Maass form invariants
Level: | \( 7 \) |
Weight: | \( 0 \) |
Character: | 7.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.1285144686987331488390845984 \pm 3 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.60516468 \pm 2.0 \cdot 10^{-5} \) | \(a_{3}= -1.51743928 \pm 1.3 \cdot 10^{-5} \) |
\(a_{4}= +1.57655365 \pm 1.2 \cdot 10^{-5} \) | \(a_{5}= +0.84795194 \pm 1.4 \cdot 10^{-5} \) | \(a_{6}= -2.43573993 \pm 1.6 \cdot 10^{-5} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.92546356 \pm 1.3 \cdot 10^{-5} \) | \(a_{9}= +1.30262196 \pm 1.2 \cdot 10^{-5} \) |
\(a_{10}= +1.36110251 \pm 1.4 \cdot 10^{-5} \) | \(a_{11}= -1.21464606 \pm 1.2 \cdot 10^{-5} \) | \(a_{12}= -2.39232444 \pm 1.0 \cdot 10^{-5} \) |
\(a_{13}= +1.11569973 \pm 1.4 \cdot 10^{-5} \) | \(a_{14}= -0.60669522 \pm 2.0 \cdot 10^{-5} \) | \(a_{15}= -1.28671558 \pm 1.1 \cdot 10^{-5} \) |
\(a_{16}= -0.09103223 \pm 1.7 \cdot 10^{-5} \) | \(a_{17}= -0.80641098 \pm 1.1 \cdot 10^{-5} \) | \(a_{18}= +2.09092276 \pm 1.2 \cdot 10^{-5} \) |
\(a_{19}= -1.68071303 \pm 1.4 \cdot 10^{-5} \) | \(a_{20}= +1.33684173 \pm 9.4 \cdot 10^{-6} \) | \(a_{21}= +0.57353814 \pm 1.3 \cdot 10^{-5} \) |
\(a_{22}= -1.94970695 \pm 1.2 \cdot 10^{-5} \) | \(a_{23}= -1.25103328 \pm 1.8 \cdot 10^{-5} \) | \(a_{24}= -1.40433476 \pm 8.9 \cdot 10^{-6} \) |
\(a_{25}= -0.28097751 \pm 1.3 \cdot 10^{-5} \) | \(a_{26}= +1.79088180 \pm 1.8 \cdot 10^{-5} \) | \(a_{27}= -0.45921045 \pm 1.4 \cdot 10^{-5} \) |
\(a_{28}= -0.59588127 \pm 1.2 \cdot 10^{-5} \) | \(a_{29}= -0.42183022 \pm 1.3 \cdot 10^{-5} \) | \(a_{30}= -2.06539040 \pm 1.3 \cdot 10^{-5} \) |
\(a_{31}= -0.38287997 \pm 1.1 \cdot 10^{-5} \) | \(a_{32}= -1.07158528 \pm 1.7 \cdot 10^{-5} \) | \(a_{33}= +1.84315163 \pm 1.0 \cdot 10^{-5} \) |
\(a_{34}= -1.29442243 \pm 1.3 \cdot 10^{-5} \) | \(a_{35}= -0.32049571 \pm 1.4 \cdot 10^{-5} \) | \(a_{36}= +2.05365341 \pm 7.2 \cdot 10^{-6} \) |
\(a_{37}= +0.35961267 \pm 1.3 \cdot 10^{-5} \) | \(a_{38}= -2.69782119 \pm 1.4 \cdot 10^{-5} \) | \(a_{39}= -1.69300659 \pm 1.1 \cdot 10^{-5} \) |
\(a_{40}= +0.78474862 \pm 1.3 \cdot 10^{-5} \) | \(a_{41}= +1.79931903 \pm 1.7 \cdot 10^{-5} \) | \(a_{42}= +0.92062316 \pm 3.4 \cdot 10^{-5} \) |
\(a_{43}= +0.15444896 \pm 1.0 \cdot 10^{-5} \) | \(a_{44}= -1.91495468 \pm 9.2 \cdot 10^{-6} \) | \(a_{45}= +1.10456082 \pm 1.1 \cdot 10^{-5} \) |
\(a_{46}= -2.00811444 \pm 2.1 \cdot 10^{-5} \) | \(a_{47}= +0.00641566 \pm 1.6 \cdot 10^{-5} \) | \(a_{48}= +0.13813588 \pm 1.3 \cdot 10^{-5} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.45101517 \pm 1.6 \cdot 10^{-5} \) | \(a_{51}= +1.22367970 \pm 8.2 \cdot 10^{-6} \) |
\(a_{52}= +1.75896048 \pm 9.7 \cdot 10^{-6} \) | \(a_{53}= -0.75439878 \pm 1.1 \cdot 10^{-5} \) | \(a_{54}= -0.73710839 \pm 1.8 \cdot 10^{-5} \) |
\(a_{55}= -1.02996148 \pm 1.2 \cdot 10^{-5} \) | \(a_{56}= -0.34979235 \pm 1.3 \cdot 10^{-5} \) | \(a_{57}= +2.55037996 \pm 7.1 \cdot 10^{-6} \) |
\(a_{58}= -0.67710697 \pm 1.3 \cdot 10^{-5} \) | \(a_{59}= +0.92315829 \pm 2.2 \cdot 10^{-5} \) | \(a_{60}= -2.02857615 \pm 9.2 \cdot 10^{-6} \) |
\(a_{61}= +0.27901358 \pm 1.5 \cdot 10^{-5} \) | \(a_{62}= -0.61458540 \pm 1.4 \cdot 10^{-5} \) | \(a_{63}= -0.49234482 \pm 1.2 \cdot 10^{-5} \) |
\(a_{64}= -1.62903862 \pm 1.4 \cdot 10^{-5} \) | \(a_{65}= +0.94605975 \pm 1.1 \cdot 10^{-5} \) | \(a_{66}= +2.95856190 \pm 9.0 \cdot 10^{-6} \) |
\(a_{67}= -1.16578125 \pm 2.0 \cdot 10^{-5} \) | \(a_{68}= -1.27135018 \pm 8.3 \cdot 10^{-6} \) | \(a_{69}= +1.89836704 \pm 1.3 \cdot 10^{-5} \) |
\(a_{70}= -0.51444839 \pm 3.5 \cdot 10^{-5} \) | \(a_{71}= +0.54699448 \pm 1.1 \cdot 10^{-5} \) | \(a_{72}= +1.20552916 \pm 1.2 \cdot 10^{-5} \) |
\(a_{73}= -0.23267734 \pm 1.9 \cdot 10^{-5} \) | \(a_{74}= +0.57723756 \pm 1.2 \cdot 10^{-5} \) | \(a_{75}= +0.42636631 \pm 1.2 \cdot 10^{-5} \) |
\(a_{76}= -2.64973427 \pm 7.9 \cdot 10^{-6} \) | \(a_{77}= +0.45909306 \pm 1.2 \cdot 10^{-5} \) | \(a_{78}= -2.71755438 \pm 1.4 \cdot 10^{-5} \) |
\(a_{79}= -0.49023846 \pm 1.1 \cdot 10^{-5} \) | \(a_{80}= -0.07719096 \pm 1.1 \cdot 10^{-5} \) | \(a_{81}= -0.60579799 \pm 1.3 \cdot 10^{-5} \) |
\(a_{82}= +2.88820336 \pm 2.1 \cdot 10^{-5} \) | \(a_{83}= +0.82627730 \pm 1.1 \cdot 10^{-5} \) | \(a_{84}= +0.90421365 \pm 2.5 \cdot 10^{-5} \) |
\(a_{85}= -0.68379776 \pm 9.6 \cdot 10^{-6} \) | \(a_{86}= +0.24791602 \pm 1.2 \cdot 10^{-5} \) | \(a_{87}= +0.64010174 \pm 7.3 \cdot 10^{-6} \) |
\(a_{88}= -1.12411067 \pm 1.2 \cdot 10^{-5} \) | \(a_{89}= -0.13965015 \pm 1.2 \cdot 10^{-5} \) | \(a_{90}= +1.77300201 \pm 1.0 \cdot 10^{-5} \) |
\(a_{91}= -0.42169486 \pm 1.4 \cdot 10^{-5} \) | \(a_{92}= -1.97232110 \pm 1.1 \cdot 10^{-5} \) | \(a_{93}= +0.58099710 \pm 1.0 \cdot 10^{-5} \) |
\(a_{94}= +0.01029819 \pm 1.7 \cdot 10^{-5} \) | \(a_{95}= -1.42516387 \pm 1.4 \cdot 10^{-5} \) | \(a_{96}= +1.62606560 \pm 1.5 \cdot 10^{-5} \) |
\(a_{97}= +0.24054931 \pm 2.4 \cdot 10^{-5} \) | \(a_{98}= +0.22930924 \pm 2.0 \cdot 10^{-5} \) | \(a_{99}= -1.58222463 \pm 1.2 \cdot 10^{-5} \) |
\(a_{100}= -0.44297612 \pm 1.0 \cdot 10^{-5} \) | \(a_{101}= -1.32085932 \pm 1.5 \cdot 10^{-5} \) | \(a_{102}= +1.96420743 \pm 1.0 \cdot 10^{-5} \) |
\(a_{103}= +0.95432951 \pm 1.9 \cdot 10^{-5} \) | \(a_{104}= +1.03253944 \pm 1.0 \cdot 10^{-5} \) | \(a_{105}= +0.48633278 \pm 2.8 \cdot 10^{-5} \) |
\(a_{106}= -1.21093427 \pm 1.2 \cdot 10^{-5} \) | \(a_{107}= +0.38308085 \pm 1.2 \cdot 10^{-5} \) | \(a_{108}= -0.72396991 \pm 1.1 \cdot 10^{-5} \) |
\(a_{109}= -0.73226262 \pm 2.5 \cdot 10^{-5} \) | \(a_{110}= -1.65325779 \pm 1.1 \cdot 10^{-5} \) | \(a_{111}= -0.54569039 \pm 1.3 \cdot 10^{-5} \) |
\(a_{112}= +0.03440695 \pm 1.7 \cdot 10^{-5} \) | \(a_{113}= +0.10308468 \pm 1.6 \cdot 10^{-5} \) | \(a_{114}= +4.09377984 \pm 8.1 \cdot 10^{-6} \) |
\(a_{115}= -1.06081610 \pm 1.1 \cdot 10^{-5} \) | \(a_{116}= -0.66503798 \pm 7.9 \cdot 10^{-6} \) | \(a_{117}= +1.45333496 \pm 1.0 \cdot 10^{-5} \) |
\(a_{118}= +1.48182108 \pm 2.9 \cdot 10^{-5} \) | \(a_{119}= +0.30479470 \pm 1.1 \cdot 10^{-5} \) | \(a_{120}= -1.19080838 \pm 9.3 \cdot 10^{-6} \) |
\(a_{121}= +0.47536504 \pm 1.3 \cdot 10^{-5} \) | \(a_{122}= +0.44786274 \pm 1.8 \cdot 10^{-5} \) | \(a_{123}= -2.73035737 \pm 1.2 \cdot 10^{-5} \) |
\(a_{124}= -0.60363081 \pm 9.5 \cdot 10^{-6} \) | \(a_{125}= -1.08620736 \pm 1.3 \cdot 10^{-5} \) | \(a_{126}= -0.79029452 \pm 3.3 \cdot 10^{-5} \) |
\(a_{127}= +1.34868131 \pm 1.7 \cdot 10^{-5} \) | \(a_{128}= -1.54328997 \pm 1.1 \cdot 10^{-5} \) | \(a_{129}= -0.23436692 \pm 9.0 \cdot 10^{-6} \) |
\(a_{130}= +1.51858169 \pm 1.3 \cdot 10^{-5} \) | \(a_{131}= -1.10215212 \pm 1.3 \cdot 10^{-5} \) | \(a_{132}= +2.90582744 \pm 7.6 \cdot 10^{-6} \) |
\(a_{133}= +0.63524981 \pm 1.4 \cdot 10^{-5} \) | \(a_{134}= -1.87127089 \pm 2.5 \cdot 10^{-5} \) | \(a_{135}= -0.38938839 \pm 9.3 \cdot 10^{-6} \) |
\(a_{136}= -0.74630398 \pm 9.2 \cdot 10^{-6} \) | \(a_{137}= +0.89844325 \pm 1.1 \cdot 10^{-5} \) | \(a_{138}= +3.04719173 \pm 1.5 \cdot 10^{-5} \) |
\(a_{139}= -0.21430991 \pm 1.0 \cdot 10^{-5} \) | \(a_{140}= -0.50527868 \pm 2.6 \cdot 10^{-5} \) | \(a_{141}= -0.00973537 \pm 1.0 \cdot 10^{-5} \) |
\(a_{142}= +0.87801622 \pm 1.4 \cdot 10^{-5} \) | \(a_{143}= -1.35518027 \pm 6.8 \cdot 10^{-6} \) | \(a_{144}= -0.11858058 \pm 1.0 \cdot 10^{-5} \) |
\(a_{145}= -0.35769175 \pm 1.2 \cdot 10^{-5} \) | \(a_{146}= -0.37348545 \pm 2.5 \cdot 10^{-5} \) | \(a_{147}= -0.21677704 \pm 1.3 \cdot 10^{-5} \) |
\(a_{148}= +0.56694867 \pm 8.2 \cdot 10^{-6} \) | \(a_{149}= +1.07392371 \pm 2.3 \cdot 10^{-5} \) | \(a_{150}= +0.68438814 \pm 1.4 \cdot 10^{-5} \) |
\(a_{151}= -0.68394850 \pm 1.6 \cdot 10^{-5} \) | \(a_{152}= -1.55543867 \pm 1.4 \cdot 10^{-5} \) | \(a_{153}= -1.05044865 \pm 9.3 \cdot 10^{-6} \) |
\(a_{154}= +0.73691996 \pm 3.2 \cdot 10^{-5} \) | \(a_{155}= -0.32466381 \pm 9.2 \cdot 10^{-6} \) | \(a_{156}= -2.66911572 \pm 9.2 \cdot 10^{-6} \) |
\(a_{157}= +1.41435283 \pm 1.9 \cdot 10^{-5} \) | \(a_{158}= -0.78691346 \pm 1.4 \cdot 10^{-5} \) | \(a_{159}= +1.14475434 \pm 1.0 \cdot 10^{-5} \) |
\(a_{160}= -0.90865282 \pm 1.1 \cdot 10^{-5} \) | \(a_{161}= +0.47284614 \pm 1.8 \cdot 10^{-5} \) | \(a_{162}= -0.97240554 \pm 1.5 \cdot 10^{-5} \) |
\(a_{163}= +0.97893495 \pm 1.5 \cdot 10^{-5} \) | \(a_{164}= +2.83672300 \pm 1.3 \cdot 10^{-5} \) | \(a_{165}= +1.56290400 \pm 8.4 \cdot 10^{-6} \) |
\(a_{166}= +1.32631114 \pm 1.1 \cdot 10^{-5} \) | \(a_{167}= -0.92767615 \pm 1.3 \cdot 10^{-5} \) | \(a_{168}= +0.53078865 \pm 2.7 \cdot 10^{-5} \) |
\(a_{169}= +0.24478588 \pm 1.2 \cdot 10^{-5} \) | \(a_{170}= -1.09760801 \pm 1.1 \cdot 10^{-5} \) | \(a_{171}= -2.18933370 \pm 1.2 \cdot 10^{-5} \) |
\(a_{172}= +0.24349707 \pm 6.8 \cdot 10^{-6} \) | \(a_{173}= -1.86503000 \pm 1.2 \cdot 10^{-5} \) | \(a_{174}= +1.02746871 \pm 9.1 \cdot 10^{-6} \) |
\(a_{175}= +0.10619952 \pm 1.3 \cdot 10^{-5} \) | \(a_{176}= +0.11057194 \pm 9.0 \cdot 10^{-6} \) | \(a_{177}= -1.40083664 \pm 1.8 \cdot 10^{-5} \) |
\(a_{178}= -0.22416149 \pm 1.2 \cdot 10^{-5} \) | \(a_{179}= +0.69420376 \pm 1.3 \cdot 10^{-5} \) | \(a_{180}= +1.74139939 \pm 6.0 \cdot 10^{-6} \) |
\(a_{181}= +0.40527040 \pm 2.1 \cdot 10^{-5} \) | \(a_{182}= -0.67688969 \pm 3.5 \cdot 10^{-5} \) | \(a_{183}= -0.42338616 \pm 1.0 \cdot 10^{-5} \) |
\(a_{184}= -1.15778572 \pm 1.2 \cdot 10^{-5} \) | \(a_{185}= +0.30493426 \pm 1.2 \cdot 10^{-5} \) | \(a_{186}= +0.93259603 \pm 1.3 \cdot 10^{-5} \) |
\(a_{187}= +0.97950392 \pm 6.3 \cdot 10^{-6} \) | \(a_{188}= +0.01011463 \pm 9.7 \cdot 10^{-6} \) | \(a_{189}= +0.17356524 \pm 1.4 \cdot 10^{-5} \) |
\(a_{190}= -2.28762271 \pm 1.2 \cdot 10^{-5} \) | \(a_{191}= -0.99517599 \pm 7.8 \cdot 10^{-6} \) | \(a_{192}= +2.47196718 \pm 9.6 \cdot 10^{-6} \) |
\(a_{193}= +0.11211837 \pm 2.0 \cdot 10^{-5} \) | \(a_{194}= +0.38612126 \pm 2.8 \cdot 10^{-5} \) | \(a_{195}= -1.43558822 \pm 1.0 \cdot 10^{-5} \) |
\(a_{196}= +0.22522195 \pm 1.2 \cdot 10^{-5} \) | \(a_{197}= +0.84787048 \pm 1.4 \cdot 10^{-5} \) | \(a_{198}= -2.53973109 \pm 1.0 \cdot 10^{-5} \) |
\(a_{199}= -0.13932705 \pm 2.5 \cdot 10^{-5} \) | \(a_{200}= -0.26003445 \pm 8.6 \cdot 10^{-6} \) | \(a_{201}= +1.76900226 \pm 1.5 \cdot 10^{-5} \) |
\(a_{202}= -2.12019674 \pm 1.8 \cdot 10^{-5} \) | \(a_{203}= +0.15943684 \pm 1.3 \cdot 10^{-5} \) | \(a_{204}= +1.92919670 \pm 7.8 \cdot 10^{-6} \) |
\(a_{205}= +1.52573606 \pm 1.3 \cdot 10^{-5} \) | \(a_{206}= +1.53185603 \pm 2.5 \cdot 10^{-5} \) | \(a_{207}= -1.62962343 \pm 1.3 \cdot 10^{-5} \) |
\(a_{208}= -0.10156463 \pm 1.6 \cdot 10^{-5} \) | \(a_{209}= +2.04147145 \pm 1.3 \cdot 10^{-5} \) | \(a_{210}= +0.78064419 \pm 4.8 \cdot 10^{-5} \) |
\(a_{211}= -0.22762240 \pm 1.0 \cdot 10^{-5} \) | \(a_{212}= -1.18935015 \pm 6.6 \cdot 10^{-6} \) | \(a_{213}= -0.83003090 \pm 8.8 \cdot 10^{-6} \) |
\(a_{214}= +0.61490786 \pm 1.3 \cdot 10^{-5} \) | \(a_{215}= +0.13096530 \pm 1.0 \cdot 10^{-5} \) | \(a_{216}= -0.42498254 \pm 8.1 \cdot 10^{-6} \) |
\(a_{217}= +0.14471503 \pm 1.1 \cdot 10^{-5} \) | \(a_{218}= -1.17540209 \pm 2.9 \cdot 10^{-5} \) | \(a_{219}= +0.35307373 \pm 1.6 \cdot 10^{-5} \) |
\(a_{220}= -1.62378953 \pm 8.7 \cdot 10^{-6} \) | \(a_{221}= -0.89971251 \pm 1.3 \cdot 10^{-5} \) | \(a_{222}= -0.87592295 \pm 1.0 \cdot 10^{-5} \) |
\(a_{223}= -0.99199089 \pm 1.5 \cdot 10^{-5} \) | \(a_{224}= +0.40502117 \pm 1.7 \cdot 10^{-5} \) | \(a_{225}= -0.36600747 \pm 6.7 \cdot 10^{-6} \) |
\(a_{226}= +0.16546789 \pm 1.9 \cdot 10^{-5} \) | \(a_{227}= +0.91224319 \pm 9.0 \cdot 10^{-6} \) | \(a_{228}= +4.02081085 \pm 5.1 \cdot 10^{-6} \) |
\(a_{229}= -0.94132803 \pm 1.5 \cdot 10^{-5} \) | \(a_{230}= -1.70278454 \pm 1.0 \cdot 10^{-5} \) | \(a_{231}= -0.69664584 \pm 2.6 \cdot 10^{-5} \) |
\(a_{232}= -0.39038850 \pm 1.2 \cdot 10^{-5} \) | \(a_{233}= -1.88750963 \pm 1.0 \cdot 10^{-5} \) | \(a_{234}= +2.33284196 \pm 1.1 \cdot 10^{-5} \) |
\(a_{235}= +0.00544017 \pm 1.6 \cdot 10^{-5} \) | \(a_{236}= +1.45540857 \pm 1.7 \cdot 10^{-5} \) | \(a_{237}= +0.74390709 \pm 1.1 \cdot 10^{-5} \) |
\(a_{238}= +0.48924569 \pm 3.1 \cdot 10^{-5} \) | \(a_{239}= +1.43356932 \pm 1.9 \cdot 10^{-5} \) | \(a_{240}= +0.11713259 \pm 9.3 \cdot 10^{-6} \) |
\(a_{241}= +0.51263559 \pm 1.4 \cdot 10^{-5} \) | \(a_{242}= +0.76303918 \pm 1.6 \cdot 10^{-5} \) | \(a_{243}= +1.37847211 \pm 1.2 \cdot 10^{-5} \) |
\(a_{244}= +0.43987987 \pm 9.4 \cdot 10^{-6} \) | \(a_{245}= +0.12113599 \pm 1.4 \cdot 10^{-5} \) | \(a_{246}= -4.38267322 \pm 1.6 \cdot 10^{-5} \) |
\(a_{247}= -1.87517107 \pm 7.5 \cdot 10^{-6} \) | \(a_{248}= -0.35434146 \pm 6.0 \cdot 10^{-6} \) | \(a_{249}= -1.25382563 \pm 9.4 \cdot 10^{-6} \) |
\(a_{250}= -1.74354170 \pm 1.3 \cdot 10^{-5} \) | \(a_{251}= +1.35652295 \pm 1.9 \cdot 10^{-5} \) | \(a_{252}= -0.77620803 \pm 2.5 \cdot 10^{-5} \) |
\(a_{253}= +1.51956264 \pm 1.0 \cdot 10^{-5} \) | \(a_{254}= +2.16485560 \pm 2.1 \cdot 10^{-5} \) | \(a_{255}= +1.03762157 \pm 8.5 \cdot 10^{-6} \) |
\(a_{256}= -0.84819594 \pm 1.9 \cdot 10^{-5} \) | \(a_{257}= -0.83261145 \pm 2.1 \cdot 10^{-5} \) | \(a_{258}= -0.37619750 \pm 1.1 \cdot 10^{-5} \) |
\(a_{259}= -0.13592081 \pm 1.3 \cdot 10^{-5} \) | \(a_{260}= +1.49151395 \pm 8.0 \cdot 10^{-6} \) | \(a_{261}= -0.54948531 \pm 1.1 \cdot 10^{-5} \) |
\(a_{262}= -1.76913565 \pm 1.3 \cdot 10^{-5} \) | \(a_{263}= -0.07659406 \pm 1.3 \cdot 10^{-5} \) | \(a_{264}= +1.70576968 \pm 9.6 \cdot 10^{-6} \) |
\(a_{265}= -0.63969391 \pm 8.5 \cdot 10^{-6} \) | \(a_{266}= +1.01968057 \pm 3.4 \cdot 10^{-5} \) | \(a_{267}= +0.21191063 \pm 1.1 \cdot 10^{-5} \) |
\(a_{268}= -1.83791669 \pm 1.6 \cdot 10^{-5} \) | \(a_{269}= -1.94212337 \pm 2.8 \cdot 10^{-5} \) | \(a_{270}= -0.62503249 \pm 1.0 \cdot 10^{-5} \) |
\(a_{271}= +1.17158153 \pm 1.9 \cdot 10^{-5} \) | \(a_{272}= +0.07340939 \pm 1.1 \cdot 10^{-5} \) | \(a_{273}= +0.63989634 \pm 2.8 \cdot 10^{-5} \) |
\(a_{274}= +1.44214938 \pm 1.1 \cdot 10^{-5} \) | \(a_{275}= +0.34128822 \pm 7.3 \cdot 10^{-6} \) | \(a_{276}= +2.99287750 \pm 1.0 \cdot 10^{-5} \) |
\(a_{277}= -0.30420470 \pm 1.1 \cdot 10^{-5} \) | \(a_{278}= -0.34400269 \pm 1.1 \cdot 10^{-5} \) | \(a_{279}= -0.49874786 \pm 6.3 \cdot 10^{-6} \) |
\(a_{280}= -0.29660710 \pm 2.7 \cdot 10^{-5} \) | \(a_{281}= -0.18803096 \pm 2.1 \cdot 10^{-5} \) | \(a_{282}= -0.01562687 \pm 1.2 \cdot 10^{-5} \) |
\(a_{283}= -0.48733489 \pm 1.6 \cdot 10^{-5} \) | \(a_{284}= +0.86236614 \pm 9.8 \cdot 10^{-6} \) | \(a_{285}= +2.16259964 \pm 4.9 \cdot 10^{-6} \) |
\(a_{286}= -2.17528751 \pm 7.7 \cdot 10^{-6} \) | \(a_{287}= -0.68007867 \pm 1.7 \cdot 10^{-5} \) | \(a_{288}= -1.39587052 \pm 9.7 \cdot 10^{-6} \) |
\(a_{289}= -0.34970133 \pm 1.4 \cdot 10^{-5} \) | \(a_{290}= -0.57415417 \pm 1.1 \cdot 10^{-5} \) | \(a_{291}= -0.36501897 \pm 1.9 \cdot 10^{-5} \) |
\(a_{292}= -0.36682831 \pm 1.5 \cdot 10^{-5} \) | \(a_{293}= +0.71152975 \pm 2.0 \cdot 10^{-5} \) | \(a_{294}= -0.34796285 \pm 3.4 \cdot 10^{-5} \) |
\(a_{295}= +0.78279386 \pm 9.7 \cdot 10^{-6} \) | \(a_{296}= +0.33280843 \pm 1.2 \cdot 10^{-5} \) | \(a_{297}= +0.55777816 \pm 8.7 \cdot 10^{-6} \) |
\(a_{298}= +1.72382440 \pm 3.0 \cdot 10^{-5} \) | \(a_{299}= -1.39577749 \pm 1.7 \cdot 10^{-5} \) | \(a_{300}= +0.67218936 \pm 9.0 \cdot 10^{-6} \) |
\(a_{301}= -0.05837622 \pm 1.0 \cdot 10^{-5} \) | \(a_{302}= -1.09784998 \pm 1.4 \cdot 10^{-5} \) | \(a_{303}= +2.00432382 \pm 1.2 \cdot 10^{-5} \) |
\(a_{304}= +0.15299905 \pm 1.1 \cdot 10^{-5} \) | \(a_{305}= +0.23659010 \pm 1.1 \cdot 10^{-5} \) | \(a_{306}= -1.68614308 \pm 9.6 \cdot 10^{-6} \) |
\(a_{307}= -0.35944978 \pm 1.7 \cdot 10^{-5} \) | \(a_{308}= +0.72378484 \pm 2.4 \cdot 10^{-5} \) | \(a_{309}= -1.44813709 \pm 1.6 \cdot 10^{-5} \) |
\(a_{310}= -0.52113889 \pm 1.1 \cdot 10^{-5} \) | \(a_{311}= -0.99141953 \pm 1.2 \cdot 10^{-5} \) | \(a_{312}= -1.56681591 \pm 4.0 \cdot 10^{-6} \) |
\(a_{313}= +0.84430168 \pm 2.2 \cdot 10^{-5} \) | \(a_{314}= +2.27026921 \pm 1.9 \cdot 10^{-5} \) | \(a_{315}= -0.41748475 \pm 2.7 \cdot 10^{-5} \) |
\(a_{316}= -0.77288724 \pm 9.0 \cdot 10^{-6} \) | \(a_{317}= -1.49930128 \pm 1.3 \cdot 10^{-5} \) | \(a_{318}= +1.83751923 \pm 9.2 \cdot 10^{-6} \) |
\(a_{319}= +0.51237441 \pm 1.1 \cdot 10^{-5} \) | \(a_{320}= -1.38134646 \pm 1.4 \cdot 10^{-5} \) | \(a_{321}= -0.58130194 \pm 1.0 \cdot 10^{-5} \) |
\(a_{322}= +0.75899592 \pm 3.8 \cdot 10^{-5} \) | \(a_{323}= +1.35534545 \pm 3.8 \cdot 10^{-6} \) | \(a_{324}= -0.95507303 \pm 9.2 \cdot 10^{-6} \) |
\(a_{325}= -0.31348653 \pm 1.0 \cdot 10^{-5} \) | \(a_{326}= +1.57135181 \pm 2.0 \cdot 10^{-5} \) | \(a_{327}= +1.11116406 \pm 1.6 \cdot 10^{-5} \) |
\(a_{328}= +1.66520420 \pm 1.3 \cdot 10^{-5} \) | \(a_{329}= -0.00242489 \pm 1.6 \cdot 10^{-5} \) | \(a_{330}= +2.50871831 \pm 7.9 \cdot 10^{-6} \) |
\(a_{331}= -0.55918273 \pm 2.4 \cdot 10^{-5} \) | \(a_{332}= +1.30267050 \pm 5.5 \cdot 10^{-6} \) | \(a_{333}= +0.46843936 \pm 1.3 \cdot 10^{-5} \) |
\(a_{334}= -1.48907299 \pm 1.3 \cdot 10^{-5} \) | \(a_{335}= -0.98852647 \pm 1.5 \cdot 10^{-5} \) | \(a_{336}= -0.05221045 \pm 3.0 \cdot 10^{-5} \) |
\(a_{337}= -1.93621265 \pm 1.8 \cdot 10^{-5} \) | \(a_{338}= +0.39292165 \pm 1.2 \cdot 10^{-5} \) | \(a_{339}= -0.15642474 \pm 1.4 \cdot 10^{-5} \) |
\(a_{340}= -1.07804385 \pm 8.6 \cdot 10^{-6} \) | \(a_{341}= +0.46506364 \pm 6.3 \cdot 10^{-6} \) | \(a_{342}= -3.51424113 \pm 1.0 \cdot 10^{-5} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.14293689 \pm 8.7 \cdot 10^{-6} \) | \(a_{345}= +1.60972402 \pm 8.5 \cdot 10^{-6} \) |
\(a_{346}= -2.99368028 \pm 1.3 \cdot 10^{-5} \) | \(a_{347}= -0.98446969 \pm 1.0 \cdot 10^{-5} \) | \(a_{348}= +1.00915475 \pm 6.5 \cdot 10^{-6} \) |
\(a_{349}= +1.24185836 \pm 1.8 \cdot 10^{-5} \) | \(a_{350}= +0.17046771 \pm 3.4 \cdot 10^{-5} \) | \(a_{351}= -0.51234097 \pm 1.1 \cdot 10^{-5} \) |
\(a_{352}= +1.30159684 \pm 1.0 \cdot 10^{-5} \) | \(a_{353}= +0.65039136 \pm 2.0 \cdot 10^{-5} \) | \(a_{354}= -2.24857351 \pm 2.3 \cdot 10^{-5} \) |
\(a_{355}= +0.46382503 \pm 1.1 \cdot 10^{-5} \) | \(a_{356}= -0.22016596 \pm 8.1 \cdot 10^{-6} \) | \(a_{357}= -0.46250745 \pm 2.4 \cdot 10^{-5} \) |
\(a_{358}= +1.11431135 \pm 1.3 \cdot 10^{-5} \) | \(a_{359}= +0.76543596 \pm 1.3 \cdot 10^{-5} \) | \(a_{360}= +1.02223079 \pm 1.2 \cdot 10^{-5} \) |
\(a_{361}= +1.82479629 \pm 1.5 \cdot 10^{-5} \) | \(a_{362}= +0.65052574 \pm 2.7 \cdot 10^{-5} \) | \(a_{363}= -0.72133759 \pm 1.1 \cdot 10^{-5} \) |
\(a_{364}= -0.66482457 \pm 2.7 \cdot 10^{-5} \) | \(a_{365}= -0.19729920 \pm 1.1 \cdot 10^{-5} \) | \(a_{366}= -0.67960451 \pm 1.2 \cdot 10^{-5} \) |
\(a_{367}= -1.08080697 \pm 1.6 \cdot 10^{-5} \) | \(a_{368}= +0.11388435 \pm 1.9 \cdot 10^{-5} \) | \(a_{369}= +2.34383249 \pm 1.1 \cdot 10^{-5} \) |
\(a_{370}= +0.48946971 \pm 1.0 \cdot 10^{-5} \) | \(a_{371}= +0.28513594 \pm 1.1 \cdot 10^{-5} \) | \(a_{372}= +0.91597311 \pm 9.2 \cdot 10^{-6} \) |
\(a_{373}= -1.90061783 \pm 2.1 \cdot 10^{-5} \) | \(a_{374}= +1.57226510 \pm 7.8 \cdot 10^{-6} \) | \(a_{375}= +1.64825372 \pm 1.0 \cdot 10^{-5} \) |
\(a_{376}= +0.00593746 \pm 1.4 \cdot 10^{-5} \) | \(a_{377}= -0.47063586 \pm 9.4 \cdot 10^{-6} \) | \(a_{378}= +0.27860079 \pm 3.5 \cdot 10^{-5} \) |
\(a_{379}= -1.66007730 \pm 2.3 \cdot 10^{-5} \) | \(a_{380}= -2.24684731 \pm 6.2 \cdot 10^{-6} \) | \(a_{381}= -2.04654199 \pm 1.2 \cdot 10^{-5} \) |
\(a_{382}= -1.59742135 \pm 1.0 \cdot 10^{-5} \) | \(a_{383}= -0.83871287 \pm 9.0 \cdot 10^{-6} \) | \(a_{384}= +2.34184882 \pm 8.6 \cdot 10^{-6} \) |
\(a_{385}= +0.38928885 \pm 2.6 \cdot 10^{-5} \) | \(a_{386}= +0.17996844 \pm 2.1 \cdot 10^{-5} \) | \(a_{387}= +0.20118861 \pm 8.8 \cdot 10^{-6} \) |
\(a_{388}= +0.37923889 \pm 1.6 \cdot 10^{-5} \) | \(a_{389}= +1.34179399 \pm 8.1 \cdot 10^{-6} \) | \(a_{390}= -2.30435551 \pm 1.3 \cdot 10^{-5} \) |
\(a_{391}= +1.00884698 \pm 1.3 \cdot 10^{-5} \) | \(a_{392}= +0.13220908 \pm 1.3 \cdot 10^{-5} \) | \(a_{393}= +1.67244891 \pm 1.1 \cdot 10^{-5} \) |
\(a_{394}= +1.36097174 \pm 1.3 \cdot 10^{-5} \) | \(a_{395}= -0.41569865 \pm 1.4 \cdot 10^{-5} \) | \(a_{396}= -2.49446202 \pm 8.2 \cdot 10^{-6} \) |
\(a_{397}= +0.67847260 \pm 1.4 \cdot 10^{-5} \) | \(a_{398}= -0.22364286 \pm 3.0 \cdot 10^{-5} \) | \(a_{399}= -0.96395302 \pm 2.7 \cdot 10^{-5} \) |
\(a_{400}= +0.02557801 \pm 1.4 \cdot 10^{-5} \) | \(a_{401}= -0.94310250 \pm 1.5 \cdot 10^{-5} \) | \(a_{402}= +2.83953994 \pm 2.0 \cdot 10^{-5} \) |
\(a_{403}= -0.42717908 \pm 1.0 \cdot 10^{-5} \) | \(a_{404}= -2.08240559 \pm 1.2 \cdot 10^{-5} \) | \(a_{405}= -0.51368758 \pm 1.3 \cdot 10^{-5} \) |
\(a_{406}= +0.25592238 \pm 3.4 \cdot 10^{-5} \) | \(a_{407}= -0.43680211 \pm 1.4 \cdot 10^{-5} \) | \(a_{408}= +1.13247097 \pm 4.9 \cdot 10^{-6} \) |
\(a_{409}= -0.36042879 \pm 1.4 \cdot 10^{-5} \) | \(a_{410}= +2.44905764 \pm 1.3 \cdot 10^{-5} \) | \(a_{411}= -1.36333308 \pm 8.7 \cdot 10^{-6} \) |
\(a_{412}= +1.50455168 \pm 1.6 \cdot 10^{-5} \) | \(a_{413}= -0.34892104 \pm 2.2 \cdot 10^{-5} \) | \(a_{414}= -2.61581397 \pm 1.3 \cdot 10^{-5} \) |
\(a_{415}= +0.70064344 \pm 1.2 \cdot 10^{-5} \) | \(a_{416}= -1.19556741 \pm 1.5 \cdot 10^{-5} \) | \(a_{417}= +0.32520227 \pm 1.2 \cdot 10^{-5} \) |
\(a_{418}= +3.27689787 \pm 1.2 \cdot 10^{-5} \) | \(a_{419}= -1.01105617 \pm 2.3 \cdot 10^{-5} \) | \(a_{420}= +0.76672971 \pm 4.0 \cdot 10^{-5} \) |
\(a_{421}= +0.03107494 \pm 1.7 \cdot 10^{-5} \) | \(a_{422}= -0.36537144 \pm 1.1 \cdot 10^{-5} \) | \(a_{423}= +0.00835718 \pm 1.2 \cdot 10^{-5} \) |
\(a_{424}= -0.69816858 \pm 9.5 \cdot 10^{-6} \) | \(a_{425}= +0.22658335 \pm 7.1 \cdot 10^{-6} \) | \(a_{426}= -1.33233629 \pm 1.2 \cdot 10^{-5} \) |
\(a_{427}= -0.10545722 \pm 1.5 \cdot 10^{-5} \) | \(a_{428}= +0.60394752 \pm 8.0 \cdot 10^{-6} \) | \(a_{429}= +2.05640377 \pm 4.1 \cdot 10^{-6} \) |
\(a_{430}= +0.21022087 \pm 1.2 \cdot 10^{-5} \) | \(a_{431}= +0.60970690 \pm 9.0 \cdot 10^{-6} \) | \(a_{432}= +0.04180295 \pm 1.5 \cdot 10^{-5} \) |
\(a_{433}= -1.52110977 \pm 1.4 \cdot 10^{-5} \) | \(a_{434}= +0.23229145 \pm 3.1 \cdot 10^{-5} \) | \(a_{435}= +0.54277552 \pm 5.6 \cdot 10^{-6} \) |
\(a_{436}= -1.15445131 \pm 1.6 \cdot 10^{-5} \) | \(a_{437}= +2.10262794 \pm 1.0 \cdot 10^{-5} \) | \(a_{438}= +0.56674149 \pm 2.0 \cdot 10^{-5} \) |
\(a_{439}= -0.21117797 \pm 2.5 \cdot 10^{-5} \) | \(a_{440}= -0.95319182 \pm 1.3 \cdot 10^{-5} \) | \(a_{441}= +0.18608885 \pm 1.2 \cdot 10^{-5} \) |
\(a_{442}= -1.44418675 \pm 1.5 \cdot 10^{-5} \) | \(a_{443}= +0.69797939 \pm 1.7 \cdot 10^{-5} \) | \(a_{444}= -0.86031019 \pm 8.4 \cdot 10^{-6} \) |
\(a_{445}= -0.11841662 \pm 1.4 \cdot 10^{-5} \) | \(a_{446}= -1.59230873 \pm 1.5 \cdot 10^{-5} \) | \(a_{447}= -1.62961401 \pm 1.9 \cdot 10^{-5} \) |
\(a_{448}= +0.61571872 \pm 1.4 \cdot 10^{-5} \) | \(a_{449}= +1.79146788 \pm 1.9 \cdot 10^{-5} \) | \(a_{450}= -0.58750227 \pm 7.3 \cdot 10^{-6} \) |
\(a_{451}= -2.18553577 \pm 1.1 \cdot 10^{-5} \) | \(a_{452}= +0.16251853 \pm 1.3 \cdot 10^{-5} \) | \(a_{453}= +1.03785032 \pm 1.0 \cdot 10^{-5} \) |
\(a_{454}= +1.46430055 \pm 1.1 \cdot 10^{-5} \) | \(a_{455}= -0.35757697 \pm 2.9 \cdot 10^{-5} \) | \(a_{456}= +2.36028373 \pm 5.4 \cdot 10^{-6} \) |
\(a_{457}= +0.16592966 \pm 1.9 \cdot 10^{-5} \) | \(a_{458}= -1.51098650 \pm 1.9 \cdot 10^{-5} \) | \(a_{459}= +0.37031235 \pm 7.6 \cdot 10^{-6} \) |
\(a_{460}= -1.67243350 \pm 5.3 \cdot 10^{-6} \) | \(a_{461}= +1.26650388 \pm 1.6 \cdot 10^{-5} \) | \(a_{462}= -1.11823129 \pm 4.6 \cdot 10^{-5} \) |
\(a_{463}= -1.39568709 \pm 1.4 \cdot 10^{-5} \) | \(a_{464}= +0.03840015 \pm 1.1 \cdot 10^{-5} \) | \(a_{465}= +0.49265762 \pm 9.8 \cdot 10^{-6} \) |
\(a_{466}= -3.02976379 \pm 1.3 \cdot 10^{-5} \) | \(a_{467}= +1.06081018 \pm 1.6 \cdot 10^{-5} \) | \(a_{468}= +2.29126055 \pm 4.2 \cdot 10^{-6} \) |
\(a_{469}= +0.44062390 \pm 2.0 \cdot 10^{-5} \) | \(a_{470}= +0.00873237 \pm 1.3 \cdot 10^{-5} \) | \(a_{471}= -2.14619454 \pm 1.0 \cdot 10^{-5} \) |
\(a_{472}= +0.85434936 \pm 9.6 \cdot 10^{-6} \) | \(a_{473}= -0.18760082 \pm 5.9 \cdot 10^{-6} \) | \(a_{474}= +1.19409339 \pm 1.5 \cdot 10^{-5} \) |
\(a_{475}= +0.47224256 \pm 7.3 \cdot 10^{-6} \) | \(a_{476}= +0.48052520 \pm 2.3 \cdot 10^{-5} \) | \(a_{477}= -0.98269641 \pm 1.0 \cdot 10^{-5} \) |
\(a_{478}= +2.30111484 \pm 2.3 \cdot 10^{-5} \) | \(a_{479}= +0.94428893 \pm 2.3 \cdot 10^{-5} \) | \(a_{480}= +1.37882548 \pm 1.1 \cdot 10^{-5} \) |
\(a_{481}= +0.40121976 \pm 6.7 \cdot 10^{-6} \) | \(a_{482}= +0.82286455 \pm 1.6 \cdot 10^{-5} \) | \(a_{483}= -0.71751530 \pm 3.1 \cdot 10^{-5} \) |
\(a_{484}= +0.74943849 \pm 1.0 \cdot 10^{-5} \) | \(a_{485}= +0.20397425 \pm 2.0 \cdot 10^{-5} \) | \(a_{486}= +2.21267475 \pm 1.3 \cdot 10^{-5} \) |
\(a_{487}= +0.28232739 \pm 1.8 \cdot 10^{-5} \) | \(a_{488}= +0.25821690 \pm 1.2 \cdot 10^{-5} \) | \(a_{489}= -1.48547435 \pm 1.5 \cdot 10^{-5} \) |
\(a_{490}= +0.19444322 \pm 3.5 \cdot 10^{-5} \) | \(a_{491}= +0.30259254 \pm 1.7 \cdot 10^{-5} \) | \(a_{492}= -4.30455490 \pm 9.9 \cdot 10^{-6} \) |
\(a_{493}= +0.34016852 \pm 7.5 \cdot 10^{-6} \) | \(a_{494}= -3.00995837 \pm 8.4 \cdot 10^{-6} \) | \(a_{495}= -1.34165044 \pm 1.1 \cdot 10^{-5} \) |
\(a_{496}= +0.03485442 \pm 1.1 \cdot 10^{-5} \) | \(a_{497}= -0.20674448 \pm 1.1 \cdot 10^{-5} \) | \(a_{498}= -2.01259661 \pm 9.5 \cdot 10^{-6} \) |
\(a_{499}= -1.08634398 \pm 1.2 \cdot 10^{-5} \) | \(a_{500}= -1.71246419 \pm 7.7 \cdot 10^{-6} \) | \(a_{501}= +1.40769223 \pm 7.1 \cdot 10^{-6} \) |
\(a_{502}= +2.17744272 \pm 2.1 \cdot 10^{-5} \) | \(a_{503}= -1.04180623 \pm 1.1 \cdot 10^{-5} \) | \(a_{504}= -0.45564719 \pm 2.6 \cdot 10^{-5} \) |
\(a_{505}= -1.12002523 \pm 1.0 \cdot 10^{-5} \) | \(a_{506}= +2.43914829 \pm 1.0 \cdot 10^{-5} \) | \(a_{507}= -0.37144771 \pm 9.6 \cdot 10^{-6} \) |
\(a_{508}= +2.12626845 \pm 1.3 \cdot 10^{-5} \) | \(a_{509}= -0.17666633 \pm 8.3 \cdot 10^{-6} \) | \(a_{510}= +1.66555350 \pm 1.1 \cdot 10^{-5} \) |
\(a_{511}= +0.08794377 \pm 1.9 \cdot 10^{-5} \) | \(a_{512}= +0.18179581 \pm 1.8 \cdot 10^{-5} \) | \(a_{513}= +0.77180098 \pm 9.9 \cdot 10^{-6} \) |
\(a_{514}= -1.33647849 \pm 2.3 \cdot 10^{-5} \) | \(a_{515}= +0.80922556 \pm 1.1 \cdot 10^{-5} \) | \(a_{516}= -0.36949202 \pm 7.5 \cdot 10^{-6} \) |
\(a_{517}= -0.00779275 \pm 1.2 \cdot 10^{-5} \) | \(a_{518}= -0.21817529 \pm 3.4 \cdot 10^{-5} \) | \(a_{519}= +2.83006977 \pm 1.3 \cdot 10^{-5} \) |
\(a_{520}= +0.87554382 \pm 8.4 \cdot 10^{-6} \) | \(a_{521}= -1.04204333 \pm 1.7 \cdot 10^{-5} \) | \(a_{522}= -0.88201441 \pm 9.8 \cdot 10^{-6} \) |
\(a_{523}= -0.09315198 \pm 1.6 \cdot 10^{-5} \) | \(a_{524}= -1.73760195 \pm 9.3 \cdot 10^{-6} \) | \(a_{525}= -0.16115132 \pm 2.7 \cdot 10^{-5} \) |
\(a_{526}= -0.12294609 \pm 1.6 \cdot 10^{-5} \) | \(a_{527}= +0.30875861 \pm 7.9 \cdot 10^{-6} \) | \(a_{528}= -0.16778620 \pm 5.1 \cdot 10^{-6} \) |
\(a_{529}= +0.56508428 \pm 1.2 \cdot 10^{-5} \) | \(a_{530}= -1.02681407 \pm 7.8 \cdot 10^{-6} \) | \(a_{531}= +1.20252626 \pm 1.0 \cdot 10^{-5} \) |
\(a_{532}= +1.00150542 \pm 2.6 \cdot 10^{-5} \) | \(a_{533}= +2.00749975 \pm 1.4 \cdot 10^{-5} \) | \(a_{534}= +0.34015145 \pm 1.1 \cdot 10^{-5} \) |
\(a_{535}= +0.32483415 \pm 1.4 \cdot 10^{-5} \) | \(a_{536}= -1.07888807 \pm 1.4 \cdot 10^{-5} \) | \(a_{537}= -1.05341205 \pm 1.2 \cdot 10^{-5} \) |
\(a_{538}= -3.11742784 \pm 3.5 \cdot 10^{-5} \) | \(a_{539}= -0.17352087 \pm 1.2 \cdot 10^{-5} \) | \(a_{540}= -0.61389169 \pm 6.8 \cdot 10^{-6} \) |
\(a_{541}= -0.52176066 \pm 1.6 \cdot 10^{-5} \) | \(a_{542}= +1.88058130 \pm 1.7 \cdot 10^{-5} \) | \(a_{543}= -0.61497323 \pm 1.7 \cdot 10^{-5} \) |
\(a_{544}= +0.86413814 \pm 9.4 \cdot 10^{-6} \) | \(a_{545}= -0.62092351 \pm 2.1 \cdot 10^{-5} \) | \(a_{546}= +1.02713901 \pm 4.9 \cdot 10^{-5} \) |
\(a_{547}= -1.63930641 \pm 1.1 \cdot 10^{-5} \) | \(a_{548}= +1.41644400 \pm 6.6 \cdot 10^{-6} \) | \(a_{549}= +0.36344921 \pm 1.2 \cdot 10^{-5} \) |
\(a_{550}= +0.54782380 \pm 7.9 \cdot 10^{-6} \) | \(a_{551}= +0.70897555 \pm 1.5 \cdot 10^{-5} \) | \(a_{552}= +1.75686953 \pm 8.7 \cdot 10^{-6} \) |
\(a_{553}= +0.18529272 \pm 1.1 \cdot 10^{-5} \) | \(a_{554}= -0.48829864 \pm 1.2 \cdot 10^{-5} \) | \(a_{555}= -0.46271923 \pm 1.0 \cdot 10^{-5} \) |
\(a_{556}= -0.33787107 \pm 8.4 \cdot 10^{-6} \) | \(a_{557}= +0.22116710 \pm 1.8 \cdot 10^{-5} \) | \(a_{558}= -0.80057244 \pm 6.5 \cdot 10^{-6} \) |
\(a_{559}= +0.17231866 \pm 1.3 \cdot 10^{-5} \) | \(a_{560}= +0.02917544 \pm 3.1 \cdot 10^{-5} \) | \(a_{561}= -1.48633772 \pm 4.3 \cdot 10^{-6} \) |
\(a_{562}= -0.30182065 \pm 2.7 \cdot 10^{-5} \) | \(a_{563}= -1.25981048 \pm 2.5 \cdot 10^{-5} \) | \(a_{564}= -0.01534833 \pm 7.9 \cdot 10^{-6} \) |
\(a_{565}= +0.08741086 \pm 1.6 \cdot 10^{-5} \) | \(a_{566}= -0.78225276 \pm 1.6 \cdot 10^{-5} \) | \(a_{567}= +0.22897012 \pm 1.3 \cdot 10^{-5} \) |
\(a_{568}= +0.50622346 \pm 9.9 \cdot 10^{-6} \) | \(a_{569}= +0.32717812 \pm 1.2 \cdot 10^{-5} \) | \(a_{570}= +3.47132856 \pm 4.4 \cdot 10^{-6} \) |
\(a_{571}= -0.96599205 \pm 1.8 \cdot 10^{-5} \) | \(a_{572}= -2.13651441 \pm 4.8 \cdot 10^{-6} \) | \(a_{573}= +1.51011913 \pm 7.8 \cdot 10^{-6} \) |
\(a_{574}= -1.09163826 \pm 3.8 \cdot 10^{-5} \) | \(a_{575}= +0.35151221 \pm 1.5 \cdot 10^{-5} \) | \(a_{576}= -2.12202148 \pm 1.1 \cdot 10^{-5} \) |
\(a_{577}= +0.42134698 \pm 1.2 \cdot 10^{-5} \) | \(a_{578}= -0.56132822 \pm 1.5 \cdot 10^{-5} \) | \(a_{579}= -0.17013281 \pm 1.5 \cdot 10^{-5} \) |
\(a_{580}= -0.56392024 \pm 6.8 \cdot 10^{-6} \) | \(a_{581}= -0.31230346 \pm 1.1 \cdot 10^{-5} \) | \(a_{582}= -0.58591556 \pm 2.3 \cdot 10^{-5} \) |
\(a_{583}= +0.91632750 \pm 8.3 \cdot 10^{-6} \) | \(a_{584}= -0.21533440 \pm 9.3 \cdot 10^{-6} \) | \(a_{585}= +1.23235820 \pm 8.2 \cdot 10^{-6} \) |
\(a_{586}= +1.14212243 \pm 2.5 \cdot 10^{-5} \) | \(a_{587}= +0.52008564 \pm 1.5 \cdot 10^{-5} \) | \(a_{588}= -0.34176063 \pm 2.5 \cdot 10^{-5} \) |
\(a_{589}= +0.64351135 \pm 6.0 \cdot 10^{-6} \) | \(a_{590}= +1.25651306 \pm 1.1 \cdot 10^{-5} \) | \(a_{591}= -1.28659196 \pm 9.2 \cdot 10^{-6} \) |
\(a_{592}= -0.03273634 \pm 1.0 \cdot 10^{-5} \) | \(a_{593}= -0.51892215 \pm 2.3 \cdot 10^{-5} \) | \(a_{594}= +0.89532580 \pm 9.3 \cdot 10^{-6} \) |
\(a_{595}= +0.25845126 \pm 2.5 \cdot 10^{-5} \) | \(a_{596}= +1.69309834 \pm 1.8 \cdot 10^{-5} \) | \(a_{597}= +0.21142034 \pm 2.0 \cdot 10^{-5} \) |
\(a_{598}= -2.24045274 \pm 2.0 \cdot 10^{-5} \) | \(a_{599}= -0.15574611 \pm 2.1 \cdot 10^{-5} \) | \(a_{600}= +0.39458648 \pm 8.8 \cdot 10^{-6} \) |
\(a_{601}= +0.75066644 \pm 2.0 \cdot 10^{-5} \) | \(a_{602}= -0.09370345 \pm 3.1 \cdot 10^{-5} \) | \(a_{603}= -1.51857226 \pm 1.3 \cdot 10^{-5} \) |
\(a_{604}= -1.07828151 \pm 6.4 \cdot 10^{-6} \) | \(a_{605}= +0.40308671 \pm 8.7 \cdot 10^{-6} \) | \(a_{606}= +3.21726980 \pm 1.5 \cdot 10^{-5} \) |
\(a_{607}= +1.16563105 \pm 1.9 \cdot 10^{-5} \) | \(a_{608}= +1.80102735 \pm 1.1 \cdot 10^{-5} \) | \(a_{609}= -0.24193572 \pm 2.7 \cdot 10^{-5} \) |
\(a_{610}= +0.37976608 \pm 1.1 \cdot 10^{-5} \) | \(a_{611}= +0.00715795 \pm 1.0 \cdot 10^{-5} \) | \(a_{612}= -1.65608867 \pm 5.2 \cdot 10^{-6} \) |
\(a_{613}= +1.28009245 \pm 1.6 \cdot 10^{-5} \) | \(a_{614}= -0.57697608 \pm 1.8 \cdot 10^{-5} \) | \(a_{615}= -2.31521183 \pm 8.8 \cdot 10^{-6} \) |
\(a_{616}= +0.42487390 \pm 2.5 \cdot 10^{-5} \) | \(a_{617}= -1.14700185 \pm 1.2 \cdot 10^{-5} \) | \(a_{618}= -2.32449850 \pm 2.0 \cdot 10^{-5} \) |
\(a_{619}= +0.87894237 \pm 1.4 \cdot 10^{-5} \) | \(a_{620}= -0.51184992 \pm 8.8 \cdot 10^{-6} \) | \(a_{621}= +0.57448756 \pm 1.6 \cdot 10^{-5} \) |
\(a_{622}= -1.59139161 \pm 1.3 \cdot 10^{-5} \) | \(a_{623}= +0.05278280 \pm 1.2 \cdot 10^{-5} \) | \(a_{624}= +0.15411816 \pm 1.2 \cdot 10^{-5} \) |
\(a_{625}= -0.64007413 \pm 1.5 \cdot 10^{-5} \) | \(a_{626}= +1.35524324 \pm 2.7 \cdot 10^{-5} \) | \(a_{627}= -3.09780897 \pm 6.4 \cdot 10^{-6} \) |
\(a_{628}= +2.22980313 \pm 1.0 \cdot 10^{-5} \) | \(a_{629}= -0.28999561 \pm 5.6 \cdot 10^{-6} \) | \(a_{630}= -0.67013177 \pm 4.7 \cdot 10^{-5} \) |
\(a_{631}= +0.58928052 \pm 1.9 \cdot 10^{-5} \) | \(a_{632}= -0.45369783 \pm 8.4 \cdot 10^{-6} \) | \(a_{633}= +0.34540317 \pm 9.9 \cdot 10^{-6} \) |
\(a_{634}= -2.40662546 \pm 1.5 \cdot 10^{-5} \) | \(a_{635}= +1.14361693 \pm 1.3 \cdot 10^{-5} \) | \(a_{636}= +1.80476663 \pm 6.8 \cdot 10^{-6} \) |
\(a_{637}= +0.15938568 \pm 1.4 \cdot 10^{-5} \) | \(a_{638}= +0.82244531 \pm 1.1 \cdot 10^{-5} \) | \(a_{639}= +0.71252702 \pm 8.4 \cdot 10^{-6} \) |
\(a_{640}= -1.30863573 \pm 9.4 \cdot 10^{-6} \) | \(a_{641}= +0.31969964 \pm 2.0 \cdot 10^{-5} \) | \(a_{642}= -0.93308534 \pm 1.1 \cdot 10^{-5} \) |
\(a_{643}= -1.04560293 \pm 1.4 \cdot 10^{-5} \) | \(a_{644}= +0.74546730 \pm 3.0 \cdot 10^{-5} \) | \(a_{645}= -0.19873188 \pm 1.0 \cdot 10^{-5} \) |
\(a_{646}= +2.17555264 \pm 5.4 \cdot 10^{-6} \) | \(a_{647}= -0.25391721 \pm 1.8 \cdot 10^{-5} \) | \(a_{648}= -0.56064397 \pm 1.1 \cdot 10^{-5} \) |
\(a_{649}= -1.12131057 \pm 1.0 \cdot 10^{-5} \) | \(a_{650}= -0.50319750 \pm 1.4 \cdot 10^{-5} \) | \(a_{651}= -0.21959626 \pm 2.4 \cdot 10^{-5} \) |
\(a_{652}= +1.54334348 \pm 1.2 \cdot 10^{-5} \) | \(a_{653}= +0.72895798 \pm 2.6 \cdot 10^{-5} \) | \(a_{654}= +1.78360130 \pm 2.1 \cdot 10^{-5} \) |
\(a_{655}= -0.93457202 \pm 1.2 \cdot 10^{-5} \) | \(a_{656}= -0.16379602 \pm 1.8 \cdot 10^{-5} \) | \(a_{657}= -0.30309061 \pm 1.0 \cdot 10^{-5} \) |
\(a_{658}= -0.00389235 \pm 3.7 \cdot 10^{-5} \) | \(a_{659}= +0.22003754 \pm 1.9 \cdot 10^{-5} \) | \(a_{660}= +2.46400202 \pm 7.0 \cdot 10^{-6} \) |
\(a_{661}= +0.52259963 \pm 1.1 \cdot 10^{-5} \) | \(a_{662}= -0.89758036 \pm 3.1 \cdot 10^{-5} \) | \(a_{663}= +1.36525911 \pm 9.0 \cdot 10^{-6} \) |
\(a_{664}= +0.76468953 \pm 1.0 \cdot 10^{-5} \) | \(a_{665}= +0.53866131 \pm 2.8 \cdot 10^{-5} \) | \(a_{666}= +0.75192232 \pm 1.0 \cdot 10^{-5} \) |
\(a_{667}= +0.52772365 \pm 1.1 \cdot 10^{-5} \) | \(a_{668}= -1.46253123 \pm 8.0 \cdot 10^{-6} \) | \(a_{669}= +1.50528593 \pm 9.3 \cdot 10^{-6} \) |
\(a_{670}= -1.58674778 \pm 1.7 \cdot 10^{-5} \) | \(a_{671}= -0.33890274 \pm 8.6 \cdot 10^{-6} \) | \(a_{672}= -0.61459503 \pm 3.1 \cdot 10^{-5} \) |
\(a_{673}= -1.60214244 \pm 1.8 \cdot 10^{-5} \) | \(a_{674}= -3.10794016 \pm 2.1 \cdot 10^{-5} \) | \(a_{675}= +0.12902781 \pm 1.3 \cdot 10^{-5} \) |
\(a_{676}= +0.38591807 \pm 7.2 \cdot 10^{-6} \) | \(a_{677}= +0.71253559 \pm 2.2 \cdot 10^{-5} \) | \(a_{678}= -0.25108748 \pm 1.8 \cdot 10^{-5} \) |
\(a_{679}= -0.09091909 \pm 2.4 \cdot 10^{-5} \) | \(a_{680}= -0.63282991 \pm 7.8 \cdot 10^{-6} \) | \(a_{681}= -1.38427364 \pm 9.4 \cdot 10^{-6} \) |
\(a_{682}= +0.74650374 \pm 7.1 \cdot 10^{-6} \) | \(a_{683}= +1.22124909 \pm 1.8 \cdot 10^{-5} \) | \(a_{684}= -3.45160205 \pm 6.0 \cdot 10^{-6} \) |
\(a_{685}= +0.76183670 \pm 1.3 \cdot 10^{-5} \) | \(a_{686}= -0.08667075 \pm 2.0 \cdot 10^{-5} \) | \(a_{687}= +1.42840812 \pm 1.5 \cdot 10^{-5} \) |
\(a_{688}= -0.01405983 \pm 1.1 \cdot 10^{-5} \) | \(a_{689}= -0.84168251 \pm 1.1 \cdot 10^{-5} \) | \(a_{690}= +2.58387214 \pm 7.3 \cdot 10^{-6} \) |
\(a_{691}= +0.29714484 \pm 1.1 \cdot 10^{-5} \) | \(a_{692}= -2.94031985 \pm 8.3 \cdot 10^{-6} \) | \(a_{693}= +0.59802470 \pm 2.5 \cdot 10^{-5} \) |
\(a_{694}= -1.58023598 \pm 1.0 \cdot 10^{-5} \) | \(a_{695}= -0.18172450 \pm 9.2 \cdot 10^{-6} \) | \(a_{696}= +0.59239084 \pm 4.9 \cdot 10^{-6} \) |
\(a_{697}= -1.45099063 \pm 1.0 \cdot 10^{-5} \) | \(a_{698}= +1.99338718 \pm 2.0 \cdot 10^{-5} \) | \(a_{699}= +2.86418124 \pm 9.2 \cdot 10^{-6} \) |
\(a_{700}= +0.16742923 \pm 2.6 \cdot 10^{-5} \) | \(a_{701}= -0.49596157 \pm 1.0 \cdot 10^{-5} \) | \(a_{702}= -0.82239163 \pm 1.5 \cdot 10^{-5} \) |
\(a_{703}= -0.60440570 \pm 1.3 \cdot 10^{-5} \) | \(a_{704}= +1.97870533 \pm 1.1 \cdot 10^{-5} \) | \(a_{705}= -0.00825513 \pm 1.1 \cdot 10^{-5} \) |
\(a_{706}= +1.04398523 \pm 2.4 \cdot 10^{-5} \) | \(a_{707}= +0.49923790 \pm 1.5 \cdot 10^{-5} \) | \(a_{708}= -2.20849413 \pm 1.5 \cdot 10^{-5} \) |
\(a_{709}= +1.73036103 \pm 1.8 \cdot 10^{-5} \) | \(a_{710}= +0.74451555 \pm 1.3 \cdot 10^{-5} \) | \(a_{711}= -0.63859538 \pm 8.4 \cdot 10^{-6} \) |
\(a_{712}= -0.12924113 \pm 1.1 \cdot 10^{-5} \) | \(a_{713}= +0.47899559 \pm 1.0 \cdot 10^{-5} \) | \(a_{714}= -0.74240063 \pm 4.5 \cdot 10^{-5} \) |
\(a_{715}= -1.14912774 \pm 5.8 \cdot 10^{-6} \) | \(a_{716}= +1.09444947 \pm 8.9 \cdot 10^{-6} \) | \(a_{717}= -2.17535439 \pm 1.3 \cdot 10^{-5} \) |
\(a_{718}= +1.22865077 \pm 1.5 \cdot 10^{-5} \) | \(a_{719}= -0.86148704 \pm 1.1 \cdot 10^{-5} \) | \(a_{720}= -0.10055063 \pm 8.2 \cdot 10^{-6} \) |
\(a_{721}= -0.36070265 \pm 1.9 \cdot 10^{-5} \) | \(a_{722}= +2.92909855 \pm 1.6 \cdot 10^{-5} \) | \(a_{723}= -0.77789338 \pm 9.0 \cdot 10^{-6} \) |
\(a_{724}= +0.63893053 \pm 1.7 \cdot 10^{-5} \) | \(a_{725}= +0.11852480 \pm 7.6 \cdot 10^{-6} \) | \(a_{726}= -1.15786562 \pm 1.3 \cdot 10^{-5} \) |
\(a_{727}= -1.30894669 \pm 9.7 \cdot 10^{-6} \) | \(a_{728}= -0.39026323 \pm 2.8 \cdot 10^{-5} \) | \(a_{729}= -1.48594973 \pm 1.6 \cdot 10^{-5} \) |
\(a_{730}= -0.31669771 \pm 1.3 \cdot 10^{-5} \) | \(a_{731}= -0.12454934 \pm 1.1 \cdot 10^{-5} \) | \(a_{732}= -0.66749100 \pm 8.0 \cdot 10^{-6} \) |
\(a_{733}= -1.31341695 \pm 1.6 \cdot 10^{-5} \) | \(a_{734}= -1.73487317 \pm 1.8 \cdot 10^{-5} \) | \(a_{735}= -0.18381651 \pm 2.8 \cdot 10^{-5} \) |
\(a_{736}= +1.34058885 \pm 1.8 \cdot 10^{-5} \) | \(a_{737}= +1.41601160 \pm 1.3 \cdot 10^{-5} \) | \(a_{738}= +3.76223713 \pm 1.2 \cdot 10^{-5} \) |
\(a_{739}= +1.28671011 \pm 1.5 \cdot 10^{-5} \) | \(a_{740}= +0.48074523 \pm 6.1 \cdot 10^{-6} \) | \(a_{741}= +2.84545823 \pm 4.4 \cdot 10^{-6} \) |
\(a_{742}= +0.45769013 \pm 3.1 \cdot 10^{-5} \) | \(a_{743}= -1.58177628 \pm 2.0 \cdot 10^{-5} \) | \(a_{744}= +0.53769165 \pm 5.9 \cdot 10^{-6} \) |
\(a_{745}= +0.91063569 \pm 1.3 \cdot 10^{-5} \) | \(a_{746}= -3.05080461 \pm 2.7 \cdot 10^{-5} \) | \(a_{747}= +1.07632696 \pm 1.0 \cdot 10^{-5} \) |
\(a_{748}= +1.54424048 \pm 7.7 \cdot 10^{-6} \) | \(a_{749}= -0.14479095 \pm 1.2 \cdot 10^{-5} \) | \(a_{750}= +2.64571865 \pm 9.6 \cdot 10^{-6} \) |
\(a_{751}= +1.20694414 \pm 1.1 \cdot 10^{-5} \) | \(a_{752}= -0.00058403 \pm 1.4 \cdot 10^{-5} \) | \(a_{753}= -2.05844120 \pm 1.2 \cdot 10^{-5} \) |
\(a_{754}= -0.75544806 \pm 1.0 \cdot 10^{-5} \) | \(a_{755}= -0.57995546 \pm 1.6 \cdot 10^{-5} \) | \(a_{756}= +0.27363491 \pm 2.7 \cdot 10^{-5} \) |
\(a_{757}= -0.07276583 \pm 1.2 \cdot 10^{-5} \) | \(a_{758}= -2.66469744 \pm 2.7 \cdot 10^{-5} \) | \(a_{759}= -2.30584404 \pm 1.1 \cdot 10^{-5} \) |
\(a_{760}= -1.31893724 \pm 1.5 \cdot 10^{-5} \) | \(a_{761}= +1.38072452 \pm 1.7 \cdot 10^{-5} \) | \(a_{762}= -3.28503692 \pm 1.7 \cdot 10^{-5} \) |
\(a_{763}= +0.27676925 \pm 2.5 \cdot 10^{-5} \) | \(a_{764}= -1.56894834 \pm 8.4 \cdot 10^{-6} \) | \(a_{765}= -0.89072997 \pm 7.1 \cdot 10^{-6} \) |
\(a_{766}= -1.34627228 \pm 7.5 \cdot 10^{-6} \) | \(a_{767}= +1.02996745 \pm 1.8 \cdot 10^{-5} \) | \(a_{768}= +1.28708583 \pm 1.6 \cdot 10^{-5} \) |
\(a_{769}= -0.49318496 \pm 1.7 \cdot 10^{-5} \) | \(a_{770}= +0.62487271 \pm 4.7 \cdot 10^{-5} \) | \(a_{771}= +1.26343732 \pm 1.2 \cdot 10^{-5} \) |
\(a_{772}= +0.17676062 \pm 1.1 \cdot 10^{-5} \) | \(a_{773}= +1.10566027 \pm 1.9 \cdot 10^{-5} \) | \(a_{774}= +0.32294085 \pm 9.0 \cdot 10^{-6} \) |
\(a_{775}= +0.10758066 \pm 9.3 \cdot 10^{-6} \) | \(a_{776}= +0.22261962 \pm 1.7 \cdot 10^{-5} \) | \(a_{777}= +0.20625158 \pm 2.7 \cdot 10^{-5} \) |
\(a_{778}= +2.15380032 \pm 8.9 \cdot 10^{-6} \) | \(a_{779}= -3.02413894 \pm 1.4 \cdot 10^{-5} \) | \(a_{780}= -2.26328185 \pm 8.9 \cdot 10^{-6} \) |
\(a_{781}= -0.66440468 \pm 9.4 \cdot 10^{-6} \) | \(a_{782}= +1.61936554 \pm 1.4 \cdot 10^{-5} \) | \(a_{783}= +0.19370884 \pm 9.7 \cdot 10^{-6} \) |
\(a_{784}= -0.01300460 \pm 1.7 \cdot 10^{-5} \) | \(a_{785}= +1.19930323 \pm 1.9 \cdot 10^{-5} \) | \(a_{786}= +2.68455592 \pm 1.0 \cdot 10^{-5} \) |
\(a_{787}= -0.35189994 \pm 1.8 \cdot 10^{-5} \) | \(a_{788}= +1.33671330 \pm 7.8 \cdot 10^{-6} \) | \(a_{789}= +0.11622684 \pm 1.1 \cdot 10^{-5} \) |
\(a_{790}= -0.66726480 \pm 1.7 \cdot 10^{-5} \) | \(a_{791}= -0.03896235 \pm 1.6 \cdot 10^{-5} \) | \(a_{792}= -1.46429124 \pm 1.3 \cdot 10^{-5} \) |
\(a_{793}= +0.31129537 \pm 1.8 \cdot 10^{-5} \) | \(a_{794}= +1.08906025 \pm 1.5 \cdot 10^{-5} \) | \(a_{795}= +0.97069666 \pm 8.3 \cdot 10^{-6} \) |
\(a_{796}= -0.21965657 \pm 1.7 \cdot 10^{-5} \) | \(a_{797}= -0.82153440 \pm 1.6 \cdot 10^{-5} \) | \(a_{798}= -1.54730334 \pm 4.8 \cdot 10^{-5} \) |
\(a_{799}= -0.00517366 \pm 8.0 \cdot 10^{-6} \) | \(a_{800}= +0.30109136 \pm 1.5 \cdot 10^{-5} \) | \(a_{801}= -0.18191135 \pm 9.7 \cdot 10^{-6} \) |
\(a_{802}= -1.51383482 \pm 1.5 \cdot 10^{-5} \) | \(a_{803}= +0.28262061 \pm 9.9 \cdot 10^{-6} \) | \(a_{804}= +2.78892697 \pm 1.3 \cdot 10^{-5} \) |
\(a_{805}= +0.40095080 \pm 3.2 \cdot 10^{-5} \) | \(a_{806}= -0.68569277 \pm 1.3 \cdot 10^{-5} \) | \(a_{807}= +2.94705429 \pm 2.1 \cdot 10^{-5} \) |
\(a_{808}= -1.22240718 \pm 1.0 \cdot 10^{-5} \) | \(a_{809}= +1.61401606 \pm 1.5 \cdot 10^{-5} \) | \(a_{810}= -0.82455316 \pm 1.5 \cdot 10^{-5} \) |
\(a_{811}= +1.84575837 \pm 1.6 \cdot 10^{-5} \) | \(a_{812}= +0.25136073 \pm 2.5 \cdot 10^{-5} \) | \(a_{813}= -1.77780384 \pm 7.1 \cdot 10^{-6} \) |
\(a_{814}= -0.70113933 \pm 1.0 \cdot 10^{-5} \) | \(a_{815}= +0.83008979 \pm 1.2 \cdot 10^{-5} \) | \(a_{816}= -0.11139429 \pm 8.2 \cdot 10^{-6} \) |
\(a_{817}= -0.25958438 \pm 2.5 \cdot 10^{-6} \) | \(a_{818}= -0.57854756 \pm 1.4 \cdot 10^{-5} \) | \(a_{819}= -0.54930898 \pm 2.7 \cdot 10^{-5} \) |
\(a_{820}= +2.40540477 \pm 8.3 \cdot 10^{-6} \) | \(a_{821}= -0.86744498 \pm 1.2 \cdot 10^{-5} \) | \(a_{822}= -2.18837411 \pm 1.0 \cdot 10^{-5} \) |
\(a_{823}= -1.46851314 \pm 1.2 \cdot 10^{-5} \) | \(a_{824}= +0.88319719 \pm 9.8 \cdot 10^{-6} \) | \(a_{825}= -0.51788415 \pm 7.4 \cdot 10^{-6} \) |
\(a_{826}= -0.56007572 \pm 4.2 \cdot 10^{-5} \) | \(a_{827}= -1.89124080 \pm 1.4 \cdot 10^{-5} \) | \(a_{828}= -2.56918877 \pm 6.4 \cdot 10^{-6} \) |
\(a_{829}= +0.99737692 \pm 1.7 \cdot 10^{-5} \) | \(a_{830}= +1.12464810 \pm 1.2 \cdot 10^{-5} \) | \(a_{831}= +0.46161216 \pm 1.2 \cdot 10^{-5} \) |
\(a_{832}= -1.81751794 \pm 1.1 \cdot 10^{-5} \) | \(a_{833}= -0.11520157 \pm 1.1 \cdot 10^{-5} \) | \(a_{834}= +0.52200320 \pm 1.1 \cdot 10^{-5} \) |
\(a_{835}= -0.78662479 \pm 1.3 \cdot 10^{-5} \) | \(a_{836}= +3.21848928 \pm 8.2 \cdot 10^{-6} \) | \(a_{837}= +0.17582248 \pm 1.0 \cdot 10^{-5} \) |
\(a_{838}= -1.62291165 \pm 3.0 \cdot 10^{-5} \) | \(a_{839}= +0.70867008 \pm 1.5 \cdot 10^{-5} \) | \(a_{840}= +0.45008326 \pm 4.1 \cdot 10^{-5} \) |
\(a_{841}= -0.82205927 \pm 1.2 \cdot 10^{-5} \) | \(a_{842}= +0.04988040 \pm 2.0 \cdot 10^{-5} \) | \(a_{843}= +0.28532556 \pm 1.7 \cdot 10^{-5} \) |
\(a_{844}= -0.35885893 \pm 6.5 \cdot 10^{-6} \) | \(a_{845}= +0.20756666 \pm 1.2 \cdot 10^{-5} \) | \(a_{846}= +0.01341464 \pm 1.0 \cdot 10^{-5} \) |
\(a_{847}= -0.17967110 \pm 1.3 \cdot 10^{-5} \) | \(a_{848}= +0.06867460 \pm 1.0 \cdot 10^{-5} \) | \(a_{849}= +0.73950110 \pm 1.0 \cdot 10^{-5} \) |
\(a_{850}= +0.36370359 \pm 9.0 \cdot 10^{-6} \) | \(a_{851}= -0.44988742 \pm 1.2 \cdot 10^{-5} \) | \(a_{852}= -1.30858826 \pm 9.8 \cdot 10^{-6} \) |
\(a_{853}= +0.34257493 \pm 1.6 \cdot 10^{-5} \) | \(a_{854}= -0.16927620 \pm 3.6 \cdot 10^{-5} \) | \(a_{855}= -1.85644976 \pm 1.3 \cdot 10^{-5} \) |
\(a_{856}= +0.35452737 \pm 1.1 \cdot 10^{-5} \) | \(a_{857}= +0.92371099 \pm 9.2 \cdot 10^{-6} \) | \(a_{858}= +3.30086671 \pm 5.4 \cdot 10^{-6} \) |
\(a_{859}= +0.85104964 \pm 2.4 \cdot 10^{-5} \) | \(a_{860}= +0.20647382 \pm 7.8 \cdot 10^{-6} \) | \(a_{861}= +1.03197809 \pm 3.1 \cdot 10^{-5} \) |
\(a_{862}= +0.97867998 \pm 8.1 \cdot 10^{-6} \) | \(a_{863}= -1.24045409 \pm 1.7 \cdot 10^{-5} \) | \(a_{864}= +0.49208316 \pm 1.7 \cdot 10^{-5} \) |
\(a_{865}= -1.58145580 \pm 1.3 \cdot 10^{-5} \) | \(a_{866}= -2.44163167 \pm 1.4 \cdot 10^{-5} \) | \(a_{867}= +0.53065053 \pm 1.1 \cdot 10^{-5} \) |
\(a_{868}= +0.22815100 \pm 2.3 \cdot 10^{-5} \) | \(a_{869}= +0.59546621 \pm 7.2 \cdot 10^{-6} \) | \(a_{870}= +0.87124409 \pm 6.9 \cdot 10^{-6} \) |
\(a_{871}= -1.30066182 \pm 1.7 \cdot 10^{-5} \) | \(a_{872}= -0.67768237 \pm 2.0 \cdot 10^{-5} \) | \(a_{873}= +0.31334481 \pm 1.8 \cdot 10^{-5} \) |
\(a_{874}= +3.37506411 \pm 1.2 \cdot 10^{-5} \) | \(a_{875}= +0.41054779 \pm 1.3 \cdot 10^{-5} \) | \(a_{876}= +0.55663969 \pm 1.2 \cdot 10^{-5} \) |
\(a_{877}= +1.82895060 \pm 1.9 \cdot 10^{-5} \) | \(a_{878}= -0.33897542 \pm 2.8 \cdot 10^{-5} \) | \(a_{879}= -1.07970319 \pm 1.6 \cdot 10^{-5} \) |
\(a_{880}= +0.09375969 \pm 7.6 \cdot 10^{-6} \) | \(a_{881}= -1.51006651 \pm 2.1 \cdot 10^{-5} \) | \(a_{882}= +0.29870325 \pm 3.3 \cdot 10^{-5} \) |
\(a_{883}= -1.10749622 \pm 2.6 \cdot 10^{-5} \) | \(a_{884}= -1.41844505 \pm 7.1 \cdot 10^{-6} \) | \(a_{885}= -1.18784215 \pm 9.7 \cdot 10^{-6} \) |
\(a_{886}= +1.12037186 \pm 2.2 \cdot 10^{-5} \) | \(a_{887}= +0.31213515 \pm 2.5 \cdot 10^{-5} \) | \(a_{888}= -0.50501658 \pm 1.2 \cdot 10^{-5} \) |
\(a_{889}= -0.50975362 \pm 1.7 \cdot 10^{-5} \) | \(a_{890}= -0.19007817 \pm 1.3 \cdot 10^{-5} \) | \(a_{891}= +0.73583014 \pm 9.0 \cdot 10^{-6} \) |
\(a_{892}= -1.56392686 \pm 9.3 \cdot 10^{-6} \) | \(a_{893}= -0.01078288 \pm 1.6 \cdot 10^{-5} \) | \(a_{894}= -2.61579885 \pm 2.5 \cdot 10^{-5} \) |
\(a_{895}= +0.58865142 \pm 1.2 \cdot 10^{-5} \) | \(a_{896}= +0.58330878 \pm 1.1 \cdot 10^{-5} \) | \(a_{897}= +2.11800759 \pm 9.3 \cdot 10^{-6} \) |
\(a_{898}= +2.87560097 \pm 2.2 \cdot 10^{-5} \) | \(a_{899}= +0.16151034 \pm 7.2 \cdot 10^{-6} \) | \(a_{900}= -0.57703042 \pm 4.3 \cdot 10^{-6} \) |
\(a_{901}= +0.60835546 \pm 9.9 \cdot 10^{-6} \) | \(a_{902}= -3.50814482 \pm 1.3 \cdot 10^{-5} \) | \(a_{903}= +0.08858237 \pm 2.4 \cdot 10^{-5} \) |
\(a_{904}= +0.09540112 \pm 1.2 \cdot 10^{-5} \) | \(a_{905}= +0.34364982 \pm 1.2 \cdot 10^{-5} \) | \(a_{906}= +1.66592067 \pm 7.2 \cdot 10^{-6} \) |
\(a_{907}= +0.56607031 \pm 1.3 \cdot 10^{-5} \) | \(a_{908}= +1.43820033 \pm 8.0 \cdot 10^{-6} \) | \(a_{909}= -1.72058036 \pm 1.1 \cdot 10^{-5} \) |
\(a_{910}= -0.57396993 \pm 5.0 \cdot 10^{-5} \) | \(a_{911}= +0.39637581 \pm 1.3 \cdot 10^{-5} \) | \(a_{912}= -0.23216677 \pm 6.5 \cdot 10^{-6} \) |
\(a_{913}= -1.00363446 \pm 8.2 \cdot 10^{-6} \) | \(a_{914}= +0.26634442 \pm 1.7 \cdot 10^{-5} \) | \(a_{915}= -0.35901112 \pm 8.4 \cdot 10^{-6} \) |
\(a_{916}= -1.48405414 \pm 1.2 \cdot 10^{-5} \) | \(a_{917}= +0.41657434 \pm 1.3 \cdot 10^{-5} \) | \(a_{918}= +0.59441230 \pm 9.6 \cdot 10^{-6} \) |
\(a_{919}= -0.64798941 \pm 1.4 \cdot 10^{-5} \) | \(a_{920}= -0.98174665 \pm 1.1 \cdot 10^{-5} \) | \(a_{921}= +0.54544321 \pm 1.4 \cdot 10^{-5} \) |
\(a_{922}= +2.03294729 \pm 2.0 \cdot 10^{-5} \) | \(a_{923}= +0.61028159 \pm 8.4 \cdot 10^{-6} \) | \(a_{924}= -1.09829954 \pm 3.8 \cdot 10^{-5} \) |
\(a_{925}= -0.10104307 \pm 9.8 \cdot 10^{-6} \) | \(a_{926}= -2.24030763 \pm 1.6 \cdot 10^{-5} \) | \(a_{927}= +1.24313058 \pm 9.1 \cdot 10^{-6} \) |
\(a_{928}= +0.45202706 \pm 1.1 \cdot 10^{-5} \) | \(a_{929}= +0.78828510 \pm 1.6 \cdot 10^{-5} \) | \(a_{930}= +0.79079661 \pm 1.3 \cdot 10^{-5} \) |
\(a_{931}= -0.24010186 \pm 1.4 \cdot 10^{-5} \) | \(a_{932}= -2.97576020 \pm 1.0 \cdot 10^{-5} \) | \(a_{933}= +1.50441893 \pm 9.7 \cdot 10^{-6} \) |
\(a_{934}= +1.70277503 \pm 1.9 \cdot 10^{-5} \) | \(a_{935}= +0.83057225 \pm 6.0 \cdot 10^{-6} \) | \(a_{936}= +1.34500856 \pm 9.3 \cdot 10^{-6} \) |
\(a_{937}= -1.35548113 \pm 2.3 \cdot 10^{-5} \) | \(a_{938}= +0.70727391 \pm 4.0 \cdot 10^{-5} \) | \(a_{939}= -1.28117653 \pm 1.6 \cdot 10^{-5} \) |
\(a_{940}= +0.00857672 \pm 6.8 \cdot 10^{-6} \) | \(a_{941}= -0.50963506 \pm 1.6 \cdot 10^{-5} \) | \(a_{942}= -3.44499567 \pm 1.2 \cdot 10^{-5} \) |
\(a_{943}= -2.25100800 \pm 1.9 \cdot 10^{-5} \) | \(a_{944}= -0.08403716 \pm 2.5 \cdot 10^{-5} \) | \(a_{945}= +0.14717498 \pm 2.9 \cdot 10^{-5} \) |
\(a_{946}= -0.30113021 \pm 5.9 \cdot 10^{-6} \) | \(a_{947}= +0.04325054 \pm 1.9 \cdot 10^{-5} \) | \(a_{948}= +1.17280945 \pm 9.8 \cdot 10^{-6} \) |
\(a_{949}= -0.25959804 \pm 1.6 \cdot 10^{-5} \) | \(a_{950}= +0.75802708 \pm 8.9 \cdot 10^{-6} \) | \(a_{951}= +2.27509865 \pm 1.1 \cdot 10^{-5} \) |
\(a_{952}= +0.28207639 \pm 2.4 \cdot 10^{-5} \) | \(a_{953}= +1.18971139 \pm 1.4 \cdot 10^{-5} \) | \(a_{954}= -1.57738958 \pm 9.5 \cdot 10^{-6} \) |
\(a_{955}= -0.84386141 \pm 9.6 \cdot 10^{-6} \) | \(a_{956}= +2.26009895 \pm 1.2 \cdot 10^{-5} \) | \(a_{957}= -0.77749706 \pm 5.9 \cdot 10^{-6} \) |
\(a_{958}= +1.51573925 \pm 2.3 \cdot 10^{-5} \) | \(a_{959}= -0.33957963 \pm 1.1 \cdot 10^{-5} \) | \(a_{960}= +2.09610937 \pm 1.0 \cdot 10^{-5} \) |
\(a_{961}= -0.85340293 \pm 1.2 \cdot 10^{-5} \) | \(a_{962}= +0.64402379 \pm 8.0 \cdot 10^{-6} \) | \(a_{963}= +0.49900953 \pm 9.0 \cdot 10^{-6} \) |
\(a_{964}= +0.80819752 \pm 9.5 \cdot 10^{-6} \) | \(a_{965}= +0.09507099 \pm 1.7 \cdot 10^{-5} \) | \(a_{966}= -1.15173022 \pm 5.2 \cdot 10^{-5} \) |
\(a_{967}= +1.69976103 \pm 2.2 \cdot 10^{-5} \) | \(a_{968}= +0.43993303 \pm 8.5 \cdot 10^{-6} \) | \(a_{969}= -2.05665441 \pm 2.6 \cdot 10^{-6} \) |
\(a_{970}= +0.32741227 \pm 2.0 \cdot 10^{-5} \) | \(a_{971}= +1.61908124 \pm 1.6 \cdot 10^{-5} \) | \(a_{972}= +2.17323524 \pm 8.7 \cdot 10^{-6} \) |
\(a_{973}= +0.08100153 \pm 1.0 \cdot 10^{-5} \) | \(a_{974}= +0.45318195 \pm 1.9 \cdot 10^{-5} \) | \(a_{975}= +0.47569677 \pm 8.8 \cdot 10^{-6} \) |
\(a_{976}= -0.02539923 \pm 1.6 \cdot 10^{-5} \) | \(a_{977}= -1.56855129 \pm 2.3 \cdot 10^{-5} \) | \(a_{978}= -2.38443095 \pm 1.8 \cdot 10^{-5} \) |
\(a_{979}= +0.16962551 \pm 1.0 \cdot 10^{-5} \) | \(a_{980}= +0.19097739 \pm 2.6 \cdot 10^{-5} \) | \(a_{981}= -0.95386137 \pm 1.7 \cdot 10^{-5} \) |
\(a_{982}= +0.48571086 \pm 1.8 \cdot 10^{-5} \) | \(a_{983}= -0.34388930 \pm 1.4 \cdot 10^{-5} \) | \(a_{984}= -2.52684626 \pm 6.5 \cdot 10^{-6} \) |
\(a_{985}= +0.71895341 \pm 1.5 \cdot 10^{-5} \) | \(a_{986}= +0.54602650 \pm 8.1 \cdot 10^{-6} \) | \(a_{987}= +0.00367962 \pm 3.0 \cdot 10^{-5} \) |
\(a_{988}= -2.95630780 \pm 4.8 \cdot 10^{-6} \) | \(a_{989}= -0.19322079 \pm 1.2 \cdot 10^{-5} \) | \(a_{990}= -2.15356990 \pm 9.7 \cdot 10^{-6} \) |
\(a_{991}= -0.04048964 \pm 1.6 \cdot 10^{-5} \) | \(a_{992}= +0.41028854 \pm 1.3 \cdot 10^{-5} \) | \(a_{993}= +0.84852583 \pm 1.8 \cdot 10^{-5} \) |
\(a_{994}= -0.33185894 \pm 3.2 \cdot 10^{-5} \) | \(a_{995}= -0.11814264 \pm 1.5 \cdot 10^{-5} \) | \(a_{996}= -1.97672338 \pm 6.1 \cdot 10^{-6} \) |
\(a_{997}= -0.79656467 \pm 1.5 \cdot 10^{-5} \) | \(a_{998}= -1.74376099 \pm 1.3 \cdot 10^{-5} \) | \(a_{999}= -0.16513790 \pm 1.0 \cdot 10^{-5} \) |
\(a_{1000}= -1.00524534 \pm 1.2 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000