Maass form invariants
Level: | \( 87 = 3 \cdot 29 \) |
Weight: | \( 0 \) |
Character: | 87.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(12.2870223565179944621893813132 \pm 3 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.80095748 \pm 1.0 \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.35846711 \pm 1.1 \) | \(a_{5}= +1.24762319 \pm 8.6 \cdot 10^{-1} \) | \(a_{6}= \pm0.46243302 \pm 5.7 \cdot 10^{-1} \) |
\(a_{7}= -1.54760260 \pm 8.8 \cdot 10^{-1} \) | \(a_{8}= +1.08807440 \pm 1.2 \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= -0.99929313 \pm 1.0 \) | \(a_{11}= -1.07901853 \pm 8.9 \cdot 10^{-1} \) | \(a_{12}= \pm0.20696108 \pm 6.4 \cdot 10^{-1} \) |
\(a_{13}= -0.09141281 \pm 8.8 \cdot 10^{-1} \) | \(a_{14}= +1.23956388 \pm 9.8 \cdot 10^{-1} \) | \(a_{15}= \pm0.72031559 \pm 4.9 \cdot 10^{-1} \) |
\(a_{16}= -0.51303422 \pm 1.2 \) | \(a_{17}= -1.50458650 \pm 7.8 \cdot 10^{-1} \) | \(a_{18}= \pm0.26698583 \pm 3.3 \cdot 10^{-1} \) |
\(a_{19}= +1.37911424 \pm 8.3 \cdot 10^{-1} \) | \(a_{20}= -0.44723188 \pm 1.2 \) | \(a_{21}= \pm0.89350878 \pm 5.1 \cdot 10^{-1} \) |
\(a_{22}= +0.86424797 \pm 1.0 \) | \(a_{23}= -1.33655127 \pm 7.9 \cdot 10^{-1} \) | \(a_{24}= \pm0.62820005 \pm 7.0 \cdot 10^{-1} \) |
\(a_{25}= +0.55656363 \pm 8.2 \cdot 10^{-1} \) | \(a_{26}= +0.07321778 \pm 9.5 \cdot 10^{-1} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= +0.55476464 \pm 1.1 \) | \(a_{29}= \pm0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= \pm0.57694216 \pm 5.8 \cdot 10^{-1} \) |
\(a_{31}= -0.56544006 \pm 8.3 \cdot 10^{-1} \) | \(a_{32}= -0.67715580 \pm 1.1 \) | \(a_{33}= \pm0.62297164 \pm 5.1 \cdot 10^{-1} \) |
\(a_{34}= +1.20510982 \pm 9.1 \cdot 10^{-1} \) | \(a_{35}= -1.93082490 \pm 8.8 \cdot 10^{-1} \) | \(a_{36}= \pm0.11948904 \pm 3.7 \cdot 10^{-1} \) |
\(a_{37}= +0.68322764 \pm 7.9 \cdot 10^{-1} \) | \(a_{38}= -1.10461187 \pm 1.0 \) | \(a_{39}= \pm0.05277721 \pm 5.1 \cdot 10^{-1} \) |
\(a_{40}= +1.35750685 \pm 1.3 \) | \(a_{41}= -1.81332736 \pm 8.3 \cdot 10^{-1} \) | \(a_{42}= \pm0.71566254 \pm 5.6 \cdot 10^{-1} \) |
\(a_{43}= -1.36123961 \pm 8.5 \cdot 10^{-1} \) | \(a_{44}= +0.38679266 \pm 1.1 \) | \(a_{45}= \pm0.41587440 \pm 2.8 \cdot 10^{-1} \) |
\(a_{46}= +1.07052074 \pm 1.0 \) | \(a_{47}= +0.44335549 \pm 8.7 \cdot 10^{-1} \) | \(a_{48}= \pm0.29620044 \pm 7.2 \cdot 10^{-1} \) |
\(a_{49}= +1.39507381 \pm 8.3 \cdot 10^{-1} \) | \(a_{50}= -0.44578381 \pm 9.2 \cdot 10^{-1} \) | \(a_{51}= \pm0.86867342 \pm 4.5 \cdot 10^{-1} \) |
\(a_{52}= +0.03276849 \pm 9.7 \cdot 10^{-1} \) | \(a_{53}= +0.35038439 \pm 7.4 \cdot 10^{-1} \) | \(a_{54}= \pm0.15414434 \pm 1.9 \cdot 10^{-1} \) |
\(a_{55}= -1.34620855 \pm 9.1 \cdot 10^{-1} \) | \(a_{56}= -1.68390677 \pm 1.1 \) | \(a_{57}= \pm0.79623198 \pm 4.8 \cdot 10^{-1} \) |
\(a_{58}= \pm0.14873407 \pm 1.8 \cdot 10^{-1} \) | \(a_{59}= -0.50416117 \pm 9.0 \cdot 10^{-1} \) | \(a_{60}= \pm0.25820945 \pm 6.9 \cdot 10^{-1} \) |
\(a_{61}= +0.03670777 \pm 8.5 \cdot 10^{-1} \) | \(a_{62}= +0.45289345 \pm 9.9 \cdot 10^{-1} \) | \(a_{63}= \pm0.51586753 \pm 2.9 \cdot 10^{-1} \) |
\(a_{64}= +1.05540722 \pm 1.0 \) | \(a_{65}= -0.11404874 \pm 9.4 \cdot 10^{-1} \) | \(a_{66}= \pm0.49897380 \pm 6.3 \cdot 10^{-1} \) |
\(a_{67}= +0.02997641 \pm 8.2 \cdot 10^{-1} \) | \(a_{68}= +0.53934478 \pm 9.7 \cdot 10^{-1} \) | \(a_{69}= \pm0.77165824 \pm 4.5 \cdot 10^{-1} \) |
\(a_{70}= +1.54650865 \pm 9.5 \cdot 10^{-1} \) | \(a_{71}= -0.85005376 \pm 8.1 \cdot 10^{-1} \) | \(a_{72}= \pm0.36269147 \pm 4.0 \cdot 10^{-1} \) |
\(a_{73}= -0.70315245 \pm 8.5 \cdot 10^{-1} \) | \(a_{74}= -0.54723629 \pm 9.0 \cdot 10^{-1} \) | \(a_{75}= \pm0.32133216 \pm 4.7 \cdot 10^{-1} \) |
\(a_{76}= -0.49436710 \pm 1.2 \) | \(a_{77}= +1.66989189 \pm 9.0 \cdot 10^{-1} \) | \(a_{78}= \pm0.04227230 \pm 5.5 \cdot 10^{-1} \) |
\(a_{79}= +1.37280710 \pm 7.6 \cdot 10^{-1} \) | \(a_{80}= -0.64007339 \pm 1.3 \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= +1.45239812 \pm 1.0 \) | \(a_{83}= +0.34830919 \pm 8.0 \cdot 10^{-1} \) | \(a_{84}= \pm0.32029351 \pm 6.5 \cdot 10^{-1} \) |
\(a_{85}= -1.87715702 \pm 8.3 \cdot 10^{-1} \) | \(a_{86}= +1.09029505 \pm 1.0 \) | \(a_{87}= \pm0.10721125 \pm 1.0 \cdot 10^{-8} \) |
\(a_{88}= -1.17405244 \pm 1.2 \) | \(a_{89}= -0.91963791 \pm 7.6 \cdot 10^{-1} \) | \(a_{90}= \pm0.33309771 \pm 3.4 \cdot 10^{-1} \) |
\(a_{91}= +0.14147070 \pm 8.8 \cdot 10^{-1} \) | \(a_{92}= +0.47910968 \pm 1.2 \) | \(a_{93}= \pm0.32645697 \pm 4.8 \cdot 10^{-1} \) |
\(a_{94}= -0.35510890 \pm 9.9 \cdot 10^{-1} \) | \(a_{95}= +1.72061491 \pm 8.6 \cdot 10^{-1} \) | \(a_{96}= \pm0.39095609 \pm 6.7 \cdot 10^{-1} \) |
\(a_{97}= -0.55363737 \pm 8.2 \cdot 10^{-1} \) | \(a_{98}= -1.11739481 \pm 8.8 \cdot 10^{-1} \) | \(a_{99}= \pm0.35967284 \pm 2.9 \cdot 10^{-1} \) |
\(a_{100}= -0.19950976 \pm 9.8 \cdot 10^{-1} \) | \(a_{101}= +1.43644466 \pm 9.2 \cdot 10^{-1} \) | \(a_{102}= \pm0.69577048 \pm 5.2 \cdot 10^{-1} \) |
\(a_{103}= +1.73135492 \pm 7.9 \cdot 10^{-1} \) | \(a_{104}= -0.09946394 \pm 1.0 \) | \(a_{105}= \pm1.11476228 \pm 5.0 \cdot 10^{-1} \) |
\(a_{106}= -0.28064300 \pm 8.6 \cdot 10^{-1} \) | \(a_{107}= -0.60191965 \pm 7.6 \cdot 10^{-1} \) | \(a_{108}= \pm0.06898703 \pm 2.1 \cdot 10^{-1} \) |
\(a_{109}= +1.82484401 \pm 8.0 \cdot 10^{-1} \) | \(a_{110}= +1.07825581 \pm 1.0 \) | \(a_{111}= \pm0.39446166 \pm 4.5 \cdot 10^{-1} \) |
\(a_{112}= +0.79397309 \pm 1.1 \) | \(a_{113}= +0.04865528 \pm 7.4 \cdot 10^{-1} \) | \(a_{114}= \pm0.63774796 \pm 6.3 \cdot 10^{-1} \) |
\(a_{115}= -1.66751237 \pm 8.4 \cdot 10^{-1} \) | \(a_{116}= \pm0.06656567 \pm 2.0 \cdot 10^{-1} \) | \(a_{117}= \pm0.03047094 \pm 2.9 \cdot 10^{-1} \) |
\(a_{118}= +0.40381166 \pm 1.1 \) | \(a_{119}= +2.32850198 \pm 7.9 \cdot 10^{-1} \) | \(a_{120}= \pm0.78375695 \pm 7.6 \cdot 10^{-1} \) |
\(a_{121}= +0.16428099 \pm 8.3 \cdot 10^{-1} \) | \(a_{122}= -0.02940136 \pm 9.7 \cdot 10^{-1} \) | \(a_{123}= \pm1.04692504 \pm 4.8 \cdot 10^{-1} \) |
\(a_{124}= +0.20269167 \pm 1.0 \) | \(a_{125}= -0.55324150 \pm 7.3 \cdot 10^{-1} \) | \(a_{126}= \pm0.41318796 \pm 3.2 \cdot 10^{-1} \) |
\(a_{127}= -0.99418132 \pm 8.0 \cdot 10^{-1} \) | \(a_{128}= -0.16818051 \pm 1.0 \) | \(a_{129}= \pm0.78591206 \pm 4.9 \cdot 10^{-1} \) |
\(a_{130}= +0.09134819 \pm 9.9 \cdot 10^{-1} \) | \(a_{131}= +1.46453475 \pm 8.1 \cdot 10^{-1} \) | \(a_{132}= \pm0.22331484 \pm 6.7 \cdot 10^{-1} \) |
\(a_{133}= -2.13432079 \pm 9.1 \cdot 10^{-1} \) | \(a_{134}= -0.02400983 \pm 1.0 \) | \(a_{135}= \pm0.24010520 \pm 1.6 \cdot 10^{-1} \) |
\(a_{136}= -1.63710205 \pm 1.0 \) | \(a_{137}= -0.30967554 \pm 7.9 \cdot 10^{-1} \) | \(a_{138}= \pm0.61806544 \pm 5.9 \cdot 10^{-1} \) |
\(a_{139}= -1.77129995 \pm 7.3 \cdot 10^{-1} \) | \(a_{140}= +0.69213723 \pm 1.1 \) | \(a_{141}= \pm0.25597141 \pm 5.0 \cdot 10^{-1} \) |
\(a_{142}= +0.68085692 \pm 9.3 \cdot 10^{-1} \) | \(a_{143}= +0.09863612 \pm 9.9 \cdot 10^{-1} \) | \(a_{144}= \pm0.17101141 \pm 4.1 \cdot 10^{-1} \) |
\(a_{145}= \pm0.23167781 \pm 1.6 \cdot 10^{-1} \) | \(a_{146}= +0.56319522 \pm 1.0 \) | \(a_{147}= \pm0.80544624 \pm 4.8 \cdot 10^{-1} \) |
\(a_{148}= -0.24491464 \pm 9.4 \cdot 10^{-1} \) | \(a_{149}= -1.52108770 \pm 8.8 \cdot 10^{-1} \) | \(a_{150}= \pm0.25737340 \pm 5.3 \cdot 10^{-1} \) |
\(a_{151}= +1.68576993 \pm 8.3 \cdot 10^{-1} \) | \(a_{152}= +1.50057890 \pm 1.3 \) | \(a_{153}= \pm0.50152883 \pm 2.6 \cdot 10^{-1} \) |
\(a_{154}= -1.33751240 \pm 1.1 \) | \(a_{155}= -0.70545614 \pm 8.9 \cdot 10^{-1} \) | \(a_{156}= \pm0.01891889 \pm 5.6 \cdot 10^{-1} \) |
\(a_{157}= -1.37551030 \pm 7.6 \cdot 10^{-1} \) | \(a_{158}= -1.09956011 \pm 9.3 \cdot 10^{-1} \) | \(a_{159}= \pm0.20229452 \pm 4.3 \cdot 10^{-1} \) |
\(a_{160}= -0.84483529 \pm 1.3 \) | \(a_{161}= +2.06845023 \pm 8.6 \cdot 10^{-1} \) | \(a_{162}= \pm0.08899528 \pm 1.1 \cdot 10^{-1} \) |
\(a_{163}= +0.12452224 \pm 7.8 \cdot 10^{-1} \) | \(a_{164}= +0.65001822 \pm 1.1 \) | \(a_{165}= \pm0.77723387 \pm 5.3 \cdot 10^{-1} \) |
\(a_{166}= -0.27898085 \pm 1.0 \) | \(a_{167}= -1.36620754 \pm 8.0 \cdot 10^{-1} \) | \(a_{168}= \pm0.97220403 \pm 6.7 \cdot 10^{-1} \) |
\(a_{169}= -0.99164370 \pm 7.8 \cdot 10^{-1} \) | \(a_{170}= +1.50352296 \pm 9.8 \cdot 10^{-1} \) | \(a_{171}= \pm0.45970475 \pm 2.7 \cdot 10^{-1} \) |
\(a_{172}= +0.48795963 \pm 1.0 \) | \(a_{173}= -0.78768042 \pm 8.9 \cdot 10^{-1} \) | \(a_{174}= \pm0.08587166 \pm 1.0 \cdot 10^{-1} \) |
\(a_{175}= -0.86133933 \pm 9.1 \cdot 10^{-1} \) | \(a_{176}= +0.55357343 \pm 1.3 \) | \(a_{177}= \pm0.29107759 \pm 5.2 \cdot 10^{-1} \) |
\(a_{178}= +0.73659087 \pm 8.9 \cdot 10^{-1} \) | \(a_{179}= -1.27167774 \pm 7.8 \cdot 10^{-1} \) | \(a_{180}= \pm0.14907729 \pm 4.0 \cdot 10^{-1} \) |
\(a_{181}= -1.57754299 \pm 8.6 \cdot 10^{-1} \) | \(a_{182}= -0.11331202 \pm 8.4 \cdot 10^{-1} \) | \(a_{183}= \pm0.02119324 \pm 4.9 \cdot 10^{-1} \) |
\(a_{184}= -1.45426722 \pm 1.3 \) | \(a_{185}= +0.85241066 \pm 8.2 \cdot 10^{-1} \) | \(a_{186}= \pm0.26147815 \pm 5.7 \cdot 10^{-1} \) |
\(a_{187}= +1.62347672 \pm 8.2 \cdot 10^{-1} \) | \(a_{188}= -0.15892836 \pm 1.0 \) | \(a_{189}= \pm0.29783626 \pm 1.7 \cdot 10^{-1} \) |
\(a_{190}= -1.37813939 \pm 1.0 \) | \(a_{191}= +1.00958217 \pm 8.2 \cdot 10^{-1} \) | \(a_{192}= \pm0.60933964 \pm 6.3 \cdot 10^{-1} \) |
\(a_{193}= +0.93144397 \pm 8.0 \cdot 10^{-1} \) | \(a_{194}= +0.44343999 \pm 1.1 \) | \(a_{195}= \pm0.06584607 \pm 5.4 \cdot 10^{-1} \) |
\(a_{196}= -0.50008808 \pm 9.7 \cdot 10^{-1} \) | \(a_{197}= -0.88167304 \pm 7.8 \cdot 10^{-1} \) | \(a_{198}= \pm0.28808266 \pm 3.6 \cdot 10^{-1} \) |
\(a_{199}= -0.43133823 \pm 8.5 \cdot 10^{-1} \) | \(a_{200}= +0.60558264 \pm 1.0 \) | \(a_{201}= \pm0.01730689 \pm 4.7 \cdot 10^{-1} \) |
\(a_{202}= -1.15053110 \pm 1.2 \) | \(a_{203}= \pm0.28738259 \pm 1.6 \cdot 10^{-1} \) | \(a_{204}= \pm0.31139085 \pm 5.6 \cdot 10^{-1} \) |
\(a_{205}= -2.26234927 \pm 8.3 \cdot 10^{-1} \) | \(a_{206}= -1.38674167 \pm 9.7 \cdot 10^{-1} \) | \(a_{207}= \pm0.44551709 \pm 2.6 \cdot 10^{-1} \) |
\(a_{208}= +0.04689790 \pm 1.1 \) | \(a_{209}= -1.48808982 \pm 8.7 \cdot 10^{-1} \) | \(a_{210}= \pm0.89287719 \pm 5.5 \cdot 10^{-1} \) |
\(a_{211}= +0.19170162 \pm 8.7 \cdot 10^{-1} \) | \(a_{212}= -0.12560128 \pm 9.3 \cdot 10^{-1} \) | \(a_{213}= \pm0.49077877 \pm 4.7 \cdot 10^{-1} \) |
\(a_{214}= +0.48211205 \pm 8.8 \cdot 10^{-1} \) | \(a_{215}= -1.69831411 \pm 8.4 \cdot 10^{-1} \) | \(a_{216}= \pm0.20940002 \pm 2.3 \cdot 10^{-1} \) |
\(a_{217}= +0.87507651 \pm 8.7 \cdot 10^{-1} \) | \(a_{218}= -1.46162246 \pm 8.5 \cdot 10^{-1} \) | \(a_{219}= \pm0.40596526 \pm 4.9 \cdot 10^{-1} \) |
\(a_{220}= +0.48257149 \pm 1.2 \) | \(a_{221}= +0.13753848 \pm 8.7 \cdot 10^{-1} \) | \(a_{222}= \pm0.31594702 \pm 5.2 \cdot 10^{-1} \) |
\(a_{223}= +0.34033955 \pm 8.4 \cdot 10^{-1} \) | \(a_{224}= +1.04796808 \pm 1.0 \) | \(a_{225}= \pm0.18552121 \pm 2.7 \cdot 10^{-1} \) |
\(a_{226}= -0.03897081 \pm 8.1 \cdot 10^{-1} \) | \(a_{227}= +1.01590437 \pm 7.2 \cdot 10^{-1} \) | \(a_{228}= \pm0.28542298 \pm 7.1 \cdot 10^{-1} \) |
\(a_{229}= -0.09307894 \pm 7.9 \cdot 10^{-1} \) | \(a_{230}= +1.33560651 \pm 1.1 \) | \(a_{231}= \pm0.96411253 \pm 5.2 \cdot 10^{-1} \) |
\(a_{232}= \pm0.20205034 \pm 2.2 \cdot 10^{-1} \) | \(a_{233}= +1.92359601 \pm 8.8 \cdot 10^{-1} \) | \(a_{234}= \pm0.02440593 \pm 3.1 \cdot 10^{-1} \) |
\(a_{235}= +0.55314060 \pm 9.2 \cdot 10^{-1} \) | \(a_{236}= +0.18072520 \pm 1.2 \) | \(a_{237}= \pm0.79259055 \pm 4.4 \cdot 10^{-1} \) |
\(a_{238}= -1.86503109 \pm 8.9 \cdot 10^{-1} \) | \(a_{239}= -0.96193667 \pm 7.4 \cdot 10^{-1} \) | \(a_{240}= \pm0.36954654 \pm 8.0 \cdot 10^{-1} \) |
\(a_{241}= +0.43366069 \pm 7.8 \cdot 10^{-1} \) | \(a_{242}= -0.13158209 \pm 9.2 \cdot 10^{-1} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= -0.01315853 \pm 1.0 \) | \(a_{245}= +1.74052645 \pm 8.7 \cdot 10^{-1} \) | \(a_{246}= \pm0.83854244 \pm 5.9 \cdot 10^{-1} \) |
\(a_{247}= -0.12606871 \pm 8.1 \cdot 10^{-1} \) | \(a_{248}= -0.61524086 \pm 1.1 \) | \(a_{249}= \pm0.20109640 \pm 4.6 \cdot 10^{-1} \) |
\(a_{250}= +0.44312292 \pm 8.6 \cdot 10^{-1} \) | \(a_{251}= +1.54780371 \pm 8.3 \cdot 10^{-1} \) | \(a_{252}= \pm0.18492155 \pm 3.8 \cdot 10^{-1} \) |
\(a_{253}= +1.44216359 \pm 8.6 \cdot 10^{-1} \) | \(a_{254}= +0.79629697 \pm 9.2 \cdot 10^{-1} \) | \(a_{255}= \pm1.08377711 \pm 4.8 \cdot 10^{-1} \) |
\(a_{256}= -0.92070179 \pm 9.2 \cdot 10^{-1} \) | \(a_{257}= +1.87837882 \pm 8.5 \cdot 10^{-1} \) | \(a_{258}= \pm0.62948214 \pm 6.0 \cdot 10^{-1} \) |
\(a_{259}= -1.05736488 \pm 8.0 \cdot 10^{-1} \) | \(a_{260}= +0.04088272 \pm 1.1 \) | \(a_{261}= \pm0.06189845 \pm 1.0 \cdot 10^{-8} \) |
\(a_{262}= -1.17303007 \pm 9.8 \cdot 10^{-1} \) | \(a_{263}= -1.57478828 \pm 9.4 \cdot 10^{-1} \) | \(a_{264}= \pm0.67783949 \pm 7.3 \cdot 10^{-1} \) |
\(a_{265}= +0.43714770 \pm 8.0 \cdot 10^{-1} \) | \(a_{266}= +1.70950020 \pm 1.1 \) | \(a_{267}= \pm0.53095320 \pm 4.4 \cdot 10^{-1} \) |
\(a_{268}= -0.01074556 \pm 1.1 \) | \(a_{269}= -1.18377579 \pm 8.5 \cdot 10^{-1} \) | \(a_{270}= \pm0.19231405 \pm 1.9 \cdot 10^{-1} \) |
\(a_{271}= -0.01956317 \pm 8.1 \cdot 10^{-1} \) | \(a_{272}= +0.77190436 \pm 1.1 \) | \(a_{273}= \pm0.08167815 \pm 5.0 \cdot 10^{-1} \) |
\(a_{274}= +0.24803694 \pm 9.2 \cdot 10^{-1} \) | \(a_{275}= -0.60054247 \pm 8.5 \cdot 10^{-1} \) | \(a_{276}= \pm0.27661410 \pm 6.9 \cdot 10^{-1} \) |
\(a_{277}= +1.24872498 \pm 8.1 \cdot 10^{-1} \) | \(a_{278}= +1.41873595 \pm 8.4 \cdot 10^{-1} \) | \(a_{279}= \pm0.18848002 \pm 2.7 \cdot 10^{-1} \) |
\(a_{280}= -2.10088114 \pm 1.1 \) | \(a_{281}= +0.17113600 \pm 8.4 \cdot 10^{-1} \) | \(a_{282}= \pm0.20502222 \pm 5.7 \cdot 10^{-1} \) |
\(a_{283}= +1.34116974 \pm 8.2 \cdot 10^{-1} \) | \(a_{284}= +0.30471632 \pm 1.0 \) | \(a_{285}= \pm0.99339748 \pm 5.0 \cdot 10^{-1} \) |
\(a_{286}= -0.07900334 \pm 1.0 \) | \(a_{287}= +2.80631014 \pm 8.8 \cdot 10^{-1} \) | \(a_{288}= \pm0.22571860 \pm 3.8 \cdot 10^{-1} \) |
\(a_{289}= +1.26378054 \pm 7.8 \cdot 10^{-1} \) | \(a_{290}= \pm0.18556408 \pm 1.8 \cdot 10^{-1} \) | \(a_{291}= \pm0.31964268 \pm 4.7 \cdot 10^{-1} \) |
\(a_{292}= +0.25205703 \pm 1.0 \) | \(a_{293}= -0.56598737 \pm 7.2 \cdot 10^{-1} \) | \(a_{294}= \pm0.64512819 \pm 5.0 \cdot 10^{-1} \) |
\(a_{295}= -0.62900317 \pm 8.2 \cdot 10^{-1} \) | \(a_{296}= +0.74340251 \pm 9.0 \cdot 10^{-1} \) | \(a_{297}= \pm0.20765721 \pm 1.7 \cdot 10^{-1} \) |
\(a_{298}= +1.21832657 \pm 9.9 \cdot 10^{-1} \) | \(a_{299}= +0.12217791 \pm 8.7 \cdot 10^{-1} \) | \(a_{300}= \pm0.11518701 \pm 5.6 \cdot 10^{-1} \) |
\(a_{301}= +2.10665796 \pm 8.7 \cdot 10^{-1} \) | \(a_{302}= -1.35023003 \pm 1.0 \) | \(a_{303}= \pm0.82933171 \pm 5.3 \cdot 10^{-1} \) |
\(a_{304}= -0.70753279 \pm 1.3 \) | \(a_{305}= +0.04579746 \pm 9.0 \cdot 10^{-1} \) | \(a_{306}= \pm0.40170327 \pm 3.0 \cdot 10^{-1} \) |
\(a_{307}= -0.51766321 \pm 9.3 \cdot 10^{-1} \) | \(a_{308}= -0.59860132 \pm 1.2 \) | \(a_{309}= \pm0.99959823 \pm 4.5 \cdot 10^{-1} \) |
\(a_{310}= +0.56504037 \pm 9.7 \cdot 10^{-1} \) | \(a_{311}= +0.55123882 \pm 9.3 \cdot 10^{-1} \) | \(a_{312}= \pm0.05742553 \pm 6.1 \cdot 10^{-1} \) |
\(a_{313}= +0.43996491 \pm 6.5 \cdot 10^{-1} \) | \(a_{314}= +1.10172526 \pm 9.6 \cdot 10^{-1} \) | \(a_{315}= \pm0.64360830 \pm 2.9 \cdot 10^{-1} \) |
\(a_{316}= -0.49210620 \pm 1.0 \) | \(a_{317}= +0.32732281 \pm 8.9 \cdot 10^{-1} \) | \(a_{318}= \pm0.16202931 \pm 5.0 \cdot 10^{-1} \) |
\(a_{319}= \pm0.20036871 \pm 1.6 \cdot 10^{-1} \) | \(a_{320}= +1.31675053 \pm 1.2 \) | \(a_{321}= \pm0.34751847 \pm 4.4 \cdot 10^{-1} \) |
\(a_{322}= -1.65674069 \pm 9.8 \cdot 10^{-1} \) | \(a_{323}= -2.07499667 \pm 8.0 \cdot 10^{-1} \) | \(a_{324}= \pm0.03982968 \pm 1.2 \cdot 10^{-1} \) |
\(a_{325}= -0.05087705 \pm 8.9 \cdot 10^{-1} \) | \(a_{326}= -0.09973702 \pm 8.8 \cdot 10^{-1} \) | \(a_{327}= \pm1.05357418 \pm 4.6 \cdot 10^{-1} \) |
\(a_{328}= -1.97303507 \pm 1.2 \) | \(a_{329}= -0.68613812 \pm 9.4 \cdot 10^{-1} \) | \(a_{330}= \pm0.62253128 \pm 6.2 \cdot 10^{-1} \) |
\(a_{331}= +0.74947535 \pm 8.0 \cdot 10^{-1} \) | \(a_{332}= -0.12485739 \pm 1.1 \) | \(a_{333}= \pm0.22774255 \pm 2.6 \cdot 10^{-1} \) |
\(a_{334}= +1.09427415 \pm 8.8 \cdot 10^{-1} \) | \(a_{335}= +0.03739927 \pm 8.5 \cdot 10^{-1} \) | \(a_{336}= \pm0.45840058 \pm 6.8 \cdot 10^{-1} \) |
\(a_{337}= +1.02422659 \pm 8.7 \cdot 10^{-1} \) | \(a_{338}= +0.79426444 \pm 8.7 \cdot 10^{-1} \) | \(a_{339}= \pm0.02809114 \pm 4.3 \cdot 10^{-1} \) |
\(a_{340}= +0.67289906 \pm 1.1 \) | \(a_{341}= +0.61012031 \pm 9.3 \cdot 10^{-1} \) | \(a_{342}= \pm0.36820396 \pm 3.6 \cdot 10^{-1} \) |
\(a_{343}= -0.61141726 \pm 7.7 \cdot 10^{-1} \) | \(a_{344}= -1.48112997 \pm 1.1 \) | \(a_{345}= \pm0.96273872 \pm 4.8 \cdot 10^{-1} \) |
\(a_{346}= +0.63089853 \pm 1.1 \) | \(a_{347}= +0.94771492 \pm 8.0 \cdot 10^{-1} \) | \(a_{348}= \pm0.03843171 \pm 1.1 \cdot 10^{-1} \) |
\(a_{349}= -0.79211576 \pm 8.5 \cdot 10^{-1} \) | \(a_{350}= +0.68989618 \pm 8.7 \cdot 10^{-1} \) | \(a_{351}= \pm0.01759240 \pm 1.7 \cdot 10^{-1} \) |
\(a_{352}= +0.73066366 \pm 1.2 \) | \(a_{353}= +0.29810694 \pm 7.4 \cdot 10^{-1} \) | \(a_{354}= \pm0.23314077 \pm 6.5 \cdot 10^{-1} \) |
\(a_{355}= -1.06054679 \pm 8.4 \cdot 10^{-1} \) | \(a_{356}= +0.32965995 \pm 1.0 \) | \(a_{357}= \pm1.34436125 \pm 4.6 \cdot 10^{-1} \) |
\(a_{358}= +1.01855980 \pm 8.7 \cdot 10^{-1} \) | \(a_{359}= -0.45967654 \pm 6.9 \cdot 10^{-1} \) | \(a_{360}= \pm0.45250228 \pm 4.3 \cdot 10^{-1} \) |
\(a_{361}= +0.90195609 \pm 7.8 \cdot 10^{-1} \) | \(a_{362}= +1.26354486 \pm 9.7 \cdot 10^{-1} \) | \(a_{363}= \pm0.09484767 \pm 4.7 \cdot 10^{-1} \) |
\(a_{364}= -0.05071259 \pm 9.1 \cdot 10^{-1} \) | \(a_{365}= -0.87726931 \pm 8.5 \cdot 10^{-1} \) | \(a_{366}= \pm0.01697488 \pm 5.6 \cdot 10^{-1} \) |
\(a_{367}= -0.18399833 \pm 7.7 \cdot 10^{-1} \) | \(a_{368}= +0.68569654 \pm 1.4 \) | \(a_{369}= \pm0.60444245 \pm 2.7 \cdot 10^{-1} \) |
\(a_{370}= -0.68274469 \pm 8.8 \cdot 10^{-1} \) | \(a_{371}= -0.54225580 \pm 7.3 \cdot 10^{-1} \) | \(a_{372}= \pm0.11702409 \pm 6.2 \cdot 10^{-1} \) |
\(a_{373}= -0.17630331 \pm 8.4 \cdot 10^{-1} \) | \(a_{374}= -1.30033582 \pm 9.1 \cdot 10^{-1} \) | \(a_{375}= \pm0.31941413 \pm 4.2 \cdot 10^{-1} \) |
\(a_{376}= +0.48240376 \pm 1.2 \) | \(a_{377}= \pm0.01697493 \pm 1.6 \cdot 10^{-1} \) | \(a_{378}= \pm0.23855418 \pm 1.8 \cdot 10^{-1} \) |
\(a_{379}= +0.52460388 \pm 8.2 \cdot 10^{-1} \) | \(a_{380}= -0.61678386 \pm 1.2 \) | \(a_{381}= \pm0.57399085 \pm 4.6 \cdot 10^{-1} \) |
\(a_{382}= -0.80863239 \pm 9.6 \cdot 10^{-1} \) | \(a_{383}= +0.57907002 \pm 7.2 \cdot 10^{-1} \) | \(a_{384}= \pm0.09709906 \pm 5.9 \cdot 10^{-1} \) |
\(a_{385}= +2.08339585 \pm 9.4 \cdot 10^{-1} \) | \(a_{386}= -0.74604702 \pm 9.4 \cdot 10^{-1} \) | \(a_{387}= \pm0.45374654 \pm 2.8 \cdot 10^{-1} \) |
\(a_{388}= +0.19846079 \pm 1.3 \) | \(a_{389}= -0.82736488 \pm 7.3 \cdot 10^{-1} \) | \(a_{390}= \pm0.05273990 \pm 5.7 \cdot 10^{-1} \) |
\(a_{391}= +2.01095701 \pm 8.1 \cdot 10^{-1} \) | \(a_{392}= +1.51794410 \pm 9.4 \cdot 10^{-1} \) | \(a_{393}= \pm0.84554953 \pm 4.7 \cdot 10^{-1} \) |
\(a_{394}= +0.70618261 \pm 1.0 \) | \(a_{395}= +1.71274597 \pm 8.7 \cdot 10^{-1} \) | \(a_{396}= \pm0.12893089 \pm 3.8 \cdot 10^{-1} \) |
\(a_{397}= +1.57372819 \pm 8.2 \cdot 10^{-1} \) | \(a_{398}= +0.34548358 \pm 9.7 \cdot 10^{-1} \) | \(a_{399}= \pm1.23225068 \pm 5.2 \cdot 10^{-1} \) |
\(a_{400}= -0.28553619 \pm 1.1 \) | \(a_{401}= -0.63003267 \pm 8.2 \cdot 10^{-1} \) | \(a_{402}= \pm0.01386208 \pm 6.1 \cdot 10^{-1} \) |
\(a_{403}= +0.05168847 \pm 9.2 \cdot 10^{-1} \) | \(a_{404}= -0.51491817 \pm 1.4 \) | \(a_{405}= \pm0.13862480 \pm 9.5 \cdot 10^{-2} \) |
\(a_{406}= \pm0.23018123 \pm 1.8 \cdot 10^{-1} \) | \(a_{407}= -0.73721529 \pm 8.9 \cdot 10^{-1} \) | \(a_{408}= \pm0.94518131 \pm 6.3 \cdot 10^{-1} \) |
\(a_{409}= +0.57217304 \pm 7.9 \cdot 10^{-1} \) | \(a_{410}= +1.81204557 \pm 1.0 \) | \(a_{411}= \pm0.17879126 \pm 4.5 \cdot 10^{-1} \) |
\(a_{412}= -0.62063380 \pm 1.0 \) | \(a_{413}= +0.78024114 \pm 8.6 \cdot 10^{-1} \) | \(a_{414}= \pm0.35684025 \pm 3.4 \cdot 10^{-1} \) |
\(a_{415}= +0.43455862 \pm 8.3 \cdot 10^{-1} \) | \(a_{416}= +0.06190072 \pm 1.0 \) | \(a_{417}= \pm1.02266050 \pm 4.2 \cdot 10^{-1} \) |
\(a_{418}= +1.19189668 \pm 1.1 \) | \(a_{419}= -0.80811288 \pm 8.3 \cdot 10^{-1} \) | \(a_{420}= \pm0.39960561 \pm 6.7 \cdot 10^{-1} \) |
\(a_{421}= +0.35794908 \pm 9.1 \cdot 10^{-1} \) | \(a_{422}= -0.15354485 \pm 9.8 \cdot 10^{-1} \) | \(a_{423}= \pm0.14778516 \pm 2.9 \cdot 10^{-1} \) |
\(a_{424}= +0.38124429 \pm 9.8 \cdot 10^{-1} \) | \(a_{425}= -0.83739813 \pm 7.5 \cdot 10^{-1} \) | \(a_{426}= \pm0.39309293 \pm 5.3 \cdot 10^{-1} \) |
\(a_{427}= -0.05680904 \pm 9.0 \cdot 10^{-1} \) | \(a_{428}= +0.21576840 \pm 8.9 \cdot 10^{-1} \) | \(a_{429}= \pm0.05694759 \pm 5.7 \cdot 10^{-1} \) |
\(a_{430}= +1.36027739 \pm 1.0 \) | \(a_{431}= -1.09490241 \pm 8.7 \cdot 10^{-1} \) | \(a_{432}= \pm0.09873348 \pm 2.4 \cdot 10^{-1} \) |
\(a_{433}= +0.36658170 \pm 7.2 \cdot 10^{-1} \) | \(a_{434}= -0.70089908 \pm 1.0 \) | \(a_{435}= \pm0.13375925 \pm 9.2 \cdot 10^{-2} \) |
\(a_{436}= -0.65414656 \pm 8.6 \cdot 10^{-1} \) | \(a_{437}= -1.84325690 \pm 8.2 \cdot 10^{-1} \) | \(a_{438}= \pm0.32516091 \pm 5.8 \cdot 10^{-1} \) |
\(a_{439}= -0.05233121 \pm 7.0 \cdot 10^{-1} \) | \(a_{440}= -1.46477505 \pm 1.3 \) | \(a_{441}= \pm0.46502460 \pm 2.7 \cdot 10^{-1} \) |
\(a_{442}= -0.11016248 \pm 8.9 \cdot 10^{-1} \) | \(a_{443}= +0.98273694 \pm 7.8 \cdot 10^{-1} \) | \(a_{444}= \pm0.14140153 \pm 5.4 \cdot 10^{-1} \) |
\(a_{445}= -1.14736159 \pm 8.3 \cdot 10^{-1} \) | \(a_{446}= -0.27259751 \pm 1.0 \) | \(a_{447}= \pm0.87820039 \pm 5.0 \cdot 10^{-1} \) |
\(a_{448}= -1.63335096 \pm 1.0 \) | \(a_{449}= -1.07105862 \pm 7.6 \cdot 10^{-1} \) | \(a_{450}= \pm0.14859460 \pm 3.0 \cdot 10^{-1} \) |
\(a_{451}= +1.95661382 \pm 8.6 \cdot 10^{-1} \) | \(a_{452}= -0.01744132 \pm 9.4 \cdot 10^{-1} \) | \(a_{453}= \pm0.97327972 \pm 4.8 \cdot 10^{-1} \) |
\(a_{454}= -0.81369621 \pm 8.2 \cdot 10^{-1} \) | \(a_{455}= +0.17650213 \pm 9.0 \cdot 10^{-1} \) | \(a_{456}= \pm0.86635963 \pm 7.9 \cdot 10^{-1} \) |
\(a_{457}= +1.96386190 \pm 8.9 \cdot 10^{-1} \) | \(a_{458}= +0.07455227 \pm 9.2 \cdot 10^{-1} \) | \(a_{459}= \pm0.28955781 \pm 1.5 \cdot 10^{-1} \) |
\(a_{460}= +0.59774834 \pm 1.4 \) | \(a_{461}= -0.68535254 \pm 8.1 \cdot 10^{-1} \) | \(a_{462}= \pm0.77221314 \pm 6.5 \cdot 10^{-1} \) |
\(a_{463}= +0.16824335 \pm 9.5 \cdot 10^{-1} \) | \(a_{464}= \pm0.09526806 \pm 2.3 \cdot 10^{-1} \) | \(a_{465}= \pm0.40729529 \pm 5.1 \cdot 10^{-1} \) |
\(a_{466}= -1.54071861 \pm 9.5 \cdot 10^{-1} \) | \(a_{467}= +0.11151662 \pm 8.6 \cdot 10^{-1} \) | \(a_{468}= \pm0.01092283 \pm 3.2 \cdot 10^{-1} \) |
\(a_{469}= -0.04639158 \pm 7.9 \cdot 10^{-1} \) | \(a_{470}= -0.44304210 \pm 1.0 \) | \(a_{471}= \pm0.79415124 \pm 4.4 \cdot 10^{-1} \) |
\(a_{472}= -0.54856486 \pm 1.3 \) | \(a_{473}= +1.46880277 \pm 8.6 \cdot 10^{-1} \) | \(a_{474}= \pm0.63483133 \pm 5.3 \cdot 10^{-1} \) |
\(a_{475}= +0.76756483 \pm 8.4 \cdot 10^{-1} \) | \(a_{476}= -0.83469138 \pm 9.5 \cdot 10^{-1} \) | \(a_{477}= \pm0.11679480 \pm 2.4 \cdot 10^{-1} \) |
\(a_{478}= +0.77047037 \pm 9.5 \cdot 10^{-1} \) | \(a_{479}= +1.13925092 \pm 8.6 \cdot 10^{-1} \) | \(a_{480}= \pm0.48776588 \pm 7.7 \cdot 10^{-1} \) |
\(a_{481}= -0.06245576 \pm 9.6 \cdot 10^{-1} \) | \(a_{482}= -0.34734378 \pm 9.9 \cdot 10^{-1} \) | \(a_{483}= \pm1.19422030 \pm 4.9 \cdot 10^{-1} \) |
\(a_{484}= -0.05888933 \pm 9.3 \cdot 10^{-1} \) | \(a_{485}= -0.69073082 \pm 9.1 \cdot 10^{-1} \) | \(a_{486}= \pm0.05138145 \pm 6.4 \cdot 10^{-2} \) |
\(a_{487}= -0.79473563 \pm 8.0 \cdot 10^{-1} \) | \(a_{488}= +0.03994078 \pm 1.2 \) | \(a_{489}= \pm0.07189295 \pm 4.5 \cdot 10^{-1} \) |
\(a_{490}= -1.39408768 \pm 9.2 \cdot 10^{-1} \) | \(a_{491}= +0.85129688 \pm 8.0 \cdot 10^{-1} \) | \(a_{492}= \pm0.37528820 \pm 6.5 \cdot 10^{-1} \) |
\(a_{493}= \pm0.27939470 \pm 1.4 \cdot 10^{-1} \) | \(a_{494}= +0.10097568 \pm 9.8 \cdot 10^{-1} \) | \(a_{495}= \pm0.44873618 \pm 3.0 \cdot 10^{-1} \) |
\(a_{496}= +0.29009010 \pm 1.1 \) | \(a_{497}= +1.31554542 \pm 8.9 \cdot 10^{-1} \) | \(a_{498}= \pm0.16106967 \pm 5.8 \cdot 10^{-1} \) |
\(a_{499}= -0.36891575 \pm 7.5 \cdot 10^{-1} \) | \(a_{500}= +0.19831888 \pm 9.3 \cdot 10^{-1} \) | \(a_{501}= \pm0.78878029 \pm 4.6 \cdot 10^{-1} \) |
\(a_{502}= -1.23972497 \pm 1.0 \) | \(a_{503}= +1.43852787 \pm 8.1 \cdot 10^{-1} \) | \(a_{504}= \pm0.56130226 \pm 3.8 \cdot 10^{-1} \) |
\(a_{505}= +1.79214168 \pm 8.4 \cdot 10^{-1} \) | \(a_{506}= -1.15511172 \pm 1.0 \) | \(a_{507}= \pm0.57252576 \pm 4.5 \cdot 10^{-1} \) |
\(a_{508}= +0.35638131 \pm 9.5 \cdot 10^{-1} \) | \(a_{509}= -0.90041189 \pm 8.0 \cdot 10^{-1} \) | \(a_{510}= \pm0.86805938 \pm 5.6 \cdot 10^{-1} \) |
\(a_{511}= +1.08820056 \pm 8.7 \cdot 10^{-1} \) | \(a_{512}= +0.90562349 \pm 8.7 \cdot 10^{-1} \) | \(a_{513}= \pm0.26541066 \pm 1.6 \cdot 10^{-1} \) |
\(a_{514}= -1.50450157 \pm 1.0 \) | \(a_{515}= +2.16007855 \pm 8.0 \cdot 10^{-1} \) | \(a_{516}= \pm0.28172363 \pm 6.2 \cdot 10^{-1} \) |
\(a_{517}= -0.47838879 \pm 8.6 \cdot 10^{-1} \) | \(a_{518}= +0.84690431 \pm 9.4 \cdot 10^{-1} \) | \(a_{519}= \pm0.45476750 \pm 5.1 \cdot 10^{-1} \) |
\(a_{520}= -0.12409352 \pm 1.2 \) | \(a_{521}= +1.08685478 \pm 7.9 \cdot 10^{-1} \) | \(a_{522}= \pm0.04957802 \pm 6.1 \cdot 10^{-2} \) |
\(a_{523}= +0.17660155 \pm 8.8 \cdot 10^{-1} \) | \(a_{524}= -0.52498754 \pm 1.1 \) | \(a_{525}= \pm0.49729449 \pm 5.2 \cdot 10^{-1} \) |
\(a_{526}= +1.26133846 \pm 1.2 \) | \(a_{527}= +0.85075349 \pm 7.4 \cdot 10^{-1} \) | \(a_{528}= \pm0.31960577 \pm 7.6 \cdot 10^{-1} \) |
\(a_{529}= +0.78636931 \pm 7.8 \cdot 10^{-1} \) | \(a_{530}= -0.35013672 \pm 8.9 \cdot 10^{-1} \) | \(a_{531}= \pm0.16805372 \pm 3.0 \cdot 10^{-1} \) |
\(a_{532}= +0.76508381 \pm 1.3 \) | \(a_{533}= +0.16576135 \pm 8.7 \cdot 10^{-1} \) | \(a_{534}= \pm0.42527094 \pm 5.1 \cdot 10^{-1} \) |
\(a_{535}= -0.75096892 \pm 7.3 \cdot 10^{-1} \) | \(a_{536}= +0.03261657 \pm 1.2 \) | \(a_{537}= \pm0.73420348 \pm 4.5 \cdot 10^{-1} \) |
\(a_{538}= +0.94815408 \pm 1.0 \) | \(a_{539}= -1.50531050 \pm 8.2 \cdot 10^{-1} \) | \(a_{540}= \pm0.08606982 \pm 2.3 \cdot 10^{-1} \) |
\(a_{541}= -0.48578903 \pm 8.4 \cdot 10^{-1} \) | \(a_{542}= +0.01566927 \pm 1.1 \) | \(a_{543}= \pm0.91079487 \pm 4.9 \cdot 10^{-1} \) |
\(a_{544}= +1.01883948 \pm 1.1 \) | \(a_{545}= +2.27671771 \pm 7.1 \cdot 10^{-1} \) | \(a_{546}= \pm0.06542072 \pm 4.9 \cdot 10^{-1} \) |
\(a_{547}= +1.47122292 \pm 8.0 \cdot 10^{-1} \) | \(a_{548}= +0.11100850 \pm 1.0 \) | \(a_{549}= \pm0.01223592 \pm 2.8 \cdot 10^{-1} \) |
\(a_{550}= +0.48100899 \pm 9.9 \cdot 10^{-1} \) | \(a_{551}= \pm0.25609509 \pm 1.5 \cdot 10^{-1} \) | \(a_{552}= \pm0.83962157 \pm 8.0 \cdot 10^{-1} \) |
\(a_{553}= -2.12455983 \pm 8.3 \cdot 10^{-1} \) | \(a_{554}= -1.00017562 \pm 9.7 \cdot 10^{-1} \) | \(a_{555}= \pm0.49213952 \pm 4.7 \cdot 10^{-1} \) |
\(a_{556}= +0.63495278 \pm 8.7 \cdot 10^{-1} \) | \(a_{557}= +1.32961142 \pm 7.8 \cdot 10^{-1} \) | \(a_{558}= \pm0.15096448 \pm 3.3 \cdot 10^{-1} \) |
\(a_{559}= +0.12443474 \pm 8.4 \cdot 10^{-1} \) | \(a_{560}= +0.99057924 \pm 1.1 \) | \(a_{561}= \pm0.93731472 \pm 4.7 \cdot 10^{-1} \) |
\(a_{562}= -0.13707266 \pm 9.9 \cdot 10^{-1} \) | \(a_{563}= +0.34962162 \pm 8.5 \cdot 10^{-1} \) | \(a_{564}= \pm0.09175733 \pm 6.2 \cdot 10^{-1} \) |
\(a_{565}= +0.06070346 \pm 7.9 \cdot 10^{-1} \) | \(a_{566}= -1.07421994 \pm 9.1 \cdot 10^{-1} \) | \(a_{567}= \pm0.17195584 \pm 9.8 \cdot 10^{-2} \) |
\(a_{568}= -0.92492174 \pm 1.0 \) | \(a_{569}= -0.04903427 \pm 7.7 \cdot 10^{-1} \) | \(a_{570}= \pm0.79566915 \pm 6.1 \cdot 10^{-1} \) |
\(a_{571}= +0.18988777 \pm 8.2 \cdot 10^{-1} \) | \(a_{572}= -0.03535780 \pm 1.0 \) | \(a_{573}= \pm0.58288254 \pm 4.7 \cdot 10^{-1} \) |
\(a_{574}= -2.24773510 \pm 1.0 \) | \(a_{575}= -0.74387583 \pm 7.5 \cdot 10^{-1} \) | \(a_{576}= \pm0.35180241 \pm 3.6 \cdot 10^{-1} \) |
\(a_{577}= -1.42415077 \pm 7.8 \cdot 10^{-1} \) | \(a_{578}= -1.01223448 \pm 8.8 \cdot 10^{-1} \) | \(a_{579}= \pm0.53776943 \pm 4.6 \cdot 10^{-1} \) |
\(a_{580}= \pm0.08304888 \pm 2.2 \cdot 10^{-1} \) | \(a_{581}= -0.53904420 \pm 8.2 \cdot 10^{-1} \) | \(a_{582}= \pm0.25602020 \pm 6.4 \cdot 10^{-1} \) |
\(a_{583}= -0.37807125 \pm 8.1 \cdot 10^{-1} \) | \(a_{584}= -0.76508218 \pm 1.2 \) | \(a_{585}= \pm0.03801625 \pm 3.1 \cdot 10^{-1} \) |
\(a_{586}= +0.45333182 \pm 8.1 \cdot 10^{-1} \) | \(a_{587}= +0.85881523 \pm 7.7 \cdot 10^{-1} \) | \(a_{588}= \pm0.28872599 \pm 5.6 \cdot 10^{-1} \) |
\(a_{589}= -0.77980644 \pm 8.7 \cdot 10^{-1} \) | \(a_{590}= +0.50380479 \pm 9.8 \cdot 10^{-1} \) | \(a_{591}= \pm0.50903416 \pm 4.5 \cdot 10^{-1} \) |
\(a_{592}= -0.35051916 \pm 9.1 \cdot 10^{-1} \) | \(a_{593}= -1.30669801 \pm 7.9 \cdot 10^{-1} \) | \(a_{594}= \pm0.16632460 \pm 2.1 \cdot 10^{-1} \) |
\(a_{595}= +2.90509308 \pm 7.8 \cdot 10^{-1} \) | \(a_{596}= +0.54525991 \pm 1.0 \) | \(a_{597}= \pm0.24903324 \pm 4.9 \cdot 10^{-1} \) |
\(a_{598}= -0.09785931 \pm 1.0 \) | \(a_{599}= +1.36960317 \pm 8.4 \cdot 10^{-1} \) | \(a_{600}= \pm0.34963330 \pm 5.9 \cdot 10^{-1} \) |
\(a_{601}= -0.34988941 \pm 8.2 \cdot 10^{-1} \) | \(a_{602}= -1.68734346 \pm 9.9 \cdot 10^{-1} \) | \(a_{603}= \pm0.00999214 \pm 2.7 \cdot 10^{-1} \) |
\(a_{604}= -0.60429308 \pm 1.1 \) | \(a_{605}= +0.20496077 \pm 8.7 \cdot 10^{-1} \) | \(a_{606}= \pm0.66425944 \pm 6.9 \cdot 10^{-1} \) |
\(a_{607}= -0.71198480 \pm 9.2 \cdot 10^{-1} \) | \(a_{608}= -0.93387521 \pm 1.2 \) | \(a_{609}= \pm0.16592041 \pm 9.4 \cdot 10^{-2} \) |
\(a_{610}= -0.03668182 \pm 1.0 \) | \(a_{611}= -0.04052837 \pm 9.5 \cdot 10^{-1} \) | \(a_{612}= \pm0.17978159 \pm 3.2 \cdot 10^{-1} \) |
\(a_{613}= -0.12369146 \pm 7.6 \cdot 10^{-1} \) | \(a_{614}= +0.41462622 \pm 1.1 \) | \(a_{615}= \pm1.30616796 \pm 4.8 \cdot 10^{-1} \) |
\(a_{616}= +1.81696661 \pm 1.2 \) | \(a_{617}= +1.24825804 \pm 7.8 \cdot 10^{-1} \) | \(a_{618}= \pm0.80063568 \pm 5.6 \cdot 10^{-1} \) |
\(a_{619}= -1.61519592 \pm 8.6 \cdot 10^{-1} \) | \(a_{620}= +0.25288282 \pm 1.0 \) | \(a_{621}= \pm0.25721941 \pm 1.5 \cdot 10^{-1} \) |
\(a_{622}= -0.44151886 \pm 1.0 \) | \(a_{623}= +1.42323403 \pm 8.8 \cdot 10^{-1} \) | \(a_{624}= \pm0.02707652 \pm 6.8 \cdot 10^{-1} \) |
\(a_{625}= -1.24680056 \pm 6.9 \cdot 10^{-1} \) | \(a_{626}= -0.35239319 \pm 7.8 \cdot 10^{-1} \) | \(a_{627}= \pm0.85914906 \pm 5.0 \cdot 10^{-1} \) |
\(a_{628}= +0.49307520 \pm 1.0 \) | \(a_{629}= -1.02797509 \pm 7.7 \cdot 10^{-1} \) | \(a_{630}= \pm0.51550288 \pm 3.1 \cdot 10^{-1} \) |
\(a_{631}= +0.68123277 \pm 8.1 \cdot 10^{-1} \) | \(a_{632}= +1.49371625 \pm 1.1 \) | \(a_{633}= \pm0.11067898 \pm 5.0 \cdot 10^{-1} \) |
\(a_{634}= -0.26217165 \pm 1.1 \) | \(a_{635}= -1.24036367 \pm 7.4 \cdot 10^{-1} \) | \(a_{636}= \pm0.07251593 \pm 5.4 \cdot 10^{-1} \) |
\(a_{637}= -0.12752762 \pm 8.9 \cdot 10^{-1} \) | \(a_{638}= \pm0.16048682 \pm 2.0 \cdot 10^{-1} \) | \(a_{639}= \pm0.28335125 \pm 2.7 \cdot 10^{-1} \) |
\(a_{640}= -0.20982590 \pm 1.1 \) | \(a_{641}= +1.20515770 \pm 7.5 \cdot 10^{-1} \) | \(a_{642}= \pm0.27834752 \pm 5.1 \cdot 10^{-1} \) |
\(a_{643}= +0.26743529 \pm 8.6 \cdot 10^{-1} \) | \(a_{644}= -0.74147138 \pm 1.0 \) | \(a_{645}= \pm0.98052211 \pm 4.8 \cdot 10^{-1} \) |
\(a_{646}= +1.66198411 \pm 9.4 \cdot 10^{-1} \) | \(a_{647}= -0.13335270 \pm 7.7 \cdot 10^{-1} \) | \(a_{648}= \pm0.12089716 \pm 1.3 \cdot 10^{-1} \) |
\(a_{649}= +0.54399925 \pm 1.0 \) | \(a_{650}= +0.04075035 \pm 9.3 \cdot 10^{-1} \) | \(a_{651}= \pm0.50522566 \pm 5.0 \cdot 10^{-1} \) |
\(a_{652}= -0.04463713 \pm 9.5 \cdot 10^{-1} \) | \(a_{653}= +0.22296261 \pm 6.9 \cdot 10^{-1} \) | \(a_{654}= \pm0.84386812 \pm 4.9 \cdot 10^{-1} \) |
\(a_{655}= +1.82718753 \pm 7.9 \cdot 10^{-1} \) | \(a_{656}= +0.93029898 \pm 1.3 \) | \(a_{657}= \pm0.23438415 \pm 2.8 \cdot 10^{-1} \) |
\(a_{658}= +0.54956746 \pm 9.2 \cdot 10^{-1} \) | \(a_{659}= +1.19501414 \pm 8.5 \cdot 10^{-1} \) | \(a_{660}= \pm0.27861278 \pm 7.4 \cdot 10^{-1} \) |
\(a_{661}= -0.15128232 \pm 7.9 \cdot 10^{-1} \) | \(a_{662}= -0.60029789 \pm 1.0 \) | \(a_{663}= \pm0.07940788 \pm 5.0 \cdot 10^{-1} \) |
\(a_{664}= +0.37898631 \pm 1.2 \) | \(a_{665}= -2.66282812 \pm 9.0 \cdot 10^{-1} \) | \(a_{666}= \pm0.18241210 \pm 3.0 \cdot 10^{-1} \) |
\(a_{667}= \pm0.24819134 \pm 1.4 \cdot 10^{-1} \) | \(a_{668}= +0.48974047 \pm 8.4 \cdot 10^{-1} \) | \(a_{669}= \pm0.19649513 \pm 4.8 \cdot 10^{-1} \) |
\(a_{670}= -0.02995522 \pm 1.0 \) | \(a_{671}= -0.03960836 \pm 7.8 \cdot 10^{-1} \) | \(a_{672}= \pm0.60504465 \pm 6.3 \cdot 10^{-1} \) |
\(a_{673}= -0.94762104 \pm 7.4 \cdot 10^{-1} \) | \(a_{674}= -0.82036195 \pm 1.0 \) | \(a_{675}= \pm0.10711072 \pm 1.5 \cdot 10^{-1} \) |
\(a_{676}= +0.35547165 \pm 8.8 \cdot 10^{-1} \) | \(a_{677}= +1.07870888 \pm 8.1 \cdot 10^{-1} \) | \(a_{678}= \pm0.02249981 \pm 4.7 \cdot 10^{-1} \) |
\(a_{679}= +0.85681063 \pm 8.9 \cdot 10^{-1} \) | \(a_{680}= -2.04248649 \pm 1.2 \) | \(a_{681}= \pm0.58653266 \pm 4.1 \cdot 10^{-1} \) |
\(a_{682}= -0.48868042 \pm 1.1 \) | \(a_{683}= -1.42903620 \pm 8.0 \cdot 10^{-1} \) | \(a_{684}= \pm0.16478903 \pm 4.1 \cdot 10^{-1} \) |
\(a_{685}= -0.38635839 \pm 8.7 \cdot 10^{-1} \) | \(a_{686}= +0.48971923 \pm 7.9 \cdot 10^{-1} \) | \(a_{687}= \pm0.05373915 \pm 4.5 \cdot 10^{-1} \) |
\(a_{688}= +0.69836250 \pm 1.2 \) | \(a_{689}= -0.03202962 \pm 7.5 \cdot 10^{-1} \) | \(a_{690}= \pm0.77111278 \pm 6.6 \cdot 10^{-1} \) |
\(a_{691}= +1.09345290 \pm 8.7 \cdot 10^{-1} \) | \(a_{692}= +0.28235753 \pm 1.3 \) | \(a_{693}= \pm0.55663063 \pm 3.0 \cdot 10^{-1} \) |
\(a_{694}= -0.75907935 \pm 9.2 \cdot 10^{-1} \) | \(a_{695}= -2.20991490 \pm 7.6 \cdot 10^{-1} \) | \(a_{696}= \pm0.11665382 \pm 1.3 \cdot 10^{-1} \) |
\(a_{697}= +2.72830787 \pm 7.7 \cdot 10^{-1} \) | \(a_{698}= +0.63445104 \pm 1.0 \) | \(a_{699}= \pm1.11058867 \pm 5.0 \cdot 10^{-1} \) |
\(a_{700}= +0.30876182 \pm 9.9 \cdot 10^{-1} \) | \(a_{701}= -1.35965391 \pm 7.5 \cdot 10^{-1} \) | \(a_{702}= \pm0.01409077 \pm 1.8 \cdot 10^{-1} \) |
\(a_{703}= +0.94224897 \pm 8.2 \cdot 10^{-1} \) | \(a_{704}= -1.13880395 \pm 1.1 \) | \(a_{705}= \pm0.31935587 \pm 5.3 \cdot 10^{-1} \) |
\(a_{706}= -0.23877099 \pm 8.1 \cdot 10^{-1} \) | \(a_{707}= -2.22304550 \pm 1.0 \) | \(a_{708}= \pm0.10434174 \pm 7.2 \cdot 10^{-1} \) |
\(a_{709}= -0.76177407 \pm 8.3 \cdot 10^{-1} \) | \(a_{710}= +0.84945289 \pm 9.1 \cdot 10^{-1} \) | \(a_{711}= \pm0.45760237 \pm 2.5 \cdot 10^{-1} \) |
\(a_{712}= -1.00063447 \pm 1.0 \) | \(a_{713}= +0.75573964 \pm 7.7 \cdot 10^{-1} \) | \(a_{714}= \pm1.07677620 \pm 5.1 \cdot 10^{-1} \) |
\(a_{715}= +0.12306071 \pm 9.7 \cdot 10^{-1} \) | \(a_{716}= +0.45585465 \pm 8.6 \cdot 10^{-1} \) | \(a_{717}= \pm0.55537439 \pm 4.3 \cdot 10^{-1} \) |
\(a_{718}= +0.36818137 \pm 7.6 \cdot 10^{-1} \) | \(a_{719}= +1.32430388 \pm 8.3 \cdot 10^{-1} \) | \(a_{720}= \pm0.21335780 \pm 4.6 \cdot 10^{-1} \) |
\(a_{721}= -2.67944937 \pm 9.0 \cdot 10^{-1} \) | \(a_{722}= -0.72242848 \pm 9.7 \cdot 10^{-1} \) | \(a_{723}= \pm0.25037412 \pm 4.5 \cdot 10^{-1} \) |
\(a_{724}= +0.56549728 \pm 1.0 \) | \(a_{725}= \pm0.10335127 \pm 1.5 \cdot 10^{-1} \) | \(a_{726}= \pm0.07596895 \pm 5.3 \cdot 10^{-1} \) |
\(a_{727}= +1.67782619 \pm 8.0 \cdot 10^{-1} \) | \(a_{728}= +0.15393065 \pm 9.5 \cdot 10^{-1} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +0.70265541 \pm 1.0 \) | \(a_{731}= +2.04810274 \pm 7.2 \cdot 10^{-1} \) | \(a_{732}= \pm0.00759708 \pm 6.3 \cdot 10^{-1} \) |
\(a_{733}= +0.41510673 \pm 7.8 \cdot 10^{-1} \) | \(a_{734}= +0.14737484 \pm 9.5 \cdot 10^{-1} \) | \(a_{735}= \pm1.00489341 \pm 5.0 \cdot 10^{-1} \) |
\(a_{736}= +0.90505345 \pm 1.3 \) | \(a_{737}= -0.03234511 \pm 9.0 \cdot 10^{-1} \) | \(a_{738}= \pm0.48413271 \pm 3.4 \cdot 10^{-1} \) |
\(a_{739}= -0.20316810 \pm 7.9 \cdot 10^{-1} \) | \(a_{740}= -0.30556119 \pm 9.9 \cdot 10^{-1} \) | \(a_{741}= \pm0.07278580 \pm 4.7 \cdot 10^{-1} \) |
\(a_{742}= +0.43432384 \pm 8.4 \cdot 10^{-1} \) | \(a_{743}= +1.75587268 \pm 9.1 \cdot 10^{-1} \) | \(a_{744}= \pm0.35520947 \pm 6.7 \cdot 10^{-1} \) |
\(a_{745}= -1.89774429 \pm 9.3 \cdot 10^{-1} \) | \(a_{746}= +0.14121146 \pm 1.0 \) | \(a_{747}= \pm0.11610306 \pm 2.6 \cdot 10^{-1} \) |
\(a_{748}= -0.58196301 \pm 8.5 \cdot 10^{-1} \) | \(a_{749}= +0.93153242 \pm 7.5 \cdot 10^{-1} \) | \(a_{750}= \pm0.25583713 \pm 5.0 \cdot 10^{-1} \) |
\(a_{751}= -1.13983835 \pm 7.7 \cdot 10^{-1} \) | \(a_{752}= -0.22745654 \pm 1.2 \) | \(a_{753}= \pm0.89362489 \pm 4.8 \cdot 10^{-1} \) |
\(a_{754}= \pm0.01359620 \pm 1.7 \cdot 10^{-1} \) | \(a_{755}= +2.10320566 \pm 7.9 \cdot 10^{-1} \) | \(a_{756}= \pm0.10676450 \pm 2.1 \cdot 10^{-1} \) |
\(a_{757}= -0.02180829 \pm 8.0 \cdot 10^{-1} \) | \(a_{758}= -0.42018540 \pm 9.5 \cdot 10^{-1} \) | \(a_{759}= \pm0.83263354 \pm 5.0 \cdot 10^{-1} \) |
\(a_{760}= +1.87215703 \pm 1.3 \) | \(a_{761}= +1.23074914 \pm 7.5 \cdot 10^{-1} \) | \(a_{762}= \pm0.45974227 \pm 5.3 \cdot 10^{-1} \) |
\(a_{763}= -2.82413333 \pm 9.1 \cdot 10^{-1} \) | \(a_{764}= -0.36190200 \pm 1.0 \) | \(a_{765}= \pm0.62571901 \pm 2.7 \cdot 10^{-1} \) |
\(a_{766}= -0.46381047 \pm 9.3 \cdot 10^{-1} \) | \(a_{767}= +0.04608679 \pm 9.7 \cdot 10^{-1} \) | \(a_{768}= \pm0.53156742 \pm 5.3 \cdot 10^{-1} \) |
\(a_{769}= +1.40267968 \pm 8.3 \cdot 10^{-1} \) | \(a_{770}= -1.66871149 \pm 1.1 \) | \(a_{771}= \pm1.08448252 \pm 4.9 \cdot 10^{-1} \) |
\(a_{772}= -0.33389203 \pm 1.0 \) | \(a_{773}= -0.40477574 \pm 7.5 \cdot 10^{-1} \) | \(a_{774}= \pm0.36343168 \pm 3.5 \cdot 10^{-1} \) |
\(a_{775}= -0.31470338 \pm 8.4 \cdot 10^{-1} \) | \(a_{776}= -0.60239864 \pm 1.5 \) | \(a_{777}= \pm0.61046990 \pm 4.6 \cdot 10^{-1} \) |
\(a_{778}= +0.66268409 \pm 7.8 \cdot 10^{-1} \) | \(a_{779}= -2.50078558 \pm 8.8 \cdot 10^{-1} \) | \(a_{780}= \pm0.02360365 \pm 6.7 \cdot 10^{-1} \) |
\(a_{781}= +0.91722376 \pm 7.8 \cdot 10^{-1} \) | \(a_{782}= -1.61069106 \pm 1.0 \) | \(a_{783}= \pm0.03573708 \pm 1.0 \cdot 10^{-8} \) |
\(a_{784}= -0.71572060 \pm 1.0 \) | \(a_{785}= -1.71611855 \pm 6.7 \cdot 10^{-1} \) | \(a_{786}= \pm0.67724923 \pm 5.7 \cdot 10^{-1} \) |
\(a_{787}= -1.80993311 \pm 8.5 \cdot 10^{-1} \) | \(a_{788}= +0.31605079 \pm 1.2 \) | \(a_{789}= \pm0.90920444 \pm 5.4 \cdot 10^{-1} \) |
\(a_{790}= -1.37183670 \pm 1.0 \) | \(a_{791}= -0.07529904 \pm 8.7 \cdot 10^{-1} \) | \(a_{792}= \pm0.39135081 \pm 4.2 \cdot 10^{-1} \) |
\(a_{793}= -0.00335556 \pm 9.0 \cdot 10^{-1} \) | \(a_{794}= -1.26048937 \pm 9.0 \cdot 10^{-1} \) | \(a_{795}= \pm0.25238734 \pm 4.6 \cdot 10^{-1} \) |
\(a_{796}= +0.15462057 \pm 1.0 \) | \(a_{797}= -1.26803670 \pm 7.5 \cdot 10^{-1} \) | \(a_{798}= \pm0.98698040 \pm 6.7 \cdot 10^{-1} \) |
\(a_{799}= -0.66706669 \pm 9.3 \cdot 10^{-1} \) | \(a_{800}= -0.37688029 \pm 1.0 \) | \(a_{801}= \pm0.30654597 \pm 2.5 \cdot 10^{-1} \) |
\(a_{802}= +0.50462938 \pm 9.6 \cdot 10^{-1} \) | \(a_{803}= +0.75871452 \pm 8.9 \cdot 10^{-1} \) | \(a_{804}= \pm0.00620395 \pm 6.7 \cdot 10^{-1} \) |
\(a_{805}= +2.58064648 \pm 8.3 \cdot 10^{-1} \) | \(a_{806}= -0.04140026 \pm 9.3 \cdot 10^{-1} \) | \(a_{807}= \pm0.68345327 \pm 4.9 \cdot 10^{-1} \) |
\(a_{808}= +1.56295866 \pm 1.5 \) | \(a_{809}= +1.07853713 \pm 8.1 \cdot 10^{-1} \) | \(a_{810}= \pm0.11103257 \pm 1.1 \cdot 10^{-1} \) |
\(a_{811}= +0.62996264 \pm 8.3 \cdot 10^{-1} \) | \(a_{812}= \pm0.10301721 \pm 2.1 \cdot 10^{-1} \) | \(a_{813}= \pm0.01129480 \pm 4.7 \cdot 10^{-1} \) |
\(a_{814}= +0.59047810 \pm 1.0 \) | \(a_{815}= +0.15535683 \pm 8.3 \cdot 10^{-1} \) | \(a_{816}= \pm0.44565919 \pm 6.6 \cdot 10^{-1} \) |
\(a_{817}= -1.87730493 \pm 7.8 \cdot 10^{-1} \) | \(a_{818}= -0.45828628 \pm 9.0 \cdot 10^{-1} \) | \(a_{819}= \pm0.04715690 \pm 2.9 \cdot 10^{-1} \) |
\(a_{820}= +0.81097781 \pm 1.1 \) | \(a_{821}= +1.53160839 \pm 7.9 \cdot 10^{-1} \) | \(a_{822}= \pm0.14320419 \pm 5.3 \cdot 10^{-1} \) |
\(a_{823}= -0.59094521 \pm 7.9 \cdot 10^{-1} \) | \(a_{824}= +1.88384296 \pm 1.0 \) | \(a_{825}= \pm0.34672336 \pm 4.9 \cdot 10^{-1} \) |
\(a_{826}= -0.62493998 \pm 1.0 \) | \(a_{827}= -0.00464194 \pm 6.9 \cdot 10^{-1} \) | \(a_{828}= \pm0.15970323 \pm 4.0 \cdot 10^{-1} \) |
\(a_{829}= -0.68407057 \pm 7.9 \cdot 10^{-1} \) | \(a_{830}= -0.34806298 \pm 1.0 \) | \(a_{831}= \pm0.72095170 \pm 4.6 \cdot 10^{-1} \) |
\(a_{832}= -0.09647774 \pm 1.0 \) | \(a_{833}= -2.09900923 \pm 7.8 \cdot 10^{-1} \) | \(a_{834}= \pm0.81910758 \pm 4.8 \cdot 10^{-1} \) |
\(a_{835}= -1.70451221 \pm 6.8 \cdot 10^{-1} \) | \(a_{836}= +0.53343126 \pm 1.3 \) | \(a_{837}= \pm0.10881899 \pm 1.6 \cdot 10^{-1} \) |
\(a_{838}= +0.64726406 \pm 1.0 \) | \(a_{839}= -0.43705641 \pm 8.3 \cdot 10^{-1} \) | \(a_{840}= \pm1.21294429 \pm 6.5 \cdot 10^{-1} \) |
\(a_{841}= \pm0.03448276 \pm 1.0 \cdot 10^{-8} \) | \(a_{842}= -0.28670199 \pm 1.1 \) | \(a_{843}= \pm0.09880542 \pm 4.8 \cdot 10^{-1} \) |
\(a_{844}= -0.06871873 \pm 1.0 \) | \(a_{845}= -1.23719768 \pm 9.2 \cdot 10^{-1} \) | \(a_{846}= \pm0.11836963 \pm 3.3 \cdot 10^{-1} \) |
\(a_{847}= -0.25424169 \pm 8.2 \cdot 10^{-1} \) | \(a_{848}= -0.17975918 \pm 9.6 \cdot 10^{-1} \) | \(a_{849}= \pm0.77432471 \pm 4.7 \cdot 10^{-1} \) |
\(a_{850}= +0.67072030 \pm 8.8 \cdot 10^{-1} \) | \(a_{851}= -0.91316878 \pm 7.8 \cdot 10^{-1} \) | \(a_{852}= \pm0.17592805 \pm 5.7 \cdot 10^{-1} \) |
\(a_{853}= +0.91156341 \pm 8.1 \cdot 10^{-1} \) | \(a_{854}= +0.04550163 \pm 8.1 \cdot 10^{-1} \) | \(a_{855}= \pm0.57353830 \pm 2.8 \cdot 10^{-1} \) |
\(a_{856}= -0.65493336 \pm 9.8 \cdot 10^{-1} \) | \(a_{857}= +0.33285129 \pm 8.3 \cdot 10^{-1} \) | \(a_{858}= \pm0.04561260 \pm 6.2 \cdot 10^{-1} \) |
\(a_{859}= +1.42452731 \pm 8.3 \cdot 10^{-1} \) | \(a_{860}= +0.60878976 \pm 1.1 \) | \(a_{861}= \pm1.62022391 \pm 5.0 \cdot 10^{-1} \) |
\(a_{862}= +0.87697028 \pm 1.1 \) | \(a_{863}= +0.42469957 \pm 8.8 \cdot 10^{-1} \) | \(a_{864}= \pm0.13031870 \pm 2.2 \cdot 10^{-1} \) |
\(a_{865}= -0.98272836 \pm 9.3 \cdot 10^{-1} \) | \(a_{866}= -0.29361635 \pm 9.8 \cdot 10^{-1} \) | \(a_{867}= \pm0.72964404 \pm 4.5 \cdot 10^{-1} \) |
\(a_{868}= -0.31368615 \pm 1.1 \) | \(a_{869}= -1.48128430 \pm 8.0 \cdot 10^{-1} \) | \(a_{870}= \pm0.10713547 \pm 1.0 \cdot 10^{-1} \) |
\(a_{871}= -0.00274023 \pm 7.3 \cdot 10^{-1} \) | \(a_{872}= +1.98556604 \pm 8.2 \cdot 10^{-1} \) | \(a_{873}= \pm0.18454579 \pm 2.7 \cdot 10^{-1} \) |
\(a_{874}= +1.47637040 \pm 1.0 \) | \(a_{875}= +0.85619798 \pm 8.0 \cdot 10^{-1} \) | \(a_{876}= \pm0.14552519 \pm 6.2 \cdot 10^{-1} \) |
\(a_{877}= -0.37618828 \pm 8.5 \cdot 10^{-1} \) | \(a_{878}= +0.04191507 \pm 8.1 \cdot 10^{-1} \) | \(a_{879}= \pm0.32677296 \pm 4.1 \cdot 10^{-1} \) |
\(a_{880}= +0.69065105 \pm 1.4 \) | \(a_{881}= -1.40535773 \pm 9.0 \cdot 10^{-1} \) | \(a_{882}= \pm0.37246494 \pm 2.9 \cdot 10^{-1} \) |
\(a_{883}= -0.30861133 \pm 9.5 \cdot 10^{-1} \) | \(a_{884}= -0.04930302 \pm 8.4 \cdot 10^{-1} \) | \(a_{885}= \pm0.36315515 \pm 4.7 \cdot 10^{-1} \) |
\(a_{886}= -0.78713050 \pm 1.0 \) | \(a_{887}= -0.30903829 \pm 7.7 \cdot 10^{-1} \) | \(a_{888}= \pm0.42920364 \pm 5.2 \cdot 10^{-1} \) |
\(a_{889}= +1.53859760 \pm 8.9 \cdot 10^{-1} \) | \(a_{890}= +0.91898785 \pm 9.7 \cdot 10^{-1} \) | \(a_{891}= \pm0.11989095 \pm 9.9 \cdot 10^{-2} \) |
\(a_{892}= -0.12200054 \pm 1.2 \) | \(a_{893}= +0.61143788 \pm 8.9 \cdot 10^{-1} \) | \(a_{894}= \pm0.70340117 \pm 5.7 \cdot 10^{-1} \) |
\(a_{895}= -1.58657464 \pm 8.4 \cdot 10^{-1} \) | \(a_{896}= +0.26027659 \pm 1.0 \) | \(a_{897}= \pm0.07053945 \pm 5.0 \cdot 10^{-1} \) |
\(a_{898}= +0.85787241 \pm 9.9 \cdot 10^{-1} \) | \(a_{899}= \pm0.10499958 \pm 1.5 \cdot 10^{-1} \) | \(a_{900}= \pm0.06650325 \pm 3.2 \cdot 10^{-1} \) |
\(a_{901}= -0.52718363 \pm 6.4 \cdot 10^{-1} \) | \(a_{902}= -1.56716448 \pm 1.1 \) | \(a_{903}= \pm1.21627954 \pm 5.0 \cdot 10^{-1} \) |
\(a_{904}= +0.05294057 \pm 1.0 \) | \(a_{905}= -1.96817923 \pm 8.0 \cdot 10^{-1} \) | \(a_{906}= \pm0.77955567 \pm 5.7 \cdot 10^{-1} \) |
\(a_{907}= +1.90307934 \pm 7.8 \cdot 10^{-1} \) | \(a_{908}= -0.36416831 \pm 7.4 \cdot 10^{-1} \) | \(a_{909}= \pm0.47881489 \pm 3.0 \cdot 10^{-1} \) |
\(a_{910}= -0.14137070 \pm 8.2 \cdot 10^{-1} \) | \(a_{911}= -1.17373096 \pm 8.1 \cdot 10^{-1} \) | \(a_{912}= \pm0.40849425 \pm 7.7 \cdot 10^{-1} \) |
\(a_{913}= -0.37583207 \pm 9.0 \cdot 10^{-1} \) | \(a_{914}= -1.57296988 \pm 9.8 \cdot 10^{-1} \) | \(a_{915}= \pm0.02644118 \pm 5.1 \cdot 10^{-1} \) |
\(a_{916}= +0.03336574 \pm 1.0 \) | \(a_{917}= -2.26651780 \pm 8.7 \cdot 10^{-1} \) | \(a_{918}= \pm0.23192349 \pm 1.7 \cdot 10^{-1} \) |
\(a_{919}= +0.95854061 \pm 8.5 \cdot 10^{-1} \) | \(a_{920}= -1.81437752 \pm 1.7 \) | \(a_{921}= \pm0.29887300 \pm 5.3 \cdot 10^{-1} \) |
\(a_{922}= +0.54893825 \pm 9.2 \cdot 10^{-1} \) | \(a_{923}= +0.07770580 \pm 7.7 \cdot 10^{-1} \) | \(a_{924}= \pm0.34560263 \pm 7.1 \cdot 10^{-1} \) |
\(a_{925}= +0.38025966 \pm 7.5 \cdot 10^{-1} \) | \(a_{926}= -0.13475577 \pm 1.2 \) | \(a_{927}= \pm0.57711831 \pm 2.6 \cdot 10^{-1} \) |
\(a_{928}= \pm0.12574468 \pm 2.1 \cdot 10^{-1} \) | \(a_{929}= -1.21201207 \pm 7.5 \cdot 10^{-1} \) | \(a_{930}= \pm0.32622621 \pm 5.6 \cdot 10^{-1} \) |
\(a_{931}= +1.92396616 \pm 8.3 \cdot 10^{-1} \) | \(a_{932}= -0.68954591 \pm 1.1 \) | \(a_{933}= \pm0.31825788 \pm 5.4 \cdot 10^{-1} \) |
\(a_{934}= -0.08932007 \pm 1.0 \) | \(a_{935}= +2.02548721 \pm 8.4 \cdot 10^{-1} \) | \(a_{936}= \pm0.03315465 \pm 3.5 \cdot 10^{-1} \) |
\(a_{937}= -0.17288868 \pm 8.1 \cdot 10^{-1} \) | \(a_{938}= +0.03715768 \pm 9.6 \cdot 10^{-1} \) | \(a_{939}= \pm0.25401386 \pm 3.8 \cdot 10^{-1} \) |
\(a_{940}= -0.19828271 \pm 1.1 \) | \(a_{941}= -1.00893262 \pm 8.5 \cdot 10^{-1} \) | \(a_{942}= \pm0.63608138 \pm 5.5 \cdot 10^{-1} \) |
\(a_{943}= +2.42360499 \pm 6.9 \cdot 10^{-1} \) | \(a_{944}= +0.25865193 \pm 1.4 \) | \(a_{945}= \pm0.37158743 \pm 1.6 \cdot 10^{-1} \) |
\(a_{946}= -1.17644856 \pm 1.1 \) | \(a_{947}= +0.32844126 \pm 8.1 \cdot 10^{-1} \) | \(a_{948}= \pm0.28411764 \pm 5.9 \cdot 10^{-1} \) |
\(a_{949}= +0.06427714 \pm 8.3 \cdot 10^{-1} \) | \(a_{950}= -0.61478679 \pm 9.2 \cdot 10^{-1} \) | \(a_{951}= \pm0.18897991 \pm 5.1 \cdot 10^{-1} \) |
\(a_{952}= +2.53358339 \pm 9.6 \cdot 10^{-1} \) | \(a_{953}= +0.17019536 \pm 8.9 \cdot 10^{-1} \) | \(a_{954}= \pm0.09354767 \pm 2.8 \cdot 10^{-1} \) |
\(a_{955}= +1.25957813 \pm 8.7 \cdot 10^{-1} \) | \(a_{956}= +0.34482266 \pm 1.0 \) | \(a_{957}= \pm0.11568293 \pm 9.6 \cdot 10^{-2} \) |
\(a_{958}= -0.91249155 \pm 9.8 \cdot 10^{-1} \) | \(a_{959}= +0.47925467 \pm 8.5 \cdot 10^{-1} \) | \(a_{960}= \pm0.76022627 \pm 7.3 \cdot 10^{-1} \) |
\(a_{961}= -0.68027753 \pm 7.7 \cdot 10^{-1} \) | \(a_{962}= +0.05002441 \pm 9.3 \cdot 10^{-1} \) | \(a_{963}= \pm0.20063988 \pm 2.5 \cdot 10^{-1} \) |
\(a_{964}= -0.15545310 \pm 1.1 \) | \(a_{965}= +1.16209110 \pm 8.6 \cdot 10^{-1} \) | \(a_{966}= \pm0.95651968 \pm 5.6 \cdot 10^{-1} \) |
\(a_{967}= -0.57526050 \pm 8.4 \cdot 10^{-1} \) | \(a_{968}= +0.17874994 \pm 9.5 \cdot 10^{-1} \) | \(a_{969}= \pm1.19799989 \pm 4.6 \cdot 10^{-1} \) |
\(a_{970}= +0.55324602 \pm 1.1 \) | \(a_{971}= -1.56509867 \pm 7.6 \cdot 10^{-1} \) | \(a_{972}= \pm0.02299568 \pm 7.1 \cdot 10^{-2} \) |
\(a_{973}= +2.74126842 \pm 6.0 \cdot 10^{-1} \) | \(a_{974}= +0.63654945 \pm 9.3 \cdot 10^{-1} \) | \(a_{975}= \pm0.02937388 \pm 5.1 \cdot 10^{-1} \) |
\(a_{976}= -0.01883234 \pm 1.2 \) | \(a_{977}= +0.11410442 \pm 8.7 \cdot 10^{-1} \) | \(a_{978}= \pm0.05758319 \pm 5.1 \cdot 10^{-1} \) |
\(a_{979}= +0.99230635 \pm 8.3 \cdot 10^{-1} \) | \(a_{980}= -0.62392149 \pm 1.0 \) | \(a_{981}= \pm0.60828134 \pm 2.6 \cdot 10^{-1} \) |
\(a_{982}= -0.68185261 \pm 9.8 \cdot 10^{-1} \) | \(a_{983}= +0.41725534 \pm 8.1 \cdot 10^{-1} \) | \(a_{984}= \pm1.13913233 \pm 7.2 \cdot 10^{-1} \) |
\(a_{985}= -1.09999573 \pm 8.6 \cdot 10^{-1} \) | \(a_{986}= \pm0.22378327 \pm 1.6 \cdot 10^{-1} \) | \(a_{987}= \pm0.39614203 \pm 5.4 \cdot 10^{-1} \) |
\(a_{988}= +0.04519149 \pm 1.0 \) | \(a_{989}= +1.81936654 \pm 8.3 \cdot 10^{-1} \) | \(a_{990}= \pm0.35941860 \pm 3.6 \cdot 10^{-1} \) |
\(a_{991}= +1.16340076 \pm 7.0 \cdot 10^{-1} \) | \(a_{992}= +0.38289102 \pm 1.0 \) | \(a_{993}= \pm0.43270980 \pm 4.6 \cdot 10^{-1} \) |
\(a_{994}= -1.05369594 \pm 9.9 \cdot 10^{-1} \) | \(a_{995}= -0.53814757 \pm 8.7 \cdot 10^{-1} \) | \(a_{996}= \pm0.07208645 \pm 6.4 \cdot 10^{-1} \) |
\(a_{997}= -0.84098173 \pm 8.9 \cdot 10^{-1} \) | \(a_{998}= +0.29548583 \pm 8.6 \cdot 10^{-1} \) | \(a_{999}= \pm0.13148722 \pm 1.5 \cdot 10^{-1} \) |
\(a_{1000}= -0.60196791 \pm 1.0 \) |
Displaying $a_n$ with $n$ up to: 60 180 1000