Maass form invariants
Level: | \( 7 \) |
Weight: | \( 0 \) |
Character: | 7.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.8682520056691646974949948808 \pm 2 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.70028361 \pm 1.7 \cdot 10^{-4} \) | \(a_{3}= -0.04188706 \pm 1.1 \cdot 10^{-4} \) |
\(a_{4}= +1.89096436 \pm 1.0 \cdot 10^{-4} \) | \(a_{5}= +0.09250928 \pm 1.2 \cdot 10^{-4} \) | \(a_{6}= +0.07121988 \pm 1.3 \cdot 10^{-4} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -1.51489210 \pm 1.1 \cdot 10^{-4} \) | \(a_{9}= -0.99824547 \pm 1.0 \cdot 10^{-4} \) |
\(a_{10}= -0.15729201 \pm 1.2 \cdot 10^{-4} \) | \(a_{11}= -0.39723464 \pm 1.0 \cdot 10^{-4} \) | \(a_{12}= -0.07920694 \pm 9.0 \cdot 10^{-5} \) |
\(a_{13}= +1.27321969 \pm 1.2 \cdot 10^{-4} \) | \(a_{14}= +0.64264680 \pm 1.7 \cdot 10^{-4} \) | \(a_{15}= -0.00387494 \pm 9.6 \cdot 10^{-5} \) |
\(a_{16}= +0.68478186 \pm 1.4 \cdot 10^{-4} \) | \(a_{17}= +0.94597499 \pm 9.4 \cdot 10^{-5} \) | \(a_{18}= +1.69730042 \pm 1.0 \cdot 10^{-4} \) |
\(a_{19}= +0.25405488 \pm 1.2 \cdot 10^{-4} \) | \(a_{20}= +0.17493175 \pm 7.9 \cdot 10^{-5} \) | \(a_{21}= +0.01583182 \pm 1.1 \cdot 10^{-4} \) |
\(a_{22}= +0.67541154 \pm 1.0 \cdot 10^{-4} \) | \(a_{23}= +0.98913896 \pm 1.5 \cdot 10^{-4} \) | \(a_{24}= +0.06345438 \pm 7.4 \cdot 10^{-5} \) |
\(a_{25}= -0.99144203 \pm 1.1 \cdot 10^{-4} \) | \(a_{26}= -2.16483457 \pm 1.5 \cdot 10^{-4} \) | \(a_{27}= +0.08370063 \pm 1.2 \cdot 10^{-4} \) |
\(a_{28}= -0.71471735 \pm 1.0 \cdot 10^{-4} \) | \(a_{29}= +0.73323577 \pm 1.1 \cdot 10^{-4} \) | \(a_{30}= +0.00658850 \pm 1.0 \cdot 10^{-4} \) |
\(a_{31}= -1.46170369 \pm 9.3 \cdot 10^{-5} \) | \(a_{32}= +0.35056873 \pm 1.4 \cdot 10^{-4} \) | \(a_{33}= +0.01663899 \pm 8.5 \cdot 10^{-5} \) |
\(a_{34}= -1.60842577 \pm 1.1 \cdot 10^{-4} \) | \(a_{35}= -0.03496522 \pm 1.2 \cdot 10^{-4} \) | \(a_{36}= -1.88764662 \pm 6.0 \cdot 10^{-5} \) |
\(a_{37}= +0.79073251 \pm 1.1 \cdot 10^{-4} \) | \(a_{38}= -0.43196535 \pm 1.1 \cdot 10^{-4} \) | \(a_{39}= -0.05333143 \pm 9.3 \cdot 10^{-5} \) |
\(a_{40}= -0.14014158 \pm 1.1 \cdot 10^{-4} \) | \(a_{41}= +1.19949656 \pm 1.5 \cdot 10^{-4} \) | \(a_{42}= -0.02691859 \pm 2.8 \cdot 10^{-4} \) |
\(a_{43}= +1.07555288 \pm 9.0 \cdot 10^{-5} \) | \(a_{44}= -0.75115654 \pm 7.7 \cdot 10^{-5} \) | \(a_{45}= -0.09234697 \pm 9.6 \cdot 10^{-5} \) |
\(a_{46}= -1.68181676 \pm 1.8 \cdot 10^{-4} \) | \(a_{47}= -1.70807915 \pm 1.3 \cdot 10^{-4} \) | \(a_{48}= -0.02868350 \pm 1.0 \cdot 10^{-4} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +1.68573264 \pm 1.4 \cdot 10^{-4} \) | \(a_{51}= -0.03962411 \pm 6.9 \cdot 10^{-5} \) |
\(a_{52}= +2.40761306 \pm 8.2 \cdot 10^{-5} \) | \(a_{53}= -1.78350123 \pm 9.5 \cdot 10^{-5} \) | \(a_{54}= -0.14231481 \pm 1.5 \cdot 10^{-4} \) |
\(a_{55}= -0.03674789 \pm 1.0 \cdot 10^{-4} \) | \(a_{56}= +0.57257540 \pm 1.1 \cdot 10^{-4} \) | \(a_{57}= -0.01064161 \pm 6.0 \cdot 10^{-5} \) |
\(a_{58}= -1.24670877 \pm 1.1 \cdot 10^{-4} \) | \(a_{59}= -0.10895733 \pm 1.8 \cdot 10^{-4} \) | \(a_{60}= -0.00732738 \pm 7.7 \cdot 10^{-5} \) |
\(a_{61}= -1.17958935 \pm 1.3 \cdot 10^{-4} \) | \(a_{62}= +2.48531083 \pm 1.1 \cdot 10^{-4} \) | \(a_{63}= +0.37730132 \pm 1.0 \cdot 10^{-4} \) |
\(a_{64}= -1.28084813 \pm 1.1 \cdot 10^{-4} \) | \(a_{65}= +0.11778464 \pm 9.7 \cdot 10^{-5} \) | \(a_{66}= -0.02829100 \pm 7.5 \cdot 10^{-5} \) |
\(a_{67}= -1.93722954 \pm 1.7 \cdot 10^{-4} \) | \(a_{68}= +1.78880499 \pm 6.9 \cdot 10^{-5} \) | \(a_{69}= -0.04143212 \pm 1.1 \cdot 10^{-4} \) |
\(a_{70}= +0.05945079 \pm 2.9 \cdot 10^{-4} \) | \(a_{71}= -0.02383006 \pm 9.9 \cdot 10^{-5} \) | \(a_{72}= +1.51223419 \pm 1.0 \cdot 10^{-4} \) |
\(a_{73}= -0.53896907 \pm 1.6 \cdot 10^{-4} \) | \(a_{74}= -1.34446954 \pm 1.0 \cdot 10^{-4} \) | \(a_{75}= +0.04152859 \pm 1.0 \cdot 10^{-4} \) |
\(a_{76}= +0.48040872 \pm 6.6 \cdot 10^{-5} \) | \(a_{77}= +0.15014058 \pm 1.0 \cdot 10^{-4} \) | \(a_{78}= +0.09067856 \pm 1.2 \cdot 10^{-4} \) |
\(a_{79}= +0.58661356 \pm 9.9 \cdot 10^{-5} \) | \(a_{80}= +0.06334868 \pm 9.5 \cdot 10^{-5} \) | \(a_{81}= +0.99473950 \pm 1.1 \cdot 10^{-4} \) |
\(a_{82}= -2.03948435 \pm 1.8 \cdot 10^{-4} \) | \(a_{83}= -0.07324870 \pm 9.5 \cdot 10^{-5} \) | \(a_{84}= +0.02993741 \pm 2.1 \cdot 10^{-4} \) |
\(a_{85}= +0.08751146 \pm 8.0 \cdot 10^{-5} \) | \(a_{86}= -1.82874494 \pm 1.0 \cdot 10^{-4} \) | \(a_{87}= -0.03071309 \pm 6.1 \cdot 10^{-5} \) |
\(a_{88}= +0.60176761 \pm 1.0 \cdot 10^{-4} \) | \(a_{89}= -0.00201005 \pm 1.0 \cdot 10^{-4} \) | \(a_{90}= +0.15701604 \pm 8.7 \cdot 10^{-5} \) |
\(a_{91}= -0.48123181 \pm 1.2 \cdot 10^{-4} \) | \(a_{92}= +1.87042652 \pm 9.9 \cdot 10^{-5} \) | \(a_{93}= +0.06122647 \pm 8.7 \cdot 10^{-5} \) |
\(a_{94}= +2.90421898 \pm 1.4 \cdot 10^{-4} \) | \(a_{95}= +0.02350243 \pm 1.2 \cdot 10^{-4} \) | \(a_{96}= -0.01468429 \pm 1.3 \cdot 10^{-4} \) |
\(a_{97}= -1.87949776 \pm 2.0 \cdot 10^{-4} \) | \(a_{98}= -0.24289766 \pm 1.7 \cdot 10^{-4} \) | \(a_{99}= +0.39653768 \pm 1.0 \cdot 10^{-4} \) |
\(a_{100}= -1.87478155 \pm 8.4 \cdot 10^{-5} \) | \(a_{101}= -0.05325408 \pm 1.2 \cdot 10^{-4} \) | \(a_{102}= +0.06737223 \pm 8.7 \cdot 10^{-5} \) |
\(a_{103}= -0.77254994 \pm 1.6 \cdot 10^{-4} \) | \(a_{104}= -1.92879046 \pm 8.4 \cdot 10^{-5} \) | \(a_{105}= +0.00146459 \pm 2.3 \cdot 10^{-4} \) |
\(a_{106}= +3.03245792 \pm 1.0 \cdot 10^{-4} \) | \(a_{107}= -0.60883512 \pm 1.0 \cdot 10^{-4} \) | \(a_{108}= +0.15827491 \pm 9.6 \cdot 10^{-5} \) |
\(a_{109}= +0.09945239 \pm 2.1 \cdot 10^{-4} \) | \(a_{110}= +0.06248183 \pm 9.5 \cdot 10^{-5} \) | \(a_{111}= -0.03312146 \pm 1.0 \cdot 10^{-4} \) |
\(a_{112}= -0.25882321 \pm 1.4 \cdot 10^{-4} \) | \(a_{113}= +1.43080237 \pm 1.3 \cdot 10^{-4} \) | \(a_{114}= +0.01809376 \pm 6.7 \cdot 10^{-5} \) |
\(a_{115}= +0.09150453 \pm 9.4 \cdot 10^{-5} \) | \(a_{116}= +1.38652271 \pm 6.6 \cdot 10^{-5} \) | \(a_{117}= -1.27098579 \pm 8.6 \cdot 10^{-5} \) |
\(a_{118}= +0.18525836 \pm 2.4 \cdot 10^{-4} \) | \(a_{119}= -0.35754494 \pm 9.4 \cdot 10^{-5} \) | \(a_{120}= +0.00587012 \pm 7.8 \cdot 10^{-5} \) |
\(a_{121}= -0.84220464 \pm 1.1 \cdot 10^{-4} \) | \(a_{122}= +2.00563644 \pm 1.5 \cdot 10^{-4} \) | \(a_{123}= -0.05024339 \pm 1.0 \cdot 10^{-4} \) |
\(a_{124}= -2.76402958 \pm 7.9 \cdot 10^{-5} \) | \(a_{125}= -0.18422687 \pm 1.1 \cdot 10^{-4} \) | \(a_{126}= -0.64151926 \pm 2.7 \cdot 10^{-4} \) |
\(a_{127}= -1.03145907 \pm 1.4 \cdot 10^{-4} \) | \(a_{128}= +1.82723635 \pm 9.6 \cdot 10^{-5} \) | \(a_{129}= -0.04505175 \pm 7.5 \cdot 10^{-5} \) |
\(a_{130}= -0.20026729 \pm 1.1 \cdot 10^{-4} \) | \(a_{131}= +0.12238960 \pm 1.1 \cdot 10^{-4} \) | \(a_{132}= +0.03146374 \pm 6.3 \cdot 10^{-5} \) |
\(a_{133}= -0.09602372 \pm 1.2 \cdot 10^{-4} \) | \(a_{134}= +3.29383964 \pm 2.1 \cdot 10^{-4} \) | \(a_{135}= +0.00774308 \pm 7.8 \cdot 10^{-5} \) |
\(a_{136}= -1.43305004 \pm 7.7 \cdot 10^{-5} \) | \(a_{137}= -0.29921963 \pm 9.6 \cdot 10^{-5} \) | \(a_{138}= +0.07044636 \pm 1.3 \cdot 10^{-4} \) |
\(a_{139}= -0.92296414 \pm 9.0 \cdot 10^{-5} \) | \(a_{140}= -0.06611799 \pm 2.2 \cdot 10^{-4} \) | \(a_{141}= +0.07154642 \pm 9.0 \cdot 10^{-5} \) |
\(a_{142}= +0.04051786 \pm 1.1 \cdot 10^{-4} \) | \(a_{143}= -0.50576696 \pm 5.7 \cdot 10^{-5} \) | \(a_{144}= -0.68358039 \pm 8.5 \cdot 10^{-5} \) |
\(a_{145}= +0.06783111 \pm 1.0 \cdot 10^{-4} \) | \(a_{146}= +0.91640029 \pm 2.1 \cdot 10^{-4} \) | \(a_{147}= -0.00598387 \pm 1.1 \cdot 10^{-4} \) |
\(a_{148}= +1.49524701 \pm 6.9 \cdot 10^{-5} \) | \(a_{149}= +0.82928901 \pm 1.9 \cdot 10^{-4} \) | \(a_{150}= -0.07061039 \pm 1.2 \cdot 10^{-4} \) |
\(a_{151}= +0.62727528 \pm 1.3 \cdot 10^{-4} \) | \(a_{152}= -0.38486573 \pm 1.1 \cdot 10^{-4} \) | \(a_{153}= -0.94431525 \pm 7.7 \cdot 10^{-5} \) |
\(a_{154}= -0.25528157 \pm 2.7 \cdot 10^{-4} \) | \(a_{155}= -0.13522115 \pm 7.7 \cdot 10^{-5} \) | \(a_{156}= -0.10084783 \pm 7.7 \cdot 10^{-5} \) |
\(a_{157}= -0.20716351 \pm 1.5 \cdot 10^{-4} \) | \(a_{158}= -0.99740943 \pm 1.1 \cdot 10^{-4} \) | \(a_{159}= +0.07470562 \pm 8.5 \cdot 10^{-5} \) |
\(a_{160}= +0.03243086 \pm 9.9 \cdot 10^{-5} \) | \(a_{161}= -0.37385938 \pm 1.5 \cdot 10^{-4} \) | \(a_{162}= -1.69133927 \pm 1.2 \cdot 10^{-4} \) |
\(a_{163}= -1.27434080 \pm 1.3 \cdot 10^{-4} \) | \(a_{164}= +2.26820525 \pm 1.0 \cdot 10^{-4} \) | \(a_{165}= +0.00153926 \pm 7.0 \cdot 10^{-5} \) |
\(a_{166}= +0.12454357 \pm 9.5 \cdot 10^{-5} \) | \(a_{167}= +0.93570148 \pm 1.0 \cdot 10^{-4} \) | \(a_{168}= -0.02398350 \pm 2.2 \cdot 10^{-4} \) |
\(a_{169}= +0.62108838 \pm 1.0 \cdot 10^{-4} \) | \(a_{170}= -0.14879431 \pm 9.9 \cdot 10^{-5} \) | \(a_{171}= -0.25360913 \pm 1.0 \cdot 10^{-4} \) |
\(a_{172}= +2.03383216 \pm 5.6 \cdot 10^{-5} \) | \(a_{173}= -0.80693757 \pm 1.0 \cdot 10^{-4} \) | \(a_{174}= +0.05222097 \pm 7.6 \cdot 10^{-5} \) |
\(a_{175}= +0.37472987 \pm 1.1 \cdot 10^{-4} \) | \(a_{176}= -0.27201907 \pm 7.5 \cdot 10^{-5} \) | \(a_{177}= +0.00456390 \pm 1.5 \cdot 10^{-4} \) |
\(a_{178}= +0.00341766 \pm 1.0 \cdot 10^{-4} \) | \(a_{179}= +0.85337414 \pm 1.1 \cdot 10^{-4} \) | \(a_{180}= -0.17462483 \pm 5.0 \cdot 10^{-5} \) |
\(a_{181}= -0.09172912 \pm 1.7 \cdot 10^{-4} \) | \(a_{182}= +0.81823056 \pm 2.9 \cdot 10^{-4} \) | \(a_{183}= +0.04940953 \pm 8.7 \cdot 10^{-5} \) |
\(a_{184}= -1.49843880 \pm 1.0 \cdot 10^{-4} \) | \(a_{185}= +0.07315009 \pm 1.0 \cdot 10^{-4} \) | \(a_{186}= -0.10410237 \pm 1.1 \cdot 10^{-4} \) |
\(a_{187}= -0.37577403 \pm 5.3 \cdot 10^{-5} \) | \(a_{188}= -3.22991679 \pm 8.1 \cdot 10^{-5} \) | \(a_{189}= -0.03163586 \pm 1.2 \cdot 10^{-4} \) |
\(a_{190}= -0.03996080 \pm 1.0 \cdot 10^{-4} \) | \(a_{191}= -0.29608582 \pm 6.5 \cdot 10^{-5} \) | \(a_{192}= +0.05365096 \pm 8.0 \cdot 10^{-5} \) |
\(a_{193}= -1.73776470 \pm 1.6 \cdot 10^{-4} \) | \(a_{194}= +3.19567924 \pm 2.4 \cdot 10^{-4} \) | \(a_{195}= -0.00493365 \pm 8.7 \cdot 10^{-5} \) |
\(a_{196}= +0.27013777 \pm 1.0 \cdot 10^{-4} \) | \(a_{197}= +0.43842251 \pm 1.2 \cdot 10^{-4} \) | \(a_{198}= -0.67422651 \pm 8.5 \cdot 10^{-5} \) |
\(a_{199}= +1.43925675 \pm 2.0 \cdot 10^{-4} \) | \(a_{200}= +1.50192771 \pm 7.2 \cdot 10^{-5} \) | \(a_{201}= +0.08114485 \pm 1.3 \cdot 10^{-4} \) |
\(a_{202}= +0.09054704 \pm 1.5 \cdot 10^{-4} \) | \(a_{203}= -0.27713707 \pm 1.1 \cdot 10^{-4} \) | \(a_{204}= -0.07492778 \pm 6.5 \cdot 10^{-5} \) |
\(a_{205}= +0.11096456 \pm 1.1 \cdot 10^{-4} \) | \(a_{206}= +1.31355400 \pm 2.1 \cdot 10^{-4} \) | \(a_{207}= -0.98740349 \pm 1.1 \cdot 10^{-4} \) |
\(a_{208}= +0.87187774 \pm 1.3 \cdot 10^{-4} \) | \(a_{209}= -0.10091940 \pm 1.1 \cdot 10^{-4} \) | \(a_{210}= -0.00249022 \pm 4.0 \cdot 10^{-4} \) |
\(a_{211}= -1.26294433 \pm 8.7 \cdot 10^{-5} \) | \(a_{212}= -3.37253727 \pm 5.5 \cdot 10^{-5} \) | \(a_{213}= +0.00099817 \pm 7.4 \cdot 10^{-5} \) |
\(a_{214}= +1.03519238 \pm 1.1 \cdot 10^{-4} \) | \(a_{215}= +0.09949862 \pm 8.9 \cdot 10^{-5} \) | \(a_{216}= -0.12679742 \pm 6.8 \cdot 10^{-5} \) |
\(a_{217}= +0.55247206 \pm 9.3 \cdot 10^{-5} \) | \(a_{218}= -0.16909727 \pm 2.4 \cdot 10^{-4} \) | \(a_{219}= +0.02257583 \pm 1.3 \cdot 10^{-4} \) |
\(a_{220}= -0.06948895 \pm 7.3 \cdot 10^{-5} \) | \(a_{221}= +1.20443398 \pm 1.1 \cdot 10^{-4} \) | \(a_{222}= +0.05631588 \pm 8.9 \cdot 10^{-5} \) |
\(a_{223}= +0.84920567 \pm 1.3 \cdot 10^{-4} \) | \(a_{224}= -0.13250253 \pm 1.4 \cdot 10^{-4} \) | \(a_{225}= +0.98970252 \pm 5.6 \cdot 10^{-5} \) |
\(a_{226}= -2.43276983 \pm 1.6 \cdot 10^{-4} \) | \(a_{227}= -0.96658088 \pm 7.5 \cdot 10^{-5} \) | \(a_{228}= -0.02012291 \pm 4.3 \cdot 10^{-5} \) |
\(a_{229}= +0.46325660 \pm 1.3 \cdot 10^{-4} \) | \(a_{230}= -0.15558366 \pm 9.1 \cdot 10^{-5} \) | \(a_{231}= -0.00628895 \pm 2.1 \cdot 10^{-4} \) |
\(a_{232}= -1.11077308 \pm 1.0 \cdot 10^{-4} \) | \(a_{233}= +0.14900040 \pm 8.4 \cdot 10^{-5} \) | \(a_{234}= +2.16103632 \pm 9.2 \cdot 10^{-5} \) |
\(a_{235}= -0.15801317 \pm 1.3 \cdot 10^{-4} \) | \(a_{236}= -0.20603443 \pm 1.4 \cdot 10^{-4} \) | \(a_{237}= -0.02457152 \pm 9.9 \cdot 10^{-5} \) |
\(a_{238}= +0.60792780 \pm 2.6 \cdot 10^{-4} \) | \(a_{239}= -0.42323865 \pm 1.6 \cdot 10^{-4} \) | \(a_{240}= -0.00265349 \pm 7.8 \cdot 10^{-5} \) |
\(a_{241}= -0.35274732 \pm 1.2 \cdot 10^{-4} \) | \(a_{242}= +1.43198675 \pm 1.3 \cdot 10^{-4} \) | \(a_{243}= -0.12536734 \pm 1.0 \cdot 10^{-4} \) |
\(a_{244}= -2.23056142 \pm 7.9 \cdot 10^{-5} \) | \(a_{245}= +0.01321561 \pm 1.2 \cdot 10^{-4} \) | \(a_{246}= +0.08542801 \pm 1.3 \cdot 10^{-4} \) |
\(a_{247}= +0.32346767 \pm 6.3 \cdot 10^{-5} \) | \(a_{248}= +2.21432337 \pm 5.0 \cdot 10^{-5} \) | \(a_{249}= +0.00306817 \pm 7.8 \cdot 10^{-5} \) |
\(a_{250}= +0.31323792 \pm 1.1 \cdot 10^{-4} \) | \(a_{251}= -1.55192685 \pm 1.6 \cdot 10^{-4} \) | \(a_{252}= +0.71346336 \pm 2.1 \cdot 10^{-4} \) |
\(a_{253}= -0.39292025 \pm 8.8 \cdot 10^{-5} \) | \(a_{254}= +1.75377296 \pm 1.8 \cdot 10^{-4} \) | \(a_{255}= -0.00366560 \pm 7.1 \cdot 10^{-5} \) |
\(a_{256}= -1.82597190 \pm 1.5 \cdot 10^{-4} \) | \(a_{257}= +0.70006750 \pm 1.8 \cdot 10^{-4} \) | \(a_{258}= +0.07660075 \pm 9.2 \cdot 10^{-5} \) |
\(a_{259}= -0.29886880 \pm 1.1 \cdot 10^{-4} \) | \(a_{260}= +0.22272655 \pm 6.7 \cdot 10^{-5} \) | \(a_{261}= -0.73194929 \pm 9.3 \cdot 10^{-5} \) |
\(a_{262}= -0.20809704 \pm 1.1 \cdot 10^{-4} \) | \(a_{263}= +0.95378942 \pm 1.1 \cdot 10^{-4} \) | \(a_{264}= -0.02520628 \pm 8.0 \cdot 10^{-5} \) |
\(a_{265}= -0.16499041 \pm 7.1 \cdot 10^{-5} \) | \(a_{266}= +0.16326755 \pm 2.9 \cdot 10^{-4} \) | \(a_{267}= +0.00008420 \pm 9.3 \cdot 10^{-5} \) |
\(a_{268}= -3.66323202 \pm 1.3 \cdot 10^{-4} \) | \(a_{269}= -1.59335708 \pm 2.3 \cdot 10^{-4} \) | \(a_{270}= -0.01316544 \pm 8.4 \cdot 10^{-5} \) |
\(a_{271}= -0.43023896 \pm 1.6 \cdot 10^{-4} \) | \(a_{272}= +0.64778651 \pm 9.8 \cdot 10^{-5} \) | \(a_{273}= +0.02015739 \pm 2.3 \cdot 10^{-4} \) |
\(a_{274}= +0.50875823 \pm 9.8 \cdot 10^{-5} \) | \(a_{275}= +0.39383512 \pm 6.1 \cdot 10^{-5} \) | \(a_{276}= -0.07834667 \pm 8.4 \cdot 10^{-5} \) |
\(a_{277}= +1.35707082 \pm 9.7 \cdot 10^{-5} \) | \(a_{278}= +1.56930080 \pm 9.7 \cdot 10^{-5} \) | \(a_{279}= +1.45913909 \pm 5.2 \cdot 10^{-5} \) |
\(a_{280}= +0.05296854 \pm 2.3 \cdot 10^{-4} \) | \(a_{281}= -0.13386654 \pm 1.7 \cdot 10^{-4} \) | \(a_{282}= -0.12164920 \pm 1.0 \cdot 10^{-4} \) |
\(a_{283}= +1.75065570 \pm 1.4 \cdot 10^{-4} \) | \(a_{284}= -0.04506179 \pm 8.2 \cdot 10^{-5} \) | \(a_{285}= -0.00098445 \pm 4.1 \cdot 10^{-5} \) |
\(a_{286}= +0.85994727 \pm 6.5 \cdot 10^{-5} \) | \(a_{287}= -0.45336709 \pm 1.5 \cdot 10^{-4} \) | \(a_{288}= -0.34995365 \pm 8.1 \cdot 10^{-5} \) |
\(a_{289}= -0.10513132 \pm 1.2 \cdot 10^{-4} \) | \(a_{290}= -0.11533213 \pm 9.8 \cdot 10^{-5} \) | \(a_{291}= +0.07872664 \pm 1.6 \cdot 10^{-4} \) |
\(a_{292}= -1.01917131 \pm 1.2 \cdot 10^{-4} \) | \(a_{293}= -0.87845960 \pm 1.7 \cdot 10^{-4} \) | \(a_{294}= +0.01017427 \pm 2.8 \cdot 10^{-4} \) |
\(a_{295}= -0.01007956 \pm 8.1 \cdot 10^{-5} \) | \(a_{296}= -1.19787444 \pm 1.0 \cdot 10^{-4} \) | \(a_{297}= -0.03324879 \pm 7.3 \cdot 10^{-5} \) |
\(a_{298}= -1.41002651 \pm 2.5 \cdot 10^{-4} \) | \(a_{299}= +1.25939120 \pm 1.4 \cdot 10^{-4} \) | \(a_{300}= +0.07852909 \pm 7.5 \cdot 10^{-5} \) |
\(a_{301}= -0.40652078 \pm 9.0 \cdot 10^{-5} \) | \(a_{302}= -1.06654587 \pm 1.1 \cdot 10^{-4} \) | \(a_{303}= +0.00223066 \pm 1.0 \cdot 10^{-4} \) |
\(a_{304}= +0.17397217 \pm 9.2 \cdot 10^{-5} \) | \(a_{305}= -0.10912296 \pm 9.5 \cdot 10^{-5} \) | \(a_{306}= +1.60560375 \pm 8.1 \cdot 10^{-5} \) |
\(a_{307}= -1.47834343 \pm 1.4 \cdot 10^{-4} \) | \(a_{308}= +0.28391049 \pm 2.0 \cdot 10^{-4} \) | \(a_{309}= +0.03235985 \pm 1.3 \cdot 10^{-4} \) |
\(a_{310}= +0.22991431 \pm 9.7 \cdot 10^{-5} \) | \(a_{311}= +0.78596130 \pm 1.0 \cdot 10^{-4} \) | \(a_{312}= +0.08079136 \pm 3.3 \cdot 10^{-5} \) |
\(a_{313}= -1.42514612 \pm 1.8 \cdot 10^{-4} \) | \(a_{314}= +0.35223672 \pm 1.6 \cdot 10^{-4} \) | \(a_{315}= +0.03490387 \pm 2.2 \cdot 10^{-4} \) |
\(a_{316}= +1.10926534 \pm 7.5 \cdot 10^{-5} \) | \(a_{317}= +0.30820579 \pm 1.0 \cdot 10^{-4} \) | \(a_{318}= -0.12702075 \pm 7.7 \cdot 10^{-5} \) |
\(a_{319}= -0.29126665 \pm 9.9 \cdot 10^{-5} \) | \(a_{320}= -0.11849034 \pm 1.2 \cdot 10^{-4} \) | \(a_{321}= +0.02550231 \pm 8.8 \cdot 10^{-5} \) |
\(a_{322}= +0.63566698 \pm 3.2 \cdot 10^{-4} \) | \(a_{323}= +0.24032956 \pm 3.2 \cdot 10^{-5} \) | \(a_{324}= +1.88101695 \pm 7.7 \cdot 10^{-5} \) |
\(a_{325}= -1.26232352 \pm 9.0 \cdot 10^{-5} \) | \(a_{326}= +2.16674077 \pm 1.6 \cdot 10^{-4} \) | \(a_{327}= -0.00416577 \pm 1.4 \cdot 10^{-4} \) |
\(a_{328}= -1.81710787 \pm 1.0 \cdot 10^{-4} \) | \(a_{329}= +0.64559323 \pm 1.3 \cdot 10^{-4} \) | \(a_{330}= -0.00261718 \pm 6.6 \cdot 10^{-5} \) |
\(a_{331}= -0.16883966 \pm 2.0 \cdot 10^{-4} \) | \(a_{332}= -0.13851069 \pm 4.6 \cdot 10^{-5} \) | \(a_{333}= -0.78934515 \pm 1.1 \cdot 10^{-4} \) |
\(a_{334}= -1.59095789 \pm 1.1 \cdot 10^{-4} \) | \(a_{335}= -0.17921171 \pm 1.3 \cdot 10^{-4} \) | \(a_{336}= +0.01084134 \pm 2.5 \cdot 10^{-4} \) |
\(a_{337}= +0.89259489 \pm 1.5 \cdot 10^{-4} \) | \(a_{338}= -1.05602639 \pm 1.0 \cdot 10^{-4} \) | \(a_{339}= -0.05993211 \pm 1.2 \cdot 10^{-4} \) |
\(a_{340}= +0.16548106 \pm 7.2 \cdot 10^{-5} \) | \(a_{341}= +0.58063933 \pm 5.3 \cdot 10^{-5} \) | \(a_{342}= +0.43120745 \pm 9.1 \cdot 10^{-5} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -1.62934656 \pm 7.3 \cdot 10^{-5} \) | \(a_{345}= -0.00383286 \pm 7.1 \cdot 10^{-5} \) |
\(a_{346}= +1.37202272 \pm 1.1 \cdot 10^{-4} \) | \(a_{347}= +0.41937925 \pm 8.7 \cdot 10^{-5} \) | \(a_{348}= -0.05807736 \pm 5.4 \cdot 10^{-5} \) |
\(a_{349}= +1.55089387 \pm 1.5 \cdot 10^{-4} \) | \(a_{350}= -0.63714705 \pm 2.8 \cdot 10^{-4} \) | \(a_{351}= +0.10656929 \pm 9.7 \cdot 10^{-5} \) |
\(a_{352}= -0.13925804 \pm 8.5 \cdot 10^{-5} \) | \(a_{353}= -0.00045662 \pm 1.7 \cdot 10^{-4} \) | \(a_{354}= -0.00775993 \pm 1.9 \cdot 10^{-4} \) |
\(a_{355}= -0.00220450 \pm 9.4 \cdot 10^{-5} \) | \(a_{356}= -0.00380094 \pm 6.8 \cdot 10^{-5} \) | \(a_{357}= +0.01497651 \pm 2.0 \cdot 10^{-4} \) |
\(a_{358}= -1.45097807 \pm 1.1 \cdot 10^{-4} \) | \(a_{359}= -0.48722025 \pm 1.1 \cdot 10^{-4} \) | \(a_{360}= +0.13989569 \pm 1.0 \cdot 10^{-4} \) |
\(a_{361}= -0.93545612 \pm 1.2 \cdot 10^{-4} \) | \(a_{362}= +0.15596553 \pm 2.2 \cdot 10^{-4} \) | \(a_{363}= +0.03527748 \pm 9.7 \cdot 10^{-5} \) |
\(a_{364}= -0.90999220 \pm 2.2 \cdot 10^{-4} \) | \(a_{365}= -0.04985964 \pm 9.4 \cdot 10^{-5} \) | \(a_{366}= -0.08401022 \pm 1.0 \cdot 10^{-4} \) |
\(a_{367}= +0.67643421 \pm 1.3 \cdot 10^{-4} \) | \(a_{368}= +0.67734441 \pm 1.6 \cdot 10^{-4} \) | \(a_{369}= -1.19739202 \pm 9.8 \cdot 10^{-5} \) |
\(a_{370}= -0.12437591 \pm 8.5 \cdot 10^{-5} \) | \(a_{371}= +0.67410010 \pm 9.5 \cdot 10^{-5} \) | \(a_{372}= +0.11577708 \pm 7.7 \cdot 10^{-5} \) |
\(a_{373}= +0.13224988 \pm 1.8 \cdot 10^{-4} \) | \(a_{374}= +0.63892243 \pm 6.5 \cdot 10^{-5} \) | \(a_{375}= +0.00771672 \pm 8.6 \cdot 10^{-5} \) |
\(a_{376}= +2.58755561 \pm 1.1 \cdot 10^{-4} \) | \(a_{377}= +0.93357022 \pm 7.8 \cdot 10^{-5} \) | \(a_{378}= +0.05378994 \pm 2.9 \cdot 10^{-4} \) |
\(a_{379}= -0.15558250 \pm 1.9 \cdot 10^{-4} \) | \(a_{380}= +0.04444226 \pm 5.2 \cdot 10^{-5} \) | \(a_{381}= +0.04320479 \pm 1.0 \cdot 10^{-4} \) |
\(a_{382}= +0.50342986 \pm 8.4 \cdot 10^{-5} \) | \(a_{383}= -0.31580349 \pm 7.5 \cdot 10^{-5} \) | \(a_{384}= -0.07653756 \pm 7.2 \cdot 10^{-5} \) |
\(a_{385}= +0.01388940 \pm 2.2 \cdot 10^{-4} \) | \(a_{386}= +2.95469284 \pm 1.7 \cdot 10^{-4} \) | \(a_{387}= -1.07366579 \pm 7.4 \cdot 10^{-5} \) |
\(a_{388}= -3.55406328 \pm 1.3 \cdot 10^{-4} \) | \(a_{389}= -1.33964288 \pm 6.8 \cdot 10^{-5} \) | \(a_{390}= +0.00838861 \pm 1.1 \cdot 10^{-4} \) |
\(a_{391}= +0.93570071 \pm 1.1 \cdot 10^{-4} \) | \(a_{392}= -0.21641316 \pm 1.1 \cdot 10^{-4} \) | \(a_{393}= -0.00512654 \pm 9.5 \cdot 10^{-5} \) |
\(a_{394}= -0.74544260 \pm 1.1 \cdot 10^{-4} \) | \(a_{395}= +0.05426720 \pm 1.2 \cdot 10^{-4} \) | \(a_{396}= +0.74983862 \pm 6.9 \cdot 10^{-5} \) |
\(a_{397}= +0.95749700 \pm 1.2 \cdot 10^{-4} \) | \(a_{398}= -2.44714467 \pm 2.5 \cdot 10^{-4} \) | \(a_{399}= +0.00402215 \pm 2.3 \cdot 10^{-4} \) |
\(a_{400}= -0.67892152 \pm 1.1 \cdot 10^{-4} \) | \(a_{401}= +1.14175404 \pm 1.3 \cdot 10^{-4} \) | \(a_{402}= -0.13796926 \pm 1.6 \cdot 10^{-4} \) |
\(a_{403}= -1.86106992 \pm 8.5 \cdot 10^{-5} \) | \(a_{404}= -0.10070157 \pm 1.0 \cdot 10^{-4} \) | \(a_{405}= +0.09202263 \pm 1.1 \cdot 10^{-4} \) |
\(a_{406}= +0.47121162 \pm 2.8 \cdot 10^{-4} \) | \(a_{407}= -0.31410634 \pm 1.1 \cdot 10^{-4} \) | \(a_{408}= +0.06002625 \pm 4.1 \cdot 10^{-5} \) |
\(a_{409}= +0.68171583 \pm 1.2 \cdot 10^{-4} \) | \(a_{410}= -0.18867123 \pm 1.1 \cdot 10^{-4} \) | \(a_{411}= +0.01253343 \pm 7.3 \cdot 10^{-5} \) |
\(a_{412}= -1.46086440 \pm 1.3 \cdot 10^{-4} \) | \(a_{413}= +0.04118200 \pm 1.8 \cdot 10^{-4} \) | \(a_{414}= +1.67886597 \pm 1.0 \cdot 10^{-4} \) |
\(a_{415}= -0.00677618 \pm 1.0 \cdot 10^{-4} \) | \(a_{416}= +0.44635102 \pm 1.2 \cdot 10^{-4} \) | \(a_{417}= +0.03866026 \pm 1.0 \cdot 10^{-4} \) |
\(a_{418}= +0.17159160 \pm 1.0 \cdot 10^{-4} \) | \(a_{419}= +0.40827846 \pm 1.9 \cdot 10^{-4} \) | \(a_{420}= +0.00276949 \pm 3.3 \cdot 10^{-4} \) |
\(a_{421}= -1.10150297 \pm 1.4 \cdot 10^{-4} \) | \(a_{422}= +2.14736354 \pm 9.6 \cdot 10^{-5} \) | \(a_{423}= +1.70508228 \pm 1.0 \cdot 10^{-4} \) |
\(a_{424}= +2.70181194 \pm 7.9 \cdot 10^{-5} \) | \(a_{425}= -0.93787937 \pm 6.0 \cdot 10^{-5} \) | \(a_{426}= -0.00169717 \pm 1.0 \cdot 10^{-4} \) |
\(a_{427}= +0.44584287 \pm 1.3 \cdot 10^{-4} \) | \(a_{428}= -1.15128552 \pm 6.7 \cdot 10^{-5} \) | \(a_{429}= +0.02118509 \pm 3.4 \cdot 10^{-5} \) |
\(a_{430}= -0.16917588 \pm 1.0 \cdot 10^{-4} \) | \(a_{431}= -1.64532448 \pm 7.6 \cdot 10^{-5} \) | \(a_{432}= +0.05731667 \pm 1.3 \cdot 10^{-4} \) |
\(a_{433}= +1.03593093 \pm 1.1 \cdot 10^{-4} \) | \(a_{434}= -0.93935920 \pm 2.6 \cdot 10^{-4} \) | \(a_{435}= -0.00284125 \pm 4.6 \cdot 10^{-5} \) |
\(a_{436}= +0.18806093 \pm 1.3 \cdot 10^{-4} \) | \(a_{437}= +0.25129558 \pm 8.9 \cdot 10^{-5} \) | \(a_{438}= -0.03838531 \pm 1.7 \cdot 10^{-4} \) |
\(a_{439}= -0.59003810 \pm 2.1 \cdot 10^{-4} \) | \(a_{440}= +0.05566909 \pm 1.1 \cdot 10^{-4} \) | \(a_{441}= -0.14260650 \pm 1.0 \cdot 10^{-4} \) |
\(a_{442}= -2.04787936 \pm 1.2 \cdot 10^{-4} \) | \(a_{443}= -1.78921106 \pm 1.5 \cdot 10^{-4} \) | \(a_{444}= -0.06263150 \pm 7.0 \cdot 10^{-5} \) |
\(a_{445}= -0.00018595 \pm 1.2 \cdot 10^{-4} \) | \(a_{446}= -1.44389048 \pm 1.2 \cdot 10^{-4} \) | \(a_{447}= -0.03473648 \pm 1.6 \cdot 10^{-4} \) |
\(a_{448}= +0.48411509 \pm 1.1 \cdot 10^{-4} \) | \(a_{449}= +1.64206456 \pm 1.6 \cdot 10^{-4} \) | \(a_{450}= -1.68277498 \pm 6.1 \cdot 10^{-5} \) |
\(a_{451}= -0.47648158 \pm 9.6 \cdot 10^{-5} \) | \(a_{452}= +2.70559630 \pm 1.1 \cdot 10^{-4} \) | \(a_{453}= -0.02627472 \pm 8.3 \cdot 10^{-5} \) |
\(a_{454}= +1.64346164 \pm 9.2 \cdot 10^{-5} \) | \(a_{455}= -0.04451841 \pm 2.4 \cdot 10^{-4} \) | \(a_{456}= +0.01612089 \pm 4.5 \cdot 10^{-5} \) |
\(a_{457}= +0.81594564 \pm 1.6 \cdot 10^{-4} \) | \(a_{458}= -0.78766760 \pm 1.6 \cdot 10^{-4} \) | \(a_{459}= +0.07917870 \pm 6.3 \cdot 10^{-5} \) |
\(a_{460}= +0.17303181 \pm 4.4 \cdot 10^{-5} \) | \(a_{461}= +1.34126784 \pm 1.4 \cdot 10^{-4} \) | \(a_{462}= +0.01069299 \pm 3.8 \cdot 10^{-4} \) |
\(a_{463}= -0.80839455 \pm 1.1 \cdot 10^{-4} \) | \(a_{464}= +0.50210655 \pm 9.5 \cdot 10^{-5} \) | \(a_{465}= +0.00566402 \pm 8.2 \cdot 10^{-5} \) |
\(a_{466}= -0.25334294 \pm 1.0 \cdot 10^{-4} \) | \(a_{467}= -1.03781358 \pm 1.3 \cdot 10^{-4} \) | \(a_{468}= -2.40338884 \pm 3.5 \cdot 10^{-5} \) |
\(a_{469}= +0.73220394 \pm 1.7 \cdot 10^{-4} \) | \(a_{470}= +0.26866720 \pm 1.1 \cdot 10^{-4} \) | \(a_{471}= +0.00867747 \pm 8.4 \cdot 10^{-5} \) |
\(a_{472}= +0.16505860 \pm 8.0 \cdot 10^{-5} \) | \(a_{473}= -0.42724686 \pm 4.9 \cdot 10^{-5} \) | \(a_{474}= +0.04177855 \pm 1.2 \cdot 10^{-4} \) |
\(a_{475}= -0.25188069 \pm 6.1 \cdot 10^{-5} \) | \(a_{476}= -0.67610474 \pm 1.9 \cdot 10^{-4} \) | \(a_{477}= +1.78037203 \pm 9.0 \cdot 10^{-5} \) |
\(a_{478}= +0.71962574 \pm 2.0 \cdot 10^{-4} \) | \(a_{479}= +0.09234908 \pm 1.9 \cdot 10^{-4} \) | \(a_{480}= -0.00135843 \pm 1.0 \cdot 10^{-4} \) |
\(a_{481}= +1.00677621 \pm 5.6 \cdot 10^{-5} \) | \(a_{482}= +0.59977048 \pm 1.4 \cdot 10^{-4} \) | \(a_{483}= +0.01565987 \pm 2.6 \cdot 10^{-4} \) |
\(a_{484}= -1.59257897 \pm 8.8 \cdot 10^{-5} \) | \(a_{485}= -0.17387098 \pm 1.6 \cdot 10^{-4} \) | \(a_{486}= +0.21316004 \pm 1.1 \cdot 10^{-4} \) |
\(a_{487}= -1.53931522 \pm 1.5 \cdot 10^{-4} \) | \(a_{488}= +1.78695059 \pm 1.0 \cdot 10^{-4} \) | \(a_{489}= +0.05337839 \pm 1.3 \cdot 10^{-4} \) |
\(a_{490}= -0.02247029 \pm 2.9 \cdot 10^{-4} \) | \(a_{491}= +1.04283008 \pm 1.4 \cdot 10^{-4} \) | \(a_{492}= -0.09500845 \pm 8.3 \cdot 10^{-5} \) |
\(a_{493}= +0.69362270 \pm 6.3 \cdot 10^{-5} \) | \(a_{494}= -0.54998679 \pm 7.1 \cdot 10^{-5} \) | \(a_{495}= +0.03668341 \pm 9.4 \cdot 10^{-5} \) |
\(a_{496}= -1.00094817 \pm 9.8 \cdot 10^{-5} \) | \(a_{497}= +0.00900691 \pm 9.9 \cdot 10^{-5} \) | \(a_{498}= -0.00521676 \pm 7.9 \cdot 10^{-5} \) |
\(a_{499}= -0.02035579 \pm 1.0 \cdot 10^{-4} \) | \(a_{500}= -0.34836644 \pm 6.4 \cdot 10^{-5} \) | \(a_{501}= -0.03919378 \pm 5.9 \cdot 10^{-5} \) |
\(a_{502}= +2.63871579 \pm 1.7 \cdot 10^{-4} \) | \(a_{503}= -1.75486043 \pm 9.5 \cdot 10^{-5} \) | \(a_{504}= -0.57157080 \pm 2.2 \cdot 10^{-4} \) |
\(a_{505}= -0.00492650 \pm 9.0 \cdot 10^{-5} \) | \(a_{506}= +0.66807587 \pm 8.7 \cdot 10^{-5} \) | \(a_{507}= -0.02601557 \pm 8.0 \cdot 10^{-5} \) |
\(a_{508}= -1.95045234 \pm 1.1 \cdot 10^{-4} \) | \(a_{509}= -1.26684941 \pm 7.0 \cdot 10^{-5} \) | \(a_{510}= +0.00623256 \pm 9.6 \cdot 10^{-5} \) |
\(a_{511}= +0.20371116 \pm 1.6 \cdot 10^{-4} \) | \(a_{512}= +1.27743374 \pm 1.5 \cdot 10^{-4} \) | \(a_{513}= +0.02126455 \pm 8.3 \cdot 10^{-5} \) |
\(a_{514}= -1.19031331 \pm 1.9 \cdot 10^{-4} \) | \(a_{515}= -0.07146804 \pm 9.5 \cdot 10^{-5} \) | \(a_{516}= -0.08519125 \pm 6.3 \cdot 10^{-5} \) |
\(a_{517}= +0.67850820 \pm 1.0 \cdot 10^{-4} \) | \(a_{518}= +0.50816172 \pm 2.8 \cdot 10^{-4} \) | \(a_{519}= +0.03380024 \pm 1.1 \cdot 10^{-4} \) |
\(a_{520}= -0.17843101 \pm 7.0 \cdot 10^{-5} \) | \(a_{521}= -0.53065161 \pm 1.4 \cdot 10^{-4} \) | \(a_{522}= +1.24452138 \pm 8.2 \cdot 10^{-5} \) |
\(a_{523}= -1.21656605 \pm 1.3 \cdot 10^{-4} \) | \(a_{524}= +0.23143438 \pm 7.8 \cdot 10^{-5} \) | \(a_{525}= -0.01569633 \pm 2.2 \cdot 10^{-4} \) |
\(a_{526}= -1.62171252 \pm 1.3 \cdot 10^{-4} \) | \(a_{527}= -1.38273513 \pm 6.6 \cdot 10^{-5} \) | \(a_{528}= +0.01139408 \pm 4.3 \cdot 10^{-5} \) |
\(a_{529}= -0.02160412 \pm 1.0 \cdot 10^{-4} \) | \(a_{530}= +0.28053050 \pm 6.5 \cdot 10^{-5} \) | \(a_{531}= +0.10876616 \pm 8.9 \cdot 10^{-5} \) |
\(a_{532}= -0.18157743 \pm 2.2 \cdot 10^{-4} \) | \(a_{533}= +1.52722264 \pm 1.2 \cdot 10^{-4} \) | \(a_{534}= -0.00014316 \pm 9.5 \cdot 10^{-5} \) |
\(a_{535}= -0.05632290 \pm 1.2 \cdot 10^{-4} \) | \(a_{536}= +2.93469373 \pm 1.2 \cdot 10^{-4} \) | \(a_{537}= -0.03574533 \pm 1.0 \cdot 10^{-4} \) |
\(a_{538}= +2.70915893 \pm 2.9 \cdot 10^{-4} \) | \(a_{539}= -0.05674781 \pm 1.0 \cdot 10^{-4} \) | \(a_{540}= +0.01464190 \pm 5.7 \cdot 10^{-5} \) |
\(a_{541}= -0.07248950 \pm 1.3 \cdot 10^{-4} \) | \(a_{542}= +0.73152825 \pm 1.4 \cdot 10^{-4} \) | \(a_{543}= +0.00384226 \pm 1.4 \cdot 10^{-4} \) |
\(a_{544}= +0.33162925 \pm 7.8 \cdot 10^{-5} \) | \(a_{545}= +0.00920027 \pm 1.8 \cdot 10^{-4} \) | \(a_{546}= -0.03427327 \pm 4.1 \cdot 10^{-4} \) |
\(a_{547}= -0.04554804 \pm 9.8 \cdot 10^{-5} \) | \(a_{548}= -0.56581365 \pm 5.5 \cdot 10^{-5} \) | \(a_{549}= +1.17751973 \pm 1.0 \cdot 10^{-4} \) |
\(a_{550}= -0.66963139 \pm 6.6 \cdot 10^{-5} \) | \(a_{551}= +0.18628213 \pm 1.2 \cdot 10^{-4} \) | \(a_{552}= +0.06276520 \pm 7.3 \cdot 10^{-5} \) |
\(a_{553}= -0.22171909 \pm 9.9 \cdot 10^{-5} \) | \(a_{554}= -2.30740527 \pm 1.0 \cdot 10^{-4} \) | \(a_{555}= -0.00306404 \pm 8.6 \cdot 10^{-5} \) |
\(a_{556}= -1.74529229 \pm 7.0 \cdot 10^{-5} \) | \(a_{557}= -0.84111514 \pm 1.5 \cdot 10^{-4} \) | \(a_{558}= -2.48095028 \pm 5.4 \cdot 10^{-5} \) |
\(a_{559}= +1.36941510 \pm 1.1 \cdot 10^{-4} \) | \(a_{560}= -0.02394355 \pm 2.6 \cdot 10^{-4} \) | \(a_{561}= +0.01574007 \pm 3.6 \cdot 10^{-5} \) |
\(a_{562}= +0.22761108 \pm 2.2 \cdot 10^{-4} \) | \(a_{563}= +1.05640690 \pm 2.1 \cdot 10^{-4} \) | \(a_{564}= +0.13529172 \pm 6.6 \cdot 10^{-5} \) |
\(a_{565}= +0.13236250 \pm 1.4 \cdot 10^{-4} \) | \(a_{566}= -2.97661120 \pm 1.3 \cdot 10^{-4} \) | \(a_{567}= -0.37597619 \pm 1.1 \cdot 10^{-4} \) |
\(a_{568}= +0.03609996 \pm 8.3 \cdot 10^{-5} \) | \(a_{569}= +0.37575443 \pm 1.0 \cdot 10^{-4} \) | \(a_{570}= +0.00167384 \pm 3.7 \cdot 10^{-5} \) |
\(a_{571}= +0.46736940 \pm 1.5 \cdot 10^{-4} \) | \(a_{572}= -0.95638730 \pm 4.0 \cdot 10^{-5} \) | \(a_{573}= +0.01240216 \pm 6.5 \cdot 10^{-5} \) |
\(a_{574}= +0.77085263 \pm 3.2 \cdot 10^{-4} \) | \(a_{575}= -0.98067394 \pm 1.2 \cdot 10^{-4} \) | \(a_{576}= +1.27860085 \pm 9.7 \cdot 10^{-5} \) |
\(a_{577}= +1.85953829 \pm 1.0 \cdot 10^{-4} \) | \(a_{578}= +0.17875306 \pm 1.3 \cdot 10^{-4} \) | \(a_{579}= +0.07278986 \pm 1.2 \cdot 10^{-4} \) |
\(a_{580}= +0.12826622 \pm 5.7 \cdot 10^{-5} \) | \(a_{581}= +0.02768541 \pm 9.5 \cdot 10^{-5} \) | \(a_{582}= -0.13385761 \pm 1.9 \cdot 10^{-4} \) |
\(a_{583}= +0.70846846 \pm 7.0 \cdot 10^{-5} \) | \(a_{584}= +0.81648000 \pm 7.8 \cdot 10^{-5} \) | \(a_{585}= -0.11757798 \pm 6.9 \cdot 10^{-5} \) |
\(a_{586}= +1.49363047 \pm 2.1 \cdot 10^{-4} \) | \(a_{587}= -1.25825008 \pm 1.3 \cdot 10^{-4} \) | \(a_{588}= -0.01131528 \pm 2.1 \cdot 10^{-4} \) |
\(a_{589}= -0.37135295 \pm 5.0 \cdot 10^{-5} \) | \(a_{590}= +0.01713812 \pm 9.7 \cdot 10^{-5} \) | \(a_{591}= -0.01836423 \pm 7.7 \cdot 10^{-5} \) |
\(a_{592}= +0.54147928 \pm 8.4 \cdot 10^{-5} \) | \(a_{593}= -0.84027250 \pm 1.9 \cdot 10^{-4} \) | \(a_{594}= +0.05653237 \pm 7.8 \cdot 10^{-5} \) |
\(a_{595}= -0.03307622 \pm 2.1 \cdot 10^{-4} \) | \(a_{596}= +1.56815596 \pm 1.5 \cdot 10^{-4} \) | \(a_{597}= -0.06028624 \pm 1.6 \cdot 10^{-4} \) |
\(a_{598}= -2.14132221 \pm 1.6 \cdot 10^{-4} \) | \(a_{599}= -0.54014454 \pm 1.7 \cdot 10^{-4} \) | \(a_{600}= -0.06291134 \pm 7.3 \cdot 10^{-5} \) |
\(a_{601}= +0.08613754 \pm 1.7 \cdot 10^{-4} \) | \(a_{602}= +0.69120062 \pm 2.6 \cdot 10^{-4} \) | \(a_{603}= +1.93383062 \pm 1.0 \cdot 10^{-4} \) |
\(a_{604}= +1.18615519 \pm 5.4 \cdot 10^{-5} \) | \(a_{605}= -0.07791174 \pm 7.3 \cdot 10^{-5} \) | \(a_{606}= -0.00379275 \pm 1.2 \cdot 10^{-4} \) |
\(a_{607}= -0.51685137 \pm 1.6 \cdot 10^{-4} \) | \(a_{608}= +0.08906370 \pm 9.5 \cdot 10^{-5} \) | \(a_{609}= +0.01160846 \pm 2.2 \cdot 10^{-4} \) |
\(a_{610}= +0.18553998 \pm 9.6 \cdot 10^{-5} \) | \(a_{611}= -2.17476000 \pm 9.1 \cdot 10^{-5} \) | \(a_{612}= -1.78566649 \pm 4.3 \cdot 10^{-5} \) |
\(a_{613}= -0.54454198 \pm 1.3 \cdot 10^{-4} \) | \(a_{614}= +2.51360311 \pm 1.5 \cdot 10^{-4} \) | \(a_{615}= -0.00464798 \pm 7.3 \cdot 10^{-5} \) |
\(a_{616}= -0.22744678 \pm 2.1 \cdot 10^{-4} \) | \(a_{617}= -0.11446103 \pm 1.0 \cdot 10^{-4} \) | \(a_{618}= -0.05502092 \pm 1.7 \cdot 10^{-4} \) |
\(a_{619}= -1.66649641 \pm 1.2 \cdot 10^{-4} \) | \(a_{620}= -0.25569838 \pm 7.3 \cdot 10^{-5} \) | \(a_{621}= +0.08279155 \pm 1.3 \cdot 10^{-4} \) |
\(a_{622}= -1.33635711 \pm 1.1 \cdot 10^{-4} \) | \(a_{623}= +0.00075973 \pm 1.0 \cdot 10^{-4} \) | \(a_{624}= -0.03652040 \pm 1.0 \cdot 10^{-4} \) |
\(a_{625}= +0.97439934 \pm 1.3 \cdot 10^{-4} \) | \(a_{626}= +2.42315259 \pm 2.2 \cdot 10^{-4} \) | \(a_{627}= +0.00422722 \pm 5.3 \cdot 10^{-5} \) |
\(a_{628}= -0.39173881 \pm 8.9 \cdot 10^{-5} \) | \(a_{629}= +0.74801318 \pm 4.7 \cdot 10^{-5} \) | \(a_{630}= -0.05934648 \pm 4.0 \cdot 10^{-4} \) |
\(a_{631}= -0.39821313 \pm 1.6 \cdot 10^{-4} \) | \(a_{632}= -0.88865626 \pm 7.0 \cdot 10^{-5} \) | \(a_{633}= +0.05290103 \pm 8.3 \cdot 10^{-5} \) |
\(a_{634}= -0.52403726 \pm 1.3 \cdot 10^{-4} \) | \(a_{635}= -0.09541953 \pm 1.1 \cdot 10^{-4} \) | \(a_{636}= +0.14126567 \pm 5.7 \cdot 10^{-5} \) |
\(a_{637}= +0.18188853 \pm 1.2 \cdot 10^{-4} \) | \(a_{638}= +0.49523590 \pm 9.2 \cdot 10^{-5} \) | \(a_{639}= +0.02378825 \pm 7.0 \cdot 10^{-5} \) |
\(a_{640}= +0.16903632 \pm 7.9 \cdot 10^{-5} \) | \(a_{641}= +1.19836818 \pm 1.6 \cdot 10^{-4} \) | \(a_{642}= -0.04336117 \pm 9.8 \cdot 10^{-5} \) |
\(a_{643}= -0.02462990 \pm 1.2 \cdot 10^{-4} \) | \(a_{644}= -0.70695477 \pm 2.5 \cdot 10^{-4} \) | \(a_{645}= -0.00416770 \pm 9.0 \cdot 10^{-5} \) |
\(a_{646}= -0.40862841 \pm 4.5 \cdot 10^{-5} \) | \(a_{647}= +0.08600201 \pm 1.5 \cdot 10^{-4} \) | \(a_{648}= -1.50692302 \pm 9.6 \cdot 10^{-5} \) |
\(a_{649}= +0.04328162 \pm 9.1 \cdot 10^{-5} \) | \(a_{650}= +2.14630799 \pm 1.1 \cdot 10^{-4} \) | \(a_{651}= -0.02314143 \pm 2.0 \cdot 10^{-4} \) |
\(a_{652}= -2.40973303 \pm 1.0 \cdot 10^{-4} \) | \(a_{653}= -0.92849670 \pm 2.1 \cdot 10^{-4} \) | \(a_{654}= +0.00708299 \pm 1.8 \cdot 10^{-4} \) |
\(a_{655}= +0.01132217 \pm 1.0 \cdot 10^{-4} \) | \(a_{656}= +0.82139348 \pm 1.5 \cdot 10^{-4} \) | \(a_{657}= +0.53802344 \pm 8.4 \cdot 10^{-5} \) |
\(a_{658}= -1.09769160 \pm 3.1 \cdot 10^{-4} \) | \(a_{659}= -0.84388160 \pm 1.6 \cdot 10^{-4} \) | \(a_{660}= +0.00291069 \pm 5.8 \cdot 10^{-5} \) |
\(a_{661}= +0.56540546 \pm 9.6 \cdot 10^{-5} \) | \(a_{662}= +0.28707530 \pm 2.6 \cdot 10^{-4} \) | \(a_{663}= -0.05045020 \pm 7.5 \cdot 10^{-5} \) |
\(a_{664}= +0.11096388 \pm 8.9 \cdot 10^{-5} \) | \(a_{665}= -0.00888308 \pm 2.4 \cdot 10^{-4} \) | \(a_{666}= +1.34211063 \pm 8.5 \cdot 10^{-5} \) |
\(a_{667}= +0.72527207 \pm 9.8 \cdot 10^{-5} \) | \(a_{668}= +1.76937815 \pm 6.7 \cdot 10^{-5} \) | \(a_{669}= -0.03557073 \pm 7.7 \cdot 10^{-5} \) |
\(a_{670}= +0.30471073 \pm 1.4 \cdot 10^{-4} \) | \(a_{671}= +0.46857374 \pm 7.2 \cdot 10^{-5} \) | \(a_{672}= +0.00555014 \pm 2.6 \cdot 10^{-4} \) |
\(a_{673}= +1.21478656 \pm 1.5 \cdot 10^{-4} \) | \(a_{674}= -1.51766446 \pm 1.7 \cdot 10^{-4} \) | \(a_{675}= -0.08298432 \pm 1.1 \cdot 10^{-4} \) |
\(a_{676}= +1.17445599 \pm 6.0 \cdot 10^{-5} \) | \(a_{677}= +1.15698310 \pm 1.8 \cdot 10^{-4} \) | \(a_{678}= +0.10190158 \pm 1.5 \cdot 10^{-4} \) |
\(a_{679}= +0.71038338 \pm 2.0 \cdot 10^{-4} \) | \(a_{680}= -0.13257043 \pm 6.6 \cdot 10^{-5} \) | \(a_{681}= +0.04048723 \pm 7.9 \cdot 10^{-5} \) |
\(a_{682}= -0.98725154 \pm 5.9 \cdot 10^{-5} \) | \(a_{683}= -1.17874040 \pm 1.5 \cdot 10^{-4} \) | \(a_{684}= -0.47956583 \pm 5.0 \cdot 10^{-5} \) |
\(a_{685}= -0.02768059 \pm 1.1 \cdot 10^{-4} \) | \(a_{686}= +0.09180669 \pm 1.7 \cdot 10^{-4} \) | \(a_{687}= -0.01940446 \pm 1.2 \cdot 10^{-4} \) |
\(a_{688}= +0.73651910 \pm 9.2 \cdot 10^{-5} \) | \(a_{689}= -2.27078889 \pm 9.5 \cdot 10^{-5} \) | \(a_{690}= +0.00651694 \pm 6.1 \cdot 10^{-5} \) |
\(a_{691}= -0.79708738 \pm 9.8 \cdot 10^{-5} \) | \(a_{692}= -1.52589018 \pm 7.0 \cdot 10^{-5} \) | \(a_{693}= -0.14987715 \pm 2.1 \cdot 10^{-4} \) |
\(a_{694}= -0.71306367 \pm 9.1 \cdot 10^{-5} \) | \(a_{695}= -0.08538275 \pm 7.7 \cdot 10^{-5} \) | \(a_{696}= +0.04652702 \pm 4.1 \cdot 10^{-5} \) |
\(a_{697}= +1.13469375 \pm 8.9 \cdot 10^{-5} \) | \(a_{698}= -2.63695943 \pm 1.6 \cdot 10^{-4} \) | \(a_{699}= -0.00624119 \pm 7.7 \cdot 10^{-5} \) |
\(a_{700}= +0.70860082 \pm 2.1 \cdot 10^{-4} \) | \(a_{701}= +0.18613624 \pm 8.7 \cdot 10^{-5} \) | \(a_{702}= -0.18119802 \pm 1.2 \cdot 10^{-4} \) |
\(a_{703}= +0.20088945 \pm 1.1 \cdot 10^{-4} \) | \(a_{704}= +0.50879724 \pm 9.7 \cdot 10^{-5} \) | \(a_{705}= +0.00661871 \pm 9.2 \cdot 10^{-5} \) |
\(a_{706}= +0.00077638 \pm 2.0 \cdot 10^{-4} \) | \(a_{707}= +0.02012815 \pm 1.2 \cdot 10^{-4} \) | \(a_{708}= +0.00863018 \pm 1.2 \cdot 10^{-4} \) |
\(a_{709}= +0.81258083 \pm 1.5 \cdot 10^{-4} \) | \(a_{710}= +0.00374828 \pm 1.0 \cdot 10^{-4} \) | \(a_{711}= -0.58558433 \pm 7.0 \cdot 10^{-5} \) |
\(a_{712}= +0.00304501 \pm 9.6 \cdot 10^{-5} \) | \(a_{713}= -1.44582806 \pm 8.8 \cdot 10^{-5} \) | \(a_{714}= -0.02546431 \pm 3.8 \cdot 10^{-4} \) |
\(a_{715}= -0.04678814 \pm 4.9 \cdot 10^{-5} \) | \(a_{716}= +1.61370010 \pm 7.5 \cdot 10^{-5} \) | \(a_{717}= +0.01772822 \pm 1.1 \cdot 10^{-4} \) |
\(a_{718}= +0.82841261 \pm 1.2 \cdot 10^{-4} \) | \(a_{719}= +0.72978120 \pm 9.8 \cdot 10^{-5} \) | \(a_{720}= -0.06323753 \pm 6.9 \cdot 10^{-5} \) |
\(a_{721}= +0.29199643 \pm 1.6 \cdot 10^{-4} \) | \(a_{722}= +1.59054071 \pm 1.4 \cdot 10^{-4} \) | \(a_{723}= +0.01477555 \pm 7.5 \cdot 10^{-5} \) |
\(a_{724}= -0.17345651 \pm 1.4 \cdot 10^{-4} \) | \(a_{725}= -0.72696076 \pm 6.4 \cdot 10^{-5} \) | \(a_{726}= -0.05998172 \pm 1.1 \cdot 10^{-4} \) |
\(a_{727}= +0.24311759 \pm 8.2 \cdot 10^{-5} \) | \(a_{728}= +0.72901427 \pm 2.3 \cdot 10^{-4} \) | \(a_{729}= -0.98948823 \pm 1.3 \cdot 10^{-4} \) |
\(a_{730}= +0.08477553 \pm 1.1 \cdot 10^{-4} \) | \(a_{731}= +1.01744612 \pm 9.6 \cdot 10^{-5} \) | \(a_{732}= +0.09343166 \pm 6.7 \cdot 10^{-5} \) |
\(a_{733}= +1.10456000 \pm 1.3 \cdot 10^{-4} \) | \(a_{734}= -1.15013000 \pm 1.5 \cdot 10^{-4} \) | \(a_{735}= -0.00055356 \pm 2.3 \cdot 10^{-4} \) |
\(a_{736}= +0.34676119 \pm 1.5 \cdot 10^{-4} \) | \(a_{737}= +0.76953467 \pm 1.1 \cdot 10^{-4} \) | \(a_{738}= +2.03590602 \pm 1.0 \cdot 10^{-4} \) |
\(a_{739}= -0.75733255 \pm 1.3 \cdot 10^{-4} \) | \(a_{740}= +0.13832422 \pm 5.1 \cdot 10^{-5} \) | \(a_{741}= -0.01354911 \pm 3.7 \cdot 10^{-5} \) |
\(a_{742}= -1.14616136 \pm 2.6 \cdot 10^{-4} \) | \(a_{743}= -0.35616271 \pm 1.7 \cdot 10^{-4} \) | \(a_{744}= -0.09275150 \pm 5.0 \cdot 10^{-5} \) |
\(a_{745}= +0.07671693 \pm 1.0 \cdot 10^{-4} \) | \(a_{746}= -0.22486230 \pm 2.2 \cdot 10^{-4} \) | \(a_{747}= +0.07312019 \pm 8.5 \cdot 10^{-5} \) |
\(a_{748}= -0.71057530 \pm 6.4 \cdot 10^{-5} \) | \(a_{749}= +0.23011805 \pm 1.0 \cdot 10^{-4} \) | \(a_{750}= -0.01312062 \pm 8.0 \cdot 10^{-5} \) |
\(a_{751}= +0.51270655 \pm 9.6 \cdot 10^{-5} \) | \(a_{752}= -1.16966161 \pm 1.2 \cdot 10^{-4} \) | \(a_{753}= +0.06500565 \pm 1.0 \cdot 10^{-4} \) |
\(a_{754}= -1.58733415 \pm 8.9 \cdot 10^{-5} \) | \(a_{755}= +0.05802878 \pm 1.3 \cdot 10^{-4} \) | \(a_{756}= -0.05982229 \pm 2.2 \cdot 10^{-4} \) |
\(a_{757}= -1.93170630 \pm 1.0 \cdot 10^{-4} \) | \(a_{758}= +0.26453437 \pm 2.2 \cdot 10^{-4} \) | \(a_{759}= +0.01645827 \pm 9.2 \cdot 10^{-5} \) |
\(a_{760}= -0.03560365 \pm 1.3 \cdot 10^{-4} \) | \(a_{761}= -1.07043730 \pm 1.4 \cdot 10^{-4} \) | \(a_{762}= -0.07346039 \pm 1.4 \cdot 10^{-4} \) |
\(a_{763}= -0.03758947 \pm 2.1 \cdot 10^{-4} \) | \(a_{764}= -0.55988773 \pm 7.1 \cdot 10^{-5} \) | \(a_{765}= -0.08735792 \pm 5.9 \cdot 10^{-5} \) |
\(a_{766}= +0.53695551 \pm 6.3 \cdot 10^{-5} \) | \(a_{767}= -0.13872662 \pm 1.5 \cdot 10^{-4} \) | \(a_{768}= +0.07648460 \pm 1.3 \cdot 10^{-4} \) |
\(a_{769}= +1.34754507 \pm 1.4 \cdot 10^{-4} \) | \(a_{770}= -0.02361591 \pm 3.9 \cdot 10^{-4} \) | \(a_{771}= -0.02932377 \pm 1.0 \cdot 10^{-4} \) |
\(a_{772}= -3.28605112 \pm 9.4 \cdot 10^{-5} \) | \(a_{773}= -0.53429441 \pm 1.6 \cdot 10^{-4} \) | \(a_{774}= +1.82553635 \pm 7.5 \cdot 10^{-5} \) |
\(a_{775}= +1.44919448 \pm 7.8 \cdot 10^{-5} \) | \(a_{776}= +2.84723632 \pm 1.5 \cdot 10^{-4} \) | \(a_{777}= +0.01251874 \pm 2.3 \cdot 10^{-4} \) |
\(a_{778}= +2.27777284 \pm 7.4 \cdot 10^{-5} \) | \(a_{779}= +0.30473795 \pm 1.2 \cdot 10^{-4} \) | \(a_{780}= -0.00932936 \pm 7.5 \cdot 10^{-5} \) |
\(a_{781}= +0.00946612 \pm 7.8 \cdot 10^{-5} \) | \(a_{782}= -1.59095659 \pm 1.2 \cdot 10^{-4} \) | \(a_{783}= +0.06137230 \pm 8.1 \cdot 10^{-5} \) |
\(a_{784}= +0.09782598 \pm 1.4 \cdot 10^{-4} \) | \(a_{785}= -0.01916455 \pm 1.5 \cdot 10^{-4} \) | \(a_{786}= +0.00871657 \pm 9.1 \cdot 10^{-5} \) |
\(a_{787}= -0.20553795 \pm 1.5 \cdot 10^{-4} \) | \(a_{788}= +0.82904133 \pm 6.5 \cdot 10^{-5} \) | \(a_{789}= -0.03995144 \pm 9.8 \cdot 10^{-5} \) |
\(a_{790}= -0.09226963 \pm 1.4 \cdot 10^{-4} \) | \(a_{791}= -0.54079247 \pm 1.3 \cdot 10^{-4} \) | \(a_{792}= -0.60071180 \pm 1.0 \cdot 10^{-4} \) |
\(a_{793}= -1.50187638 \pm 1.5 \cdot 10^{-4} \) | \(a_{794}= -1.62801645 \pm 1.3 \cdot 10^{-4} \) | \(a_{795}= +0.00691096 \pm 7.0 \cdot 10^{-5} \) |
\(a_{796}= +2.72158323 \pm 1.5 \cdot 10^{-4} \) | \(a_{797}= +0.56293367 \pm 1.3 \cdot 10^{-4} \) | \(a_{798}= -0.00683880 \pm 4.0 \cdot 10^{-4} \) |
\(a_{799}= -1.61580015 \pm 6.7 \cdot 10^{-5} \) | \(a_{800}= -0.34756858 \pm 1.3 \cdot 10^{-4} \) | \(a_{801}= +0.00200652 \pm 8.1 \cdot 10^{-5} \) |
\(a_{802}= -1.94130568 \pm 1.2 \cdot 10^{-4} \) | \(a_{803}= +0.21409718 \pm 8.3 \cdot 10^{-5} \) | \(a_{804}= +0.15344202 \pm 1.1 \cdot 10^{-4} \) |
\(a_{805}= -0.03458546 \pm 2.7 \cdot 10^{-4} \) | \(a_{806}= +3.16434668 \pm 1.1 \cdot 10^{-4} \) | \(a_{807}= +0.06674104 \pm 1.8 \cdot 10^{-4} \) |
\(a_{808}= +0.08067418 \pm 9.1 \cdot 10^{-5} \) | \(a_{809}= -0.33034604 \pm 1.3 \cdot 10^{-4} \) | \(a_{810}= -0.15646458 \pm 1.2 \cdot 10^{-4} \) |
\(a_{811}= +0.51616014 \pm 1.4 \cdot 10^{-4} \) | \(a_{812}= -0.52405633 \pm 2.1 \cdot 10^{-4} \) | \(a_{813}= +0.01802145 \pm 6.0 \cdot 10^{-5} \) |
\(a_{814}= +0.53406987 \pm 8.8 \cdot 10^{-5} \) | \(a_{815}= -0.11788835 \pm 1.0 \cdot 10^{-4} \) | \(a_{816}= -0.02713387 \pm 6.9 \cdot 10^{-5} \) |
\(a_{817}= +0.27324946 \pm 2.1 \cdot 10^{-5} \) | \(a_{818}= -1.15911026 \pm 1.2 \cdot 10^{-4} \) | \(a_{819}= +0.48038748 \pm 2.3 \cdot 10^{-4} \) |
\(a_{820}= +0.20983003 \pm 7.0 \cdot 10^{-5} \) | \(a_{821}= +1.88132059 \pm 1.0 \cdot 10^{-4} \) | \(a_{822}= -0.02131039 \pm 8.9 \cdot 10^{-5} \) |
\(a_{823}= +0.07659244 \pm 1.0 \cdot 10^{-4} \) | \(a_{824}= +1.17032980 \pm 8.2 \cdot 10^{-5} \) | \(a_{825}= -0.01649660 \pm 6.2 \cdot 10^{-5} \) |
\(a_{826}= -0.07002108 \pm 3.5 \cdot 10^{-4} \) | \(a_{827}= -0.64771563 \pm 1.2 \cdot 10^{-4} \) | \(a_{828}= -1.86714481 \pm 5.3 \cdot 10^{-5} \) |
\(a_{829}= +1.35227855 \pm 1.5 \cdot 10^{-4} \) | \(a_{830}= +0.01152144 \pm 1.0 \cdot 10^{-4} \) | \(a_{831}= -0.05684371 \pm 1.0 \cdot 10^{-4} \) |
\(a_{832}= -1.63080106 \pm 9.5 \cdot 10^{-5} \) | \(a_{833}= +0.13513928 \pm 9.4 \cdot 10^{-5} \) | \(a_{834}= -0.06573340 \pm 9.6 \cdot 10^{-5} \) |
\(a_{835}= +0.08656107 \pm 1.1 \cdot 10^{-4} \) | \(a_{836}= -0.19083498 \pm 6.8 \cdot 10^{-5} \) | \(a_{837}= -0.12234552 \pm 8.9 \cdot 10^{-5} \) |
\(a_{838}= -0.69418917 \pm 2.5 \cdot 10^{-4} \) | \(a_{839}= +0.66171458 \pm 1.2 \cdot 10^{-4} \) | \(a_{840}= -0.00221870 \pm 3.4 \cdot 10^{-4} \) |
\(a_{841}= -0.46236530 \pm 1.0 \cdot 10^{-4} \) | \(a_{842}= +1.87286745 \pm 1.7 \cdot 10^{-4} \) | \(a_{843}= +0.00560728 \pm 1.4 \cdot 10^{-4} \) |
\(a_{844}= -2.38818271 \pm 5.4 \cdot 10^{-5} \) | \(a_{845}= +0.05745644 \pm 1.0 \cdot 10^{-4} \) | \(a_{846}= -2.89912345 \pm 9.1 \cdot 10^{-5} \) |
\(a_{847}= +0.31832343 \pm 1.1 \cdot 10^{-4} \) | \(a_{848}= -1.22130929 \pm 9.0 \cdot 10^{-5} \) | \(a_{849}= -0.07332982 \pm 8.8 \cdot 10^{-5} \) |
\(a_{850}= +1.59466092 \pm 7.5 \cdot 10^{-5} \) | \(a_{851}= +0.78214434 \pm 1.0 \cdot 10^{-4} \) | \(a_{852}= +0.00188751 \pm 8.2 \cdot 10^{-5} \) |
\(a_{853}= +0.24737777 \pm 1.3 \cdot 10^{-4} \) | \(a_{854}= -0.75805932 \pm 3.0 \cdot 10^{-4} \) | \(a_{855}= -0.02346120 \pm 1.1 \cdot 10^{-4} \) |
\(a_{856}= +0.92231952 \pm 9.4 \cdot 10^{-5} \) | \(a_{857}= -1.23031720 \pm 7.7 \cdot 10^{-5} \) | \(a_{858}= -0.03602066 \pm 4.5 \cdot 10^{-5} \) |
\(a_{859}= +0.60468571 \pm 2.0 \cdot 10^{-4} \) | \(a_{860}= +0.18814835 \pm 6.6 \cdot 10^{-5} \) | \(a_{861}= +0.01899021 \pm 2.6 \cdot 10^{-4} \) |
\(a_{862}= +2.79751824 \pm 6.8 \cdot 10^{-5} \) | \(a_{863}= -0.49857957 \pm 1.4 \cdot 10^{-4} \) | \(a_{864}= +0.02934282 \pm 1.4 \cdot 10^{-4} \) |
\(a_{865}= -0.07464921 \pm 1.1 \cdot 10^{-4} \) | \(a_{866}= -1.76137638 \pm 1.1 \cdot 10^{-4} \) | \(a_{867}= +0.00440364 \pm 9.2 \cdot 10^{-5} \) |
\(a_{868}= +1.04470498 \pm 1.9 \cdot 10^{-4} \) | \(a_{869}= -0.23302323 \pm 6.0 \cdot 10^{-5} \) | \(a_{870}= +0.00483092 \pm 5.8 \cdot 10^{-5} \) |
\(a_{871}= -2.46651880 \pm 1.4 \cdot 10^{-4} \) | \(a_{872}= -0.15065964 \pm 1.6 \cdot 10^{-4} \) | \(a_{873}= +1.87620013 \pm 1.5 \cdot 10^{-4} \) |
\(a_{874}= -0.42727375 \pm 1.0 \cdot 10^{-4} \) | \(a_{875}= +0.06963121 \pm 1.1 \cdot 10^{-4} \) | \(a_{876}= +0.04269009 \pm 1.0 \cdot 10^{-4} \) |
\(a_{877}= -0.46660112 \pm 1.6 \cdot 10^{-4} \) | \(a_{878}= +1.00323211 \pm 2.3 \cdot 10^{-4} \) | \(a_{879}= +0.03679609 \pm 1.3 \cdot 10^{-4} \) |
\(a_{880}= -0.02516429 \pm 6.4 \cdot 10^{-5} \) | \(a_{881}= +1.49283979 \pm 1.8 \cdot 10^{-4} \) | \(a_{882}= +0.24247149 \pm 2.7 \cdot 10^{-4} \) |
\(a_{883}= +0.20333656 \pm 2.1 \cdot 10^{-4} \) | \(a_{884}= +2.27754174 \pm 6.0 \cdot 10^{-5} \) | \(a_{885}= +0.00042220 \pm 8.1 \cdot 10^{-5} \) |
\(a_{886}= +3.04216624 \pm 1.9 \cdot 10^{-4} \) | \(a_{887}= -1.36092659 \pm 2.1 \cdot 10^{-4} \) | \(a_{888}= +0.05017544 \pm 1.0 \cdot 10^{-4} \) |
\(a_{889}= +0.38985488 \pm 1.4 \cdot 10^{-4} \) | \(a_{890}= +0.00031617 \pm 1.1 \cdot 10^{-4} \) | \(a_{891}= -0.39514498 \pm 7.5 \cdot 10^{-5} \) |
\(a_{892}= +1.60581766 \pm 7.8 \cdot 10^{-5} \) | \(a_{893}= -0.43394584 \pm 1.4 \cdot 10^{-4} \) | \(a_{894}= +0.05906187 \pm 2.1 \cdot 10^{-4} \) |
\(a_{895}= +0.07894503 \pm 1.0 \cdot 10^{-4} \) | \(a_{896}= -0.69063043 \pm 9.6 \cdot 10^{-5} \) | \(a_{897}= -0.05275220 \pm 7.8 \cdot 10^{-5} \) |
\(a_{898}= -2.79197546 \pm 1.9 \cdot 10^{-4} \) | \(a_{899}= -1.07177343 \pm 6.0 \cdot 10^{-5} \) | \(a_{900}= +1.87149220 \pm 3.6 \cdot 10^{-5} \) |
\(a_{901}= -1.68714756 \pm 8.3 \cdot 10^{-5} \) | \(a_{902}= +0.81015382 \pm 1.0 \cdot 10^{-4} \) | \(a_{903}= +0.01702796 \pm 2.0 \cdot 10^{-4} \) |
\(a_{904}= -2.16751122 \pm 1.0 \cdot 10^{-4} \) | \(a_{905}= -0.00848580 \pm 1.0 \cdot 10^{-4} \) | \(a_{906}= +0.04467447 \pm 6.0 \cdot 10^{-5} \) |
\(a_{907}= +0.26943769 \pm 1.1 \cdot 10^{-4} \) | \(a_{908}= -1.82777001 \pm 6.7 \cdot 10^{-5} \) | \(a_{909}= +0.05316064 \pm 9.3 \cdot 10^{-5} \) |
\(a_{910}= +0.07569392 \pm 4.1 \cdot 10^{-4} \) | \(a_{911}= -1.01234935 \pm 1.1 \cdot 10^{-4} \) | \(a_{912}= -0.00728718 \pm 5.4 \cdot 10^{-5} \) |
\(a_{913}= +0.02909692 \pm 6.9 \cdot 10^{-5} \) | \(a_{914}= -1.38733900 \pm 1.4 \cdot 10^{-4} \) | \(a_{915}= +0.00457084 \pm 7.0 \cdot 10^{-5} \) |
\(a_{916}= +0.87600171 \pm 1.0 \cdot 10^{-4} \) | \(a_{917}= -0.04625892 \pm 1.1 \cdot 10^{-4} \) | \(a_{918}= -0.13462625 \pm 8.0 \cdot 10^{-5} \) |
\(a_{919}= -0.08406226 \pm 1.2 \cdot 10^{-4} \) | \(a_{920}= -0.13861949 \pm 9.3 \cdot 10^{-5} \) | \(a_{921}= +0.06192346 \pm 1.1 \cdot 10^{-4} \) |
\(a_{922}= -2.28053573 \pm 1.6 \cdot 10^{-4} \) | \(a_{923}= -0.03034090 \pm 7.0 \cdot 10^{-5} \) | \(a_{924}= -0.01189218 \pm 3.2 \cdot 10^{-4} \) |
\(a_{925}= -0.78396545 \pm 8.2 \cdot 10^{-5} \) | \(a_{926}= +1.37450000 \pm 1.3 \cdot 10^{-4} \) | \(a_{927}= +0.77119448 \pm 7.6 \cdot 10^{-5} \) |
\(a_{928}= +0.25704954 \pm 9.5 \cdot 10^{-5} \) | \(a_{929}= +1.31815335 \pm 1.3 \cdot 10^{-4} \) | \(a_{930}= -0.00963043 \pm 1.0 \cdot 10^{-4} \) |
\(a_{931}= +0.03629355 \pm 1.2 \cdot 10^{-4} \) | \(a_{932}= +0.28175445 \pm 8.5 \cdot 10^{-5} \) | \(a_{933}= -0.03292161 \pm 8.2 \cdot 10^{-5} \) |
\(a_{934}= +1.76457742 \pm 1.6 \cdot 10^{-4} \) | \(a_{935}= -0.03476258 \pm 5.0 \cdot 10^{-5} \) | \(a_{936}= +1.92540634 \pm 7.7 \cdot 10^{-5} \) |
\(a_{937}= -0.21682327 \pm 1.9 \cdot 10^{-4} \) | \(a_{938}= -1.24495436 \pm 3.4 \cdot 10^{-4} \) | \(a_{939}= +0.05969518 \pm 1.4 \cdot 10^{-4} \) |
\(a_{940}= -0.29879727 \pm 5.7 \cdot 10^{-5} \) | \(a_{941}= +0.69709819 \pm 1.4 \cdot 10^{-4} \) | \(a_{942}= -0.01475416 \pm 1.0 \cdot 10^{-4} \) |
\(a_{943}= +1.18646878 \pm 1.6 \cdot 10^{-4} \) | \(a_{944}= -0.07461200 \pm 2.0 \cdot 10^{-4} \) | \(a_{945}= -0.00292661 \pm 2.4 \cdot 10^{-4} \) |
\(a_{946}= +0.72644083 \pm 4.9 \cdot 10^{-5} \) | \(a_{947}= +1.37944901 \pm 1.5 \cdot 10^{-4} \) | \(a_{948}= -0.04646386 \pm 8.2 \cdot 10^{-5} \) |
\(a_{949}= -0.68622604 \pm 1.4 \cdot 10^{-4} \) | \(a_{950}= +0.42826860 \pm 7.4 \cdot 10^{-5} \) | \(a_{951}= -0.01290983 \pm 9.6 \cdot 10^{-5} \) |
\(a_{952}= +0.54164200 \pm 2.0 \cdot 10^{-4} \) | \(a_{953}= -0.11895342 \pm 1.2 \cdot 10^{-4} \) | \(a_{954}= -3.02713739 \pm 8.0 \cdot 10^{-5} \) |
\(a_{955}= -0.02739069 \pm 8.0 \cdot 10^{-5} \) | \(a_{956}= -0.80032920 \pm 1.0 \cdot 10^{-4} \) | \(a_{957}= +0.01220030 \pm 4.9 \cdot 10^{-5} \) |
\(a_{958}= -0.15701963 \pm 1.9 \cdot 10^{-4} \) | \(a_{959}= +0.11309439 \pm 9.6 \cdot 10^{-5} \) | \(a_{960}= +0.00496321 \pm 8.6 \cdot 10^{-5} \) |
\(a_{961}= +1.13657767 \pm 1.0 \cdot 10^{-4} \) | \(a_{962}= -1.71180509 \pm 6.7 \cdot 10^{-5} \) | \(a_{963}= +0.60776691 \pm 7.5 \cdot 10^{-5} \) |
\(a_{964}= -0.66703261 \pm 7.9 \cdot 10^{-5} \) | \(a_{965}= -0.16075936 \pm 1.4 \cdot 10^{-4} \) | \(a_{966}= -0.02662622 \pm 4.3 \cdot 10^{-4} \) |
\(a_{967}= -0.48137089 \pm 1.8 \cdot 10^{-4} \) | \(a_{968}= +1.27584917 \pm 7.1 \cdot 10^{-5} \) | \(a_{969}= -0.01006670 \pm 2.2 \cdot 10^{-5} \) |
\(a_{970}= +0.29562998 \pm 1.6 \cdot 10^{-4} \) | \(a_{971}= +1.12275389 \pm 1.3 \cdot 10^{-4} \) | \(a_{972}= -0.23706518 \pm 7.3 \cdot 10^{-5} \) |
\(a_{973}= +0.34884765 \pm 9.0 \cdot 10^{-5} \) | \(a_{974}= +2.61727244 \pm 1.6 \cdot 10^{-4} \) | \(a_{975}= +0.05287502 \pm 7.4 \cdot 10^{-5} \) |
\(a_{976}= -0.80776138 \pm 1.4 \cdot 10^{-4} \) | \(a_{977}= -1.59431789 \pm 1.9 \cdot 10^{-4} \) | \(a_{978}= -0.09075840 \pm 1.5 \cdot 10^{-4} \) |
\(a_{979}= +0.00079846 \pm 8.5 \cdot 10^{-5} \) | \(a_{980}= +0.02499025 \pm 2.2 \cdot 10^{-4} \) | \(a_{981}= -0.09927790 \pm 1.4 \cdot 10^{-4} \) |
\(a_{982}= -1.77310690 \pm 1.5 \cdot 10^{-4} \) | \(a_{983}= -0.75035350 \pm 1.1 \cdot 10^{-4} \) | \(a_{984}= +0.07611331 \pm 5.4 \cdot 10^{-5} \) |
\(a_{985}= +0.04055815 \pm 1.2 \cdot 10^{-4} \) | \(a_{986}= -1.17935531 \pm 6.8 \cdot 10^{-5} \) | \(a_{987}= -0.02704200 \pm 2.5 \cdot 10^{-4} \) |
\(a_{988}= +0.61166584 \pm 4.0 \cdot 10^{-5} \) | \(a_{989}= +1.06387125 \pm 1.0 \cdot 10^{-4} \) | \(a_{990}= -0.06237221 \pm 8.1 \cdot 10^{-5} \) |
\(a_{991}= +0.00259941 \pm 1.3 \cdot 10^{-4} \) | \(a_{992}= -0.51242761 \pm 1.0 \cdot 10^{-4} \) | \(a_{993}= +0.00707220 \pm 1.5 \cdot 10^{-4} \) |
\(a_{994}= -0.01531431 \pm 2.7 \cdot 10^{-4} \) | \(a_{995}= +0.13314460 \pm 1.2 \cdot 10^{-4} \) | \(a_{996}= +0.00580181 \pm 5.1 \cdot 10^{-5} \) |
\(a_{997}= +0.45860426 \pm 1.3 \cdot 10^{-4} \) | \(a_{998}= +0.03461062 \pm 1.1 \cdot 10^{-4} \) | \(a_{999}= +0.06618481 \pm 9.1 \cdot 10^{-5} \) |
\(a_{1000}= +0.27908383 \pm 1.0 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000