}= +0.49640889 \pm 3.1 \cdot 10^{-7} \) |
\(a_{487}= -0.26758551 \pm 4.1 \cdot 10^{-7} \) | \(a_{488}= -0.55174115 \pm 2.8 \cdot 10^{-7} \) | \(a_{489}= -0.87286789 \pm 3.5 \cdot 10^{-7} \) |
\(a_{490}= -0.10776037 \pm 8.0 \cdot 10^{-7} \) | \(a_{491}= -0.32467028 \pm 3.9 \cdot 10^{-7} \) | \(a_{492}= -2.30326034 \pm 2.2 \cdot 10^{-7} \) |
\(a_{493}= +0.02524766 \pm 1.7 \cdot 10^{-7} \) | \(a_{494}= +0.03473043 \pm 1.9 \cdot 10^{-7} \) | \(a_{495}= -1.16553121 \pm 2.5 \cdot 10^{-7} \) |
\(a_{496}= +0.15928748 \pm 2.6 \cdot 10^{-7} \) | \(a_{497}= -0.20693939 \pm 2.7 \cdot 10^{-7} \) | \(a_{498}= +0.02608222 \pm 2.1 \cdot 10^{-7} \) |
\(a_{499}= -1.52901146 \pm 2.8 \cdot 10^{-7} \) | \(a_{500}= -0.27048850 \pm 1.7 \cdot 10^{-7} \) | \(a_{501}= +0.86793129 \pm 1.6 \cdot 10^{-7} \) |
\(a_{502}= -0.26056951 \pm 4.7 \cdot 10^{-7} \) | \(a_{503}= +0.46533560 \pm 2.5 \cdot 10^{-7} \) | \(a_{504}= -0.74605496 \pm 6.0 \cdot 10^{-7} \) |
\(a_{505}= +0.34418960 \pm 2.4 \cdot 10^{-7} \) | \(a_{506}= -0.01994806 \pm 2.3 \cdot 10^{-7} \) | \(a_{507}= +1.74263802 \pm 2.1 \cdot 10^{-7} \) |
\(a_{508}= +0.89587203 \pm 3.0 \cdot 10^{-7} \) | \(a_{509}= +0.43926272 \pm 1.8 \cdot 10^{-7} \) | \(a_{510}= +0.13116425 \pm 2.5 \cdot 10^{-7} \) |
\(a_{511}= +0.06841669 \pm 4.4 \cdot 10^{-7} \) | \(a_{512}= -0.57945799 \pm 4.2 \cdot 10^{-7} \) | \(a_{513}= +0.85749428 \pm 2.2 \cdot 10^{-7} \) |
\(a_{514}= +0.24666569 \pm 5.3 \cdot 10^{-7} \) | \(a_{515}= -0.53824944 \pm 2.5 \cdot 10^{-7} \) | \(a_{516}= -1.09486216 \pm 1.7 \cdot 10^{-7} \) |
\(a_{517}= +0.25939084 \pm 2.9 \cdot 10^{-7} \) | \(a_{518}= +0.26661519 \pm 7.8 \cdot 10^{-7} \) | \(a_{519}= +0.71960638 \pm 3.0 \cdot 10^{-7} \) |
\(a_{520}= +0.23724280 \pm 1.8 \cdot 10^{-7} \) | \(a_{521}= +0.83947623 \pm 3.9 \cdot 10^{-7} \) | \(a_{522}= -0.29560625 \pm 2.2 \cdot 10^{-7} \) |
\(a_{523}= +0.72089415 \pm 3.7 \cdot 10^{-7} \) | \(a_{524}= -1.18645381 \pm 2.1 \cdot 10^{-7} \) | \(a_{525}= +0.84553103 \pm 6.2 \cdot 10^{-7} \) |
\(a_{526}= -0.71938299 \pm 3.7 \cdot 10^{-7} \) | \(a_{527}= +0.05074442 \pm 1.7 \cdot 10^{-7} \) | \(a_{528}= +0.18934767 \pm 1.1 \cdot 10^{-7} \) |
\(a_{529}= -0.98697068 \pm 2.7 \cdot 10^{-7} \) | \(a_{530}= +1.14112305 \pm 1.7 \cdot 10^{-7} \) | \(a_{531}= +2.18460820 \pm 2.4 \cdot 10^{-7} \) |
\(a_{532}= -0.10795846 \pm 6.1 \cdot 10^{-7} \) | \(a_{533}= -0.30866459 \pm 3.3 \cdot 10^{-7} \) | \(a_{534}= -0.33010172 \pm 2.5 \cdot 10^{-7} \) |
\(a_{535}= -2.15451913 \pm 3.2 \cdot 10^{-7} \) | \(a_{536}= -1.64981150 \pm 3.2 \cdot 10^{-7} \) | \(a_{537}= -0.01776264 \pm 2.8 \cdot 10^{-7} \) |
\(a_{538}= -0.34219425 \pm 7.9 \cdot 10^{-7} \) | \(a_{539}= -0.04955759 \pm 2.9 \cdot 10^{-7} \) | \(a_{540}= +2.50311538 \pm 1.5 \cdot 10^{-7} \) |
\(a_{541}= +0.47899850 \pm 3.7 \cdot 10^{-7} \) | \(a_{542}= +0.61454486 \pm 3.9 \cdot 10^{-7} \) | \(a_{543}= -0.95117341 \pm 3.9 \cdot 10^{-7} \) |
\(a_{544}= -0.09966910 \pm 2.1 \cdot 10^{-7} \) | \(a_{545}= +0.64460592 \pm 4.9 \cdot 10^{-7} \) | \(a_{546}= -0.06176600 \pm 1.1 \cdot 10^{-6} \) |
\(a_{547}= -0.54503449 \pm 2.6 \cdot 10^{-7} \) | \(a_{548}= +1.34878248 \pm 1.4 \cdot 10^{-7} \) | \(a_{549}= -1.40732946 \pm 2.8 \cdot 10^{-7} \) |
\(a_{550}= +0.21706477 \pm 1.7 \cdot 10^{-7} \) | \(a_{551}= -0.10009968 \pm 3.4 \cdot 10^{-7} \) | \(a_{552}= +0.18085048 \pm 1.9 \cdot 10^{-7} \) |
\(a_{553}= +0.22056157 \pm 2.7 \cdot 10^{-7} \) | \(a_{554}= -0.45759198 \pm 2.8 \cdot 10^{-7} \) | \(a_{555}= -3.77621680 \pm 2.3 \cdot 10^{-7} \) |
\(a_{556}= +0.07263970 \pm 1.9 \cdot 10^{-7} \) | \(a_{557}= +0.70390923 \pm 4.0 \cdot 10^{-7} \) | \(a_{558}= -0.59412902 \pm 1.4 \cdot 10^{-7} \) |
\(a_{559}= -0.14672470 \pm 3.0 \cdot 10^{-7} \) | \(a_{560}= -0.17151382 \pm 7.2 \cdot 10^{-7} \) | \(a_{561}= +0.06032073 \pm 9.8 \cdot 10^{-8} \) |
\(a_{562}= +0.05170530 \pm 6.1 \cdot 10^{-7} \) | \(a_{563}= +1.18499078 \pm 5.7 \cdot 10^{-7} \) | \(a_{564}= -1.00494058 \pm 1.7 \cdot 10^{-7} \) |
\(a_{565}= +1.32436169 \pm 3.8 \cdot 10^{-7} \) | \(a_{566}= +0.45390676 \pm 3.6 \cdot 10^{-7} \) | \(a_{567}= -0.67691402 \pm 3.1 \cdot 10^{-7} \) |
\(a_{568}= +0.48163930 \pm 2.2 \cdot 10^{-7} \) | \(a_{569}= +0.58741116 \pm 2.7 \cdot 10^{-7} \) | \(a_{570}= -0.52002835 \pm 1.0 \cdot 10^{-7} \) |
\(a_{571}= +1.09332857 \pm 4.1 \cdot 10^{-7} \) | \(a_{572}= +0.04662415 \pm 1.0 \cdot 10^{-7} \) | \(a_{573}= -2.70506168 \pm 1.7 \cdot 10^{-7} \) |
\(a_{574}= -0.32631092 \pm 8.7 \cdot 10^{-7} \) | \(a_{575}= -0.14177848 \pm 3.4 \cdot 10^{-7} \) | \(a_{576}= +0.48694612 \pm 2.6 \cdot 10^{-7} \) |
\(a_{577}= -1.56023457 \pm 2.8 \cdot 10^{-7} \) | \(a_{578}= +0.49907361 \pm 3.5 \cdot 10^{-7} \) | \(a_{579}= +3.35658924 \pm 3.4 \cdot 10^{-7} \) |
\(a_{580}= -0.29220141 \pm 1.5 \cdot 10^{-7} \) | \(a_{581}= -0.01086513 \pm 2.6 \cdot 10^{-7} \) | \(a_{582}= +1.49483045 \pm 5.2 \cdot 10^{-7} \) |
\(a_{583}= +0.52478765 \pm 1.8 \cdot 10^{-7} \) | \(a_{584}= -0.15923583 \pm 2.1 \cdot 10^{-7} \) | \(a_{585}= +0.60513662 \pm 1.8 \cdot 10^{-7} \) |
\(a_{586}= +0.60027007 \pm 5.7 \cdot 10^{-7} \) | \(a_{587}= +0.54294282 \pm 3.5 \cdot 10^{-7} \) | \(a_{588}= +0.19199767 \pm 5.9 \cdot 10^{-7} \) |
\(a_{589}= -0.20118696 \pm 1.3 \cdot 10^{-7} \) | \(a_{590}= -0.73441336 \pm 2.6 \cdot 10^{-7} \) | \(a_{591}= +2.44506694 \pm 2.0 \cdot 10^{-7} \) |
\(a_{592}= +0.42435068 \pm 2.2 \cdot 10^{-7} \) | \(a_{593}= -1.25466563 \pm 5.3 \cdot 10^{-7} \) | \(a_{594}= -0.39149869 \pm 2.1 \cdot 10^{-7} \) |
\(a_{595}= -0.05463938 \pm 5.9 \cdot 10^{-7} \) | \(a_{596}= +0.78450167 \pm 4.2 \cdot 10^{-7} \) | \(a_{597}= +0.80140029 \pm 4.5 \cdot 10^{-7} \) |
\(a_{598}= +0.01035691 \pm 4.5 \cdot 10^{-7} \) | \(a_{599}= -0.72250056 \pm 4.8 \cdot 10^{-7} \) | \(a_{600}= -1.96792384 \pm 1.9 \cdot 10^{-7} \) |
\(a_{601}= -0.68628776 \pm 4.6 \cdot 10^{-7} \) | \(a_{602}= -0.15511294 \pm 7.1 \cdot 10^{-7} \) | \(a_{603}= -4.20818409 \pm 2.9 \cdot 10^{-7} \) |
\(a_{604}= +0.35171417 \pm 1.4 \cdot 10^{-7} \) | \(a_{605}= -1.31716286 \pm 1.9 \cdot 10^{-7} \) | \(a_{606}= +0.20856092 \pm 3.4 \cdot 10^{-7} \) |
\(a_{607}= -1.33030726 \pm 4.3 \cdot 10^{-7} \) | \(a_{608}= +0.39515919 \pm 2.5 \cdot 10^{-7} \) | \(a_{609}= +0.17802130 \pm 6.2 \cdot 10^{-7} \) |
\(a_{610}= +0.47311072 \pm 2.6 \cdot 10^{-7} \) | \(a_{611}= -0.13467413 \pm 2.4 \cdot 10^{-7} \) | \(a_{612}= -0.16165319 \pm 1.1 \cdot 10^{-7} \) |
\(a_{613}= -0.15879384 \pm 3.6 \cdot 10^{-7} \) | \(a_{614}= +0.30183183 \pm 4.1 \cdot 10^{-7} \) | \(a_{615}= +4.62172020 \pm 1.9 \cdot 10^{-7} \) |
\(a_{616}= +0.11534239 \pm 5.9 \cdot 10^{-7} \) | \(a_{617}= +0.57282359 \pm 2.8 \cdot 10^{-7} \) | \(a_{618}= -0.32615104 \pm 4.6 \cdot 10^{-7} \) |
\(a_{619}= +0.55346073 \pm 3.2 \cdot 10^{-7} \) | \(a_{620}= -0.58728575 \pm 1.9 \cdot 10^{-7} \) | \(a_{621}= +0.25571210 \pm 3.6 \cdot 10^{-7} \) |
\(a_{622}= -0.71750603 \pm 3.0 \cdot 10^{-7} \) | \(a_{623}= +0.13751119 \pm 2.9 \cdot 10^{-7} \) | \(a_{624}= -0.09830815 \pm 2.8 \cdot 10^{-7} \) |
\(a_{625}= -0.69931771 \pm 3.5 \cdot 10^{-7} \) | \(a_{626}= -0.58212903 \pm 6.1 \cdot 10^{-7} \) | \(a_{627}= -0.23915428 \pm 1.4 \cdot 10^{-7} \) |
\(a_{628}= +0.90725235 \pm 2.4 \cdot 10^{-7} \) | \(a_{629}= +0.13518594 \pm 1.2 \cdot 10^{-7} \) | \(a_{630}= +0.63973223 \pm 1.0 \cdot 10^{-6} \) |
\(a_{631}= -0.28821240 \pm 4.4 \cdot 10^{-7} \) | \(a_{632}= -0.51334412 \pm 1.8 \cdot 10^{-7} \) | \(a_{633}= +0.71022363 \pm 2.2 \cdot 10^{-7} \) |
\(a_{634}= +0.05700817 \pm 3.5 \cdot 10^{-7} \) | \(a_{635}= -1.79765603 \pm 3.0 \cdot 10^{-7} \) | \(a_{636}= -2.03314968 \pm 1.5 \cdot 10^{-7} \) |
\(a_{637}= +0.02573000 \pm 3.4 \cdot 10^{-7} \) | \(a_{638}= +0.04570164 \pm 2.4 \cdot 10^{-7} \) | \(a_{639}= +1.22852024 \pm 1.9 \cdot 10^{-7} \) |
\(a_{640}= +1.38211282 \pm 2.1 \cdot 10^{-7} \) | \(a_{641}= -1.09908240 \pm 4.5 \cdot 10^{-7} \) | \(a_{642}= -1.30552605 \pm 2.6 \cdot 10^{-7} \) |
\(a_{643}= -0.48362044 \pm 3.3 \cdot 10^{-7} \) | \(a_{644}= -0.03219413 \pm 6.9 \cdot 10^{-7} \) | \(a_{645}= +2.19694946 \pm 2.4 \cdot 10^{-7} \) |
\(a_{646}= +0.01861665 \pm 1.2 \cdot 10^{-7} \) | \(a_{647}= -0.32457005 \pm 4.0 \cdot 10^{-7} \) | \(a_{648}= +1.57547767 \pm 2.6 \cdot 10^{-7} \) |
\(a_{649}= -0.33774715 \pm 2.4 \cdot 10^{-7} \) | \(a_{650}= -0.11269869 \pm 3.1 \cdot 10^{-7} \) | \(a_{651}= +0.35779900 \pm 5.6 \cdot 10^{-7} \) |
\(a_{652}= -0.36164654 \pm 2.9 \cdot 10^{-7} \) | \(a_{653}= +1.04874158 \pm 5.8 \cdot 10^{-7} \) | \(a_{654}= +0.39059752 \pm 4.9 \cdot 10^{-7} \) |
\(a_{655}= +2.38073718 \pm 2.7 \cdot 10^{-7} \) | \(a_{656}= -0.51936375 \pm 4.2 \cdot 10^{-7} \) | \(a_{657}= -0.40616378 \pm 2.2 \cdot 10^{-7} \) |
\(a_{658}= -0.14237344 \pm 8.4 \cdot 10^{-7} \) | \(a_{659}= +0.72501905 \pm 4.4 \cdot 10^{-7} \) | \(a_{660}= -0.69811632 \pm 1.5 \cdot 10^{-7} \) |
\(a_{661}= +0.85599330 \pm 2.6 \cdot 10^{-7} \) | \(a_{662}= -0.20530818 \pm 7.0 \cdot 10^{-7} \) | \(a_{663}= -0.03131815 \pm 2.0 \cdot 10^{-7} \) |
\(a_{664}= +0.02528795 \pm 2.4 \cdot 10^{-7} \) | \(a_{665}= +0.21662935 \pm 6.6 \cdot 10^{-7} \) | \(a_{666}= -1.58279264 \pm 2.2 \cdot 10^{-7} \) |
\(a_{667}= -0.02985058 \pm 2.6 \cdot 10^{-7} \) | \(a_{668}= +0.35960121 \pm 1.8 \cdot 10^{-7} \) | \(a_{669}= -1.77073002 \pm 2.1 \cdot 10^{-7} \) |
\(a_{670}= +1.41469148 \pm 4.0 \cdot 10^{-7} \) | \(a_{671}= +0.21757747 \pm 1.9 \cdot 10^{-7} \) | \(a_{672}= -0.70276704 \pm 7.2 \cdot 10^{-7} \) |
\(a_{673}= -1.20319219 \pm 4.1 \cdot 10^{-7} \) | \(a_{674}= -0.00692534 \pm 4.7 \cdot 10^{-7} \) | \(a_{675}= -2.78253032 \pm 3.0 \cdot 10^{-7} \) |
\(a_{676}= +0.72200962 \pm 1.6 \cdot 10^{-7} \) | \(a_{677}= +0.75575528 \pm 4.9 \cdot 10^{-7} \) | \(a_{678}= +0.80249400 \pm 4.0 \cdot 10^{-7} \) |
\(a_{679}= -0.62270479 \pm 5.7 \cdot 10^{-7} \) | \(a_{680}= +0.12716995 \pm 1.7 \cdot 10^{-7} \) | \(a_{681}= +1.57696892 \pm 2.1 \cdot 10^{-7} \) |
\(a_{682}= +0.09185418 \pm 1.6 \cdot 10^{-7} \) | \(a_{683}= +0.48866169 \pm 4.2 \cdot 10^{-7} \) | \(a_{684}= +0.64090818 \pm 1.3 \cdot 10^{-7} \) |
\(a_{685}= -2.70646574 \pm 3.0 \cdot 10^{-7} \) | \(a_{686}= +0.02720098 \pm 4.7 \cdot 10^{-7} \) | \(a_{687}= -1.69576578 \pm 3.4 \cdot 10^{-7} \) |
\(a_{688}= -0.24688122 \pm 2.4 \cdot 10^{-7} \) | \(a_{689}= -0.27246651 \pm 2.5 \cdot 10^{-7} \) | \(a_{690}= -0.15507689 \pm 1.6 \cdot 10^{-7} \) |
\(a_{691}= -0.30294835 \pm 2.6 \cdot 10^{-7} \) | \(a_{692}= +0.29814725 \pm 1.8 \cdot 10^{-7} \) | \(a_{693}= +0.29420454 \pm 5.8 \cdot 10^{-7} \) |
\(a_{694}= +0.54846515 \pm 2.4 \cdot 10^{-7} \) | \(a_{695}= -0.14575875 \pm 2.0 \cdot 10^{-7} \) | \(a_{696}= -0.41433412 \pm 1.1 \cdot 10^{-7} \) |
\(a_{697}= -0.16545438 \pm 2.3 \cdot 10^{-7} \) | \(a_{698}= -0.16377800 \pm 4.5 \cdot 10^{-7} \) | \(a_{699}= +0.48201711 \pm 2.0 \cdot 10^{-7} \) |
\(a_{700}= +0.35032034 \pm 5.9 \cdot 10^{-7} \) | \(a_{701}= +1.55931411 \pm 2.3 \cdot 10^{-7} \) | \(a_{702}= +0.20326370 \pm 3.4 \cdot 10^{-7} \) |
\(a_{703}= -0.53597321 \pm 3.0 \cdot 10^{-7} \) | \(a_{704}= -0.07528337 \pm 2.6 \cdot 10^{-7} \) | \(a_{705}= +2.01651289 \pm 2.4 \cdot 10^{-7} \) |
\(a_{706}= +0.38085495 \pm 5.5 \cdot 10^{-7} \) | \(a_{707}= -0.08688068 \pm 3.4 \cdot 10^{-7} \) | \(a_{708}= +1.30851120 \pm 3.3 \cdot 10^{-7} \) |
\(a_{709}= -0.64489028 \pm 4.1 \cdot 10^{-7} \) | \(a_{710}= -0.41299931 \pm 2.9 \cdot 10^{-7} \) | \(a_{711}= -1.30938993 \pm 1.8 \cdot 10^{-7} \) |
\(a_{712}= -0.32004924 \pm 2.6 \cdot 10^{-7} \) | \(a_{713}= -0.05999567 \pm 2.3 \cdot 10^{-7} \) | \(a_{714}= -0.03310861 \pm 1.0 \cdot 10^{-6} \) |
\(a_{715}= -0.09355598 \pm 1.3 \cdot 10^{-7} \) | \(a_{716}= -0.00735942 \pm 2.0 \cdot 10^{-7} \) | \(a_{717}= +2.22044614 \pm 3.0 \cdot 10^{-7} \) |
\(a_{718}= -0.45229020 \pm 3.3 \cdot 10^{-7} \) | \(a_{719}= +0.83075162 \pm 2.6 \cdot 10^{-7} \) | \(a_{720}= +1.01821211 \pm 1.8 \cdot 10^{-7} \) |
\(a_{721}= +0.13586545 \pm 4.5 \cdot 10^{-7} \) | \(a_{722}= +0.42995954 \pm 3.8 \cdot 10^{-7} \) | \(a_{723}= -3.21870074 \pm 2.0 \cdot 10^{-7} \) |
\(a_{724}= -0.39409008 \pm 3.8 \cdot 10^{-7} \) | \(a_{725}= +0.32481894 \pm 1.7 \cdot 10^{-7} \) | \(a_{726}= -0.79813189 \pm 3.0 \cdot 10^{-7} \) |
\(a_{727}= +1.75638082 \pm 2.2 \cdot 10^{-7} \) | \(a_{728}= -0.05988506 \pm 6.5 \cdot 10^{-7} \) | \(a_{729}= -0.01619672 \pm 3.6 \cdot 10^{-7} \) |
\(a_{730}= +0.13654261 \pm 3.0 \cdot 10^{-7} \) | \(a_{731}= -0.07864927 \pm 2.6 \cdot 10^{-7} \) | \(a_{732}= -0.84294583 \pm 1.8 \cdot 10^{-7} \) |
\(a_{733}= -0.22927567 \pm 3.6 \cdot 10^{-7} \) | \(a_{734}= +0.28936541 \pm 4.2 \cdot 10^{-7} \) | \(a_{735}= -0.38526236 \pm 6.4 \cdot 10^{-7} \) |
\(a_{736}= +0.11783984 \pm 4.2 \cdot 10^{-7} \) | \(a_{737}= +0.65059822 \pm 3.0 \cdot 10^{-7} \) | \(a_{738}= +1.93718346 \pm 2.8 \cdot 10^{-7} \) |
\(a_{739}= +0.60178008 \pm 3.5 \cdot 10^{-7} \) | \(a_{740}= -1.56456180 \pm 1.3 \cdot 10^{-7} \) | \(a_{741}= +0.12416743 \pm 1.0 \cdot 10^{-7} \) |
\(a_{742}= -0.28804340 \pm 7.2 \cdot 10^{-7} \) | \(a_{743}= +0.49040653 \pm 4.6 \cdot 10^{-7} \) | \(a_{744}= -0.83275617 \pm 1.3 \cdot 10^{-7} \) |
\(a_{745}= -1.57418036 \pm 2.9 \cdot 10^{-7} \) | \(a_{746}= -0.39860087 \pm 6.1 \cdot 10^{-7} \) | \(a_{747}= +0.06450212 \pm 2.2 \cdot 10^{-7} \) |
\(a_{748}= +0.02499208 \pm 1.7 \cdot 10^{-7} \) | \(a_{749}= +0.54384584 \pm 2.9 \cdot 10^{-7} \) | \(a_{750}= +0.32888541 \pm 2.1 \cdot 10^{-7} \) |
\(a_{751}= +0.78004228 \pm 2.6 \cdot 10^{-7} \) | \(a_{752}= -0.22660474 \pm 3.2 \cdot 10^{-7} \) | \(a_{753}= -0.93158199 \pm 2.8 \cdot 10^{-7} \) |
\(a_{754}= -0.02372801 \pm 2.4 \cdot 10^{-7} \) | \(a_{755}= -0.70574934 \pm 3.6 \cdot 10^{-7} \) | \(a_{756}= -0.63183885 \pm 6.2 \cdot 10^{-7} \) |
\(a_{757}= -0.63077266 \pm 2.8 \cdot 10^{-7} \) | \(a_{758}= -0.52714780 \pm 6.0 \cdot 10^{-7} \) | \(a_{759}= -0.07131784 \pm 2.4 \cdot 10^{-7} \) |
\(a_{760}= -0.50419210 \pm 3.5 \cdot 10^{-7} \) | \(a_{761}= +1.39744822 \pm 3.8 \cdot 10^{-7} \) | \(a_{762}= -1.08928565 \pm 3.8 \cdot 10^{-7} \) |
\(a_{763}= -0.16271206 \pm 5.8 \cdot 10^{-7} \) | \(a_{764}= -1.12076091 \pm 1.9 \cdot 10^{-7} \) | \(a_{765}= +0.32437315 \pm 1.6 \cdot 10^{-7} \) |
\(a_{766}= -0.89118065 \pm 1.7 \cdot 10^{-7} \) | \(a_{767}= +0.17535624 \pm 4.0 \cdot 10^{-7} \) | \(a_{768}= +1.22834696 \pm 3.6 \cdot 10^{-7} \) |
\(a_{769}= -0.92616177 \pm 4.0 \cdot 10^{-7} \) | \(a_{770}= -0.09890457 \pm 1.0 \cdot 10^{-6} \) | \(a_{771}= +0.88187340 \pm 2.9 \cdot 10^{-7} \) |
\(a_{772}= +1.39070175 \pm 2.5 \cdot 10^{-7} \) | \(a_{773}= -0.22497804 \pm 4.4 \cdot 10^{-7} \) | \(a_{774}= +0.92084635 \pm 2.0 \cdot 10^{-7} \) |
\(a_{775}= +0.65284263 \pm 2.1 \cdot 10^{-7} \) | \(a_{776}= +1.44930886 \pm 4.0 \cdot 10^{-7} \) | \(a_{777}= +0.95319636 \pm 6.3 \cdot 10^{-7} \) |
\(a_{778}= -0.54927780 \pm 2.0 \cdot 10^{-7} \) | \(a_{779}= +0.65597881 \pm 3.3 \cdot 10^{-7} \) | \(a_{780}= +0.36245769 \pm 2.0 \cdot 10^{-7} \) |
\(a_{781}= -0.18993301 \pm 2.1 \cdot 10^{-7} \) | \(a_{782}= +0.00555165 \pm 3.3 \cdot 10^{-7} \) | \(a_{783}= -0.58584445 \pm 2.2 \cdot 10^{-7} \) |
\(a_{784}= +0.04329369 \pm 4.0 \cdot 10^{-7} \) | \(a_{785}= -1.82049177 \pm 4.2 \cdot 10^{-7} \) | \(a_{786}= +1.44260237 \pm 2.4 \cdot 10^{-7} \) |
\(a_{787}= +0.92261146 \pm 4.1 \cdot 10^{-7} \) | \(a_{788}= +1.01303991 \pm 1.7 \cdot 10^{-7} \) | \(a_{789}= -2.57192122 \pm 2.6 \cdot 10^{-7} \) |
\(a_{790}= +0.44018578 \pm 3.9 \cdot 10^{-7} \) | \(a_{791}= -0.33429668 \pm 3.7 \cdot 10^{-7} \) | \(a_{792}= -0.68474379 \pm 2.9 \cdot 10^{-7} \) |
\(a_{793}= -0.11296488 \pm 4.0 \cdot 10^{-7} \) | \(a_{794}= +0.24225310 \pm 3.5 \cdot 10^{-7} \) | \(a_{795}= +4.07971638 \pm 1.8 \cdot 10^{-7} \) |
\(a_{796}= +0.33203609 \pm 4.0 \cdot 10^{-7} \) | \(a_{797}= -0.19129076 \pm 3.7 \cdot 10^{-7} \) | \(a_{798}= +0.13126607 \pm 1.1 \cdot 10^{-6} \) |
\(a_{799}= -0.07218976 \pm 1.8 \cdot 10^{-7} \) | \(a_{800}= -1.28227379 \pm 3.5 \cdot 10^{-7} \) | \(a_{801}= -0.81635150 \pm 2.1 \cdot 10^{-7} \) |
\(a_{802}= +0.24247262 \pm 3.4 \cdot 10^{-7} \) | \(a_{803}= +0.06279417 \pm 2.2 \cdot 10^{-7} \) | \(a_{804}= -2.52056914 \pm 3.0 \cdot 10^{-7} \) |
\(a_{805}= +0.06460072 \pm 7.5 \cdot 10^{-7} \) | \(a_{806}= -0.04769012 \pm 3.0 \cdot 10^{-7} \) | \(a_{807}= -1.22340488 \pm 4.9 \cdot 10^{-7} \) |
\(a_{808}= +0.20220968 \pm 2.4 \cdot 10^{-7} \) | \(a_{809}= -1.62673001 \pm 3.5 \cdot 10^{-7} \) | \(a_{810}= -1.35095121 \pm 3.4 \cdot 10^{-7} \) |
\(a_{811}= +0.68365234 \pm 3.8 \cdot 10^{-7} \) | \(a_{812}= +0.07375777 \pm 5.9 \cdot 10^{-7} \) | \(a_{813}= +2.19710637 \pm 1.6 \cdot 10^{-7} \) |
\(a_{814}= +0.24470462 \pm 2.3 \cdot 10^{-7} \) | \(a_{815}= +0.72567964 \pm 2.7 \cdot 10^{-7} \) | \(a_{816}= -0.05269640 \pm 1.8 \cdot 10^{-7} \) |
\(a_{817}= +0.31182162 \pm 5.8 \cdot 10^{-8} \) | \(a_{818}= -0.66566432 \pm 3.2 \cdot 10^{-7} \) | \(a_{819}= -0.15274918 \pm 6.3 \cdot 10^{-7} \) |
\(a_{820}= +1.91487069 \pm 1.8 \cdot 10^{-7} \) | \(a_{821}= +1.75812054 \pm 2.7 \cdot 10^{-7} \) | \(a_{822}= -1.63997686 \pm 2.4 \cdot 10^{-7} \) |
\(a_{823}= -1.51852583 \pm 2.7 \cdot 10^{-7} \) | \(a_{824}= -0.31621887 \pm 2.2 \cdot 10^{-7} \) | \(a_{825}= +0.77604487 \pm 1.6 \cdot 10^{-7} \) |
\(a_{826}= +0.18538134 \pm 9.7 \cdot 10^{-7} \) | \(a_{827}= -0.72063419 \pm 3.3 \cdot 10^{-7} \) | \(a_{828}= +0.19112428 \pm 1.4 \cdot 10^{-7} \) |
\(a_{829}= +1.49706646 \pm 4.0 \cdot 10^{-7} \) | \(a_{830}= -0.02168408 \pm 2.8 \cdot 10^{-7} \) | \(a_{831}= -1.63597214 \pm 2.8 \cdot 10^{-7} \) |
\(a_{832}= +0.03908666 \pm 2.5 \cdot 10^{-7} \) | \(a_{833}= +0.01379213 \pm 2.6 \cdot 10^{-7} \) | \(a_{834}= -0.08832219 \pm 2.6 \cdot 10^{-7} \) |
\(a_{835}= -0.72157548 \pm 3.1 \cdot 10^{-7} \) | \(a_{836}= -0.09908638 \pm 1.8 \cdot 10^{-7} \) | \(a_{837}= -1.17746899 \pm 2.4 \cdot 10^{-7} \) |
\(a_{838}= +0.73136569 \pm 6.8 \cdot 10^{-7} \) | \(a_{839}= -0.16109038 \pm 3.4 \cdot 10^{-7} \) | \(a_{840}= +0.89667555 \pm 9.4 \cdot 10^{-7} \) |
\(a_{841}= -0.93161139 \pm 2.7 \cdot 10^{-7} \) | \(a_{842}= -0.42226403 \pm 4.6 \cdot 10^{-7} \) | \(a_{843}= +0.18485558 \pm 3.9 \cdot 10^{-7} \) |
\(a_{844}= +0.29425979 \pm 1.4 \cdot 10^{-7} \) | \(a_{845}= -1.44878388 \pm 2.8 \cdot 10^{-7} \) | \(a_{846}= +0.84521677 \pm 2.4 \cdot 10^{-7} \) |
\(a_{847}= +0.33247955 \pm 3.0 \cdot 10^{-7} \) | \(a_{848}= -0.45845631 \pm 2.4 \cdot 10^{-7} \) | \(a_{849}= +1.62279680 \pm 2.3 \cdot 10^{-7} \) |
\(a_{850}= -0.06041021 \pm 2.0 \cdot 10^{-7} \) | \(a_{851}= -0.15983178 \pm 2.8 \cdot 10^{-7} \) | \(a_{852}= +0.73584476 \pm 2.2 \cdot 10^{-7} \) |
\(a_{853}= +0.47406990 \pm 3.6 \cdot 10^{-7} \) | \(a_{854}= -0.11942307 \pm 8.3 \cdot 10^{-7} \) | \(a_{855}= -1.28604580 \pm 2.9 \cdot 10^{-7} \) |
\(a_{856}= -1.26576928 \pm 2.5 \cdot 10^{-7} \) | \(a_{857}= +0.11320811 \pm 2.0 \cdot 10^{-7} \) | \(a_{858}= -0.05669004 \pm 1.2 \cdot 10^{-7} \) |
\(a_{859}= -1.38391244 \pm 5.4 \cdot 10^{-7} \) | \(a_{860}= +0.91023990 \pm 1.7 \cdot 10^{-7} \) | \(a_{861}= -1.16661916 \pm 7.2 \cdot 10^{-7} \) |
\(a_{862}= +0.56941398 \pm 1.8 \cdot 10^{-7} \) | \(a_{863}= +0.36279060 \pm 3.8 \cdot 10^{-7} \) | \(a_{864}= +2.31271299 \pm 4.0 \cdot 10^{-7} \) |
\(a_{865}= -0.59826201 \pm 3.1 \cdot 10^{-7} \) | \(a_{866}= +0.92990197 \pm 3.2 \cdot 10^{-7} \) | \(a_{867}= +1.78427626 \pm 2.4 \cdot 10^{-7} \) |
\(a_{868}= +0.14824325 \pm 5.3 \cdot 10^{-7} \) | \(a_{869}= +0.20243571 \pm 1.6 \cdot 10^{-7} \) | \(a_{870}= +0.35528601 \pm 1.5 \cdot 10^{-7} \) |
\(a_{871}= -0.33778658 \pm 3.8 \cdot 10^{-7} \) | \(a_{872}= +0.37870277 \pm 4.5 \cdot 10^{-7} \) | \(a_{873}= +3.69676079 \pm 4.0 \cdot 10^{-7} \) |
\(a_{874}= -0.02201067 \pm 2.7 \cdot 10^{-7} \) | \(a_{875}= -0.13700452 \pm 3.1 \cdot 10^{-7} \) | \(a_{876}= -0.24327926 \pm 2.8 \cdot 10^{-7} \) |
\(a_{877}= -1.51774285 \pm 4.3 \cdot 10^{-7} \) | \(a_{878}= +0.09416466 \pm 6.3 \cdot 10^{-7} \) | \(a_{879}= +2.14607148 \pm 3.7 \cdot 10^{-7} \) |
\(a_{880}= -0.15741873 \pm 1.7 \cdot 10^{-7} \) | \(a_{881}= -1.07466275 \pm 4.8 \cdot 10^{-7} \) | \(a_{882}= -0.16148184 \pm 7.6 \cdot 10^{-7} \) |
\(a_{883}= -0.35132209 \pm 5.8 \cdot 10^{-7} \) | \(a_{884}= -0.01297573 \pm 1.6 \cdot 10^{-7} \) | \(a_{885}= -2.62565743 \pm 2.2 \cdot 10^{-7} \) |
\(a_{886}= -0.08914632 \pm 5.1 \cdot 10^{-7} \) | \(a_{887}= +0.52132889 \pm 5.6 \cdot 10^{-7} \) | \(a_{888}= -2.21850859 \pm 2.7 \cdot 10^{-7} \) |
\(a_{889}= +0.45376610 \pm 4.0 \cdot 10^{-7} \) | \(a_{890}= +0.27443797 \pm 3.0 \cdot 10^{-7} \) | \(a_{891}= -0.62128489 \pm 2.0 \cdot 10^{-7} \) |
\(a_{892}= -0.73364870 \pm 2.1 \cdot 10^{-7} \) | \(a_{893}= +0.28621156 \pm 3.8 \cdot 10^{-7} \) | \(a_{894}= -0.95387107 \pm 5.8 \cdot 10^{-7} \) |
\(a_{895}= +0.01476740 \pm 2.7 \cdot 10^{-7} \) | \(a_{896}= -0.34887428 \pm 2.7 \cdot 10^{-7} \) | \(a_{897}= +0.03702779 \pm 2.1 \cdot 10^{-7} \) |
\(a_{898}= -0.35123260 \pm 5.1 \cdot 10^{-7} \) | \(a_{899}= +0.13745195 \pm 1.6 \cdot 10^{-7} \) | \(a_{900}= -2.07971820 \pm 9.7 \cdot 10^{-8} \) |
\(a_{901}= -0.14605102 \pm 2.2 \cdot 10^{-7} \) | \(a_{902}= -0.29949453 \pm 2.9 \cdot 10^{-7} \) | \(a_{903}= -0.55455615 \pm 5.6 \cdot 10^{-7} \) |
\(a_{904}= +0.77805591 \pm 2.8 \cdot 10^{-7} \) | \(a_{905}= +0.79078081 \pm 2.7 \cdot 10^{-7} \) | \(a_{906}= -0.42764724 \pm 1.6 \cdot 10^{-7} \) |
\(a_{907}= +0.08848327 \pm 3.0 \cdot 10^{-7} \) | \(a_{908}= +0.65336962 \pm 1.8 \cdot 10^{-7} \) | \(a_{909}= +0.51577744 \pm 2.5 \cdot 10^{-7} \) |
\(a_{910}= +0.05135064 \pm 1.1 \cdot 10^{-6} \) | \(a_{911}= +0.82501655 \pm 3.0 \cdot 10^{-7} \) | \(a_{912}= +0.20892601 \pm 1.4 \cdot 10^{-7} \) |
\(a_{913}= -0.00997223 \pm 1.8 \cdot 10^{-7} \) | \(a_{914}= +0.32094753 \pm 4.0 \cdot 10^{-7} \) | \(a_{915}= +1.69145436 \pm 1.9 \cdot 10^{-7} \) |
\(a_{916}= -0.70258952 \pm 2.8 \cdot 10^{-7} \) | \(a_{917}= -0.60094802 \pm 3.0 \cdot 10^{-7} \) | \(a_{918}= +0.10895604 \pm 2.1 \cdot 10^{-7} \) |
\(a_{919}= +0.02687103 \pm 3.3 \cdot 10^{-7} \) | \(a_{920}= -0.15035438 \pm 2.5 \cdot 10^{-7} \) | \(a_{921}= +1.07910207 \pm 3.2 \cdot 10^{-7} \) |
\(a_{922}= -0.25613263 \pm 4.5 \cdot 10^{-7} \) | \(a_{923}= +0.09861205 \pm 1.9 \cdot 10^{-7} \) | \(a_{924}= +0.17621921 \pm 8.7 \cdot 10^{-7} \) |
\(a_{925}= +1.73920894 \pm 2.2 \cdot 10^{-7} \) | \(a_{926}= -0.06319698 \pm 3.7 \cdot 10^{-7} \) | \(a_{927}= -0.80658137 \pm 2.0 \cdot 10^{-7} \) |
\(a_{928}= -0.26997477 \pm 2.5 \cdot 10^{-7} \) | \(a_{929}= -1.25063254 \pm 3.6 \cdot 10^{-7} \) | \(a_{930}= +0.71407737 \pm 2.9 \cdot 10^{-7} \) |
\(a_{931}= -0.05468179 \pm 3.3 \cdot 10^{-7} \) | \(a_{932}= +0.19970928 \pm 2.3 \cdot 10^{-7} \) | \(a_{933}= -2.56521074 \pm 2.2 \cdot 10^{-7} \) |
\(a_{934}= +0.22974082 \pm 4.4 \cdot 10^{-7} \) | \(a_{935}= -0.05014909 \pm 1.3 \cdot 10^{-7} \) | \(a_{936}= +0.35551476 \pm 2.0 \cdot 10^{-7} \) |
\(a_{937}= +1.13503771 \pm 5.2 \cdot 10^{-7} \) | \(a_{938}= -0.35709782 \pm 9.3 \cdot 10^{-7} \) | \(a_{939}= -2.08121405 \pm 3.7 \cdot 10^{-7} \) |
\(a_{940}= +0.83548144 \pm 1.5 \cdot 10^{-7} \) | \(a_{941}= +1.00611007 \pm 3.7 \cdot 10^{-7} \) | \(a_{942}= -1.10312292 \pm 2.8 \cdot 10^{-7} \) |
\(a_{943}= +0.19561847 \pm 4.3 \cdot 10^{-7} \) | \(a_{944}= +0.29505709 \pm 5.6 \cdot 10^{-7} \) | \(a_{945}= +1.26784728 \pm 6.7 \cdot 10^{-7} \) |
\(a_{946}= -0.14236568 \pm 1.3 \cdot 10^{-7} \) | \(a_{947}= +1.44781107 \pm 4.2 \cdot 10^{-7} \) | \(a_{948}= -0.78428314 \pm 2.2 \cdot 10^{-7} \) |
\(a_{949}= -0.03260235 \pm 3.7 \cdot 10^{-7} \) | \(a_{950}= +0.23950901 \pm 2.0 \cdot 10^{-7} \) | \(a_{951}= +0.20381427 \pm 2.6 \cdot 10^{-7} \) |
\(a_{952}= -0.03210036 \pm 5.6 \cdot 10^{-7} \) | \(a_{953}= +0.55317297 \pm 3.3 \cdot 10^{-7} \) | \(a_{954}= +1.71000380 \pm 2.1 \cdot 10^{-7} \) |
\(a_{955}= +2.24891786 \pm 2.1 \cdot 10^{-7} \) | \(a_{956}= +0.91997504 \pm 2.8 \cdot 10^{-7} \) | \(a_{957}= +0.16339142 \pm 1.3 \cdot 10^{-7} \) |
\(a_{958}= +0.77714157 \pm 5.3 \cdot 10^{-7} \) | \(a_{959}= +0.68316875 \pm 2.6 \cdot 10^{-7} \) | \(a_{960}= -0.58525537 \pm 2.3 \cdot 10^{-7} \) |
\(a_{961}= -0.72373996 \pm 2.7 \cdot 10^{-7} \) | \(a_{962}= -0.12704913 \pm 1.8 \cdot 10^{-7} \) | \(a_{963}= -3.22860528 \pm 2.0 \cdot 10^{-7} \) |
\(a_{964}= -1.33357180 \pm 2.1 \cdot 10^{-7} \) | \(a_{965}= -2.79058091 \pm 3.9 \cdot 10^{-7} \) | \(a_{966}= +0.03914466 \pm 1.1 \cdot 10^{-6} \) |
\(a_{967}= -0.47671909 \pm 4.9 \cdot 10^{-7} \) | \(a_{968}= -0.77382663 \pm 1.9 \cdot 10^{-7} \) | \(a_{969}= +0.06655783 \pm 6.0 \cdot 10^{-8} \) |
\(a_{970}= -1.24276312 \pm 4.5 \cdot 10^{-7} \) | \(a_{971}= +1.94295956 \pm 3.6 \cdot 10^{-7} \) | \(a_{972}= +0.73531403 \pm 1.9 \cdot 10^{-7} \) |
\(a_{973}= +0.03679257 \pm 2.5 \cdot 10^{-7} \) | \(a_{974}= +0.13480133 \pm 4.3 \cdot 10^{-7} \) | \(a_{975}= -0.40291771 \pm 1.9 \cdot 10^{-7} \) |
\(a_{976}= -0.19007643 \pm 3.7 \cdot 10^{-7} \) | \(a_{977}= -0.50536222 \pm 5.3 \cdot 10^{-7} \) | \(a_{978}= +0.43972395 \pm 4.2 \cdot 10^{-7} \) |
\(a_{979}= +0.12621046 \pm 2.2 \cdot 10^{-7} \) | \(a_{980}= -0.15962187 \pm 6.1 \cdot 10^{-7} \) | \(a_{981}= +0.96595944 \pm 3.9 \cdot 10^{-7} \) |
\(a_{982}= +0.16355889 \pm 4.1 \cdot 10^{-7} \) | \(a_{983}= -0.63051842 \pm 3.1 \cdot 10^{-7} \) | \(a_{984}= +2.71523764 \pm 1.4 \cdot 10^{-7} \) |
\(a_{985}= -2.03276501 \pm 3.4 \cdot 10^{-7} \) | \(a_{986}= -0.01271899 \pm 1.8 \cdot 10^{-7} \) | \(a_{987}= -0.50901017 \pm 6.9 \cdot 10^{-7} \) |
\(a_{988}= +0.05144504 \pm 1.0 \cdot 10^{-7} \) | \(a_{989}= +0.09298787 \pm 2.8 \cdot 10^{-7} \) | \(a_{990}= +0.58715872 \pm 2.1 \cdot 10^{-7} \) |
\(a_{991}= -1.43364518 \pm 3.7 \cdot 10^{-7} \) | \(a_{992}= -0.54261318 \pm 2.9 \cdot 10^{-7} \) | \(a_{993}= -0.73401298 \pm 4.2 \cdot 10^{-7} \) |
\(a_{994}= +0.10424969 \pm 7.4 \cdot 10^{-7} \) | \(a_{995}= -0.66626334 \pm 3.4 \cdot 10^{-7} \) | \(a_{996}= +0.03863473 \pm 1.3 \cdot 10^{-7} \) |
\(a_{997}= +1.20126660 \pm 3.5 \cdot 10^{-7} \) | \(a_{998}= +0.77026887 \pm 3.0 \cdot 10^{-7} \) | \(a_{999}= -3.13684265 \pm 2.4 \cdot 10^{-7} \) |
\(a_{1000}= +0.31886997 \pm 2.8 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000