Maass form invariants
Level: | \( 7 \) |
Weight: | \( 0 \) |
Character: | 7.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.4012029875852052894404796208 \pm 7 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.75715079 \pm 4.6 \cdot 10^{-6} \) | \(a_{3}= +1.40748965 \pm 3.1 \cdot 10^{-6} \) |
\(a_{4}= -0.42672267 \pm 2.7 \cdot 10^{-6} \) | \(a_{5}= -0.24112059 \pm 3.3 \cdot 10^{-6} \) | \(a_{6}= +1.06568191 \pm 3.6 \cdot 10^{-6} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -1.08024421 \pm 3.0 \cdot 10^{-6} \) | \(a_{9}= +0.98102711 \pm 2.9 \cdot 10^{-6} \) |
\(a_{10}= -0.18256465 \pm 3.3 \cdot 10^{-6} \) | \(a_{11}= -1.64309703 \pm 2.8 \cdot 10^{-6} \) | \(a_{12}= -0.60060775 \pm 2.4 \cdot 10^{-6} \) |
\(a_{13}= -0.69052028 \pm 3.4 \cdot 10^{-6} \) | \(a_{14}= -0.28617610 \pm 4.6 \cdot 10^{-6} \) | \(a_{15}= -0.33937474 \pm 2.6 \cdot 10^{-6} \) |
\(a_{16}= -0.39118509 \pm 3.9 \cdot 10^{-6} \) | \(a_{17}= -0.54110167 \pm 2.5 \cdot 10^{-6} \) | \(a_{18}= +0.74278546 \pm 2.8 \cdot 10^{-6} \) |
\(a_{19}= +1.15400755 \pm 3.2 \cdot 10^{-6} \) | \(a_{20}= +0.10289162 \pm 2.1 \cdot 10^{-6} \) | \(a_{21}= -0.53198108 \pm 3.1 \cdot 10^{-6} \) |
\(a_{22}= -1.24407222 \pm 2.8 \cdot 10^{-6} \) | \(a_{23}= +1.23431590 \pm 4.1 \cdot 10^{-6} \) | \(a_{24}= -1.52043254 \pm 2.0 \cdot 10^{-6} \) |
\(a_{25}= -0.94186086 \pm 3.1 \cdot 10^{-6} \) | \(a_{26}= -0.52282798 \pm 4.1 \cdot 10^{-6} \) | \(a_{27}= -0.02670415 \pm 3.4 \cdot 10^{-6} \) |
\(a_{28}= +0.16128601 \pm 2.7 \cdot 10^{-6} \) | \(a_{29}= -0.80175232 \pm 3.1 \cdot 10^{-6} \) | \(a_{30}= -0.25695785 \pm 2.9 \cdot 10^{-6} \) |
\(a_{31}= -0.78478190 \pm 2.5 \cdot 10^{-6} \) | \(a_{32}= +0.78405811 \pm 4.0 \cdot 10^{-6} \) | \(a_{33}= -2.31264206 \pm 2.3 \cdot 10^{-6} \) |
\(a_{34}= -0.40969556 \pm 3.0 \cdot 10^{-6} \) | \(a_{35}= +0.09113502 \pm 3.3 \cdot 10^{-6} \) | \(a_{36}= -0.41862651 \pm 1.6 \cdot 10^{-6} \) |
\(a_{37}= +0.76331868 \pm 3.1 \cdot 10^{-6} \) | \(a_{38}= +0.87375773 \pm 3.2 \cdot 10^{-6} \) | \(a_{39}= -0.97190015 \pm 2.5 \cdot 10^{-6} \) |
\(a_{40}= +0.26046912 \pm 3.1 \cdot 10^{-6} \) | \(a_{41}= +0.06750528 \pm 4.0 \cdot 10^{-6} \) | \(a_{42}= -0.40278990 \pm 7.7 \cdot 10^{-6} \) |
\(a_{43}= -1.37065808 \pm 2.4 \cdot 10^{-6} \) | \(a_{44}= +0.70114676 \pm 2.0 \cdot 10^{-6} \) | \(a_{45}= -0.23654584 \pm 2.6 \cdot 10^{-6} \) |
\(a_{46}= +0.93456326 \pm 4.9 \cdot 10^{-6} \) | \(a_{47}= -0.00803099 \pm 3.7 \cdot 10^{-6} \) | \(a_{48}= -0.55058896 \pm 2.9 \cdot 10^{-6} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.71313070 \pm 3.8 \cdot 10^{-6} \) | \(a_{51}= -0.76159500 \pm 1.8 \cdot 10^{-6} \) |
\(a_{52}= +0.29466066 \pm 2.2 \cdot 10^{-6} \) | \(a_{53}= +0.93508812 \pm 2.5 \cdot 10^{-6} \) | \(a_{54}= -0.02021907 \pm 4.2 \cdot 10^{-6} \) |
\(a_{55}= +0.39618453 \pm 2.7 \cdot 10^{-6} \) | \(a_{56}= +0.40829393 \pm 3.0 \cdot 10^{-6} \) | \(a_{57}= +1.62425368 \pm 1.6 \cdot 10^{-6} \) |
\(a_{58}= -0.60704740 \pm 3.1 \cdot 10^{-6} \) | \(a_{59}= -1.60116461 \pm 5.0 \cdot 10^{-6} \) | \(a_{60}= +0.14481890 \pm 2.1 \cdot 10^{-6} \) |
\(a_{61}= -0.93859491 \pm 3.6 \cdot 10^{-6} \) | \(a_{62}= -0.59419824 \pm 3.2 \cdot 10^{-6} \) | \(a_{63}= -0.37079339 \pm 2.9 \cdot 10^{-6} \) |
\(a_{64}= +0.98483531 \pm 3.2 \cdot 10^{-6} \) | \(a_{65}= +0.16649866 \pm 2.6 \cdot 10^{-6} \) | \(a_{66}= -1.75101877 \pm 2.0 \cdot 10^{-6} \) |
\(a_{67}= +1.42180359 \pm 4.6 \cdot 10^{-6} \) | \(a_{68}= +0.23090035 \pm 1.8 \cdot 10^{-6} \) | \(a_{69}= +1.73728685 \pm 3.1 \cdot 10^{-6} \) |
\(a_{70}= +0.06900295 \pm 7.9 \cdot 10^{-6} \) | \(a_{71}= +1.14419787 \pm 2.7 \cdot 10^{-6} \) | \(a_{72}= -1.05974885 \pm 2.9 \cdot 10^{-6} \) |
\(a_{73}= -0.89099327 \pm 4.4 \cdot 10^{-6} \) | \(a_{74}= +0.57794735 \pm 2.9 \cdot 10^{-6} \) | \(a_{75}= -1.32565941 \pm 2.8 \cdot 10^{-6} \) |
\(a_{76}= -0.49244119 \pm 1.8 \cdot 10^{-6} \) | \(a_{77}= +0.62103230 \pm 2.8 \cdot 10^{-6} \) | \(a_{78}= -0.73587497 \pm 3.3 \cdot 10^{-6} \) |
\(a_{79}= +0.97149596 \pm 2.7 \cdot 10^{-6} \) | \(a_{80}= +0.09432278 \pm 2.5 \cdot 10^{-6} \) | \(a_{81}= -1.01861292 \pm 3.0 \cdot 10^{-6} \) |
\(a_{82}= +0.05111168 \pm 4.9 \cdot 10^{-6} \) | \(a_{83}= +0.43015705 \pm 2.5 \cdot 10^{-6} \) | \(a_{84}= +0.22700839 \pm 5.9 \cdot 10^{-6} \) |
\(a_{85}= +0.13047076 \pm 2.1 \cdot 10^{-6} \) | \(a_{86}= -1.03779485 \pm 2.8 \cdot 10^{-6} \) | \(a_{87}= -1.12845809 \pm 1.6 \cdot 10^{-6} \) |
\(a_{88}= +1.77494605 \pm 2.8 \cdot 10^{-6} \) | \(a_{89}= +1.88128178 \pm 2.9 \cdot 10^{-6} \) | \(a_{90}= -0.17910087 \pm 2.3 \cdot 10^{-6} \) |
\(a_{91}= +0.26099213 \pm 3.4 \cdot 10^{-6} \) | \(a_{92}= -0.52671058 \pm 2.7 \cdot 10^{-6} \) | \(a_{93}= -1.10457240 \pm 2.3 \cdot 10^{-6} \) |
\(a_{94}= -0.00608067 \pm 3.9 \cdot 10^{-6} \) | \(a_{95}= -0.27825498 \pm 3.2 \cdot 10^{-6} \) | \(a_{96}= +1.10355367 \pm 3.5 \cdot 10^{-6} \) |
\(a_{97}= +0.52551853 \pm 5.6 \cdot 10^{-6} \) | \(a_{98}= +0.10816440 \pm 4.6 \cdot 10^{-6} \) | \(a_{99}= -1.61192273 \pm 2.7 \cdot 10^{-6} \) |
\(a_{100}= +0.40191338 \pm 2.2 \cdot 10^{-6} \) | \(a_{101}= -0.62270031 \pm 3.4 \cdot 10^{-6} \) | \(a_{102}= -0.57664226 \pm 2.3 \cdot 10^{-6} \) |
\(a_{103}= -0.83646118 \pm 4.4 \cdot 10^{-6} \) | \(a_{104}= +0.74593053 \pm 2.2 \cdot 10^{-6} \) | \(a_{105}= +0.12827159 \pm 6.4 \cdot 10^{-6} \) |
\(a_{106}= +0.70800272 \pm 2.7 \cdot 10^{-6} \) | \(a_{107}= +0.09147221 \pm 2.8 \cdot 10^{-6} \) | \(a_{108}= +0.01139527 \pm 2.6 \cdot 10^{-6} \) |
\(a_{109}= -0.56308705 \pm 5.8 \cdot 10^{-6} \) | \(a_{110}= +0.29997143 \pm 2.6 \cdot 10^{-6} \) | \(a_{111}= +1.07436315 \pm 2.9 \cdot 10^{-6} \) |
\(a_{112}= +0.14785406 \pm 3.9 \cdot 10^{-6} \) | \(a_{113}= -1.00102231 \pm 3.7 \cdot 10^{-6} \) | \(a_{114}= +1.22980497 \pm 1.8 \cdot 10^{-6} \) |
\(a_{115}= -0.29761898 \pm 2.5 \cdot 10^{-6} \) | \(a_{116}= +0.34212589 \pm 1.8 \cdot 10^{-6} \) | \(a_{117}= -0.67741911 \pm 2.3 \cdot 10^{-6} \) |
\(a_{118}= -1.21232306 \pm 6.6 \cdot 10^{-6} \) | \(a_{119}= +0.20451721 \pm 2.5 \cdot 10^{-6} \) | \(a_{120}= +0.36660759 \pm 2.1 \cdot 10^{-6} \) |
\(a_{121}= +1.69976785 \pm 3.0 \cdot 10^{-6} \) | \(a_{122}= -0.71065788 \pm 4.1 \cdot 10^{-6} \) | \(a_{123}= +0.09501298 \pm 2.8 \cdot 10^{-6} \) |
\(a_{124}= +0.33488423 \pm 2.1 \cdot 10^{-6} \) | \(a_{125}= +0.46822264 \pm 3.0 \cdot 10^{-6} \) | \(a_{126}= -0.28074651 \pm 7.6 \cdot 10^{-6} \) |
\(a_{127}= -1.21964108 \pm 4.0 \cdot 10^{-6} \) | \(a_{128}= -0.03838927 \pm 2.6 \cdot 10^{-6} \) | \(a_{129}= -1.92918705 \pm 2.0 \cdot 10^{-6} \) |
\(a_{130}= +0.12606459 \pm 3.1 \cdot 10^{-6} \) | \(a_{131}= -0.92879810 \pm 2.9 \cdot 10^{-6} \) | \(a_{132}= +0.98685680 \pm 1.7 \cdot 10^{-6} \) |
\(a_{133}= -0.43617386 \pm 3.2 \cdot 10^{-6} \) | \(a_{134}= +1.07651972 \pm 5.7 \cdot 10^{-6} \) | \(a_{135}= +0.00643892 \pm 2.1 \cdot 10^{-6} \) |
\(a_{136}= +0.58452195 \pm 2.1 \cdot 10^{-6} \) | \(a_{137}= -1.49301249 \pm 2.6 \cdot 10^{-6} \) | \(a_{138}= +1.31538812 \pm 3.6 \cdot 10^{-6} \) |
\(a_{139}= +1.48383826 \pm 2.4 \cdot 10^{-6} \) | \(a_{140}= -0.03888938 \pm 6.1 \cdot 10^{-6} \) | \(a_{141}= -0.01130353 \pm 2.4 \cdot 10^{-6} \) |
\(a_{142}= +0.86633033 \pm 3.2 \cdot 10^{-6} \) | \(a_{143}= +1.13459182 \pm 1.5 \cdot 10^{-6} \) | \(a_{144}= -0.38376317 \pm 2.3 \cdot 10^{-6} \) |
\(a_{145}= +0.19331899 \pm 2.9 \cdot 10^{-6} \) | \(a_{146}= -0.67461626 \pm 5.7 \cdot 10^{-6} \) | \(a_{147}= +0.20106995 \pm 3.1 \cdot 10^{-6} \) |
\(a_{148}= -0.32572539 \pm 1.8 \cdot 10^{-6} \) | \(a_{149}= -1.85391033 \pm 5.3 \cdot 10^{-6} \) | \(a_{150}= -1.00372408 \pm 3.2 \cdot 10^{-6} \) |
\(a_{151}= +0.33530763 \pm 3.7 \cdot 10^{-6} \) | \(a_{152}= -1.24660997 \pm 3.2 \cdot 10^{-6} \) | \(a_{153}= -0.53083541 \pm 2.1 \cdot 10^{-6} \) |
\(a_{154}= +0.47021510 \pm 7.4 \cdot 10^{-6} \) | \(a_{155}= +0.18922708 \pm 2.0 \cdot 10^{-6} \) | \(a_{156}= +0.41473183 \pm 2.1 \cdot 10^{-6} \) |
\(a_{157}= +0.06157794 \pm 4.3 \cdot 10^{-6} \) | \(a_{158}= +0.73556894 \pm 3.2 \cdot 10^{-6} \) | \(a_{159}= +1.31612685 \pm 2.3 \cdot 10^{-6} \) |
\(a_{160}= -0.18905256 \pm 2.6 \cdot 10^{-6} \) | \(a_{161}= -0.46652756 \pm 4.1 \cdot 10^{-6} \) | \(a_{162}= -0.77124358 \pm 3.4 \cdot 10^{-6} \) |
\(a_{163}= +0.43143612 \pm 3.6 \cdot 10^{-6} \) | \(a_{164}= -0.02880603 \pm 2.9 \cdot 10^{-6} \) | \(a_{165}= +0.55762562 \pm 1.9 \cdot 10^{-6} \) |
\(a_{166}= +0.32569375 \pm 2.6 \cdot 10^{-6} \) | \(a_{167}= -1.06316959 \pm 2.9 \cdot 10^{-6} \) | \(a_{168}= +0.57466948 \pm 6.1 \cdot 10^{-6} \) |
\(a_{169}= -0.52318174 \pm 2.8 \cdot 10^{-6} \) | \(a_{170}= +0.09878604 \pm 2.6 \cdot 10^{-6} \) | \(a_{171}= +1.13211269 \pm 2.7 \cdot 10^{-6} \) |
\(a_{172}= +0.58489088 \pm 1.5 \cdot 10^{-6} \) | \(a_{173}= -0.38099118 \pm 2.9 \cdot 10^{-6} \) | \(a_{174}= -0.85441294 \pm 2.0 \cdot 10^{-6} \) |
\(a_{175}= +0.35598994 \pm 3.1 \cdot 10^{-6} \) | \(a_{176}= +0.64275505 \pm 2.0 \cdot 10^{-6} \) | \(a_{177}= -2.25362261 \pm 4.2 \cdot 10^{-6} \) |
\(a_{178}= +1.42441399 \pm 2.9 \cdot 10^{-6} \) | \(a_{179}= +0.80134322 \pm 3.0 \cdot 10^{-6} \) | \(a_{180}= +0.10093947 \pm 1.3 \cdot 10^{-6} \) |
\(a_{181}= +0.71491202 \pm 4.8 \cdot 10^{-6} \) | \(a_{182}= +0.19761040 \pm 8.0 \cdot 10^{-6} \) | \(a_{183}= -1.32106262 \pm 2.3 \cdot 10^{-6} \) |
\(a_{184}= -1.33336260 \pm 2.8 \cdot 10^{-6} \) | \(a_{185}= -0.18405185 \pm 2.9 \cdot 10^{-6} \) | \(a_{186}= -0.83632787 \pm 3.0 \cdot 10^{-6} \) |
\(a_{187}= +0.88908255 \pm 1.4 \cdot 10^{-6} \) | \(a_{188}= +0.00342700 \pm 2.2 \cdot 10^{-6} \) | \(a_{189}= +0.01009322 \pm 3.4 \cdot 10^{-6} \) |
\(a_{190}= -0.21068098 \pm 2.8 \cdot 10^{-6} \) | \(a_{191}= -1.09140862 \pm 1.7 \cdot 10^{-6} \) | \(a_{192}= +1.38614550 \pm 2.1 \cdot 10^{-6} \) |
\(a_{193}= -0.89013012 \pm 4.5 \cdot 10^{-6} \) | \(a_{194}= +0.39789677 \pm 6.5 \cdot 10^{-6} \) | \(a_{195}= +0.23434514 \pm 2.3 \cdot 10^{-6} \) |
\(a_{196}= -0.06096038 \pm 2.7 \cdot 10^{-6} \) | \(a_{197}= +0.79680253 \pm 3.3 \cdot 10^{-6} \) | \(a_{198}= -1.22046858 \pm 2.3 \cdot 10^{-6} \) |
\(a_{199}= -0.58187766 \pm 5.6 \cdot 10^{-6} \) | \(a_{200}= +1.01743974 \pm 1.9 \cdot 10^{-6} \) | \(a_{201}= +2.00117384 \pm 3.5 \cdot 10^{-6} \) |
\(a_{202}= -0.47147803 \pm 4.2 \cdot 10^{-6} \) | \(a_{203}= +0.30303389 \pm 3.1 \cdot 10^{-6} \) | \(a_{204}= +0.32498986 \pm 1.7 \cdot 10^{-6} \) |
\(a_{205}= -0.01627691 \pm 3.0 \cdot 10^{-6} \) | \(a_{206}= -0.63332725 \pm 5.8 \cdot 10^{-6} \) | \(a_{207}= +1.21089736 \pm 3.0 \cdot 10^{-6} \) |
\(a_{208}= +0.27012123 \pm 3.7 \cdot 10^{-6} \) | \(a_{209}= -1.89614638 \pm 3.0 \cdot 10^{-6} \) | \(a_{210}= +0.09712094 \pm 1.1 \cdot 10^{-5} \) |
\(a_{211}= -0.72603954 \pm 2.3 \cdot 10^{-6} \) | \(a_{212}= -0.39902330 \pm 1.5 \cdot 10^{-6} \) | \(a_{213}= +1.61044665 \pm 2.0 \cdot 10^{-6} \) |
\(a_{214}= +0.06925825 \pm 3.0 \cdot 10^{-6} \) | \(a_{215}= +0.33049389 \pm 2.4 \cdot 10^{-6} \) | \(a_{216}= +0.02884700 \pm 1.8 \cdot 10^{-6} \) |
\(a_{217}= +0.29661968 \pm 2.5 \cdot 10^{-6} \) | \(a_{218}= -0.42634181 \pm 6.6 \cdot 10^{-6} \) | \(a_{219}= -1.25406381 \pm 3.6 \cdot 10^{-6} \) |
\(a_{220}= -0.16906092 \pm 1.9 \cdot 10^{-6} \) | \(a_{221}= +0.37364168 \pm 3.0 \cdot 10^{-6} \) | \(a_{222}= +0.81345491 \pm 2.4 \cdot 10^{-6} \) |
\(a_{223}= -1.10540325 \pm 3.5 \cdot 10^{-6} \) | \(a_{224}= -0.29634611 \pm 4.0 \cdot 10^{-6} \) | \(a_{225}= -0.92399104 \pm 1.5 \cdot 10^{-6} \) |
\(a_{226}= -0.75792484 \pm 4.5 \cdot 10^{-6} \) | \(a_{227}= +1.59843582 \pm 2.0 \cdot 10^{-6} \) | \(a_{228}= -0.69310587 \pm 1.1 \cdot 10^{-6} \) |
\(a_{229}= -1.55726910 \pm 3.5 \cdot 10^{-6} \) | \(a_{230}= -0.22534245 \pm 2.4 \cdot 10^{-6} \) | \(a_{231}= +0.87409654 \pm 5.9 \cdot 10^{-6} \) |
\(a_{232}= +0.86608830 \pm 2.8 \cdot 10^{-6} \) | \(a_{233}= +0.39077761 \pm 2.3 \cdot 10^{-6} \) | \(a_{234}= -0.51290842 \pm 2.5 \cdot 10^{-6} \) |
\(a_{235}= +0.00193644 \pm 3.6 \cdot 10^{-6} \) | \(a_{236}= +0.68325324 \pm 4.0 \cdot 10^{-6} \) | \(a_{237}= +1.36737051 \pm 2.7 \cdot 10^{-6} \) |
\(a_{238}= +0.15485037 \pm 7.2 \cdot 10^{-6} \) | \(a_{239}= -0.12761555 \pm 4.4 \cdot 10^{-6} \) | \(a_{240}= +0.13275834 \pm 2.1 \cdot 10^{-6} \) |
\(a_{241}= +0.65070739 \pm 3.3 \cdot 10^{-6} \) | \(a_{242}= +1.28698058 \pm 3.7 \cdot 10^{-6} \) | \(a_{243}= -1.40698299 \pm 2.8 \cdot 10^{-6} \) |
\(a_{244}= +0.40051973 \pm 2.1 \cdot 10^{-6} \) | \(a_{245}= -0.03444580 \pm 3.3 \cdot 10^{-6} \) | \(a_{246}= +0.07193915 \pm 3.7 \cdot 10^{-6} \) |
\(a_{247}= -0.79686562 \pm 1.7 \cdot 10^{-6} \) | \(a_{248}= +0.84775610 \pm 1.3 \cdot 10^{-6} \) | \(a_{249}= +0.60544160 \pm 2.1 \cdot 10^{-6} \) |
\(a_{250}= +0.35451514 \pm 3.0 \cdot 10^{-6} \) | \(a_{251}= -0.26311366 \pm 4.4 \cdot 10^{-6} \) | \(a_{252}= +0.15822595 \pm 5.7 \cdot 10^{-6} \) |
\(a_{253}= -2.02810078 \pm 2.4 \cdot 10^{-6} \) | \(a_{254}= -0.92345222 \pm 4.9 \cdot 10^{-6} \) | \(a_{255}= +0.18363624 \pm 1.9 \cdot 10^{-6} \) |
\(a_{256}= -1.01390177 \pm 4.3 \cdot 10^{-6} \) | \(a_{257}= +0.24273445 \pm 4.9 \cdot 10^{-6} \) | \(a_{258}= -1.46068551 \pm 2.5 \cdot 10^{-6} \) |
\(a_{259}= -0.28850734 \pm 3.1 \cdot 10^{-6} \) | \(a_{260}= -0.07104875 \pm 1.8 \cdot 10^{-6} \) | \(a_{261}= -0.78654076 \pm 2.5 \cdot 10^{-6} \) |
\(a_{262}= -0.70324022 \pm 3.1 \cdot 10^{-6} \) | \(a_{263}= +1.31338054 \pm 3.1 \cdot 10^{-6} \) | \(a_{264}= +2.49821819 \pm 2.1 \cdot 10^{-6} \) |
\(a_{265}= -0.22546900 \pm 1.9 \cdot 10^{-6} \) | \(a_{266}= -0.33024938 \pm 7.9 \cdot 10^{-6} \) | \(a_{267}= +2.64788462 \pm 2.5 \cdot 10^{-6} \) |
\(a_{268}= -0.60671583 \pm 3.6 \cdot 10^{-6} \) | \(a_{269}= -0.33902214 \pm 6.4 \cdot 10^{-6} \) | \(a_{270}= +0.00487523 \pm 2.3 \cdot 10^{-6} \) |
\(a_{271}= -0.51273336 \pm 4.4 \cdot 10^{-6} \) | \(a_{272}= +0.21167090 \pm 2.6 \cdot 10^{-6} \) | \(a_{273}= +0.36734373 \pm 6.5 \cdot 10^{-6} \) |
\(a_{274}= -1.13043560 \pm 2.6 \cdot 10^{-6} \) | \(a_{275}= +1.54756878 \pm 1.6 \cdot 10^{-6} \) | \(a_{276}= -0.74133969 \pm 2.3 \cdot 10^{-6} \) |
\(a_{277}= -1.28437204 \pm 2.6 \cdot 10^{-6} \) | \(a_{278}= +1.12348932 \pm 2.6 \cdot 10^{-6} \) | \(a_{279}= -0.76989232 \pm 1.4 \cdot 10^{-6} \) |
\(a_{280}= -0.09844807 \pm 6.3 \cdot 10^{-6} \) | \(a_{281}= -0.35636396 \pm 4.8 \cdot 10^{-6} \) | \(a_{282}= -0.00855848 \pm 2.7 \cdot 10^{-6} \) |
\(a_{283}= +1.34077093 \pm 3.8 \cdot 10^{-6} \) | \(a_{284}= -0.48825517 \pm 2.2 \cdot 10^{-6} \) | \(a_{285}= -0.39164101 \pm 1.1 \cdot 10^{-6} \) |
\(a_{286}= +0.85905710 \pm 1.7 \cdot 10^{-6} \) | \(a_{287}= -0.02551460 \pm 4.1 \cdot 10^{-6} \) | \(a_{288}= +0.76918226 \pm 2.2 \cdot 10^{-6} \) |
\(a_{289}= -0.70720898 \pm 3.3 \cdot 10^{-6} \) | \(a_{290}= +0.14637163 \pm 2.6 \cdot 10^{-6} \) | \(a_{291}= +0.73966189 \pm 4.5 \cdot 10^{-6} \) |
\(a_{292}= +0.38020703 \pm 3.4 \cdot 10^{-6} \) | \(a_{293}= +0.12848472 \pm 4.7 \cdot 10^{-6} \) | \(a_{294}= +0.15224027 \pm 7.7 \cdot 10^{-6} \) |
\(a_{295}= +0.38607376 \pm 2.2 \cdot 10^{-6} \) | \(a_{296}= -0.82457059 \pm 2.8 \cdot 10^{-6} \) | \(a_{297}= +0.04387750 \pm 1.9 \cdot 10^{-6} \) |
\(a_{298}= -1.40368968 \pm 7.0 \cdot 10^{-6} \) | \(a_{299}= -0.85232016 \pm 3.9 \cdot 10^{-6} \) | \(a_{300}= +0.56568893 \pm 2.0 \cdot 10^{-6} \) |
\(a_{301}= +0.51806006 \pm 2.4 \cdot 10^{-6} \) | \(a_{302}= +0.25387844 \pm 3.2 \cdot 10^{-6} \) | \(a_{303}= -0.87644424 \pm 2.9 \cdot 10^{-6} \) |
\(a_{304}= -0.45143054 \pm 2.5 \cdot 10^{-6} \) | \(a_{305}= +0.22631456 \pm 2.5 \cdot 10^{-6} \) | \(a_{306}= -0.40192245 \pm 2.2 \cdot 10^{-6} \) |
\(a_{307}= -0.85975523 \pm 3.9 \cdot 10^{-6} \) | \(a_{308}= -0.26500856 \pm 5.6 \cdot 10^{-6} \) | \(a_{309}= -1.17731045 \pm 3.6 \cdot 10^{-6} \) |
\(a_{310}= +0.14327343 \pm 2.6 \cdot 10^{-6} \) | \(a_{311}= +0.01585364 \pm 2.8 \cdot 10^{-6} \) | \(a_{312}= +1.04988950 \pm 9.1 \cdot 10^{-7} \) |
\(a_{313}= +0.16813309 \pm 5.0 \cdot 10^{-6} \) | \(a_{314}= +0.04662379 \pm 4.3 \cdot 10^{-6} \) | \(a_{315}= +0.08940592 \pm 6.2 \cdot 10^{-6} \) |
\(a_{316}= -0.41455935 \pm 2.0 \cdot 10^{-6} \) | \(a_{317}= +0.97431906 \pm 2.9 \cdot 10^{-6} \) | \(a_{318}= +0.99650649 \pm 2.0 \cdot 10^{-6} \) |
\(a_{319}= +1.31735685 \pm 2.7 \cdot 10^{-6} \) | \(a_{320}= -0.23746407 \pm 3.2 \cdot 10^{-6} \) | \(a_{321}= +0.12874618 \pm 2.4 \cdot 10^{-6} \) |
\(a_{322}= -0.35323171 \pm 8.8 \cdot 10^{-6} \) | \(a_{323}= -0.62443541 \pm 8.8 \cdot 10^{-7} \) | \(a_{324}= +0.43466523 \pm 2.0 \cdot 10^{-6} \) |
\(a_{325}= +0.65037402 \pm 2.4 \cdot 10^{-6} \) | \(a_{326}= +0.32666220 \pm 4.5 \cdot 10^{-6} \) | \(a_{327}= -0.79253920 \pm 3.8 \cdot 10^{-6} \) |
\(a_{328}= -0.07292219 \pm 2.9 \cdot 10^{-6} \) | \(a_{329}= +0.00303543 \pm 3.7 \cdot 10^{-6} \) | \(a_{330}= +0.42220668 \pm 1.8 \cdot 10^{-6} \) |
\(a_{331}= +0.94662360 \pm 5.5 \cdot 10^{-6} \) | \(a_{332}= -0.18355777 \pm 1.2 \cdot 10^{-6} \) | \(a_{333}= +0.74883632 \pm 3.1 \cdot 10^{-6} \) |
\(a_{334}= -0.80497970 \pm 3.0 \cdot 10^{-6} \) | \(a_{335}= -0.34282612 \pm 3.5 \cdot 10^{-6} \) | \(a_{336}= +0.20810307 \pm 7.0 \cdot 10^{-6} \) |
\(a_{337}= -1.36750730 \pm 4.1 \cdot 10^{-6} \) | \(a_{338}= -0.39612747 \pm 2.8 \cdot 10^{-6} \) | \(a_{339}= -1.40892854 \pm 3.3 \cdot 10^{-6} \) |
\(a_{340}= -0.05567483 \pm 1.9 \cdot 10^{-6} \) | \(a_{341}= +1.28947281 \pm 1.4 \cdot 10^{-6} \) | \(a_{342}= +0.85718002 \pm 2.4 \cdot 10^{-6} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +1.48064545 \pm 1.9 \cdot 10^{-6} \) | \(a_{345}= -0.41889563 \pm 1.9 \cdot 10^{-6} \) |
\(a_{346}= -0.28846777 \pm 3.1 \cdot 10^{-6} \) | \(a_{347}= -1.07785876 \pm 2.3 \cdot 10^{-6} \) | \(a_{348}= +0.48153865 \pm 1.4 \cdot 10^{-6} \) |
\(a_{349}= -1.89520279 \pm 4.1 \cdot 10^{-6} \) | \(a_{350}= +0.26953807 \pm 7.8 \cdot 10^{-6} \) | \(a_{351}= +0.01843976 \pm 2.6 \cdot 10^{-6} \) |
\(a_{352}= -1.28828355 \pm 2.3 \cdot 10^{-6} \) | \(a_{353}= +0.99421958 \pm 4.7 \cdot 10^{-6} \) | \(a_{354}= -1.70633215 \pm 5.3 \cdot 10^{-6} \) |
\(a_{355}= -0.27588967 \pm 2.5 \cdot 10^{-6} \) | \(a_{356}= -0.80278559 \pm 1.8 \cdot 10^{-6} \) | \(a_{357}= +0.28785585 \pm 5.6 \cdot 10^{-6} \) |
\(a_{358}= +0.60673766 \pm 3.0 \cdot 10^{-6} \) | \(a_{359}= +0.86383918 \pm 3.0 \cdot 10^{-6} \) | \(a_{360}= +0.25552727 \pm 2.7 \cdot 10^{-6} \) |
\(a_{361}= +0.33173343 \pm 3.5 \cdot 10^{-6} \) | \(a_{362}= +0.54129620 \pm 6.2 \cdot 10^{-6} \) | \(a_{363}= +2.39240565 \pm 2.6 \cdot 10^{-6} \) |
\(a_{364}= -0.11137126 \pm 6.2 \cdot 10^{-6} \) | \(a_{365}= +0.21483683 \pm 2.5 \cdot 10^{-6} \) | \(a_{366}= -1.00024361 \pm 2.7 \cdot 10^{-6} \) |
\(a_{367}= -0.10662358 \pm 3.6 \cdot 10^{-6} \) | \(a_{368}= -0.48284597 \pm 4.3 \cdot 10^{-6} \) | \(a_{369}= +0.06622451 \pm 2.6 \cdot 10^{-6} \) |
\(a_{370}= -0.13935501 \pm 2.3 \cdot 10^{-6} \) | \(a_{371}= -0.35343009 \pm 2.5 \cdot 10^{-6} \) | \(a_{372}= +0.47134609 \pm 2.1 \cdot 10^{-6} \) |
\(a_{373}= +1.06468736 \pm 4.9 \cdot 10^{-6} \) | \(a_{374}= +0.67316956 \pm 1.7 \cdot 10^{-6} \) | \(a_{375}= +0.65901852 \pm 2.3 \cdot 10^{-6} \) |
\(a_{376}= +0.00867543 \pm 3.2 \cdot 10^{-6} \) | \(a_{377}= +0.55362623 \pm 2.1 \cdot 10^{-6} \) | \(a_{378}= +0.00764209 \pm 8.0 \cdot 10^{-6} \) |
\(a_{379}= +0.62027603 \pm 5.2 \cdot 10^{-6} \) | \(a_{380}= +0.11873771 \pm 1.4 \cdot 10^{-6} \) | \(a_{381}= -1.71663220 \pm 2.9 \cdot 10^{-6} \) |
\(a_{382}= -0.82636090 \pm 2.2 \cdot 10^{-6} \) | \(a_{383}= +0.46068534 \pm 2.0 \cdot 10^{-6} \) | \(a_{384}= -0.05403251 \pm 1.9 \cdot 10^{-6} \) |
\(a_{385}= -0.14974368 \pm 6.1 \cdot 10^{-6} \) | \(a_{386}= -0.67396273 \pm 4.8 \cdot 10^{-6} \) | \(a_{387}= -1.34465273 \pm 2.0 \cdot 10^{-6} \) |
\(a_{388}= -0.22425067 \pm 3.7 \cdot 10^{-6} \) | \(a_{389}= +0.20876885 \pm 1.8 \cdot 10^{-6} \) | \(a_{390}= +0.17743461 \pm 3.1 \cdot 10^{-6} \) |
\(a_{391}= -0.66789039 \pm 3.0 \cdot 10^{-6} \) | \(a_{392}= -0.15432060 \pm 3.0 \cdot 10^{-6} \) | \(a_{393}= -1.30727371 \pm 2.5 \cdot 10^{-6} \) |
\(a_{394}= +0.60329967 \pm 3.1 \cdot 10^{-6} \) | \(a_{395}= -0.23424768 \pm 3.2 \cdot 10^{-6} \) | \(a_{396}= +0.68784398 \pm 1.8 \cdot 10^{-6} \) |
\(a_{397}= +1.25425975 \pm 3.3 \cdot 10^{-6} \) | \(a_{398}= -0.44056913 \pm 6.8 \cdot 10^{-6} \) | \(a_{399}= -0.61391019 \pm 6.3 \cdot 10^{-6} \) |
\(a_{400}= +0.36844192 \pm 3.2 \cdot 10^{-6} \) | \(a_{401}= -0.92567249 \pm 3.5 \cdot 10^{-6} \) | \(a_{402}= +1.51519036 \pm 4.6 \cdot 10^{-6} \) |
\(a_{403}= +0.54190782 \pm 2.3 \cdot 10^{-6} \) | \(a_{404}= +0.26572034 \pm 2.7 \cdot 10^{-6} \) | \(a_{405}= +0.24560855 \pm 3.1 \cdot 10^{-6} \) |
\(a_{406}= +0.22944235 \pm 7.7 \cdot 10^{-6} \) | \(a_{407}= -1.25420666 \pm 3.2 \cdot 10^{-6} \) | \(a_{408}= +0.82270859 \pm 1.1 \cdot 10^{-6} \) |
\(a_{409}= -0.09907187 \pm 3.4 \cdot 10^{-6} \) | \(a_{410}= -0.01232408 \pm 3.0 \cdot 10^{-6} \) | \(a_{411}= -2.10139963 \pm 1.9 \cdot 10^{-6} \) |
\(a_{412}= +0.35693695 \pm 3.6 \cdot 10^{-6} \) | \(a_{413}= +0.60518334 \pm 5.0 \cdot 10^{-6} \) | \(a_{414}= +0.91683190 \pm 2.9 \cdot 10^{-6} \) |
\(a_{415}= -0.10371972 \pm 2.8 \cdot 10^{-6} \) | \(a_{416}= -0.54140802 \pm 3.4 \cdot 10^{-6} \) | \(a_{417}= +2.08848699 \pm 2.9 \cdot 10^{-6} \) |
\(a_{418}= -1.43566874 \pm 2.8 \cdot 10^{-6} \) | \(a_{419}= -0.62693443 \pm 5.3 \cdot 10^{-6} \) | \(a_{420}= -0.05473640 \pm 9.2 \cdot 10^{-6} \) |
\(a_{421}= +0.22049922 \pm 3.9 \cdot 10^{-6} \) | \(a_{422}= -0.54972141 \pm 2.6 \cdot 10^{-6} \) | \(a_{423}= -0.00787862 \pm 2.7 \cdot 10^{-6} \) |
\(a_{424}= -1.01012353 \pm 2.1 \cdot 10^{-6} \) | \(a_{425}= +0.50964249 \pm 1.6 \cdot 10^{-6} \) | \(a_{426}= +1.21935096 \pm 2.7 \cdot 10^{-6} \) |
\(a_{427}= +0.35475553 \pm 3.6 \cdot 10^{-6} \) | \(a_{428}= -0.03903326 \pm 1.8 \cdot 10^{-6} \) | \(a_{429}= +1.59692624 \pm 9.4 \cdot 10^{-7} \) |
\(a_{430}= +0.25023371 \pm 2.8 \cdot 10^{-6} \) | \(a_{431}= -0.83158673 \pm 2.0 \cdot 10^{-6} \) | \(a_{432}= +0.01044626 \pm 3.6 \cdot 10^{-6} \) |
\(a_{433}= +0.05911445 \pm 3.2 \cdot 10^{-6} \) | \(a_{434}= +0.22458583 \pm 7.2 \cdot 10^{-6} \) | \(a_{435}= +0.27209448 \pm 1.2 \cdot 10^{-6} \) |
\(a_{436}= +0.24028201 \pm 3.7 \cdot 10^{-6} \) | \(a_{437}= +1.42440987 \pm 2.4 \cdot 10^{-6} \) | \(a_{438}= -0.94951541 \pm 4.7 \cdot 10^{-6} \) |
\(a_{439}= -0.35275352 \pm 5.7 \cdot 10^{-6} \) | \(a_{440}= -0.42797604 \pm 3.0 \cdot 10^{-6} \) | \(a_{441}= +0.14014673 \pm 2.9 \cdot 10^{-6} \) |
\(a_{442}= +0.28290309 \pm 3.4 \cdot 10^{-6} \) | \(a_{443}= +0.94470119 \pm 4.0 \cdot 10^{-6} \) | \(a_{444}= -0.45845511 \pm 1.9 \cdot 10^{-6} \) |
\(a_{445}= -0.45361578 \pm 3.3 \cdot 10^{-6} \) | \(a_{446}= -0.83695695 \pm 3.4 \cdot 10^{-6} \) | \(a_{447}= -2.60935960 \pm 4.3 \cdot 10^{-6} \) |
\(a_{448}= -0.37223276 \pm 3.2 \cdot 10^{-6} \) | \(a_{449}= +0.40409783 \pm 4.5 \cdot 10^{-6} \) | \(a_{450}= -0.69960055 \pm 1.6 \cdot 10^{-6} \) |
\(a_{451}= -0.11091772 \pm 2.6 \cdot 10^{-6} \) | \(a_{452}= +0.42715892 \pm 3.0 \cdot 10^{-6} \) | \(a_{453}= +0.47194201 \pm 2.2 \cdot 10^{-6} \) |
\(a_{454}= +1.21025695 \pm 2.5 \cdot 10^{-6} \) | \(a_{455}= -0.06293058 \pm 6.7 \cdot 10^{-6} \) | \(a_{456}= -1.75459063 \pm 1.2 \cdot 10^{-6} \) |
\(a_{457}= -1.10320079 \pm 4.4 \cdot 10^{-6} \) | \(a_{458}= -1.17908754 \pm 4.3 \cdot 10^{-6} \) | \(a_{459}= +0.01444966 \pm 1.7 \cdot 10^{-6} \) |
\(a_{460}= +0.12700077 \pm 1.2 \cdot 10^{-6} \) | \(a_{461}= +0.59410706 \pm 3.8 \cdot 10^{-6} \) | \(a_{462}= +0.66182289 \pm 1.0 \cdot 10^{-5} \) |
\(a_{463}= +0.23971875 \pm 3.2 \cdot 10^{-6} \) | \(a_{464}= +0.31363355 \pm 2.5 \cdot 10^{-6} \) | \(a_{465}= +0.26633515 \pm 2.2 \cdot 10^{-6} \) |
\(a_{466}= +0.29587758 \pm 2.9 \cdot 10^{-6} \) | \(a_{467}= +0.87589790 \pm 3.7 \cdot 10^{-6} \) | \(a_{468}= +0.28907010 \pm 9.6 \cdot 10^{-7} \) |
\(a_{469}= -0.53739125 \pm 4.6 \cdot 10^{-6} \) | \(a_{470}= +0.00146617 \pm 3.0 \cdot 10^{-6} \) | \(a_{471}= +0.08667032 \pm 2.2 \cdot 10^{-6} \) |
\(a_{472}= +1.72964879 \pm 2.1 \cdot 10^{-6} \) | \(a_{473}= +2.25212421 \pm 1.3 \cdot 10^{-6} \) | \(a_{474}= +1.03530566 \pm 3.5 \cdot 10^{-6} \) |
\(a_{475}= -1.08691455 \pm 1.6 \cdot 10^{-6} \) | \(a_{476}= -0.08727213 \pm 5.3 \cdot 10^{-6} \) | \(a_{477}= +0.91734680 \pm 2.4 \cdot 10^{-6} \) |
\(a_{478}= -0.09662422 \pm 5.4 \cdot 10^{-6} \) | \(a_{479}= -1.47118686 \pm 5.2 \cdot 10^{-6} \) | \(a_{480}= -0.26608951 \pm 2.7 \cdot 10^{-6} \) |
\(a_{481}= -0.52708703 \pm 1.5 \cdot 10^{-6} \) | \(a_{482}= +0.49268362 \pm 3.8 \cdot 10^{-6} \) | \(a_{483}= -0.65663271 \pm 7.2 \cdot 10^{-6} \) |
\(a_{484}= -0.72532948 \pm 2.4 \cdot 10^{-6} \) | \(a_{485}= -0.12671334 \pm 4.5 \cdot 10^{-6} \) | \(a_{486}= -1.06529829 \pm 3.1 \cdot 10^{-6} \) |
\(a_{487}= -0.88165002 \pm 4.1 \cdot 10^{-6} \) | \(a_{488}= +1.01391172 \pm 2.8 \cdot 10^{-6} \) | \(a_{489}= +0.60724187 \pm 3.5 \cdot 10^{-6} \) |
\(a_{490}= -0.02608066 \pm 7.9 \cdot 10^{-6} \) | \(a_{491}= +0.79132773 \pm 4.0 \cdot 10^{-6} \) | \(a_{492}= -0.04054419 \pm 2.2 \cdot 10^{-6} \) |
\(a_{493}= +0.43382952 \pm 1.7 \cdot 10^{-6} \) | \(a_{494}= -0.60334744 \pm 1.9 \cdot 10^{-6} \) | \(a_{495}= +0.38866776 \pm 2.5 \cdot 10^{-6} \) |
\(a_{496}= +0.30699498 \pm 2.6 \cdot 10^{-6} \) | \(a_{497}= -0.43246614 \pm 2.7 \cdot 10^{-6} \) | \(a_{498}= +0.45841059 \pm 2.1 \cdot 10^{-6} \) |
\(a_{499}= -0.22896810 \pm 2.8 \cdot 10^{-6} \) | \(a_{500}= -0.19980122 \pm 1.7 \cdot 10^{-6} \) | \(a_{501}= -1.49640020 \pm 1.6 \cdot 10^{-6} \) |
\(a_{502}= -0.19921672 \pm 4.8 \cdot 10^{-6} \) | \(a_{503}= +0.80791553 \pm 2.5 \cdot 10^{-6} \) | \(a_{504}= +0.40054742 \pm 5.9 \cdot 10^{-6} \) |
\(a_{505}= +0.15014587 \pm 2.4 \cdot 10^{-6} \) | \(a_{506}= -1.53557812 \pm 2.3 \cdot 10^{-6} \) | \(a_{507}= -0.73637289 \pm 2.1 \cdot 10^{-6} \) |
\(a_{508}= +0.52044850 \pm 3.1 \cdot 10^{-6} \) | \(a_{509}= -1.23759061 \pm 1.9 \cdot 10^{-6} \) | \(a_{510}= +0.13904032 \pm 2.6 \cdot 10^{-6} \) |
\(a_{511}= +0.33676380 \pm 4.4 \cdot 10^{-6} \) | \(a_{512}= -0.72928726 \pm 4.2 \cdot 10^{-6} \) | \(a_{513}= -0.03081679 \pm 2.2 \cdot 10^{-6} \) |
\(a_{514}= +0.18378658 \pm 5.4 \cdot 10^{-6} \) | \(a_{515}= +0.20168802 \pm 2.5 \cdot 10^{-6} \) | \(a_{516}= +0.82322786 \pm 1.7 \cdot 10^{-6} \) |
\(a_{517}= +0.01319569 \pm 2.9 \cdot 10^{-6} \) | \(a_{518}= -0.21844357 \pm 7.8 \cdot 10^{-6} \) | \(a_{519}= -0.53624114 \pm 3.0 \cdot 10^{-6} \) |
\(a_{520}= -0.17985921 \pm 1.9 \cdot 10^{-6} \) | \(a_{521}= +1.68748365 \pm 3.9 \cdot 10^{-6} \) | \(a_{522}= -0.59552996 \pm 2.2 \cdot 10^{-6} \) |
\(a_{523}= -0.59667230 \pm 3.7 \cdot 10^{-6} \) | \(a_{524}= +0.39633921 \pm 2.1 \cdot 10^{-6} \) | \(a_{525}= +0.50105216 \pm 6.2 \cdot 10^{-6} \) |
\(a_{526}= +0.99442712 \pm 3.7 \cdot 10^{-6} \) | \(a_{527}= +0.42464680 \pm 1.8 \cdot 10^{-6} \) | \(a_{528}= +0.90467108 \pm 1.1 \cdot 10^{-6} \) |
\(a_{529}= +0.52353573 \pm 2.8 \cdot 10^{-6} \) | \(a_{530}= -0.17071403 \pm 1.7 \cdot 10^{-6} \) | \(a_{531}= -1.57078589 \pm 2.4 \cdot 10^{-6} \) |
\(a_{532}= +0.18612527 \pm 6.0 \cdot 10^{-6} \) | \(a_{533}= -0.04661376 \pm 3.4 \cdot 10^{-6} \) | \(a_{534}= +2.00484795 \pm 2.6 \cdot 10^{-6} \) |
\(a_{535}= -0.02205583 \pm 3.3 \cdot 10^{-6} \) | \(a_{536}= -1.53589509 \pm 3.2 \cdot 10^{-6} \) | \(a_{537}= +1.12788229 \pm 2.9 \cdot 10^{-6} \) |
\(a_{538}= -0.25669088 \pm 7.9 \cdot 10^{-6} \) | \(a_{539}= -0.23472815 \pm 2.8 \cdot 10^{-6} \) | \(a_{540}= -0.00274763 \pm 1.5 \cdot 10^{-6} \) |
\(a_{541}= -0.22521685 \pm 3.7 \cdot 10^{-6} \) | \(a_{542}= -0.38821647 \pm 4.0 \cdot 10^{-6} \) | \(a_{543}= +1.00623126 \pm 3.9 \cdot 10^{-6} \) |
\(a_{544}= -0.42425515 \pm 2.1 \cdot 10^{-6} \) | \(a_{545}= +0.13577188 \pm 4.9 \cdot 10^{-6} \) | \(a_{546}= +0.27813459 \pm 1.1 \cdot 10^{-5} \) |
\(a_{547}= +0.08585807 \pm 2.6 \cdot 10^{-6} \) | \(a_{548}= +0.63710228 \pm 1.5 \cdot 10^{-6} \) | \(a_{549}= -0.92078705 \pm 2.9 \cdot 10^{-6} \) |
\(a_{550}= +1.17174293 \pm 1.8 \cdot 10^{-6} \) | \(a_{551}= -0.92522823 \pm 3.5 \cdot 10^{-6} \) | \(a_{552}= -1.87669405 \pm 1.9 \cdot 10^{-6} \) |
\(a_{553}= -0.36719096 \pm 2.7 \cdot 10^{-6} \) | \(a_{554}= -0.97246331 \pm 2.8 \cdot 10^{-6} \) | \(a_{555}= -0.25905108 \pm 2.3 \cdot 10^{-6} \) |
\(a_{556}= -0.63318743 \pm 1.9 \cdot 10^{-6} \) | \(a_{557}= +0.59465421 \pm 4.1 \cdot 10^{-6} \) | \(a_{558}= -0.58292458 \pm 1.4 \cdot 10^{-6} \) |
\(a_{559}= +0.94646720 \pm 3.0 \cdot 10^{-6} \) | \(a_{560}= -0.03565066 \pm 7.2 \cdot 10^{-6} \) | \(a_{561}= +1.25137448 \pm 9.9 \cdot 10^{-7} \) |
\(a_{562}= -0.26982126 \pm 6.2 \cdot 10^{-6} \) | \(a_{563}= -0.22000041 \pm 5.7 \cdot 10^{-6} \) | \(a_{564}= +0.00482347 \pm 1.8 \cdot 10^{-6} \) |
\(a_{565}= +0.24136709 \pm 3.8 \cdot 10^{-6} \) | \(a_{566}= +1.01516577 \pm 3.7 \cdot 10^{-6} \) | \(a_{567}= +0.38499950 \pm 3.0 \cdot 10^{-6} \) |
\(a_{568}= -1.23601312 \pm 2.2 \cdot 10^{-6} \) | \(a_{569}= +0.58894946 \pm 2.7 \cdot 10^{-6} \) | \(a_{570}= -0.29653130 \pm 1.0 \cdot 10^{-6} \) |
\(a_{571}= +1.53943296 \pm 4.1 \cdot 10^{-6} \) | \(a_{572}= -0.48415606 \pm 1.1 \cdot 10^{-6} \) | \(a_{573}= -1.53614634 \pm 1.7 \cdot 10^{-6} \) |
\(a_{574}= -0.01931840 \pm 8.7 \cdot 10^{-6} \) | \(a_{575}= -1.16255383 \pm 3.4 \cdot 10^{-6} \) | \(a_{576}= +0.96615013 \pm 2.6 \cdot 10^{-6} \) |
\(a_{577}= +0.64578023 \pm 2.8 \cdot 10^{-6} \) | \(a_{578}= -0.53546384 \pm 3.6 \cdot 10^{-6} \) | \(a_{579}= -1.25284893 \pm 3.4 \cdot 10^{-6} \) |
\(a_{580}= -0.08249360 \pm 1.5 \cdot 10^{-6} \) | \(a_{581}= -0.16258408 \pm 2.5 \cdot 10^{-6} \) | \(a_{582}= +0.56003559 \pm 5.3 \cdot 10^{-6} \) |
\(a_{583}= -1.53644052 \pm 1.9 \cdot 10^{-6} \) | \(a_{584}= +0.96249032 \pm 2.1 \cdot 10^{-6} \) | \(a_{585}= +0.16333970 \pm 1.8 \cdot 10^{-6} \) |
\(a_{586}= +0.09728231 \pm 5.7 \cdot 10^{-6} \) | \(a_{587}= +0.72030396 \pm 3.6 \cdot 10^{-6} \) | \(a_{588}= -0.08580111 \pm 5.9 \cdot 10^{-6} \) |
\(a_{589}= -0.90564424 \pm 1.3 \cdot 10^{-6} \) | \(a_{590}= +0.29231605 \pm 2.6 \cdot 10^{-6} \) | \(a_{591}= +1.12149132 \pm 2.1 \cdot 10^{-6} \) |
\(a_{592}= -0.29859889 \pm 2.2 \cdot 10^{-6} \) | \(a_{593}= +0.80911105 \pm 5.4 \cdot 10^{-6} \) | \(a_{594}= +0.03322189 \pm 2.1 \cdot 10^{-6} \) |
\(a_{595}= -0.04931331 \pm 5.8 \cdot 10^{-6} \) | \(a_{596}= +0.79110557 \pm 4.2 \cdot 10^{-6} \) | \(a_{597}= -0.81898678 \pm 4.5 \cdot 10^{-6} \) |
\(a_{598}= -0.64533489 \pm 4.6 \cdot 10^{-6} \) | \(a_{599}= -0.72108275 \pm 4.8 \cdot 10^{-6} \) | \(a_{600}= +1.43203590 \pm 2.0 \cdot 10^{-6} \) |
\(a_{601}= +1.51366979 \pm 4.7 \cdot 10^{-6} \) | \(a_{602}= +0.39224958 \pm 7.1 \cdot 10^{-6} \) | \(a_{603}= +1.39482787 \pm 2.9 \cdot 10^{-6} \) |
\(a_{604}= -0.14308337 \pm 1.4 \cdot 10^{-6} \) | \(a_{605}= -0.40984903 \pm 1.9 \cdot 10^{-6} \) | \(a_{606}= -0.66360045 \pm 3.4 \cdot 10^{-6} \) |
\(a_{607}= -0.05467237 \pm 4.4 \cdot 10^{-6} \) | \(a_{608}= +0.90480898 \pm 2.5 \cdot 10^{-6} \) | \(a_{609}= +0.42651707 \pm 6.2 \cdot 10^{-6} \) |
\(a_{610}= +0.17135425 \pm 2.6 \cdot 10^{-6} \) | \(a_{611}= +0.00554556 \pm 2.4 \cdot 10^{-6} \) | \(a_{612}= +0.22651950 \pm 1.1 \cdot 10^{-6} \) |
\(a_{613}= -0.17676576 \pm 3.7 \cdot 10^{-6} \) | \(a_{614}= -0.65096436 \pm 4.2 \cdot 10^{-6} \) | \(a_{615}= -0.02290959 \pm 2.0 \cdot 10^{-6} \) |
\(a_{616}= -0.67086655 \pm 5.8 \cdot 10^{-6} \) | \(a_{617}= -0.85343383 \pm 2.8 \cdot 10^{-6} \) | \(a_{618}= -0.89140155 \pm 4.7 \cdot 10^{-6} \) |
\(a_{619}= -0.08537415 \pm 3.3 \cdot 10^{-6} \) | \(a_{620}= -0.08074748 \pm 2.0 \cdot 10^{-6} \) | \(a_{621}= -0.03296135 \pm 3.6 \cdot 10^{-6} \) |
\(a_{622}= +0.01200359 \pm 3.0 \cdot 10^{-6} \) | \(a_{623}= -0.71105768 \pm 2.9 \cdot 10^{-6} \) | \(a_{624}= +0.38019284 \pm 2.8 \cdot 10^{-6} \) |
\(a_{625}= +0.82896274 \pm 3.6 \cdot 10^{-6} \) | \(a_{626}= +0.12730211 \pm 6.1 \cdot 10^{-6} \) | \(a_{627}= -2.66880640 \pm 1.4 \cdot 10^{-6} \) |
\(a_{628}= -0.02627670 \pm 2.4 \cdot 10^{-6} \) | \(a_{629}= -0.41303302 \pm 1.2 \cdot 10^{-6} \) | \(a_{630}= +0.06769377 \pm 1.0 \cdot 10^{-5} \) |
\(a_{631}= -0.46044680 \pm 4.4 \cdot 10^{-6} \) | \(a_{632}= -1.04945288 \pm 1.9 \cdot 10^{-6} \) | \(a_{633}= -1.02189313 \pm 2.2 \cdot 10^{-6} \) |
\(a_{634}= +0.73770645 \pm 3.5 \cdot 10^{-6} \) | \(a_{635}= +0.29408058 \pm 3.0 \cdot 10^{-6} \) | \(a_{636}= -0.56162117 \pm 1.5 \cdot 10^{-6} \) |
\(a_{637}= -0.09864575 \pm 3.4 \cdot 10^{-6} \) | \(a_{638}= +0.99743779 \pm 2.5 \cdot 10^{-6} \) | \(a_{639}= +1.12248913 \pm 1.9 \cdot 10^{-6} \) |
\(a_{640}= +0.00925644 \pm 2.1 \cdot 10^{-6} \) | \(a_{641}= +0.97866520 \pm 4.5 \cdot 10^{-6} \) | \(a_{642}= +0.09748027 \pm 2.6 \cdot 10^{-6} \) |
\(a_{643}= -1.22968283 \pm 3.3 \cdot 10^{-6} \) | \(a_{644}= +0.19907789 \pm 6.9 \cdot 10^{-6} \) | \(a_{645}= +0.46516672 \pm 2.4 \cdot 10^{-6} \) |
\(a_{646}= -0.47279177 \pm 1.2 \cdot 10^{-6} \) | \(a_{647}= -0.24254903 \pm 4.1 \cdot 10^{-6} \) | \(a_{648}= +1.10035071 \pm 2.6 \cdot 10^{-6} \) |
\(a_{649}= +2.63086881 \pm 2.4 \cdot 10^{-6} \) | \(a_{650}= +0.49243121 \pm 3.1 \cdot 10^{-6} \) | \(a_{651}= +0.41748913 \pm 5.6 \cdot 10^{-6} \) |
\(a_{652}= -0.18410357 \pm 2.9 \cdot 10^{-6} \) | \(a_{653}= +1.03559313 \pm 5.9 \cdot 10^{-6} \) | \(a_{654}= -0.60007168 \pm 4.9 \cdot 10^{-6} \) |
\(a_{655}= +0.22395235 \pm 2.8 \cdot 10^{-6} \) | \(a_{656}= -0.02640706 \pm 4.2 \cdot 10^{-6} \) | \(a_{657}= -0.87408855 \pm 2.2 \cdot 10^{-6} \) |
\(a_{658}= +0.00229828 \pm 8.4 \cdot 10^{-6} \) | \(a_{659}= -0.51187045 \pm 4.5 \cdot 10^{-6} \) | \(a_{660}= -0.23795150 \pm 1.6 \cdot 10^{-6} \) |
\(a_{661}= -0.61937158 \pm 2.6 \cdot 10^{-6} \) | \(a_{662}= +0.71673681 \pm 7.1 \cdot 10^{-6} \) | \(a_{663}= +0.52589679 \pm 2.0 \cdot 10^{-6} \) |
\(a_{664}= -0.46467466 \pm 2.4 \cdot 10^{-6} \) | \(a_{665}= +0.10517050 \pm 6.5 \cdot 10^{-6} \) | \(a_{666}= +0.56698202 \pm 2.3 \cdot 10^{-6} \) |
\(a_{667}= -0.98961563 \pm 2.6 \cdot 10^{-6} \) | \(a_{668}= +0.45367857 \pm 1.8 \cdot 10^{-6} \) | \(a_{669}= -1.55584363 \pm 2.1 \cdot 10^{-6} \) |
\(a_{670}= -0.25957107 \pm 4.0 \cdot 10^{-6} \) | \(a_{671}= +1.54220251 \pm 1.9 \cdot 10^{-6} \) | \(a_{672}= -0.41710408 \pm 7.1 \cdot 10^{-6} \) |
\(a_{673}= +0.78564117 \pm 4.1 \cdot 10^{-6} \) | \(a_{674}= -1.03540924 \pm 4.7 \cdot 10^{-6} \) | \(a_{675}= +0.02515159 \pm 3.0 \cdot 10^{-6} \) |
\(a_{676}= +0.22325351 \pm 1.6 \cdot 10^{-6} \) | \(a_{677}= -0.58587211 \pm 5.0 \cdot 10^{-6} \) | \(a_{678}= -1.06677136 \pm 4.1 \cdot 10^{-6} \) |
\(a_{679}= -0.19862733 \pm 5.6 \cdot 10^{-6} \) | \(a_{680}= -0.14094028 \pm 1.7 \cdot 10^{-6} \) | \(a_{681}= +2.24978187 \pm 2.1 \cdot 10^{-6} \) |
\(a_{682}= +0.97632537 \pm 1.6 \cdot 10^{-6} \) | \(a_{683}= +0.75867546 \pm 4.2 \cdot 10^{-6} \) | \(a_{684}= -0.48309816 \pm 1.3 \cdot 10^{-6} \) |
\(a_{685}= +0.35999606 \pm 3.0 \cdot 10^{-6} \) | \(a_{686}= -0.04088230 \pm 4.6 \cdot 10^{-6} \) | \(a_{687}= -2.19184014 \pm 3.5 \cdot 10^{-6} \) |
\(a_{688}= +0.53618100 \pm 2.5 \cdot 10^{-6} \) | \(a_{689}= -0.64569731 \pm 2.5 \cdot 10^{-6} \) | \(a_{690}= -0.31716716 \pm 1.6 \cdot 10^{-6} \) |
\(a_{691}= -1.33641338 \pm 2.6 \cdot 10^{-6} \) | \(a_{692}= +0.16257757 \pm 1.9 \cdot 10^{-6} \) | \(a_{693}= +0.60924952 \pm 5.7 \cdot 10^{-6} \) |
\(a_{694}= -0.81610162 \pm 2.4 \cdot 10^{-6} \) | \(a_{695}= -0.35778396 \pm 2.1 \cdot 10^{-6} \) | \(a_{696}= +1.21901031 \pm 1.1 \cdot 10^{-6} \) |
\(a_{697}= -0.03652722 \pm 2.4 \cdot 10^{-6} \) | \(a_{698}= -1.43495430 \pm 4.5 \cdot 10^{-6} \) | \(a_{699}= +0.55001545 \pm 2.1 \cdot 10^{-6} \) |
\(a_{700}= -0.15190898 \pm 5.9 \cdot 10^{-6} \) | \(a_{701}= +0.58310179 \pm 2.3 \cdot 10^{-6} \) | \(a_{702}= +0.01396168 \pm 3.5 \cdot 10^{-6} \) |
\(a_{703}= +0.88087553 \pm 3.1 \cdot 10^{-6} \) | \(a_{704}= -1.61817997 \pm 2.6 \cdot 10^{-6} \) | \(a_{705}= +0.00272551 \pm 2.5 \cdot 10^{-6} \) |
\(a_{706}= +0.75277414 \pm 5.6 \cdot 10^{-6} \) | \(a_{707}= +0.23535859 \pm 3.4 \cdot 10^{-6} \) | \(a_{708}= +0.96167187 \pm 3.4 \cdot 10^{-6} \) |
\(a_{709}= -0.38356296 \pm 4.2 \cdot 10^{-6} \) | \(a_{710}= -0.20889008 \pm 2.9 \cdot 10^{-6} \) | \(a_{711}= +0.95306387 \pm 1.9 \cdot 10^{-6} \) |
\(a_{712}= -2.03224374 \pm 2.6 \cdot 10^{-6} \) | \(a_{713}= -0.96866878 \pm 2.4 \cdot 10^{-6} \) | \(a_{714}= +0.21795029 \pm 1.0 \cdot 10^{-5} \) |
\(a_{715}= -0.27357345 \pm 1.3 \cdot 10^{-6} \) | \(a_{716}= -0.34195132 \pm 2.0 \cdot 10^{-6} \) | \(a_{717}= -0.17961757 \pm 3.1 \cdot 10^{-6} \) |
\(a_{718}= +0.65405652 \pm 3.4 \cdot 10^{-6} \) | \(a_{719}= +0.56210003 \pm 2.6 \cdot 10^{-6} \) | \(a_{720}= +0.09253320 \pm 1.8 \cdot 10^{-6} \) |
\(a_{721}= +0.31615261 \pm 4.4 \cdot 10^{-6} \) | \(a_{722}= +0.25117223 \pm 3.8 \cdot 10^{-6} \) | \(a_{723}= +0.91586391 \pm 2.0 \cdot 10^{-6} \) |
\(a_{724}= -0.30506917 \pm 3.8 \cdot 10^{-6} \) | \(a_{725}= +0.75513913 \pm 1.7 \cdot 10^{-6} \) | \(a_{726}= +1.81141184 \pm 3.1 \cdot 10^{-6} \) |
\(a_{727}= +1.70553435 \pm 2.2 \cdot 10^{-6} \) | \(a_{728}= -0.28193524 \pm 6.4 \cdot 10^{-6} \) | \(a_{729}= -0.96170108 \pm 3.7 \cdot 10^{-6} \) |
\(a_{730}= +0.16266387 \pm 3.0 \cdot 10^{-6} \) | \(a_{731}= +0.74166538 \pm 2.6 \cdot 10^{-6} \) | \(a_{732}= +0.56372737 \pm 1.8 \cdot 10^{-6} \) |
\(a_{733}= -0.96681798 \pm 3.6 \cdot 10^{-6} \) | \(a_{734}= -0.08073013 \pm 4.3 \cdot 10^{-6} \) | \(a_{735}= -0.04848211 \pm 6.4 \cdot 10^{-6} \) |
\(a_{736}= +0.96777539 \pm 4.2 \cdot 10^{-6} \) | \(a_{737}= -2.33616126 \pm 3.0 \cdot 10^{-6} \) | \(a_{738}= +0.05014194 \pm 2.8 \cdot 10^{-6} \) |
\(a_{739}= -0.64907864 \pm 3.6 \cdot 10^{-6} \) | \(a_{740}= +0.07853910 \pm 1.3 \cdot 10^{-6} \) | \(a_{741}= -1.12158011 \pm 1.0 \cdot 10^{-6} \) |
\(a_{742}= -0.26759987 \pm 7.2 \cdot 10^{-6} \) | \(a_{743}= -1.58904069 \pm 4.7 \cdot 10^{-6} \) | \(a_{744}= +1.19320794 \pm 1.3 \cdot 10^{-6} \) |
\(a_{745}= +0.44701596 \pm 2.9 \cdot 10^{-6} \) | \(a_{746}= +0.80612888 \pm 6.1 \cdot 10^{-6} \) | \(a_{747}= +0.42199573 \pm 2.3 \cdot 10^{-6} \) |
\(a_{748}= -0.37939168 \pm 1.7 \cdot 10^{-6} \) | \(a_{749}= -0.03457324 \pm 2.8 \cdot 10^{-6} \) | \(a_{750}= +0.49897640 \pm 2.2 \cdot 10^{-6} \) |
\(a_{751}= +0.41647048 \pm 2.6 \cdot 10^{-6} \) | \(a_{752}= +0.00314160 \pm 3.2 \cdot 10^{-6} \) | \(a_{753}= -0.37032975 \pm 2.9 \cdot 10^{-6} \) |
\(a_{754}= +0.41917854 \pm 2.4 \cdot 10^{-6} \) | \(a_{755}= -0.08084957 \pm 3.7 \cdot 10^{-6} \) | \(a_{756}= -0.00430701 \pm 6.2 \cdot 10^{-6} \) |
\(a_{757}= -0.28764046 \pm 2.8 \cdot 10^{-6} \) | \(a_{758}= +0.46964249 \pm 6.1 \cdot 10^{-6} \) | \(a_{759}= -2.85453086 \pm 2.5 \cdot 10^{-6} \) |
\(a_{760}= +0.30058333 \pm 3.5 \cdot 10^{-6} \) | \(a_{761}= +1.29404853 \pm 3.8 \cdot 10^{-6} \) | \(a_{762}= -1.29974943 \pm 3.8 \cdot 10^{-6} \) |
\(a_{763}= +0.21282690 \pm 5.8 \cdot 10^{-6} \) | \(a_{764}= +0.46572880 \pm 1.9 \cdot 10^{-6} \) | \(a_{765}= +0.12799535 \pm 1.6 \cdot 10^{-6} \) |
\(a_{766}= +0.34880827 \pm 1.7 \cdot 10^{-6} \) | \(a_{767}= +1.10563663 \pm 4.1 \cdot 10^{-6} \) | \(a_{768}= -1.42705625 \pm 3.6 \cdot 10^{-6} \) |
\(a_{769}= +0.39668711 \pm 4.0 \cdot 10^{-6} \) | \(a_{770}= -0.11337854 \pm 1.0 \cdot 10^{-5} \) | \(a_{771}= +0.34164622 \pm 2.9 \cdot 10^{-6} \) |
\(a_{772}= +0.37983870 \pm 2.5 \cdot 10^{-6} \) | \(a_{773}= -0.79172054 \pm 4.4 \cdot 10^{-6} \) | \(a_{774}= -1.01810488 \pm 2.0 \cdot 10^{-6} \) |
\(a_{775}= +0.73915536 \pm 2.1 \cdot 10^{-6} \) | \(a_{776}= -0.56768835 \pm 4.0 \cdot 10^{-6} \) | \(a_{777}= -0.40607110 \pm 6.2 \cdot 10^{-6} \) |
\(a_{778}= +0.15806950 \pm 2.0 \cdot 10^{-6} \) | \(a_{779}= +0.07790160 \pm 3.3 \cdot 10^{-6} \) | \(a_{780}= -0.10000038 \pm 2.0 \cdot 10^{-6} \) |
\(a_{781}= -1.88002812 \pm 2.1 \cdot 10^{-6} \) | \(a_{782}= -0.50569374 \pm 3.3 \cdot 10^{-6} \) | \(a_{783}= +0.02141011 \pm 2.2 \cdot 10^{-6} \) |
\(a_{784}= -0.05588358 \pm 3.9 \cdot 10^{-6} \) | \(a_{785}= -0.01484771 \pm 4.3 \cdot 10^{-6} \) | \(a_{786}= -0.98980333 \pm 2.4 \cdot 10^{-6} \) |
\(a_{787}= -0.15419759 \pm 4.1 \cdot 10^{-6} \) | \(a_{788}= -0.34001371 \pm 1.7 \cdot 10^{-6} \) | \(a_{789}= +1.84856952 \pm 2.6 \cdot 10^{-6} \) |
\(a_{790}= -0.17736082 \pm 4.0 \cdot 10^{-6} \) | \(a_{791}= +0.37835087 \pm 3.7 \cdot 10^{-6} \) | \(a_{792}= +1.74127019 \pm 2.9 \cdot 10^{-6} \) |
\(a_{793}= +0.64811882 \pm 4.1 \cdot 10^{-6} \) | \(a_{794}= +0.94966377 \pm 3.5 \cdot 10^{-6} \) | \(a_{795}= -0.31734529 \pm 1.9 \cdot 10^{-6} \) |
\(a_{796}= +0.24830039 \pm 4.0 \cdot 10^{-6} \) | \(a_{797}= +1.74256078 \pm 3.7 \cdot 10^{-6} \) | \(a_{798}= -0.46482259 \pm 1.1 \cdot 10^{-5} \) |
\(a_{799}= +0.00434558 \pm 1.8 \cdot 10^{-6} \) | \(a_{800}= -0.73847364 \pm 3.5 \cdot 10^{-6} \) | \(a_{801}= +1.84558842 \pm 2.2 \cdot 10^{-6} \) |
\(a_{802}= -0.70087366 \pm 3.5 \cdot 10^{-6} \) | \(a_{803}= +1.46398840 \pm 2.2 \cdot 10^{-6} \) | \(a_{804}= -0.85394625 \pm 3.0 \cdot 10^{-6} \) |
\(a_{805}= +0.11248940 \pm 7.4 \cdot 10^{-6} \) | \(a_{806}= +0.41030594 \pm 3.0 \cdot 10^{-6} \) | \(a_{807}= -0.47717015 \pm 4.9 \cdot 10^{-6} \) |
\(a_{808}= +0.67266840 \pm 2.4 \cdot 10^{-6} \) | \(a_{809}= +0.24183510 \pm 3.5 \cdot 10^{-6} \) | \(a_{810}= +0.18596271 \pm 3.4 \cdot 10^{-6} \) |
\(a_{811}= +1.11660213 \pm 3.8 \cdot 10^{-6} \) | \(a_{812}= -0.12931143 \pm 5.9 \cdot 10^{-6} \) | \(a_{813}= -0.72166689 \pm 1.6 \cdot 10^{-6} \) |
\(a_{814}= -0.94962357 \pm 2.3 \cdot 10^{-6} \) | \(a_{815}= -0.10402813 \pm 2.8 \cdot 10^{-6} \) | \(a_{816}= +0.29792461 \pm 1.8 \cdot 10^{-6} \) |
\(a_{817}= -1.58174977 \pm 5.8 \cdot 10^{-7} \) | \(a_{818}= -0.07501234 \pm 3.3 \cdot 10^{-6} \) | \(a_{819}= +0.25604036 \pm 6.3 \cdot 10^{-6} \) |
\(a_{820}= +0.00694573 \pm 1.9 \cdot 10^{-6} \) | \(a_{821}= -0.32689827 \pm 2.7 \cdot 10^{-6} \) | \(a_{822}= -1.59107640 \pm 2.4 \cdot 10^{-6} \) |
\(a_{823}= -0.61352034 \pm 2.7 \cdot 10^{-6} \) | \(a_{824}= +0.90358235 \pm 2.2 \cdot 10^{-6} \) | \(a_{825}= +2.17818704 \pm 1.6 \cdot 10^{-6} \) |
\(a_{826}= +0.45821504 \pm 9.7 \cdot 10^{-6} \) | \(a_{827}= -1.35492310 \pm 3.3 \cdot 10^{-6} \) | \(a_{828}= -0.51671736 \pm 1.4 \cdot 10^{-6} \) |
\(a_{829}= -1.49510460 \pm 4.0 \cdot 10^{-6} \) | \(a_{830}= -0.07853147 \pm 2.8 \cdot 10^{-6} \) | \(a_{831}= -1.80774035 \pm 2.8 \cdot 10^{-6} \) |
\(a_{832}= -0.68004875 \pm 2.5 \cdot 10^{-6} \) | \(a_{833}= -0.07730024 \pm 2.5 \cdot 10^{-6} \) | \(a_{834}= +1.58129959 \pm 2.6 \cdot 10^{-6} \) |
\(a_{835}= +0.25635208 \pm 3.1 \cdot 10^{-6} \) | \(a_{836}= +0.80912865 \pm 1.8 \cdot 10^{-6} \) | \(a_{837}= +0.02095693 \pm 2.4 \cdot 10^{-6} \) |
\(a_{838}= -0.47468390 \pm 6.8 \cdot 10^{-6} \) | \(a_{839}= -1.91398413 \pm 3.5 \cdot 10^{-6} \) | \(a_{840}= -0.13856465 \pm 9.4 \cdot 10^{-6} \) |
\(a_{841}= -0.35719322 \pm 2.7 \cdot 10^{-6} \) | \(a_{842}= +0.16695116 \pm 4.7 \cdot 10^{-6} \) | \(a_{843}= -0.50157859 \pm 3.9 \cdot 10^{-6} \) |
\(a_{844}= +0.30981753 \pm 1.4 \cdot 10^{-6} \) | \(a_{845}= +0.12614989 \pm 2.8 \cdot 10^{-6} \) | \(a_{846}= -0.00596530 \pm 2.4 \cdot 10^{-6} \) |
\(a_{847}= -0.64245186 \pm 3.0 \cdot 10^{-6} \) | \(a_{848}= -0.36579253 \pm 2.4 \cdot 10^{-6} \) | \(a_{849}= +1.88712120 \pm 2.4 \cdot 10^{-6} \) |
\(a_{850}= +0.38587621 \pm 2.0 \cdot 10^{-6} \) | \(a_{851}= +0.94217639 \pm 2.8 \cdot 10^{-6} \) | \(a_{852}= -0.68721410 \pm 2.2 \cdot 10^{-6} \) |
\(a_{853}= +1.45254863 \pm 3.6 \cdot 10^{-6} \) | \(a_{854}= +0.26860343 \pm 8.2 \cdot 10^{-6} \) | \(a_{855}= -0.27297568 \pm 3.0 \cdot 10^{-6} \) |
\(a_{856}= -0.09881232 \pm 2.5 \cdot 10^{-6} \) | \(a_{857}= +1.41052598 \pm 2.1 \cdot 10^{-6} \) | \(a_{858}= +1.20911397 \pm 1.2 \cdot 10^{-6} \) |
\(a_{859}= +0.46666408 \pm 5.4 \cdot 10^{-6} \) | \(a_{860}= -0.14102924 \pm 1.7 \cdot 10^{-6} \) | \(a_{861}= -0.03591153 \pm 7.2 \cdot 10^{-6} \) |
\(a_{862}= -0.62963655 \pm 1.8 \cdot 10^{-6} \) | \(a_{863}= -0.06037571 \pm 3.8 \cdot 10^{-6} \) | \(a_{864}= -0.02093760 \pm 4.0 \cdot 10^{-6} \) |
\(a_{865}= +0.09186482 \pm 3.1 \cdot 10^{-6} \) | \(a_{866}= +0.04475855 \pm 3.2 \cdot 10^{-6} \) | \(a_{867}= -0.99538932 \pm 2.5 \cdot 10^{-6} \) |
\(a_{868}= -0.12657434 \pm 5.3 \cdot 10^{-6} \) | \(a_{869}= -1.59626212 \pm 1.6 \cdot 10^{-6} \) | \(a_{870}= +0.20601655 \pm 1.5 \cdot 10^{-6} \) |
\(a_{871}= -0.98178421 \pm 3.9 \cdot 10^{-6} \) | \(a_{872}= +0.60827153 \pm 4.5 \cdot 10^{-6} \) | \(a_{873}= +0.51554792 \pm 4.1 \cdot 10^{-6} \) |
\(a_{874}= +1.07849306 \pm 2.7 \cdot 10^{-6} \) | \(a_{875}= -0.17697152 \pm 3.0 \cdot 10^{-6} \) | \(a_{876}= +0.53513746 \pm 2.8 \cdot 10^{-6} \) |
\(a_{877}= -0.65970683 \pm 4.3 \cdot 10^{-6} \) | \(a_{878}= -0.26708761 \pm 6.4 \cdot 10^{-6} \) | \(a_{879}= +0.18084092 \pm 3.7 \cdot 10^{-6} \) |
\(a_{880}= -0.15498148 \pm 1.7 \cdot 10^{-6} \) | \(a_{881}= -1.05450491 \pm 4.9 \cdot 10^{-6} \) | \(a_{882}= +0.10611221 \pm 7.6 \cdot 10^{-6} \) |
\(a_{883}= +1.26399231 \pm 5.9 \cdot 10^{-6} \) | \(a_{884}= -0.15944138 \pm 1.6 \cdot 10^{-6} \) | \(a_{885}= +0.54339482 \pm 2.2 \cdot 10^{-6} \) |
\(a_{886}= +0.71528126 \pm 5.2 \cdot 10^{-6} \) | \(a_{887}= +0.59252965 \pm 5.7 \cdot 10^{-6} \) | \(a_{888}= -1.16057457 \pm 2.7 \cdot 10^{-6} \) |
\(a_{889}= +0.46098100 \pm 4.0 \cdot 10^{-6} \) | \(a_{890}= -0.34345555 \pm 3.1 \cdot 10^{-6} \) | \(a_{891}= +1.67367986 \pm 2.0 \cdot 10^{-6} \) |
\(a_{892}= +0.47170063 \pm 2.1 \cdot 10^{-6} \) | \(a_{893}= -0.00926782 \pm 3.8 \cdot 10^{-6} \) | \(a_{894}= -1.97567870 \pm 5.8 \cdot 10^{-6} \) |
\(a_{895}= -0.19322035 \pm 2.8 \cdot 10^{-6} \) | \(a_{896}= +0.01450978 \pm 2.6 \cdot 10^{-6} \) | \(a_{897}= -1.19963180 \pm 2.1 \cdot 10^{-6} \) |
\(a_{898}= +0.30596299 \pm 5.2 \cdot 10^{-6} \) | \(a_{899}= +0.62920071 \pm 1.6 \cdot 10^{-6} \) | \(a_{900}= +0.39428793 \pm 9.8 \cdot 10^{-7} \) |
\(a_{901}= -0.50597775 \pm 2.2 \cdot 10^{-6} \) | \(a_{902}= -0.08398144 \pm 2.9 \cdot 10^{-6} \) | \(a_{903}= +0.72916417 \pm 5.5 \cdot 10^{-6} \) |
\(a_{904}= +1.08134855 \pm 2.8 \cdot 10^{-6} \) | \(a_{905}= -0.17238001 \pm 2.7 \cdot 10^{-6} \) | \(a_{906}= +0.35733127 \pm 1.6 \cdot 10^{-6} \) |
\(a_{907}= -0.95032071 \pm 3.0 \cdot 10^{-6} \) | \(a_{908}= -0.68208881 \pm 1.8 \cdot 10^{-6} \) | \(a_{909}= -0.61088589 \pm 2.5 \cdot 10^{-6} \) |
\(a_{910}= -0.04764794 \pm 1.1 \cdot 10^{-5} \) | \(a_{911}= +0.34517495 \pm 3.1 \cdot 10^{-6} \) | \(a_{912}= -0.63538382 \pm 1.4 \cdot 10^{-6} \) |
\(a_{913}= -0.70678977 \pm 1.8 \cdot 10^{-6} \) | \(a_{914}= -0.83528936 \pm 4.0 \cdot 10^{-6} \) | \(a_{915}= +0.31853540 \pm 1.9 \cdot 10^{-6} \) |
\(a_{916}= +0.66452203 \pm 2.8 \cdot 10^{-6} \) | \(a_{917}= +0.35105268 \pm 3.0 \cdot 10^{-6} \) | \(a_{918}= +0.01094057 \pm 2.1 \cdot 10^{-6} \) |
\(a_{919}= +0.55156630 \pm 3.3 \cdot 10^{-6} \) | \(a_{920}= +0.32150118 \pm 2.5 \cdot 10^{-6} \) | \(a_{921}= -1.21009659 \pm 3.2 \cdot 10^{-6} \) |
\(a_{922}= +0.44982863 \pm 4.5 \cdot 10^{-6} \) | \(a_{923}= -0.79009183 \pm 1.9 \cdot 10^{-6} \) | \(a_{924}= -0.37299681 \pm 8.7 \cdot 10^{-6} \) |
\(a_{925}= -0.71893999 \pm 2.2 \cdot 10^{-6} \) | \(a_{926}= +0.18150324 \pm 3.7 \cdot 10^{-6} \) | \(a_{927}= -0.82059109 \pm 2.0 \cdot 10^{-6} \) |
\(a_{928}= -0.62862041 \pm 2.6 \cdot 10^{-6} \) | \(a_{929}= -0.55562341 \pm 3.7 \cdot 10^{-6} \) | \(a_{930}= +0.20165587 \pm 2.9 \cdot 10^{-6} \) |
\(a_{931}= +0.16485822 \pm 3.2 \cdot 10^{-6} \) | \(a_{932}= -0.16675367 \pm 2.3 \cdot 10^{-6} \) | \(a_{933}= +0.02231383 \pm 2.2 \cdot 10^{-6} \) |
\(a_{934}= +0.66318679 \pm 4.5 \cdot 10^{-6} \) | \(a_{935}= -0.21437611 \pm 1.3 \cdot 10^{-6} \) | \(a_{936}= +0.73177807 \pm 2.1 \cdot 10^{-6} \) |
\(a_{937}= +1.57632148 \pm 5.2 \cdot 10^{-6} \) | \(a_{938}= -0.40688621 \pm 9.3 \cdot 10^{-6} \) | \(a_{939}= +0.23664559 \pm 3.8 \cdot 10^{-6} \) |
\(a_{940}= -0.00082632 \pm 1.5 \cdot 10^{-6} \) | \(a_{941}= -0.22399489 \pm 3.8 \cdot 10^{-6} \) | \(a_{942}= +0.06562250 \pm 2.8 \cdot 10^{-6} \) |
\(a_{943}= +0.08332284 \pm 4.3 \cdot 10^{-6} \) | \(a_{944}= +0.62635171 \pm 5.7 \cdot 10^{-6} \) | \(a_{945}= -0.00243368 \pm 6.7 \cdot 10^{-6} \) |
\(a_{946}= +1.70519764 \pm 1.3 \cdot 10^{-6} \) | \(a_{947}= -1.20899190 \pm 4.3 \cdot 10^{-6} \) | \(a_{948}= -0.58348800 \pm 2.2 \cdot 10^{-6} \) |
\(a_{949}= +0.61524892 \pm 3.8 \cdot 10^{-6} \) | \(a_{950}= -0.82295821 \pm 2.0 \cdot 10^{-6} \) | \(a_{951}= +1.37134400 \pm 2.6 \cdot 10^{-6} \) |
\(a_{952}= -0.22092853 \pm 5.6 \cdot 10^{-6} \) | \(a_{953}= +1.08256502 \pm 3.3 \cdot 10^{-6} \) | \(a_{954}= +0.69456986 \pm 2.1 \cdot 10^{-6} \) |
\(a_{955}= +0.26316109 \pm 2.1 \cdot 10^{-6} \) | \(a_{956}= +0.05445645 \pm 2.9 \cdot 10^{-6} \) | \(a_{957}= +1.85416613 \pm 1.3 \cdot 10^{-6} \) |
\(a_{958}= -1.11391030 \pm 5.4 \cdot 10^{-6} \) | \(a_{959}= +0.56430568 \pm 2.6 \cdot 10^{-6} \) | \(a_{960}= -0.33422822 \pm 2.3 \cdot 10^{-6} \) |
\(a_{961}= -0.38411737 \pm 2.7 \cdot 10^{-6} \) | \(a_{962}= -0.39908436 \pm 1.8 \cdot 10^{-6} \) | \(a_{963}= +0.08973671 \pm 2.0 \cdot 10^{-6} \) |
\(a_{964}= -0.27767160 \pm 2.1 \cdot 10^{-6} \) | \(a_{965}= +0.21462870 \pm 3.9 \cdot 10^{-6} \) | \(a_{966}= -0.49716998 \pm 1.1 \cdot 10^{-5} \) |
\(a_{967}= -0.78756714 \pm 5.0 \cdot 10^{-6} \) | \(a_{968}= -1.83616437 \pm 1.9 \cdot 10^{-6} \) | \(a_{969}= -0.87888638 \pm 6.0 \cdot 10^{-7} \) |
\(a_{970}= -0.09594110 \pm 4.5 \cdot 10^{-6} \) | \(a_{971}= +1.83514173 \pm 3.6 \cdot 10^{-6} \) | \(a_{972}= +0.60039154 \pm 2.0 \cdot 10^{-6} \) |
\(a_{973}= -0.56083815 \pm 2.4 \cdot 10^{-6} \) | \(a_{974}= -0.66754201 \pm 4.3 \cdot 10^{-6} \) | \(a_{975}= +0.91539471 \pm 2.0 \cdot 10^{-6} \) |
\(a_{976}= +0.36716433 \pm 3.8 \cdot 10^{-6} \) | \(a_{977}= +1.87435241 \pm 5.3 \cdot 10^{-6} \) | \(a_{978}= +0.45977366 \pm 4.2 \cdot 10^{-6} \) |
\(a_{979}= -3.09112850 \pm 2.3 \cdot 10^{-6} \) | \(a_{980}= +0.01469880 \pm 6.1 \cdot 10^{-6} \) | \(a_{981}= -0.55240366 \pm 3.9 \cdot 10^{-6} \) |
\(a_{982}= +0.59915442 \pm 4.2 \cdot 10^{-6} \) | \(a_{983}= +1.57582990 \pm 3.2 \cdot 10^{-6} \) | \(a_{984}= -0.10263722 \pm 1.4 \cdot 10^{-6} \) |
\(a_{985}= -0.19212550 \pm 3.4 \cdot 10^{-6} \) | \(a_{986}= +0.32847437 \pm 1.8 \cdot 10^{-6} \) | \(a_{987}= +0.00427233 \pm 6.8 \cdot 10^{-6} \) |
\(a_{988}= +0.34004063 \pm 1.1 \cdot 10^{-6} \) | \(a_{989}= -1.69182505 \pm 2.8 \cdot 10^{-6} \) | \(a_{990}= +0.29428011 \pm 2.2 \cdot 10^{-6} \) |
\(a_{991}= -1.20911496 \pm 3.7 \cdot 10^{-6} \) | \(a_{992}= -0.61531461 \pm 2.9 \cdot 10^{-6} \) | \(a_{993}= +1.33236292 \pm 4.3 \cdot 10^{-6} \) |
\(a_{994}= -0.32744208 \pm 7.3 \cdot 10^{-6} \) | \(a_{995}= +0.14030269 \pm 3.5 \cdot 10^{-6} \) | \(a_{996}= -0.25835566 \pm 1.4 \cdot 10^{-6} \) |
\(a_{997}= -1.11415482 \pm 3.5 \cdot 10^{-6} \) | \(a_{998}= -0.17336338 \pm 3.0 \cdot 10^{-6} \) | \(a_{999}= -0.02038377 \pm 2.4 \cdot 10^{-6} \) |
\(a_{1000}= -0.50579479 \pm 2.8 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000